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We study the Reynolds equation, describing the ow of a lubricant, in case of pressure-dependent viscosity. First we prove the
existence and uniqueness of the solution. Then, we study the asymptotic behavior of the solution in case of periodic roughness
via homogenization method. Some interesting nonlocal effects appear due to the nonlinearity.

1. Introduction

The Reynolds equations [1] describe the flow of a thin film
of lubricant separating two rigid surfaces in relative motion.
Controlling the flow of lubricant is an important engineering
issue since inappropriate lubrication would increase the fric-
tion and wear, finally resulting in degrading the performance
of the device. In his classical paper from 1848 [2] Stokes
predicted that the viscosity of the fluid can depend on the
pressure.Those effects for various liquids have beenmeasured
in many engineering papers, starting from the beginning of
the 20th century (see, e.g., [3]).That effect is usually neglected
as it becomes important only in case of high pressure.
Most fluid-lubricated bearings operate with high pressure
and in such a flow regime the dependence of the viscosity
on the pressure becomes important. According to Szeri [4]
the idea of pressure-dependent viscosity was introduced in
lubrication theory by Gatcombe in 1945 [5]. Several models
have been used to describe that relation since. The most
popular is probably the exponential law

𝜇 = 𝜇
0
exp (𝛼𝑝) (1)

usually called the Barus formula [6]. Here 𝜇
0
and 𝛼 are the

constants depending on the lubricant. The formula seems
to be reasonable for mineral oil, unless the pressure is very
high (larger then 0.5MPa). The coefficient 𝛼 typically ranges
between 1 and 10−8.The lower end of the range corresponds to

paraffinic and the upper end corresponds to the naphthenic
oils (see Jones [7]). That formula is still frequently used by
engineers.The simplest viscosity-pressure relation is given by
the the power law

𝜇 (𝑝) = 𝛼
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨
𝛾
. (2)

In case of the two above-mentioned laws explicit solutions of
the equations of motion, for some particular situations like
unidirectional and plane-parallel flows, were found in [8].
Discussion on other possibilities for the viscosity-pressure
formula and some historical remarks on the subject can be
found in the same paper. Several engineering papers can be
found discussing other possible laws and their consistency.
We mention, for instance, [9, 10].

We do not make any assumption on the particular form
of the function 𝑝 󳨃→ 𝜇(𝑝). Some technical assumptions, like
smoothness, will be needed for the proofs.

We study the stationary version of the Reynolds equation.
Unless the velocity of relative motion is time dependent,
steady approximation is reasonable in most cases (see, e.g.,
[4, Chapter 2.2]).

Our first goal is to prove that the problem is well posed.
Secondly, we investigate the asymptotic behavior of the
solution in case of periodically distributed asperities. Using
the homogenization approach, we find the macroscopic
Reynolds pressure. Interesting nonlocal effects appear due to
the nonlinearity caused by the pressure-dependent viscosity.
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2. Position of the Problem

The fluid domain is bounded by two rigid surfaces. The sim-
plified mathematical model can be written in the following
form. LetO ⊂ R𝑛 be a bounded domain and let ℎ : O → R be
a bounded, strictly positive smooth function such that

0 < ℎ
0
≤ ℎ (𝑥) ≤ ℎ

1
. (3)

Function ℎ describes the shape of the slide. By 𝜀 ≪ 1 we
denote a very small parameter representing the domain
thickness. Using the shape function ℎ we define the fluid
domain (Figure 1) by

Ω
𝜀
= {𝑋 = (𝑥, 𝑥

𝑛+1
) ∈ R𝑛+1;

𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ O, 0 < 𝑥

𝑛+1
< 𝜀ℎ (𝑥) } .

(4)

We then consider the stationary flow through a domain Ω
𝜀
.

We want to describe the situation with a lower-dimensional
model. The velocity of the relative motion of two surfaces
is the constant vector denoted by V = V

1
e
1
+ ⋅ ⋅ ⋅ + V

𝑛
e
𝑛
.

The unknowns in the model are 𝑢 (the velocity) and 𝑝 (the
pressure). We recall that the stationary motion of the incom-
pressible viscous laminar flow is governed by the stationary
Navier-Stokes equations.Thus we write the following system:

− div [𝜇 (𝑝)Du] + (u∇) u + ∇𝑝 = 0, div u=0 in Ω
𝜀
,

u = V for 𝑥
𝑛+1

= 0, u = 0 for 𝑥
𝑛+1

= 𝜀ℎ (𝑥) ,

(5)

where Du = (1/2)(∇u + ∇u𝑡) is the symmetric part of the
velocity gradient. It is important to notice that in such system
the pressure is not defined only up to a constant, as in the
classical Navier-Stokes system with constant viscosity. Under
certain technical assumptions, if the given data are not too
large, the existence of the solution for such system was
discussed in [11, 12]. Neglecting the effects of inertia, we get
the Stokes system with pressure-dependent viscosity

div [𝜇 (𝑝)Du] + ∇𝑝 = 0, div u = 0 in Ω
𝜀
, (6)

studied in [13].
If the thickness of the domain is small, the solution can be

fairly approximated by the solution of the Reynolds equations
[4, 14]

k (𝑥, 𝑥
𝑛+1

)

=
1

12𝜇 (𝑝)
𝑥
𝑛+1

(𝜀ℎ − 𝑥
𝑛+1

) ∇𝑝 (𝑥) + (1 −
𝑥
𝑛+1

𝜀ℎ
)V,

(7)

div(∫
𝜀ℎ

0

k𝑑𝑥
𝑛+1

) = 0. (8)

Indeed, if we derive a formal asymptotic expansion of the
solution to the system (5) in powers of 𝜀, then the solution of
the Reynolds equation (7) makes the first term of the expan-
sion (see, e.g., [4]). Here and in the sequel the differential
operators div and∇ are taken only with respect to 𝑥 variable;
that is,

div b =
𝜕𝑏
1

𝜕𝑥
1

+ ⋅ ⋅ ⋅ +
𝜕𝑏
𝑛

𝜕𝑥
𝑛

,

∇𝜙 =
𝜕𝜙

𝜕𝑥
1

e
1
+ ⋅ ⋅ ⋅ +

𝜕𝜙

𝜕𝑥
𝑛

e
𝑛
.

(9)

It leads to an elliptic equation of the form

div( ℎ
3

𝜇 (𝑝)
∇𝑝) = 6V ⋅ ∇ℎ in O (10)

𝑝 = 𝑞 on 𝜕O. (11)

The goal of this paper is to study that equation.
We assume that the function 𝑝 󳨃→ 𝜇(𝑝) is of class 𝐶1(R)

and 𝜇 > 0 for any value of 𝑝. In real life the viscosity increases
with pressure, but such an assumption is not necessary for our
study.

