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Abstract The conventional Tolman temperature based
on the assumption of the traceless condition of energy-
momentum tensor for matter fields is infinite at the horizon
if Hawking radiation is involved. However, we note that the
temperature associated with Hawking radiation is of rele-
vance to the trace anomaly, which means that the traceless
condition should be released. So, a trace anomaly-induced
Stefan-Boltzmann law is newly derived by employing the
first law of thermodynamics and the property of the temper-
ature independence of the trace anomaly. Then, the Tolman
temperature is quantum-mechanically generalized according
to the anomaly-induced Stefan-Boltzmann law. In an exactly
soluble model, we show that the Tolman factor does not
appear in the generalized Tolman temperature which is even-
tually finite everywhere, in particular, vanishing at the hori-
zon. It turns out that the equivalence principle survives at the
horizon with the help of the quantum principle, and some
puzzles related to the Tolman temperature are also resolved.

1 Introduction

The proper temperature of the gravitating system of a per-
fect fluid in thermodynamic equilibrium has been defined by
the well-known Tolman temperature [1,2]. In a static geom-
etry, it assumes: (i) the perfect fluid of radiation in thermal
equilibrium, (ii) the covariant conservation law of energy-
momentum tensor, (iii) the traceless condition of energy-
momentum tensor, (iv) the Stefan-Boltzmann law. The result-
ing temperature in the proper frame is written as

TT = C√−g00(r)
, (1)

where the Tolman factor appears in the denominator and C
is a constant determined by a boundary condition. For exam-
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ple, for the Schwarzschild black hole, the constant used to
be determined by C = TH, where TH is the Hawking tem-
perature of the black hole [3,4]. As expected, the Tolman
temperature becomes the Hawking temperature at infinity,
whereas it is infinite at the horizon due to the blue-shifted
Tolman factor which was discussed in Ref. [5]. It is worth
noting that the Tolman temperature is for the freely falling
observer at rest rather than the fixed observer who under-
goes an acceleration [2]. For the fixed observer placed at the
radius r of the Schwarzschild black hole, the temperature can
be expressed as the red/blue-shifted Hawking temperature

TF = TH√−g00(r)
, (2)

where the red/blue-shift factor comes from the time dilation
in the presence of the gravitational field at different places
[6]. The fixed temperature is infinite at the horizon, which
can also be understood in terms of the Unruh effect for the
large black hole by keeping the detector in place [7], since
the Unruh temperature is infinite at the horizon because of
the infinite acceleration of the frame.

First, it would be interesting to note that the two temper-
atures (1) and (2) are the same in spite of the apparently
different physical backgrounds; the former is for the inertial
frame and the latter is for the fixed one. Second, the infinite
Tolman temperature at the horizon is much more puzzling
unless C = 0. The firewall paradox was debated in evap-
orating black holes [8] and a similar prediction based on
different assumptions was given in Ref. [9]. Note that this
paradox can also be found even in the static black hole, since
the Tolman temperature (1) tells us that the freely falling
observer encounters quanta of the super-Planckian frequency
at the horizon in the Hartle-Hawking-Israel state [10,11].
The recent work for the firewall issue in thermal equilib-
rium claims the existence of the massless firewall [12] whose
energy density is negligible but temperature is infinite at the
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horizon. Eventually, it leads to the violation of the equiva-
lence principle at the horizon.

On the other hand, it was shown that the equivalence prin-
ciple can be restored at the horizon by invoking that at the
horizon the Unruh temperature measured by the accelerat-
ing detector is the same as the temperature measured by the
fixed detector in a gravitational field [13]. Additionally, in the
Hartle-Hawking-Israel state, the energy density and pressure
are finite at the horizon even though the Tolman temperature
is infinite at the horizon [14,15]. It implies that the Stefan-
Boltzmann law to relate the energy density (or the pressure) to
the temperature must be nontrivial, which has been unsolved
yet. Even worse, the energy density at the horizon is nega-
tive in the Hartle-Hawking-Israel state, so that it seems to
be nontrivial task to relate the negative energy density to the
positive temperature if the conventional Stefan-Boltzmann
law is just assumed. In these respects, it raises some natural
questions. In spite of the finite energy density at the horizon,
what is the reason why the Tolman temperature is divergent
at the horizon? So, is there any consistent Stefan-Boltzmann
law to relate the energy density to the temperature covering
the whole region?

