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Abstract

Argumentation is a vital aspect of intelligent behaviour by humans. It provides the means for comparing

information by analysing pros and cons when trying to make a decision. Formalising argumentation in

computational environment has become a topic of increasing interest in artificial intelligence research

over the last decade.

Computational argumentation involves reasoning with uncertainty by making use of logic in order

to formalize the presentation of arguments and counterarguments and deal with conflicting information.

A common assumption for logic-based argumentation is that an argument is a pair 〈Φ, α〉 where Φ is

a consistent set which is minimal for entailing a claim α. Different logics provide different definitions

for consistency and entailment and hence give different options for formalising arguments and counte-

rarguments. The expressivity of classical propositional logic allows for complicated knowledge to be

represented but its computational cost is an issue. This thesis is based on monological argumentation

using classical propositional logic [12] and aims in developing algorithms that are viable despite the

computational cost. The proposed solution adapts well established techniques for automated theorem

proving, based on resolution and connection graphs. A connection graph is a graph where each node is

a clause and each arc denotes there exist complementary disjuncts between nodes. A connection graph

allows for a substantially reduced search space to be used when seeking all the arguments for a claim

from a given knowledgebase. In addition, its structure provides information on how its nodes can be lin-

ked with each other by resolution, providing this way the basis for applying algorithms which search for

arguments by traversing the graph. The correctness of this approach is supported by theoretical results,

while experimental evaluation demonstrates the viability of the algorithms developed. In addition, an

extension of the theoretical work for propositional logic to first-order logic is introduced.
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Chapter 1

Introduction

This chapter provides an overview of the work conducted for this thesis. It starts with a brief description

of the area where this work is involved. It continues with a description of the problem on which this

thesis is focused, and motivation on why this is an interesting problem to address. It proceeds with a

brief presentation of the proposed solution to this problem and a summary of the contribution of this

work and how this is presented in the chapters that follow.

1.1 Logical argumentation
Argumentation is a vital aspect of intelligent behaviour by humans. Consider diverse professionals such

as politicians, journalists, clinicians, scientists, and administrators, who all need to collate and analyse

information looking for pros and cons for consequences of importance when attempting to understand

problems and make decisions. It involves reasoning with uncertainty by making use of logic to formalize

the presentation of arguments and counterarguments and deal with conflicting information. There are a

number of proposals for logic-based formalisations of argumentation (for reviews see [15, 11, 23, 68]).

These proposals allow for the representation of arguments for and against some claim, and for counte-

rargument relationships between arguments. In a number of key examples of argumentation systems, an

argument is a pair where the first item in the pair is a minimal consistent set of formulae that proves the

second item which is a formula (see for example [4, 10, 12, 37, 45]). Proof procedures and algorithms

have been developed for finding preferred arguments from a knowledgebase using defeasible logic and

following for example Dung’s preferred semantics (see for example [21, 22, 25, 27, 54, 67, 78]).

Argumentation may involve a group of agents where the exchange of arguments among the agents

can be used as the tool for resolving conflicts or sharing information, or only one agent where given a

knowledgebase, a monological process of listing arguments and counterarguments for a case can be used

to evaluate a situation. In either case, in many formalisations argumentation requires obtaining subsets

of a knowledgebase that minimally and consistently entail a claim. This process is computationally

expensive, especially when using classical logic.

The aim of this work is to develop algorithms that are viable despite the computational cost. This

work is based on monological argumentation using classical logic where given a background know-

ledge and a claim, all the possible arguments supporting this claim are generated from the knowledge.
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Entailment of the claim is identified with deduction in classical logic.

1.2 Problem statement
This thesis is concerned with argumentation based on classical logic, mainly classical propositional logic

[12]. In this context, an argument is a tuple 〈Φ, α〉 where Φ is a consistent set of propositional formulae

that entails α and there is no Φ′ ⊂ Φ that entails α. In this framework, α is the claim of the argument, Φ

is the support of the argument and 〈Φ, α〉 is an argument for α. An argument 〈Φ, α〉 may be challenged

by another argument, a counterargument. A counterargument for an argument 〈Φ, α〉 is an argument

〈Ψ, β〉 where the claim β contradicts the support Φ. Like in [12], this work focuses on a particular

kind of counterargument called a canonical undercut. A canonical undercut for an argument 〈Φ, α〉 is

an argument 〈Ψ, β〉 where β is equivalent to ¬(φ1 ∧ .. ∧ φn) and {φ1, ..., φn} is the support of the

argument being undercut. Since a canonical undercut 〈Ψ, β〉 is itself an argument, a canonical undercut

for 〈Ψ, �〉 can be produced and so on, generating this way series of counterarguments.

Given a set ∆ of propositional formulae and a formula α, searching through ∆ for supports for

arguments for α constitutes a complex task. For each argument, we need a minimal and consistent set

of formulae that proves the claim. An automated theorem prover (an ATP) may use a “goal-directed”

approach, bringing in extra premises when required, but they are not guaranteed to be minimal and

consistent. For example, supposing we have a knowledgebase {¬a ∨ b, b}, for proving b, the ATP may

start with the premise ¬a∨ b, then to prove b, a second premise is required, which would be b, and so the

net result is {¬a ∨ b, b}, which does not involve a minimal set of premises. In addition, an ATP is not

guaranteed to use a consistent set of premises since by classical logic it is valid to prove anything from

an inconsistency.

So if we seek arguments for a claim δ, we need to post queries to an ATP to ensure that a particular

set of premises entails δ, that the set of premises is minimal for this, and that it is consistent. So finding

arguments for a claim α involves considering subsets Φ of ∆ and testing them with the ATP to ascertain

whether Φ ` α and Φ 6` ⊥ hold. For Φ ⊆ ∆, and a formula α, let Φ?α denote a call (a query) to an ATP.

If Φ classically entails α, then we get the answer Φ ` α, otherwise we get the answer Φ 6` α. In this way,

we do not give the whole of ∆ to the ATP. Rather we call it with particular subsets of ∆. So for example,

if we want to know if 〈Φ, α〉 is an argument, then we have a series of calls Φ?α, Φ?⊥, Φ′1?α,. . . ,Φ′k?α,

where for all i = 1, . . . , k, Φ′i ⊂ Φ. So the first call is to ensure that Φ ` α, the second call is to ensure

that Φ 6` ⊥, the remaining calls are to ensure that there is no subset Φ′ of Φ such that Φ′ ` α. This then

raises the question of which subsets Φ of ∆ to investigate to determine whether 〈Φ, α〉 holds when we

are seeking for an argument for α. A further problem we need to consider is that if we want to generate

all arguments for a particular claim in the worst case we may have to send each subset Φ of ∆ to the

ATP to determine whether Φ ` α and Φ 6` ⊥. So in the worst case, if |∆| = n, then we may need to

make 2n+1 calls to the ATP. Even for a small knowledgebase of say 20 or 30 formulae, this can become

prohibitively expensive.

The work of this thesis is focused on exploring alternative ways of finding all the arguments from a

knowledgebase ∆ for a claim α. A summary of the solution proposed follows in the next section.
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1.3 Proposed solution
My proposal to address the problem of providing viable algorithms for computational argumentation in

classical logic is based on an existing proposal for automated theorem proving where connection graphs

of clauses are introduced [55, 56]. A connection graph is a graph where each node represents a clause

and an arc (φ, ψ) denotes that there is a disjunct in φ with its complement being a disjunct in ψ. Given

propositional knowledge ∆ in the form of clauses and a claim α that is a disjunctive clause, by using

connection graphs for ∆ and the resolution proof rule I have developed algorithms that:

1. Reduce the search space for arguments for α by isolating a connected component of the connection

graph that contains all the arguments for α.

2. Retrieve arguments by walking over the subgraph that corresponds to the reduced search space

isolated in 1.

3. Generate counterarguments for a given argument 〈Φ, α〉 efficiently by extending the theory in 1

and 2.

In addition, the work in 1 and 2 has has been extended and adapted to deal with a subset of first-order

logic.

More details on the solution proposed in the thesis follow in section 1.5.

1.4 Scope of this thesis
The work conducted for this thesis focuses on developing a proposal that addresses the problem of

producing arguments in classical logic. It is based on an existing argumentation framework [12], so no

new proposal for formalising argumentation in logic is developed in this work. The problem addressed

is the difficulty in producing arguments in classical propositional logic, and the technical difficulties that

arise in practical application of classical logic argumentation due to the high computational cost of the

specific problem. So, the algorithms developed to deal with this problem are assessed through software

implementation and experimentation that evaluate the viability of the approach and its suitability in

practical applications rather than a theoretical complexity analysis related to the problem itself or the

given solution.

1.5 Contribution of this work
The work presented in this thesis has contributed in the area of computational argumentation by provi-

ding a theoretical background with algorithms that addresses the computational problem of producing

arguments in classical propositional logic. Moreover, an implementation of this theory provides the first

software system that models argumentation in classical propositional logic. In addition, an extension of

the work concerning propositional logic to classical first-order logic provides a first approach to develop

algorithms for argumentation in a first-order language.

This work has been submitted in the form of papers and reviewed in conferences and journals where

it has been accepted for publication [31, 32, 33, 34]. In addition, the software produced as part of this
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work has been accepted for demonstration at COMMA 2010 conference [30]. Sections 1.5.1 to 1.5.5

that follow give a summary of the contribution made by this work and provide an overview of the way

this is presented in chapters 3 to 7.

1.5.1 Algorithms for reducing the search space for arguments

The starting point in addressing the problem of retrieving arguments is harnessing the notion of a connec-

tion graph to reduce the search space when seeking all the arguments for a claim from a propositional

knowledgebase [32]. For a set of propositional clauses, a connection graph is a graph where each node

is a clause and each arc denotes that there exist complementary disjuncts in the pair of nodes. For a set

of formulae in conjunctive normal form, the notion of the connection graph is used for the set of clauses

obtained from the conjuncts in the formulae. When seeking arguments for a claim α from a knowledge-

base ∆, we can focus the search on a particular subgraph of the connection graph of ∆∪{¬α} where all

the elements of ∆ ∪ {¬α} are in conjunctive normal form. This subgraph, defined as the query graph,

consists of the connected components of the connection graph that are linked to the clauses that appear

as conjuncts in ¬α. Locating this subgraph is relatively inexpensive in terms of computational cost. In

addition, using (as the search space) the formulae of the initial knowledgebase whose conjuncts relate

to this subgraph, can substantially reduce the cost of looking for arguments. A theoretical framework

and algorithms for this proposal are presented in chapter 3, along with experimental results on software

implementation of the algorithms.

1.5.2 Algorithms for producing arguments

The proposal described in section 1.5.1 provides a reduced search space for arguments. It focuses the

search for arguments on the subset of a propositional knowledgebase ∆ that corresponds to the query

graph. Apart from providing a reduced search space, the query graph gives information on how the

elements of a knowledgebase relate to each other. The arcs of the graphs connect clauses that contain

complementary literals and hence indicate pairs of clauses on which the resolution proof rule can be

applied. This motivates for developing search algorithms which by walking over the graph in a structured

way give a proof for the claim. By applying certain restrictions on the way this walk on the query graph

takes place, this proof can be minimal and consistent and hence provide a support for an argument for

the claim [31, 34]. In Chapter 4, I describe how it is possible to build proof trees that represent the steps

of a structured walk on the query graph when looking for arguments for a claim α from a knowledgebase

∆ where α is a clause and ∆ is a set of clauses. In addition, I provide experimental results on software

implementation of algorithms that are based on proof trees.

1.5.3 Algorithms for generating counterarguments

The proposal decribed in the previous paragraph that generates arguments by walking over the query

graph can handle claims that are disjunctive clauses. In this thesis, as mentioned in section 1.2, a ca-

nonical undercut is used as a counteragument. A canonical undercut for an argument 〈Φ, α〉, where

Φ = {φ1, . . . , φn} is an argument for ¬(φ1 ∧ . . . ∧ φn). The claim ¬(φ1 ∧ . . . ∧ φn) is not necessarily

a disjunctive clause, and hence looking for arguments for this claim is not supported by the mechanism



1.6. List of publications 15

desribed in section 1.5.2. In chapter 5, I describe how with some additional theory we can use the proof

trees introduced in chapter 1.5.2 as the means for generating canonical undercuts for an argument 〈Φ, α〉.
Moreover, I describe how we can use the fact that the clauses in Φ are linked with each other through

resolution, and make the search for canonical undercuts efficient.

1.5.4 Implementation

Apart from developing theory and algorithms that implement argumentation in classical propositional

logic efficiently, this work has contributed in the area of computational argumentation by providing

the first software argumentation system based on classical logic. Chapter 6 presents system JArgue, a

software system implemented in Java, based on the algorithms described in sections 1.5.1-1.5.3. This

chapter also provides an evaluation of the algorithms developed by experimentation on the system.

1.5.5 Extension to first-order logic

Part of the work of this thesis deals with classical first-order logic. The work for propositional logic

introduced in sections 1.5.1-1.5.2 is extended to first order logic where resolution with unification is used

for retrieving arguments [33]. This proposal deals with a restricted function-free first-order language of

quantified clauses in prenex normal form. Each such clause is composed of both existential and universal

quantifiers, and n-ary (n ≥ 1) predicates. Given a knowledgebase ∆ of such first-order clauses and a

first-order unit clause α as a claim for an argument, a connection graph is produced where the nodes

are the clauses from ∆ together with the complement of α, and the arcs are defined in a way similar to

the propositional case. As in section 1.5.1, the query graph, is a subgraph of the connection graph that

essentially contains all the arguments for α. This is isolated and used as the search space for arguments

for α where a search algorithm walks over the graph and at the same time unifies complementary literals.

Again this walk on the graph is done in a structured way that provides a minimal and consistent proof

for α. The steps of this walk are represented by tree structures defined as assignment trees.

1.6 List of publications
The papers produced out of the work of this thesis are listed below, along with the chapters of the thesis

where the related work is presented.

1. V. Efstathiou and A. Hunter. Focused search for arguments from propositional knowledge.

In Proceedings of the Second International Conference on Computational Models of Argument

(COMMA’08). IOS Press, 2008. (Chapter 3)

2. V. Efstathiou and A. Hunter. Algorithms for effective argumentation in classical propositional

logic: A connection graph approach. In FoIKS, pages 272–290. Springer, 2008.(Chapter 4)

3. V. Efstathiou and A. Hunter. An algorithm for generating arguments in classical predicate logic.

In Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09), pages

119–130. Springer, 2009. (Chapter 7)

4. V. Efstathiou and A. Hunter. Algorithms for generating arguments and counterarguments in
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propositional logic. In International Journal of Approximate Reasoning (accepted for publication)

(Chapters 4 and 5)

5. V. Efstathiou and A.Hunter. JArgue: An implemented argumentation system for classical pro-

positional logic (software demo). http://www.ing.unibs.it/comma2010/demos/

Efstathiou_etal.pdf, 2010. (Chapter 6)

6. V. Efstathiou and A. Hunter. JArgue: A java engine for argumentation in classical propositional

logic. (in preparation). (Chapter 6)

1.7 Structure of the thesis
This thesis starts with a brief review on argumentation literature in chapter 2. Then follow chapters

3-7 that deal with the issues discussed in each of paragraphs 1.5.1-1.5.5. Finally, chapter 8 provides a

discussion on the work presented in the thesis and related issues that could be addressed by extending

this work.



Chapter 2

Background

This chapter provides an outline of proposals for modeling argumentation in a computational environ-

ment. Further literature that was reviewed for this work involves automated theorem proving and will not

be mentioned in this chapter, but in later chapters where it is closely associated with the corresponding

theory.

The chapter starts with a brief discussion on various existing approaches to computational argumen-

tation and it continues with a more descriptive presentation of argumentation based on classical logic.

It focuses on a specific proposal which is the basis of the work of this thesis [12] and provides a detai-

led review of this proposal. The chapter closes with a discussion on the conclusions of the review on

argumentation systems.

2.1 Existing argumentation systems
There are a number of formalisations for argumentation. (see for reviews [8, 15, 20, 23, 68]). These vary

from simple high level representation of arguments where arguments are entities for which no detailed

information on the knowledge represented is provided, to more involved representations where the details

of the knowledge represented and the inference mechanisms are provided together with the formalisation

of an argument. Some widely used argumentation systems are listed below.

2.1.1 Abstract argumentation

Abstract argumentation is one the fundamental proposals for modeling argumentation in computational

environment. Dung’s proposal [26] suggests a simple, yet illustrative way for formalising the mechanism

of argumentation. In this proposal, arguments are depicted as nodes in a directed graph where arcs

linking pairs of nodes denote the attack relation between the nodes of the pair. Apart from the binary

attack relation between arguments, no other information is given on the internal inference relations of

each indivual argument and how an attack is associated to them. This provides a structural way for

representing conflicting arguments. Further analysis on the structure of the interrelated attacks depicted

in the graph can provide an evaluation whether some arguments are defeated.

Abstract argumentation provides the means for presenting the attack relation in a set of arguments

and additional theory for justifying the acceptablility of an argument according to the interrelated attacks

between the arguments in the set. It has the advantage that it can instantiate other argumentation systems
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since the internal structure of the arguments is not taken into account. However, it assumes a set of

arguments and an attack relation as given. Therefore, it does not provide a method for constructing

individual arguments. This does not ensure that all the arguments relevant to an issue have been identified

and presented. Moreover, since it does not provide the internal strucure of each argument, it does not

determine why this may attack or be attacked by another argument. These issues limit the strength of the

system in representing and reasoning with knowledge.

2.1.2 Argumentation based on defeasible logic

A formalisation that can provide representation of more detailed information and is widely used is that

of defeasible logic programming (i.e. DeLP) [45]. In DeLP two kinds of rules are considered: defeasible

rules that represent weak information and strict rules that represent sound information. The underlying

meaning of the notion of a defeasible rule is that it represents tentative information that can be used

until nothing is posed against it. According to Nute [62], an inference is defeasible if it can be blocked

or defeated in some way. In DeLP an argument is a tuple 〈A , h〉 where A is a set that consists of

defeasible rules which together with the set of strict rules available is consistent, h is derived by A ,

and A is minimal for this derivation. Then, conflict between two arguments arises when these together

contain information which is contradictory with the set of all strict rules.

Defeasible reasoning captures the nature of human reasoning where people tend to make up defea-

sible rules out of observations and use them to reach conclusions which may be then withdrawn in the

presence of additional information that contradicts their defeasible rules. In this sense, defeasible logic

programming provides a good tool for formalising human reasoning. Moreover, since it provides the de-

tails of the information represented, the deductive mechanism and the exact information that makes two

arguments contradictory, defeasible logic programming provides a system for modeling argumentation

that offers much greater expressivity than abstract argumentation systems. However, it lacks the advan-

tages of classical logic for representing and reasoning with knowledge including syntax, proof theory and

semantics for the intuitive language incorporating negation, conjunction, disjunction and implication.

Apart from DeLP discussed in this paragraph, work on argumentation that is based on defeasible

logics includes [53, 67].

2.1.3 Assumption based argumentation

Another approach to formalising argumentation is that of assumption-based argumentation [18, 27].

Assumption-based argumentation provides an instantiation of abstract argumentation by providing a

way to generate arguments from assumptions and rules. An assumption-based argumentation (ABA)

system is a tuple 〈L,R,A, •〉 such that R is a set of rules of the form s1 ← s2, ..., sn where each si is

a sentence, A ⊆ L is a set of candidate assumptions, and each assumption cannot be the head of any

rule and a is the contrary of assumption a. In this system, an argument is a backward chaining deduction

supported by a set of assumptions. An argument A attacks another argument A′ if the conclusion of A is

the contrary of one of the assumptions supporting A′. Assumption-based argumentation adapts notions

from abstract argumentation in order to evaluate arguments with respect to the attacks that appear in a set

of arguments. In addition, assumption-based argumentation supports constructing dispute trees where
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each node is an argument that attacks its parent in the tree, in order to determine if the root argument

is acceptable. This provides a way for evaluating arguments without constructing a complete argument

graph.

Assumption-based argumentation provides information on the internal structure of arguments, gi-

ving a more detailed presentation of the knowledge represented than that of abstract argumentation. The

power of the underlying logic though is similar to that of defeasible logic programming and hence has

the weaknesses discussed in section 2.1.2. The language it can handle and the proof theory it involves

are much simpler and restricted than that of classical logic.

2.2 Argumentation based on classical logic
This section provides a brief review of formalisations of argumentation based on classical logic. It starts

with Pollock’s work and then presents some formalisations inspired by this approach. One of these

formalisations [12] is the basis of this thesis and is reviewed in detail later in this section.

2.2.1 Pollock’s proposal

In [64, 65] Pollock emphasizes the significance of inductive reasoning and how it should be regarded as

equally important to deductive reasoning in philosophy and AI. Human reasoning is usually inductive,

since people tend to come to conclusions by judging situations by their perception and experience rather

than listing a set of reasons from which their conclusions strictly follow by deduction. If additional

information that may change their opinion on a matter is presented, then they may revise their knowledge

and change their mind regarding a previously justified conclusion. This reasoning has a non-monotonic

character and it is important to take this into account when trying to formalise reasoning.

Defeasible reasoning is a form of non-monotonic reasoning where some reasons may justify accep-

ting a conclusion but when additional information is added, that conclusion may no longer be justified.

Pollock characterizes defeasible reasoning using arguments where the underlying logic is classical lo-

gic and arguments are chains of reasons that may lead to a conclusion where defeaters may exists at

each step. This approach depicts defeasible reasoning, since the presence of additional information may

destroy the reason connection.

Pollock’s work provides the starting point for many logic-based argumentation proposals where

an argument is regarded as a tuple 〈Φ, α〉 where Φ is a set of premises that represents the reasons and

α is a formula that represents a conclusion. This definition is very general and does not necessarily

require that Φ logically entails α or that Φ is a consistent set. In the system presented in [64] two

kinds of reasons are introduced, defeasible and nondefeasible. Nondefeasible reasons are the ones that

logically entail their conclusions. Defeasible reasons are reasons that justify their conlusion but together

with another reason may destroy the reason connection. Information that can mandate the retraction of

the conclusion of a defeasible argument constitutes a defeater for the argument. There are two kinds

of defeaters. The rebutting defeaters, which attack an argument by attacking its conclusion, and the

undercutting defeaters, which attack the defeasible inference itself, without doing so by giving us a

reason for thinking it has a false conclusion. A simplified version of the formal definitions adapted from
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[15] follows.

Definition 2.2.1 An argument 〈Ψ, β〉 rebuts an argument 〈Φ, α〉 iff ` β ↔ ¬α.

An argument 〈Ψ, β〉 undercuts an argument 〈Φ, α〉 iff ` β ↔ ¬∧ Φ.

An argument A1 attacks an argument A2 iff A1 rebuts A2 or A1 undercuts A2.

The definition of attack indicates that if an argument A2 is attacked by another argument A1, then

there are reasons to believe that A1 is not justified and A1 can be regarded as defeated. Using the

definition of attack on its own in order to evaluate the credibility of an argument is not sufficient though.

If A2 is an argument for which exists an argument A1 such that A1 attacks A2, then this does not

necessarily mean that A2 is defeated, since another argument A3 may exist such that A3 attacks A2,

reinstating in this way A2 and so on. In order to decide the warranted propositions (i.e. arguments

conclusions) that are justified by a set of arguments we need a mechanism which by recursion analyses

the presentation of sets of arguments where each argument attacks another in the set. In [64] such a

mechanism is introduced which proceeds in ‘levels’, where given a set of arguments A ,

• at level 0 no argument is considered as provisionally defeated

• at level 1 those arguments that are attacked by some other argument in the set are regarded as

provisionally defeated

• at level 2 those arguments that are attacked by arguments that have been provisionally defeated at

level 1 are ‘reinstated’

and so on. Then, for an argument 〈Φ, α〉∈ A , the proposition α is warranted iff 〈Φ, α〉 is unde-

feated in A .