3. Existence of the Solution

3.1. Transformed Equation. Equation (10) is a quasilinear
elliptic PDE, but it can be linearized by simple trick. To do
so we rewrite the equation using the function

𝑀
𝜎
(𝑝) = ∫

𝑝

𝜎

𝑑𝑡

𝜇 (𝑡)
. (12)

We choose 𝜎 ≤ 𝑞. Function 𝑀
𝜎
is strictly increasing, since

𝑀
󸀠

𝜎
(𝑝) = (1/𝜇(𝑝)) > 0 and thus it is bijective. Furthermore

𝑀
𝜎
(𝑝) has the same sign as 𝑝 − 𝜎; that is, for 𝑝 > 𝜎 we have

𝑀
𝜎
(𝑝) > 0, for 𝑝 < 𝜎 obviously 𝑀

𝜎
(𝑝) < 0, and finally

𝑀
𝜎
(𝑝) = 0, if and only if 𝑝 = 𝜎.
We introduce the new unknown function

𝑤 (𝑥) = 𝑀
𝜎
(𝑝 (𝑥)) = ∫

𝑝(𝑥)

𝜎

𝑑𝑡

𝜇 (𝑡)
. (13)

At this point we assume that the integral ∫−∞
0

(𝑑𝑡/𝜇(𝑡)) is
divergent, that is,

∫

0

−∞

𝑑𝑡

𝜇 (𝑡)
= +∞. (14)

As a consequence

lim
𝜎→−∞

𝑀
𝜎
(𝑝) = +∞, ∀𝑝 ∈ R, (15)

as well as

lim
𝑝→−∞

𝑀
𝜎
(𝑝) = −∞, ∀𝜎 ∈ R. (16)
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Deriving (13) we obtain

1

𝜇 (𝑝)
∇𝑝 = ∇𝑤 (17)

and the problem can be written as

div(ℎ3∇𝑤 ) = 6V ⋅ ∇ℎ in O, (18)

𝑤 = 𝑀
𝜎
(𝑞) on 𝜕O. (19)

That is a linear elliptic equation for 𝑤 and it has a unique
solution. To get the existence and uniqueness of the solution
we quote Theorem 8.34 from classical book of Gilbarg and
Trudinger [15]. For simplicity, here and in the sequel, we
assume that 𝑞 and, consequently,𝑀

𝜎
(𝑞) are defined on whole

O. We combine that with the maximum principle from the
appendix, and it gives the following.

Theorem 1. Under the assumption that the boundary 𝜕O is of
class 𝐶1,𝛼 and that ℎ ∈ 𝐶

𝛼
(O), 𝑞 ∈ 𝐶

1,𝛼
(O) the problem (18),

(19) has a unique solution

𝑤 ∈ 𝐶
1,𝛼

(O) . (20)

Furthermore

𝑤 (𝑥) ≤ 𝑀(𝑞) +Z, (21)

where

𝑞 =
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨𝐿∞(𝜕𝜔) (22)

andZ = 0 if V ⋅ ∇h < 0. Otherwise

Z =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

6 |V| [∫
1

0

𝑑𝑡

ℎ(𝑡)
2
−
ℎ
3

0

ℎ
5

1

] + (
ℎ
0

ℎ
1

)

3

∫

𝑞
1

𝑞
0

𝑑𝑠

𝜇 (𝑠)

if 𝑛 = 1

3
(8/5)

(
3

2
)

(28/5)
(2𝜋)
(1/4)

ℎ
3

0

×𝑑 (6 |V| ℎ1|O|1/5 + ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O)) |O|

(7/5)

if 𝑛 = 2,

(23)

with 𝑑 = diamO.

Proof. The existence follows directly from Theorem 8.34.
from Gilbarg and Trudinger [15]. If V ⋅ ∇ℎ < 0, then (21)
follows directly from the weak maximum principle (see, e.g.,
[15]). In case 𝑛 = 1 the problem can be solved by quadratures
and the solution given by (25) can be easily estimated to
get (23). In the remaining case 𝑛 = 2 (21) follows from
the special variant of the maximum principle proved in the
appendix.

Remark 2. In case 𝑛 = 1 (18) is anODE (we takeO =]0, 1[ and
𝑞
0
> 𝑞
1
, without losing generality)

(ℎ
3
𝑤
󸀠
)
󸀠

= 6𝑉ℎ
󸀠 in ]0, 1[ ,

𝑤 (𝑖) = 𝑀
𝜎
(𝑞
𝑖
) for 𝑖 = 0, 1,

(24)

and it can be solved by quadratures

𝑤 (𝑥) = 𝑀
𝜎
(𝑞
0
)

+ ∫

𝑥

0

1

ℎ(𝑡)
3

[

[

6𝑉(ℎ (𝑡)−
∫
1

0
(𝑑𝑟/ℎ(𝑟)

2
)

∫
1

0
(𝑑𝑠/ℎ(𝑠)

3
)

)

+
𝑀
𝜎
(𝑞
1
)−𝑀
𝜎
(𝑞
0
)

∫
1

0
(𝑑𝑠/ℎ(𝑠)

3
)

]

]

𝑑𝑡.

(25)

3.2. Back to the Original Equation. Now, our goal is not to
find the auxiliary function𝑤 but to find the pressure 𝑝. Since
we have introduced 𝑤 as

𝑤 = 𝑀
𝜎
(𝑝) , (26)

we should have 𝑝 = 𝑀
−1

𝜎
(𝑤). In order to do so we have to

make sure that 𝑤(𝑥) ∈ Im𝑀
𝜎
for any 𝑥 ∈ O. Since 𝑀

𝜎
is

strictly increasing and we have assumed that (14) holds, if we
define

𝑀
+

𝜎
= lim
𝑠→+∞

𝑀
𝜎
(𝑠) = ∫

+∞

𝜎

𝑑𝑠

𝜇 (𝑠)
, (27)

due to (16) we obviously have for any 𝑝 ∈ R

−∞ = lim
𝑠→−∞

𝑀
𝜎
(𝑠) ≤ 𝑀

𝜎
(𝑝) ≤ 𝑀

+

𝜎
. (28)

Thus

Im𝑀
𝜎
= ]−∞,𝑀

+

𝜎
[ . (29)

So, to fulfill the condition 𝑤(𝑥) ∈ Im𝑀
𝜎
we need to have

𝑤 (𝑥) ≤ 𝑀
+

𝜎
, ∀𝑥 ∈ O. (30)

That condition is not necessarily fulfilled.
In view of (21) that condition reduces to

Z ≤ ∫

+∞

𝑞

𝑑𝑡

𝜇 (𝑡)
, (31)

whereZ = Z(V, ℎ,O, 𝜇, 𝑞) is defined by (23).
We have proved the following theorem.

