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Abstract Inspired by large applications of topological
defects in describing different phenomena in physics, and
considering the importance of three dimensional solutions in
AdS/CFT correspondence, in this paper we obtain magnetic
anti-de Sitter solutions of nonlinear electromagnetic fields.
We take into account three classes of nonlinear electrody-
namic models; first two classes are the well-known Born–
Infeld like models including logarithmic and exponential
forms and third class is known as the power Maxwell invari-
ant nonlinear electrodynamics. We investigate the effects of
these nonlinear sources on three dimensional magnetic solu-
tions. We show that these asymptotical AdS solutions do not
have any curvature singularity and horizon. We also gener-
alize the static metric to the case of rotating solutions and
find that the value of the electric charge depends on the rota-
tion parameter. Finally, we consider the quadratic Maxwell
invariant as a correction of Maxwell theory and we inves-
tigate the effects of nonlinearity as a correction. We study
the behavior of the deficit angle in presence of these theories
of nonlinearity and compare them with each other. We also
show that some cases with negative deficit angle exists which
are representing objects with different geometrical structure.
We also show that in case of the static only magnetic field
exists whereas by boosting the metric to rotating one, electric
field appears too.

1 Introduction

Topological defects are playing crucial role in studying dif-
ferent physical phenomena in context of quantum theory,
condensed matter, cosmology and string theory. It was shown
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that, in studying liquid crystal, broad range of phenom-
ena from structural properties to phase transitions are gov-
erned by the existence of these topological defects [1–3]. In
addition by employing rules governed by these topological
defects some experimental modifications were done which
lead to improvement of physical insight regarding quantum
loops and the quality of obtained materials in different aspects
[1–4]. These studies are acceptable in context of condensed
matter with ordered media [5]. Another application of these
defects is in studying magnetism and nanomagnetism which
was done in literature [6,7]. In addition, it is notable that this
mathematical tool was also employed in studying vortices in
superfluid [8] and Bose–Einstein condensate [9–11]. Also,
in studying the phase transition and critical behavior of Bose
gas [12], it was used widely. Furthermore, it is worthwhile
to mention that these topological defects are essential tools
in order to study superconductors and their phase transitions
[13–16].

In general a topological defect or topological solution is
formed because of symmetry breakdown. Due to different
symmetry breakdowns and their dimensionality, the topo-
logical defects could be interpreted as different types of
known defects. In cosmology, the well-known topological
defects are cosmic string (one dimensional lines with one
axial or cylindrical symmetry broken), domain walls (two
dimensional membranes that form when a discrete sym-
metry is broken at a phase transition. These walls resem-
ble the walls of a closed-cell foam, dividing the universe
into discrete cells), monopoles (cube-like defects that form
when a spherical symmetry is broken and are predicted to
have magnetic charge, either north or south. The most well-
known monopole is magnetic monopole), textures (form
when larger, more complicated symmetry groups are com-
pletely broken. They are not as localized as the other defects
and are unstable. Other more complex hybrids of these defect
types are also possible) and (higher dimensional) branes
(for more details see [17]). Certain theories of GUT pre-
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dict that these cosmological defects are formed during phase
transition of early Universe [18–24] and they can be used
to describe the large scale structure of the Universe. As
for cosmic string, asymptotically AdS spacetimes generated
by static and spinning magnetic sources in the Einstein–
Maxwell gravity have been investigated in [25–27]. The
properties and interaction of the superconducting cosmic
strings with astrophysical magnetic fields have been stud-
ied in [28–30]. Also, superconducting cosmic strings have
been investigated in dilaton gravity [31–33], and in Brans–
Dicke theory [34]. These solutions are not black holes, and
represent spacetimes with conic singularities. From cosmo-
logical point of view, the properties of the magnetic (cosmic)
string have been studied in many literatures (for e.g., see [35–
37]). Properties of the QCD static strings and applications
of magnetic strings in quantum theories have been explored
in [38–43], respectively. The main reason to consider the
magnetic string solutions is that they may be interpreted as
cosmic strings. As for the domain walls, it has been stud-
ied in many literature [44–46] and for textures some stud-
ies have been done [47,48]. In gravitational point of view,
these topological defects are characterized by their masses,
rotation parameters and deficit angles, while from cosmo-
logical aspect, these topological defects, as predicted, have
no gravitational potential and the only property that makes
them visible or detectable is their deficit angle which is act-
ing as a cosmological lens [49]. The projection of photon
on the surface of these topological defects is modified due
to existence of deficit angle. Therefore, in case of these cos-
mological objects, the property known as deficit angle is so
important.

Motivated by the above statements, in this paper we study
three dimensional AdS magnetic solutions in context of topo-
logical defects in the presence of different nonlinear theories
of electrodynamics. As we will see, these solutions do not
have any singularity and horizon. Therefore, these solutions
are not interpreted as black holes, but spacetimes with a coni-
cal singularity. In other words, our solutions are the nonlinear
counterparts of the static Einstein–Maxwell–AdS solutions
found in Ref. [50–52] and of the rotating solutions in Ref.
[53–55].

Most of physical systems have a nonlinear behavior in
nature, so, the nonlinear field theories are interesting in
physics. The basic motivation for studying the nonlinear
electrodynamics (NED) comes from the fact that these theo-
ries are generalizations of the Maxwell field and in the spe-
cial case (weak nonlinearity) they can reduce to the linear
Maxwell theory. Other motivations of considering NED are
limitations of the Maxwell theory [56,57], description of the
self-interaction of virtual electron–positron pairs [58–60] and
the radiation propagation inside specific materials [61–64].
Besides, NED improves the basic concept of gravitational
redshift and its dependency of any background magnetic

field as compared to the well-established method introduced
by standard general relativity. In addition, it was recently
shown that NED objects can remove both of the big bang
and black hole singularities [65–70]. Moreover, from astro-
physical point of view, one finds the effects of NED become
indeed quite important in superstrong magnetized compact
objects, such as pulsars, and particular neutron stars [71–73].

It is well-known that the electric field of a point-like charge
has a singularity in its location (origin). In order to remove
this divergency, Born and Infeld introduced a NED which is
known as Born–Infeld nonlinear electrodynamics (BI NED)
theory [74]. After that Soleng and Hendi introduced two dif-
ferent types of BI type NED in [75,76], respectively, which
can also remove the electric field divergency of point-like
charges near the origin. Soleng’s Lagrangian has a logarith-
mic form and, like BI NED, removes divergences in the elec-
tric field, while Hendi’s Lagrangian has an exponential form
and does not cancel the origin divergency of the electric field
but its singularity is much weaker than Einstein–Maxwell
theory. Another example of the nonlinear electromagnetic
field is power Maxwell invariant (PMI NED) field [77–82].
In general BI-types of NED theories have interesting proper-
ties that make them different comparing to other theories of
nonlinearity [83–86]. In addition in context of heterotic string
theory in low energy limit, the Lagrangian of these kinds of
nonlinear theories may rise which gives another strong moti-
vation for considering these theories.

