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Most existing research on the job shop scheduling problem has been focused on the minimization
of makespan (i.e., the completion time of the last job). However, in the fiercely competitive market
nowadays, delivery punctuality is more important for maintaining a high service reputation.
So in this paper, we aim at solving job shop scheduling problems with the total weighted
tardiness objective. Several dispatching rules are adopted in the Giffler-Thompson algorithm for
constructing active schedules. It is noticeable that the rule selections for scheduling consecutive
operations are not mutually independent but actually interrelated. Under such circumstances, a
probabilistic model-building genetic algorithm (PMBGA) is proposed to optimize the sequence
of selected rules. First, we use Bayesian networks to model the distribution characteristics of
high-quality solutions in the population. Then, the new generation of individuals is produced by
sampling the established Bayesian network. Finally, some elitist individuals are further improved
by a special local search module based on parameter perturbation. The superiority of the proposed
approach is verified by extensive computational experiments and comparisons.

1. Introduction

The job shop scheduling problem (JSSP) has been known as an extremely difficult combi-
natorial optimization problem ever since the 1950s. In terms of computational complexity,
JSSP is strongly NP-hard [1]. Because of its relevance to contemporary manufacturing
systems, extensive research has been conducted on the problem [2]. In recent years, the
metaheuristics—such as simulated annealing (SA) [3], genetic algorithm (GA) [4–6], tabu
search (TS) [7, 8], particle swarm optimization (PSO) [9, 10], and ant colony optimization
(ACO) [11, 12]—have clearly become the most popular methods.
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However, most existing research is still based on the standard JSSP model, soit is
inconvenient to apply these algorithms directly to real-world scheduling scenarios. Espe-
cially, most algorithms are designed for the makespan criterion (i.e., minimize Cmax). Actu-
ally, in the make-to-order production environment nowadays, due date related performances
are becoming increasingly significant, because the in-time delivery of goods is vital for
maintaining a high service reputation. Therefore, the algorithms that aim at minimizing
tardiness in JSSP deserve more investigations.

In an attempt to contribute to the scheduling community, in this paper we study the
JSSP with the objective of minimizing total weighted tardiness (TWT). TWT is the weighted
sum of each job’s tardiness against its due date. In some respects, the TWT measure captures
the critical factors related with the profitability of a firm more accurately than the makespan.
Meanwhile, from the theoretical perspective, the complexity of solving JSSP with TWT
objective (abbreviated as TWT-JSSP hereinafter) is much greater than that of solving JSSP
with makespan objective [13]. The value of TWT is affected by all the tardy jobs and thus
is more sensitive to the changes in the schedule. According to the three-field notation, the
studied problem can be described as Jm| |∑wjTj .

Relatively few publications have discussed the minimization of TWT in JSSP. The only
exact method is the branch-and-bound algorithm proposed by Singer and Pinedo [14], while
the rest belong to the heuristic category. The first attempt of adapting the shifting bottleneck
algorithm (which was very successful for makespan minimization) to TWT-JSSP is reported
in [15]. In [16, 17], the authors propose modified shifting bottleneck heuristics for complex
job shops (characterized by parallel batching machines, sequence-dependent setup times,
and reentrant process flows) with TWT criterion. In these algorithms, the single/parallel
machine subproblems are solved basically by the ATC rule or the extended BATCS rule (for
the case of batching and setups). The shifting bottleneck heuristic proposed in [18], however,
uses genetic algorithms to solve the subproblems. The computations show that using GA
as subproblem solution procedures leads to improved results compared to dispatching-
based subproblem solution procedures. Besides shifting bottleneck, a large step randomwalk
(LSRW) algorithm is designed in [19], which uses different neighborhood sizes depending
on whether a small step or a large step is performed. A small step consists of iterative
improvement, while a large step consists of aMetropolis algorithm. In [20, 21], hybrid genetic
algorithms are presented for solving TWT-JSSP. The former combines GA with different
dispatching rules, while the latter combines GA with an iterated local search procedure that
uses the longest path approach on a disjunctive graph model. In [22], a tabu search algorithm
is presented for the generalized TWT-JSSP with release times and precedence constraints.
Recently, electromagnetic algorithms (EM) have been successfully applied to TWT-JSSP [23].
In fact, most of these algorithms have relatively high computational complexity, and thus
they are incapable of solving large-scale TWT-JSSP.