Pollock’s approach is important in logic-based argumentation because it introduced the notion of an

argument in the format 〈Φ, α〉 where Φ is a set of premises and α is a proposition. This format has been

adapted by other proposals based on classical or defeasible logics, usually with the additional constraint

that Φ entails α, and/or Φ is a consistent set and is minimal for entailing α. Moreover, the ideas for rebut

and undercut have been adapted by other proposals as well as the recursive characterisation of warrant.

A formalism of logic-based argumentation [4] that has adapted ideas from Pollock’s approach is

briefly reviewed below.

2.2.2 Amgoud and Cayrol’s proposal

An argumentation framework that has adapted the ideas of argument, rebut and undercut as presented in

the previous section is [4]. This framework adapts the form of an argument 〈Φ, α〉 where Φ is a set of

reasons and α is a conclusion, with the restrictions that Φ ` α i.e. 〈Φ, α〉 is a deductive argument, Φ is

consistent and Φ is minimal for entailing α. In this system, the definition for a rebut remains the same

with the one given in definition 2.2.1 while the definition for an undercut is as follows.

Definition 2.2.2 〈Ψ, β〉 undercuts 〈Φ, α〉 iff there is some γ ∈ Φ such that ` γ ↔ ¬β

So, in this system, an undercut 〈Ψ, β〉 for an argument 〈Φ, α〉 negates a particular element of Φ.

For instance, for the argument A1 = 〈{¬a, a ∨ b}, b〉, according to definition 2.2.1, 〈Ψ1, β1〉 = 〈{a ∨
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¬b}, a∨¬b〉 is an undercut while 〈Ψ2, β2〉 = 〈{a}, a〉 is not. With definition 2.2.2, 〈Ψ2, β2〉 = 〈{a}, a〉
is an undercut for A1 while 〈Ψ1, β1〉 = 〈{a ∨ ¬b}, a ∨ ¬b〉 is not. With definition 2.2.2, an undercut

for an argument 〈Φ, α〉 focuses on a particular premise from Φ, restricting this way the number of ar-

guments that satisfy the definition for an undercut for 〈Φ, α〉. This may lead to omitting arguments that

could intuitively represent a counterargument for 〈Φ, α〉. With definition 2.2.1 on the other hand, the

conclusion of an undercut is less specific, yet sufficient for formalising how the reason connection in

〈Φ, α〉 is attacked by the undercut. In addition, Pollock’s proposal provides a more compact definition

for an undercut where information already stated in Φ may avoid being repeated in the reasons of an

undercut for 〈Φ, α〉. Consider argument A2 = 〈{a, b, c}, a ∧ b ∧ c〉 for instance. With definition 2.2.2,

〈{a, b,¬a ∨ ¬b ∨ ¬c},¬c〉 is an undercut for A2 and the set of reasons {a, b} which is included in the

premises of the original argument is also included in the premises of the undercut. With definition 2.2.1

though this does not happen. {¬a ∨ ¬b ∨ ¬c} is sufficient to be the set of premises for an undercut for

A2 and so 〈{¬a ∨ ¬b ∨ ¬c},¬(a ∧ b ∧ c)〉 is an undercut for A2.

Apart from the definition for undercut, the warrant criteria differ in this framework from that of

Pollock’s framework on that they are based on acceptability. The attack relation between arguments

depends on an ordering over the set of arguments where these arguments belong, and this ordering is

based on preference relations. Given a set of arguments A , where Pref is a preordering on A × A ,

let >Pref denote the strict ordering associated with Pref . Then, if R is a binary relation between

arguments, then for A,B ∈ A , B attacks A iff BRA and A 6>Pref B. For an argument A ∈ A , it

holds thatA defends itself iff for allB, ifBRA, thenA >Pref B. Moreover, a set of arguments S ⊆ A

defends A iff for all B ∈ A , if BRA and A 6>Pref B, then there exists C ∈ S such that CRB and

B 6>Pref C. The acceptable arguments are the ones that defend themselves against their defeaters and

also the arguments that are defended by the arguments that defend themeselves. Given a set of arguments

A where for pairs of arguments A,B the relation BRA may hold and a preference ordering over this

set, it is possible to decide whether an argument A ∈ A is acceptable by drawing a dialogue tree. This

is a tree where where A is the root and each node is an argument. The arcs are defined by the attack

relation, each argument node attacks its parent node in the tree. By marking in this tree as undefeated

all the leaf nodes and then by recursion as defeated all the nodes that have at least one child which is

marked as undeafeated, the root node is acceptable iff by this process it is marked as undefeated. This

mechanism for deciding whether an argument is acceptable is analogous to Pollock’s warrant citerion

for deciding whether the conclusion of an argument is warranted.

2.2.3 Besnard and Hunter’s proposal

The formalisation for argumentation reviewed in this section [12], which is also based on classical logic,

is the basis for this thesis. For this reason, a detailed review of this proposal is provided rather than a

brief discussion. This proposal adapts the ideas introduced in Pollock’s proposal with the restriction of

employing only deductive arguments with consistent sets of reasons. An important feature of this frame-

work is that it introduces a special kind of undercut, the canonical undercut which subsumes many other

kinds of undercut, providing an efficient way for presenting counterarguments. Most of the examples in
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this section are adapted from [11] and consist of propositional formulae. Towards the end of this section,

examples based on classical first-order logic are also introduced.

2.2.3.1 Arguments

In the definition for an argument given in this section, the knowledgebases and claims are formulae in

classical logic and the method of inference by which the claim follows from a set of formulae is deductive

inference and is denoted `. Then, an argument in classical logic is defined as follows.

Definition 2.2.3 An argument is a pair 〈Φ, α〉 such that:

(1) Φ 6` ⊥;

(2) Φ ` α;

(3) there is no Φ′ ⊂ Φ such that Φ′ ` α.

〈Φ, α〉 is said to be an argument for α, where α is called the claim of the argument and Φ the support

of the argument (it is also said that Φ is a support for α).

Example 2.2.1 For a knowledgebase ∆ = {a, b, c, a → ¬b ∨ c, a → ¬b, d,¬d,¬c, d → a, d → e}
some arguments include:

〈{a→ ¬b},¬(a ∧ b)〉 〈{a, a→ ¬b},¬b ∨ ¬c〉 〈{a, a→ ¬b},¬b〉
〈{¬c},¬c ∨ b〉 〈{¬c},¬c〉 〈{a, b, a→ ¬b ∨ c}, c〉

Because in classical logic from a fallacy anything can be inferred, condition (1) of the definition for

an argument ensures that the reasoning of the argument is coherent and the claim does not follow from

the support because of an inconsistency. This is illustrated in the following example adapted from [11].

Example 2.2.2 Consider the following atoms.

a The office phone number is 020 4545 8721

b I am a billionaire

Now let {a,¬a} ⊆ ∆, and so by classical logic, we have {a,¬a} ` b. However, we do not want to have

{a,¬a} as the support for an argument with claim b. If we were to allow that as an argument, then we

would have an argument with this support and with any claim in the language. Hence, if we were to

allow inconsistent supports, then we would have an overwhelming number of useless arguments.

Real arguments, that is arguments presented by humans, are usually enthymemes [79]. Enthymemes

do not explicitly state all the premises that are necessary to reach a claim. This often happens because

some premises are considered to be obvious and so are not explicitly assumed. More details about the

use of enthymemes can be found in [51]. The use of enthymemes is illustrated in the following example

from [11].

Example 2.2.3 Consider the informal argument which is acceptable.

‘It is an even number, and therefore we can infer it is not an odd number’
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Now consider the following atoms

e It is an even number

o It is an odd number

So we can represent the premise of the informal argument by the set {e}. However, by classical logic

we have that {e} 6` ¬o, and hence the following is not an argument 〈{e},¬o〉. If we want to turn the

informal argument (which is an enthymeme) into an argument, we need to make explicit all the premises.

So we can represent the above informal argument by the following formal argument 〈{e, e→ ¬o},¬o〉.

So, when formalising argumentation, all the premises of the reasoning have to be included explicitly

in the support so that it is sufficient for the consequent to hold. Condition (2) of definition 2.2.3 ensures

this requirement is met.

Condition (3) of definition 2.2.3 ensures the minimality of the support for proving the claim. The

underlying idea for condition (3) is that an argument makes explicit the connection between reasons for

a claim and the claim itself. The following example taken from [11] shows the effect of this condition.

Example 2.2.4 Consider the following formulae.

p I like paprika

r It is raining

r → q If it is raining, then I should use my umbrella

It is possible to argue that “I should use my umbrella, because I should use my umbrella, if it is raining,

and indeed it is”, to be captured formally by the argument

〈{r, r → q}, q〉

In contrast, it is counter-intuitive to argue that “I should use my umbrella, because I like paprika and I

should use my umbrella, if it is raining, and indeed it is”, to be captured formally by

〈{p, r, r → q}, q〉

which fails to be an argument because condition 3 is not satisfied.

Examples 2.2.3 and 2.2.4 demonstrate how conditions (2) and (3) of the definition for an argument

ensure that the support for an argument contains exactly the formulae that are necessary to entail the

claim of the argument.

2.2.3.2 Comparing arguments

Given two arguments, it is possible to compare them in terms of how more general is one from the other.

The following definition captures this relation between arguments.

Definition 2.2.4 An argument 〈Φ, α〉 is more conservative than an argument 〈Ψ, β〉 iff Φ ⊆ Ψ and

β ` α.
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Example 2.2.5 Continuing example 2.2.1, 〈{a→ ¬b},¬(a∧ b)〉, is a more conservative argument than

〈{a, a→ ¬b},¬b〉 and 〈{a, a→ ¬b},¬b∨¬c〉 is a more conservative argument than 〈{a, a→ ¬b},¬b〉.
Also, 〈{¬c},¬c ∨ b〉 is a more conservative argument than 〈{¬c},¬c〉.

A more conservative argument is more general: it is less demanding on the support and less specific

about the consequent. This is demonstrated in the following example.

Example 2.2.6 Consider the following knowledgebase ∆ = {p, p → q, q → r}. Then, the following is

an argument with the claim q.

〈{p, p→ q}, q〉

Similarly, the following is argument with claim r ∧ q.

〈{p, p→ q, q → r}, r ∧ q〉

However, the first argument 〈{p, p → q}, q〉 is more conservative than the second argument 〈{p, p →
q, q → r}, r ∧ q〉 which can be retrieved from it:

〈{p, p→ q}, q〉
{q, q → r} ` r ∧ q

 ⇒ 〈{p, p→ q, q → r}, r ∧ q〉

The notion of “more conservative” argument is useful in identifying the most useful counterargu-

ments amongst the potentially large number of counterarguments.

2.2.3.3 Counterarguments

In argumentation literature a counterargument for an argument A is described as an argument A′ that

disagrees with A. Specifically in logic-based approaches to argumentation, the notion of a counterargu-

ment is usually associated to that of defeater, an argument whose claim refutes the support of another

argument [62, 72, 53, 77, 68]. This gives a general way for an argument to challenge another.

Definition 2.2.5 A defeater for an argument 〈Φ, α〉 is an argument 〈Ψ, β〉 such that β ` ¬(φ1∧. . .∧φn)

for some {φ1, . . . , φn} ⊆ Φ.

Example 2.2.7 Let ∆ = {¬a, a ∨ b, a ↔ b, c → a}. Then, 〈{a ∨ b, a ↔ b}, a ∧ b〉 is a defeater for

〈{¬a, c→ a},¬c〉. A more conservative defeater for 〈{¬a, c→ a},¬c〉 is 〈{a ∨ b, a↔ b}, a ∨ c〉.

A less general case of a defeater is that of an undercut defined below.

Definition 2.2.6 LetA = 〈Φ, α〉 be an argument. An undercut forA is an argument 〈Ψ,¬(φ1∧. . . φn)〉
where {φ1, . . . , φn} ⊆ Φ.

Example 2.2.8 For the argument 〈{a, b, a → ¬b ∨ c}, c〉 of example 2.2.1 it holds that it has 〈{a →
¬b},¬(a ∧ b)〉, and 〈{a, a→ ¬b},¬b〉 as undercuts.

Another case of conflict between arguments which has already been mentioned is when two argu-

ments have opposite claims.

Definition 2.2.7 An argument 〈Ψ, β〉 is a rebuttal for an argument 〈Φ, α〉 iff β ↔ ¬α is a tautology.
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Example 2.2.9 〈{¬b},¬b〉 is a rebuttal for 〈{a, a→ b}, b〉.

By the definition of an undercut it follows that undercuts are defeaters but it can also be shown that

rebuttals are defeaters. Although both undercuts and rebuttals are defeaters, an undercut for an argument

need not be a rebuttal for that argument, and a rebuttal for an argument need not be an undercut for that

argument. It can be the case where an undercut may even agree with the claim of the argument it objects

to as the following examples illustrates.

Example 2.2.10 Let A1 = 〈{a, a→ b}, b〉 and A2 = 〈{b ∧ ¬a},¬a〉. Then, A2 is an undercut for A1.

A2 not only is not a rebuttal for A1, but the support of A2 is a support for an argument for the claim of

A1: 〈{b ∧ ¬a}, b〉 is an argument.

So, an undercut need not question the claim of an argument but only the reasons given by that

argument to support its claim. Moreover, a rebuttal for an argument may not be an undercut for that

argument.

Example 2.2.11 〈{¬b},¬b〉 is a rebuttal for 〈{a, a → b}, b〉 but is not an undercut for it because b is

not in {a, a→ b}.

Rebuttals and undercuts provide different ways to challenge an argument. However, there is a

special kind of undercut that can effectively capture all the information needed in order to challenge an

argument. This is the canonical undercut defined in the next section.

2.2.3.4 Canonical undercuts

Undercuts for a specific argument can be compared on which is more conservative than another. So for

instance, for the argument 〈{a, b, a → ¬b ∨ c}, c〉 of example 2.2.8 and its undercuts we can say that

〈{a→ ¬b},¬(a∧b)〉, is a more conservative undercut than 〈{a, a→ ¬b},¬b〉. Given a set of undercuts

for an argument, the notion of the most conservative undercut is captured in the definition of a maximally

conservative undercut defined below.

Definition 2.2.8 〈Ψ, β〉 is a maximally conservative undercut for 〈Φ, α〉 iff for all undercuts 〈Ψ′, β′〉
of 〈Φ, α〉, if Ψ′ ⊆ Ψ and β ` β′ then Ψ ⊆ Ψ′ and β′ ` β.

Example 2.2.12 Continuing example 2.2.8, 〈{a→ ¬b},¬(a∧b)〉 is a maximally conservative undercut

for 〈{a, b, a→ ¬b ∨ c}, c〉.

The next example from [11] shows that a collection of counterarguments for the same argument

can sometimes be summarized in the form of a single maximally conservative undercut of the argument,

thereby avoiding some amount of redundancy among counterarguments.

Example 2.2.13 Consider the following formulae concerning who is going to a party.

r → ¬p ∧ ¬q If Rachel goes, neither Paul nor Quincy go

p Paul goes

q Quincy goes
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Hence both Paul and Quincy go (initial argument)

〈{p, q}, p ∧ q〉

Now assume the following additional piece of information

r Rachel goes Hence Paul does not go (a first counterargument)

〈{r, r → ¬p ∧ ¬q},¬p〉

Hence Quincy does not go (a second counterargument)

〈r, r → ¬p ∧ ¬q},¬q〉

A maximally conservative undercut (for the initial argument) that subsumes both counterarguments

above is

〈{r, r → ¬p ∧ ¬q},¬(p ∧ q)〉

The next example highlights the advantage of maximally consevative undercuts when considering

counterarguments for an argument.

Example 2.2.14 Consider the following knowledgebase {a, b, c,¬a ∨ ¬b ∨ ¬c}. Suppose we start with

the following argument 〈{a, b, c}, a ∧ b ∧ c〉. There are numerous undercuts to this argument including

the following.

〈{b, c,¬a ∨ ¬b ∨ ¬c},¬a〉
〈{a, c,¬a ∨ ¬b ∨ ¬c},¬b〉
〈{a, b,¬a ∨ ¬b ∨ ¬c},¬c〉
〈{a,¬a ∨ ¬b ∨ ¬c},¬b ∨ ¬c〉
〈{b,¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬c〉
〈{c,¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬b〉
〈{¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬b ∨ ¬c〉

All these undercuts say the same thing which is that the set {a, b, c} is inconsistent together with the

formula ¬a ∨ ¬b ∨ ¬c. As a result, this can be captured by the last undercut listed above which is the

maximally conservative undercut amongst the undercuts listed.

The claim of a maximally conservative undercut for an argument is exactly the negation of the full

support of the argument. In other words, if 〈Ψ,¬(φ1∧. . .∧φn)〉 is a maximally conservative undercut for

an argument 〈Φ, α〉, then Φ = {φ1, . . . , φn}. Then, if 〈Ψ,¬(φ1∧ . . .∧φn)〉 is a maximally conservative

undercut for an argument 〈Φ, α〉, so are 〈Ψ,¬(φ2 ∧ . . .∧φn ∧φ1)〉 and 〈Ψ,¬(φ3 ∧ . . .∧φn ∧φ1 ∧φ2)〉
and so on. However, they are all equivalent. We can ignore the unnecessary variants by just considering

the canonical undercuts defined as follows.

Definition 2.2.9 〈Ψ,¬(φ1∧. . . φn)〉 is a canonical undercut for 〈Φ, α〉 iff it is a maximally conservative

undercut for 〈Φ, α〉 and {φ1, . . . , φn} is the canonical enumeration of Φ.

Example 2.2.15 Returning to Example 2.2.13, suppose the canonical enumeration of the support of

initial argument 〈{p, q}, p ∧ q〉 is: p, q. Then both the following are maximally conservative undercuts,
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but only the first is a canonical undercut.

〈{r, r → ¬p ∧ ¬q},¬(p ∧ q)〉
〈{r, r → ¬p ∧ ¬q},¬(q ∧ p)〉

Clearly, an argument may have more than one canonical undercut. Any two different canonical un-

dercuts for the same argument have the same claim, but distinct supports, and none is more conservative

than the other.

Example 2.2.16 Let ∆ = {a, b,¬a,¬b}. Both the following are canonical undercuts for 〈{a, b}, a↔ b〉,
but neither is more conservative than the other.

〈{¬a},¬(a ∧ b)〉
〈{¬b},¬(a ∧ b)〉

For simplicity, since all the canonical undercuts for an argument have the same claim, the notation

〈Ψ, �〉 will be used to denote a canonical undercut for 〈Φ, α〉.
The next section describes how the exchange of arguments and counterarguments (where a counte-

rargument for an argument is considered to be a canonical undercut for that argument) can be structured

in trees.

2.2.3.5 Argument trees

Usually the argumentation process takes place by putting an argument forward in order to support a claim

of interest. If there is conflicting information that can be used against this argument, this is posed in the

form of a counteragument and in the same way there can be a counter-counterargument that can be put

against this counterargument and so on. For each argument there can be a number of counterarguments

and for each of these counterarguments there can be a number of counter-counterarguments and so

on, and depending on which of these is presented against an argument, the argumentation process can

unfold in different ways. So, an issue to address when evaluating information about a case, is that we

need to take into account all the different possibilities for the course of argumentation from the given

background.

Example 2.2.17 Let ∆ = {a ∧ b,¬a ∧ b,¬b}. Then,

A1 = 〈{a ∧ b}, a〉 is an argument.

Moreover

A2 = 〈{¬a ∧ b}, �〉 is a counterargument for A1

A3 = 〈{¬b}, �〉 is a counterargument for A2.

In addition,

A′2 = 〈{¬b}, �〉 is a counteragument for A1 and
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A′3 = 〈{¬a ∧ b}, �〉 is a counterargument for A′2.

For the above arguments it holds that A2 has equal support with A′3 and A3 has equal support with A′2.

We can see though that in the first case A2 can be put against A1 and A3 can be put against A2 so in a

sense A3 is used in favour of the initial argument while in the second case A′2 is used against the initial

argument and A′3 which is used against A′2 is acting in favour of the initial argument.

The last example highlights the need to express all the possible courses argumentation can take.

Another point to address in argumentation, is that an argument can continue forever by recycling already

stated information unless a stopping condition is introduced.

Example 2.2.18 Continuing example 2.2.17, the following infinite exchange of arguments and counte-

rarguments may be produced.

〈{a ∧ b}, a〉
↑

〈{¬a ∧ b}, �〉
↑

〈{¬b}, �〉
↑

〈{¬a ∧ b}, �〉
↑

〈{¬b}, �〉
↑

〈{¬a ∧ b}, �〉
...

A structure that takes the issues discussed above into account and provides an efficient way for

representing the exchange of arguments and counterarguments is the argument tree defined next.

Definition 2.2.10 An argument tree for α is a tree where the nodes are arguments such that

(1) The root is an argument for α.

(2) For no node 〈Φ, β〉 with ancestor nodes 〈Φ1, β1〉 . . . 〈Φn, βn〉 is Φ a subset of Φ1 ∪ . . . ∪ Φn.

(3) The children nodes of a node N consist of all canonical undercuts for N that obey (2).

Example 2.2.19 Let ∆ be the knowledgebase from example 2.2.1, ∆ = {a, b, c, a→ ¬b∨ c, a→ ¬b, d,
¬d,¬c, d→ a, d→ e}. Then, the following is an argument tree for α = c.
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〈{a, b, a→ ¬b ∨ c}, c〉
� �

〈{a→ ¬b}, �〉 〈{¬c}, �〉
| |

〈{d, d→ a, b}, �〉 〈{c}, �〉
� �

〈{a→ ¬b ∨ c,¬c}, �〉 〈{¬d}, �〉

The argument tree is a compact way of presenting all the possible sequences of conflicting argu-

ments from a knowledgebase initialized by the root node. Condition (2) of definition 2.2.10 ensures that

repeating the same piece of information in different nodes in a branch will be avoided and so the argu-

ment tree will not contain duplication of information in a sequence of arguments and counterarguments.

Moreover, each such sequence will always be finite. Infinite repetition of a set of formulae in the support

sets of the nodes of a branch cannot exist and considering finite knowledgebases this condition can only

allow for finite branches to exist.

Example 2.2.20 Let ∆ = {a, a→ b, c→ ¬a, c}.

〈{a, a→ b}, b〉
|

〈{c, c→ ¬a},3〉
|

〈{a, c→ ¬a},3〉

This is not an argument tree because Condition (2) of the definition of the argument tree is not met. The

undercut to the undercut is actually making exactly the same point (that a and c are incompatible) as the

undercut itself does, just by using modus tollens instead of modus ponens.

Condition (3) ensures that each node in the tree is a canonical undercut for its parent node avoiding

this way situations like the one in the next example.

Example 2.2.21 Given ∆ = {a, b, a→ c, b→ d,¬a ∨ ¬b}, consider the following tree.

〈{a, b, a→ c, b→ d}, c ∧ d〉
� �

〈{a,¬a ∨ ¬b},¬b〉 〈{b,¬a ∨ ¬b},¬a〉

This is not an argument tree because the two children nodes of the root are not maximally conservative

undercuts. The first undercut is essentially the same argument as the second undercut in a rearranged

form (relying on a and b being incompatible, assume one and then conclude that the other doesn’t hold).

