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[1] Relative contributions of ice volume and temperature change to the global ~1% 6'0 increase at
~14 Ma are required for understanding feedbacks involved in this major Cenozoic climate transition. A
3-ma benthic foraminifer Mg/Ca record of Southern Ocean temperatures across the middle Miocene climate
transition reveals ~2 + 2°C cooling (14.2—13.8 Ma), indicating that ~70% of the increase relates to ice
growth. Seawater §'*0, calculated from Mg/Ca and 6'®0, suggests that at ~15 Ma Antarctica’s cryosphere
entered an interval of apparent eccentricity-paced expansion. Glaciations increased in intensity, revealing a
central role for internal climate feedbacks. Comparison of ice volume and ocean temperature records with
inferred pCO, levels indicates that middle Miocene cryosphere expansion commenced during an interval of
Southern Ocean warmth and low atmospheric pCO,. The Antarctic system appears sensitive to changes in
heat/moisture supply when atmospheric pCO, was low, suggesting the importance of internal feedbacks in
this climate transition.
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1. Introduction and Kennett, 1975; Miller et al., 1987; Flower and
Kennett, 1994; Zachos et al., 2001]. This step-like

. . . . . 18 . . : 18
[2] A significant reorganization of Earth’s climate 670 increase is one of three major 6 ) 80 events
system occurred in the middle Miocene, as  that punctuate the long-term Cenozoic 6O record

evidenced by the abrupt ~1%o increase in global ~ and is thought to reflect some combination of
benthic foraminifer §'80 at ~14 Ma [Shackleton ~ Antarctic ice growth and global cooling [Shackleton
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and Kennett, 1975; Matthews and Poore, 1980;
Miller et al., 1987; Prentice and Matthews, 1991;
Flower and Kennett, 1994]. Support for this inter-
pretation is found throughout the geologic record:
Southern Ocean ice rafted debris is more abundant
after ~14 Ma [Margolis, 1975; Kennett and Barker,
1990], large fluctuations in global sea level are
inferred [Hagq et al., 1987; John et al., 2004], paleo-
botanical and faunal change occurred [ Woodruff and
Savin, 1989; Flower and Kennett, 1994, and refer-
ences therein], and the East Antarctic Ice Sheet
expanded across the Antarctic continental margin
(Ross Sea sector [Anderson, 1999; Cape Roberts
Science Team, 2000]). However, because the §'%0
of foraminiferal calcite (CaCO;) is a function of
both seawater 6'%0 (§'%0y,,) and the temperature of
the waters in which the foraminifers calcify, funda-
mental questions remain concerning the magnitude
and phasing of middle Miocene Antarctic ice growth
and global cooling [Shackleton and Kennett, 1975;
Flower and Kennett, 1994; Shevenell et al., 2004].

[3] Estimates of the magnitude of Antarctic ice
growth and temperature change during the middle
Miocene climate reorganization (~17—13 Ma)
have been made using indirect methods, including
low-latitude benthic/planktonic foraminifer §'%0
covariance [Shackleton and Opdyke, 1973; Miller
et al., 1991a, 1991b], sequence stratigraphy [Hag
et al., 1987; Miller et al., 1987; John et al., 2004],
and meridional stable isotope gradients (A§'%0
[Wright et al., 1992]). These studies estimate that
~70% of the global ~1%o benthic foraminifer §'*0
increase at ~14 Ma relates to Antarctic ice volume.
Thus global deep waters are inferred to have
cooled 1.5-2.5°C between 14.2 and 13.8 Ma
[Miller et al., 1991a, 1991b; Wright et al., 1992;
Flower and Kennett, 1994; John et al., 2004].
Although indirect methods provide useful approx-
imations of the relative contributions of ice volume
and temperature to the middle Miocene §'%0
signal, none involve a truly independent measure
of either deep-water temperature or ice volume.

[4] Separation of the components of the 6'°0
signal is required to improve understanding of the
processes and feedbacks involved in this dynamic
climate reorganization. The recently developed
Mg/Ca paleotemperature proxy should provide an
independent temperature record necessary to reveal
the ice volume component of the middle Miocene
8'®0 signal. The Mg/Ca content of foraminifer
CaCOj is a function of both seawater Mg/Ca and
calcification temperature (~9%/°C) [Lea et al.,
2000; Lear et al., 2000; Martin et al., 2002]. This

technique is appealing because it is useful in sedi-
ments with low organic carbon content and Mg/Ca
may be measured on the same foraminifer CaCO;
as the 8'°0 [Lea et al., 2000; Lear et al., 2000].
However, the success of the Mg/Ca paleotemper-
ature proxy on Cenozoic timescales depends upon
well-preserved foraminifer CaCO;, accurate species-
specific temperature calibrations, and knowledge
of past seawater Mg/Ca [Lear et al., 2000; Billups
and Schrag, 2002, 2003; Zachos et al., 2003;
Shevenell et al., 2004]. Additionally, there is some
evidence to suggest that benthic foraminfer Mg/Ca
may be influenced by changes in the carbonate ion
content of seawater (Elderfield et al. [2006] and
others); understanding this relationship is presently
an active research topic. The results of several low-
resolution middle Miocene benthic foraminifer
Mg/Ca studies agree with the indirect ice volume
and temperature estimates discussed previously,
suggesting the potential utility of this proxy for
use on Cenozoic timescales [Lear et al., 2000;
Billulps and Schrag, 2002]. A 0.6—0.7%o increase
in 604, and a 2.5-3°C cooling of global deep
waters have been inferred using paired benthic
foraminifer Mg/Ca and 6'*0 records [Lear et al.,
2000; Billups and Schrag, 2002, 2003]. However,
the resolution of these studies is presently too low
to assess the magnitude and phasing of ice growth
and cooling on orbital timescales.