Rule-based scheduling approaches have been investigated for job shop scheduling
since the late 1990s [24, 25]. A remarkable advantage of using dispatching rules is that it
helps to save computational time and generally produces satisfactory solutions. Recently,
modern optimization strategies are applied to find high-quality combinations of dispatching
rules. For example, a neural network is designed in [26] to determine the dispatching rule to
use on each machine in a job shop (it is necessary to train the neural network beforehand
with optimal rule combinations for some known instances). A memetic algorithm with
tailored-encoding/decoding schemes, and a local search procedure is proposed in [27] for
minimizing the number of tardy jobs in JSSP. The memetic algorithm defeats a multistart hill-
climbing approach and a simulated annealing approach. A dispatching rule-based genetic
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algorithms (DRGA) is proposed in [28], which searches simultaneously for the best sequence
of dispatching rules and the number of operations to be handled by each dispatching
rule. The DRGA obtains better results than a GA using the conventional dispatching rule
representation and a GA that uses the operation permutation representation. A genetic
programming-based data mining approach is proposed in [29] to select dispatching rules
under a given set of shop parameters (e.g., interarrival times). The results obtained from
simulation show that the selected dispatching rules are appropriate according to the current
shop status.

The rest of the paper is organized as follows. The discussed problem is mathematically
formulated in Section 2. Section 3 makes a brief introduction to the principles of PMBGA.
Section 4 proposes a rule-based PMBGA for solving TWT-JSSP. Section 5 presents the
computational results and analysis. Finally, Section 6 concludes the paper.

2. Problem Formulation

In a JSSP instance, a set of n jobs {Jj}nj=1 are to be processed on a set of m machines {Mk}mk=1
under the following basic assumptions: (i) there is nomachine breakdown; (ii) no preemption
of operations is allowed; (iii) all jobs are released at time 0; (iv) the transportation times and
the setup times are all neglected; (v) each machine can process only one job at a time; (vi)
each job may be processed by only one machine at a time.

Each job has a fixed processing route which traverses the relevant machines (in the
standard JSSP benchmark instances, each job is required to visit all the machines. But actually,
the number of operations for each job (mj) can be less thanm) in a predetermined order. The
manufacturing process of job j on machine k is noted as operation Ojk, with a duration of
pjk. Besides, a preset due date dj (describing the level of urgency) and a preset weight wj

(reflecting the importance of the order) are given for each job j. The objective function is
defined as TWT =

∑n
j=1 wjTj , where Tj = max{Cj − dj , 0} defines the tardiness of job j.

JSSP can be described by a disjunctive graph G(O,A,E) [30]. O = {Ojk | j =
1, . . . , n, k = 1, . . . , m} is the set of nodes. A is the set of conjunctive arcs which connect
successive operations of the same job, soA describes the technological constraints in the JSSP
instance. E =

⋃m
k=1 Ek is the set of disjunctive arcs, where Ek denotes the disjunctive arcs

corresponding to the operations on machine k. Each arc in Ek connects a pair of operations
to be processed by machine k and ensures that the two operations should not be processed
simultaneously. Initially, the disjunctive arcs do not have fixed directions.

Under the disjunctive graph representation, finding a feasible schedule for the JSSP
is equivalent to orienting all the disjunctive arcs so that no directed cycles exist in the
resulting graph. In this paper, we use σ to denote the set of directed disjunctive arcs which
are transformed from the original E. Thus, if A ∪ σ is acyclic, the schedule corresponding to
σ is feasible (in the rest of the paper, we do not distinguish between σ and the schedule. For
the convenience of expression, we will write σ as a matrix. The kth row of σ represents the
processing order of the operations on machine k).

Based on the disjunctive graph model, the discussed TWT-JSSP can be mathematically
formulated as follows:

min TWT =
n∑

j=1

wj

(
tjkj + pjkj − dj

)+
, (2.1)

s.t.

tjk + pjk � tjk′ , ∀(Ojk,Ojk′
) ∈ A,

(a)
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tjk + pjk � tj ′k ∨ tj ′k + pj ′k � tjk, ∀(Ojk,Oj ′k
) ∈ Ek, (b)

tjk � 0, j = 1, . . . , n, k = 1, . . . , m. (c)

In this formulation, (x)+ = max{x, 0}. tjk represents the starting time of operation Ojk. kj
denotes the index of the machine that processes the last operation of job j, so the completion
time of job j is tjkj + pjkj . The set of constraints (a) ensure that the processing order of the
operations from each job is consistent with the technological routes. The set of constraints (b)
ensure that any two operations on the same machine cannot be processed simultaneously.