Theorem 3. Suppose that the conditions of Theorem 1 hold,
and that in addition (31) is fulfilled. Then 𝑝 = 𝑀

−1

𝜎
(𝑤) is the

unique solution of (10) and (11).

Remark 4. It is important to notice that even though 𝑤 does
depend on 𝜎, the effective pressure 𝑝 does not. For the
purpose of this remark, we denote𝐻

𝜎
(𝑤) = 𝑀

−1

𝜎
(𝑤) to stress

the dependence on the parameter 𝜎 which is of interest here.
We start by

𝑝 = 𝐻
𝜎
(𝑤) . (32)
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It is obvious from the definition of𝑀
𝜎
that

𝜕𝑀
𝜎

𝜕𝑝
(𝑝) =

1

𝜇 (𝑝)
,

𝜕𝑀
𝜎

𝜕𝜎
(𝑝) = −

1

𝜇 (𝜎)
. (33)

As𝑀
𝜎
(𝐻
𝜎
(𝑤)) = 𝑤, deriving with respect to 𝜎 we arrive at

𝜕𝐻
𝜎

𝜕𝜎
(𝑤) = −

(𝜕𝑀
𝜎
/𝜕𝜎) (𝑝)

(𝜕𝑀
𝜎
/𝜕𝑝) (𝑝)

=
𝜇 (𝑝)

𝜇 (𝜎)
=
𝜇 (𝐻
𝜎
(𝑤))

𝜇 (𝜎)
.

(34)

Deriving (13) we get (𝜕𝑤/𝜕𝜎) = −1/𝜇(𝜎). Using the rule
for deriving the inverse function, we have

𝜕𝐻
𝜎

𝜕𝑤
(𝑤) = 𝜇 (𝑝) = 𝜇 (𝐻

𝜎
(𝑤)) . (35)

Thus
𝜕𝑝

𝜕𝜎
=
𝜕𝐻
𝜎

𝜕𝑤
(𝑤)

𝜕𝑤

𝜕𝜎
(𝜎) +

𝜕𝐻
𝜎

𝜕𝜎
(𝑤)

= −
𝜇 (𝐻
𝜎
(𝑤))

𝜇 (𝜎)
+
𝜇 (𝐻
𝜎
(𝑤))

𝜇 (𝜎)
= 0.

(36)

4. Homogenization

In this section we want to study the effects of rugosities
of surfaces on lubrication process. The idea of finding the
macroscopic effects of roughness on lubrication process, via
homogenization, is quite old and well studied. Case of con-
stant viscosity for incompressible and compressible flows as
well as non-Newtonian, deformation dependent, viscosities
were investigated. The subject was treated by several authors
andwe heremention [16–18].The case of pressure-dependent
viscosity brings some new interesting nonlocal effects.

We assume that the function ℎ, describing the form of the
fluid domain, is periodic with small period 1/𝑚, with𝑚 ∈ N.
To stress that dependence we denote it by ℎ

𝑚
. More precisely,

we denote by 𝑌 =]0, 1[
𝑛
, 𝑛 = 1, 2, the period. We further

assume that ℎ : R𝑛 → [𝑑
0
, +∞[, 𝑑

0
> 0 is periodic with

period 𝑌 and smooth. Then we take ℎ
𝑚
of the form

ℎ
𝑚
(𝑥) = ℎ (𝑚𝑥) . (37)

Thus, the function ℎ describes the form of periodically
distributed rugosities.

To emphasize that the relative velocity of bearing surfaces
V is large, we assume that it also depends on 𝑚, the same
parameter that is taken for description of rugosities. In that
case our equation reads

div(
ℎ
3

𝑚

𝜇 (𝑝
𝑚
)
∇𝑝
𝑚
) = 6V

𝑚
⋅ ∇ℎ
𝑚

in O. (38)

4.1. One-Dimensional Case. If 𝑛 = 1, the above problem is
posed on an intervalO =]0, 1[.With an appropriate boundary
condition

𝑝
𝑚
(0) = 𝑞

0
, 𝑝

𝑚
(1) = 𝑞

1
. (39)

It forms a boundary value problem for nonlinear ODE:

(
ℎ
3

𝑚

𝜇 (𝑝
𝑚
)
𝑝
󸀠

𝑚
)

󸀠

= 6𝑉
𝑚
ℎ
󸀠

𝑚
in O. (40)

To study the asymptotic behavior of the solution with respect
to𝑚we linearize the problem using the transformation𝑤

𝑚
=

𝑀
𝜎
(𝑝
𝑚
). To simplify, in this section we choose 𝜎 = 𝑞

0
and,

dropping the index 𝜎 in𝑀
𝜎
and𝑀

+

𝜎
, we denote

𝑀(𝑝) = ∫

𝑝

𝑞
0

𝑑𝑡

𝜇 (𝑡)
, 𝑀

+
= ∫

+∞

𝑞
0

𝑑𝑡

𝜇 (𝑡)
. (41)

Theorem 5. Let

𝜒
0
(𝑦) = 6 (∫

1

0

𝑑𝑠

ℎ(𝑠)
3
)

−1

× [⟨
1

ℎ3
⟩∫

𝑦

0

𝑑V

ℎ(V)2
−⟨

1

ℎ2
⟩∫

𝑦

0

𝑑V

ℎ(V)3
] ,

(42)

⟨⋅⟩ = ∫

1

0

⋅ 𝑑𝑦, (43)

and let𝐻 = 𝑀
−1. Suppose that there exists a limit

𝑉 = lim
𝑚→∞

𝑉
𝑚

𝑚
(44)

and that, for 𝑚 large enough and 𝑀
+ defined in (27), the

following condition holds:

𝑏
𝑚

3
(𝑥)

𝑏
𝑚

3
(1)

𝑀 (𝑞
1
) + 6𝑉

𝑚

𝑏
𝑚

3
(1) 𝑏
𝑚

2
(𝑥) − 𝑏

𝑚

3
(𝑥) 𝑏
𝑚

2
(1)

𝑏
𝑚

3
(1)

≤ 𝑀
+
,

(45)

with

𝑏
𝑚

𝛼
(𝑥) = ∫

𝑥

0

𝑑𝑡

ℎ
𝑚
(𝑡)
𝛼
, 𝛼 = 2, 3. (46)

Then

𝑝
𝑚
⇀ 𝑝
0
=∫

1

0

𝐻(𝑥𝑀(𝑞
1
) + 𝑉𝜒

0
(𝑦)) 𝑑𝑦

weak∗ in 𝐿
∞
(0, 1) .

