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Abstract. Integration by parts is one of the most popular techniques in the analysis of
integrals and is one of the simplest methods to generate asymptotic expansions of integral
representations. The product of the technique is usually a divergent series formed from
evaluating boundary terms; however, sometimes the remaining integral is also evaluated.
Due to the successive differentiation and anti-differentiation required to form the series
or the remaining integral, the technique is difficult to apply to problems more compli-
cated than the simplest. In this contribution, we explore a generalized and formalized
integration by parts to create equivalent representations to some challenging integrals.
As a demonstrative archetype, we examine Bessel integrals, Fresnel integrals and Airy
functions.

1 Introduction

It is well known that in applied mathematics and in the numerical treatment of scientific problems,
slowly convergent integrals occur abundantly. They are produced by approximation procedures de-
pending on a parameter, iterative methods, quadrature schemes, perturbation techniques and reliable
evaluation of functions defined by integrals. These slowly convergent integrals present severe nu-
merical and computational difficulties. Traditional quadrature rules and summation techniques have
failed to provide accurate approximations to such integrals. Numerous methods and techniques were
developed for improving convergence of these challenging integrals [1–18] and extremely efficient
methods were introduced such as numerical steepest descent, Filon-type and Levin-type methods.
Unfortunately, their application to complicated integrals is extremely challenging. Examples of such
integrals are the twisted tail, Bessel integrals, Sommerfeld integrals and the so-called molecular multi-
center integrals involved in molecular structure calculations.

The technique of integration by parts has frequently been used to create divergent asymptotic se-
ries representations of integrals. As an example, we consider the Euler series arising from integrating
the Euler integral by parts:

∫ ∞
x

e−t

t
dt ∼ e−x

x

∞∑
l=0

(−1)l l!
xl , x→ ∞. (1)
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In this example, the remaining integral after n integrations by parts:

(−1)nn!
∫ ∞

x

e−t

tn+1 dt, (2)

is often discarded and the divergent series has either been summed straightforwardly or summed
through the use of sequence transformations.

Another example of the use of integration by parts in numerical integration arises in [19], applied
to the oscillatory spherical Bessel integral function involved in molecular integrals. Through a refor-
malized integration by parts with respect to x dx, we transformed the initial spherical Bessel integral
into an integral involving the simple sine function:

∫ ∞
0

xnx
k̂ν
[
R2γ(s, x)

]
[
γ(s, x)

]nγ jλ(vx) dx =
∫ ∞

0


(

d
x dx

)λ (
xnx+λ−1 k̂ν

[
R2γ(s, x)

]
[
γ(s, x)

]nγ
) sin(x) dx. (3)

From a numerical point of view, the transformed sine integral function is more favorable than the
initial Bessel integral function. The above integral transformation, which we caled the S transfor-
mation, was successfully applied to all molecular integrals leading to an unprecedented accuracy and
efficiency [19, 20]. However, this transformation requires the boundary terms to vanish at both limits
of integration and was only applied to spherical Bessel integrals [21]. In the present work, we gen-
eralize this approach to a larger class of integrals. This generalization does not require the boundary
terms to vanish at both limits of integration. The contribution that will be introduced is a reformalized
integration by parts with respect to w(x) dx for some weight function w(x) = xµ for µ ∈ C whose
choice depends on the integrand. For the successive differentiation

(
d

xµ dx

)k
for k = 0, 1, 2, . . . required

by this generalization, we will apply the Slevinsky-Safouhi formulae (SSF) [22].
We applied successfully the general reformalization of integration by parts to three well known

challenging integrals, namely Bessel integrals, Fresnel integrals and Airy functions. The integral
representations obtained for these integrals have better convergence properties and more favourable
asymptotic behaviours.

For the computation of the integral representations, we propose a robust algorithm which will be
referred to as the staircase algorithm. The algorithm uses both the boundary terms and the trans-
formed integrals and progressively descends the integrand to an asymptotically favourable situation
by applying the reformalized integration by parts at each iteration.

2 Slevinsky-Safouhi formulae (SSF) for differentiation

For more details on SSF and their applications, we refer the reader to [22, 23]. Applications of SSF
in numerical integration of challenging integrals are presented in [24, 25].