[s] Here we use the Mg/Ca paleotemperature
proxy to gain new high-resolution insight into both
the relative contributions of Antarctic ice volume
and temperature to the ~14 Ma §'%0 increase as
well as the phasing of ice growth and cooling. We
present an orbital scale 3-Ma (16.5—13.5 Ma) time
series of Mg/Ca-derived bottom water temperatures
(BWTs) from the South Tasman Rise (STR),
Southwest Pacific sector of the Southern Ocean
(Figure 1). We then integrate benthic foraminifer
Mg/Caand 'O records from ODP Site 1171 to gain
insight into the development of the Antarctic ice
sheet during the middle Miocene climate transition.

2. Setting

[s] ODP Site 1171 (48°30'S, 149°06.69'E; 2150 m
[Exon et al., 2001]) was drilled on the southern tip
of the South Tasman Rise, which continued to
move northward after the separation of Australia
and Antarctica in the latest Eocene (Figure 1 [Exon
et al., 2001]). In the middle Miocene, the South
Tasman Rise was situated at a paleolatitude of 55°S
[Lawver et al., 1992] and the site is estimated to
have been at a paleodepth of 1600 m [Sclater et al.,
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Figure 1.

Ocean Drilling Program (ODP) Site 1171 is situated on the South Tasman Rise (STR) at the intersection

of the southward flowing East Australian Current (EAC) and the eastward flowing Antarctic Circumpolar Current
(ACC), one of three locations where heat is introduced to the Southern Ocean [Exon et al., 2001]. In the middle
Miocene, the STR was situated at ~55°S, 5—7° south of its present location [Lawver et al., 1992]. The backtracked
middle Miocene paleodepth of Site 1171 is 1600 m [Sclater et al., 1985].

1985]. The site is proximal to the confluence of the
East Australian Current and the Antarctic Circum-
polar Current and was likely bathed by both South-
ern Component Water and Southern Component
Intermediate Water during the Miocene (Figure 1
[Shevenell and Kennett, 2004)).

3. Materials/Methods

[7] Oligocene to Quaternary sediments at Site 1171
are predominantly nannofossil to foram-bearing
nannofossil chalks and oozes (~94% CaCO,),
suggesting that the STR has been located above
the Southwest Pacific/Southern Ocean lysocline
since the early Oligocene [Exon et al., 2001].
The middle Miocene sequence (150—220 mbsf)
analyzed in this study is predominantly a nanno-
fossil ooze; the ooze/chalk boundary is located at
~270 mbsf, below the sequence discussed [Exon et
al., 2001]. On the basis of our own observations,
there is little visual evidence of dissolution or other
diagenetic processes in the middle Miocene
sequence, with the possible exception of the
180—190 mbsf interval, which exhibits a reduced
number of benthic foraminifers and no change in

planktonic foraminifer fragmentation [Shevenell,
2004; A. E. Shevenell and J. P. Kennett, manuscript
in preparation, 2008]. Our observations suggest that
multiple planktonic foraminifer species are well
preserved through out, including some dissolution
susceptible species (e.g., Orbulina sp.) [Shevenell,
2004]. Furthermore, interspecific benthic and
planktonic 6'%0 and 6'C offsets [Shevenell, 2004],
and the quality of the planktonic Mg/Ca record
[Shevenell et al., 2004] suggest an absence of wide-
spread postdepositional alteration of Hole 1171C
sediments.

[s] Middle Miocene age control is constrained by
19 magneto-, bio-, and stable isotope datums (Exon
et al. [2001]; see Shevenell and Kennett [2004] for
details) between 11.1 and 16.7 Ma. For this con-
tribution, we have updated the nine datums used in
the Shevenell and Kennett [2004] Site 1171 age
model between 13.3 and 16 Ma to reflect the new
astronomically tuned ATNTS2004 age model of
Lourens et al. [2004]. Our revised linearly interpo-
lated age model between 13.3 and 16 Ma is similar
to the revised Site 1171 age model of Holbourn et
al. [2005] between 13.7 and 14.3 Ma. Differences
between our revised age model (this contribution)
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and the astronomically tuned age model of lower
latitude Sites 1146 and 1237 of Holbourn et al.
[2007] are slightly greater (200—-300 Ka) around
~15 Ma but do not impact our interpretations of
the benthic Mg/Ca data or the conclusions of this
contribution. We have chosen to plot the Site 1171
data using a revised linear interpolation through the
9 age control points identified in the Site 1171
record between 13.3 and 16 Ma (1) because this
model extends beyond 14.3 Ma and has not been
tuned to the §'°0 of Sites 1146 and 1237 [Holbourn
et al., 2005, 2007]:

y = 14.148x — 32.91(x* = 0.9993) from 113 and 205 mbsf
(1a)

where y is depth and x is age. Thus the average
sedimentation rate between 11.1 and 16.7 Ma is
14.148 m/Ma [Shevenell and Kennett, 2004].

[v] Raw sediment was washed over a 63-um sieve,
oven dried at 50°C, and the residual >63-pm
sample split. Both stable isotope and trace element
analyses were conducted at UCSB; the details of
the stable isotope analyses may be found in the
work of Shevenell and Kennett [2004]. The Mg/Ca
data were generated from the same samples but not
from the same foraminifers as the 6'°0 data
[Shevenell et al., 2004]. For each of the 211 trace
metal analyses, 5 to 16 benthic foraminifer,
Cibicidoides mundulus, individuals were picked
from the 250-350 pm fraction. In 24 samples,
low C. mundulus abundance limited analysis to 3—
4 individuals. Foraminifer shells were weighed,
crushed, and cleaned following the protocol devel-
oped for foraminiferal trace metal analysis, which
focuses on removing clays, organic matter, and
metal oxides [Boyle and Keigwin, 1985; Lea and
Boyle, 1993]. Dissolved samples were analyzed by
the isotope dilution/internal standard method de-
scribed by Lea and Martin [1996] using a Thermo
Finnigan Element2 sector ICP-MS.