3. A Brief Introduction to PMBGA

Recently, there has been a growing interest in the evolutionary algorithms that explore the
search space by building and utilizing probabilistic models of high-quality solutions. Indeed,
these algorithms use the following two steps to replace the conventional crossover and
mutation operators in GA:

(1) Build a probabilistic model of the selected promising solutions;

(2) Sample the built model to produce a new generation of candidate solutions.

The evolutionary algorithms based on such a principle are referred to as estimation
of distribution algorithms (EDAs) or probabilistic model-building genetic algorithms
(PMBGAs). The major steps of a PMBGA implementation are listed as follows, where GN
is the maximum number of generations.

Step 1. Set the generation index g = 0. Initialize the population of the first generation, that is,
P (0).

Step 2. Select a subset S of promising individuals from P (g).

Step 3. Establish a probabilistic model M which somehow describes the distribution
characteristics of S.

Step 4. Generate a set N of new individuals by sampling M.

Step 5. Select the best |P (g)| individuals from P (g) ∪N and assign them to the next generation
population P (g+1).

Step 6. Let g ← g + 1. If g < GN, return to Step 2. Otherwise, output the best solution in P (g).

The PMBGA is especially useful for the complex optimization problems in which
the decision variables are correlated. For such problems, the realized value of a certain
decision variable can produce an impact on the optimal value for another decision variable.
Therefore, if these variables are optimized in a separate way (or one by one), traditional
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GA will be very likely to converge to local optimum. PMBGA improves traditional GA
by modeling the relationship between decision variables. Clearly, the most crucial element
in the design of PMBGA is the type of the adopted probabilistic model (in Step 3), which
directly affects the algorithm’s capability of producing high-quality offspring solutions. In the
artificial intelligence community, the commonly adopted graphical model for characterizing
the relationship between a set of discrete variables is the Bayesian network [31]. A Bayesian
network is a directed acyclic graph. A node in the Bayesian network indicates a variable
under investigation (each variable actually corresponds to a coding gene for the solutions in
PMBGA), and an arc indicates the probabilistic causal relationship between the two nodes
connected by it. The direction of the arc implies that the variable corresponding to the head
node of the arc is conditioned by the variable corresponding to the tail node. In general, the
joint probabilistic distribution of an n-variate random vector X = (X1, . . . , Xn) described by a
Bayesian network can be calculated as

P(x) =
n∏

i=1

P
(
xi | pa(xi)

)
. (3.1)

In this formulation, x = (x1, . . . , xn) is a vector of realized values for X; pa(xi) is a set of
realized values for the parents (in a Bayesian network, if there exists a directed arc pointing
from node Xj to Xi, then Xj is called a parent of Xi) of the random variable Xi.

A detailed introduction to the PMBGA can be found in [32]. Some important advances
and interesting applications of EDA are covered in [33, 34]. Successes in utilizing EDA to
solve scheduling problems have been reported in [35, 36] (for flow shop scheduling).

4. The Proposed PMBGA for Solving TWT-JSSP

4.1. Encoding

The proposed PMBGA relies on dispatching rules to record the scheduling policies. Eight
scheduling rules are involved in this study. In the following expressions for the priority index,
operation i belongs to job j, and wj and dj are the corresponding job’s weight and due date.
JS(i) and JP(i), respectively, denote the set of job successors of operation i and the set of job
predecessors of operation i. Z is used to indicate that the operation with the smallest index
will be chosen from the conflict set, while Z′ is used to indicate that the operation with the
largest index will be chosen from the conflict set:

(1) ATC (apparent tardiness cost): Z′i(t) = (wj/pi) × exp{−(dj − ri − pi −
∑

i′∈JS(i)(Ŵi′ +
pi′))

+/(K × p)} (in this expression, ri denotes the earliest starting time of operation
i, and p denotes the average processing time of the current operations in the conflict
set.K is a scaling parameter (or called “look-ahead” parameter). Ŵi is the estimated
lead time of operation i);

(2) SPT (shortest processing time): Zi = pi;

(3) LPT (longest processing time): Z′i = pi;

(4) WSPT (weighted shortest processing time): Z′i = wj/pi;

(5) SRPT (shortest remaining processing time): Zi = pi +
∑

i′∈JS(i) pi′ ;

(6) LRPT (longest remaining processing time): Z′i = pi +
∑

i′∈JS(i) pi′ ;
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(7) EDD (earliest due date): Zi = dj ;

(8) ODD (operation due date): Zi(t) = [dj/
∑

i′∈JS(i)∪{i} pi′] ×
∑

i′∈JP(i)∪{i} pi′ .