If we replace these by the maximally conservative undercut 〈{¬a ∨ ¬b},3〉, we obtain the following

argument tree.
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〈{a, b, a→ c, b→ d}, c ∧ d〉
|

〈{¬a ∨ ¬b}, �〉

So, an argument tree that has 〈Φ, α〉 as the root provides an exhaustive presentation of arguments

and counterarguments that can be produced with 〈Φ, α〉 as the initial argument. Then, the argument

tree can be evaluated and the results can be analysed to judge whether the initial argument is warranted.

The mechanism for determining whether the argument at the root of the argument tree is warranted is

adapted from [45]. For this, each node of the argument tree is marked as either U for undefeated or

D for defeated. All the leaf nodes are marked undefeated and then all the nodes that have at least one

undefeated child are marked as defeated. By using the value assigned to the root node of the argument

tree by this process, the Judge function assigns either Warranted or Unwarranted to the tree.

Definition 2.2.11 The judge function, denoted Judge, assigns either Warranted or Unwarranted to

each argument tree T such that Judge(T ) = Warranted iff Mark(Ar) = U where Ar is the root node

of T . For all nodes Ai in T , if there is child Aj of Ai such that Mark(Aj) = U , then Mark(Ai) = D,

otherwise Mark(Ai) = U .

As a direct consequence of the above definition, the root is undefeated iff all its children are defea-

ted.

Example 2.2.22 For the argument tree of example 2.2.19, the nodes are marked as defeated or undefea-

ted as follows:

〈{a, b, a→ ¬b ∨ c}, c〉 D
� �

〈{a→ ¬b}, �〉 U 〈{¬c}, �〉D
| |

〈{d, d→ a, b}, �〉 D 〈{c}, �〉 U
� �

〈{a→ ¬b ∨ c,¬c}, �〉 U 〈{¬d}, �〉 U

Then, by the definition of the judge function, since for the root node Ar of the above tree T it holds that

Mark(Ar) 6= U , then Judge(T ) = Unwarranted.

An argument tree provides an overview of all the possible ways argumentation can develop starting

from an initial argument that is the root of the argument tree. Then, depending on the structure of the

argument tree and by using the judge function, the tree can be classified as warranted or not, providing a

way for evaluating the initial argument.

2.2.3.6 Examples in classical predicate logic

All the examples given so far in section 2.2.3 are based on classical propositional logic. The definitions

presented so far in this section though cover classical logic, including both propositional and first-order
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logic. More details on argumentation focused on classical predicate logic can be found in [13]. This

paragraph presents some examples in classical first-order logic adapted from [13].

Example 2.2.23 Let ∆ = {∀x(P (x) → Q(x) ∨ R(x)), P (a),¬∀x(S(x)),¬∃x(R(x)),¬∃x(P (x) →
Q(x) ∨R(x))}. Some arguments from ∆ are:

〈{P (a),∀x(P (x)→ Q(x) ∨R(x))}, Q(a) ∨R(a)〉
〈{¬∀x(S(x))},¬∀x(S(x))〉
〈{¬∃x(R(x))},¬∃x(R(x))〉
〈{¬∃x(R(x))},∀x(¬R(x))〉

The following example demonstarates how arguments in first-order logic can be compared on which

is more conservative than the other by using definition 2.2.4.

Example 2.2.24 〈{P (a),∀x(P (x) → Q(x) ∨ R(x)), Q(a) ∨ R(a)}〉 is a more conservative argument

than 〈{P (a),∀x(P (x)→ Q(x) ∨R(x)),¬∃x(R(x))}, Q(a)〉.

The next example involves undercuts in first-order logic.

Example 2.2.25 LetA1 = 〈{P (a),∀x(P (x)→ Q(x)∨R(x)), Q(a)∨R(a)}〉. ThenA1 is an argument

and A2 = 〈{¬∃x(P (x) → Q(x) ∨ R(x))},¬∀x(P (x) → Q(x) ∨ R(x))〉 is an undercut for A1. A

more conservative undercut for A1 is A3 = 〈{¬∃x(P (x) → Q(x) ∨ R(x))},¬(P (a) ∧ ∀x(P (x) →
Q(x) ∨R(x)))〉. Moreover, A3 is a maximally conservative undercut and canonical undercut for A1.

Finally, the argument trees are also defined for arguments in first-order logic. Then, according to

definition 2.2.10, the following is an argument tree for φ = Q(a) ∨R(a).

Example 2.2.26 Continuing example 2.2.24, the following is an argument tree for Q(a) ∨R(a).

〈{P (a),∀x(P (x)→ Q(x) ∨R(x))}, Q(a) ∨R(a)〉
|

〈{¬∃x(P (x)→ Q(x) ∨R(x))}, �〉

Using the judge function this tree is classified as Unwarranted.

2.2.4 Computational issues in argumentation

Various approaches to argumentation yield computational issues that sometimes seem to make argumen-

tation unsuitable for practical applications. Classical logic has many advantages for representing and

reasoning with knowledge however, for argumentation, it is computationally challenging to generate

arguments from a knowledgebase using classical logic. If we consider the problem as an abduction pro-

blem, where we seek the existence of a minimal subset of a set of formulae that implies the consequent,

then the problem is in the second level of the polynomial hierarchy [36].

The difficult nature of argumentation has been underlined by studies concerning the complexity

of finding individual arguments [63] and the complexity of finding argument trees [49]. Furthermore,
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encoding of these tasks as quantified Boolean formulae also indicate that development of algorithms is

a difficult challenge [16]. Further work regarding the complexity of argumentation related problems can

be found in [80, 25, 28].

2.3 Existing implementations of argumentation systems
There are a number of argumentation engines based on some of the proposals discussed in this chapter.

Some of these are mentioned below.

1. DeLP interpreter. Implemented argumentation system based on defeasible logic programming

[45, 44].

2. Argue tuProlog. A Java-based argumentation engine built using a Prolog engine as its foundation.

Accepts formulae in a first-order language where each formula comes with a numerical value that

quantifies the degree of belief for this formula [21, 19].

3. CaSAPI. Prolog implementation that combines abstract and assumption-based argumentation. Va-

rious different versions released [40, 39].

4. ASPARTIX Answer-set-programming based argumentation tool that adapts abstract argumenta-

tion [35, 1].

5. Dungine A Java reasoner that implements abstract argumentation. [74, 73].

6. The ASPIC argumentation engine. It uses a prolog-like syntax and is based on defeasible logic

[2].

Other implemented systems exist that focus on specific applications of argumentation like e-

democracy [6] and sharing of ideas [71, 3], as well as argument mapping applications [47] and argument

graph drawing applications [83, 76].

All known implemented argumentation systems are based on defeasible logics, assumption based

argumentation and abstract argumentation, while there is no implemented system based on classical logic

that is known.

2.4 Discussion
The formalisations discussed in this chapter provide different approaches to argumentation. With dif-

ferent formalisations arguments can be considered abstract objects whose internal structure is not known,

or they can be considered structures built on top of a deductive system where the claim of the argument

has to be entailed by its premises. Each formalisation gives a different option on the level of detail

of the knowledge represented as well as on the criteria by which an argument is evaluated in terms of

information that is put against it.

Classical logic has many advantages for representing and reasoning with knowledge including syn-

tax and proof theory. It provides a powerful language for expressing in detail the premises of an ar-

gument, and entailment is based on classical deduction which is well established. It has a simple and
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intuitive syntax and semantics, and it is supported by a proof theory and extensive foundational results

that make it it an appealing option for argumentation. In addition to these advantages, the framework

on which the work of this thesis is based [12] has the advantage of employing canonical undercuts for

counterarguments which capture exactly the information that needs to be challenged in order to attack

an argument.

Besides its advantages, argumentation in classical logic has the disadvantage of the computational

viability of generating arguments. Little work has been done so far to address this issue [50, 14]. Moreo-

ver, to our knowledge, prior to this thesis no working software applications have been developed based

on classical logic.



Chapter 3

Reducing the search space for arguments

In this chapter I present a proposal for addressing the problem of the computational cost of generating

arguments by reducing the search space. This proposal is based on an existing proposal for automated

theorem proving [55, 56] where connection graphs are used for sets of clauses. For a set of clauses, a

connection graph is a graph where each node is a clause from the set and each arc denotes that there exist

complementary literals in the pair of nodes. The idea in using a connection graph for automated theorem

proving is that it indicates that the resolution proof rule can be applied for a pair of clauses that are linked

by an arc, motivating the application algorithms that form proofs by walking over a connection graph.

The work presented in this chapter does not involve using connection graphs for constructing proofs.

It focuses on how using connection graphs can help reduce the search space when looking for arguments.

I present how given a formula ψ in CNF (i.e. conjunctive normal form) as the claim for an argument and

a knowledgebase Φ that consists of formulae in CNF, we can form connection graphs where each node is

a clause that appears as a conjunct in some fomula from Φ. I explain how using a connectivity criterion

introduced, we can isolate a subgraph of this connection graph which is associated to a subset of formulae

from Φ that contains all the arguments for ψ, and thus potentially provides a reduced search space.

This subgraph, defined as the query graph, is relatively inexpensive to locate in terms of computational

cost, and using as the search space the formulae of Φ that relate to the nodes of the query graph, can

substantially reduce the cost of looking for arguments. A theoretical framework and algorithms for this

proposal are presented in this chapter along with some preliminary experimental results to indicate the

potential of the approach.

The chapter starts with the definition of the language of clauses C, which is used throughout this

thesis, together with some properties of the language and an overview of how the resolution rule applies

to the elements of C and can be used for satisfiability checks. It proceeds by presenting definitions for

different types of connection graphs for the elements of C. It continues by introducing knowledgebases

that consist of formulae in CNF. It presents how by defining graphs for the clauses that appear in the

conjuncts of the formulae of the knowledgebase, we can determine a subset of the knowledgebase that

contains all the formulae that may be premises in arguments for a given claim, which is also in CNF.

Throughout the chapter, theoretical results that apply to different types of graphs are introduced together

with the corresponding definitions of the graphs in order to demonstrate how these definitions are useful
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for addressing the problem of generating arguments. The chapter closes with some experimental data on

a prototype implementation of the theory presented, that indicate the advantages of the approach.

3.1 The language of clauses C
In this section I present the language of clauses C on which connection graphs are defined. First I define

the language and then I introduce some functions that are defined on the elements of C. I discuss the

resolution proof procedure that can be applied on C and how this can be used for satisfiability checks.

3.1.1 Definition of C
A language of clauses C is composed by a set of atomsA as follows: If a is an atom, then a is a positive

literal, and ¬a is a negative literal. If b is a positive literal, or b is a negative literal, then b is a literal.

The symbol L denotes the set of all literals. Literals b1, b2 are complementary iff they consist of the same

atom and one of them is negative and the other one is positive. Then, we say that b1 is the complement

of b2 and b2 is the complement of b1 and we write b1 = b2. If b1, .., bn are literals, then b1 ∨ ... ∨ bn is a

clause. A clause knowledgebase is a set of clauses.

Lowercase roman characters denote atoms, lowercase Greek characters denote clauses and upper-

case Greek characters denote sets of clauses. The symbol ⊥ is used to denote the empty clause, that is

the clause b1 ∨ ... ∨ bn with {b1, ..., bn} = ∅. Then, any set of clauses that contains ⊥ is unsatisfiable.

3.1.2 Relations in C
The definitions of this section mainly concern disjunctive clauses. I start though by introducing functions

Conjuncts and Disjuncts that are defined for formulae in conjunctive normal form and disjunctive normal

form respectively, and so can be used for formulae in canonical form that are not necessarily in C.

Function Disjuncts is used further in this section to define relations for CNFs of 1 conjunct, i.e. for

elements in C .

Definition 3.1.1 Let φ be a formula in conjunctive normal form: φ = γ1 ∧ . . . ∧ γn, where each of

γ1, . . . , γn is a disjunction of literals and let ψ be a formula in disjunctive normal form, ψ = δ1∨. . .∨δn,

where each of δ1, . . . , δn is a conjunction of literals. Then, Conjuncts(φ) returns the set of disjunctive

clauses in φ i.e. Conjuncts(φ) = {γ1, . . . , γn} and Disjuncts(ψ) returns the set of conjunctive clauses

in ψ i.e. Disjuncts(ψ) = {δ1, . . . , δn}.

Example 3.1.1 Let φ = (a ∨ b) ∧ (a ∨ d) ∧ q and ψ = (a ∧ c) ∨ (d ∧ p). Then, Conjuncts(φ) =

{a ∨ b, a ∨ d, q} and Disjuncts(ψ) = {a ∧ c, d ∧ p}. Disjuncts(φ) and Conjuncts(ψ) are not defined.

Hence, functions Conjuncts and Disjuncts simply return the set of conjuncts or disjuncts respec-

tively for formula in CNF or DNF (i.e. disjunctive normal form). Using the Disjuncts function on

disjunctive clauses the following binary relations are defined in C.

Definition 3.1.2 Let φ, ψ ∈ C and b ∈ C ∩ L. Then, functions Preattacks and Attacks are defined as
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follows:

i) Preattacks(φ, ψ) = {b | b ∈ Disjuncts(φ) and b ∈ Disjuncts(ψ)}
ii) If Preattacks(φ, ψ) = {b} for some b then

Attacks(φ, ψ) = b otherwise Attacks(φ, ψ) = null

Hence, the Preattacks relation is defined for any pair of clauses φ, ψ and returns the set of comple-

mentary literals between these clauses while the Attacks relation is defined for a pair of clauses φ, ψ for

which |Preattacks(φ, ψ)| = 1 and returns the unique literal that is contained in Preattacks(φ, ψ).

Example 3.1.2 According to definition 3.1.2, the following hold.

Preattacks(a ∨ ¬b ∨ ¬c ∨ d, a ∨ b ∨ ¬d ∨ e) = {¬b, d},
Preattacks(a ∨ b ∨ ¬d ∨ e, a ∨ ¬b ∨ ¬c ∨ d) = {b,¬d},
Preattacks(a ∨ b ∨ ¬d, a ∨ b ∨ c) = ∅,
Preattacks(a ∨ b ∨ ¬d, a ∨ b ∨ d) = {¬d},
Preattacks(a ∨ b ∨ ¬d, e ∨ c ∨ d) = {¬d}.

Example 3.1.3 According to definition 3.1.2, the following hold.

Attacks(a ∨ ¬b ∨ ¬c ∨ d, a ∨ b ∨ ¬d ∨ e) = null,

Preattacks(a ∨ b ∨ ¬d ∨ e, a ∨ ¬b ∨ ¬c ∨ d) = null,

Attacks(a ∨ b ∨ ¬d, a ∨ b ∨ c) = null ,

Attacks(a ∨ b ∨ ¬d, a ∨ b ∨ d) = ¬d,

Attacks(a ∨ b ∨ ¬d, e ∨ c ∨ d) = ¬d.

For a set of clauses ∆, Literals(∆) returns the set of literals that appear as disjuncts in the elements

of ∆.

Definition 3.1.3 Let ∆ be a set of clauses. Then Literals(∆) =
⋃
δ∈∆{d | d ∈ Disjuncts(δ)}

The resolution function is defined for a pair of clauses that have a pair of complementary literals

between them. The following definition for resolution applies to a pair of clauses that have exactly one

pair of complementary disjuncts between them and is based on function Attacks.

Definition 3.1.4 If φ and ψ are clauses and Attacks(φ, ψ) = b for some b ∈ L. Then,

φ • ψ =
∨

(Disjuncts(φ) ∪ Disjuncts(ψ)) \ {b, b})

Hence, • denotes the function of resolution i.e. for a pair of clauses φ and ψ, φ • ψ is the clause

that is obtained by resolution from φ and ψ. For simplicity, from now on when the function appears

in a sequence of more than two clauses, no brackets will be used and the order in which the resolution

function applies to the clauses is going to be the order in which the clauses appear in the sequence. For

example, φ • χ • ψ • α = ((φ • χ) • ψ) • α

Example 3.1.4 Continuing examples 3.1.2 and 3.1.3,
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a ∨ ¬b ∨ ¬c ∨ d • a ∨ b ∨ ¬d ∨ e is not defined,

a ∨ b ∨ ¬d ∨ e • a ∨ ¬b ∨ ¬c ∨ d is not defined,

a ∨ b ∨ ¬d • a ∨ b ∨ c is not defined,

a ∨ b ∨ ¬d • a ∨ b ∨ d = a ∨ b,
a ∨ b ∨ ¬d • e ∨ c ∨ d = a ∨ b ∨ e ∨ c.

3.2 Resolution for satisfiability checks
Proof procedures based on the resolution principle have been widely used for automated theorem proving

since Robinson’s proposal for a resolution precedure [69] (good introductions and reviews on automated

theorem proving based on resolution techniques can be found in [43, 75, 81, 60]). Various refinements

on Robinson’s resolution procedure have been studied, and strategies for applying resolution efficiently

have been developed [82, 5, 17, 7, 57, 55, 61, 58]. A resolution procedure is a refutation procedure where

unsatisfiability is established as the means to establish validity. Because of the duality of unsatisfiability

and validity (i.e. a formula is valid iff its negation is unsatisfiable) the ground resolution procedure

provides a sound and complete method for theorem proving.

In this section I present some definitions and results from [69] and then I introduce a refinement

of the resolution procedure, the linear resolution [59], which is used in later chapters for searching for

arguments.

3.2.1 The resolution proof procedure

Given a set of clauses Φ, we may wish to generate all the possible resolvents that can be produced

by applying resolution recursively between pairs of clauses from Φ and their resolvent clauses. The

definition that follows, introduces function Resolve(Φ) which provides a way for formalising application

of resolution between all the possible pairs of clauses from Φ and function Resolven(Φ), n ∈ N which

can be used to recursively apply resolution on set of clauses Φ and the set Φ′ of resolvents of Φ and so

on.

Definition 3.2.1 Let Φ be a set of clauses. Then, Resolve(Φ) returns the set of clauses that consists of

the members of Φ together with all the resolvents of all pairs of clauses from Φ. Resolven(Φ) is defined

for each n ≥ 0 as follows: Resolve0(Φ) = Φ and Resolven+1(Φ) = Resolve(Resolven(Φ))

For a finite set of clauses Φ there is a finite number of sets Resolve1(Φ) , . . . , Resolven(Φ) such

that Resolvei(Φ) 6= Resolvei+1(Φ).

Definition 3.2.2 For a set of clauses Φ, Resolvents(Φ) = Resolven(Φ) iff for some n ≥ 0,

Resolven+1(Φ) = Resolven(Φ).

According to the ground resolution theorem that follows, applying resolution recursively on a set

of clauses Φ can be used to test Φ for satisfiability.

Theorem 3.2.1 (Robinson 1965) Let Φ be a finite set of clauses. Then, Φ is unsatisfiable iff Resolven(Φ)

contains ⊥ for some n ≥ 0.
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The two examples that follow demonstrate how theorem 3.2.1 can be applied to test a set of clauses

for satisfiability. For simplicity equivalent clauses are not included in a set as this does not affect the

conditions of the theorem.

Example 3.2.1 Let Φ = {a ∨ b,¬b,¬a ∨ c,¬c}. Then, according to definition 3.2.1,

Resolve0(Φ) = Φ,

Resolve1(Φ) = {a ∨ b,¬b, a,¬a ∨ c,¬c,¬a, b ∨ c},
Resolve2(Φ) = {a ∨ b,¬b, a,¬a ∨ c,¬c,¬a, b ∨ c, b, c,⊥}

where ⊥ in Resolve2(Φ) is the resolvent of a and ¬a from Resolve1(Φ). Hence, Φ is unsatisfiable

because Resolve2(Φ) contains ⊥.

Example 3.2.2 Let Φ = {a ∨ b ∨ d,¬b,¬a ∨ d,¬d ∨ c}. Then, according to definition 3.2.1,

Resolve0(Φ) = Φ,

Resolve1(Φ) = {a ∨ b ∨ d,¬b, a ∨ d,¬a ∨ d, b ∨ d,¬d ∨ c, a ∨ b ∨ c,¬a ∨ c},
Resolve2(Φ) = {a∨b∨d,¬b, a∨d,¬a∨d, b∨d, d,¬d∨c, a∨c, b∨c, a∨b∨c, b∨c∨d,¬a∨c, d∨c}
Resolve3(Φ) = {a∨b∨d,¬b, a∨d,¬a∨d, b∨d, d,¬d∨c, c, a∨c, b∨c, a∨b∨c, b∨c∨d,¬a∨c, d∨c}

For i = 4 it holds that Resolve3(Φ) = Resolve4(Φ), so Resolvents(Φ) = Resolve3(Φ) and there is no

m > 3 such that Resolvem(Φ) 6= Resolve3(Φ). Then, since ⊥ 6∈ Resolvei(Φ), i = 0 . . . 3 there is no m

such that ⊥ ∈ Resolvem(Φ) and so Φ is satisfiable.

Exhaustive generation of the resolvents from a set of clauses Φ can be highly repetitive and the

number of clauses produced in every iteration can be large. The following section introduces a method

that can reduce the number of resolvents produced with the resolution procedure.

3.2.2 Linear resolution

There are proposals introducing restrictions to the way the resolvents of a set of clauses are generated.

They introduce strategies that help reduce the number of resolvents produced until the empty clause is

reached when testing the set for satisfiability. Some of these proposals do not maintain completeness or

maintain completeness for a restricted language (e.g. Horn clauses). Linear resolution is a refinement

of the resolution procedure that provides a refutation complete and sound method for a satisfiability

check when dealing with arbitrary propositional clauses [59]. To check whether a set of clauses Φ is

unsatisfiable, we can check whether the empty clause is deducible by a linear resolution deduction as

defined below.

Definition 3.2.3 Given a set of clauses Ψ, the set of linear resolution deductions from Ψ is the set

Deductions(Ψ) = {Γ1, . . . ,Γm} where each Γl = {γ1, . . . , γn}, 1 ≤ l ≤ m is defined as follows:
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(1) for each γk ∈ Γl such that 1 < k ≤ n, either γk is obtained by resolution

from γi and γj where i, j < k or γk ∈ Ψ and

(2) for each γi such that 1 ≤ i < n, there are γk and γj (i < k and j < k) s.t.

γk is obtained by resolution from γi and γj

(3) No γk ∈ Γl is a tautology

Each such Γl is called a linear deduction of δn from Ψ. In the above definition, condition (1) ensures

that the clauses of a linear deduction are generated by using elements from Ψ and applying resolution

recursively. Condition (2) ensures that every clause in the deduction is used to resolve with some other

clause and condition (3) ensures that no tautologies will appear in the deduction.

We say that there is a linear refutation of Ψ, if there is a linear deduction of ⊥ from Ψ. Linear

resolution is known to be a refutation complete and sound strategy for automated theorem proving. This

is restated in the theorem that follows.

Theorem 3.2.2 (Loveland 1970) A set of clauses Φ is unsatisfiable iff there is a linear refutation from

Φ.

Corollary 3.2.1 Let Ψ be a set of clauses and α = a1 ∨ . . . ∨ an be a clause. Then, Ψ ` α iff there

is a linear deduction Γ ∈ Deductions(Ψ ∪ {a1, . . . , an}), Γ = {γ1, . . . , γn} such that γn is the empty

clause.