[10] Analytical reproducibility over the course of
this study (~18 months) was determined using
consistency standards with similar concentrations
and Mg/Ca ratios to dissolved benthic foraminifer
solutions. Thus the long-term analytical precision
(% rs.d.) was £0.7% (1o). Less than 5% of the
individual analyses were rejected as outliers.
Cleaned samples with <10% recovery yielded
insufficient signal for reliable Mg/Ca determination
and were excluded from the data set. Replicate
analyses (df = 65) were conducted on 30% of the
Site 1171 samples during the course of this study.

Precision of the Mg/Ca data is estimated from the
pooled standard deviation of replicate analyses is
+9.8% and is higher than that of both Miocene
planktonic Mg/Ca from Site 1171 [Shevenell et al.,
2004] and Quaternary benthic Mg/Ca studies
[Martin et al., 2002]. This discrepancy likely relates
to the long time interval represented by each sample
(11-17 ka) coupled with the relatively low C.
mundulus abundance in each sample.

4. Results

4.1. Stable Isotope Record

[11] The benthic foraminifer §'®0 record from Site
1171 (see Shevenell and Kennett [2004] for details)
consists of 758 §'®0 analyses (20% are duplicates)
and is characteristic of the majority of middle
Miocene deep-sea 8'°0 records [e.g., Woodruff
and Savin, 1991; Flower and Kennett, 1994].
Oxygen isotope values are generally more negative
between 16.5 and 13.9 Ma (average: 2.1%o0) and
more positive (average: 2.8%o) after 13.8 Ma, with
a total range of 1.9%0 (Figure 2). Values are
generally most negative between 16.5 and 14.6 Ma,
with the most negative §'°0 values observed
between 16.5 and 16.2 Ma and an interval of more
positive 6'%0 centered at ~16 Ma. After 15 Ma,
two intervals of more positive §'*0 ~400 ka long
are centered at 14.8 and 14.4 Ma. The §'®0 record
exhibits the most variability between 14.6 and
14.0 Ma and 6'®0 values generally more negative
and less variable between 14.0 and 13.9 Ma. Two
intervals of more positive 6'*0 are centered at 14.0
and 13.9 Ma. The well-known middle Miocene
8'®0 increase is evident in the Site 1171 §'%0
record and displays a 0.75%o d'®0 increase be-
tween 13.9 and 13.8 Ma, equivalent to the Mi-3
event of Miller et al. [1991a]. The most positive
5'®0 values of the record (average: 2.8%o) occur
between 13.8 and 13.7 Ma. The §'°0 values
decrease ~0.2%o (average: 2.6%o) and remain rel-
atively stable after 13.7 Ma [Shevenell and Kennett,
2004].

4.2. Mg/Ca Record

[12] Atfirst glanceitis clear that unlike the Site 1171
planktonic foraminifer Mg/Ca record [Shevenell et
al., 2004], the benthic foraminifer Mg/Ca record
bears little resemblance to the benthic foraminifer
8'®0 record (Figure 3 [Shevenell and Kennett,
2004]). Hole 1171C benthic Mg/Ca values exhibit
low variability through the middle Miocene and
range between 1.21 and 2.10 mmol/mol with an
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Figure 2. C. mundulus (top) Mg/Ca and (bottom) §'*0 from ODP Hole 1171C (48°30’S, 149°06.69'E; 2150 m)
plotted versus age (a detailed discussion of the age model may be found in the text). Data were generated at 20 cm
intervals (Mg/Ca) and at 10 cm intervals (6'*0 [Shevenell and Kennett, 2004]) from 150 to 205 meters below sea
floor (mbsf). Each Mg/Ca data point represents an average of one to six analyses. Analytical reproducibility over the
18-month study, determined using consistency standards, is estimated at +£0.7% (1o0). Replicate analyses (df = 65)
were conducted on ~30% of the samples. Precision of Mg/Ca data, estimated from the pooled standard deviation of
the replicates, is £9.8%. Mi events of Miller et al. [1991b] are identified.

average of 1.66 mmol/mol £+ 0.165 (1 s.d.; 13.2—
16.4 Ma).

[13] The Hole 1171C benthic Mg/Ca record exhib-
its a long period (~2 Ma) oscillation superimposed
on a slight trend toward lower values up-section
(Figure 3). Three intervals of higher Mg/Ca are
evident at ~16.3 Ma (average: 1.81 mmol/mol),
14.3 Ma (1.73 mmol/mol), and ~13.4 Ma (1.68
mmol/mol); all correspond with intervals of more
positive §'®0 (Figure 3). In contrast to the stepwise
structure of the benthic 6'%0 (Figure 2 [Shevenell
and Kennett, 2004]) and planktonic Mg/Ca-derived
SST [Shevenell et al., 2004] records (Figure 4)
across the middle Miocene climate transition
(~14 Ma), the C. mundulus Mg/Ca record exhibits
reduced variability and a gradual ~0.36 mmol/mol
decrease (Figures 1 and 3). A reduced sampling
density related to low C. mundulus abundance
might give rise to the pronounced variability be-
tween 15.3 and 16.0 Ma (Figure 3); thus we focus
our discussions and interpretations to the 15.3 to
13.3 Ma interval.

[14] To assess the influence of postdepositional
alteration on the Site 1171 benthic foraminifer

Mg/Ca record, a paired Sr/Ca record was generated
and no similarities exist between the records
[Shevenell, 2004]. Furthermore, a comparison of
Mg/Ca with elemental ratios of Fe/Ca, Al/Ca, and
Mn/Ca indicates that no significant (R* = <0.1)
correlation exists between the records and suggests
that the Mg/Ca record is not influenced by the
presences of clays or by the foraminifer cleaning
process [Boyle and Keigwin, 1985].