In PMBGA, each encoding digit (i.e., gene) is expressed by the serial number (1 ∼
8) of the selected dispatching rule. A solution is represented by a rule sequence {Rik : i =
1, . . . , n, k = 1, . . . , m}, where Rik indicates the rule to use when scheduling the ith operation
on machine k. Therefore, the encoding length for each solution is l = n ×m.

4.2. Decoding

In order to evaluate the fitness of a solution, the Giffler-Thompson algorithm is applied to
construct an active schedule based on the specified dispatching rules. The implementation of
the Giffler-Thompson algorithm is detailed below.

Input: A sequence of rules {Rik : i = 1, . . . , n, k = 1, . . . , m}.

Step 1. Let Q(1) = O = {1, . . . , nm} (the set of all operations), R(1) = F(O) = {f1, . . . , fn} (the
set of first operations of each job). Set t = 1 and πk = 1 (k = 1, . . . , m).

Step 2. Find the operation i∗ = argmini∈R(t){ri + pi}, and let m∗ be the index of the machine
on which this operation should be processed. Use B(t) to denote all the operations from R(t)
which should be processed on machine m∗.

Step 3. Delete from B(t) the operations that satisfy ri � ri∗ + pi∗ .

Step 4. Use rule Rπm∗m∗ to identify an operation ô from B(t) if currently there are more than
one candidates. Schedule operation ô on machine m∗ at the earliest possible time. Let πm∗ ←
πm∗ + 1.

Step 5. Let Q(t + 1) = Q(t) \ {ô}, R(t + 1) = R(t) \ {ô} ∪ {suc(ô)}, where suc(ô) denotes the
immediate job successor of operation ô (if any).

Step 6. If Q(t + 1)/= ∅, set t ← t + 1 and go to Step 2. Otherwise, the decoding procedure is
terminated.

In the above description, the release time ri equals the earliest possible starting time
of operation i (determined from the already scheduled operations). So, (ri + pi) is the
earliest possible completion time of operation i. Q(t) represents the set of operations yet
to be scheduled at iteration t, while R(t) represents the set of ready operations (whose job
predecessors have all been scheduled) at iteration t. In Step 4, the operation set B(t) is also
called a conflict set.

4.3. Producing Offspring Individuals

(a) Selection

In each iteration, we first sort all the individuals in the current population according to their
fitness. Then, we select the best 1/4 of individuals to form the set S, which will subsequently
be used to build the Bayesian network in order to produce a new generation of individuals.
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Figure 1: The structure of the Bayesian network used in PMBGA.

(b) The Adopted Network Structure

A Bayesian network has to be built to describe the probabilistic distribution of favorable Rik

settings based on the elite individuals in S. Each individual can be characterized by a directed
acyclic network as shown in Figure 1. In this network, a nodeNr

i,k
(r ∈ {1, 2, . . . , 8}) indicates

the fact that the dispatching rule used to schedule the ith operation on machine k is selected
as rule Number r. The directed arc from node Nr

i,k to node Nr ′
i,k+1 (or Nr ′

i+1,1) represents the
dependency between the two nodes, so it characterizes the possible influence of the rule
selection for the ith operation on machine k on the rule selection for the ith operation on
machine k + 1 (or the (i + 1)-th operation on machine 1). Therefore, a directed path from a
certain node in the first row to a certain node in the (n×m)-th row can completely describe an
individual in the population (because a directed path records an instantiation of all the rule
selections).

(c) Calculation of the Probability Values

Since we adopt a fixed network structure in PMBGA, building the Bayesian network is
equivalent to determining the values of all the conditional probabilities according to the
selected solution set S. After that, new individuals will be produced by iteratively sampling
these probabilistic distributions, expecting to obtain high-quality offsprings.

Given a number of individuals (i.e., the training set S), an estimate of the conditional
probabilities can be obtained simply by counting the frequencies of occurrence.

