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Abstract. Maxwell equations describe the propagation with diffraction of waveguide
modes through a thin-film waveguide lens. If the radius of the thin-film lens is large,
then the thickness of the lens varies slowly in the yz plane. For this case we propose the
model, which is based on the assumption of a small change in the electromagnetic field
in a direction y. Under this assumption the vector diffraction problem is reduced to a
number of scalar diffraction problems. The solutions demonstrate the vector nature of the
electromagnetic field, which allows us to call the proposed model a quasi-vector model.

Figure 1. Thin-film waveguide lens of radius Rl with varible height h1(y, z)

1 Introduction

The first and the second Maxwell equations in the component representation in the Cartesian coordi-
nate system for time-harmonic fields have the following form [1]:
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2 Zeroth order approximation

If the waveguide lens has a radius Rl � λ, where λ is the wavelength, then |∂h1/∂y| � 1 and assuming
in this case that the electromagnetic field also varies slowly along y, we introduce a small parameter
defined as δ = max { |∂Eα/∂y| , |∂Hα/∂y| , α = x, y, z }. In the zeroth order approximation over the
small parameter δ the equations (1), (2) take the following form [2, 3]:
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where n (x, y, z) is the refractive index of the waveguide. The system of equations (1), (2) is now
represented as two independent subsystems: the subsystem (3) for TE-mode and (4) for TM-mode,
each subsystem can be represented as one equation of the second order for the leading component (Ey
for TE-mode and Hy for TM-mode) and two equations relating the remaining components through
the leading one [1]. We consider the problem of waveguide diffraction of one TE0-mode incident on
irregularity [2]. The formulation of the problem in the zeroth order approximation has the form [3]:
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where ∆x,z = ∂
2/∂x2 + ∂2/∂z2, RTE

j (y) and T TE
j (y) are reflection and transmission coefficients of the

component Ey (complex values, as in [4]), A (y) determines the amplitude of the waveguide mode
incident on the lens, Rl is radius of the waveguide lens. The eigenvalues β j and eigenfunctions ϕ j (x)
determine the TE-modes of the regular waveguide (z > Rl, z < −Rl). The components H(0)
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y by means of (3). In addition, there is no TM-mode in the incident

radiation, which leads us in the zeroth order approximation to H(0)
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We seek the approximate solution Ẽ(0)

y of the problem (5) in the form: Ẽ(0)
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where Vj (y, z) are the desired functions [2, 3, 5]. We substitute this solution into (5) and perform the
Galerkin method procedure [2]. As a result we obtain the mixed boundary value problem with respect
to the desired Kantorovich coefficient functions Vj (y, z) [3, 5, 6]:
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For each y = ym, the problem (6) is a boundary value problem for a system of ordinary differ-
ential equations, in spite of the fact that the coefficient functions Vj (y, z) depend on two variables.
Differentiation is carried out only on the fast variable z and the dependence on the slow variable y is
parametric.

Solving (5), we define the leading component E(0)
y and the components H(0)

x and H(0)
z of the TE-

mode by the formula (3). The remaining components corresponding to the TM-mode will be zero.
The zeroth order approximation, therefore, does not describe the process of hybridization of modes
and we now proceed to the first order approximation.
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3 First order approximation

We get the Maxwell equations in the first order approximation: �E = �E(0) + �E(1), �H = �H(0) + �H(1)
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α /∂y, ∂H

(1)
α /∂y for α = x, y, z have the second order of smallness. We obtain the

following equations for the TE-mode:
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The formulation of the diffraction problem for the TE-mode in the first order approximation has
the following form:
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In the boundary conditions of the problem (8), which determine the reflected and transmitted
fields, the incident field is absent, since it is completely taken into account in the zeroth order ap-
proximation, and in the first approximation gives only the first-order corrections to the reflection and
transmission coefficients. Applying the incomplete Galerkin method to the diffraction problem (8),
we obtain a boundary value problem for a homogeneous system of second-order differential equations
with homogeneous boundary conditions of the third kind, which has only a trivial solution [2]. Thus,
the correction of the first order E(1)

y vanishes identically and also H(1)
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z = 0. The first-order
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It follows from (9) that the TE-mode incident on the irregularity excites the components of the TM-
mode of the first order of smallness, that is, the solution obtained in the first approximation describes
the hybridization of waveguide modes, which demonstrates the vector nature of the model.

4 Numerical experiment

We solve numerically the problem of waveguide diffraction of monochromatic light in the waveguide
lens with the following input data: nc = 1.0, ns = 1.47, n f = 1.565 and nl = 1.9. The thickness
of the waveguide layer is 2λ where λ = 0.55µ is the wavelength. The waveguide mode TE0 with a
unit amplitude (A (y) = 1) incidents on a waveguide lens with a radius Rl = 20λ. We consider the
transmission coefficient of the component E(0)

y of the second waveguide mode, which was excited
by the energy redistribution between modes during the propagation of the mode TE0. The order of
smallness of T TE

2 (y), as follows from the Figure 2, corresponds to the assumption that the value of
∂E(0)
y /∂y is small. The remaining components of the field have the transmission coefficients similar

of the same order of smallness.
The transmission coefficients of the components E(1)

x and E(1)
z (see Fig. 3) are by an order smaller

than the coefficient of transmission of E(0)
y , which corresponds to the first approximation of the prob-

lem under consideration. The corrections of the first order of smallness to the remaining components
of the field are zeros.
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Figure 2. Transmission coefficient T TE
2 (y) of the component E(0)

y of the mode TE1

Figure 3. Transmission coefficient T TM
2 (y) of the components E(1)

z and E(1)
x of the mode TM1

5 Conclusion

The paper describes a quasi-vector model of propagation of waveguide modes through a thin-film
waveguide lens of large radius. Under the assumption of a small change in the electromagnetic field
with respect to y, one can construct a perturbation theory with respect to the corresponding small
parameter. The proposed model allows us to formulate in the zeroth order approximation a series
of scalar diffraction problems the TE-mode, the solutions of m-th problem describe the TE-mode
evolution in the longitudinal section y = ym. In the first approximation, these solutions are used to
calculate the corrections E(1)

x , E(1)
z perturbating the components of the TE- and TM-modes. Thus, as a

result of solving a series of scalar problems, we obtain a solution that possesses the properties of the
solution of the vector problem �E =

(
E(1)

x , E(0)
y , E(1)

z

)
, �H =

(
H(0)

x , 0, H(0)
z

)
.
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