Proof: If Ψ ` α and α = a1 ∨ . . . ∨ an then Ψ ∪ {a1, . . . , an} is unsatisfiable and by theorem 3.2.2

there is linear refutation from (Ψ ∪ {a1, . . . , an}) so there is a linear deduction Γ ∈ Deductions(Ψ ∪
{a1, . . . , an}), Γ = {γ1, . . . , γn} such that γn = ⊥. �

Example 3.2.3 Let Ψ = {a ∨ b ∨ c,¬c ∨ d,¬d ∨ ¬c} and α = a ∨ b ∨ e. Then Ψ ∪ {a, b, e}) =

{a ∨ b ∨ c,¬c ∨ d,¬d ∨ ¬c,¬a,¬b,¬e}. Then there is Γ ∈ Deductions(Ψ ∪ {a, b, e}) with Γ =

{¬d ∨ ¬c,¬c ∨ d,¬c, a ∨ b ∨ c, a ∨ b,¬a, b,¬b,⊥} and it holds that Ψ ` α.

Moreover, for a minimal inconsistent set of clauses (i.e. a set which is unsatisfiable but all its proper

subsets are satisfiable) the following proposition holds.

Proposition 3.2.1 Let Ψ be a minimal inconsistent set of clauses. Then, there is a Γ ∈ Deductions(Ψ),

Γ = {γ1, . . . , γn} such that γn = ⊥ and Ψ ⊆ Γ.

Proof: Let Ψ be a minimal inconsistent set of clauses. Then, by corollary 3.2.1 there is a linear de-

duction Γ ∈ Deductions(Ψ ∪ ∅), Γ = {γ1, . . . , γn} such that γn is the empty clause. For a proof by

contradiction assume that Ψ 6⊆ Γ, so for some γi ∈ Ψ it holds that γi 6∈ Γ. Then Γ ∩ Ψ ` ⊥ and

Γ ∩Ψ ⊆ Ψ \ {γ} ⊂ Ψ, which contradicts the assumption that Ψ is a minimal inconsistent set �

3.3 Connection Graphs for propositional clauses
In this section I introduce definitions for connection graphs for sets of clauses. Generally, a connection

graph is a graph that has clauses for nodes and arcs link clauses that contain complementary literals.
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I give definitions for different types of connection graphs according to the number of complementary

literals that indicate arcs, or according to the connectivity of the graph. Then, I present how these can

be used when we look for arguments for a claim in CNF from a knowledgebase of formulae in CNF.

I explain how by using connection graphs for the clauses that appear as conjuncts in the formulae of

the knowledgebase, we can narrow the search down to a subgraph that is associated to a subset of the

knowledgebase that contains all the formulae that can be premises in arguments for the given claim.

3.3.1 Connection graph definitions

Connection graphs were introduced by Kowalski [55, 56] as a method for automated theorem proving

where graphs have disjunctive clauses for nodes and arcs link nodes that contain complementary literals.

Kowalski’s technique is based on a refutation procedure where a connection graph is traversed until

a refutation occurs by applying the resolution proof rule. The connection graph resolution operation

resolves on a link in the connection graph, forms the resolvent, and adds it to the connection graph

giving the search a dynamic nature. In this chapter the definition of the connection graph is adapted as

in [55, 56] and further definitions of special kinds of connection graph are introduced that have some

properties with respect to the search for arguments. In Chapter 4, I introduce a search technique for

traversing the graphs that does not adapt the dynamic nature of Kowalski’s technique. With this technique

the structure of the graph does not change by adding nodes that occur by resolution during the search.

The clauses visited during the search are instead stored in tree structures that offer the grounds for taking

into account properties like minimality and consistency of a proof that are essential for the search for

arguments.

A connection graph for ∆ is an undirected graph (N,A) where N is a set of nodes each of which

corresponds to a clause from ∆ andA is the set of arcs that connect pairs of clauses with complementary

literals. The connection graph as defined here consists of exactly the elements of ∆ as its nodes and is

therefore unique. The attack graph for ∆ is a graph whereN is a set of nodes each of which corresponds

to a clause from ∆ and A is the set of arcs that connect pairs of clauses with exactly one complementary

literal between them. The closed graph introduces a kind of connected subgraph of the attack graph

where for each clause φ in the subgraph and for each disjunct b in φ there is another clause ψ in the

subgraph such that Attacks(φ, ψ) = b. The formal definitions are given below along with examples

taken from [32].

Definition 3.3.1 Let ∆ be a clause knowledgebase. The connection graph for ∆, denoted Connect(∆),

is a graph (N,A) where N = ∆ and A = {(φ, ψ) | Preattacks(φ, ψ) 6= ∅}.

Example 3.3.1 The following is the connection graph for ∆ = {¬b,¬c ∨ ¬g,¬c, f ∨ p,¬l ∨ ¬k, a ∨
b,¬b ∨ d, c ∨ g,¬h ∨ l, l ∨ k,¬a ∨ d,¬d,¬g, h ∨ ¬l,¬k, n ∨m ∨ ¬q,¬m,¬n,m, q}.
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¬b ¬c ∨ ¬g ¬c ¬h ∨ l — ¬l ∨ ¬k n ∨m ∨ ¬q
| � | | | | | |

a ∨ b — ¬b ∨ d c ∨ g h ∨ ¬l — l ∨ k ¬n ¬m q

| | | | |
¬a ∨ d — ¬d ¬g f ∨ p ¬k m

The attack graph defined below is a subgraph of the connection graph identified using the Attacks func-

tion.

Definition 3.3.2 Let ∆ be a clause knowledgebase. The attack graph for ∆, denoted AttackGraph(∆),

is a graph (N,A) where N = ∆ and A = {(φ, ψ) | Attacks(φ, ψ) 6= null}.

Example 3.3.2 Continuing Example 3.3.1, the following is the attack graph for ∆.

¬b ¬c ∨ ¬g ¬c ¬h ∨ l — ¬l ∨ ¬k n ∨m ∨ ¬q
| | | | |

a ∨ b — ¬b ∨ d c ∨ g h ∨ ¬l — l ∨ k ¬n ¬m q

| | | | |
¬a ∨ d — ¬d ¬g f ∨ p ¬k m

The closed graph for ∆ is the subgraph of the attack graph where for each clause φ in the subgraph

and for each disjunct b in φ there is another clause ψ in the subgraph such that Attacks(φ, ψ) = b holds.

Definition 3.3.3 Let ∆ be a clause knowledgebase. The closed graph for ∆, denoted Closed(∆), is the

largest subgraph (N,A) of AttackGraph(∆), such that for each φ ∈ N , for each b ∈ Disjuncts(φ) there

is a ψ ∈ N with Attacks(φ, ψ) = b.

Example 3.3.3 Continuing Example 3.3.2, the following is the closed graph for ∆.

¬b ¬c n ∨m ∨ ¬q
| | | | |

a ∨ b — ¬b ∨ d c ∨ g ¬n ¬m q

| | | |
¬a ∨ d — ¬d ¬g m

The above definition assumes that there is a unique largest subgraph of the attack graph that meets

the conditions presented. This is justified because having a node from the attack graph in the closed

graph does not exclude any other node from the attack graph also being in the closed graph. Any subset

of nodes is included when each of the disjuncts is negated by disjuncts in the other nodes. Moreover,

we can consider the closed graph being composed of components where for each component Y , and for

each node φ in Y , and for each disjunct b in φ, there is another node ψ in Y such that there is a disjunct

¬b in ψ. So the nodes in each component work together to ensure each disjunct is negated by a disjunct
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in another node in the component, and the largest subgraph of the attack graph is obtained by just taking

the union of these components.

For a minimal inconsistent set of clauses Ψ, the nodes of the closed graph for Ψ are exactly the

elements of Ψ. This is formalised in the proposition that follows.

Proposition 3.3.1 Let Γ be a minimal inconsistent set of clauses and let (N,A) = Closed(Γ). Then

N = Γ.

Proof: Γ is an inconsistent set and so there is a ∆ in Deductions(Γ), ∆ = {δ1, . . . , δn}, where δ = δn

is the empty clause. Also because Γ is a minimal inconsistent set, by proposition 3.2.1 it follows that

Γ ⊆ ∆. Then:

(1) For all δi ∈ ∆, for all a ∈ Disjuncts(δi) there is δ′i ∈ ∆ ∩ Γ (possibly δ′i = δi) such that

a ∈ Disjuncts(δ′i).

(2) For all δi ∈ ∆, for all a ∈ Disjuncts(δi) there is a δj ∈ ∆ with a ∈ Disjuncts(δj).

(3) For all δi ∈ ∆ and for all a ∈ Disjuncts(δi) there are δ′i ∈ ∆ ∩ Γ and δ′j ∈ ∆ ∩ Γ such that

a ∈ Disjuncts(δ′i) and a ∈ Disjuncts(δ′j): Follows from (1) and (2).

(4) For all δ′i ∈ ∆∩ Γ and for all a ∈ Disjuncts(δ′i) there is a δ′j ∈ ∆∩ Γ such that Attacks(δ′i, δ
′
j) = a:

From (3), for all δ′i ∈ ∆ ∩ Γ and for all a ∈ Disjuncts(δ′i) there is a δ′j ∈ ∆ ∩ Γ such

that a ∈ Preattacks(δ′i, δ
′
j). If for all such δ′i, δ

′
j , Attacks(δ′i, δ

′
j) = null , then for all δ′j with

a ∈ Disjuncts(δ′j), |Preattacks(δ′i, δ
′
j)| > 1, and so for all δ′j with a ∈ Disjuncts(δ′j) there is a

b ∈ Disjuncts(δ′i) such that b ∈ Disjuncts(δ′j). Since ∆ ∩ Γ is a minimal inconsistent set, then

∆′ = ∆ ∩ Γ \ {δ′i} ` ¬δ′i and ∆′ is consistent. So, ∆′ ` a ∈ Conjuncts(¬δi) and there are δ′j ∈ ∆′

with a ∈ Disjuncts(δ′j). For all the disjuncts b′ of Disjuncts(δ′j) \ {a}, ∆′ ` b′. But since for all δ′j

with a ∈ Disjuncts(δ′j) there is a b ∈ Disjuncts(δ′i) such that b ∈ Disjuncts(δ′j) then for b′ = b holds

that ∆′ ` b = b. Also, since b ∈ Disjuncts(δ′i), and ∆′ ` ¬δi then ∆′ ` b ∈ Conjuncts(¬δi) which

contradicts the assumption that ∆′ is consistent. Hence, the assumption that for some δ′i ∈ ∆ ∩ Γ there

is an a ∈ Disjuncts(δ′i) for which there is no δ′j ∈ ∆ ∩ Γ such that Attacks(δ′i, δ
′
j) = a, cannot hold and

so for all δ′i ∈ ∆ ∩ Γ, for all a ∈ Disjuncts(δ′i), there is δ′j ∈ ∆ ∩ Γ such that Attacks(δ′i, δ
′
j) = a from

which by the definition of the closed graph follows that N = Γ. �

For a minimal inconsistent set of clauses Ψ the following proposition also holds, according to

which, the closed graph for Ψ consists of a unique component.

Proposition 3.3.2 Let Ψ be a minimal inconsistent set of clauses. Then, Closed(Ψ) consists of a unique

component.

Proof: Let Ψ be a minimal inconsistent set of clauses. For a proof by contradiction assume that

Closed(Γ) = (N,A) consists of more that one component. Then, there are (N1, A1), (N2, A2) such

that N1 ⊂ N , N2 ⊂ N , A1 ⊂ A, A2 ⊂ A and N1 ∩ N2 = ∅, A1 ∩ A2 = ∅. By proposition 3.2.1,

there is a Γ ∈ Deductions(Ψ), Γ = {γ1, . . . , γn} such that γn = ⊥ and Ψ ⊆ Γ. Also, by proposition

3.3.1 it holds that N = Ψ. Then, N ⊆ Γ. Since N1 ∩ N2 = ∅, for all γi ∈ N1 and for all γj ∈ N2,



3.3. Connection Graphs for propositional clauses 43

Attacks(γi, γj) = null so it cannot hold that N1 ∪ N2 ⊆ Γ by the conditions of the definition for a

linear deduction and since N1 ∪N2 = N and N = Ψ, this contradicts the fact that Ψ ⊆ Γ. �

The focal graph (defined next) is a subgraph of the closed graph for ∆ which is specified by a

clause φ from ∆ and corresponds to the part of the closed graph that contains φ. In the following, a

component of a graph means that each node in the component is connected to any other node in the

component by a path.

Definition 3.3.4 Let ∆ be a clause knowledgebase and φ ∈ ∆. The focal graph of φ in ∆ denoted

Focal(∆, φ) is defined as follows: If there is a component X in Closed(∆) containing the node φ, then

Focal(∆, φ) = X , otherwise Focal(∆, φ) is the empty graph. Clause φ is called the epicentre of the

focal graph.

Example 3.3.4 Continuing Example 3.3.3, the following is the focal graph of ¬b in ∆

¬b
|

a ∨ b — ¬b ∨ d
| |

¬a ∨ d — ¬d

The last example illustrates how the notion of the focal graph of an epicentre φ in ∆ can be used

in order to focus on the part of the knowledgebase that is relevant to φ. From the way the focal graph is

defined we obtain the following proposition.

Proposition 3.3.3 Let ∆ be a clause knowledgebase. For all γi, γj ∈ ∆ either Focal(∆, γi) and

Focal(∆, γj) are the same component of Closed(∆) or they are disjoint components.

Proof: Follows from definition 3.3.4. If there is a component Xi in Closed(∆) containing the node γi,

then Focal(∆, γi) = Xi. If Xi contains γj then by definition 3.3.4 for γj as the epicentre follows that

Focal(∆, γj) = Xi and Focal(∆, γi) and Focal(∆, γj) are the same component. If Xi does not contain

γj then then either there is some component Xj of Closed(∆) that contains γj or Focal(∆, γj) is the

empty graph. In the first case Xj and Xi are disjoint otherwise it would hold that Xi contains γj . In the

second case where Focal(∆, γj) is the empty graph, Focal(∆, γj) and Focal(∆, γi) are trivially disjoint.

�

3.3.2 Connection graphs for arguments in CNF

The focal graph can be used to reduce the search space when looking for arguments for a formula ψ

in CNF from a knowledgebase ∆ that consists of formulae in CNF. This requires using each of the

conjuncts of the conjunctive normal form ψ of ¬ψ as the epicentre for a focal graph in the set of clauses

that appear as conjuncts in the elements of ∆. In order to extend the definitions for connection graphs
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to support a language of propositonal formulae in conjunctive normal form, I first introduce the function

SetConjuncts which, given a set of formulae where each formula is in CNF, returns the set of clauses

that are conjuncts of the formulae in the set.

Definition 3.3.5 Let Φ = {φ1, . . . , φk} be a set of formulae where each of the φ1, . . . , φk is in conjunc-

tive normal form. Then, function SetConjuncts(Φ) returns the set clauses that appear as conjuncts in

the formulae of the set:

SetConjuncts(Φ) =
⋃
φi∈Φ

Conjuncts(φi)

Example 3.3.5 For Φ = {¬a, (a ∨ b) ∧ ¬d, (c ∨ d) ∧ (e ∨ f ∨ ¬g),¬d}, SetConjuncts(Φ) = {¬a, a ∨
b,¬d, c ∨ d, e ∨ f ∨ ¬g}.

Given a set Φ that contains formulae in CNF and a γi ∈ Conjuncts(ψ) for some ψ ∈ Φ, function

SubFocus(Φ, γi) that follows returns the focal graph of γi in SetConjuncts(Φ).

Definition 3.3.6 Let Φ be a knowledgebase and ψ ∈ Φ. Then for each γi ∈ Conjuncts(ψ),

SubFocus(Φ, γi) = Focal(SetConjuncts(Φ), γi)

.

Example 3.3.6 Let Φ = {(a ∨ b) ∧ (f ∨ p) ∧ ¬c, (¬a ∨ d) ∧ (¬c ∨ ¬g),¬d,¬d ∧ (¬h ∨ l), q ∧ (¬h ∨
l), c ∨ g,¬g,¬b,¬b ∨ d, l ∨ k,m ∧ (¬l ∨ ¬k),¬k ∧ (n ∨m ∨ ¬q), h ∨ ¬l,¬m ∧ ¬n,m ∧ q}. Then,

SetConjuncts(Φ) is equal to ∆ from example 3.3.1. Let φ = (a∨b)∧(f∨p)∧¬c, and let γ1 denote a∨b,
γ2 denote f ∨ p and γ3 denote ¬c. So, if SubFocus(Φ, γ1) = (N1, A1), SubFocus(Φ, γ2) = (N2, A2)

and SubFocus(Φ, γ3) = (N3, A3) then

N1 = {a ∨ b,¬a ∨ d,¬d,¬b,¬b ∨ d},
N2 = ∅,
N3 = {¬c, c ∨ g,¬g}.

The next definition introduces the notion of the query graph of a formula ψ in a knowledgebase Φ,

where each of the elements of Φ is a formula in CNF. Let ψ = δ1∧ . . .∧δn be a formula and let ψ denote

the conjunctive normal form of the negation of ψ, and so ψ = γ1 ∧ . . . ∧ γm ≡ ¬ψ. The query graph is

a graph consisting of all the focal graphs of each of the γi ∈ Conjuncts(ψ) in SetConjuncts(Φ ∪ {ψ}),

i.e. all the SubFocus(Φ ∪ {ψ}, γi) for all γi ∈ Conjuncts(ψ).

For a graph C = (N,A) let function Nodes(C) return the set of clauses that correspond to the

nodes of the graph (i.e. Nodes(C) = N ) and for a formula ψ, let ψ denote the conjunctive normal form

of ¬ψ. Using this notation the query graph of ψ in Φ is defined as follows.

Definition 3.3.7 Let Φ be a knowledgebase and ψ be a formula. The query graph of ψ in Φ denoted

Query(Φ, ψ) is the closed graph for the nodes

⋃
γi∈Conjuncts(ψ)

Nodes(SubFocus(Φ ∪ {ψ}, γi))
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Example 3.3.7 Let Φ′ = {(¬a ∨ d) ∧ (¬c ∨ ¬g),¬d,¬d ∧ (¬h ∨ l), q ∧ (¬h ∨ l), c ∨ g,¬g,¬b,¬b ∨
d, l∨k,m∧ (¬l∨¬k),¬k∧ (n∨m∨¬q), h∨¬l,¬m∧¬n,m∧ q} and let ψ = (¬a∨¬f ∨ c)∧ (¬a∨
¬p ∨ c) ∧ (¬b ∨ ¬f ∨ c) ∧ (¬b ∨ ¬p ∨ c). For Φ′ and ψ we have ψ = (a ∨ b) ∧ (f ∨ p) ∧ ¬c, which is

equal to φ from example 3.3.6 and Φ′∪{ψ} is equal to Φ from example 3.3.6. Then, continuing example

3.3.6, the query graph of ψ in Φ is presented below and consists of the subgraphs (N1, A1), (N2, A2)

and (N3, A3).

¬b ¬c
| |

a ∨ b — ¬b ∨ d c ∨ g
| | |

¬a ∨ d — ¬d ¬g

So, using each of the conjuncts γi of ψ as the epicentre for the focal graph in SetConjuncts(Φ∪{ψ})
we obtain a component of the query graph of ψ in Φ.

The idea behind the notion of the query graph is that if we seek supports for arguments for ψ from a

knowledgebase Φ = {φ1, . . . , φk} (where each of the φ1, . . . , φk is in CNF), instead of searching among

the elements of Φ, we can search among the elements of Φ that consist of formulae whose conjuncts

are contained in each of the components of the query graph i.e. in each SubFocus(Φ ∪ {ψ}, γi) for

all γi ∈ Conjuncts(ψ). This can provide a reduced knowledgebase to consider, without losing any

arguments for ψ. These results can be formalised by using some additional definitions that correlate the

clauses of the query graph with the formulae of the knowledgebase. The following definition introduces

the notion of a zone, which associates each clause from each subfocus to one or more formulae from

knowledgebase Φ.

Definition 3.3.8 Let Φ be a knowledgebase and ψ be a formula. Then, for each γi ∈ Conjuncts(ψ),

Zone(Φ, γi) = {φ ∈ Φ | Conjuncts(φ) ∩ Nodes(SubFocus(Φ ∪ {ψ}, γi)) 6= ∅}

Example 3.3.8 Continuing examples 3.3.6 and 3.3.7, where ψ = (a ∨ b) ∧ (f ∨ p) ∧ ¬c, γ1 = a ∨ b,
γ2 = f ∨ p and γ3 = ¬c, for each γi ∈ Conjuncts(ψ), i = 1 . . . 3 we have

Zone(Φ′, γ1) = {(¬a ∨ d) ∧ (¬c ∨ ¬g),¬d,¬b,¬b ∨ d,¬d ∧ (¬h ∨ l)}
Zone(Φ′, γ2) = ∅
Zone(Φ′, γ3) = {c ∨ g,¬g}

From the way SubFocus and Zone are defined, it holds that conjuncts of ψ that are in the same

SubFocus correspond to the same set Zone of formulae from Φ.

Proposition 3.3.4 Let Φ be a set of formulae and let ψ be a formula. If SubFocus(Φ ∪ {ψ}, γi) =

SubFocus(Φ ∪ {ψ}, γj) for some γi, γj ∈ Conjuncts(ψ), then Zone(Φ, γi) = Zone(Φ, γj).
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Proof: Let Φ be a set of formulae and ψ be a formula and let for some γi, γj ∈ Conjuncts(ψ)

SubFocus(Φ∪{ψ}, γi) = SubFocus(Φ∪{ψ}, γj). Then, it holds that Nodes(SubFocus(Φ∪{ψ}, γi) =

Nodes(SubFocus(Φ ∪ {ψ}, γj) so for all φ ∈ Φ, Conjuncts(φ) ∩ Nodes(SubFocus(Φ ∪ {ψ}, γi) 6= ∅
iff Conjuncts(φ) ∩ Nodes(SubFocus(Φ ∪ {ψ}, γj) 6= ∅ from which follows that φ ∈ Zone(Φ, γi) iff

φ ∈ Zone(Φ, γj) and so Zone(Φ, γi) = Zone(Φ, γj). �

The converse of the last proposition does not hold as the following example illustrates.

Example 3.3.9 For Φ = {(c ∨ g) ∧ d, d ∨ f,¬q, (d ∨ p) ∧ f,¬n, k ∨ ¬m} and ψ = c ∨ g ∨ d we

have ψ = ¬c ∧ ¬g ∧ ¬d and N1 ≡ SubFocus(Φ ∪ {ψ},¬c) = {¬c,¬g, c ∨ g}, N2 ≡ SubFocus(Φ ∪
{ψ},¬g) = {¬c,¬g, c ∨ g} = N1 and N3 ≡ SubFocus(Φ ∪ {ψ},¬d) = {¬d, d}. Furthermore,

Zone(Φ,¬c) = Zone(Φ,¬g) = Zone(Φ,¬d) = {(c ∨ g) ∧ d} although N3 6= N2 and N3 6= N1.

The following proposition demonstrates how the query graph of ψ in Φ, and in particular the set

Zone(Φ, γi) that is associated to a component SubFocus(Φ∪{ψ}, γi) of the query graph is useful in the

search for arguments for ψ from Φ.

Proposition 3.3.5 Let Φ be a knowledgebase where each element is in CNF and ψ be a clause. If 〈Ψ, ψ〉
is an argument from Φ, then there is a γi ∈ Conjuncts(ψ) s.t Ψ ⊆ Zone(Φ, γi).