In this work, we would like to investigate the Tolman tem-
perature intensively in order to resolve the above issues in the
regime of the standard quantum field theory and thermody-
namics. To shed light on the essential feature of our formu-
lation with exact solvability, we adopt the two-dimensional
approach to the problems. First of all, we note that the energy-
momentum tensor of matter fields on the classical back-
ground metric receives semiclassical quantum corrections
which give rise to the trace anomaly [16]. It means that the
Tolman relation (1) is correct for the traceless case; however,
it should be generalized semiclassically for a consistent for-
mulation when Hawking radiation is involved, since Hawk-
ing radiation is indeed related to the trace anomaly of matter
fields [17]. To get the consistent local proper temperature of
the black hole, the conditions (iii) and (iv) among the four
assumptions in the original Tolman’s derivation should be
released ab initio.

In Sect. 2, in the presence of the trace anomaly, we will
derive a trace anomaly-induced Stefan-Boltzmann law by
using the first law of thermodynamics and the nice property of
the temperature independence of the trace anomaly [18], and
naturally obtain the generalized Tolman temperature which
can be reduced to the conventional Tolman temperature if the
traceless condition is met.

In Sect. 3, for the exactly soluble two-dimensional Sch-
warzschild black hole, we shall show that the generalized
Tolman temperature becomes finite everywhere and it van-
ishes at the horizon without the Tolman factor. As a result,
it will be shown that the equivalence principle survives at
the horizon thanks to the quantum principle, and the above-
mentioned questions in connection with the Tolman temper-

ature are also resolved. Finally, conclusion and discussion
will be given in Sect. 4.

2 Tolman temperature from trace anomaly-induced
Stefan-Boltzmann law

We start with a two-dimensional line element given as

ds2 = − f1(r)dt
2 + f2(r)dr

2, (3)

where f1(r) and f2(r) are static functions and the metric is
assumed to be asymptotically flat. In the static system, the
overall macroscopic velocity of radiation flow is zero, and
the velocity can be written as

uμ = dxμ

dτ
=

(
1√
f1(r)

, 0

)
. (4)

The radiation is also regarded as a perfect fluid, so that the
energy-momentum tensor is written as

Tμν = (ρ + p)uμuν + pgμν, (5)

where ρ = Tμνuμuν and p = Tμνnμnν are the local proper
energy density and pressure, respectively, andnμ is the space-
like unit normal vector satisfying nμnμ = 1 and nμuμ = 0.
Note that the flux is also calculated asF = −Tμνuμnν which
is zero in the static fluid corresponding to the thermal radi-
ation in equilibrium [10,11]. Next, the covariant conserva-
tion law of the energy-momentum tensor can be written as
2 f1∂r T r

r = (T t
t − T r

r )∂r f1, which is reduced to

2 f1∂r p = −(ρ + p)∂r f1. (6)

Next, the trace equation is given as

−ρ + p = Tμ
μ , (7)

where the trace of the energy-momentum tensor is not always
zero. Combining Eqs. (6) and (7), one can get

∂r ( f1 p) = 1

2
Tμ

μ ∂r f1. (8)

The resulting equation (8) is easily solved as

p = 1

f1

(
C0 + 1

2

∫
Tμ

μ d f1

)
, (9)

and

ρ = 1

f1

(
C0 − f1T

μ
μ + 1

2

∫
Tμ

μ d f1

)
, (10)
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where the pressure and energy density are corrected by
the trace anomaly, respectively. Note that the conventional
Stefan-Boltzmann law in the two dimensional flat space is
actually p = ρ = αT 2 which is valid only in the absence
of the trace anomaly, where α is the Stefan-Boltzmann con-
stant. From Eqs. (9) and (10), the pressure and energy density
are no longer symmetric. Moreover, there are many differ-
ent expressions satisfying the anomaly relation (7). To relate
the pressure (9) and energy density (10) to the temperature
uniquely, we should find the Stefan-Boltzmann law which is
compatible with the presence of the trace anomaly.

Now, for our purpose, the first law of thermodynamics is
considered as

dU = T dS − pdV, (11)

whereU , T , S, and V are the thermodynamic internal energy,
temperature, entropy, and volume in the proper frame, respec-
tively, and U = ∫

ρdV . Thus, the first law is rewritten in the
form of

∂U

∂V

∣∣∣∣
T

= T
∂S

∂V

∣∣∣∣
T

− p. (12)

Using the Maxwell relation of ∂S/∂V |T = ∂p/∂T |V , we get

ρ = T
∂p

∂T

∣∣∣∣
V

− p. (13)

Next, we are going to use the fact that the trace anomaly is
independent of the temperature [18], so that from Eq. (7) we
can obtain

∂ρ

∂T

∣∣∣∣
V

= ∂p

∂T

∣∣∣∣
V

, (14)

where ∂T T
μ
μ |V = 0. Plugging Eqs. (7) and (14) into Eq.