Theorem 2.1 (The SSF 1 [22]) Let G(x) ∈ Ck with the term
(

d
xmdx

)k
(x−nG(x)) well-defined and easy

to compute for m, n ∈ C. For µ, ν ∈ C, the term
(

d
xµdx

)k
(x−νG(x)) is given by:

(
d

xµdx

)k
(x−νG(x)) =

k∑
i=0

Ai
k xn−ν+i(m+1)−k(µ+1)

(
d

xmdx

)i
(x−nG(x)), (4)
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xmdx
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(

d
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)k
(x−νG(x)) is given by:

(
d
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)k
(x−νG(x)) =

k∑
i=0

Ai
k xn−ν+i(m+1)−k(µ+1)

(
d

xmdx

)i
(x−nG(x)), (4)

with coefficients:

Ai
k =


1 for i = k
(n − ν − (k − 1)(µ + 1))A0

k−1 for i = 0, k > 0
(n − ν + i(m + 1) − (k − 1)(µ + 1))Ai

k−1 + Ai−1
k−1 for 0 < i < k.

(5)

Moreover, for m � −1, these coefficients have the explicit expression:

Ai
k =

i∑
j=0

(−1)i− j (n − ν + j(m + 1) − (k − 1)(µ + 1))k,µ+1

(m + 1)i j! (i − j)!
, (6)

where (x)n,k is the Pochhammer k-symbol [26] and can be computed as
n−1∏
l=0

(x + kl).

The SSF 2 corresponds to the case (µ, ν,m, n) = (0, 0, 1, 0) which is the most popular.

3 Reformalized integration by parts

Definition 3.1 Let the following operator be known as integration of a function f (x) by w(x)dx, for
some weight function w(x): ∫

f (x)w(x)dx. (7)

Let us begin with the general integral
∫

f (x)dx for which the general antiderivative is F(x). By
performing the substitution �(x) ↔ x, we arrive at

∫
f (�(x))d�(x). The differential element d�(x)

can be written as �′(x)dx and by denoting w(x) = �′(x), we assert that this becomes integration by
w(x)dx, with a weight function w(x).

The integral
∫

f (x)dx generally does not have a simple antiderivative; however, the integral∫
f (�(x))�′(x)dx most certainly has an antiderivative with a simple representation with respect to

the first integral, notably F(�(x)).
Integration by parts is one of the main methods used in the formation of asymptotic series expan-

sions of a given integral. When integrating by parts, we generally begin with:

g(x)
d
dx

h(x) =
d
dx

(g(x)h(x)) − h(x)
d
dx
g(x). (8)

When integrating by parts by xdx as in [19], we begin with:

g(x)
d

xdx
h(x) =

d
xdx

(g(x)h(x)) − h(x)
d

xdx
g(x). (9)

Our method, which formalizes this process is suitable for integrals of composite functions, like
the aforementioned f (�(x)).

In order to expand integrals of composite functions in asymptotic series, we must incorporate this
formalism with integration by parts by w(x) with w(x) = xµ for µ ∈ Z. Naturally, then, we begin with:

g(x)
d

xµdx
h(x) =

d
xµdx

(g(x)h(x)) − h(x)
d

xµdx
g(x). (10)
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By using the weight function w(x) = xµ, we must continue by integrating by xµdx. To clarify the
following process, we make use of these functionals of g(x) and h(x):

Gl(x) = (−1)l
(

d
xµdx

)l
g(x) and Hl(x) =

(
d

xµdx

)−l

h(x). (11)

The computation of the functionals Gl(x) is obtained using SSF.
With these functionals, we can rewrite (10) as:

G0(x)H0(x) =
d

xµdx
(G0(x)H1(x)) +G1(x)H1(x), (12)

and therefore with integration by xµdx, the first term on the right hand side becomes a boundary term
and the second term on the right hand side becomes the transformed integral.

Let f (x) ∈ Cm[a, b] be integrable on [a, b] and be of the general form:

f (x) = G0(x)H0(x) xµ, (13)

where the functionals Gl(x) and Hl(x) are defined as in (11).
Let us consider the integral:

∫ b

a
f (x)dx =

∫ b

a
G0(x)H0(x)xµdx. (14)

By integrating the right hand side by parts, we obtain:

∫ b

a
G0(x)H0(x)xµdx = G0(x)H1(x)

∣∣∣∣∣
b

a
+

∫ b

a
G1(x)H1(x)xµdx. (15)

And, by integrating by parts another n − 1 times, we obtain the equivalent representation:

∫ b

a
f (x)dx =

n−1∑
l=0

Gl(x)Hl+1(x)
∣∣∣∣∣
b

a
+

∫ b

a
Gn(x)Hn(x)xµdx. (16)

Naturally, then, the question arises in how to use the equivalent representations. Indeed, one could
simply neglect the remaining integral as n → ∞ and form a series from boundary terms; or, one
could evaluate the boundary terms up to m and continue to numerically evaluate the new integral.
To these two proposed methods, there exist advantages and disadvantages. The boundary terms, for
example, usually form divergent series, which are generally challenging to sum; however, that the
integral becomes a simply series can lead to reduced calculation times. The new integral, on the other
hand, may be asymptotically favourable; however, the computation of the new integrand may become
challenging after a certain order.