On the other hand, one of the main reasons to consider
the (2 + 1)-dimensional solutions comes from the fact that
these solutions help us to find a profound insight in the
physics of (2 + 1)-dimensional objects and also, play an
important role to improve our understanding of gravitational
interaction in low-dimensional manifolds. Due to these facts,
investigation of (2+1)-dimensional spacetimes is important.
Three dimensional solutions of black holes and magnetic
solutions have been studied by many authors [50–55,87–93].
This tremendous interest in these solutions is due to fact that
three dimensional solutions contribute fundamentally to con-
ceptual issues of astrophysical subjects such as black holes
thermodynamics [94–96]. In addition, in context of quantum
gravity and string theory, also due to AdS/CFT correspon-
dence, these theories play an undeniable important role in
describing different phenomena specially in low dimensional
spacetime [97–99]. Recently, some theories have been pro-
posed for obtaining magnetic solutions in three dimensions
and magnetic monopole [100,101].

The outline of our paper is as follows. In the next sec-
tion, we give a brief review of the basic field equations of
Einstein gravity in the presence of cosmological constant
and nonlinear electrodynamics. In Sect. 3, we consider the
(2 + 1)-dimensional horizonless metric and obtain magnetic
solutions for various sources and investigate its geometric
properties. Also, we apply the rotation boost to the static met-
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ric and obtain the conserved quantities of rotating spacetime.
Next, we consider nonlinearity as a correction to Maxwell
theory and study the magnetic solutions for this case. Geo-
metrical properties of solution will be studied. We finish our
paper with some concluding remarks.

2 Basic field equations

The (2+1)-dimensional action in Einstein gravity with neg-
ative cosmological constant (�) that coupled to nonlinear
electrodynamics is given by

IG = − 1

16π

∫
M

d3x
√−g [R − 2� + LNL(F)]

− 1

8π

∫
∂M

d2x
√−γ� (γ ) , (1)

where R is the scalar curvature and LNL(F) is an arbitrary
Lagrangian of nonlinear electrodynamics. The last term in
the present equation is the Gibbons-Hawking surface term in
which we must add it to the action for a well-defined varia-
tional principle [102,103]. In this term γ and � are, respec-
tively, the trace of the induced metric γi j and the extrinsic cur-
vature �i j on the boundary ∂M. Varying the action (1) with
respect to the gravitational field gμν and the gauge potential
Aμ, the field equations are obtained as

Rμν − 1

2
gμν (R − 2�) = Tμν, (2)

∂μ

(√−gLF Fμν
) = 0, (3)

where LF = dLNL(F)/dF and F = FμνFμν is the
Maxwell invariant where Fμν is the electromagnetic tensor
field. In the presence of nonlinear electromagnetic field, the
energy–momentum tensor of Eq. (2) is

Tμν = 1

2
gμνLNL(F) − 2LF FμλF

λ
ν . (4)

In general the action IG diverges when evaluated on
the solutions, as the Hamiltonian and other associated con-
served quantities. Rather than eliminating these divergences
by incorporating reference term, a counterterm action Ict

is added to the action which is functional of the boundary
curvature invariants. For asymptotically AdS solutions, one
can instead deal with these divergences via the counterterm
method inspired by AdS/CFT correspondence [104–109].
We assume that the suitable counterterm is

Ict = − 1

8π

∫
∂M

d2x
√−γLct, (5)

where Lct is the counterterm Lagrangian and by use of the
suitable Lagrangian we will be able to compute the finite

conserved quantities. Therefore, the total finite action, I, can
be written as

I = IG + Ict. (6)

Having the total finite action, one can use Brown and York
definition [110] to construct a divergence free stress–energy
tensor as

Tμν = 1

8π

(
�μν − �γ μν + 2

δLct

δγμν

)
. (7)

To compute the conserved charges of a rotating space-
time, we choose a spacelike surface B in ∂M with metric
σ , and write the boundary metric in Arnowitt–Deser–Misner
(ADM) form

γμνdxμdxν = −N 2dt2 + σ (dϕ + V dt)2 , (8)

where the coordinates ϕ is the angular variables parameteriz-
ing the hypersurface of constant radial coordinate around the
origin, and N and V are the lapse and shift functions, respec-
tively. Considering a Killing vector field ξ on the boundary,
then the quasilocal conserved quantities associated with the
stress energy momentum tensor of Eq. (7) can be written as

Q (ξ) =
∫
B

dϕ
√

σTμνn
μξν, (9)

where nμ is the timelike unit normal vector to the boundary
B. For boundaries with timelike (ξ = ∂/∂t) and rotational
(ς = ∂/∂ϕ) Killing vector fields, one can obtain associated
conserved quantities in the following forms

M =
∫
B

dϕ
√

σTμνn
μξν, (10)

J =
∫
B

dϕ
√

σTμνn
μςν, (11)

provided the surface B contains the orbits of ς . These quan-
tities are the mass and angular momentum of the system
enclosed by the boundary B, respectively.

3 Magnetic solutions with nonlinear sources

In this section we want to obtain the three dimensional solu-
tions of Eqs. (2)–(4) with considering different electrody-
namic models. We consider the following ansatz for the met-
ric

ds2 = −ρ2

l2
dt2 + dρ2

g(ρ)
+ l2g(ρ)dϕ2, (12)
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where g(ρ) is an arbitrary function of radial coordinate, ρ,
and should be determined and l is a scale length factor which
is related to �. The angular coordinate ϕ is dimensionless
and ranges in 0 ≤ ϕ < 2π . The motivation for this curious
choice for the metric gauge [gtt ∝ −ρ2 and (gρρ)−1 ∝
gϕϕ] instead of the usual Schwarzschild like [(gρρ)−1 ∝ gtt
and gϕϕ ∝ ρ2] comes from the fact that we are looking for
magnetic solutions. It is easy to show that, using a suitable
transformation, the metric (12) can map to 3-dimensional
Schwarzschild like spacetime locally, but not globally.

It is well-known that the electric field is associated with
the time component of the vector potential, At , while the
magnetic field is associated with the angular component Aϕ .
Since we want to investigate the magnetic solutions, so we
assume the vector potential as

Aμ =
(∫

Fϕρdρ

)
δϕ
μ. (13)

Now we continue our paper for obtaining the magnetic solu-
tions in the Einstein gravity and in presence of various models
of NED.

3.1 Static solutions

3.1.1 Class I: PMI NED model

In this case, we want to obtain the solutions in presence of
PMI NED and investigate the properties of the solutions.
Therefore, we consider the PMI Lagrangian with the follow-
ing form

LPMI(F) = (−κF)s, (14)

where κ and s are coupling and arbitrary constants, respec-
tively. It is straightforward to show that for s = 1, the PMI
Lagrangian (14) reduces to the standard Maxwell Lagrangian
(LMaxwell(F) = −κF). Since the Maxwell invariant is nega-
tive, hereafter we set κ = 1, without loss of generality. Using
the nonlinear Maxwell equation (3) and the Lagrangian of
PMI (14) with the metric (12), one can obtain

Fϕρ + K (ρ) = 0, (15)

where

K (ρ) = (2s − 1)ρF ′
ϕρ, (16)

where the “prime” denotes differentiation with respect to ρ.
Eq. (15) has the following solution

Fϕρ = q

ρ1/(2s−1)
, (17)

where q is an integration constant. In order to have physical
asymptotical behavior, we restrict ourselves to s > 1/2. To
find the metric function g(ρ), one may insert Eqs. (17) and
(12) in the field equation (2). After some calculations, one
can show that

⎧⎪⎨
⎪⎩
g′(ρ) + 2�ρ − (2s − 1)

(
2q2

l2ρ1/s(2s−1)

)s = 0, ρρ (ϕϕ) component

g′′(ρ) + 2� +
(

2q2

l2ρ2/(2s−1)

)s = 0, t t component
,

(18)

It is straightforward to show that these equations have the
following solutions

g(ρ) = m − �ρ2 +
⎧⎨
⎩

2q2 ln( ρ
l )

l2
, s = 1

2s−1(2s−1)2

(s−1)

( q
l

)2s
ρ2(s−1)/(2s−1), otherwise

,

(19)

where m is the integration constant which is related to the
mass parameter.