(47)

Proof. Equation (40), with boundary conditions (39), can be
solved by reduction to quadratures, after the substitution

𝑤
𝑚
= 𝑀(𝑝

𝑚
) , (48)

with 𝑀
𝜎
strictly increasing function defined by (12). The

problem for 𝑤
𝑚
now reads

(ℎ
3

𝑚
𝑤
󸀠

𝑚
)
󸀠

= 6𝑉
𝑚
ℎ
󸀠

𝑚
in ]0, 1[ ,

𝑤
𝑚
(0) = 𝑀(𝑞

0
) = 0, 𝑤

𝑚
(1) = 𝑀(𝑞

1
) .

(49)
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It is easy to see that (49) has a unique solution given by (25).
Since𝑀(𝑞

0
) = 0, (25) now reduces to

𝑤
𝑚
=
𝑏
𝑚

3
(𝑥)

𝑏
𝑚

3
(1)

𝑀
𝜎
(𝑞
1
) + 6𝑉

𝑚

𝑏
𝑚

3
(1) 𝑏
𝑚

2
(𝑥) − 𝑏

𝑚

3
(𝑥) 𝑏
𝑚

2
(1)

𝑏
𝑚

3
(1)

,

(50)

where, for 𝛼 = 2, 3,

𝑏
𝑚

𝛼
(𝑥) = ∫

𝑥

0

𝑑𝑡

ℎ
𝑚
(𝑡)
𝛼

=
1

𝑚
∫

𝑚𝑥

0

𝑑𝑠

ℎ(𝑠)
𝛼
󳨀→ 𝑥∫

1

0

𝑑𝑠

ℎ(𝑠)
𝛼
,

as 𝑚 󳨀→ +∞.

(51)

Now 𝑝
𝑚
, the solution to the problem (40), exists if (45) is

fulfilled. The second term in (50) thus obviously tends to
𝑥𝑀(𝑞

1
), as𝑚 → +∞. The last term is more interesting. The

denominator tends to

⟨
1

ℎ3
⟩ = ∫

1

0

𝑑𝑠

ℎ(𝑠)
3
. (52)

As for its numerator, we have

𝑉
𝑚
[𝑏
𝑚

3
(1) 𝑏
𝑚

2
(𝑥) − 𝑏

𝑚

3
(𝑥) 𝑏
𝑚

2
(1)]

= 𝑉
𝑚
[∫

1

0

∫

𝑥

0

(
1

ℎ
𝑚
(𝑡)
3
ℎ
𝑚
(𝑠)
2
−

1

ℎ
𝑚
(𝑡)
2
ℎ(𝑠)
3

𝑚

)𝑑𝑠 𝑑𝑡]

=
𝑉
𝑚

𝑚
(⟨

1

ℎ3
⟩∫

𝑚𝑥

0

𝑑V

ℎ(V)2
− ⟨

1

ℎ2
⟩∫

𝑚𝑥

0

𝑑V

ℎ(V)3
) .

(53)

Suppose that

𝑉 = lim
𝑚→+∞

𝑉
𝑚

𝑚
(54)

and denote

𝐺 (𝑦) = ⟨
1

ℎ3
⟩∫

𝑦

0

𝑑V

ℎ(V)2
− ⟨

1

ℎ2
⟩∫

𝑦

0

𝑑V

ℎ(V)3
. (55)

Obviously the function𝐺 is periodicwith period 1 so that, due
to the standard periodicity lemma (see, e.g., [19]), as 𝑚 →

+∞,

𝐺 (𝑚𝑥) ⇀ ⟨𝐺⟩ = ∫

1

0

𝐺 (𝑦) 𝑑𝑦, weak∗ in 𝐿
∞
(0, 1) . (56)

By direct computation

⟨𝐺⟩ = ⟨
𝑦

ℎ3
⟩⟨

1

ℎ2
⟩ − ⟨

1

ℎ3
⟩⟨

𝑦

ℎ2
⟩

= ∫∫

1

0

𝑠 − 𝑡

ℎ(𝑠)
3
ℎ(𝑡)
2
𝑑𝑠 𝑑𝑡.

(57)

Thus

𝑉
𝑚
[𝑏
𝑚

3
(1) 𝑏
𝑚

2
(𝑥) − 𝑏

𝑚

3
(𝑥) 𝑏
𝑚

2
(1)] ⇀ 𝑉 ⟨𝐺⟩ . (58)

Now, denoting

𝜒
0
(𝑦) =

𝐺 (𝑦)

𝑏
3 (1)

(59)

we have

𝑤
𝑚
≈ 𝑥𝑀(𝑞

1
) + 𝑉𝜒

0
(𝑚𝑥) , (60)

and thus

𝑤
𝑚
⇀ 𝑤
0
=𝑥𝑀(𝑞

1
) + 𝑉⟨𝜒

0
⟩ weak∗ in 𝐿

∞
(0, 1) . (61)

However, we are not interested in convergence of the
auxiliary function 𝑤

𝑚
but in the convergence of the pressure

𝑝
𝑚
. Since (45) is assumed to be true, we can define 𝑝

𝑚
=

𝐻(𝑤
𝑚
), where𝐻 = 𝑀

−1, and we have

𝑝
𝑚
⇀ 𝑝
0
= ∫

1

0

𝐻(𝑥𝑀(𝑞
1
) + 𝑉𝜒

0
(𝑦)) 𝑑𝑦

weak∗ in 𝐿
∞
(0, 1) .

(62)

Deriving the expression on the right-hand side, we obtain
the effective pressure drop in the form

𝑝
󸀠

0
(𝑥) = 𝑀(𝑞

1
) ∫

1

0

𝜇 (𝑥𝑀(𝑞
1
) + 𝑉𝜒

0
(𝑦)) 𝑑𝑦 (63)

= ∫

𝑞
1

𝑞
0

𝑑𝜏

𝜇 (𝜏)
∫

1

0

𝜇 (𝑥𝑀(𝑞
1
) + 𝑉𝜒

0
(𝑦)) 𝑑𝑦

= ∫

𝑞
1

𝑞
0

𝑑𝜏

𝜇 (𝜏)
∫

1

0

𝜇 (𝑥∫

𝑞
1

𝑞
0

𝑑𝑠

𝜇 (𝑠)
+ 𝑉𝜒
0
(𝑦)) 𝑑𝑦.

(64)

As we can see, the pressure drop is not constant, as for
the Newtonian flow. The interesting effect appears if 𝑉 ̸= 0

because, in that case, the expressions for the pressure and for
the pressure drop are nonlocal due to the integral with respect
to 𝑦. That phenomenon is entirely due to the fact that the
viscosity is depending on the pressure.