The next algorithm we propose is actually a blend of the two extremes outlined above. We numer-
ically integrate the integral to some point x = x0, a < x0 < b. At such a point, we now apply the first
iteration of the reformalized integration by parts by xµdx to the remaining integral. We continue by
evaluating the boundary terms at x = b and x = x0 and we numerically integrate the new integral to
another point x = x1, x0 < x1 < b. We continue in this manner until the desired accuracy is attained.
This blended algorithm will be aptly known as the staircase algorithm, as it progressively descends
the integrand into an evermore asymptotically favourable situation.

This methodology is concisely summarized in:
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Algorithm 3.2 (The Staircase Algorithm) The approximations to the integral
∫ b

a f (x)dx take the
following form. For a < x0 < b, initialize:

S 0 =

∫ x0

a
G0(x)H0(x)xµdx, (17)

For l = 1, 2, . . . , n, and for the sequence {xl}nl=1 that satisfies a < xl−1 < xl < b define:

S l = S l−1 +Gl(x)Hl+1(x)
∣∣∣∣∣
b

xl−1

+

∫ xl

xl−1

Gl(x)Hl(x)xµdx, (18)

and the approximations to the integral
∫ b

a f (x)dx form the sequence {S l}nl=0.

3.1 Bessel Integrals

The integral that follows appeared in Numerical Recipes as a computational challenge and an example
of application of sequence transformations:

I1 =

∫ ∞
0

x
x2 + 1

J0(x) dx =
∫ ∞

0

1
x2 + 1

J0(x) x dx. (19)

We begin by noting that the integrand f (x) satisfies f (x) ∈ C∞(−∞,+∞). This integral is already
in an appropriate form for the reformalized integration by parts, since we can subdivide the integrand
as the product of:

G0(x) =
1

x2 + 1
, H0(x) = J0(x), and w(x) = x. (20)

Starting with these root forms, we can explicitly develop the functionals Gl(x) and Hl(x) as:

Gl(x) =
2l l!

(x2 + 1)l+1 and Hl(x) = xlJl(x), (21)

through Bessel function properties. The integral then has the equivalent representation:

I1 = 2n n!
∫ ∞

0

xn+1

(x2 + 1)n+1 Jn(x) dx. (22)

In (22), all the boundary terms vanish.
In Numerical Recipes, the value of the integral is determined through Cauchy’s residue theorem to

be I1 = K0(1). Although the equivalent representation does not give this formula, it follows from (22)
that:

2n Γ(n + 1)
∫ ∞

0

xn+1

(x2 + 1)n+1 Jn(x) dx = K0(1). (23)

That is, each and every one of these integrals for parameterized n is also given explicitly by the
Bessel function K0(1).
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3.2 Fresnel Integrals

Let us consider the Fresnel-type integral:

I2(a, v) =
∫ ∞

a
sin(v x2)dx. (24)

We begin by noting that the integrand f (x) satisfies f (x) ∈ C∞(−∞,+∞). By identifying the
functions:

G0(x) =
1
x
, H0(x) = sin(v x2), and w(x) = x, (25)

the functionals Gl(x) and Hl(x) can be readily determined as:

Gl(x) =
(2l)!

2l l! x2l+1 and Hl(x) =
sin(v x2 − lπ/2)

(2 v)l . (26)

It then follows straightforwardly that (24) has the equivalent representations:

I2(a, v) =
(2n)!

(4 v)n n!

∫ ∞
a

sin(v x2 − nπ/2)
x2n dx −

n−1∑
l=0

2 (2l)!
(4 v)l+1 l!

sin(v x2 − (l + 1)π/2)
x2l+1

∣∣∣∣∣∣∣
x=a

, (27)

through application of the reformalized integration by parts..
Similarly, we obtain the equivalent representation for Ĩ2(a, v) =

∫ ∞
a cos(v x2)dx which is given by:

Ĩ2(a, v) =
(2n)!

(4 v)n n!