3.1.2 Class II: exponential form of NED (ENED)

Here, we consider ENED Lagrangian as

Lexp(F) = β2
(

exp

(
− F

β2

)
− 1

)
, (20)

where β is the ENED parameter and in the limit β −→ ∞,
Lexp(F) reduces to the standard Maxwell form
LMaxwell(F) = −F . Inserting the Lagrangian of ENED (20)
in the nonlinear Maxwell equation (3) and using the metric
(12), one can obtain

[
1 −

(
2Fϕρ

lβ

)2
]
F ′

ϕρ + Fϕρ

ρ
= 0. (21)

This equation has the following solution

Fϕρ = lβ

2

√−LW , (22)

where LW = LambertW (−4q2/ l2β2ρ2) and the parameter
q is an integration constant. It is worthwhile to note that in
order to have a real electromagnetic field, we should consider
ρ with the following limitation

ρ > ρ0 = 2q

lβ
exp

(
1

2

)
. (23)

Now, we want to obtain the function of f (ρ). For this
purpose, we can take into account Eqs. (12) and (22) in the
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gravitational field equation (2) to obtain its nonzero compo-
nents as

⎧⎨
⎩
g′ (ρ)+ρ

(
2�+β2− 2βq

lρ

[
(−LW)−1/2−(−LW)1/2])=0, ρρ (ϕϕ) component

g′′ (ρ) +
(

2� + β2 − 2βq
lρ (−LW )−1/2

)
= 0, t t component

,

(24)

After some calculations, one can show that these equations
have the following solution

g (ρ) = m−�ρ2−β2ρ2

2
+
∫

2βq

l

(√−LW + 1√−LW

)
dρ.

(25)

3.1.3 Class III: logarithmic form of NED (LNED)

Now, we want to consider the LNED Lagrangian with the
following form

Llog(F) = −8β2 ln

(
1 + F

8β2

)
, (26)

where β is the LNED parameter and for weak nonlinearity
limit β −→ ∞, Llog(F) reduces to the standard Maxwell
form LMaxwell(F) = −F . Using the LNED Lagrangian (26)
and the nonlinear Maxwell equation (3) with the metric (12),
leads to

[
1 −

(
Fϕρ

lβ

)2
]
F ′

ϕρ +
[

1 +
(
Fϕρ

lβ

)2
]
Fϕρ

ρ
= 0, (27)

with the following solution

Fϕρ = ρl2β2

2q
(1 − �) , (28)

where � =
√

1 − (2q/ρlβ)2. In order to have a real elec-
tromagnetic field, we should consider ρ with the following
restriction

ρ > ρ0 = 2q

lβ
. (29)

Here, we want to obtain the solutions of Eqs. (2) and ( 3).
Considering Eqs. (12) and (26), one can obtain the nonzero
components as

⎧⎨
⎩
g′′ (ρ) + 2� + 8�β2 = 0, t t component[
g′ (ρ)+2�ρ+8ρβ2 (�−2)

]
(�−1)+ 32q2

ρl2
=0, ρρ(ϕϕ) component

,

(30)

where

� = ln

(
l2ρ2β2(1 − �)

2q2

)
. (31)

After some calculations, one can determine the metric
function g (ρ) as

g(ρ) = m − �ρ2 + 8q2

l2
ln [lρβ (1 + �)]

−2ρ2β2 [3 (1 − �) + 2�] . (32)

3.2 Energy condition

In order to find a physical solutions, we examine the energy
conditions for these nonlinear models. It is usual to con-
sider the orthonormal contravariant basis vectors and cal-
culate the three dimensional energy momentum tensor as
Tμν = diag(μ, pr , pt ). The physical concepts of μ, pr and
pt are, respectively, the energy density, the radial pressure
and the tangential pressure. Having the energy momentum
tensor at hand, we are in a position to discuss energy con-
ditions. We use the following known constraints in three
dimensions (Table 1).

In order to simplify the mathematics and physical inter-
pretations, we use the following orthonormal contravariant
(hatted) basis vectors for diagonal static metric (12)

êt = l

ρ

∂

∂t
, eρ̂ = √

g
∂

∂ρ
, eφ̂ = 1

l
√
g

∂

∂φ
. (33)

It is a matter of straightforward calculations to show that the
nonzero components of stress–energy tensor for the men-
tioned models are

T t̂t̂ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

(
2F2

φρ

l2

)s

, PMI

β2

2

[
1 − exp

(
−2F2

φρ

l2β2

)]
, ENED

4β2 ln

[
1 +

(
Fφρ

2lβ

)2
]

, LNED

Table 1 Energy conditions criteria

pr + μ ≥ 0
pt + μ ≥ 0

, For null energy condition (NEC)

μ ≥ 0
pr + μ ≥ 0
pt + μ ≥ 0

, For weak energy condition (WEC)

μ ≥ 0
−μ ≤ pr ≤ μ

−μ ≤ pt ≤ μ

, For dominant energy condition (DEC)

pr + μ ≥ 0
pt + μ ≥ 0
μ + pr + pt ≥ 0

, For strong energy condition (SEC)
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Fig. 1 Maxwell and PMI solutions: T ρ̂ρ̂ versus ρ for l = 1 and q = 1. Left diagram s = 0.7 (dashed line), s = 0.8 (dotted line), s = 0.9
(continuous line) and s = 1 (bold line). Right diagram s = 1 (bold line), s = 1.2 (continuous line), s = 1.4 (dotted line) and s = 1.6 (dashed line)

T ρ̂ρ̂ =T φ̂φ̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2s−1
2

(
2F2

φρ

l2

)s

, PMI

− β2

2

[
1 −

(
1 + 4F2

φρ

l2β2

)
exp

(
−2F2

φρ

l2β2

)]
, ENED

−4β2

⎛
⎝ln

[
1 +

(
Fφρ

2lβ

)2
]

− F2
φr

2l2β2

[
1+

( Fφρ
2lβ

)2
]
⎞
⎠ , LNED

.

After some calculations, one finds that NEC, WEC and SEC
are satisfied for all models, simultaneously. In addition, it is
easy to show that DEC is satisfy for both ENED and LNED
branches, while for PMI case it can be satisfied for 1

2 < s ≤ 1.
In order to investigate the effect of the nonlinearity of the

models on the energy density of the spacetime, we plot the T t̂t̂

versus ρ > ρ0 for different values of nonlinearity parameter
(s or β).