4.2. Two-Dimensional Case. We suppose here that the func-
tion ℎ

𝑚
is constructed from positive, smooth, 𝑌-periodic

function ℎ : R2 → [𝑑
0
, +∞[, 𝑑

0
> 0, 𝑌 =]0, 1[

2 in the same
way as before, that is, by taking

ℎ
𝑚
(𝑥) = ℎ (𝑚𝑥) . (65)

We have seen in the previous section that interesting effects
happen only if we assume that

V
𝑚
= 𝑚V. (66)

In that case our equation reads

div(
ℎ
3

𝑚

𝜇 (𝑝
𝑚
)
∇𝑝
𝑚
) = 6V

𝑚
⋅ ∇ℎ
𝑚

in O. (67)
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Aswedid in the existence analysis and in the previous section,
we linearize the equation by substitution

𝑤
𝑚
= 𝑀
𝜎
(𝑝
𝑚
) , (68)

where the function𝑀
𝜎
is defined by (12). Now 𝑤

𝑚
satisfies

div (ℎ3𝑀 ∇𝑤
𝑚
) = 6V

𝑚
⋅ ∇ℎ
𝑚

in O. (69)

We postulate the asymptotic expansion in the form

𝑤
𝑚 (𝑥) ≈ 𝑤

0
(𝑥, 𝑦) +

1

𝑚
𝑤
1
(𝑥, 𝑦)

+
1

𝑚2
𝑤
2
(𝑥, 𝑦) + ⋅ ⋅ ⋅ , 𝑦 = 𝑚𝑥.

(70)

All functions are assumed to be 𝑌-periodic in 𝑦 variable.
Plugging that in (69) and collecting, formally, terms with

equal powers of𝑚, we get

𝑚
2: div
𝑦
(ℎ
3
∇
𝑦
𝑤
0
) = 6V ⋅ ∇

𝑦
ℎ

𝑚: div
𝑦
(ℎ
3
∇
𝑦
𝑤
1
) + div

𝑦
(ℎ
3
∇
𝑥
𝑤
0
) + ℎ
3div
𝑥
∇
𝑦
𝑤
0
= 0

1: div
𝑦
(ℎ
3
∇
𝑦
𝑤
2
) + div

𝑦
(ℎ
3
∇
𝑥
𝑤
1
) + ℎ
3div
𝑥
∇
𝑦
𝑤
1

+ ℎ
3
Δ
𝑥
𝑤
0
= 0.

Denoting

𝑉 = |V| , V
0
=
V
𝑉

(71)

we have

𝑤
0
(𝑥, 𝑦) = V

0
(𝑥) + 𝑉𝜒

0
(𝑦) ,

div
𝑦
(ℎ
3
∇
𝑦
𝜒
0
) = 6V

0
⋅ ∇
𝑦
ℎ in 𝑌,

𝑤
1
(𝑥, 𝑦) =

2

∑

𝑘=1

𝜒
𝑘
(𝑦)

𝜕V
0

𝜕𝑥
𝑘

(𝑥) + V
1
(𝑥) ,

div
𝑦
(ℎ
3
∇
𝑦
(𝜒
𝑘
+ 𝑦
𝑘
)) = 0,

2

∑

𝑘,ℓ=1

a
𝑘ℓ

𝜕
2V
0

𝜕𝑥
𝑘
𝜕𝑥
ℓ

= 0 in O,

a
𝑘ℓ

= ∫
𝑌

ℎ
3 𝜕

𝜕𝑦
ℓ

(𝜒
𝑘
+ 𝑦
𝑘
) 𝑑𝑦.

(72)

Remark 6. Thesame computation can be done in one-dimen-
sional case and it gives

(ℎ
3
𝜒
󸀠

0
)
󸀠

= 6ℎ
󸀠
󳨐⇒ 𝜒
0
= 6∫

𝑦

0

𝑑𝑡

ℎ(𝑡)
2
+ 𝐶
0
∫

𝑦

0

𝑑𝑡

ℎ(𝑡)
3
+ 𝐶
1
,

(73)

V
0
= 𝑥𝑀(𝑞

1
) . (74)

Constants 𝐶
0
, 𝐶
1
are chosen in a way that boundary condi-

tions 𝜒
0
(0) = 𝜒

0
(1) = 0 are met, and it follows that

𝐶
1
= 0, 𝐶

0
= − 6(∫

1

0

𝑑𝑡

ℎ(𝑡)
3
)

−1

∫

1

0

𝑑𝑡

ℎ(𝑡)
2
. (75)

Then

𝑤
𝑚
≈ 𝑤
0 (𝑥,𝑚𝑥)

= V
0
(𝑥) + 𝜒

0
(𝑚𝑥)

= 𝑥𝑀
𝜎
(𝑞
1
)

+ 6𝑉[∫

𝑚𝑥

0

𝑑𝑡

ℎ(𝑡)
2
− (∫

1

0

𝑑𝑡

ℎ(𝑡)
3
)

−1

× ∫

1

0

𝑑𝑡

ℎ(𝑡)
2

∫

𝑚𝑥

0

𝑑𝑡

ℎ(𝑡)
3
]

= 𝑥𝑀
𝜎
(𝑞
1
)

+ 6𝑉
𝑏
𝑚

2
(𝑥) 𝑏
3
(1) − 𝑏

2
(1) 𝑏
𝑚

3
(𝑥)

𝑏
3
(1)

= 𝑥𝑀
𝜎
(𝑞
1
) + 𝑉𝜒

0
(𝑚𝑥) .

(76)

That is a very good approximation of our exact solution (50).
It is important to notice that the choice of constants

𝐶
0
, 𝐶
1
was determined from the exterior boundary con-

dition. So, we should expect the same in two-dimensional
case. However the treatment of boundary conditions in
two-dimensional case is much more complicated and the
boundary layer is to be expected.

The derived asymptotic expansion should be justified by
proving the convergence. And we need the strong conver-
gence (with corrector, of course) for 𝑤

𝑚
in order to get the

convergence for 𝑝
𝑚
. The form of the approximation

𝑤
𝑚
≈ V
0
(𝑥) + 𝑉𝜒

0
(𝑚𝑥) + ⋅ ⋅ ⋅ . (77)

suggests that the boundary layer phenomenon should appear
on the exterior boundary 𝜕O since 𝜒

0
term cannot satisfy the

Dirichlet condition on 𝜕O. To get the error estimate and the
strong convergence we need to handle that boundary layer.
Thus, at this point we simplify the domain and the boundary
condition, in order to be able to avoid it. We assume that

O = ]0, 1[ × R, (78)

𝑝
𝜀
(0, 𝑥
2
) = 0, 𝑝

𝜀
(1, 𝑥
2
) = 𝑞 (𝑥

2
) , (79)

𝑥
2
󳨃󳨀→ 𝑝

𝜀
(𝑥
1
, 𝑥
2
) is 1-periodic, (80)

ℎ (𝑦
1
, 𝑦
2
) = ℎ (𝑦

1
) , (81)

𝑞 is 1-periodic. (82)