Proof: Let 〈Ψ, ψ〉 be an argument where Ψ 6= ∅. Then Ψ ∪ {ψ} is a minimal inconsistent set, so

there is a Γ ⊆ SetConjuncts(Ψ ∪ {ψ}) such that Γ is a minimal inconsistent set. Then for all φ ∈
Ψ ∪ {ψ} there is a γ ∈ Γ such that γ ∈ Conjuncts(φ), otherwise if this did not hold, since Γ ` ⊥, and

Conjuncts(φ) ∩ Γ = ∅ then (Ψ ∪ {ψ}) \ {φ} ` ⊥ and this contradicts the assumption that Ψ ∪ {ψ}
is a minimal inconsistent set. For Γ it holds that Γ ∩ SetConjuncts(Ψ) 6= ∅ otherwise it would hold

that Γ ⊆ SetConjuncts({ψ}), and because Γ ` ⊥ it would hold that {ψ} ` ⊥ which contradicts the

assumption that Ψ∪{ψ} is a minimal inconsistent set. Similarly, Γ∩SetConjuncts({ψ}) 6= ∅ otherwise it

would hold that Γ ⊆ SetConjuncts(Ψ), and because Γ ` ⊥ it would hold that Ψ ` ⊥ which contradicts

the assumption that Ψ ∪ {ψ} is a minimal inconsistent set. Then there is a Γ1 ⊆ SetConjuncts(Ψ),

Γ1 6= ∅ and a Γ2 ⊆ SetConjuncts({ψ}), Γ2 6= ∅ such that Γ = Γ1 ∪ Γ2. For all γj ∈ Γ2 it holds that

γj ∈ Nodes(SubFocus(Ψ ∪ {ψ}, γj)) by the definition of SubFocus. By proposition 3.3.2, Closed(Γ)

consists of a unique component. By proposition 3.3.1, if Closed(Γ) = (N,A), then Γ = N . Since

Γ = N , and (N,A) consists of a unique component, for all γj ∈ Γ∩Γ2 follows that they are contained in

the same componenent of Closed(Γ) and hence the same component of Closed(SetConjuncts(Ψ∪{ψ})).

So there is a component (N ′, A′) of Closed(SetConjuncts(Ψ ∪ {ψ})) such that for all γi, γj ∈ Γ ∩
Γ2, Focal(SetConjuncts(Ψ ∪ {ψ}, γi) = Focal(SetConjuncts(Ψ ∪ {ψ}, γj) = (N ′, A′) and so by the

definition for SubFocus, for all γi, γj ∈ Γ ∩ Γ2, SubFocus(Ψ ∪ {ψ}, γi) = SubFocus(Ψ ∪ {ψ}, γj) =

(N ′, A′). By the way the focal graph is defined it holds that (N ′, A′) consists of a unique component.

Since for all γj ∈ Γ2 it holds that γj ∈ N ′, then Γ2 ⊆ N ′. Because (N,A) and (N ′, A′) are connected

subgraphs of Closed(SetConjuncts(Ψ ∪ {ψ}) each of which consists of a unique component and since

Γ2∩N ⊂ N ′ andN = Γ1∪Γ2 then it also holds that Γ1∩N ⊆ N ′. Hence, it holds that (Γ1∪Γ2)∩N ⊆
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N ′ and because N = Γ = Γ1 ∪ Γ2 the above is equivalent to N ⊆ N ′. From the way Γ is defined, the

following holds

(1) ∀φ ∈ Ψ ∪ {ψ}, ∃γ ∈ Γ such that γ ∈ Conjuncts(φ)

from (1) follows that

(2) ∀φ ∈ Ψ, ∃γ ∈ Γ such that γ ∈ Conjuncts(φ)

since Γ = N , then from (2) follows that

(3) ∀φ ∈ Ψ, ∃γ ∈ N such that γ ∈ Conjuncts(φ)

because N ⊆ N ′, from (3) follows that

(4) ∀φ ∈ Ψ, ∃γ ∈ N ′ such that γ ∈ Conjuncts(φ)

because for all γi ∈ Γ2, (N ′, A′) = SubFocus(Ψ ∪ {ψ}, γi), from (4) follows that

(5) ∀φ ∈ Ψ and for some γi ∈ Γ2, ∃γ ∈ Nodes(SubFocus(Ψ ∪ {ψ}, γi)) s.t. γ ∈ Conjuncts(φ)

from the definition of Zone and (5) it follows that ∀φ ∈ Ψ and for some γi ∈ Γ2, φ ∈ Zone(Φ, γi) from

which follows that for some γi ∈ Γ2, Ψ ⊆ Zone(Φ, γi) and so there is a γi ∈ Conjuncts(ψ) such that

Ψ ⊆ Zone(Φ, γi). �

Example 3.3.10 Continuing example 3.3.7, let Φ′ = {(¬a ∨ d) ∧ (¬c ∨ ¬g),¬d,¬d ∧ (¬h ∨ l), q ∧
(¬h∨ l), c∨ g,¬g,¬b,¬b∨ d, l ∨ k,m∧ (¬l ∨¬k),¬k ∧ (n∨m∨¬q), h∨¬l,¬m∧¬n,m∧ q} and

ψ = (¬a ∨ ¬f ∨ c) ∧ (¬a ∨ ¬p ∨ c) ∧ (¬b ∨ ¬f ∨ c) ∧ (¬b ∨ ¬p ∨ c). Then, all the arguments for ψ

from Φ are the following

A1 = 〈Ψ1, ψ〉 = 〈{c ∨ g,¬g}, ψ〉
A2 = 〈Ψ2, ψ〉 = 〈{(¬a ∨ d) ∧ (¬c ∨ ¬g),¬b,¬d}, ψ〉
A3 = 〈Ψ3, ψ〉 = 〈{(¬a ∨ d) ∧ (¬c ∨ ¬g),¬b ∨ d,¬d ∧ (¬h ∨ l)}, ψ〉
A4 = 〈Ψ4, ψ〉 = 〈{(¬a ∨ d) ∧ (¬c ∨ ¬g),¬b ∨ d,¬d}, ψ〉
A5 = 〈Ψ5, ψ〉 = 〈{(¬a ∨ d) ∧ (¬c ∨ ¬g),¬b,¬d ∧ ¬h ∨ l}, ψ〉

From example 3.3.8 we have ψ = (a ∨ b) ∧ (f ∨ p) ∧ ¬c, and for each γi ∈ Conjuncts(ψ), i = 1 . . . 3

where γ1 = a∨b, γ2 = f ∨p and γ3 = ¬c, we have Zone(Φ′, γ1) = {(¬a∨d)∧(¬c∨¬g),¬d,¬b,¬b∨
d,¬d∧ (¬h∨ l)}, Zone(Φ′, γ2) = ∅ and Zone(Φ′, γ3) = {c∨ g,¬g}. For the supports of the arguments

given above it holds that Ψ1 ⊆ Zone(Φ′, γ3), and for j = 2 . . . 5, it holds that Ψj ⊆ Zone(Φ′, γ1)

So if 〈Ψ, ψ〉 is an argument, then there is some γi ∈ Conjuncts(ψ) that delineates the subset

Zone(Φ, γi) of knowledgebase Φ which contains the support Ψ. Therefore, in order to find all the

arguments for ψ we need to consider the set of formulae that corresponds to the zones of all the γi ∈
Conjuncts(ψ). This set is the supportbase defined next.

Definition 3.3.9 For a knowledgebase Φ and a formula ψ the supportbase is given as follows:

SupportBase(Φ, ψ) =
⋃

γi∈Conjuncts(ψ)

Zone(Φ, γi)
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Example 3.3.11 Continuing example 3.3.10, SupportBase(Φ, ψ) = {(¬a∨d)∧(¬c∨¬g),¬d,¬b,¬b∨
d,¬d ∧ (¬h ∨ l), c ∨ g,¬g}.

As a consequence of proposition 3.3.5 we obtain the following corollary, according to which,

SupportBase(Φ, ψ) is the knowledgebase that contains all the arguments for ψ from Φ.

Corollary 3.3.1 Let Φ be a knowledgebase where each formula from Φ is in conjunctive normal form

and let ψ be a formula. If 〈Ψ, ψ〉 is an argument for ψ from Φ, then Ψ ⊆ SupportBase(Φ, ψ).

Proof: Let 〈Ψ, ψ〉 be an argument where Ψ ⊆ Φ. From proposition 3.3.5, it follows that there is some

γi ∈ Conjuncts(ψ) such that Ψ ⊆ Zone(Φ, γi). Then, Ψ ⊆ ⋃
γj∈Conjuncts(ψ) Zone(Φ, γj) which is

equivalent to Ψ ⊆ SupportBase(Φ, ψ). �

Hence, by corollary 3.3.1, it follows that all the supports for arguments for ψ are contained in

SupportBase(Φ, ψ). So, instead of using the initial knowledgebase Φ as the background knowledge in

order to look for arguments for ψ, we can use SupportBase(Φ, ψ).

The next section presents the algorithms that implement the theory introduced in this section.

3.4 Algorithms for producing connection graphs
In this section three algorithms are presented, each of which is associated with a notion defined in

the previous section. The first algorithm GetFocal(∆, φ) returns the focal graph of a clause φ in a

knowledgebase of clauses ∆. Using algorithm GetFocal, the second algorithm GetQueryGraph(Φ, ψ)

returns the query graph of a formula ψ in a set Φ that consists of formulae in CNF. Using the output

of GetQueryGraph(Φ, ψ), the last algorithm RetrieveZones(Φ, ψ) returns the sets Zone(Φ, γi) for all

γi ∈ ψ.

3.4.1 Algorithm for the focal graph

Algorithm 3.1 returns the set of nodes of the focal graph of a clause φ in a clause knowledgebase ∆. Al-

gorithm GetFocal(∆, φ) finds the focal graph of φ in ∆ by a depth first search following the links of the

component of AttackGraph(∆) that is linked to φ. For this, a data structure Nodeψ (for each ψ ∈ ∆) is

used that represents the node for ψ in AttackGraph(∆). The attack graph can be represented by an adja-

cency matrix. Initially all the nodes are allowed as candidate nodes for the focal graph of φ in ∆ and sto-

red in the set AllowedNodes. During the search they can be rejected if they do not satisfy the conditions

of the definition for the focal graph and removed from the set AllowedNodes. The algorithm chooses

the appropriate nodes by using the boolean method isConnected(C,Nodeψ) which tests whether a node

Nodeψ of the attack graph C = (N,A) is such that each literal b ∈ Disjuncts(ψ) corresponds to at least

one arc to an allowed node (i.e. ∀b ∈ Disjuncts(ψ),∃Nodeψ′ ∈ AllowedNodes s.t. Attacks(ψ,ψ′) = b),

and so it returns false when there is a b ∈ Disjuncts(ψ) for which there is no Nodeψ′ ∈ AllowedNodes

s.t. Attacks(ψ,ψ′) = b. If this method does return false for a Nodeψ , then Nodeψ is rejected (it is

removed from set AllowedNodes) and the algorithm backtracks to retest whether its adjacent allowed



3.4. Algorithms for producing connection graphs 49

nodes are still connected. If some of them are no longer connected, they are rejected and in the same

way their adjacent allowed nodes are tested recursively.

Algorithm 3.1 GetFocal(∆, φ)
Let C = (N,A) be the attack graph for ∆
Let AllowedNodes = {Nodeψ | ψ ∈ N}
Let VisitedNodes be the empty set.
if φ 6∈ ∆ or ¬isConnected(C,Nodeφ) then

return ∅
else

Let S be an empty Stack
push Nodeφ onto S

end if
while S is not empty do

Let Nodeψ be the top of the stack S
if Nodeψ ∈ AllowedNodes then

if isConnected(C,Nodeψ) then
if Nodeψ ∈ VisitedNodes then

pop Nodeψ from S
else

VisitedNodes = VisitedNodes ∪ {Nodeψ}
pop Nodeψ from S
for all Nodeψ′ ∈ AllowedNodes with Attacks(ψ,ψ′) 6= null do

push Nodeψ′ onto S
end for

end if
else

AllowedNodes = AllowedNodes \ {Nodeψ}
VisitedNodes = VisitedNodes ∪ {Nodeψ}
pop Nodeψ from S
for all Nodeψ′ ∈ (AllowedNodes \ VisitedNodes) with Attacks(ψ,ψ′) 6= null do

push Nodeψ′ onto S
end for

end if
else

pop Nodeψ from S
end if

end while
return AllowedNodes ∩ VisitedNodes

3.4.2 Algorithm for the query graph

Using algorithm GetFocal(∆, φ) for ∆ = SetConjuncts(Φ ∪ {ψ}) and φ = γ1, . . . , γn where

{γ1, . . . , γn} = Conjuncts(ψ), algorithm 3.2 returns a set of sets each of which corresponds to the

set of clauses of a component of the query graph of ψ in Φ. Each component of the query graph is

the focal graph of a γi ∈ Conjuncts(ψ) in SetConjuncts(Φ ∪ {ψ}) i.e. SubFocus(Φ ∪ {ψ}, γi). The

algorithm stores the set of clauses Si of each such component that is retrieved by GetFocal for some

epicentre γi and proceeds to the next epicentre.

In Algorithm 3.2 we can see that it is not always necessary to use Algorithm 3.1 for each of the

γi ∈ Conjuncts(ψ) when trying to isolate the appropriate subsets of Φ. Testing for containment of

a clause γj ∈ Conjuncts(ψ) in an already retrieved set Si = Nodes(SubFocus(Φ ∪ {ψ}, γi)), i < j

(where the ordering of the indices describes the order in which the algorithm is applied for each of the
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conjuncts) is sufficient to give the Sj = Nodes(SubFocus(Φ∪ {ψ}, γj)) according to proposition 3.3.3.

Algorithm 3.2 GetQueryGraph(Φ, ψ)

Let ψ be ¬ψ in CNF : ψ ≡ γ1 ∧ . . . ∧ γm
Let S be a set to store sets of clauses, initially empty
Let Clauses = SetConjuncts(Φ ∪ {ψ})
for i = 1 . . .m do

if ∃Sj ∈ S s.t. γi ∈ Sj then
i = i+ 1

else
Si = GetFocal(Clauses, γi)

end if
S = S ∪ {Si}

end for
return S

3.4.3 Algorithm for zones

The last algorithm, RetrieveZones(Φ, ψ), returns the set that contains all the sets Zone(Φ, γi) for each

γi ∈ Conjuncts(ψ). Using the results of algorithm 3.2, it associates each set of clauses Si from the

output {S1 . . . , Sk} of GetQueryGraph(Φ, ψ) to a set of formulae Zi ⊆ Φ where for each Zi, φ ∈
Zi iff φ ∈ Φ and there is a γ ∈ Si such that γ ∈ Conjuncts(φ). Then, by definition 3.3.8, each

such Zi corresponds to a Zone(Φ, γi) for some γi ∈ Conjuncts(ψ). When this has been applied to all

the the sets Sj from {S1 . . . , Sk} and for all Sj there is a Zj constructed as described above, all the

sets Zone(Φ, γj) are retrieved. From the way algorithm 3.2 works, if for some γi, γj SubFocus(Φ ∪
{ψ}, γi) = SubFocus(Φ ∪ {ψ}, γj), then only one occurrence of the set of nodes of this subfocus is

stored in the output set {S1 . . . , Sk}. This does not affect the results of algorithm 3.3 in terms of omitting

results. By proposition 3.3.4, if SubFocus(Φ ∪ {ψ}, γi) = SubFocus(Φ ∪ {ψ}, γj) then Zone(Φ, γi) =

Zone(Φ, γj) and so by storing the set of nodes of identical components only once, we can save repeating

operations that give the same result without missing useful outputs.

Algorithm 3.3 RetrieveZones(Φ, ψ)
Let Z be a set to store sets of formulae, initially empty
Let S = GetQueryGraph(Φ, ψ) ≡ {S1, . . . , Sk}
for i = 1 . . . k do

Let Zi be the emptyset.
for j = 1 . . . |Si| do

Let γj be the j-th element of Si
Let Cj = {φ ∈ Φ | γj ∈ Conjuncts(φ)}
Zi = Zi ∪ Cj

end for
Z = Z ∪ {Zi}

end for
return Z

3.5 Experimental results
This section covers a preliminary experimental evaluation of algorithm 3.1 using a prototype implemen-

tation programmed in java running on a modest PC (Core2 Duo 1.8GHz).
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The experimental data were obtained using randomly generated clause knowledgebases of a fixed

number of 600 clauses according to the fixed clause length model K-SAT [70, 46] where the chosen

length (i.e. K) for each clause was either a disjunction of 3 literals or a disjunction of 1 literal. The

clauses of length 3 can be regarded as rules and clauses of length 1 as facts. Each disjunct of each

clause was randomly chosen out of a set of N distinct variables (i.e. atoms) and negated with probability

0.5.

In the experiment, two dimensions were considered. The first dimension was the clauses-to-

variables ratio. This ratio is considered to be the integer part of the division of the number of clauses in

∆ by the number of variables N (i.e. b|∆|/|N |c). The second dimension was the proportion of facts-to-

rules in the knowledgebases tested. The preliminary results are presented in Figure 3.1 where each curve

in the graph corresponds to one of these variations on the proportion of facts-to-rules. More precisely,

each curve relates to one of the following (n, n′) tuples where n represents the number of facts and n′

represents the number of rules in the set: (150,450), (200,400), (300,300), (400,200), (450,150). Since

each clause knowledgebase contains 600 elements, each of these tuples sums to 600. Each point on

each curve is the average focal graph size from 1000 repetitions of running Algorithm 3.1 for randomly

generated epicentres and randomly generated knowledgebases of a fixed clauses-to-variables ratio repre-

sented by coordinate x. For the results presented, since the values on axis x ranges from 1 to 15, the

smallest number of variables used throughout the experiment was 40 which corresponds to a clauses-to-

variables ratio of 15, while the largest number of variables used was 600 which corresponds to a clauses

to variables ratio of 1.

clauses-to-variables ratio

0 2 4 6 8 10 12 14 16

av
er

ag
e 

fo
ca

l g
ra

ph
 s

ize

0

100

200

300

400

500

600
facts/rules=1/3

facts/rules=1/2

facts/rules=1/1

facts/rules=2/1

facts/rules=3/1

Figure 3.1: Focal graph size variation with the clauses-to-variables ratio

The evaluation of this experiment was based on the size of the focal graph of an epicentre in a

clause knowledgebase compared to the cardinality of the knowledgebase. For a fixed number of clauses,
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the number of distinct variables that occur in the disjuncts of all these clauses determines the size of

the focal graph. In figure 3.1 we see that as the clauses-to-variables ratio increases, the average focal

graph size also increases because an increasing clauses-to-variables ratio for a fixed number of clauses

implies a decreasing number of variables and this allows for a distribution of the variables amongst the

clauses such that it is more likely for a literal to occur in a clause with its opposite occuring in ano-

ther clause. In previous experiments [31] it was observed that for a clause knowledgebase consisting

of 3-place clauses only, an increasing clauses-to-variables ratio in the range [5, 10] ameliorates the per-

formance of the system as it increases the probability of a pair of clauses φ, ψ from ∆ being such that

|Preattacks(φ, ψ)| > 1. This is because a ratio in this range makes the occurrence of a variable and its

negation in the clauses of the set so frequent that it allows the Attacks relation to be defined only on

a small set of clauses from the randomly generated clause knowledgebase. In the graph presented here

though, this is less likely to happen as the clause knowledgebases tested involve both facts and rules.

Including literals (facts) in the knowledgebases used during the experiment makes the repeated

occurrence of the same fact and its complement in the randomly generated clause knowledgebases, and

hence in the subsequent focal graph, more frequent. It is for this reason that the curves with lower facts-

to-rules proportion have a lower average focal graph (for each clauses-to-variables ratio). The symbol

• on each of the curves indicates the highest possible clauses-to-variables ratio that would allow for a

randomly generated clause knowledgebase consisting of the corresponding proportion of facts and rules

to contain only distinct elements. Hence, for the data presented in this graph, the largest average focal

graph of a randomly generated clause in a randomly generated clause knowledgebase of 600 distinct

elements has the value 343.99 which corresponds to 57% of the initial knowledgebase. The values of

the parameters with which this maximum is obtained correspond to a clauses-to-variables ratio equal to

4 on knowledgebases with a 1 to 1 proportion of facts-to-rules.

The average time for each repetition of the algorithm ranged from 6.3 seconds (for a facts-to-rules

proportion of 1-3) to 13.8 seconds (for a facts-to-rules proportion of 3-1). So, the results show that for

an inexpensive process we can substantially reduce the search space for arguments.

3.6 Discussion
In this chapter, I proposed the use of connection graphs as a way of ameliorating the computation cost

by reducing the search space when searching for arguments for a formula from knowledgebases that

contain formulae in conjunctive normal form. I provided theoretical results to ensure the correctness of

the proposal, and provisional empirical results to indicate the potential advantages of the approach.

In the next chapter I explain how apart from reducing the search space for arguments, using the

structures defined in this chapter can be useful for developing algorithms that produce arguments.



Chapter 4

Searching for arguments

In this chapter I present how we can use the structure of the query graph in order to search for arguments.

By the results of chapter 3 we know that given a claim ψ and a knowledgebase Φ that contains formulae

in CNF, we can reduce the cost of searching for arguments for ψ using SupportBase(Φ, ψ) rather than

Φ as the background knowledge.

So far the query graph has given the advantage of focusing the search on a part of the knowled-

gebase and thus reducing the search space for arguments but it has not provided a way for generating

arguments. In order to decide whether there are any arguments that can be obtained from the set of for-

mulae delineated by the query graph and to determine the support for these arguments, we need to search

the query graph. The query graph contains information about how the formulae relate to each other in the

sense of how they can potentially form proofs for the claim. In this chapter I present how we can exploit

the structure of the query graph and apply a search strategy which, by traversing the graph, generates

arguments. The language is restricted to the language of clauses C where, given a knowledgebase ∆ of

disjunctive clauses and a claim α that is a disjunctive clause, a depth first search takes place on the query

graph of α in ∆. The steps of the search are represented by tree structures that are defined as ‘proof

trees’.

This chapter starts with a brief presentation of arguments in C. It continues with definitions for

proof trees and theoretical results concerning proof trees that motivate the use of this method for gene-

rating arguments. It closes with the algorithms that generate the proof trees defined in the chapter and

experimental evaluation of these algorithms.

4.1 Arguments in C
The proposal for generating arguments presented in this chapter is based on C. The definition for an

argument in C remains the same with the definition used so far and so the conditions of definition 2.2.3

do not change. The only restriction to that is that the claim for an argument is a disjunctive clause and the

knowledgebase consists of disjunctive clauses. Similarly, the definitions for a counterargument, a cano-

nical undercut and an argument tree also remain the same, with the restriction that the knowledgebases

and the claims considered are from C.

Although C is a restricted language in comparison to full propositional logic, it still has the strength
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to represent complex information. It is well established that formulae with full syntax of propositional

logic that involve implication and conjunction besides disjunction and negation can be rewritten in equi-

valence to formulae in a CNF. In addition, a set of disjunctive clauses that appear as conjuncts in a CNF

can be regarded as equivalent to the formula in CNF. Therefore, although C lacks the symbols of impli-

cation and conjunction compared to full propositional logic, it is strong enough to represent equivalent

information. The following examples illustrate how by rewriting a set of formulae into clausal form we

can obtain equivalent arguments in C.