As one can see, in case of PMI theory, we have a special
case s = 1 which is denoted as Maxwell theory of electro-
dynamics. We consider two set of values for s in order to
have a better understanding of the behavior of energy den-
sity. These two cases are 1

2 < s < 1 and s > 1. It is evident
through studying these two cases (Fig. 1) that as one increases
s parameter, the concentration of energy density increases.
In other words, for a fixed value of ρ the lowest value of the
energy density of spacetime belongs to the lowest value of s.
In general, the energy density is a decreasing function of ρ.

Next for the two BI-types nonlinear electromagnetic fields
we have plotted Fig. 2. Due to structure of their nonlin-
ear electrodynamics, these theories do not have real val-
ued energy tensor every where. There is a region in which
their energy tensor is imaginary. This region is a decreasing
function of nonlinearity parameter. As one can see in case
of these two theories, increasing the nonlinearity parameter
leads to decreasing the concentration of energy density. In

other words, in order to decrease the concentration of energy
density, one should increase the nonlinearity parameter, β.

Finally we have plotted Fig. 3 in order to make a com-
parison between these theories of electromagnetic fields. It
is evident that the lowest and highest value of energy density
belongs to PMI theory. Regardless of PMI case, the LNED
has larger value of energy density and next one is ENED.

3.3 Geometric properties

Now we want to study the properties of the spacetime
described by Eq. (12) with obtained metric functions of dif-
ferent NED models. First of all, to investigate the singularities
and asymptotical behavior of the solutions, we calculate the
Kretschmann scalar

Rμνλκ R
μνλκ

∣∣
PMI

= 12�2 − 4(4s − 3)�D + (8s2 − 8s + 3)D2, (34)

D =
( √

2q

lρ1/(2s−1)

)2s

, (35)

Rμνλκ R
μνλκ

∣∣
exp = 12�2+4�(2J+K)−(2J 2+K2), (36)

J = β2 − 2qβ(LW − 1)

ρl
√−LW

, (37)

K = β2 + 2qβ

ρl
√−LW

, (38)

Rμνλκ R
μνλκ

∣∣
log = 12�2 − 96�β2

(
� + 2

3
(1 − �)

)
+ T ,

(39)

123



Eur. Phys. J. C (2015) 75 :457 Page 7 of 18 457

Fig. 2 ENED and LNED solutions: T ρ̂ρ̂ versus ρ for l = 1 and q = 1.
Left diagram (ENED) β = 2 (dashed line), β = 4 (dotted line), β = 6
(continuous line) and Maxwell case (bold line).Right diagram (LNED):

β = 1 (dashed line), β = 1.5 (dotted line), β = 3 (continuous line)
and Maxwell case (bold line)

Fig. 3 Comparison of various theories: T ρ̂ρ̂ versus ρ for l = 1, q = 1,
s = 0.9 (dotted line for PMI), s = 1 (bold continuous line for Maxwell),
s = 1.1 (bold dotted line for PMI), β = 4 (dashed line for ENED) and
β = 4 (bold dashed line for LNED)

T = 192β2
{
(ln[2q2l2ρ2β2(1 − �)])2

−4

3
(1 − �) [1 − ln[l2ρ2β2(1 − �)]]

+4

3

(
1 − 1

lρβ

)
ln(2q2) − 8q3

3l2ρ2β2

}
. (40)

Regarding Eqs. (34), (36) and (39), it is easy to show that
Kretschmann scalar diverges at ρ = 0 and therefore one

might think that there is a curvature singularity located at
ρ = 0; but as we will see, the spacetime will never achieve
ρ = 0. Also, in the mentioned equations, the Kretschmann
scalar reduces to 12�2 for r −→ ∞, which confirms asymp-
totical behavior of these spacetimes is AdS. There are two
possible cases for the metric function. In one case, the metric
function has no root which is interpreted as naked singular-
ity. In the other case, metric function has one or more than
one root. If one consider r0 as the largest root of metric func-
tion, there will be a change in signature of metric. In other
words, for ρ < r0 metric function is negative, hence metric
signature is (−,+,+). For ρ > r0 metric function is posi-
tive, therefore metric signature is (−,−,−). This change in
metric signature results into a conclusion: it is not possible
to extend spacetime to ρ < r0.

In order to cover the whole spacetime, correctly, we intro-
duce another coordinate transformation. The new radial coor-
dinate r may be introduces as

r2 = ρ2 − r2
0 �⇒ dρ2 = r2

r2 + r2
0

dr2, (41)

where ρ ≥ r0 leads to r ≥ 0. Applying this coordinate
transformation, the metric (12) should be written as

ds2 =−r2 + r2
0

l2
dt2 + r2

(r2+r2
0 )g(r)

dr2 + l2g(r)dϕ2,

(42)

where the coordinates r assumes the values 0 ≤ r < ∞, and
obtained g(r)’s (Eqs. (19), (25) and (32)), are now given as
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g(r)|PMI = m − �
(
r2 + r2

0

)

+

⎧⎪⎨
⎪⎩

q2 ln

(
r2+r2

0
l2

)

l2
, s = 1

2s−1(2s−1)2

(s−1)

( q
l

)2s
(r2 + r2

0 )(s−1)/(2s−1), otherwise
,

(43)

g(r)|exp = m − �(r2 + r2
0 ) − β2(r2 + r2

0 )

2

+
∫

4βqr

l
√
r2 + r2

0

⎛
⎝√−L ′

W + 1√
−L ′

W

⎞
⎠ dr, (44)

L ′
W = LambertW

(
− 4q2

l2β2(r2 + r2
0 )

)
, (45)

g(r)|log = m − �(r2 + r2
0 ) + 8q2

l2
ln[lβ (1 + �)

√
r2 + r2

0 ]
− 2(r2 + r2

0 )β2[3(1 − �) + 2�], (46)

�
′ =

√√√√√√1 −
⎛
⎝ 2q

lβ
√
r2 + r2

0

⎞
⎠

2

, (47)

�
′ = ln

(
l2β2

(
r2 + r2

0

)
(1 − �

′
)

2q2

)
. (48)

The nonzero component of electromagnetic field in the
new coordinate can be given by

Fϕr
∣∣
PMI = q(r2 + r2

0 )−1/(4s−2), (49)

Fϕr
∣∣
exp = lβ

2

√
−L ′

W , (50)

Fϕr
∣∣
log = l2β2

2q

√
r2 + r2

0 (1 − �
′
). (51)

One can show that all curvature invariants do not diverge
in the range 0 ≤ r < ∞ and also g(r), in different NED
models namely Eqs. (43), (44) and (46), is positive definite
for 0 ≤ r < ∞. It is evident through studying the obtained
values that in order to solutions contain singularity both r
and r0 must be zero whereas this case is never reached due
to considering nonzero value for r0. Therefore, these space-
times have no curvature singularity and horizon. However,
the spacetime (42) has a conic geometry because the limit of
the ratio “circumference/radius” is not 2π and therefore the
spacetime has a conical singularity at r = 0

lim
r−→0

1

r

√
gϕϕ

grr

= 1. (52)

The conical singularity can be removed if one exchanges
the coordinate ϕ with the following period

Periodϕ = 2π

(
lim
r−→0

1

r

√
gϕϕ

grr

)−1

= 2π (1 − 4μ) , (53)

where μ is given by

μ = 1

4
+ 1

�
, (54)

where � is different for various models of NED. We find that

�|PMI = 4lr0

⎡
⎣� − (2s − 1)