Now

𝑤
𝜀
= 𝑀
𝜎
(𝑝
𝜀
) , with 𝑀

𝜎
(𝑝) =∫

𝑝

𝜎

𝑑𝑠

𝜇 (𝑠)
󳨐⇒ 𝑤

𝜀
(0, 𝑥
2
) = 0,

𝑤
𝜀
(1, 𝑥
2
) = 𝑀

𝜎
(𝑞 (𝑥
2
))

(83)

and 𝑥
2
󳨃→ 𝑤
𝜀
(𝑥
1
, 𝑥
2
) is 1-periodic.
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In that case we can compute𝜒
0
and𝜒
𝑘
, 𝑘 = 1, 2, explicitly

and we can impose exterior condition on 𝜒
0
. Indeed 𝜒

0
is

exactly the same as in the monodimensional case; that is, it
is given by (73) and (75). Obviously 𝜒

2
= 0 so that

a
22

= ∫

1

0

ℎ(𝑠)
3
𝑑𝑠 = ⟨ℎ

3
⟩ , a

12
= a
21

= 0. (84)

As for the last term

𝜒
1
= −𝑦
1
+ (∫

1

0

𝑑𝑠

ℎ(𝑠)
3
)

−1

∫

𝑦
1

0

𝑑𝑠

ℎ(𝑠)
3
,

a
11

= (∫

1

0

𝑑𝑠

ℎ(𝑠)
3
)

−1

=
1

⟨1/ℎ3⟩
.

(85)

Finally, the function V
0
satisfies the boundary value problem

1

⟨1/ℎ3⟩

𝜕
2V
0

𝜕𝑥2
1

+ ⟨ℎ
3
⟩
𝜕
2V
0

𝜕𝑥2
2

= 0 in O,

V
0
(0, 𝑥
2
) = 0,

V
0
(1, 𝑥
2
) = 𝑀

𝜎
(𝑞 (𝑥
2
)) , V

0
is 1-periodic in 𝑥

2
.

(86)

It can be solved using the Fourier method, and we get

V
0
(𝑥
1
, 𝑥
2
) =

∞

∑

𝑘=1

sh (√⟨ℎ3⟩ ⟨ℎ−3⟩ 𝑘𝜋𝑥
1
)

× (𝛼
𝑘
sin 𝑘𝜋𝑥

2
+ 𝛽
𝑘
cos 𝑘𝜋𝑥

2
) ,

𝛼
𝑘
= 2∫

1

0

𝑀
𝜎
(𝑞 (𝑡)) sin 𝑘𝜋𝑡𝑑𝑡,

𝛽
𝑘
= 2∫

1

0

𝑀
𝜎
(𝑞 (𝑡)) cos 𝑘𝜋𝑡𝑑𝑡.

(87)

Since the approximation

w
𝑚
≈ V
0
(𝑥) + 𝑉𝜒

0
(𝑚𝑥
1
) +

1

𝑚
𝜒
1
(𝑚𝑥
1
)
𝜕V
0

𝜕𝑥
1

(𝑥) (88)

now satisfies the boundary conditions on 𝜕O, it is easy to see
that

󵄨󵄨󵄨󵄨𝑤𝑚 − (V
0
(𝑥) + 𝑉𝜒

0
(𝑚𝑥))

󵄨󵄨󵄨󵄨𝐿∞(O) ≤ 𝐶
1

𝑚
(89)

follows from the maximum principle. Assuming that, for 𝑚
large enough,

V
0
(𝑥) + 𝑉𝜒

0
(𝑚𝑥) ≤ 𝑀

+ (90)

we have
󵄨󵄨󵄨󵄨𝑝𝑚 − 𝐻 (V

0
(𝑥) + 𝑉𝜒

0
(𝑚𝑥))

󵄨󵄨󵄨󵄨𝐿∞(O) 󳨀→ 0. (91)

Finally

𝑝
𝑚
⇀ 𝑝
0
= ∫

1

0

𝐻(V
0
(𝑥) + 𝑉𝜒

0
(𝑦
1
)) 𝑑𝑦
1
. (92)

We have proved that.

Theorem 7. Let 𝑝
𝑚
be the solution to the problem (67), (79),

and (80) and let V
0
,𝜒
0
be defined by (87) and (42), respectively.

If (90) holds, then
󵄨󵄨󵄨󵄨𝑝𝑚 − 𝐻 (V

0 (𝑥) + 𝑉𝜒
0 (𝑚𝑥))

󵄨󵄨󵄨󵄨𝐿∞(O) 󳨀→ 0,

𝑝
𝑚
⇀ 𝑝
0
= ∫

1

0

𝐻(V
0
(𝑥) + 𝑉𝜒

0
(𝑦
1
)) 𝑑𝑦
1
.

(93)

Remark 8. It is important to notice that 𝜋
0
= 𝐻(𝑝

0
) satisfies

2

∑

𝑖,𝑘=1

𝜕

𝜕𝑥
𝑖

(
a
𝑖𝑘

𝜇 (𝜋
0
)

𝜕𝜋
0

𝜕𝑥
𝑘

) = 0 in O, 𝜋
0
= 𝑞 on 𝜕O, (94)

and thus we would expect it to be the limit of 𝑝
𝑚
in analogy

with the linear case. However 𝑝
0

̸= 𝜋
0
.

If𝑉 = lim
𝑚→∞

𝑚|V
𝑚
| is small, we can expand𝐻(V

0
(𝑥)+

𝑉𝜒
0
(𝑚𝑥)) in powers of 𝑉 and we get

𝑝
𝑚
(𝑥) ≈ 𝐻 (V

0
(𝑥) + 𝑉𝜒

0
(𝑚𝑥))

= 𝐻 (V
0
(𝑥)) + 𝑉𝐻

󸀠
(V
0
(𝑥)) 𝜒

0
(𝑦) + 𝑂 (𝑉

2
)

= 𝜋
0
(𝑥) + 𝑉𝜇 (𝜋

0
(𝑥)) 𝜒

0
(𝑦) + 𝑂 (𝑉

2
) .

(95)

Thus

𝑝
0
= 𝜋
0
+ 𝜇 (𝜋

0
) ⟨𝜒
0
⟩𝑉 + 𝑂 (𝑉

2
) . (96)

It can be, formally, written as

𝑝
𝑚
(𝑥) ≈ 𝜋

0
(𝑥) +

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

𝑚
𝜇 (𝜋
0
(𝑥)) 𝜒

0
(𝑚𝑥) + 𝑂(

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨
2

𝑚2
) .

(97)

Appendix

The Maximum Principle

Our goal is to derive maximum principles for the linear
Reynolds equation, with sharp explicit constants, in order
to solve the nonlinear Reynolds equation with pressure-
dependent viscosity. We assume, without losing generality,
that V = (1/6)Vi. Indeed, we can always choose the coor-
dinate system in a way that the first coordinate axis 𝑥 has a
direction of the velocity of relative motion V.