Example 4.1.1 For a knowledgebase ∆ = {a, b, c, a → ¬b ∨ c, a → ¬b, d,¬d,¬c, d → a, d → e}
some arguments include:

〈{a→ ¬b},¬(a ∧ b)〉 〈{a, a→ ¬b},¬b ∨ ¬c〉 〈{a, a→ ¬b},¬b〉
〈{¬c},¬c ∨ b〉 〈{¬c},¬c〉 〈{a, b, a→ ¬b ∨ c}, c〉

Neither knowledgebase ∆ nor the claims of the arguments above are necessarily in C. Let ∆′ =

{a, b, c,¬a ∨ ¬b ∨ c,¬a ∨ ¬b, d,¬d,¬c,¬d ∨ a,¬d ∨ e}. Then, ∆′ ⊂ C. Observe that there is a

one-to-one correspodence between the elements of ∆′ and those of ∆, and there is a one-to-one corres-

podence between the arguments given above and their equivalent from ∆′ given below.

〈{¬a ∨ ¬b},¬a ∨ ¬b〉 〈{a,¬a ∨ ¬b},¬b ∨ ¬c〉 〈{a,¬a ∨ ¬b},¬b〉
〈{¬c},¬c ∨ b〉 〈{¬c},¬c〉 〈{a, b,¬a ∨ ¬b ∨ c}, c〉

Example 4.1.2 Let ∆ = {a, b, c, a → ¬b ∨ c, a → ¬b, d, ¬d,¬c, d → a, d → e}. Then, the following

is an argument tree for α = c.

〈{a, b, a→ ¬b ∨ c}, c〉
� �

〈{a→ ¬b}, �〉 〈{¬c}, �〉
| |

〈{d, d→ a, b}, �〉 〈{c}, �〉
� �

〈{a→ ¬b ∨ c,¬c}, �〉 〈{¬d}, �〉

Example 4.1.3 Using the equivalent knowledgebase ∆′ of ∆ as described in example 4.1.1 we obtain

the following argument tree for α = c where each node is logically equivalent to a node from the

argument tree of example 4.1.2.
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〈{a, b,¬a ∨ ¬b ∨ c}, d〉
� �

〈{¬a ∨ ¬b}, �〉 〈{¬c}, �〉
| |

〈{d,¬d ∨ a, b}, �〉 〈{c}, �〉
� �

〈{¬a ∨ ¬b ∨ c,¬c}, �〉 〈{¬d}, �〉

4.1.1 Properties of deductions and arguments in C
Linear resolution is the basis for the proposal for searching for arguments presented in this chapter. There

are some properties that follow from the definition of the linear resolution deduction. These properties

are used in proofs throughout this thesis, so they are given in this section in the form of lemmas.

Lemma 4.1.1 Let Ψ be a set of clauses and letD ∈ Deductions(Ψ). Then, for all a ∈ Literals(D) there

is an α ∈ Ψ ∩D such that a ∈ Disjuncts(α).

Proof: Follows from condition (1) of the definition of a linear deduction. �

Lemma 4.1.2 Let Ψ be a set of clauses and let D ∈ Deductions(Ψ) be such that D = {δ1, . . . , δn}.
Then, for all a ∈ Literals(D) \ Disjuncts(δn) there is an α ∈ D ∩ Ψ and an α′ ∈ D ∩ Ψ such that

Attacks(α, α′) = a.

Proof: Follows from condition (2) of definition 3.2.3. �

Lemma 4.1.3 Let 〈Φ, α〉 be an argument where Φ is a set of clauses and α = a1 ∨ . . . ∨ an is a clause.

Then, there is at least one aj ∈ Disjuncts(α) such that there is a β ∈ Φ with aj ∈ Disjuncts(β).

Proof: Φ ` α and so there is a linear deduction D for α from Φ. Then by lemma 4.1.1, there is a

aj ∈ Disjuncts(α) such that there is a β ∈ Φ with aj ∈ Disjuncts(β). �

Lemma 4.1.4 Let Φ be a minimal inconsistent set of clauses. Then for all ψ ∈ Φ, for all a ∈
Disjuncts(ψ) there is a Φ′ ⊂ Φ such that 〈Φ′, a〉 is an argument. For this Φ′ it holds that Φ′ ⊆ Φ \ {ψ}.

Proof: Let Φ be a minimal inconsistent set of clauses. Let for a clause ψ, ψ be the CNF of ¬ψ. Then,

for all 〈Φ \ {ψ}, ψ〉 is an argument hence Φ \ {ψ} is consistent and Φ \ {ψ} ` ψ. Let for ψ ∈ Φ,

a ∈ Disjuncts(ψ). Then a ∈ Conjuncts(ψ) so either 〈Φ \ {ψ}, a〉 is an argument or there is a subset Φ′

of Φ \ {ψ} that is minimal for entailing a and is also consistent hence 〈Φ′, a〉 is an argument. �

Lemma 4.1.5 Let 〈Φ, α〉 be an argument. Then, there is no β ∈ Φ such that β is a tautology.

Proof: Let 〈Φ, α〉 be an argument and let β ∈ Φ be a tautology. Then Φ+ ≡ Φ ∪ {¬α} is a minimal

inconsistent set and also β ∈ Φ+ and β 6= ¬α because β is a clause consisting of a disjunction of

more than one literal while ¬α is a conjuction of one or more literals. So, Φ+ \ {β} ⊂ Φ+ and

Φ+ \ {β} ` ¬β ` ⊥, hence Φ+ is not a minimal inconsistent set which contradicts the assumption that

〈Φ, α〉 is an argument. �
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Lemma 4.1.6 If Φ is a minimal inconsistent set of clauses then for all φ ∈ Φ, for all a ∈ Disjuncts(φ),

there is a φ′ ∈ Φ with a ∈ Disjuncts(φ).

Proof: Let Φ be a minimal inconsistent set of clauses and let φ ∈ Φ be such that a ∈ Disjuncts(φ).

To give a proof by contradiction suppose there is no φ′ ∈ Φ with a ∈ Disjuncts(φ′). By lemma 4.1.5,

a 6∈ Disjuncts(φ). Let φ be the CNF of ¬φ. Then, 〈Φ \ {φ}, φ〉 is an argument and a ∈ Conjuncts(φ),

so Φ \ {φ} ` a. If Φ′ ⊆ Φ \ {φ} is a minimal set that entails a, then 〈Φ′, a〉 is an argument, but there is

no φ′ ∈ Φ′ such that a ∈ Disjuncts(φ′) which contradicts lemma 4.1.3. �

Corollary 4.1.1 If Φ is a minimal inconsistent set of clauses then for all a ∈ Literals(Φ) there is a

Φ′ ⊂ Φ such that 〈Φ′, a〉 is an argument and a Φ′′ ⊂ Φ such that 〈Φ′′, a〉 is an argument.

Proof: Follows from lemmas 4.1.4 and 4.1.6. �

4.1.2 The Supportbase in C
Before I turn to introducing mechanisms for searching for arguments I present some simplifications in

the theory of chapter 3 when this is applied on C. These simplifications have to do with the fact that for

a set of clauses ∆ it holds that SetConjuncts(∆) = ∆. Therefore, if we seek arguments for a clause α

from ∆, the query graph of α in ∆ contains directly elements from ∆ as its nodes. This simplifies the

definitions of SubFocus, Zone and SupportBase.

According to the following lemma, for a set of clauses ∆ and a clause δi, SubFocus(∆, δi) and

Focal(∆, δi) are identical.

Lemma 4.1.7 Let ∆ be a set of clauses and δi be a clause. Then, SubFocus(∆, δi) = Focal(∆, δi).

Proof: Let ∆ be a set of clauses and δi be a clause. Clause δi can be regarded as a formula

in conjunctive normal form that consists of a unique conjunct. Then, by the definition for func-

tion Conjuncts follows that Conjuncts(δi) = {δi}. Moreover, for ∆ = {δ1, . . . , δn} it holds that

SetConjuncts(∆) = {δ1, . . . , δn} = ∆. Then, for some δi ∈ ∆, and for δi ∈ Conjuncts(δi),

SubFocus(∆, δi) = Focal(SetConjuncts(∆), δi) = Focal(∆, δi). �

Moreover, according to the following lemma, for a claim α ∈ C and a knowledgebase ∆ ⊂ C, the

subset of ∆ that is associated to Zone(∆, ai) for some ai ∈ Conjuncts(α) contains elements directly

from SubFocus(∆ ∪ {α}, ai).

Lemma 4.1.8 Let ∆ be a set of clauses and α be a clause. Then, for all ai ∈ Conjuncts(α),

Zone(∆, ai) = Nodes(SubFocus(∆ ∪ {α}, ai)) ∩∆.

Proof: Let ∆ be a set of clauses, α be a clause and ai ∈ Conjuncts(α). Then, by the definition for

zone, Zone(∆, ai) = {δ ∈ ∆ | Conjuncts(δ) ∩ Nodes(SubFocus(∆ ∪ {α}, ai)) 6= ∅}. Because

for all δ ∈ ∆, Conjuncts(δ) = {δ}, then Conjuncts(δ) ∩ Nodes(SubFocus(∆ ∪ {α}, ai)) 6= ∅ iff

δ ∈ Nodes(SubFocus(∆ ∪ {α}, ai)) i.e. for all δ ∈ ∆, δ ∈ Zone(∆, ai) iff δ ∈ Nodes(SubFocus(∆ ∪
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{α}, ai)) from which follows that Zone(∆, ai) = Nodes(SubFocus(∆ ∪ {α}, ai)) ∩∆. �

Essentially, the last lemma suggests that for all ai ∈ Conjuncts(α), the nodes of SubFocus(∆ ∪
{α}, ai)) that are from ∆ are the ones Zone(∆, ai) consists of. The only nodes of SubFocus(∆ ∪
{α}, ai)) that may not be from ∆ are the conjuncts aj of α for which it holds that aj ∈ Conjuncts(α)

and aj 6∈ ∆. From the way SubFocus is defined, for all the other nodes δk that are such that δk 6∈
Conjuncts(α), it holds that δk ∈ ∆. As a consequence of lemma 4.1.8, the next lemma follows.

Lemma 4.1.9 Let ∆ be a set of clauses and α be a clause. Then, SupportBase(∆, α) =

Nodes(Query(∆, α)) ∩∆.

Proof: Let ∆ be a set of clauses and α be a clause. By the definition of the query graph follows

(1) Nodes(Query(∆, α)) =
⋃
ai∈Conjuncts(α) Nodes(SubFocus(∆ ∪ {α}, ai)).

By lemma 4.1.8, follows

(2) for all ai ∈ Conjuncts(α), Zone(∆, ai) = Nodes(SubFocus(∆ ∪ {α}, ai) ∩∆

From (1) and (2) follows that Nodes(Query(∆, α)) ∩∆ =
⋃
ai∈Conjuncts(α)(Zone(∆, ai)) and since by

definition SupportBase(∆, α) =
⋃
ai∈Conjuncts(α)(Zone(∆, ai)), it follows that Nodes(Query(∆, α)) ∩

∆ = SupportBase(∆, α). �

From the last proposition and taking into account previous theoretical results concerning the query

graph we obtain the following corollary.

Corollary 4.1.2 Let ∆ be a set of clauses and α be a clause. If 〈Φ, α〉 is an argument for α from ∆,

then Φ ⊆ Nodes(Query(∆, α)).

Proof: By corollary 3.3.1, if 〈Φ, α〉 is an argument for α from ∆ then Φ ⊆ SupportBase(∆, α). By

lemma 4.1.9, SupportBase(∆, α) = Nodes(Query(∆, α)) ∩∆ so from these two relations follows that

Φ ⊆ Nodes(Query(∆, α)). �

According to the last corollary, for a clause knowledgebase ∆ and a claim α that is a clause, the

nodes of the query graph of α in ∆ is the set of clauses that contains all the arguments for α. The topic

of the next section is how we can use the query graph of α in ∆ in order to retrieve arguments for α.

Tautologies constitute a particular case which is unconventional since as the following proposition

suggests the only support for an argument for a tautology is the empty set.

Proposition 4.1.1 Let α be a tautology. Then, 〈Φ, α〉 is an argument iff Φ = ∅.

Proof: Let 〈Φ, α〉 be an argument where α is a tautology. Then Φ+ ≡ Φ ∪ {¬α} is a minimal incon-

sistent set, but ¬α ` ⊥, so {¬α} is a minimal inconsistent set and hence Φ+ = Φ ∪ {¬α} = {¬α}.
Also, ¬α 6∈ Φ because Φ is consistent since it is a support for an argument and ¬α ` ⊥, so Φ∩{¬α} = ∅
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and Φ ∪ {¬α} = {¬α} holds iff Φ = ∅. �

Using methods based on refutation when looking for a proof Φ for a clause α requires refuting α

and checking whether Φ ∪ {¬α} is unsatisfiable. If we seek a proof for a clause α that is a tautology,

the fact that ¬α itself is a contradiction raises complications on deciding whether a set Φ is unsatisfiable

together with ¬α because it is the case where Φ actually entails α. In addition, for resolution-refutation

based theorem proving methods where the starting point of the search is ¬α, if an algorithm does not

return a solution then it is hard to distinguish whether this is because no solution exists or because the

solution is the empty set. In order to avoid this situation, from now on tautologies will not be considered

as claims for arguments.

4.2 Definitions for proof trees for arguments

As stated in the last section, the set of nodes of the query graph of a clause α in a clause knowledgebase

∆ contains all the clauses that may be premises in an argument for α. The query graph provides a subset

of the original knowledgebase that contains all the arguments for α. In order to generate these arguments

we can apply search algorithms based on the structure of the query graph. Apart from providing a

reduced search space, the query graph contains information on how the clauses that represent its nodes

relate to each other motivating the implementation of algorithms that search for arguments by following

the paths of the graph. This is the subject of this section that introduces tree structures that represent the

steps of the search of the query graph.

4.2.1 The presupport tree

The search strategies presented in this chapter are based on the idea of a proof by refutation using

resolution. From now on, in this chapter only knowledgebases that contain elements from C and claims

that are also from C are considered. Also, for simplicity no tautologies are considered for claims.

Assume we want to find arguments for α from ∆. Each of the components of the query graph of α

in ∆ is identified by the complement a of one of the disjuncts of α, and contains a as a node. Walking

over the query graph according to certain conditions with a as the starting point, can lead to a proof for

α. We can represent the steps of this walk by tree structures. The notion of a presupport tree defined in

this section represents the steps of a tentative proof for α constructed in this way. It has the complement

of one of the disjuncts of α representing its root node, which is also one of the epicentres of the focal

graphs that compose the query graph of α in ∆. The non-root nodes have clauses from the query graph

of α in ∆ assigned. Essentially a presupport tree is constructed from a subgraph of Query(∆, α). A

presupport tree does not necessarily relate to a proof for a claim. It forms the basis for more refined

definitions that can be more meaningful in the search for arguments for α from ∆.

Definition 4.2.1 Let ∆ be a clause knowledgebase and let α = a1 ∨ . . . ∨ an be a clause that is not a

tautology. A presupport tree for ∆, α and ak ∈ Disjuncts(α) is a tuple (N,A, f) where (N,A, f) is a
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tree, and f is a mapping from N to ∆ ∪ {ak} such that

(1) if x is the root of the tree, then f(x) = ak and

there is exactly one child y of x s.t. Attacks(f(y), f(x)) = ak,

(2) for any nodes x, y in the same branch, if x 6= y, then f(x) 6= f(y)

(3) for any nodes x, y in the same branch, if x is the parent of y,

then Attacks(f(x), f(y)) 6= null

Example 4.2.1 Some presupport trees for ∆ = {a∨ b∨ c, a∨¬b∨ c,¬c, b,¬c∨ e,¬e,¬a∨ c,¬b, a∨
¬a, a, a ∨ c ∨ ¬c, c}, α = a ∨ b ∨ d and a are:

¬a ¬a ¬a ¬a
| | | |

a ∨ b ∨ c a ∨ b ∨ c a ∨ ¬b ∨ c a ∨ ¬a
� � � � � � |
¬c ¬c ∨ e ¬b ¬c ∨ e b ¬c ∨ e a

| | |
¬e ¬e ¬e

In the definition for a presupport tree, function f assigns to the set of nodes N a clause from

∆∪ {a}. The first condition of definition 4.2.1 sets the complement a of one of the disjuncts of α as the

starting point for the search by placing it at the root of the tree. Condition (2) of the definition prevents

repetitions of the same clause on a branch, ensuring this way that infinite branches are avoided in the

search. Finally, condition (3) indicates that the search takes place by following the links in the query

graph and an arc (x, x′) in the presupport tree can exist if there is an arc (φ, φ′) in Query(∆, α) such

that φ = f(x) and φ′ = f(x′).

The next definition introduces some functions that are used to refer to the elements of a presupport

tree (N,A, f).

Definition 4.2.2 Let (N,A, f) be a presupport tree for ∆, α and some a ∈ Disjuncts(α). Then for a

node x ∈ N , Ancestors(x) is the set of ancestors of x in (N,A, f). AncestorLabels(x) is the set of

literals that define the arcs between the ancestors of x through the Attacks function where the sign of

each literal is defined from the child to the parent: AncestorLabels(x) = {Attacks(f(w), f(w′)) | w′ ∈
Ancestors(x) and w ∈ Ancestors(x) ∪ {x}}. Subtree(x) is the set of successors of x in (N,A, f), to-

gether with x, and Children(x) is the set of children nodes of x: Children(x) = {y | (x, y) ∈ A and y ∈
Subtree(x)}. A branch is a set of nodes X connected through a sequence of arcs starting from the root

node and ending on a leaf node.

Example 4.2.2 Let (N,A, f) be the first tree of example 4.2.1. Let x ∈ N be the node for which f(x) =

¬c ∨ e. Then, Ancestors(x) = {z, w} with f(z) = a ∨ b ∨ c and f(w) = ¬a, AncestorLabels(x) =

{Attacks(¬c∨e, a∨ b∨ c),Attacks(a∨ b∨ c,¬a)} = {¬c, a}, and if y is the node such that f(y) = ¬e,
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Subtree(x) = {x, y} and Children(x) = {y}.

The presupport tree does not necessarily provide a proof for α but it provides the basis for a search

tree structure which, with additional constraints does provide a proof for α. The next section introduces

a special category of presupport tree, the complete presupport tree which is a presupport tree with some

particular properties.

4.2.2 The complete presupport tree

If additional restrictions are applied on the way the nodes are arranged on the presupport tree then we

get a category of presupport tree that provides a proof for α. This is the complete presupport tree defined

below.

Definition 4.2.3 Let ∆ be a clause knowledgebase and let α = a1 ∨ . . . ∨ an be a clause. A complete

presupport tree for ∆, α and ak ∈ Disjuncts(α) is a presupport tree (N,A, f) for ∆, α and ak such

that for any non-root x ∈ N , for every b ∈ Disjuncts(f(x)) exactly one of the following conditions hold:

i) b ∈ Disjuncts(α) \ {ak}
ii) or there is exactly one arc (y, y′) where y′ ∈ Ancestors(x) such that

Attacks(f(y), f(y′)) = b

iii) or there is exactly one y ∈ Children(x) s.t. Attacks(f(y), f(x)) = b

Example 4.2.3 None of the presupport trees of example 4.2.1 is a complete presupport tree for ∆, α and

a. In the first tree, for x with f(x) = a∨b∨c and c ∈ Disjuncts(f(x)) none of the conditions of definition

4.2.3 is satisfied. The second presupport tree is not complete because for node y with f(y) = a ∨ b ∨ c
and b ∈ Disjuncts(f(y)) both conditions i) and iii) of definition 4.2.3 hold. The third presupport tree

is not complete because for node z with f(z) = b and b ∈ Disjuncts(f(z)) both conditions i) and ii)

of definition 4.2.3 hold. The last presupport tree is not complete because for w, with f(w) = a and

a ∈ Disjuncts(f(w)), none of the conditions of the definition holds.

Continuing example 4.2.1, some complete presupport trees for ∆, α and a are:

¬a ¬a ¬a ¬a
| | | |

a ∨ b ∨ c a ∨ b ∨ c a ∨ c ∨ ¬c a

� | � �
¬c ∨ e ¬c ¬c c

|
¬e

With the conditions of the last definition for a complete presupport tree, a unit clause consisting of

a unique disjunct can represent a node of the tree only as the root or a leaf node. Moreover for a unit

clause α, for a presupport tree for ∆, α and a where α = a conditions ii) and iii) of the above definition

are sufficient to provide a complete presupport tree for ∆, α and a.
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The idea in building a complete presupport tree (N,A, f) is that in this way the set of clauses

produced ({f(x) | x ∈ N}) is such that for all x ∈ N and for all b ∈ Disjuncts(f(x)) \ Disjuncts(α)

there is a y ∈ N such that b ∈ Disjuncts(f(y)) and the set {f(x) | x ∈ N} ∪ {¬α} is inconsistent.

Apart from ensuring that for all the disjuncts of all f(z) in the set there is a clause f(y) containing their

complement, the conditions of definition 4.2.3 help controlling the size of the tree. The fact that a branch

is expanded below a node z by adding a node y such that Attacks(f(y), f(z)) = b only when b does

not appear in AncestorLabels(z), controls the length of the branches of the tree, and means that since

this disjunct has been already dealt with by another node on the branch, no additional nodes need to be

added on the branch to deal with b. The fact that exactly one child of z is added per each such disjunct

of f(z) controls the width of the tree and means that every child of z deals with exactly one disjunct of

f(z) that has not been considered earlier on the branch.

From the way it is defined, the complete presupport tree has some properties that relate to its struc-

ture and are formalised in the next three propositions. These are used later in the chapter when showing

how the complete presupport tree is associated with the search for arguments.

Proposition 4.2.1 suggests that apart from the root node of a complete presupport tree for ∆, α and

a, no other complement of the disjuncts of α appears in the clauses that represent the tree.

Proposition 4.2.1 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then, there is no b ∈
Literals({f(x) | x ∈ N} \ {a}) such that b ∈ Disjuncts(α).

Proof: Let (N,A, f) be a complete presupport tree for ∆, α and a. If for some x ∈ N ,

b ∈ Disjuncts(f(x)) is such that b ∈ Disjuncts(α) then for b ∈ Disjuncts(f(x)) exactly one of

conditions i), ii) and iii) of definition 4.2.3 holds.

i) cannot hold for b ∈ Disjuncts(f(x)) because if it did then according to the condition, b ∈ Disjuncts(α)

and also by assumption b ∈ Disjuncts(α) and this contradicts the assumption that α is not a tautology.

If condition ii) holds for b ∈ Disjuncts(f(x)) then b ∈ AncestorLabels(x) and so there is an arc

(w,w′) ∈ A where w′ ∈ Ancestors(x) such that Attacks(f(w), f(w′)) = b. Then, for w′, and

b ∈ Disjuncts(f(w′)) it holds that there is a child w if w′ such that Attacks(f(w), f(w′)) = b and also

that b ∈ Disjuncts(α) so both conditions i) and iii) of definition 4.2.3 hold for b ∈ Disjuncts(f(w′))

which contradicts the assumption that (N,A, f) is a complete presupport tree for ∆, α and a. If condi-

tion iii) holds for b ∈ Disjuncts(f(x)) then there is a child x′ of x such that Attacks(f(x′), f(x)) = b

and then for x′ and b ∈ Disjuncts(f(x′)) both conditions i) and ii) of definition 4.2.3 hold which

contradicts the assumption that (N,A, f) is a complete presupport tree for ∆, α and a. �

According to the next proposition a literal and its complement cannot label arcs on the same branch

of a complete presupport tree.