2

( √
2q

lr1/(2s−1)
0

)2s
⎤
⎦ , (55)

where for s = 1 this equation reduces to the Maxwell theory.
In order to have better understanding of the behavior of deficit
angle, we calculate the divergence points of the deficit angle
in PMI model in which these points are located at

r0|δϕ−→∞ = ±
⎡
⎣ (2s − 1)

2�

(√
2q

l

)2s
⎤
⎦

2s−1
2s

. (56)

Due to complexity of obtained relation for deficit angle,
it is not possible to calculate roots of deficit angle analyti-
cally. Therefore we will study them in context of graphs for
deficit angle later. It is worthwhile to mention that in case of
Maxwell theory the divergency and roots of deficit angle are
obtained as follow

r0|δϕ−→∞ = ± q

l
√

�
, (57)

r0|δϕ=0 = ±√1 + 4�q2 − 1

2l�
. (58)

As one can see, in case of Maxwell theory, the divergency
is only seen in dS spacetime. In other words, in AdS space-
time which is of our interest in this paper, no divergency
exists. In case of PMI theory, one can draw same conclusion;
no divergency is observed in AdS spacetime.

Next, using the method that was introduced for calculation
of deficit angle, in case of ENED, we have the following result

�|exp

=
qNE

(
2 + qE√−LW

lβr0

)
+ 8qβ2l2

√−LW (1 + LW ) + lβr0N√−LW
βl2r2

0 (1+LW )

8

(
2 + 2qE√−LW

lβr0

)2 ,

(59)

where

LW = LambertW

(
− 4q2

l2β2r2
0

)
, (60)
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Fig. 4 Maxwell solutions: δφ/π versus r0 (left) and δφ/π versus q (right) for l = 0.3. Left diagram q = 0 (bold line), q = 0.12 (dotted line),
q = 0.15 (continuous line) and q = 0.2 (dashed line). Right diagram r0 = 0.2 (dotted line), r0 = 0.3 (continuous line) and r0 = 0.4 (dashed line)

N = 2qlβr0L
2
W +√−LW

×
[
l2r2

0 (1 + LW )(2� + β2) + 4q2 exp

(
−1

2
LW

)]
,

(61)

E = Ei

(
1,

1

2
LW

)
, (62)

and the exponential integral, Ei (a, z), are defined for
Re(z) > 0 (Re(z) means the real part of z) by

Ei (a, z) =
∫ ∞

1
exp (−zx) x−adx . (63)

It is notable to mention that, in order to have a real deficit
angle, δφ, we should consider β > βmin, where

βmin = 2q

lr0
exp

(
1

2

)
. (64)

By applying same process for the case of LNED, one can
find

�|log = 16β2lr0

{
1 + �

4β2 − H + ln

[
− 2

β(1 − H)

(
ql

r0

)2
]}

,

(65)

H =
√

1 +
(

2ql

βr0

)2

. (66)

For logarithmic and exponential forms, due to complexity
of obtained deficit angle relations, it is not possible to find sin-
gular points of deficit angle, analytically. But by employing

numerical method, it was seen that the singularity is located at
r0 = 0, which we should note that, the system never reaches
this limit.

Now, we are in position to study the effects of variation of
different parameters on the deficit angle in these nonlinear
theories. To do so, we have plotted Figs. 4, 5, 6, 7 and 8.

In case of PMI theory, obtained results are as follow.
Due to structure of equation of deficit angle in the pres-
ence of this nonlinear electromagnetic field, small values of
s (0 < s < 1/2) are considered non physical. Therefore, we
will only consider large values of s (s > 1/2). As for the
case s = 1, the PMI theory will reduce to Maxwell theory,
before we study nonlinear theories, we first investigate the
properties of the Maxwell solutions.

To investigate the effects of charge on the deficit angle, we
plot Fig. 4 (left). In this case, there is a minimum for deficit
angle located at r0min . This r0min and corresponding deficit
angle to it are increasing functions of charge. In the other
words, there is a critical value of charge,qc, which forq < qc,
deficit angle has two roots and a region of negativity whereas
for q > qc, deficit angle has no root and always positive. It
is worthwhile to mention that in absence of charge, deficit
angle is only an increasing function of r0.

In case of varying r0 (Fig. 4 right), deficit angle is an
increasing function of charge. In this case, there also exists a
critical value, r0c in which for r0 < r0c , there will be a region
of negativity and a root for calculated values of deficit angle.
For case of r0 > r0c , deficit angle is positive and without
any root. It is worthwhile to mention that for small values
of charge the highest values of deficit angle belongs to the
highest value of r0. As charge increases large enough, this
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Fig. 5 PMI solutions: δφ/π versus r0 (left) and δφ/π versus q (right) for l = 0.3 and s = 1.6. Left diagram q = 0.17 (dotted line), q = 0.191
(continuous line) and q = 0.22 (dashed line). Right diagram r0 = 0.2 (dotted line), r0 = 0.3 (continuous line) and r0 = 0.4 (dashed line)

Fig. 6 PMI solutions δφ/π versus r0 for l = 0.3 and q = 0.2. Left
diagram s = 0.9 (bold line), s = 1.1 (dotted line), s = 1.4 (continuous
line) and s = 2 (dashed line). Middle diagram s = 2 (bold line), s = 3

(dotted line), s = 4 (continuous line) and s = 7 (dashed line). Right
diagram s = 7 (bold line), s = 8 (dotted line), s = 9 (continuous line)
and s = 10 (dashed line)

behavior will change; the highest values of the deficit angle
belongs to the lowest value of r0.

As in case of PMI theory for variation of charge Fig. 5
(left) is plotted. For this case, there is a minimum r0min and
the deficit angle corresponding to r0 = r0min are increasing
functions of charge. There is a critical value for charge, qc
in which deficit angle corresponds to it, is zero. For q < qc,
there will be two roots for deficit angle, otherwise deficit
angle does not have root. Next, in order to study the effects
of variation of r0, we have Fig. 5 (right). The behavior of
deficit angle and the effects of varying r0 is similar to the
case of varying r0 in the Maxwell theory.

As for the effects of s, we plot Fig. 6. Interestingly, differ-
ent behaviors are seen for different values of s. The general

behavior of the graphs are similar to variation of charge. But
with one unique property. There is a different behavior for
plotted graphs of deficit angle. First the r0min and correspond-
ing deficit angle to it are decreasing functions of s (Fig. 6 left).
This behavior will change as one increases s which results
into r0min being a decreasing function of s whereas deficit
angle corresponding to r0 = r0min is an increasing function
of s (Fig. 6 middle). This behavior will change again if one
increases s which leads to r0min and deficit angle of it being
a decreasing function of s (Fig. 6 right).