The lower bound for 𝑤(𝑥, 𝑦) is of no interest, just
the upper bound. Function 𝑤(𝑥, 𝑦) is the solution to the
boundary value problem

div (ℎ3∇𝑤) = V
𝜕ℎ

𝜕𝑥
in O ⊂ R2,

𝑤 = 𝑀
𝜎
(𝑞) on 𝜕O.

(A.1)

We assume that if V(𝜕ℎ/𝜕𝑥) > 0, then 𝑤 cannot have a
maximum point in the domain O and, thus,

𝑤 (𝑥, 𝑦) ≤ max
(𝑥,𝑦)∈𝜕O

𝑀
𝜎
(𝑞 (𝑥, 𝑦)) . (A.2)
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However it is not realistic to assume that (𝜕ℎ/𝜕𝑥) does not
change the sign. To find the upper bound in the general case
we use the procedure from the DeGiorgi theorem. The main
result of the section is as follows.

TheoremA.1. Let𝑤 be the solution to the problem (A.1).Then

𝑤 (𝑥, 𝑦) ≤
󵄨󵄨󵄨󵄨𝑀𝜎 (𝑞)

󵄨󵄨󵄨󵄨𝐿∞(𝜕O) +Z (V, ℎ,O, 𝜇, 𝑞) , (A.3)

Z=3
(8/5)

×(
3

2
)

(28/5)
(2𝜋)
(1/4)

ℎ
3

0

diamO (|V| ℎ1|O|
1/5

+ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O))

× |O|
(7/5)

.

(A.4)

Proof. The function 𝑧 = 𝑤 − 𝐺 satisfies

div (ℎ3∇𝑧) = V
𝜕ℎ

𝜕𝑥
+ div (ℎ3∇𝑀

𝜎
(𝑞)) in O ⊂ R2, (A.5)

𝑧 = 0 on 𝜕O. (A.6)

Next we introduce the embedding constant for 𝑊1,2
0

(O) ⊂

𝐿
𝑟
(O) denoted𝑀

𝑟
, such that

|V|𝐿𝑟(O) ≤ 𝑀
𝑟|∇V|𝐿2(O), ∀V ∈ 𝐻

1

0
(O) . (A.7)

That constant can be estimated as

𝑀
𝑟
≤
1

2
(diamO)

2
|O|
1/𝑟 − 1/2

(
𝑟 + 2

2
)

((𝑟+2)/2𝑟)

√2𝜋. (A.8)

See, for example, [20, Lemma 1]. Next we define the se-
quence

𝜆
𝑘+1

= 3(
𝜆
𝑘

2
+ 1) , 𝜆

1
= 2. (A.9)

Easy computation yields

𝜆
𝑘
= 8(

3

2
)

𝑘−1

− 6. (A.10)

Let

𝑧
+
(𝑥, 𝑦) = max {𝑧 (𝑥, 𝑦) , 0} . (A.11)

We test (A.5) with (𝑧
+
)
1+𝜆
𝑘+1 and get

∫
O

ℎ
3
∇𝑧
+
∇(𝑧
+
)
1+𝜆
𝑘+1

=
1 + 𝜆
𝑘+1

(1 + 𝜆
𝑘+1

/2)
2
∫
O

ℎ
3
󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘+1
/2)󵄨󵄨󵄨󵄨󵄨󵄨

2

= ∫
O

[Vℎ
𝜕

𝜕𝑥
(𝑧
+
)
1+𝜆
𝑘+1

+ ℎ
3
∇𝑀
𝜎
(𝑞) ∇(𝑧

+
)
1+𝜆
𝑘+1

] .

(A.12)

For the left-hand side, we get the lower bound

ℎ
3

0

1 + 𝜆
𝑘+1

(1 + 𝜆
𝑘+1

/2)
2

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘+1
/2)󵄨󵄨󵄨󵄨󵄨󵄨

2

𝐿
2
(O)

. (A.13)

We estimate the terms on the right-hand side using the same
idea

∫
O

ℎ
3
∇𝑀
𝜎
(𝑞) ∇(𝑧

+
)
1+𝜆
𝑘+1

≤ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O)

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+𝜆
𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨𝐿5/4(O)
,

∫
O

ℎV
𝜕

𝜕𝑥
(𝑧
+
)
1+𝜆
𝑘+1

≤ ℎ
1 |V| |O|

1/5
󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+𝜆
𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨𝐿5/4(O)
.

(A.14)

Thus, it remains to estimate |∇(𝑧+)1+𝜆𝑘+1 |
𝐿
5/4
(O). We have

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+𝜆
𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨

5/4

𝐿
5/4
(O)

= (1 + 𝜆
𝑘+1

)
5/4

∫
O

(𝑧
+
)
(5𝜆
𝑘+1
/4)󵄨󵄨󵄨󵄨∇𝑧

+󵄨󵄨󵄨󵄨

5/4

= (
1 + 𝜆
𝑘+1

1 + (𝜆
𝑘+1

/2)
)

5/4

∫
O

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘+1
/2)󵄨󵄨󵄨󵄨󵄨󵄨

5/4󵄨󵄨󵄨󵄨𝑧
+󵄨󵄨󵄨󵄨

(5𝜆
𝑘+1
/8)

≤ [Hölders inequality with 𝑝 =
8

5
, 𝑝
󸀠
=
8

3
]

≤ (
1 + 𝜆
𝑘+1

1 + (𝜆
𝑘+1

/2)
)

5/4

(∫
O

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘+1
/2)󵄨󵄨󵄨󵄨󵄨󵄨

2

)

5/8

× (∫
O

(𝑧
+
)
(5/3)𝜆

𝑘+1

)

3/8

= [due to (A.9) 5
3
𝜆
𝑘+1

= 5(1 +
𝜆
𝑘

2
) ,

3

8
=
1

4

𝜆
𝑘+1

2 + 𝜆
𝑘

]

= (
1 + 𝜆
𝑘+1

1 + (𝜆
𝑘+1

/2)
)

5/4
󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘+1
/2)󵄨󵄨󵄨󵄨󵄨󵄨

5/4

𝐿
2
(O)

×
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑧
+
)
1+(𝜆
𝑘
/2)󵄨󵄨󵄨󵄨󵄨󵄨

(𝜆
𝑘+1
/(2+𝜆

𝑘
))(5/4)

𝐿
5
(O)

.