Proposition 4.2.2 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then, there is no x ∈ N
s.t. b ∈ AncestorLabels(x) and b ∈ AncestorLabels(x).

Proof: For a proof by contradiction let literal b and its complement b be such that there are arcs (w,w′),

(y, y′) on the same branch of (N,A, f) where w′ is the parent of w and y′ is the parent of y such
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that Attacks(f(w), f(w′)) = b and Attacks(f(y), f(y′)) = b. It is shown that under these conditions

(N,A, f) cannot satisfy the conditions for a complete presupport tree. Assume that w ∈ Ancestors(y).

If w′ is the root then b = a and b ∈ Disjuncts(α) and so for b ∈ Disjuncts(f(y′)), since there is a child y

such that Attacks(f(y), f(y′)) = b both conditions i) and iii) of definition 4.2.3 hold and so (N,A, f)

is not complete. If w′ is not the root then b 6∈ Disjuncts(α) and so condition iii) of definition 4.2.3 holds

for b ∈ Disjuncts(f(w′)) and there is a child w of w′ such that Attacks(f(w), f(w′)) = b. Then, for

b ∈ Disjuncts(f(y′)) it holds that there is a w′ ∈ Ancestors(y′) such that Attacks(f(w), f(w′)) = b

and also a child y such that Attacks(f(y), f(y′)) = b and so both conditions ii) and iii) of definition

4.2.3 hold for b ∈ Disjuncts(f(y′)) and so (N,A, f) is not complete. �

According to the next proposition, for a node x of a complete presupport tree (N,A, f), a literal

from Disjuncts(f(x)) cannot have its complement in AncestorLabels(x).

Proposition 4.2.3 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then, there is no x ∈ N
s.t. b ∈ Disjuncts(f(x)) and b ∈ AncestorLabels(x).

Proof: Let (N,A, f) be a complete presupport tree for ∆, α and a and let x ∈ N be such that

b ∈ Disjuncts(f(x)) and b ∈ AncestorLabels(x). Then for b ∈ Disjuncts(f(x)) at least one of the

conditions of definition 4.2.3 holds. By proposition 4.2.1, b 6∈ Disjuncts(α) and so condition i) cannot

hold for b ∈ Disjuncts(f(x)). Then for b ∈ Disjuncts(f(x)) one of conditions ii) or iii) of definition

4.2.3 holds. Condition ii) cannot hold for b ∈ Disjuncts(f(x)) because then b ∈ AncestorLabels(x)

and b ∈ AncestorLabels(x) which contadicts proposition 4.2.2. Condition iii) cannot hold either

because then there is a child x′ of x such that Attacks(f(x′), f(x)) = b and for x′ there is more

than one w ∈ Ancestors(x′) such that Attacks(f(w), f(w′)) = b. Hence, no condition of definition

4.2.3 can hold for b ∈ Disjuncts(f(x′)) when there is an x ∈ N such that b ∈ Disjuncts(f(x)) and

b ∈ AncestorLabels(x) and this contradicts the assumption that (N,A, f) is a complete presupport tree

for ∆, α and a. �

There are some theoretical results associated with the definition of a complete presupport tree,

concerning entailment of the claim α. Function SubtreeRes(z) defined below is fundamental for showing

how a complete presupport tree provides a set of clauses that entails α.

Definition 4.2.4 Let (N,A, f) be a complete presupport tree for ∆, α and a. For all z ∈ N , if B is

the set of clauses that corresponds to the clauses that represent Subtree(z) (i.e. B = {f(w) | w ∈
Subtree(z)}), then

SubtreeRes(z) =
∨{(

Literals(B) \ {Attacks(f(w), f(w′)) | w,w′ ∈ Subtree(z)}
)}

Example 4.2.4 The following is a complete presupport tree for ∆ = {¬b∨d∨ f ∨ g, a∨ b∨ c∨d,¬a∨
k ∨ j,¬j ∨ d,¬k,¬c ∨ l,¬l,¬f,¬d ∨ b ∨ g,¬g ∨ b,¬b,¬d ∨ ¬j, j,¬g, c ∨ l}, α = d ∨m ∨ g and d.



4.2. Definitions for proof trees for arguments 63

¬d
|

¬b ∨ d ∨ f ∨ g
� �

a ∨ b ∨ c ∨ d ¬f
� �

¬a ∨ k ∨ j ¬c ∨ l
� � |

¬j ∨ d ¬k ¬l

For the subtree rooted at z with f(z) = a ∨ b ∨ c ∨ d, let B = {f(x) | x ∈ Subtree(z)} =

{a∨b∨c∨d,¬a∨k∨j,¬c∨l,¬j∨d,¬k,¬l}. Then, Literals(B) = {a, b, c, d,¬a, k, j,¬c, l,¬j,¬k,¬l},
{Attacks(f(w), f(w′)) | w,w′ ∈ Subtree(z)} = {¬a, a,¬c, c,¬j, j,¬k, k,¬l, l} and Literals(B) \
{Attacks(f(w), f(w′)) | w,w′ ∈ Subtree(z)} = {b, d} so by definition 4.2.4, SubtreeRes(z) =∨{b, d} = b ∨ d.

Proposition 4.2.4 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then for a node z ∈ N ,

where z′ is the parent of z, Attacks(f(z), f(z′)) = Attacks(SubtreeRes(z), f(z′)).

Proof: Let (N,A, f) be a complete presupport tree for ∆, α and a. From the way SubtreeRes is defined

follows that for all x, x′ where x′ is the parent of x, Attacks(f(x), f(x′)) ∈ Disjuncts(SubtreeRes(x)).

Then, in order to prove that Attacks(f(x), f(x′)) = Attacks(SubtreeRes(x), f(x′)) it is sufficient to

prove that it cannot hold that |Preattacks(SubtreeRes(x), f(x′))| > 1. To give a proof by contradic-

tion assume that (N,A, f) is a complete presupport tree for ∆, α and a and for an arc (x, x′) ∈ A

which is such that Attacks(f(x), f(x′)) = b, it holds that |Preattacks(SubtreeRes(x), f(x′))| > 1.

Then, b ∈ Preattacks(SubtreeRes(x), f(x′)) and there is a c 6= b for which it holds that

c ∈ Preattacks(SubtreeRes(x), f(x′)). Since c ∈ Disjuncts(SubtreeRes(x)), there is aw ∈ Subtree(x)

such that c ∈ Disjuncts(f(w)) and there is no arc (w,w′) where in w,w′ ∈ Subtree(x) such that

Attacks(f(w), f(w′)) = c or Attacks(f(w′), f(w)) = c. Because (N,A, f) is a complete pre-

support tree, for c ∈ Disjuncts(f(w)) either c ∈ AncestorLabels(w) or c ∈ Disjuncts(α) holds.

If c ∈ AncestorLabels(w) then it holds that c ∈ AncestorLabels(x′) because c does not label any

arc in Subtree(x′) and if c ∈ AncestorLabels(x′) holds it contradicts proposition 4.2.3 because

c ∈ Disjuncts(f(x′)). Hence, c ∈ AncestorLabels(w) does not hold and so c ∈ Disjuncts(α)

must hold in order for (N,A, f) to be complete. If x′ is not the root node of (N,A, f) then since

c ∈ Disjuncts(f(x′)) it holds that c ∈ Literals({f(x) | x ∈ N} \ {a}) and if c ∈ Disjuncts(α)

then this contradicts proposition 4.2.1. If x′ is the root then f(x′) is a literal and so it cannot hold

that |Preattacks(SubtreeRes(x), f(x′))| > 1. Hence, w with c ∈ Disjuncts(f(w)) does not satisfy

any of the conditions of definition 4.2.3 which contradicts the assumption that (N,A, f) is a complete

presupport tree. So it cannot hold that |Preattacks(SubtreeRes(x), f(x′))| > 1 and so it follows that

Attacks(f(x), f(x′)) = Attacks(SubtreeRes(x), f(x′)). �
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Essentially, for a node z, SubtreeRes(z) gives a formula at z that is obtained by resolving the

formula f(z) with SubtreeRes(x1), . . . ,SubtreeRes(xn) where x1, . . . , xn are the children of z. In this

way, SubtreeRes is used to propagate resolution up the tree.

Proposition 4.2.5 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then for a node z ∈ N
with Children(z) = {x1, . . . , xn},

SubtreeRes(z) = f(z) • SubtreeRes(x1) • . . . • SubtreeRes(xn)

Proof: Let (N,A, f) be a complete presupport tree for ∆, α and a and let z ∈ N . Then for every

vi ∈ Children(z) it holds that Attacks(f(vi), f(z)) = bi for some bi ∈ Disjuncts(f(vi)) and because of

the constraints for a complete presupport tree there is no other arc (w,w′) on the branch where vi belongs

such that Attacks(f(w), f(w′)) = bi or Attacks(f(w), f(w′)) = bi Hence, for neither bi nor bi are

there any w,w′ ∈ Subtree(vi) such that Attacks(f(w), f(w′)) = bi or Attacks(f(w), f(w′)) = bi and

so by the definition of SubtreeRes(vi), bi ∈ Disjuncts(SubtreeRes(vi)) for all vi ∈ Children(z). Then

for bi = Attacks(f(vi), f(z)) for all vi ∈ Children(z), SubtreeRes(v1) • . . . • SubtreeRes(vj) • f(z)

can be re-written to:

∨⋃
vi

(
(Disjuncts(SubtreeRes(vi)) ∪ Disjuncts(f(z))) \ {bi, bi}

)
which for Bi = {f(wi) | wi ∈ Subtree(vi)} and Ai = {Attacks(f(wi), f(w′i)) | wi, w′i ∈
Subtree(vi)} for all vi ∈ Children(z) can be re-written to

∨⋃
vi

(
((Literals(Bi) \Ai) ∪ Disjuncts(f(z))) \ {bi, bi}

)
=

and Ai ∩ Disjuncts(f(z)) = ∅ otherwise the conditions for a complete presupport tree would not be

satisfied, so the equation above can be re-written to

∨⋃
vi

(
Literals(Bi) ∪ Disjuncts(f(z))) \ (Ai ∪ {bi, bi})

)
=

∨(
Literals({f(w) | w ∈ Subtree(z)}) \ {Attacks(f(w), f(w′)) | w,w′ ∈ Subtree(z)}

)
which by definition is equal to SubtreeRes(z). �

Example 4.2.5 Continuing example 4.2.4, for z with f(z) = a∨ b∨ c∨d, and x1, x2 such that f(x1) =

¬a ∨ k ∨ j, f(x2) = ¬c ∨ l, SubtreeRes(x1) = ¬a ∨ d, SubtreeRes(x2) = ¬c and SubtreeRes(z) =

a ∨ b ∨ c ∨ d • ¬a ∨ d • ¬c = b ∨ c ∨ d • ¬c = b ∨ d.

From proposition 4.2.5 and the way function SubtreeRes is defined, follows proposition 4.2.6,

according to which, if (N,A, f) is a complete presupport tree for ∆, α and a, then for all the nodes z of

(N,A, f) there is a deduction of SubtreeRes(z) from the set of clauses assigned to the Subtree(z).
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Proposition 4.2.6 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then for a node

z ∈ N , there is a linear deduction {δ1, ..., δn} ∈ Deductions({f(w) | w ∈ Subtree(z)}) where

SubtreeRes(z) ≡ δn and {f(w) | w ∈ Subtree(z)} ⊆ {δ1, ..., δn}.

Proof: This is a proof by induction. For the base case, let z ∈ N be a leaf and let f(z) = δ1. So

Subtree(z) = {z}, and {f(w) | w ∈ Subtree(z)} = {f(z)} = {δ1} and by definition, for a leaf

node SubtreeRes(z) = f(z). Therefore, there is a linear deduction {δ1} ∈ Deductions({f(w) | w ∈
Subtree(z)}) = Deductions({δ1}) where SubtreeRes(z) = δ1 and {f(w) | w ∈ Subtree(z)} = {δ1} ⊆
{δ1}. Therefore the proposition holds for the base case.

For the inductive step, let z ∈ N be a non-leaf node with children v1, .., vj , and let f(z) = δk.

Also, assume that the proposition holds for each child vi ∈ {v1, ..., vj}. Hence, for each child vi,

assume that there is a linear deduction {δvi
1 , ..., δ

vi
ni
} ∈ Deductions({f(w) | w ∈ Subtree(vi)}) where

SubtreeRes(vi) ≡ δvi
ni

and {f(w) | w ∈ Subtree(vi)} ⊆ {δvi
1 , ..., δ

vi
ni
}.

Therefore, each of these linear deductions can be put into a linear deduction for δn as follows,

{δv11 , ..., δv1n1
, ....., δ

vj

1 , ..., δ
vj
nj
, δk, δn}

where δn ≡ δv1n1
• ... • δvj

nj • δk. Then by proposition 4.2.5 follows that δn = SubtreeRes(z). From the

structure of the tree, we have that {f(w) | w ∈ Subtree(vi)} ⊆ {f(w) | w ∈ Subtree(z)}. Then, from

the constraints on linear deduction, we have the following.

{f(w) | w ∈ Subtree(z)} ⊆ {δv11 , ..., δv1n1
, ....., δ

vj

1 , ..., δ
vj
nj
, δk, δn}

Therefore, there is a linear deduction, as follows, where SubtreeRes(z) ≡ δn.

{δv11 , ..., δv1n1
, ....., δ

vj

1 , ..., δ
vj
nj
, ..., δk, δn} ∈ Deductions({f(w) | w ∈ Subtree(z)})

so the proposition holds for the inductive case. �

So, according to proposition 4.2.6, for a node z of a complete presupport tree (N,A, f) for ∆, α

and a, the set of clauses assigned to Subtree(z) entails SubtreeRes(z).

Corollary 4.2.1 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then for a node z ∈ N ,

{f(w) | w ∈ Subtree(z)} ` SubtreeRes(z).

Proof: Follows from proposition 4.2.6. �

From the way function SubtreeRes is defined, if z is the unique child of the root, then the only

disjuncts b of SubtreeRes(z) are the ones for which b ∈ Disjuncts(α). Then, since {f(w) | w ∈
Subtree(z)} ` SResolvents(z) and Disjuncts(SResolvents(z)) ⊆ Disjuncts(α), it holds that {f(w) |
w ∈ Subtree(z)} ` α.
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Proposition 4.2.7 Let (N,A, f) be a complete presupport tree for ∆, α and a. If z is the child of the

root node of (N,A, f), then {f(w) | w ∈ Subtree(z)} ` α.

Proof: Follows from proposition 4.2.6. (N,A, f) is a complete presupport tree as a support tree. For

z it holds that Disjuncts(SubtreeRes(z)) ⊆ Disjuncts(α). This is because according to the definition

for a complete presupport tree, for all x ∈ N the disjuncts of Subtree(x) are those b that appear in

the clauses of the subtree for which either condition i) or condition ii) of the definition holds. Since

z is the child of the root z0 where f(z0) = a, then the only disjunct of f(z) for which condition ii)

holds is a, which by definition 4.2.3 is also a disjunct of α and so for a ∈ Disjuncts(SubtreeRes(x)) it

holds that a ∈ Disjuncts(α). For the rest of the disjuncts b of SubtreeRes(z), condition i) of definition

4.2.3 holds and so b ∈ Disjuncts(α), hence all the disjuncts of SubtreeRes(z) are disjuncts of α so

Disjuncts(SubtreeRes(z)) ⊆ Disjuncts(α) and if Γ = {f(x) | x ∈ Subtree(z)} then by proposition

4.2.6, Γ ` SubtreeRes(z) and so Γ ` α. �

So according to proposition 4.2.7, the set of clauses assigned to the non-root nodes of a complete

presupport tree (N,A, f) for ∆, α and a provide a proof for α. The next section introduces a category

of complete presupport tree that provides a minimal and consistent proof for α.

4.2.3 The support tree

With some additional conditions on the structure of a complete presupport tree (N,A, f) for ∆, α and

a, the set of clauses {f(x) | x ∈ N} \ {a} ∪ {¬α} can be a minimal inconsistent set and so {f(x) | x ∈
N} \ {a} can be a support for an argument for α. These conditions are introduced in the definitions of a

consistent presupport tree and a minimal presupport tree as follows.

Definition 4.2.5 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then (N,A, f) is a

consistent presupport tree for ∆, α and a iff for any nodes x and y, if x′ is the parent of x and y′ is the

parent of y, Attacks(f(x), f(x′)) 6= Attacks(f(y), f(y′)).

Example 4.2.6 From the presupport trees of example 4.2.3 only the third is not consistent.

Definition 4.2.6 Let (N,A, f) be a complete presupport tree for ∆, α and a. Then (N,A, f) is a

minimal presupport tree for ∆, α and a iff there is no complete presupport tree (N ′, A′, f ′) for ∆, α

and a such that {f ′(x′) | x′ ∈ N ′} ⊂ {f(x) | x ∈ N}.

Example 4.2.7 All the complete presupport trees of example 4.2.3 are minimal.

Example 4.2.8 Let α = a ∨m and ∆ = {a ∨ c ∨ d,¬b ∨ b,¬b, a ∨ d ∨ f,¬e,¬e ∨ f,¬f,¬e,¬d ∨
e,¬c ∨ e, r ∨ j, j ∨ ¬s,¬s ∨ k, p}. In the following presupport trees for ∆, α and a = a, let

(N1, A1, f1) be the first presupport tree, (N2, A2, f2) the second and (N3, A3, f3) the third presup-

port tree. Then, (N1, A1, f1) is not a minimal presupport tree because (N2, A2, f2) and (N3, A3, f3)

are complete presupport trees and the sets of of clauses they consist of are contained in the set of clauses

from (N1, A1, f1).
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¬a ¬a ¬a
| | |

a ∨ c ∨ d a ∨ c ∨ d a ∨ c ∨ d
� � � � � �

¬c ∨ e ¬d ∨ e ¬c ∨ e ¬d ∨ e ¬c ∨ e ¬d ∨ e
| | | | | |
¬e ¬e ∨ f ¬e ¬e ¬e ∨ f ¬e ∨ f

| | |
¬f ¬f ¬f

Example 4.2.9 The following presupport tree for ∆ = {f ∨ d∨ r,¬a∨¬f,¬r ∨ l, a∨ k,¬l∨m,¬k ∨
¬f,¬k ∨ ¬l,¬m ∨ k}, α = d ∨ q and d is a minimal and consistent presupport tree.

¬d
|

f ∨ d ∨ r
� �

¬a ∨ ¬f ¬r ∨ l
| |

a ∨ k ¬l ∨m
| |

¬k ∨ ¬f ¬m ∨ k
|

¬k ∨ ¬l

Checking a complete presupport tree (N,A, f) for ∆, α and a for minimality does not necessarily

require testing whether each of the subsets of {f(x) | x ∈ N} can produce a complete presupport tree

for ∆, α and a. In section 4.2.4 I explain how checking some conditions related to the literals that define

the arcs of a presupport tree can help in deciding whether the tree satisfies the definition for a minimal

presupport tree.

Putting together all the definitions for proof trees given so far in this chapter provides the definition

for a support tree for ∆, α and a that follows.

Definition 4.2.7 A support tree (N,A, f) for ∆, α and a ∈ Disjuncts(α) is a presupport tree (N,A, f)

for ∆, α and a that is minimal and consistent.

Example 4.2.10 Proof trees (N2, A2, f2) and (N3, A3, f3) of example 4.2.8 are support trees. The proof

tree of example 4.2.9 is also a support tree.

By corollary 4.2.1, the set of clauses that represent a subtree of a complete presupport tree rooted at

a node z entails SubtreeRes(z). According to the next proposition, if (N,A, f) is a support tree then the

set of clauses that represent a subtree of a support tree rooted at a node z cannot prove a clause stronger
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than SubtreeRes(z). This property of the support tree is used later for showing the consistency of the

proof for α indicated by (N,A, f).

Proposition 4.2.8 Let (N,A, f) be a support tree for ∆, α and a. Then for all z ∈ N , there is no γ′ ∈ C
with Disjuncts(γ′) ⊂ Disjuncts(SubtreeRes(z)) and {f(w) | w ∈ Subtree(z)} ` γ′.

Proof: Let γ = SubtreeRes(z) and let B = {f(w) | w ∈ Subtree(z)}. Then by proposi-

tion 4.2.6, B ` γ. To give a proof by contradiction assume B ` γ′ for some γ′ ∈ C such that

Disjuncts(γ′) ⊂ Disjuncts(γ). Then there is a literal m ∈ Disjuncts(γ) \ Disjuncts(γ′). Also,

there is a linear deduction of γ from B, Dγ ∈ Deductions(B) and a linear deduction of γ′ from

B, Dγ′ ∈ Deductions(B). Then there is a ρm ∈ Dγ such that m ∈ Disjuncts(ρm) and so there is

w ∈ Subtree(z) such that f(w) ∈ Dγ and m ∈ Disjuncts(f(w)). Since m ∈ Disjuncts(γ) then by the

way γ is defined there is no arc (w,w′) ∈ A where w,w′ ∈ Subtree(z) such that Attacks(w,w′) = m

or Attacks(w,w′) = m. Because m 6∈ Disjuncts(γ′) then by lemmas 4.1.1 and 4.1.2 respectively either

(1) There is no ρm ∈ Dγ′ with m ∈ Disjuncts(ρm) or

(2) There is a ρm ∈ Dγ′ with m ∈ Disjuncts(ρm) and there is a ρm ∈ Dγ′

such that m ∈ Disjuncts(ρm)

If (1) holds then there is a w ∈ Subtree(z) with m ∈ Disjuncts(f(w)) and f(w) 6∈ Dγ′ . By lemma

4.1.2, for all k ∈ Literals(Dγ′) \ Disjuncts(γ′) there are f(y) ∈ Dγ′ ∩ B and f(y′) ∈ Dγ′ ∩ B
such that k ∈ Disjuncts(f(y)) and k ∈ Disjuncts(f(y′)) and it holds that Attacks(f(y), f(y′)) = k.

Also for each such y and for the rest of the disjuncts p ∈ (Disjuncts(f(y)) \ {k}) \ Disjuncts(γ′)

because p ∈ Literals(Dγ′) \ Disjuncts(γ′), then by lemma 4.1.2 there is a f(y′′) ∈ D ∩ B with

p ∈ Disjuncts(f(y′′)) such that Attacks(f(y′′), f(y)) = p and the same holds for the rest of the disjuncts

of f(y′′) and also for all f(x) ∈ Dγ′ ∩B and the disjuncts of these f(x) that do not appear as disjuncts

of γ′. Then, for all x ∈ Subtree(z) for which f(x) ∈ Dγ′ ∩B the conditions for a complete presupport

tree hold which means that there is a complete presupport tree (N ′, A′, f ′) for ∆, α and a such that

{f ′(x′) | x′ ∈ N ′} ⊆ {f(x) | x ∈ N} \ {f(w), f(w′)} and so {f ′(x′) | x′ ∈ N ′} ⊂ {f(x) | x ∈ N}
which contradicts the assumption that (N,A, f) is a minimal presupport tree for ∆, α and a.