As for exponential form of nonlinear electromagnetic
field, it is seen that due to its structure, there is a divergency
for deficit angle for the cases of the deficit angle versus non-
linearity parameter (Fig. 7 left and middle). It is evident that
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Fig. 7 ENED solutions: δφ/π versus β (left andmiddle) and δφ/π ver-
sus r0 (right) for l = 0.3 Left diagram r0 = 10, q = 0.06 (continuous
line), q = 0.1 (dotted line) and q = 0.2 (dashed line). Middle diagram

q = 0.06, r0 = 5 (continuous line), r0 = 7 (dotted line) and r0 = 10
(dashed line). Right diagram q = 1, β = 1 (continuous line), β = 2
(dotted line) and β = 3 (dashed line)

Fig. 8 LNED solutions: δφ/π versus β (left andmiddle) and δφ/π ver-
sus r0 (right) for l = 0.3 Left diagram r0 = 10, q = 0.06 (continuous
line), q = 0.1 (dotted line) and q = 0.2 (dashed line). Middle diagram

q = 0.06, r0 = 5 (continuous line), r0 = 7 (dotted line) and r0 = 10
(dashed line). Right diagram q = 1, β = 1 (continuous line), β = 2
(dotted line) and β = 3 (dashed line)

the existence of the divergency is a function of the varia-
tions of charge and r0. In other words, for sufficiently small
(large) values of charge (r0), there will be a divergency for
deficit angle. Whereas, by increasing (decreasing) charge (r0)
instead of divergency, there will be a region in which deficit
angle is not real. This region is an increasing (decreasing)
function of the charge (r0) (Fig. 7 left and middle).

Next, for the effects of nonlinearity parameter on deficit
angle (Fig. 7 right), the region where deficit angle is not real
is seen in this case too. It is evident that this region is a
decreasing function of nonlinearity parameter. Overall, the
deficit angle in this case is an increasing function of the r0

whereas for the case of the nonlinearity, it is a decreasing
function of the β. This shows that effects of the these two
parameters on deficit angle are opposite of each other.

For the case of logarithmic nonlinear electromagnetic
field, one can find following results. As for the effects of
charge, plotted graph (Fig. 8 left) shows that deficit angle

is an increasing function of nonlinearity parameter and for
case of fixing nonlinearity and other parameters, the highest
value of deficit angle belongs to the highest value of charge.
On the other hand, as for the effects of r0 (Fig. 8 middle and
Fig. 9), the calculated values of deficit angle are positive and
for β = 0 deficit angle is also positive and non zero. As r0

decreases, the related value of deficit angle for case of β = 0,
decreases. In general, in this case too, the deficit angle is an
increasing function of the nonlinearity parameter. In order to
show this behavior, we have plotted Fig. 9.

For the effects of nonlinearity parameter, Fig. 8 (right) is
plotted. As one can see, interestingly, the behavior of this
graph is quite different comparing to previous case. Deficit
angle is positive and non zero for case of r0 = 0. The value of
deficit angle for this case is an increasing function of nonlin-
earity parameter. Remarkably, two behaviors for deficit angle
are seen for this case and no singularity takes place. There is
an extremum r0ext in which for case of r0 ≤ r0ext , deficit angle
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Fig. 9 LNED solutions: Different scales of δφ/π versus β for q = 0.06, and l = 0.3, r0 = 5 (continuous line), r0 = 7 (dotted line) and r0 = 10
(dashed line)

is a decreasing function of r0 and for case of r0 ≥ r0ext , it is
an increasing function of r0. For large values of r0 the effect
of nonlinearity will decrease and obtained values of deficit
angle for different cases of nonlinearity parameter will be so
close. From Fig. 8 one can show that the highest and lowest
values, in logarithmic form of nonlinear electrodynamics, of
deficit angle is located at

δϕ|min = lim
β→0

δϕ, (67)

δϕ|max = lim
β→∞ δϕ. (68)

3.4 Spining solutions

Now, we would like to endow our spacetime solution (12)
with a global rotation. In order to add an angular momentum
to the spacetime, we perform the following local rotation
boost in the t − ϕ plane

t �−→ �t − aϕ, ϕ �−→ �ϕ − a
l2
t, (69)

where a is the rotation parameter and � = √
1 + a2/ l2.

Inserting Eq. (69) into Eq. (42 ) we obtain

ds2 = −r2 + r2
0

l2
(�dt − adϕ)2

+ r2

(r2 + r2
0 )g(r)

dr2 + l2g(r)
( a
l2

dt − �dϕ
)2

, (70)

where g(r) is the same as that given in Eqs. (43), (44) and (46)
for different NEDs. The nonzero components of the electro-
magnetic field are given as

Frt = − a

�l2
Frϕ, (71)

where Eq. (71) is valid for all mentioned models.

The local transformation (69) generates a new metric,
because it is not a proper coordinate transformation on the
entire manifold. Therefore, the metric (42) and (70) can be
locally mapped into each other but not globally, and so they
are distinct. It is notable to mention that g(r) is always posi-
tive for r > 0 and this spacetime has a conical singularity at
r = 0.

Now, we want to obtain the electric charge of the solu-
tions. To determine the electric field, we should consider
the projection of the electromagnetic field tensor on special
hypersurface. The electric charge can be found by calculating
the flux of the electric field at infinity, yielding

Q = q

2π

√
�2 − 1 ×

{
2s−1sq2s−2, PMI
1, LNED, ENED

(72)

Notice that the electric charge is proportional to the rota-
tion parameter, and is zero for the static spacetime. Finally,
we calculate the conserved quantities of these solutions. The
mass and the angular momentum of the magnetic solution can
be calculated through the use of counterterm method. Using
Eqs. (10) and (11), and the suitable counterterm Lagrangian
Lct = 1/ l, one finds

M = m

8
(2�2 − 1), (73)

J = �ma

4
, (74)

which Eq. (74) confirms that a is rotation parameter.

4 Nonlinearity as a correction

It is arguable that instead of considering a theory which has
the property of being highly nonlinear, one can add correc-
tion terms to the Maxwell theory in which we define as
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additional correction (AC). Regarding the weak field limit
of nonlinear models, one can add quadratic Maxwell invari-
ants to the Lagrangian of Maxwell theory. This considera-
tion can be justified through following reasons. First of all,
in series expanding BI types of nonlinear theories, the first
leading term, which is coupled with nonlinearity parameter,
is quadratic Maxwell invariant. Second, in low energy effec-
tive of string theory, this term could be obtained which gives
strong motivation for considering this kind of modification.
Third, in order to find experimental result for nonlinear theo-
ries one should take into account only small degrees of non-
linearity. Therefore, one can build another nonlinear theory
of electromagnetic field [111–116].

The BI-type Lagrangians (20) and (26) for the large val-
ues of β (β is nonlinearity parameter) tend to the following
nonlinear Lagrangian

LAC (F) = −F + αF2 + O(α2), (75)

where α is nonlinearity parameter and is proportional to the
inverse value of nonlinearity parameter in BI-type theories,
namely β. In Eq. (75), the nonlinearity parameter is small
and so the effects of this parameter should be considered as
a perturbation and in the limit α −→ 0, LAC (F) reduces to
the Lagrangian of the standard Maxwell field,LMaxwell(F) =
−F .