(13) in order to eliminate the pressure and its derivative with
respect to the temperature with the fixed volume, one can
get the first order differential equation for the energy density
given as

2ρ = T
∂ρ

∂T

∣∣∣∣
V

− Tμ
μ . (15)

Solving Eq. (15), the energy density and pressure can be
obtained as

ρ = γ T 2 − 1

2
Tμ

μ , (16)

and

p = γ T 2 + 1

2
Tμ

μ , (17)

where they are reduced to the conventional ones for the trace-
less case if the integration constant γ is identified with the
two-dimensional Stefan-Boltzmann constant, for example,
γ = α = π/6 for the massless scalar field [17]. Hence, from
Eqs. (16) and (17), the temperature can be written as

T =
√

1

α

(
p − 1

2
Tμ

μ

)
=

√
1

α

(
ρ + 1

2
Tμ

μ

)
. (18)

Therefore, the resulting generalized Tolman temperature by
using Eqs. (9) or (10) is obtained as

T = 1√
α f1

√
C0 − f1

2
Tμ

μ + 1

2

∫
Tμ

μ d f1, (19)

where the temperature is independent of f2. Indeed, there
appeared nontrivial contributions to the temperature from
the trace anomaly. Note that it is reduced to the conventional
Tolman temperature if the energy-momentum tensor is trace-
less, so that T = C/

√
f1(r), where C = √

C0/α. In the
asymptotic infinity, the trace parts in Eq. (19) vanish, and
the constant C0 can be determined by the usual boundary
condition.

3 Application to two-dimensional Schwarzschild black
hole

Let us now study how the generalized Tolman temperature
(19) actually works in the two-dimensional Schwarzschild
black hole, where the metric is given as

f (r) = f1(r) = 1

f2(r)
= 1 − 2M

r
, (20)

where M is the mass of black hole and the Newton constant
is set to G = 1. Now, using the explicit trace anomaly for the
massless scalar field as Tμ

μ = R/(24π) [16,17], the proper
temperature (19) can be calculated by imposing the boundary
condition of C0 = α/(8πM)2 which gives the Hawking
temperature at infinity,

T = 1

8πM
√

f (r)

√
1 − 4

(
2M

r

)3

+ 3

(
2M

r

)4

. (21)

The quantities in the square root in Eq. (21) can be factorized
as
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2M rc
r

TH

Tmax

T

Fig. 1 The thick dotted curve is for the conventional Tolman temper-
ature which is infinite at the horizon, whereas the solid curve is for the
generalized one which is finite everywhere and especially goes to zero
at the horizon. The maximum of the latter temperature Tmax occurs at
rc ∼ 4M in our model. The constant is set to M = 1 for convenience.
The infinite Tolman temperature at the horizon was suppressed by taking
into account the trace anomaly

T = 1

8πM
√

f (r)

×
√√√√(

1 − 2M

r

) (
1 + 2M

r
+

(
2M

r

)2

− 3

(
2M

r

)3
)

,

(22)

and consequently the generalized Tolman temperature is
obtained as

T = 1

8πM

√
1 + 2M

r
+

(
2M

r

)2

− 3

(
2M

r

)3

. (23)

Note that the Tolman factor does not appear, which is com-
pared to the form of the conventional Tolman temperature
(1). One of the most interesting things to distinguish from
the conventional behaviors of the Tolman temperature is that
it is finite everywhere, and it also has a maximum value of the
temperature at rc ∼ 4M as seen from Fig. 1. In particular, the
temperature vanishes at the horizon. The suppression of the
infinite Tolman temperature at the horizon by means of the
quantum-mechanical trace anomaly is reminiscent of that of
the infinite intensity at the high frequency in Rayleigh-Jeans
law by the quantum correction.

As a matter of fact, in the large black hole, the metric
(20) could be described by the Rindler metric for the near
horizon limit, and the Unruh effect tells us that the tem-
perature is given as TU = a/2π in terms of the proper
acceleration, where the acceleration of the fixed frame is
a = M/(r2√ f (r)) [7]. It implies that the free-fall observer
would find the vanishing Unruh temperature, if the frame
were free from the acceleration. So, it is reasonable for the

observer in the proper frame to get the vanishing temperature
at the horizon rather than the infinite temperature. In addition
to this, authors in Ref. [13] also showed that the temperature
(2) measured by the fixed observer in the gravitational back-
ground is generically higher than the Unruh temperature of
the accelerating observer; however, they are the same at the
event horizon of the black hole, so that the equivalence prin-
ciple in the quantized theory is restored at the horizon. Thus,
the vanishing generalized Tolman temperature at the horizon
is compatible with the result that the equivalence principle is
recovered at the horizon in Ref. [13].