5. Discussion

5.1. Mg-Temperature Record

[15] Bottom water temperatures were estimated
from the C. mundulus Mg/Ca data (Figure 3) using
the C. mundulus-specific Mg-temperature calibra-
tion of Lear et al. [2003]:

Mg/Ca = 0.9¢'!!BVT (1b)
Assuming a minimal change in seawater Mg/Ca
from the Miocene to present [Wilkinson and Algeo,
1989; Rowley, 2002], BWT estimates should be
accurate to within £1°C (20; Lear et al. [2003]).
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Figure 3. C. mundulus Mg/Ca-derived bottom water temperature (BWT) records versus age from ODP Hole
1171C. Mi events of Miller et al. [1991b] are identified. The three Mg/Ca-derived BWT curves represent the Mg/Ca
data converted to BWT using three different calibrations: The solid line with the open circles is temperature curve
based on the calibration of Lear et al. [2003], the dotted line is the calibration of Marchitto et al. [2007], and the bold
black line is the calibration of Lear et al. [2003] with the temperature sensitivity of Marchitto et al. [2007]. As
discussed in the text, the differences observed between the Lear et al. [2003] and Lear and Marchitto equation are
within the overall uncertainty of the Mg/Ca calibrations and our conclusions are not significantly altered by our

choice of equation.

[16] Unlike the Mg/Ca of planktonic foraminifera,
the uptake of Mg/Ca into benthic foraminifera
remains poorly understood. As a result, there is
an ongoing debate in the paleoceanographic com-
munity as to whether the relationship between
temperature and Mg/Ca in benthic foraminifer is
exponential or linear (Lear et al. [2002, 2003], Lea
[2004], Marchitto et al. [2007], and others). We
chose the Lear et al. [2003] equation to convert
Site 1171 Mg/Ca to BWT because our record is
exclusively derived from C. mundulus and because
of the definite offset between C. mundulus and C.
wullerstorfi observed in multispecies records [Lear
et al., 2003]. Lear et al. [2003] revised their
original core-top Cibicidoides calibration [Lear et
al., 2002] to obtain a species specific C. mundulus
equation by assuming that the two species have a
similar temperature sensitivity but a different pre-
exponential constant.

[17] More recently, a core-top calibration for C.
pachyderma (or C. mundulus) from the Little
Bahamas Bank was generated by Marchitto et al.
[2007], which suggests a strong linear relationship
between Mg/Ca and BWT, with a sensitivity of
0.12 mmol/mol Mg/Ca per °C:

Mg/Ca = 0.116T + 1.20 (2)

The standard error of the equation is 2.4°C.
Marchitto et al. [2007] favor a linear fit to the
core top data because an exponential curve
exaggerates the temperatures at the cold extreme
of the calibration.

[18] In order to illustrate the effect of using differ-
ent calibrations on our Site 1171 middle Miocene
C. mundulus Mg/Ca record, we have plotted the
results of three different equations in Figure 2: The
solid line with open circles uses the exponential
calibration Lear et al. [2003] and the dashed line
employs the linear calibration of Marchitto et al.
[2007]. We have also plotted the data using the
exponential equation of Lear et al. [2003] with the
temperature sensitivity of the Marchitto et al.
[2007] equation (heavy black line; standard error
of £1.7°C); the Marchitto et al. [2007] sensitivity
was substituted into the Lear et al. [2003] equation
to reflect the likelihood that the temperature sensi-
tivity of C. mundulus (C. pachyderma) is species
specific. Furthermore, we argue that at the cold end
of the calibration, the slopes of the linear and
exponential equations are essentially identical:

Mg/Ca = 0.9¢"!12BWT (3)
Temperatures derived from the Lear et al. [2003]
equation are the warmest of the three equations.

The temperatures estimated from hybrid Lear-
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Figure 4. Southern Ocean paleoclimate records from ODP Hole 1171C (48°30’S, 149°06.69'E; 2150 m) versus age
(see text for age model details). Interpretations focus on the 15.3—13.3 Ma interval (black). Mi events of Miller et al.
[1991b] are identified. (bottom) Seawater §'%0 g&lSOSW) is calculated using the §'®0—temperature relationship of
Lynch-Stieglitz et al. [1999] from C. mundulus 6'°0 [Shevenell and Kennett, 2004] and Mg/Ca-derived BWTs [Lear
et al., 2003]. The record is interpreted to reflect changes in global ice volume during the middle Miocene climate
transition. Arrows indicate glaciations that recur every ~400 ka between ~15 and 14 Ma. Also shown is (middle)
Mg/Ca-derived bottom water temperatures (BWTs) [Lear et al., 2003] from ODP Hole 1171C and (top) G. bulloides
Mg/Ca-derived sea surface temperatures (SSTs) from ODP Hole 1171C [Shevenell et al., 2004] plotted on the age
model discussed in this contribution.

Marchitto equation are slightly lower than the Lear
et al. [2003] temperatures, but within the error of the
Lear et al. [2003] equation. The Marchitto et al.
[2007] equation yields significantly cooler tempera-
tures, which may reflect the lack of data at the cool
(<5°C) end of the calibration [Lear et al., 2003;