In this case, we want to obtain the solutions of Einstein
gravity in presence of the nonlinear electrodynamics, which
presented by the Lagrangian (75), for static and rotating met-
rics. As described in the previous sections, considering Eqs.
(3), (12) and (75), one can show that

(
1 − 12αF2

ϕρ

l2

)
F ′

ϕρ +
(

1 + 4αF2
ϕρ

l2

)
Fϕρ

ρ
+ O(ρ2) = 0,

(76)

where Eq. (76) has the following solution

Fϕρ = q

ρ
− 4q3α

ρ3l2
+ O

(
α2
)

. (77)

1. Static AC magnetic solution
To obtain the function g (ρ), one can insert Eqs. (12) and

(77) in the gravitational field equation ( 2) to obtain the metric
function g(ρ) as

g(ρ) = m − �ρ2 + 2q2

l2
ln
(ρ

l

)
+ 2q4α

l4ρ2 + O(α2), (78)

where m is the integration constant which is related to the
mass of solutions. One can show that the metric (12) with the
metric function (78) has a singularity at ρ = 0 by calculating
the Kretschmann scalar as

Rμνλκ R
μνλκ = 12�2 − 8�q2

l2ρ2

− 4q4(4�α − 3)

l4ρ4 − 80q6α

l6ρ6 + O(α2). (79)

From Eq. (79) it is obvious that Kretschmann scalar diver-
gence at ρ = 0 and reduces to 12�2 for ρ −→ ∞. On the
other hand, as mentioned before, because of changing in sig-
nature, it is not possible to extend spacetime to ρ < r0. Also,
one can apply the coordinate transformation (41) to the met-
ric (12) and find the metric function as

g(ρ) = m − �(r2 + r2
0 )

+ 2q2

l2
ln

(
(r2 + r2

0 )1/2

l

)
+ 2q4α

l4(r2 + r2
0 )

+ O(α2),

(80)

and the electromagnetic field in the new coordinate is

Fϕr = q

(r2 + r2
0 )1/2

− 4q3α

(r2 + r2
0 )3/2l2

+ O(α2). (81)

Since all curvature invariants do not diverge in the range
0 ≤ r < ∞ , one finds that there is no essential singularity.
But, like previous cases, this spacetime has a conical singu-
larity at r = 0 with the deficit angle δϕ = 8πμ where μ is
given by Eq. (54) and � has the following form

�|AC = 4lr0

[
� −

(
q

lr0

)2

+ 2α

(
q

lr0

)4
]

+ O(α2). (82)

In this case, the divergency of the deficit angle is located
at

r0|δϕ−→∞ = (2X )
1
3 + 2q + 2q2(4X−1)

1
3

3�l2
q, (83)

X = q

[
4q − 27�2l2α + 3�l

√
3α(27�2l2α − 8q2)

]
,

(84)

and the root of the deficit angle is located at

r0|δϕ=0 =
(9

√
2Y)

2
3 q + 2q2

(
3Y 1

3 + 6
2
3 q
)

9l(�l + 2)Y 1
3

, (85)

where

Y = q

[
4

3
q2 − 9α (�l + 2)2

+9 (�l + 2)

√
α

[
α (�l + 2)2 − 8q2

27

]⎤
⎦ . (86)
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Fig. 10 AC solutions: δφ/π versus α (left andmiddle) and δφ/π versus
r0 (right) for l = 0.3. Left diagram r0 = 1, q = 2 (continuous line),
q = 3 (dotted line) and q = 4 (dashed line). Middle diagram q = 1,

r0 = 0.2 (continuous line), r0 = 0.3 (dotted line) and r0 = 0.4 (dashed
line). Right diagram q = 1, α = 0.001 (continuous line), α = 0.005
(dotted line) and α = 0.009 (dashed line)

Considering the importance of deficit angle and its con-
tribution to geometry of solutions, we plot various graphs
(Fig. 10) for studying the effects of variation of parameters
on deficit angle.

For the case of additional correction as nonlinear electro-
magnetic field, following effects were seen. As for the case of
variation of charge (Fig. 10 left), deficit angle has a singular-
ity. In other words, there is a divergency in which before and
after that deficit angle is showing different behavior. Before
divergency deficit angle is a decreasing function of nonlinear-
ity parameter and there is a root for it and a region in which it
has negative value. Whereas after divergency the deficit angle
is a decreasing function of nonlinearity and it is always pos-
itive which is located in the region of non acceptable values.
In other words, the values of the deficit angle after divergency
are not in the upper bound limit of the deficit angle. The place
of this divergency is a decreasing function of charge.

Next, as for the effects of r0 Fig. 10 (middle) is plotted in
which, there is a singularity for deficit angle. The place of
divergency is an increasing function of the r0. This behavior
is opposite to the behavior of deficit angle for variation of
electric charge.

The effects of variation of nonlinearity parameter is seen in
Fig. 10 (right). Plotted graph for deficit angle versus r0 shows
that in essential, there is a divergency for calculated values
of deficit angle. The place of this divergency is an increas-
ing function of nonlinearity parameter which means that, as
nonlinearity parameter increases, the place of this divergency
will move to higher values of r0. In case of deficit angle ver-
sus r0, the behavior of system is quite different. Opposite to
the previous case, in this plot before singularity, deficit angle
is an increasing function of r0 which is higher than upper
bound limit for deficit angle and after that, there will be a
region of negative deficit angle. This region and its related
root are increasing functions of nonlinearity parameter. The

lowest value of deficit angle belongs to the highest value of
nonlinearity parameter.
2. Spinning AC magnetic solution

In order to add angular momentum to the spacetime, we
insert Eq. (69) into Eq. (42) and we obtain the rotating metric
(70), where g(r) is the same as g(r) which is given in Eq.
(80). The electromagnetic filed components become

Frt = − a

�l2
Frϕ = a

�l2

(
q

(r2 + r2
0 )1/2

− 4q3α

(r2 + r2
0 )3/2l2

)

+ O(α2). (87)

The electric charge can be found by calculating the flux
of the electric field at infinity, yielding

Q = q

2π

√
�2 − 1. (88)

On may note that the electric charge is proportional to the
rotation parameter and for the static case (� = 1) is zero.
Also, one can show that the mass and the angular momen-
tum of the solution are same as those in Eqs. (73) and (74),
respectively.

At last, in order to obtain an insight regarding the neg-
ative deficit angle to geometrical structure of the solutions,
we first give a description regarding positive deficit angle.
The conic-like structure of the solutions is due to absence
of specific value of angle that was cut from spacetime. This
angle is deficit angle and has a positive value. In case of neg-
ative value of deficit angle, it is like an added segment to
the spacetime. This adding will change the structure of the
spacetime to a saddle-like cone (for more details see Fig. 2
in Ref. [117]). This negative deficit angle is known as sur-
plus angle. It is worthwhile to mention that there is an upper
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bound for positive deficit angle whereas such bound does not
exist for negative values of deficit angle.

5 Conclusions

In this paper, we considered different nonlinear theories of
electrodynamics and study their three dimensional magnetic
solutions. Although these theories of nonlinearity are gen-
eralization of Maxwell theory, in essence they are describ-
ing different phenomena. The obtained metric functions for
these nonlinear theories showed quite different structures for
magnetic solutions which in result enforcing their own con-
ditions.

The primitive motivation of considering the mentioned
metric was obtaining magnetic solutions through topological
defects. In other words, the obtained values are representing
topological defects. This conclusion is valid because of the
geometrical structure of obtained solutions and the impor-
tant property known as deficit angle. The deficit angle shows
that the object that we are studying is not usual geometri-
cal object. In case of obtained solutions in this paper, due to
being three dimensional, their t = cte and r = cte geometry
is a ring-like. Its shape and general properties such as area
are described and determined by the value of deficit angle.