∫ ∞
a

cos(v x2 − nπ/2)
x2n dx −

n−1∑
l=0

2 (2l)!
(4 v)l+1 l!

cos(v x2 − (l + 1)π/2)
x2l+1

∣∣∣∣∣∣∣
x=a

. (28)

3.3 Airy Functions

The Airy functions are given by:

I3(a, z) =

∫ ∞
a

cos
(

x3

3
+ zx
)

dx

=

∫ ∞
a

[
cos(zx) cos

(
x3

3

)
− sin(zx) sin

(
x3

3

)]
dx. (29)

We begin by noting that the integrand f (x) satisfies f (x) ∈ C∞(−∞,+∞). By identifying the
functions:

G0(x) = x−2 cos
sin (zx), H0(x) =

cos
sin

(
x3

3

)
, and w(x) = x, (30)

the functionals Gl(x) and Hl(x) can be readily determined as:

Gl(x) =
(
−d

x2 dx

)l
x−2 cos

sin (zx) and Hl(x) =
cos
sin

(
x3

3
− lπ

2

)
. (31)

The integral then has the equivalent representation:

I3(a, z) =

n−1∑
l=0

(−1)l+1

x3l+2

l∑
i=0

Ai
l(zx)i cos

(
x3

3
+ zx − (l + 1 − i)π

2

)∣∣∣∣∣∣∣
a

+ (−1)n
∫ ∞

a

n∑
i=0

Ai
n(zx)i

x3n cos
(

x3

3
+ zx − (n − i)π

2

)
dx. (32)
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3
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functions:
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sin (zx), H0(x) =

cos
sin

(
x3

3

)
, and w(x) = x, (30)

the functionals Gl(x) and Hl(x) can be readily determined as:

Gl(x) =
(
−d

x2 dx

)l
x−2 cos

sin (zx) and Hl(x) =
cos
sin

(
x3

3
− lπ

2

)
. (31)

The integral then has the equivalent representation:

I3(a, z) =
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l=0

(−1)l+1

x3l+2

l∑
i=0

Ai
l(zx)i cos

(
x3

3
+ zx − (l + 1 − i)π

2

)∣∣∣∣∣∣∣
a

+ (−1)n
∫ ∞

a

n∑
i=0

Ai
n(zx)i

x3n cos
(

x3

3
+ zx − (n − i)π

2

)
dx. (32)

4 Numerical Results and Discussion

As previously alluded to, a numerical evaluation of the integrals I1, I2(a, v), Ĩ2(a, v) and I3(a, z)
can be achieved through a multiplicity of methods. Historically, the popular candidates were the
summation of the generally divergent boundary terms, although the transformed integral has also
been used in cases where the boundary terms vanished. In this work, we implemented the Staircase
algorithm, as the newest method to evaluate these integrals and serves as an original contribution to
the overall methodology we will be developing.

The selection of an appropriate sequence {xl}nl=0 for the integration subintervals in the Staircase
algorithm is critical. This sequence should leave the integral subintervals to be numerically integrable
– the points cannot be spaced so far apart that a quadrature routine is incapable of providing the
solution. Conversely, the sequence should not be so squished that the sum of the boundary terms and
the integral subintervals introduces a reduction in accuracy from the addition of a very large number
and a very large negative number. Generally speaking, the dependence on l of the sequence {xl}nl=0
resides in the integrand. For the cases at hand, the integrands are oscillatory, and thus if the difference
xl− xl−1 is on the same order of magnitude as the difference between successive zeros of the integrand,
both of the aforementioned scenarios can be averted.

As can be seen from the numerical table, the algorithm is capable of reaching high accuracy. This
is mainly due to the fact that reformalized integration by parts progressively descends the integrand to
an asymptotically favourable situation.

5 Numerical tables

Table 1. Numerical Results of Staircase Algorithm applied to Bessel integrals I1 with xl = 2π(l + 1), Fresnel
integrals with I2(0, 1). xl =

√
2π(l + 1), and Airy functions I4(0, 1) with xl =

3√6π(l + 1).

l S l for I1

0 .414 193 276 771 795
1 .421 696 746 593 657
2 .421 072 353 906 909
3 .421 020 653 966 770
4 .421 023 974 243 269
5 .421 024 464 857 404
6 .421 024 443 256 394
7 .421 024 438 053 642
8 .421 024 438 183 915
9 .421 024 438 241 771
10 .421 024 438 241 364
11 .421 024 438 240 707
12 .421 024 438 240 700
13 .421 024 438 240 708

Exact Values .421 024 438 240 708

S l for I2(0, 1)

.629 878 864 869 732

.627 294 419 199 049

.626 651 451 723 302

.626 655 488 072 699

.626 657 083 038 776

.626 657 073 115 469

.626 657 068 616 796

.626 657 068 644 466

.626 657 068 657 872

.626 657 068 657 790

.626 657 068 657 749

.626 657 068 657 749

.626 657 068 657 750

.626 657 068 657 750

S l for I4(0, 1)

.432 683 511 614 577

.425 050 712 855 878

.425 018 211 967 205

.425 032 964 456 715

.425 033 674 972 581

.425 033 663 440 207

.425 033 661 201 175

.425 033 661 169 297

.425 033 661 174 750

.425 033 661 174 971

.425 033 661 174 961

.425 033 661 174 960

.425 033 661 174 960
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