Marchitto et al., 2007]. Furthermore, because the
standard error of the Lear et al. [2003] equation is
1.0°C and the offset between the temperatures
estimated from equation (1) and equation (3) are
within error of the Lear et al. [2003] calibration, we
have chosen to employ this calibration.
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[19] Using the published equation of Lear et al.
[2003], we estimate that the Middle Miocene
BWTs at Hole 1171C oscillated around 5.3 +
1.0°C (Figure 3), which is within the range of
existing low-resolution Cenozoic benthic Mg/Ca
records (4—-8°C [Lear et al., 2000; Billups and
Schrag, 2002]). However, Site 1171 BWTs are
routinely cooler than Mg/Ca records generated at
lower latitude sites, a finding consistent with the
South Tasman Rise’s geography and oceanograph-
ic setting [Lear et al., 2000; Billups and Schrag,
2002]. Three intervals of relatively warm BWTs
exist in the Site 1171 record, including those at
16.4—16.2 Ma (6.3 £ 0.3°C), 14.5-14.1 Ma (5.6 +
1.0°C), and 13.5—13.3 Ma (5.7 + 0.7°C) (Figure 3).
Two of these warm intervals occurred during the
Miocene Climatic Optimum (17—14 Ma [Flower
and Kennett, 1994, and references therein]) and the
third at ~13.5 Ma following the middle Miocene
8'®0 increase; warming of regional surface water
temperatures [Shevenell et al., 2004] and South-
west Pacific (26°S) benthic foraminifer d'®0
records [Flower and Kennett, 1994] has also been
inferred at this time (Figure 3). Cooler BWTs
observed at ~16 Ma (4.7 + 1.0°C) and 13.6 Ma
(4.6 £ 0.7°C) correspond with intervals of more
positive 6'%0 (glacial events Mi-2 and Mi-3 of
Miller et al. [1991a]) (Figure 3). Across the middle
Miocene d'®0 increase (14.2—13.8 Ma), BWTs at
Site 1171 cooled ~2°C £ 1.5°C (~6° to 4°C)
(Figure 3), which is similar to cooling estimated
using indirect methods [Miller et al., 1991a; Wright
et al., 1992; Flower and Kennett, 1994; John et al.,
2004].

5.1.1. Accounting for Temporal
Seawater Mg/Ca Variability

[20] The largest uncertainty in estimating Cenozoic
paleotemperatures using Mg/Ca relates to temporal
variations in seawater Mg/Ca [Lear et al., 2000;
Billups and Schrag, 2002]. Changes in CaCOs;
sedimentation, dolomite cycling, hydrothermal ac-
tivity, and/or the hydrologic cycle could alter sea-
water Mg/Ca [Wilkinson and Alego, 1989; Stanley
and Hardie, 1998; Lear et al., 2000; Billups and
Schrag, 2002]. However, the long residence times of
oceanic Mg®" (13 Ma) and Ca*" (1 Ma) [Broecker
and Peng, 1982] indicate that, while the absolute
values of BWTs may be affected by changing
seawater Mg/Ca, the magnitude of temperature
change across rapid (<1 Ma) climate transitions
should remain unchanged. Furthermore, if the sea-
water Mg/Ca ratio were driven purely by changes in
oceanic Ca cycling, then the ratio of Sr/Ca in

seawater should exhibit similar changes to that of
Mg/Ca. The Site 1171 benthic foraminifer Sr/Ca
record shows no similarity to that of the Mg/Ca
[Lear et al., 2003] record and no systematic long-
term trend. Thus, we assume that the long-term
trends observed in the record are not related to
changes in oceanic Ca cycling.

[21] To assess the uncertainty in the absolute val-
ues of our BWT record related to temporal seawa-
ter Mg/Ca variations [Wilkinson and Alego, 1989;
Stanley and Hardie, 1998], we modified the Lear et
al. [2003] calibration equation following Lear et al.
[20001]:

BWT = In(Mg/Cay,;/(0.9%(Mg/Cagyy /Mg/Cagyp)))/0.11
(4)

Where Mg/Cay, refers to measured C. mundulus
Mg/Ca (this study), Mg/Cagwnm to the modeled
Mg/Ca of seawater at ~14 Ma (4.2 mmol/mol
[Wilkinson and Algeo, 1989]), and Mg/Cagwp to
the Mg/Ca of present day seawater (5.1 mmol/mol
[Broecker and Peng, 1982; Stanley and Hardie,
1998]). BWT estimates derived from equation (4)
are 1.8°C warmer than those from equation (1)
[Lear et al., 2003]. Taking into account uncertainty
related to temporal seawater Mg/Ca variations and
the calibration, we estimate the absolute uncer-
tainty in Miocene BWT estimates at +1-3°C.
Because the uncertainty related to the changing
ratio of Mg to Ca in seawater is within the error of
the Lear et al. [2003] calibration, our discussions
will focus on the temperature record derived from
that equation, not equation (4). Owing to the long
residence times of Mg/Ca in the ocean, our data
will not be affected on timescales of <1 Ma.
Furthermore, on longer timescales it is unlikely
that the shape of the middle Miocene curve will
change with a shift in the seawater Mg/Ca, but
rather the absolute values will be influenced by
+1-3°C.

5.1.2. Middle Miocene Benthic Foraminifer
Mg Temperatures (~14 Ma)

[22] The middle Miocene 6'%0 increase at ~14 Ma
is one of the three major §'®0 increases of the
Cenozoic. At Site 1171, a §'%0 increase of 1.2%o
occurs between 14.1 and 13.7 Ma. Across the same
time interval, C. mundulus Mg-temperatures cool
~2 £ 2°C from ~6 to 4°C, suggesting that roughly
0.75%0 (~65%) of the 1.2%o 6'°0O increase across
the middle Miocene climate transition relates to
global ice volume [O Neil et al., 1969]. Thus the
Site 1171 benthic Mg/Ca record suggests no sig-
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nificant or permanent cooling following the middle
Miocene climate step. Interestingly, the cooling
immediately follows the relatively warm temper-
atures of the Miocene Climatic Optimum (~15—
14 Ma) and is similar in magnitude and range to
bottom water temperatures observed in the lower
resolution benthic foraminifer Mg/Ca records of
both Lear et al. [2000] and Billups and Schrag
[2002], despite different Mg-temperature relation-
ships used in each of the studies.