At first we focused on the energy density. Studying energy
conditions in context of this spacetime, revealed the fact that
PMI, LNED and ENED theories satisfy null, weak, strong
and dominant energy conditions. In case of PMI theory, dom-
inant energy conditions put a restriction on valid range of s
parameter ( 1

2 < s ≤ 1). No restriction was observed for
LNED and ENED. Next we studied the effects of differ-
ent nonlinear theories on energy density and compare them
with Maxwell theory. Interestingly for case of PMI theory,
we had two sets of behavior. In general the energy density
was an increasing function of s. Considering the fact that
s = 1 is denoted as Maxwell theory, we found that in case
of 1

2 < s < 1 (s > 1) the concentration volume of energy
density was smaller (larger) comparing to Maxwell theory.
On the other hand, BI-types theories (LNED and ENED)
had larger energy density than Maxwell theory. In general
in these two theories energy density was a decreasing func-
tion of nonlinearity parameter. Therefore, considering the
fact that for large values of nonlinearity parameter, these two
theories reduce to Maxwell theory, one expect that the lowest
energy density between these theories belongs to Maxwell
theory, which is consistent with obtained results.

Here we are encountering another important difference
between PMI theory and BI-types theories. In essence, the
generalization of Maxwell theory to nonlinear theories of
BI-types causes an increase in energy density. This increase
indicates that the distribution of matter filed in these non-
linear theories is more concentrated comparing to Maxwell

theory. On the other hand, for PMI theory two scenarios is
possible. In one ( 1

2 < s < 1), considering this nonlinear the-
ory causes to decrease of energy density. In other words, in
this case the distribution of matter filed is less concentrated
comparing to Maxwell theory. On the other hand, for the
one (s > 1), the energy density becomes larger comparing to
Maxwell theory. This two different behavior is a unique char-
acteristic of PMI theory and emphasizes the different nature
of this theory from BI-types. If one consider dominant energy
condition and its restrictions on theories of nonlinearity as
dominant limitations, PMI theory only decreases the energy
density whereas the BI-types increases the energy density. In
the other words, these two classes of nonlinear theories have
opposite effects on energy density.

In essence, PMI theory is a different theory comparing to
other ones in conditions and evaluated values. The existence
of s as a power makes the magnetic solution related to it
more sensitive to variation of s comparing to variation of
nonlinearity parameter in other theories. The places of deficit
angel root and divergency were highly sensitive to variation
of s. Due to structure of this theory two behaviors were seen
for different values of s which is a characteristic that only
belongs to this theory. These different behaviors add another
free parameter to this theory and make it possible to consider
two approaches for studying magnetic solutions. It also states
that in considering this theory, one must take this undeniable
important property into consideration for studying solutions
and their properties such as conserved quantities and their
general behaviors.

In addition, this fact is of importance to mention that in
usual charged three dimensional solutions, one expects the
rise of logarithmic function of radial coordinate in metric
function. This function was seen in BI-type nonlinear the-
ories whereas for the case of PMI, interestingly, only for
certain value of s this function was seen. This fact empha-
sis another fundamental difference between this theory of
nonlinear electromagnetic field and BI-type ones.

As for the AC theory, due to consideration of nonlinear-
ity parameter as a correction to Maxwell theory, there was
a restriction of considering only small values of nonlinear-
ity parameter. Interestingly, in this theory, the existence of
divergency was seen for deficit angle.

Remarkably, for case of LNED no singular point, hence no
divergency was seen. Contrary to AC theory, this theory pre-
sented smooth and divergence free behavior for deficit angle.
The obtained values of deficit angle for this theory were real
and the only restriction that one may confront comes from
the logarithmic part of solution which in plotted graphs for
deficit angle no effect of this restriction was seen. Although
both LNED and AC theories are in essence BI-types, this
behavior is showing an important fact that they are in case
of topological defects and magnetic solutions are describing
completely different phenomena and they are independent
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of each other. The same property was seen for the case of
exponential form.

It is notable to mention the fact that in plotted graphs of
Maxwell, no singularity was seen. In fact, calculated values
of divergence point showed that there are two divergence
points that in AdS spacetime they are not real. In other words,
in case of AdS spacetime, deficit angle is divergence free.
Opposite to the case of divergency, we found a relation for
roots in this case which indicated three different possible
cases: two roots, one extreme root and no root.

One of the important issues that must be taken into con-
sideration is the existence of roots for deficit angle. The
existence of root for deficit angle states that no contribut-
ing to structure of magnetic solution exists. In other words,
the object that we are studying in these special cases are not
cosmological (topological) defects and they do not have the
property of being cosmological defects. If we consider the
cosmological defects as dynamic objects that their param-
eters may vary through time, one may say that for special
values of parameters, the object will change into another
astrophysical object (no deficit angle is seen). But this idea
is only acceptable if the root of deficit angle is extreme or the
region in which deficit angle is negative.

Also, the existence of negative values of deficit angle poses
another important issue. The structure of magnetic solution
and the meaning of having negative deficit angle is something
that must be taken into consideration and studied in more
details.

One may interpret that roots of deficit angle may present
the phase transition for these astrophysical objects and the
negative values of deficit angle are representing another
phase for them. Or one may say that negative and positive
values of deficit angle are representing two different types of
defects. The roots are places where these phase transitions
take place. Considering the fact that in calculation of deficit
angle, one is using second order derivation of metric function
with respect to radial coordinate (see for example chapter 9
of Ref. [118]) and if one consider the metric function as a
potential, it is arguable that the roots of deficit angle are rep-
resenting phase transition. On the other hand, considering the
concept of divergency of potential as a point of phase tran-
sition, one may argue that existence of divergency in deficit
angle is representing phase transition. Therefore, one may
state that instead of taking roots of deficit angle as phase
transition points, singular points must be taken into consid-
eration as phase transition points. These phase transitions
may be geometrical types of transitions. In other words, the
shape of the object may only change, not its physical being
change into another thing. But this idea is debatable if one
consider roots of deficit angle as phase transition. It is due to
fact that topological property which describe the shape of the
magnetic object will be quite different before and after phase
transition in which the sign of deficit angle will change. In

some of the nonlinear theories and Maxwell one no singular-
ity was seen which state that in concept of considering diver-
gency as a phase transition, these theories are in fact without
phase transition. But as it was mentioned before, in case of
Maxwell theory, the background spacetime (AdS/dS) plays
the crucial role. In AdS spacetime there is no divergency and
for dS spacetime one can find divergence points and there-
fore it may have phase transition. But if one consider roots
as phase transition in both spacetime, phase transitions take
place.

Another interesting issue comes from studying Fig. 4. In
the absence of charge, q = 0, the deficit angle could be
non zero. By adding charge to solutions and increasing it,
the deficit angle increases and general behavior of it is also
modified. This shows the fact that contribution of charge
to deficit angle is of an increasing factor. In other words,
electromagnetic field will increase the value of deficit angle.

Finally it is quite important to mention the fact that the
only non zero component of considered gauge potential in
case of these topological defects were spatial one which was
considered as provider of magnetic field. By applying the
mentioned transformation and changing metric from static
to rotating one, another component was added to electro-
magnetic field tensor which was the well-known provider of
electric field. Obtained values for this electric part of elec-
tromagnetic field tensor were functions of rotating parameter
and in case of setting rotating parameter equal to zero, these
electric field would vanish. This fact shows that obtained
values are essentially magnetic solutions.
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