Example 4.1. Here, we provide a concrete example to illustrate the probability calculation
process. For a PMBGA optimization instance with n = 3, m = 1 and r = 3, let us further
suppose the current S contains 40 individuals. In Figure 2, the statistics of these individuals
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Figure 2: An example network in PMBGA.

are displayed on a network as previously defined. The weight of each arc (the number placed
on the arc) indicates the occurring frequency of this arc (counted for all the individuals in S).
For example, if there exists an individual coded as “[3, 1, 2]”, then the path “N3

1,1 → N1
2,1 →

N2
3,1” in the Bayesian network is used to record this individual, and consequently, the weights

(counted frequencies) of the arcs N3
1,1 → N1

2,1 and N1
2,1 → N2

3,1 will be increased by 1,
respectively. Note that, in the final network, the sum of the weights of all the incoming arcs of
a certain node should be equal to the sum of the weights of all the outgoing arcs of the same
node. This is because each individual corresponds to a complete path from the first row to
the last row.

By using frequency as an approximation for probability, the relevant (conditional)
probabilities should be calculated as follows:

P
(
N1

1,1

)
=

8 + 2
40

, P
(
N2

1,1

)
=

7 + 3 + 4
40

, P
(
N3

1,1

)
=

5 + 5 + 6
40

,

P
(
N1

2,1 |N1
1,1

)
=

8
8 + 2

, P
(
N2

2,1 |N1
1,1

)
= 0, P

(
N3

2,1 |N1
1,1

)
=

2
8 + 2

,

P
(
N1

2,1 |N2
1,1

)
=

7
7 + 3 + 4

, P
(
N2

2,1 |N2
1,1

)
=

3
7 + 3 + 4

, P
(
N3

2,1 |N2
1,1

)
=

4
7 + 3 + 4

,

P
(
N1

2,1 |N3
1,1

)
=

5
5 + 5 + 6

, P
(
N2

2,1 |N3
1,1

)
=

5
5 + 5 + 6

, P
(
N3

2,1 |N3
1,1

)
=

6
5 + 5 + 6

,

P
(
N1

3,1 |N1
2,1

)
=

2
2 + 3 + 15

, P
(
N2

3,1 |N1
2,1

)
=

3
2 + 3 + 15

, P
(
N3

3,1 |N1
2,1

)
=

15
2 + 3 + 15

,

P
(
N1

3,1 |N2
2,1

)
=

2
2 + 6

, P
(
N2

3,1 |N2
2,1

)
=

6
2 + 6

, P
(
N3

3,1 |N2
2,1

)
= 0,

P
(
N1

3,1 |N3
2,1

)
= 0, P

(
N2

3,1 |N3
2,1

)
=

7
7 + 5

, P
(
N3

3,1 |N3
2,1

)
=

5
7 + 5

.

(4.1)

According to the above calculation method, a connection can never be rediscovered in
the PMBGA if the corresponding conditional probability is zero (e.g., from N2

2,1 to N3
3,1). To
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overcome this drawback, we can set the minimum count to 1. TakingN2
2,1 as an example, the

conditional probabilities for the outgoing arcs will then become

P
(
N1

3,1 |N2
2,1

)
=

3
3 + 7 + 1

, P
(
N2

3,1 |N2
2,1

)
=

7
3 + 7 + 1

, P
(
N3

3,1 |N2
2,1

)
=

1
3 + 7 + 1

.

(4.2)

Now it is possible to discover N3
3,1 from N2

2,1, though the probability is small.

(d) The Sampling Process

The sampling process for generating a new individual begins from the root nodes of the
Bayesian network. By selecting an outgoing arc at each node based on the calculated
conditional probabilities, the whole network can be gradually instantiated.

4.4. The Embedded Local Search

The search mechanism of GA guarantees a good performance in the “exploration” of the
solution space. However, it has been reported that GA alone cannot achieve satisfactory
solution quality for complex optimization problems. Actually, a local search procedure is
usually added within the framework of GA in order to provide reliable “exploitation” ability.
In this paper, we design such a local optimizer, which attempts to improve the selected
solutions. In each iteration of PMBGA, the local search is carried out for the best e% of
solutions in the current population. Thus, e is an important parameter for adjusting the
frequency of local search and achieving a balance between exploration and exploitation.

In the following, we will describe how to perform the local search on a given solution
s (a sequence of rules).

Step 1. Use the Giffler-Thompson algorithm to generate an active schedule σ1 based on s. The
objective value of the obtained schedule is TWTσ1 .

Step 2. Set u = 1.

Step 3. Exert random perturbations on the processing times: generate a new set of processing
times {p(u)

jk
} from the normal distributionN(pjk, (0.2pjk)

2).

Step 4. Use the Giffler-Thompson algorithm to generate an active schedule σ2 based on s.
Note that, in this process, the processing time of each operation takes its new value, that is,
p
(u)
jk

.