(A.15)

Combining with (A.14) and (A.13), we get

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘+1
/2)󵄨󵄨󵄨󵄨󵄨󵄨𝐿2(O)

≤ ℎ
−3

0
(1 +

𝜆
𝑘+1

2
)
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑧
+
)
1+(𝜆
𝑘
/2)󵄨󵄨󵄨󵄨󵄨󵄨

((𝜆
𝑘+1
)/(2+𝜆

𝑘
))

𝐿
5
(O)

× (ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O) + ℎ

1 |V| |O|
1/5

)
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≤ 𝑀
((𝜆
𝑘+1
)/(2+𝜆

𝑘
))

5
ℎ
−3

0
(1+

𝜆
𝑘+1

2
)

×
󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘
/2)󵄨󵄨󵄨󵄨󵄨󵄨

((𝜆
𝑘+1
)/(2+𝜆

𝑘
))

𝐿
2
(O)

× (ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O) + ℎ

1 |V| |O|
1/5

) .

(A.16)

We recall that

𝜆
𝑘+1

2 + 𝜆
𝑘

=
3

2
(A.17)

and define

𝛼 = 𝑀
(3/2)

5
ℎ
−3

0
(ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O) + ℎ

1 |V| |O|
1/5

) (A.18)

as well as

𝜎
𝑘
=

1

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
1+(𝜆
𝑘
/2)󵄨󵄨󵄨󵄨󵄨󵄨

(2/(2+𝜆
𝑘
))

𝐿
2
(O)

. (A.19)

Then (A.16) implies

𝜎
𝑘+1

≤ (1 +
𝜆
𝑘+1

2
)

(2/(2+𝜆
𝑘
))

𝜎
((𝜆
𝑘+1
)/(2+𝜆

𝑘+1
))

𝑘
. (A.20)

Taking the logarithm, we arrive at

log𝜎
𝑘+1

≤
log (1 + (𝜆

𝑘+1
/2))

1 + (𝜆
𝑘+1

/2)
+

𝜆
𝑘+1

2 + 𝜆
𝑘+1

log𝜎
𝑘
. (A.21)

We first notice that

𝜆
𝑘+1

2 + 𝜆
𝑘+1

< 1 (A.22)

and then

1 +
𝜆
𝑘

2
= 4(

3

2
)

𝑘−1

− 2 > (
3

2
)

𝑘

. (A.23)

Since the function 𝑥 󳨃→ (log𝑥/𝑥) is decreasing for 𝑥 > 𝑒, we
have

log (1 + (𝜆
𝑘
/2))

1 + (𝜆
𝑘
/2)

≤
log [(3/2)𝑘]

(3/2)
𝑘

= 𝑘 log 3

2
(
2

3
)

𝑘

, ∀𝑘 ≥ 3.

(A.24)

Then,

log𝜎
𝑘+1

≤ (𝑘 + 1) log 3

2
(
2

3
)

𝑘

+ log𝜎
𝑘

≤ log 3

2

𝑘+1

∑

𝑗=2

𝑗(
2

3
)

𝑗

+ log𝜎
1
≤ 8 log 3

2
+ log𝜎

1
.

(A.25)

Finally

𝜎
𝑘+1

≤ (
3

2
)

8

𝜎
1
. (A.26)

Now it remains to estimate 𝜎
1
. From the definitionwe see that

𝜎
1
=

1

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
2󵄨󵄨󵄨󵄨󵄨󵄨

1/2

𝐿
2
(O)

. (A.27)

To estimate 𝜎
1
, we proceed as before and test (A.5) with (𝑧+)3.

We get

3

4
∫
O

ℎ
3
󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
2󵄨󵄨󵄨󵄨󵄨󵄨

2

= ∫
O

(Vℎ
𝜕(𝑧
+
)
3

𝜕𝑥
+ ℎ
3
∇𝑀
𝜎
(𝑞) ∇(𝑧

+
)
3

)

≤ (|V| ℎ1|O|
1/5

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O))

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
3󵄨󵄨󵄨󵄨󵄨󵄨𝐿5/4(O)

≤ (|V| ℎ1|O|
1/5

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O))

×
3

2

󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐿2(O)

󵄨󵄨󵄨󵄨𝑧
+󵄨󵄨󵄨󵄨𝐿10/3(O).

(A.28)

Thus
󵄨󵄨󵄨󵄨󵄨󵄨
∇(𝑧
+
)
2󵄨󵄨󵄨󵄨󵄨󵄨𝐿2(O)

≤
2

ℎ
3

0

(|V| ℎ1|O|
1/5

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O))𝑀(10/3)

󵄨󵄨󵄨󵄨∇𝑧
+󵄨󵄨󵄨󵄨𝐿2(O).

(A.29)

Finally, testing (A.5) with 𝑧
+, we get

∫
O

ℎ
3󵄨󵄨󵄨󵄨∇𝑧
+󵄨󵄨󵄨󵄨

2

= ∫
O

(Vℎ
𝜕𝑧
+

𝜕𝑥
+ ℎ
3
∇𝑀
𝜎
(𝑞) ∇𝑧

+
) (A.30)

so that

󵄨󵄨󵄨󵄨∇𝑧
+󵄨󵄨󵄨󵄨𝐿2(O) ≤

1

ℎ
3

0

(|V| ℎ1|O|
1/2

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿2(O))

≤ |O|
3/10

(|V| ℎ1|O|
1/5

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O)) .

(A.31)

Combining (A.29) with (A.31) and (A.26) gives

𝜎
𝑘+1

≤ (
3

2
)

8
1

𝛼

√2

ℎ
3

0

× (|V| ℎ1|O|
1/5

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O))𝑀

1/2

(10/3)
|O|
3/2

.

(A.32)

Since

𝜎
𝑘+1

≥
1

𝛼𝑀
(2/(2+𝜆k))
2

󵄨󵄨󵄨󵄨𝑧
+󵄨󵄨󵄨󵄨𝐿2+𝜆𝑘 (O), (A.33)
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we have arrived to

󵄨󵄨󵄨󵄨𝑧
+󵄨󵄨󵄨󵄨𝐿2+𝜆𝑘 (O) ≤ (

3

2
)

8

𝑀
(2/(2+𝜆

𝑘
))

2

√2

ℎ
3

0

× (|V| ℎ1|O|
1/5

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O))𝑀

1/2

(10/3)
|O|
3/2

.

(A.34)

Since lim
𝑘→∞

𝜆
𝑘
= ∞, we get

󵄨󵄨󵄨󵄨𝑧
+󵄨󵄨󵄨󵄨𝐿∞(O) ≤ (

3

2
)

8√2

ℎ
3

0

×(|V| ℎ1|O|
1/5

+ ℎ
3

1

󵄨󵄨󵄨󵄨∇𝑀𝜎 (𝑞)
󵄨󵄨󵄨󵄨𝐿5(O))𝑀

1/2

(10/3)
|O|
3/2

.

(A.35)

Finally (A.8) implies (A.3).
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