Let us make a comment on the energy density and pres-
sure. Plugging the generalized Tolman temperature (23) into
Eqs. (16) and (17), one can obtain

ρ = − 1

48πr4 f (r)

(
8Mr f (r) + 2M2 − r4

8M2

)
, (24)

p = 1

384πM2

[
1 + 2M

r
+

(
2M

r

)2

+
(

2M

r

)3
]

, (25)

where the energy density and pressure near the horizon
are negative and positive finite as −ρ = p= 1/(96πM2),
while ρ = p= 1/(384πM2)= (π/6)T 2

H at infinity. In a self-
contained manner, let us confirm whether the above energy
density and pressure calculated by employing the gener-
alized Tolman temperature are consistent with the results
from direct calculations or not. For this purpose, in the
light-cone coordinates defined as σ± = t ± r∗ through
r∗ = r + 2M ln(r/M − 2), the proper velocity (4) can
be written as u+ = u− = 1/

√
f (r), where u± =

ut ± ur/ f (r) and n+ = −n− = 1/
√

f (r). The com-
ponents of the energy-momentum tensor are expressed as
T±± = −(1/48π)(2M f (r)/r3 + M2/r4) + (1/48)t± and
T+− = −(1/48π)(2M f (r)/r3), where t± are the integra-
tion functions obtained from the integration of the covari-
ant conservation law. The energy density and pressure mea-
sured in the freely falling frame can be calculated as ρ =
−1/(48πr4 f (r))[8Mr f (r)+2M2 −πr4(t++ t−)] [19] and
p = 1/(48πr4 f (r))[−2M2 +πr4(t++t−)], where we used
the definition for the freely falling energy density and pres-
sure. Since the radiation flow in the Hartle-Hawking-Israel
state is characterized by choosing the integration functions as
t± = 1/(16πM2) [20], one can easily see that Eqs. (24) and
(25) derived from the generalized Tolman temperature (23)
are coincident with the above energy density and pressure
based on the standard calculations.

4 Discussion and conclusion

It would be interesting to compare our computations with
a previous result. The temperature (23) looks different
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from the free-fall temperature at rest, TBT(r) = (1/8πM)√
1 + 2M/r + (2M/r)2 + (2M/r)3 [21] calculated by using

the global embedding of the four-dimensional Schwarzschild
black hole into a higher dimensional flat spacetime [22]. For
example, the value of TBT at the horizon is larger than that
of the temperature at infinity, precisely, TBT(2M) = 2TH

which is a maximum. Simply, we cannot conclude that the
difference between them comes from the dimensionality,
since we can exactly get the same free-fall temperature as
TBT for the two-dimensional Schwarzschild black hole (20)
by using a slight different higher-dimensional embedding
method [23]. Instead, we consider the new expression for the
Stefan-Boltzmann law such as p = αT 2 and ρ = αT 2 −Tμ

μ ,
then TBT can be obtained from Eq. (25); however, this does
not satisfy the relation (13) which comes from the first law
of thermodynamics. Therefore, if the first law of thermo-
dynamics is valid in the proper frame, the unique Stefan-
Boltzmann law can be obtained thermodynamically among
diverse expressions to satisfy the anomaly equation (7).

For the massless firewall in Ref. [12], it was claimed that
it is massless but hot in the Hartle-Hawking-Israel state of
black holes. At first sight, this phenomenon seems to be plau-
sible in that the energy density and pressure at the horizon
are at most negligible order of 1/M2 in comparison with that
of the temperature. Moreover, the infinite Tolman tempera-
ture at the horizon indicates the existence of the hot object.
However, employing the generalized temperature (23), one
could evade the infinite temperature at the horizon, and thus
save the violation of the equivalence principle.

In conclusion, we have shown that the conventional Tol-
man temperature derived from the assumption of the traceless
condition of energy-momentum tensor for matter fields was
generalized, since the temperature associated with Hawking
radiation is related to the trace anomaly. The most important
ingredient in our formulation is that the Stefan-Boltzmann
law was generalized in the presence of the trace anomaly by
using the first law of thermodynamics and the property of the
temperature independence of the trace anomaly. As a result,
we obtained the generalized Tolman temperature which can
be reduced to the conventional Tolman temperature if the
traceless condition is met. In terms of the two-dimensional
Schwarzschild black hole, we showed that the generalized
Tolman temperature becomes finite everywhere and, in par-
ticular, it vanishes at the horizon, while it approaches the
Hawking temperature at infinity. The quantum principle does
not always give rise to conflicts but sometimes plays a key
role to maintaining the equivalence principle. We hope that

such a modification of the temperature as Eq. (19) will pro-
vide some clues about paradoxical problems in quantum
gravity. Finally, it would be interesting to generalize this
approach to higher dimensional black holes and other gravita-
tional models, including some classical models whose traces
are nontrivial.
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