Step 5. Evaluate the objective value of σ2 under the original processing times, obtaining
TWTσ2 .

Step 6. If TWTσ2 < TWTσ1 , exit the local search. Otherwise, continue with Step 7.

Step 7. Let u ← u + 1. If u > U, terminate the local search procedure with no improvement
found. Otherwise, go back to Step 3.
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Figure 3: The disjunctive graph of the example instance.
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Figure 4: The Gantt chart for the initial schedule.

The local search procedure attempts to find a better schedule from an initial starting
solution. When the processing time of each operation varies due to the random perturbations
in Step 3, different schedules may be obtained by applying the same set of dispatching rules.
This is the fundamental idea of the local search procedure. The relative deviation is set as
0.2 times the mean, which can produce a moderate level of perturbation. If the variance
is too large or too small, the local search will be inefficient. Finally, if it turns out that
TWTσ2 < TWTσ1 , which means that the local search has found an improvement, then the
original schedule should be accordingly revised. On the other hand, if no better schedule is
found withinU trials, the local search will quit, leaving the current solution unchanged.

Example 4.2. Here, we provide a concrete example to illustrate the local search procedure. In
the 3 × 3 TWT-JSSP instance, the processing time of each operation is marked beside the
corresponding node in Figure 3 (the disjunctive graph). The due dates of each job are set as
d1 = 103, d2 = 146, and d3 = 137. The weights of each job are set asw1 = 1,w2 = 7, andw3 = 4.

Suppose the initial solution is s = [2, 2, . . .], which indicates using the SPT rule at all
times.

First, the solution is decoded by applying the Giffler-Thompson algorithm under the
original values of processing times. The following schedule is obtained:

σ1 =

⎡

⎣
O11 O21 O31

O12 O32 O22

O13 O23 O33

⎤

⎦. (4.3)

The objective value is TWTσ1 = 2086 (see Figure 4).
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Figure 5: The Gantt chart for the new schedule generated by random perturbation.

Next, we add random perturbations to the processing times and thus generate
different new instances of the JSSP. In one of these instances, the processing time of each
operation is as follows:

p11 = 29.0, p12 = 85.0, p13 = 58.2,

p21 = 52.3, p23 = 81.9, p22 = 65.3,

p32 = 78.8, p31 = 84.0, p33 = 50.3.

(4.4)

The solution s is decoded again by applying the Giffler-Thompson algorithm under the above
new values of pjk. The following schedule can be obtained:

σ2 =

⎡

⎣
O11 O21 O31

O32 O22 O12

O23 O33 O13

⎤

⎦, (4.5)

when evaluated under the original processing times, the objective value of σ2 is TWTσ2 = 1264
(see Figure 5).

Therefore, an improvement has been found on the initial solution (because 1264 <
2086).

5. Computational Results

In order to test the performance of the proposed PMBGA, the same benchmark instances as in
[15, 19] are used in our computational experiment. In these instances, the due date of each job
is set as dj = f × Pj , where Pj denotes the total processing time of job j, and f ∈ {1.6, 1.5, 1.3}
is a coefficient that controls the tightness level of the due date setting. The first 20% of jobs
are assigned weighting 4 (very important), the next 60% are assigned weighting 2, and the
remaining jobs are assigned weighting 1 (not important). That is, w1 = w2 = 4, w3 = · · · =
w8 = 2, and w9 = w10 = 1.

Based on extensive computational tests, the algorithm parameters are set as follows.
The population size PS = 50; the proportion of individuals selected for local search e% = 30%;
the maximum number of random perturbations U = 100. In the implementation of the ATC
rule, we set K = 2 and Ŵi = 0.4 pi.

We compare the performance of the proposed PMBGA with the hybrid optimization
algorithm PSO-SA [37] and a rule-based genetic algorithm (RBGA) which uses the same
dispatching rules for encoding but adopts classical crossover and mutation operators. In
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Table 1: The computational results and comparisons under f = 1.6.