[23] A ~2°C warming trend (13.7 to 13.5 Ma)
immediately follows the middle Miocene cooling
and 6'°0 increase. Despite the uncertainties pres-
ently associated with the benthic Mg-temperature
relationship, there is some evidence to suggest that
the observed pattern of temperature change across
the Middle Miocene §'®0 increase is robust. A
similar pattern of warming is observed following
the major Cenozoic §'®0 excursions across the
Eocene/Oligocene and Oligocene/Miocene bound-
aries [Lear et al., 2004]. These authors propose a
scenario in which warming after the major Eocene/
Oligocene (Oi-1) and early Miocene (Mi-1) Antarc-
tic glaciations is thought to reflect a negative feed-
back of the climate system related to the reduction of
global chemical weathering rates due to extensive
continental glaciation. This reduction in weathering
is thought to result in an increase in atmospheric
pCO, and a partial melting of Antarctic ice sheets,
referred to by Lear et al. [2004] as the “missing
sink” mechanism, which is consistent with the
evidence from both the middle Miocene global
benthic foraminifer 6'°C record and proxy atmo-
spheric pCO, records [Pagani et al., 1999]. Carbon
isotope records from Site 1171, which exhibit the
global benthic foraminifer §'*C signal, indicate a
rise in benthic foraminifer §'°C immediately fol-
lowing the major 6'®0 increase that is associated
with the final orbitally paced global carbon maxi-
mum events (CM6) of the Monterey '>C excursion
[Vincent and Berger, 1985; Woodruff and Savin,
1991] and an increase in atmospheric pCO, as
inferred from the §'°C of alkenones preserved in
southwest Pacific sediments [Pagani et al., 1999].
Support for reduced Antarctic ice volume at this
time comes from both our calculated §'%0,,, record
(Figure 4; see below for discussion) as well as from
the dating of relict surfaces in the Antarctic Dry
Valley region (see below for further discussion
[Sugden and Denton, 2004; Lewis et al., 2006]).

5.1.3. Ice Volume Estimates from 620,

[24]] To calculate the 6'%0 of regional seawater
(6"04y) from paired BWT (1 s.d.: £1-3°C) and

benthic foraminifer 6'%0 (1 s.d.: £0.1%o [Shevenell
and Kennett, 2004]) records, we used the C.
pachyderma (C. mundulus) specific 6'°0 paleo-
temperature equation of Lynch-Stieglitz et al.
[1999] combined with the BWTs derived from
the Lear et al. [2003] equation:

8" Ocatcite (PDB) = d'804, (SMOW) — 0.21T + 3.38 — 0.27
(5)

Results reveal that 0.82 + 0.43%0 (~70%) of the
1.2%o Cibicidoides mundulus §'%0 increase between
14.1 and 13.7 Ma relates to Antarctic ice growth and
~30% relates to cooling (Figure 3). Comparison of
the Site 1171 6'%0,,, curve with lower resolution
records of Lear et al. [2000] and Billups and Schrag
[2002, 2003] suggests similarities between the three
records (8'®Ogy: -0.5—1%o) and confirms at high-
resolution previous indirect or lower resolution ice
volume estimates [Shackleton and Kennett, 1975;
Wright et al., 1992; Lear et al., 2000; Billups and
Schrag, 2002, 2003; John et al., 2004]. Thus §'%0g,
results from Site 1171 likely reflect global ice
volume and not just regional changes in §'*Og,,.

[25] The calculated §'®Oy, record from Site 1171
provides novel high-resolution insight into the
phasing of ice growth and Southern Ocean temper-
atures in the Southwest Pacific during the middle
Miocene climate transition not available from the
previous lower resolution Mg/Ca records of Lear et
al. [2000] and Billups and Schrag [2002]. A
general trend toward more positive §'°Og,, values
between 15 and 13.8 Ma (Figure 3) at Site 1171
suggests that Antarctic cryosphere expansion be-
gan at the height of the warm Miocene Climatic
Optimum (~15 Ma [Shevenell et al., 2004]) and
this expansion progressed in a stepwise fashion
until 13.8 Ma (Figures 2 and 3). Three intervals of
more positive and variable ¢ 18OSW values are super-
imposed on the general trend and interpreted as
intervals of glacial advance (midpoints: 14.9, 14.4,
and 13.8 Ma). These glacial advances are generally
associated with warmer surface and bottom water
temperatures in the South Tasman Rise region
(Figure 4). Three intervals of more negative
8180, values occur at 15.0, 14.7, and 14.0 Ma
and are interpreted as times of glacial retreat. These
interglacials are associated with times of cooler
surface and bottom water temperatures at Site 1171
(Figure 4). Interestingly, the final interglacial prior
to the middle Miocene §'®0 increase is associated
with a stepwise cooling of South Tasman Rise
surface waters interpreted to reflect an increase in
the strength and/or northward progression of the
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Antarctic Circumpolar Current in the Southwest
Pacific (Figure 4 [Shevenell et al., 2004]), as well
as with the 2 + 2°C cooling of regional bottom
waters (Figure 4).

[26] The 60y, record from Site 1171 indicates
that the Antarctic cryosphere underwent a phase of
rapid, seemingly orbitally paced ice growth be-
tween 15 and ~14 Ma. The inferred glacial-inter-
glacial cycles in the 6'®0,, record (Figure 4) recur
every ~400-ka, suggesting eccentricity pacing of
the Middle Miocene Antarctic cryosphere expan-
sion. Similar pacing is observed in global middle
Miocene benthic foraminifer §'°C records of the
Monterey interval (17-13.5 Ma [Vincent and
Berger, 1985; Woodruff and Savin, 1989; Flower
and Kennett, 1994; Holbourn et al., 2007]). Such a
strong long-period eccentricity signal suggests a
central role for internal climate system feedbacks
(e.g., ice/albedo, global carbon cycling, ocean
circulation changes) in this major Cenozoic climate
transition [Shackleton, 2000]. The apparent in-
crease in the intensity of Antarctic glaciations
approaching ~14 Ma provides further evidence
for such internal climate system feedbacks.