Instance Optimal PMBGA PSO-SA RBGA
Average # opt Average # opt Average # opt

ABZ5 0 0.0 20 0.0 20 0.0 20
ABZ6 0 0.0 20 0.0 20 0.0 20
LA16 0 0.0 20 0.0 20 0.3 18
LA17 65 65.0 20 65.0 20 65.0 20
LA18 0 0.0 20 0.0 20 0.0 20
LA19 0 0.0 20 0.0 20 0.8 18
LA20 0 0.0 20 0.0 20 0.0 20
LA21 0 0.0 20 0.0 20 0.0 20
LA22 0 0.0 20 0.2 19 0.0 20
LA23 0 0.0 20 0.0 20 0.0 20
LA24 0 0.0 20 0.0 20 0.0 20
MT10 141 143.1 16 145.9 14 149.9 11
ORB1 566 588.7 4 602.0 1 630.7 0
ORB2 44 44.5 18 45.7 13 45.6 12
ORB3 422 425.2 10 428.8 8 452.1 8
ORB4 66 66.3 17 66.7 18 71.0 13
ORB5 163 166.0 6 168.9 4 171.8 1
ORB6 28 28.5 15 28.9 10 29.1 12
ORB7 0 0.0 20 0.7 15 0.7 13
ORB8 621 633.4 2 646.7 0 661.4 0
ORB9 66 66.9 16 68.7 12 71.1 9
ORB10 76 83.2 2 83.5 0 84.2 0

order to make the comparisons meaningful, we set a computational time limit for all the
algorithms. In the following, the time limit for solving each instance is determined as 60
seconds. Each algorithm is run for 20 independent times on each TWT-JSSP instance. Tables
1, 2, and 3 report the average objective value obtained from the 20 runs. “# opt” indicates
the number of times that the optimum (the optimum for each instance (listed in the second
column in the tables) is first given by the branch-and-bound algorithm [14] and recently
updated by the hybrid genetic algorithm [21]) has been reached during the 20 runs. The
results demonstrate the superiority of the PMBGA.

According to the computational results, the proposed PMBGA systematically outper-
forms the comparative methods. In addition, the following comments can be made:

(1) The proposed PMBGA performs better than the PSO-SA which adopts operation
permutation-based encoding scheme. The advantage of PMBGA is even stronger
when the due dates in the TWT-JSSP instances are set tighter. This suggests that
the rule-based optimization approach is more effective than sequence-based search
when many jobs are prone to be tardy and thus are competing fiercely for the
limitedmachine resources. Applying dispatching rules turns out to be a satisfactory
and robust strategy in this situation;

(2) Also, PMBGA outperforms RBGA to a greater extent. This reveals the effectiveness
of the proposed approach from two aspects:
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Table 2: The computational results and comparisons under f = 1.5.

Instance Optimal PMBGA PSO-SA RBGA
Average # opt Average # opt Average # opt

ABZ5 69 69.0 20 69.3 18 69.5 17
ABZ6 0 0.0 20 0.0 20 0.5 17
LA16 166 166.0 20 167.9 15 166.9 17
LA17 260 260.0 20 260.7 19 262.1 15
LA18 34 34.6 18 34.5 18 34.7 18
LA19 21 21.0 20 21.1 19 21.3 16
LA20 0 0.0 20 0.1 19 0.7 14
LA21 0 0.0 20 0.0 20 0.6 15
LA22 196 196.0 20 196.5 17 197.1 15
LA23 2 2.0 20 2.0 20 2.0 20
LA24 82 82.1 19 85.9 12 87.5 8
MT10 394 394.2 19 407.7 7 414.5 1
ORB1 1098 1108.4 13 1131.5 1 1163.0 0
ORB2 292 292.0 20 299.1 5 310.9 2
ORB3 918 922.9 10 937.7 6 989.0 0
ORB4 358 360.1 17 366.2 3 381.2 1
ORB5 405 405.3 18 414.8 7 433.8 2
ORB6 426 427.1 15 441.8 8 455.5 4
ORB7 50 50.1 16 52.3 7 53.4 6
ORB8 1023 1032.3 14 1060.2 10 1082.5 6
ORB9 297 308.8 12 313.8 9 329.2 5
ORB10 346 377.1 3 388.7 0 396.8 0

(i) Since RBGA does not involve a local search module, the results show
that the specialized local search procedure can help to promote the overall
performance of GA. In particular, the local optimizer in PMBGA is closely
based on the specific characteristics of the considered JSSP instance: the
magnitude of the random sampling is consistent with the processing time (cf.
Step 3 of the procedure), which ensures a reasonable size of the search scope.

(ii) The results show that using the estimation of distribution principle to optimize
the rule combinations is more effective than the traditional crossover and
mutation operators. Noticeably, the essential point in this process is to model
the relationship and interactions between the rule selections for different jobs
and different machines.

Meanwhile, we also test the impact of the parameter e on the final solution quality of
PMBGA. A reasonable selection of e will result in an effective balance between exploration
and exploitation. In the following experiment, instance ORB1 under f = 1.5 is used and the
time limit is set as 40 sec and 60 sec, respectively. The computational results are displayed
in Figure 6, where the vertical axis gives the average objective value obtained from 20
independent executions of the proposed PMBGA under each e.

According to the results, the setting of e has a considerable impact on the solution
quality, especially when the computational time is scarce (40 sec), which verifies that the
proposed local search module is effective in accelerating the overall convergence of PMBGA.
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Table 3: The computational results and comparisons under f = 1.3.

Instance Optimal PMBGA PSO-SA RBGA
Average # opt Average # opt Average # opt

ABZ5 1403 1415.1 12 1458.9 1 1466.9 1
ABZ6 436 436.0 20 446.9 5 456.3 2
LA16 1169 1170.2 19 1212.3 3 1239.5 0
LA17 899 900.4 17 914.7 7 942.5 3
LA18 929 943.0 15 947.6 2 960.1 1
LA19 948 950.6 18 967.0 10 989.9 6
LA20 805 822.1 14 829.3 8 840.5 4
LA21 463 466.8 15 480.0 12 490.5 7
LA22 1064 1095.7 10 1103.9 8 1120.9 3
LA23 835 837.5 12 866.4 2 867.8 0
LA24 835 844.0 13 855.6 4 860.5 1
MT10 1363 1375.0 17 1403.9 1 1436.4 0
ORB1 2568 2613.3 5 2617.2 7 2718.6 2
ORB2 1408 1440.5 4 1452.0 3 1494.7 1
ORB3 2111 2132.9 8 2154.8 3 2205.6 0
ORB4 1623 1637.1 11 1656.1 5 1707.1 2
ORB5 1593 1617.4 3 1638.7 3 1673.8 0
ORB6 1790 1835.9 9 1837.3 7 1884.0 3
ORB7 590 592.3 17 602.2 10 620.0 5
ORB8 2429 2483.1 0 2509.6 0 2563.7 0
ORB9 1316 1316.7 19 1359.6 12 1393.8 8
ORB10 1679 1683.9 17 1709.9 9 1747.1 3

A small e means that only a few solutions in each generation can be improved by the local
search, which has little effect on the entire population. A large e suggests that too much time
is consumed on local search, which may impair the normal function of PMBGA because of
the reduced generations.

The best setting of e under each constraint level is 60 (for tight time budget) and
30 (for loose time budget). When the exogenous restriction on computational time is tight,
PMBGA has to rely on frequent local search to find good solutions. This is because, in
the short term, local search is more efficient than PMBGA’s mechanism (Bayesian network
modeling) in improving a solution. However, the price to pay is possibly a premature
convergence of the whole optimization process. On the other hand, when the computational
time is more sufficient, PMBGA will prefer a larger number of generations to conduct a
systematic exploration of the solution space. In this case, the local search need not be used
very frequently, otherwise the steady searching and learning process may be disturbed.

Finally, we observe the impact of the parameters in the ATC rule. We write the
estimated waiting time Ŵi of operation i as proportional to its processing time: Ŵi = b × pi.
Now, we use instance MT10 with f = 1.3 to test the two parameters, K and b. The average
objective values obtained by PMBGA under each (K, b) combination is shown in Figure 7.

In fact, the influence of the ATC parameters is not so significant as the other
parameters. But a clearly inferior setting is K = 1, which could be eliminated. Based on
additional experimental results which are not listed here, both K = 2 and K = 3 seem
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acceptable. Overall, setting K = 2 and b = 0.4 yield satisfactory solution quality for most
scheduling instances involved in this study.

6. Conclusion

In this paper, we propose a new probabilistic model-building genetic algorithm for solving
the job shop scheduling problem under the total weighted tardiness criterion. Since the
TWT objective is systematically more difficult to optimize than the conventional makespan
objective, we rely on some dispatching rules for schedule construction. PMBGA is used
to search for good combinations of these rules, and a specific local search algorithm is
embedded into the optimization framework. The computational experiments have shown
the superiority of the proposed methodology.
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Future research can be conducted from the following aspects. Although the standard
Bayesian network is capable of modeling the interactions between decision variables, it is
necessary to improve the computational efficiency in the rule optimization process. Mean-
while, it is interesting to try other encoding schemes, which may be beneficial for the
discovery of useful structural properties and may enhance the overall performance of the
PMBGA.
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