[27] Our interpretation of the §'®Oy, record from
Site 1171 as a proxy record for changes in ice
volume is consistent with terrestrial and marine
geologic records from Antarctica and its continen-
tal margins, which indicate that expansion of
Antarctic ice sheets began at ~15 Ma. Radiogenic
isotope records from the circum-Antarctic indicate
a shift towards more physical weathering of Ant-
arctica at ~15 Ma [Viastelic et al., 2005] while
exposure dating of relict surfaces in the Antarctic
Dry Valley region suggest an expansion of the ice
sheet into the region at 14.8 Ma and a retreat by
13.6 Ma [Sugden and Denton, 2004]. Furthermore,
sequence stratigraphic records of eustasy in the
middle Miocene [Haq et al., 1987; Miller et al.,
1991b; Wright et al., 1992; John et al., 2004]
indicate broad similarities to the calculated Site
1171 6"®0y, curve, within current dating resolution
of the records. However, none of these records are
presently of sufficient orbital-scale resolution to be
definitively compared to the calculated §'*Ogy
record from Site 1171. Ongoing sequence strati-
graphic studies of the middle Miocene interval
similar to those conducted across the Eocene/
Oligocene boundary [Kominz and Pekar, 2001]
will likely yield accurate orbital scale records of
changes in global eustasy that may be useful for
comparison with our record [Miller et al., 2005;
K. G. Miller et al., personal communication, 2006].

5.1.4. Importance of Moisture Supply in
Middle Miocene Antarctic Ice Sheet

Expansion

[28; Southern Ocean temperatures and seawater
6'®0 estimates reveal substantial Antarctic ice
growth began during the warm Miocene Climatic
Optimum (~15 Ma) (Figure 4 [Shevenell et al.,
2004]) when Southwest Pacific bottom water and
sea surface temperatures were relatively warm. The
Site 1171 benthic Mg/Ca record confirms, at higher
resolution, the Mg/Ca findings of Lear et al. [2000]
and Billups and Schrag [2000] and other more
indirect estimates (Shackleton and Kennett [1975],
Wright et al. [1992], John et al. [2004], and others)
which sugiggest that the majority of the middle
Miocene 6 °O increase at ~14 Ma was related to
an increase in global ice volume. Our records are
especially significant in that they suggest that ice
growth began during the warmest period of the
Neogene (the Miocene Climatic Optimum at
~15 Ma), ~1 Ma prior to the globally recognized
climate step during a time of inferred low atmo-
spheric pCO, (Vincent and Berger [1985], Pagani
et al. [1999], and others), and progressed in a
stepwise orbitally paced fashion between ~15
and 14 Ma. This pattern of glaciation is further
sugported by lower latitude benthic foraminifer
8'®0 records from the subtropical Pacific, which
show orbitally paced changes inferred as glacial-
interglacial cycles between 14.7 and 13.8 Ma
[Holbourn et al., 2005]. On orbital timescales,
our records suggest that Antarctic ice growth
appears to coincide with times when Southern
Ocean temperatures were particularly warm
(Figure 4). The observed relationship (both the
long-term trend and on orbital scales) between
Southwest Pacific temperature and inferred ice
growth challenges the notion that meridional heat
flux limited Antarctic ice growth [Woodruff and
Savin, 1989] and instead provides support for
hypotheses positing that poleward heat/moisture
supply was essential for Antarctic cryosphere ex-
pansion [Schnitker, 1980; Prentice and Matthews,
1991]. It remains unclear as to the origin of this
heat/moisture (e.g. Warm Saline Deep Water from
the Tethys, proto-North Atlantic Deep Water, or
surface/atmospheric sources).

[20] The importance of moisture availability to the
development and maintenance of Antarctic ice
sheets is highlighted in terrestrial records from the
Antarctic Dry Valleys (Ross Sea sector) (Sugden
and Denton [2004] and others). Presently, the ma-
jority of Antarctica’s precipitation is concentrated in
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the coastal regions. However, several coastal loca-
tions, including the Dry Valleys, appear to have
remained predominantly ice-free since ~13.6 Ma
due to limited regional moisture availability [Sugden
and Denton, 2004]. This inferred long-term environ-
mental stability suggests that middle Miocene Ant-
arctic cryosphere expansion altered regional heat/
moisture supply [Sugden and Denton, 2004] and/or
the Antarctica’s sensitivity to mid- to low-latitude
derived heat/moisture [ DeConto and Pollard, 2003].
Geomorphology of the Dry Valleys indicates that
relatively humid conditions prevailed at ~15 Ma and
that the East Antarctic Ice Sheet inundated the region
by 14.8 Ma and retreated by ~13.6 Ma [Marchant et
al., 1993; Sugden and Denton, 2004]. The timing of
this inferred glacial expansion and retreat corre-
sponds with our marine geochemical evidence
(Figure 4), providing independent support for our
interpretation of 6 80, as a record of Antarctic ice
growth and for changes in moisture flux to the region
at the end of the Miocene Climatic Optimum.

[30] Intensified oceanic and atmospheric circula-
tion capable of altering the flux of low-latitude-
derived heat/moisture to the Southern Ocean is
inferred during the middle Miocene [Kennett et
al., 1985; Vincent and Berger, 1985; Woodruff and
Savin, 1989; Flower and Kennett, 1994; Shevenell
et al., 2004]. A progressive orbitally paced increase
in Antarctic Circumpolar Current strength between
14.2 and 13.8 Ma, inferred from the stepwise
cooling of regional surface waters [Shevenell et
al., 2004], could have isolated Antarctica from
low-latitude heat/moisture sources and acted as a
negative feedback towards further ice growth.
Alternatively, the progressive reduction of warm
low-latitude-derived deep-water associated with
the tectonic restriction of the eastern Tethys
may have removed an oceanic heat source from
the Southern Ocean [Hsu and Bernoulli, 1978;
Woodruff and Savin, 1989; Flower and Kennett,
1994]. Although the origin and transport mode
(atmosphere or ocean) of Southern Ocean heat
remain unconstrained, evidence suggests that the
continued isolation of Antarctica (via tectonics and
circulation) was critical to the progressive Ceno-
zoic development of the Antarctic cryosphere.

5.1.5. Is There a Role for pCO, in Middle
Miocene Antarctic Cryosphere Expansion?

[31] Antarctica may have been poised to respond
sensitively to poleward heat/moisture transport in
the middle Miocene due to relatively low inferred
atmospheric pCO, (220-250 ppmv; Vincent and
Berger [1985], Pagani et al. [1999], Pearson and

Palmer [2000], DeConto and Pollard [2003], and
others). Model results suggest that under declining
pCO, and other greenhouse gases (e.g., CHy),
Antarctic snowline elevations would have dropped,
increasing the area of Antarctica available for
glaciation [DeConto and Pollard, 2003]. Our
high-resolution geochemical records from the
Southwest Pacific suggest that Antarctic cryo-
sphere expansion began in earnest at ~15 Ma
(Figures 2 and 3), when atmospheric pCO, levels
reached the lowest inferred levels of the Miocene
[Pagani et al., 1999; Pearson and Palmer, 2000]
and regional Southern Ocean temperatures were
relatively warm (Figure 4 [Shevenell et al., 2004]).
Thus Site 1171 geochemical records provide sup-
port for models suggesting that the Antarctic cryo-
sphere may be especially sensitive to poleward
heat/moisture flux under low pCO, boundary con-
ditions [DeConto and Pollard, 2003]. In the early
stages of middle Miocene ice expansion (~15 Ma),
warm Southern Ocean waters may have supplied
heat/moisture to the Antarctic continent (Figure 4).
As glaciation progressed, internal climate feed-
backs (e.g., invigorated circumpolar circulation,
ice/albedo) likely further isolated Antarctica from
lower latitude derived heat/moisture. The stepwise
character of the §'*Og,, (ice volume) record and the
Mg-derived SST records (Figure 4 [Shevenell et al.,
2004]) support this interpretation. By ~13.5 Ma,
Antarctic cryosphere expansion had slowed/ceased,
Southern Ocean temperatures cooled, and higher
threshold pCO, levels are inferred (Figures 2 and 3
[Pagani et al., 1999; Shevenell et al., 2004]).

[32] Not only did Antarctica’s sensitivity to pole-
ward heat/moisture flux appear to decrease with
rising atmospheric pCO, [DeConto and Pollard,
2003; Sugden and Denton, 2004], but that the
expansion of Antarctic ice sheets likely exerted
influence on the global carbon cycle in a similar
fashion to that observed following both the Oi-1 and
Mi-1 glaciations [Lear et al., 2004]. We speculate
that this control resulted in both the final and largest
marine 6'°C increase (CM6) of the “Monterey
interval” at 13.7 Ma (Flower and Kennett [1994]
and others) as well as the decline in marine carbonate
8'3C at 13.5 Ma that marked the end “Monterey”
interval (16.5—13.5 Ma [ Vincent and Berger, 1985])
and a shift in global carbon cycle dynamics.

6. Conclusions

[33] Results demonstrate that Southern Ocean
BWTs south of Tasmania (ODP Site 1171) did
not cool significantly (~2 + 2°C) or permanently in
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association with the middle Miocene global §'*0
increaseor perninantly in , suggesting that ~70% of
the global benthic foraminifer §'°0 increase at
~14 Ma relates to Antarctic cryosphere expansion.
This result confirms at high-resolution previous
low-resolution benthic foraminifer Mg/Ca results
and less direct ice volume estimates from the
middle Miocene [Flower and Kennett, 1994; Lear
et al., 2000; John et al., 2004; Billups and Schrag,
2002], suggesting that the Site 1171 benthic fora-
minifer Mg/Ca record is of global and not just
regional significance. Furthermore, the lack of
bottom water cooling across the middle Miocene
8'®0 increase is similar to patterns observed across
both the Oi-1 and Mi-1 glaciations [Lear et al.,
2000, 2004], suggesting similar climate forcings
were involved. Our new high-resolution benthic
foraminifer Mg/Ca and calculated §'®0g, (ice
volume) records reveal eccentricity-paced (~400 ka)
cryosphere expansion between 15 and 13.8 Ma
(Figure 3) occurred during an interval of relatively
warm Southern Ocean waters at the height of the
Miocene Climatic Optimum [Shevenell et al.,
2004], when atmospheric pCO, is inferred to have
been relatively low [Pagani et al., 1999].

[34] The benthic Mg/Ca data suggest that the
Antarctic cryosphere may have been particularly
sensitive to changes in poleward heat/moisture
transport and insolation during the Middle Mio-
cene [Pagani et al., 1999; DeConto and Pollard,
2003]. Invigorated oceanic/atmospheric circulation
associated with internal climate feedbacks (e.g.,
ice/albedo feedbacks) between 14.2 and 13.8 Ma
[Shevenell et al., 2004] likely acted to further
isolate Antarctica from low-latitude heat/moisture
sources. This isolation, coupled with an inferred
increase in atmospheric pCO, [Pagani et al.,
1999], reduced the sensitivity of Antarctica to
lower latitude-derived heat/moisture and facilitated
the transition of Earth’s climate system to a new,
relatively stable glacial state. Future research
efforts should focus on determining the source of
regional heat (e.g., oceanic or atmospheric) and the
causes of the warmth during the Miocene Climatic
Optimum and the factors influencing atmospheric
pCO, in the early to middle Miocene.
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