If (2) holds, there is a w ∈ Subtree(z) with m ∈ Disjuncts(f(w)) and f(w) ∈ Dγ and f(w) ∈ Dγ′

and there is a w′ ∈ Subtree(z) such that f(w′) ∈ Dγ′ and m ∈ Disjuncts(f(w′)). Hence there are

w,w′ ∈ Subtree(z) with m ∈ Disjuncts(f(w)) and m ∈ Disjuncts(f(w′)) but there is no arc (w,w′′)

where w′′ ∈ Subtree(z) such that Attacks(w,w′) = m or Attacks(w′, w′′) = m. Hence condition

iii) of the definition for a complete presupport tree does not hold for either of m ∈ Disjuncts(f(w))

and m ∈ Disjuncts(f(w′)). Then, because (N,A, f) is a complete presuport tree for each of

m ∈ Disjuncts(f(w)) and m ∈ Disjuncts(f(w′)) either condition i) or condition ii) of definition

4.2.3 must hold. Condition i) cannot hold for both m ∈ Disjuncts(f(w)) and m ∈ Disjuncts(f(w′))

because then {m,m} ⊂ Disjuncts(α) and by the definition for a presupport tree α cannot be a tau-

tology. Condition ii) cannot hold for both m ∈ Disjuncts(f(w)) and m ∈ Disjuncts(f(w′)) be-

cause then {m,m} ⊂ AncestorLabels(z) and this contradicts the assumption that (N,A, f) is a

consistent presupport tree. If condition i) holds for m ∈ Disjuncts(f(w)) and condition ii) holds for
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m ∈ Disjuncts(f(w′)), then m ∈ Disjuncts(α) and there is some w′′ ∈ N (possibly w = w′′)

such that (w′, w′′) ∈ N and Attacks(f(w′), f(w′′)) = m. Then m ∈ Disjuncts(f(w′′)) and for

m ∈ Disjuncts(f(w′′)) both conditions i) and iii) hold which contradicts the assumption that (N,A, f)

is a complete presupport tree. Similarly if condition ii) holds for m ∈ Disjuncts(f(w)) and condition i)

holds for m ∈ Disjuncts(f(w′)) we get contradiction.

Because either of (1) and (2) lead to contradiction, then it cannot hold that B ` γ′ for some γ′ ∈ C
such that Disjuncts(γ′) ⊂ Disjuncts(γ). �

Example 4.2.11 Continuing example 4.2.4, for z = a∨ b∨ c∨d, SubtreeRes(z) = b∨d and for γ′ = b

and γ′′ = d, {f(x) | x ∈ Subtree(z)} 6` γ′ and {f(x) | x ∈ Subtree(z)} 6` γ′′.

The results that follow demonstrate how a support tree is related to a minimal and consistent proof

for α. The next lemma is used to prove the completeness of the proposal of using support trees in order

to obtain arguments for α from ∆.

Lemma 4.2.1 Let 〈Φ, α〉 be an argument. Then, there is a consistent presupport tree (N,A, f) for ∆,

α and a such that Φ = {f(x) | x ∈ N} \ {a}.

Proof: Let 〈Φ, α〉 be an argument. Then there is a clause α′ such that Φ ` α′ where Disjuncts(α′) ⊆
Disjuncts(α) and there is no α′′ such that Disjuncts(α′′) ⊂ Disjuncts(α′) and Φ ` α′′. Then,

Φ ∪ {¬α′} is a minimal inconsistent set. Let C be the set of complements of the disjuncts of α′

i.e. C = {b | b ∈ Disjuncts(α′)}. Then, C contains the complements of the literals of α that appear

in Φ. C = {b | b ∈ Disjuncts(α) ∩ Literals(Φ)} and for all b ∈ C, b ∈ Conjuncts(¬α′). Because

Φ∪ {¬α′} is a minimal inconsistent set, and by the way C is defined, then if Γ = Φ∪C, it holds that Γ

is a minimal inconsistent set of clauses.

By corollary 4.1.1, for all b ∈ Literals(Γ) there is a Γ′ ⊂ Γ such that 〈Γ′, b〉 is an argument and so

there is a linear deduction D = {β1, . . . , βn} such that βn = b and Γ′ ⊆ D. By lemma 4.1.3 there is a

β ∈ Γ′ ∩D such that b ∈ Disjuncts(β).

Let for b ∈ Literals(Γ), D(b) = {β1, . . . , βn} ∈ Deductions(Γ′) be one of these deductions where

βn = b and βn−1 = β ∈ Γ′ with b ∈ Disjuncts(β). Also, let for each such D(b), Formula(D(b))

be the function that returns βn−1 i.e. Formula(D(b)) = βn−1. Hence for all D(b), Formula(D(b))

is a clause from the original set of clauses that contains b as a disjunct: Formula(D(b)) ∈ Γ, and

b ∈ Disjuncts(Formula(D(b))).

Let N be a set of nodes each of which is defined using function TreeNode as follows. For a node x ∈ N
and a linear deduction D(b) which is as described above, TreeNode(D(b), x) defines a node y that

contains D(b) and has x as its parent. For a node x ∈ N , Ancestors(x) returns the set of nodes that pre-

cede x in a branch. We use this mapping to construct a consistent presupport tree where Formula(D(b))

will give the clause representation of each node of the tree.

Since Γ is a minimal inconsistent set, there is a D(⊥) such that Γ ⊆ D(⊥). Because Disjuncts(⊥) = ∅
it holds that Disjuncts(⊥) ⊂ Disjuncts(γ) for any γ ∈ Γ then any clause could be Formula(D(⊥)). Let
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Formula(D(⊥)) = a for some a ∈ Γ ∩ C. Then, let x0 = TreeNode(D(⊥), null) be the root node of a

tree (N,A).

By corollary 4.1.1, for all the disjuncts b of a clause γ ∈ Γ there is a Γb ⊂ Γ such that 〈Γb, b〉 is

an argument and so there is a D(b) ∈ Deductions(Γb). Then, for Formula(D(⊥)) = a ∈ Γ there

is a D(a) = D(a) = {α1, . . . , αn} where αn = a = a and Formula(D(a)) = αn−1 ∈ Γ is such

that a ∈ Disjuncts(an−1). Then let xa = TreeNode(D(a), x0) be the child node of x0. Then, so far

N = {xa, x0} and A = {(xa, x0)}.
In the same way, for Formula(D(a)), for all bi ∈ Disjuncts(Formula(D(a)) there are arguments 〈Γbi

, bi〉
and D(bi) ∈ Deductions(Γbi

) as described above. Then for all bi ∈ Disjuncts(Formula(D(a))) \ {a},
let xbi

= TreeNode(D(bi), xa) where Attacks(Formula(D(bi)),Formula(D(a))) = bi. Then, if

Disjuncts(Formula(D(a))) \ {a} = {xb1 , . . . , xbm
}, the tree so far consists of the set of nodes

N = {xb1 , . . . , xbm
, xa, x0} and arcs A = {(xb1 , xa), . . . , (xbm

, xa), (xa, x0)}.
Continuing constructing the tree in the same way, where for a node xci

= TreeNode(D(ci), xdk
) a child

node xpj
= (D(pj), xci) is created for each disjuct pj of Formula(D(ci)) such that:

(1) there is no x ∈ Ancestors(xci) such that x = (D(pj), x′) for some

x′ ∈ Ancestors(xci
)

(2) there is no x ∈ Ancestors(xci
) such that x = (D(q), x′) for some

x′ ∈ Ancestors(xci) and Formula(D(q)) = Formula(D(ci))

(3) Attacks(Formula(D(pj)),Formula(D(ci))) = pj

(4) there is no x ∈ N such that xpj
= (D(pj), x′) for some x′ ∈ N

we obtain a tree (N,A) which is isomorphic to a complete and consistent presupport tree (N ′, A′, f)

for ∆∪C, θ = a and a ∈ Disjuncts(θ) where for each xci ∈ N, xci = TreeNode(D(ci), xdk
) there is a

x ∈ N ′ such that f(x) = Formula(D(ci)) and {f(x) | x ∈ N ′} = Γ.

Conditions (1) to (3) in the construction of (N,A) ensure that the conditions of the definition for a

presupport tree and conditions ii) and iii) of the definition for a complete presupport tree are satisfied

for tree (N ′, A′, f) while condition (4) ensures that the definition for a consistent presupport tree is

satisfied for (N ′, A′, f). Because θ is a unit clause, conditions ii) and iii) of definition 4.2.3 are suf-

ficient for (N ′, A′, f) to satisfy the definition for a complete presupport tree. For the nodes x ∈ N ′

that are such that f(x) ∈ C it holds that apart from a that represents the root the rest have to be leaf

nodes because they are literals and for each {x ∈ N ′ | f(x) ∈ C}, f(x) = b where b is a literal and

Attacks(f(x), f(x′)) = b where x′ is the parent of x and condition ii) if definition 4.2.3 is satisfied for

b ∈ Disjuncts(f(x)) and condition iii) of the definition is satisfied for b ∈ Disjuncts(f(x′)). Then, if

the leaf nodes that have a literal from C assigned as their clause representation i.e. {x ∈ N ′ | f(x) ∈ C}
are removed from the tree, then the resulting tree is a complete presupport tree for ∆, α and a where for

the parents x′ of each removed leaf x with f(x) = b condition i) of the definition for a complete presup-

port tree holds for b ∈ Disjuncts(f(x′)) because by the way C is defined it holds that b ∈ Disjuncts(α).

Apart from the the parents x′ of each such removed leaf x no other node in the tree could be affected by
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removing these leaf nodes. Then the resulting tree (N ′′, A′′, f) is a complete and consistent presupport

tree for ∆, α and a and {f(x) | x ∈ N ′′} = {f(y) | y ∈ N ′} \ C = Γ \ C = Φ. �

The proposition that follows illustrates the completeness of the proposal for using support trees in

order to obtain arguments for α from ∆.

Proposition 4.2.9 Let 〈Φ, α〉 be an argument. Then, there is a support tree (N,A, f) for ∆, α and

some a ∈ Disjuncts(α) such that Φ = {f(x) | x ∈ N} \ {a}.

Proof: By lemma 4.2.1 there is a consistent presupport tree (N,A, f) for ∆, α and a such that

Φ = {f(x) | x ∈ N} \ {a}. For a proof by contradiction assume that for all the consistent pre-

support trees (N,A, f) for ∆, α and a such that Φ = {f(x) | x ∈ N} \ {a} it holds that they

are non-minimal. If (N,A, f) is a non-minimal presupport tree then there is a complete presupport

tree (N ′, A′, f ′) for ∆, α and a such that {f ′(x′) | x′ ∈ N ′} ⊂ {f(x) | x ∈ N}. Let be z be

the child of the root node of (N ′, A′, f ′). Then, because (N ′, A′, f ′) is a complete presupport tree,

from the conditions of definition 4.2.3 the only literals b that appear in the tree for which there are

no arcs (w,w′) ∈ A such that Attacks(f(w), f(w′)) = b or Attacks(f(w), f(w′)) = b are the

ones that are in the disjuncts of α. Also a ∈ Disjuncts(f(z)) and a ∈ Disjuncts(SubtreeRes(z))

and by the definition for a presupport tree a is also in the disjuncts of α. Then by the way

SubtreeRes(z) is defined, it holds that for all b ∈ Disjuncts(SubtreeRes(z)), b ∈ Disjuncts(α) and

so Disjuncts(SubtreeRes(z)) ⊆ Disjuncts(α). By proposition 4.2.6, for z ∈ N ′ it holds that there is a

linear deduction {δ1, . . . , δn} ∈ Deductions({f ′(w) | w ∈ Subtree(z)}) where δn = SubtreeRes(z)

and {f ′(w) | w ∈ Subtree(z)} ⊆ {δ1, . . . , δn}. Then, {f ′(w) | w ∈ Subtree(z)} ` SubtreeRes(z)

and since it holds that Disjuncts(SubtreeRes(z)) ⊆ Disjuncts(α) then it also holds that {f ′(w) | w ∈
Subtree(z)} ` α and if Φ′ = {f ′(w) | w ∈ Subtree(z)} then Φ′ ⊂ Φ and Φ′ ` α which contradicts the

assumption that 〈Φ, α〉 is an argument. �

The converse of proposition 4.2.9 also holds, if (N,A, f) is a support tree for ∆, α and some

a ∈ Disjuncts(α) and Φ is such that Φ = {f(x) | x ∈ N} \ {a}, then 〈Φ, α〉 is an argument. This result

is formalised in the next proposition which illustrates the soundness of the proposal for using support

trees for ∆, α and a in order to obtain arguments for α from ∆.

Proposition 4.2.10 Let ∆ be a set of clauses and α be a clause and let (N,A, f) be a support tree for

∆, α and some a ∈ Disjuncts(α). Then, 〈Φ, α〉 with Φ = {f(x) | x ∈ N} \ {a} is an argument.

Proof: Let z be the unique child of the root of (N,A, f) where the root z0 of (N,A, f) is such that

f(z0) = a. Then Γ = {f(x) | x ∈ N} \ {a} = {f(x) | x ∈ Subtree(z)}.
(1) Γ ` α. Follows from proposition 4.2.7.

(2) Γ 6` ⊥. Follows from proposition 4.2.8. It holds that a ∈ Disjuncts(SubtreeRes(z)), so it

follows that Disjuncts(SubtreeRes(z)) 6= ∅. If Γ ` ⊥ then for γ′ = ⊥,Disjuncts(γ′) = ∅ ⊂
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Disjuncts(SubtreeRes(z)) and so by proposition 4.2.8 it cannot hold that Γ ` γ′.

(3) There is no Γ′ ⊂ Γ such that Γ′ ` α: For a proof by contradiction assume there is some

Γ′ ⊂ Γ such that Γ′ ` α. Without loss of generality assume Γ′ is minimal for entailing α. Then,

by proposition 4.2.9 there is support tree (N ′, A′, f ′) for ∆, α and some b ∈ Disjuncts(α) such that

Γ′ = {f(x′) | x′ ∈ N ′}\{b}. It is shown first that if there is a support tree (N ′, A′, f ′) for ∆, α and some

b ∈ Disjuncts(α) then then we can construct a support tree (N ′′, A′′, f ′′) for ∆∪{c | c ∈ Disjuncts(γ)},
α′′ = a and a such that {f ′′(x′′) | x′′ ∈ N ′′} = Γ′∪{c | c ∈ Disjuncts(γ)}. Then it is proved that using

the structure of (N ′′, A′′, f ′′) we can construct a complete presupport tree for ∆, α and a where the set

of clauses assigned to its non-root nodes is equal to Γ′. Then (N,A, f) does not satisfy the definition

for a minimal presupport tree and this contradicts the fact that (N,A, f) is a support tree for ∆, α and a.

Let (N ′, A′, f ′) be a support tree for ∆, α and some b ∈ Disjuncts(α) such that Γ′ = {f(x′) |
x′ ∈ N ′} \ {b}. Then, it holds that b 6= a. Otherwise (N ′, A′, f ′) would be a support tree for ∆, α

and a and so (N ′, A′, f ′) would be a complete presupport tree for ∆, α and a such that {f(x′) | x′ ∈
N ′} ⊂ {f(x) | x ∈ N}. Then (N,A, f) could not be a minimal presupport tree for ∆, α and a and this

contradicts the assumption that (N,A, f) is a support tree for ∆, α and a. So (N ′, A′, f ′) is a support

tree for ∆, α and some b ∈ Disjuncts(α) such that b 6= a.

Let z be the unique child of the root in (N,A, f). Then, Γ = {f(x) | x ∈ Subtree(z)}.
Let γ = SubtreeRes(z). Then, as explained in the proof of proposition 4.2.7 it holds that

Disjuncts(γ) = Disjuncts(α) ∩ Literals(Γ) and also a ∈ Disjuncts(γ). By corollary 4.2.1, Γ ` γ.

By proposition 4.2.8 for z, it holds that there is no clause γ′′ such Disjuncts(γ′′) ⊂ Disjuncts(γ) and

Γ ` γ′′. Since Γ 6` γ′′ for any such γ′′, then the following holds:

(i) for all Γ′′ ⊆ Γ, and for all γ′′ such that Disjuncts(γ′′) ⊂ Disjuncts(γ), Γ′′ 6` γ′′.

Let z′ be the unique child of the root of (N ′, A′, f ′). Then, Γ′ = {f ′(x′) | x′ ∈ Subtree(z′)}. Let

γ′ = SubtreeRes(z′). Then, Disjuncts(γ′) = Disjuncts(α) ∩ Literals(Γ′). Then, Γ′ ` γ′ and by (i)

follows that Disjuncts(γ′) 6⊂ Disjuncts(γ). Moreover, it cannot hold that Disjuncts(γ) 6⊂ Disjuncts(γ′)

because then it should hold that Disjuncts(α)∩ Literals(Γ) ⊂ Disjuncts(α)∩ Literals(Γ′) which cannot

hold because Literals(Γ′) ⊆ Literals(Γ) (since Γ′ ⊂ Γ). Then it holds that Disjuncts(γ′) = Disjuncts(γ)

and so a ∈ Disjuncts(γ′). From the way γ′ is defined it holds that Γ′∪{c | c ∈ Disjuncts(γ′)} is a mini-

mal inconsistent set and a ∈ {c | c ∈ Disjuncts(γ′)}. Then if Γ′′ = (Γ′ ∪{c | c ∈ Disjuncts(γ)}) \ {a},
it holds that 〈Γ′, a〉 is an argument. Then, by proposition 4.2.9, there is a support tree (N ′′, A′′, f ′′) for

∆ ∪ {c | c ∈ Disjuncts(γ)}, α′′ = a and some a′′ ∈ Disjuncts(α′′) such that Γ′′ = {f ′′(x′′) | x′′ ∈
N ′′} \ {a′′}. Since the unique disjunct of α′′ is a, then it follows that a′′ = a and so (N ′′, A′′, f ′′)

is a support tree for ∆ ∪ {c | c ∈ Disjuncts(γ)}, α′′ = a and a. Because α′′ is a unit clause,

conditions ii) and iii) of the definition for a complete presupport tree are sufficient for (N ′′, A′′, f ′′)

to satisfy the definition for a complete presupport tree. For the nodes x′′ ∈ N ′′ that are such that

f ′′(x′′) ∈ {c | c ∈ Disjuncts(γ)} it holds that, apart from a that represents the root, the rest have to be

leaf nodes. Because for each x′′ ∈ N ′′ such that f ′′(x′′) ∈ {c | c ∈ Disjuncts(γ)} \ {a}, it holds that
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f ′′(x′′) = c for some c, f ′′(x′′) consists of a unique disjunct. Then, for this c ∈ Disjuncts(f ′′(x′′)),

Attacks(f ′′(x′′), f(y′′)) = c where y′′ is the parent of x′′ and condition ii) of definition 4.2.3 is

satisfied for c ∈ Disjuncts(f ′′(x′′)) and x′′ cannot have a child, so it is a leaf node. For y′′ and

c ∈ Disjuncts(f ′′(y′′)) condition iii) of definition 4.2.3 is satisfied. Then, it is shown that if the leaf

nodes that have a literal from {c | c ∈ Disjuncts(γ)} \ {a} assigned as their clause representation are

removed from (N ′′, A′′, f ′′), the resulting tree is a complete presupport tree for ∆, α and a where the

set of non-root nodes is equal Γ′′ \ {c | c ∈ Disjuncts(γ)} which is equal to Γ′. Since Γ′ ⊂ Γ, and

Γ = {f(x) | x ∈ N} \ {a} this contradicts the assumption that (N,A, f) is a minimal presupport tree.

By removing these leaf nodes of (N ′′, A′′, f ′′) the resulting tree is complete for ∆, α and a because for

the parents y′′ of each removed leaf x′′ with f ′′(x′′) = c condition i) of the definition for a complete

presupport tree holds for c ∈ Disjuncts(f ′′(y′′)) because for all {c | c ∈ Disjuncts(γ)} it holds that

c ∈ Disjuncts(α). Apart from the the parents y′′ of each such removed leaf x′′, no other node in the

tree could be affected by removing these leaf nodes of (N ′′, A′′, f ′′) and the resulting tree is a complete

presupport tree for ∆, α and a. Also, the set of clauses assigned to its nodes exluding the root is equal to

Γ′ because Disjuncts(γ) ⊆ Disjuncts(α) and so by proposition 4.2.1, Γ′ ∩ {c | c ∈ Disjuncts(γ)} = ∅
so Γ′ \ {c | c ∈ Disjuncts(γ)} = Γ′. Since Γ′ ⊂ Γ it holds that (N,A, f) is not a minimal presupport

tree for ∆, α and a and this contradicts the assumption that (N,A, f) is a support tree for ∆, α and a.

So, there cannot be a Γ′ ⊂ Γ such that Γ′ ` α. �

So, according to proposition 4.2.10, if a support tree (N,A, f) is retrieved for ∆, α and some

a ∈ Disjuncts(α) then an argument 〈Φ, α〉 is retrieved for α where Φ is the set of clauses that represent

the non-root nodes of (N,A, f). So, proposition 4.2.10 together with proposition 4.2.9 mean that we

can have a sound and complete mechanism for generating arguments that is based on support trees.

The fact that we can use different disjuncts of α to determine the root of a support tree does not

require comparing results of search based on different disjuncts of α. This is captured in the next propo-

sition.

Proposition 4.2.11 Let (N,A, f) be a support tree for ∆, α and a. Then, there is no support tree

(N ′, A′, f ′) for ∆, α and some b ∈ Disjuncts(α) such that {f ′(x′) | x′ ∈ N ′} \ {b} ⊂ {f(x) | x ∈
N} \ {a}.

Proof: For a proof by contradiction assume (N,A, f) is a support tree for ∆, α and a and there is a sup-

port tree (N ′, A′, f ′) for ∆, α and some b ∈ Disjuncts(α) such that {f ′(x′) | x′ ∈ N ′} \ {b} ⊂ {f(x) |
x ∈ N}\{a}. By proposition 4.2.10 for (N,A, f) it holds that 〈{f(x) | x ∈ N}\{a}, α〉 is an argument

and by proposition 4.2.10 for (N ′, A′, f ′) it also holds that 〈{f ′(x′) | x′ ∈ N ′} \ {b}, α〉 is an argument

so {f ′(x′) | x′ ∈ N ′} \ {b} ` α and by assumption {f ′(x′) | x′ ∈ N ′} \ {b} ⊂ {f(x) | x ∈ N} \ {a}
and this contradicts that 〈{f(x) | x ∈ N} \ {a}, α〉 is argument. �

Corollary 4.2.2 Let ∆ be a set of clauses α and be a clause. 〈Φ, α〉 is an argument iff there is a support

tree (N,A, f) for ∆, α and some a ∈ Disjuncts(α) such that Φ = {f(x) | x ∈ N} \ {a}.
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Proof: Follows from propositions 4.2.9 and 4.2.10. �

Hence, according to corollary 4.2.2, in order to find all the arguments for α, it is sufficient to find

all the support trees for ∆, α and ai, for all ai ∈ Disjuncts(α). The next section motivates the use of

this mechanism by explaining how the structure of a presupport tree can be used in order to check for

minimality.

4.2.4 The minimality check

As it was explained earlier, the conditions for a complete presupport tree for ∆, α and a ensure that a

proof for α that contains a limited number of clauses is produced. Let (N,A, f) be a complete presup-

port tree for ∆, α and a. For each node z ∈ N , for each b ∈ Disjuncts(f(z)) \ Disjuncts(α) either

there is exactly one arc (y, y′) such that y′ ∈ Ancestors(z) and Attacks(f(y), f(y′)) = b, and hence

there is y′ ∈ Ancestors(z) with b ∈ Disjuncts(f(y′)), or there is exactly one node y ∈ Children(z)

such that Attacks(f(y), f(z)) = b. This way redundant nodes to resolve with disjunct b of f(z) will be

avoided on the branch where z belongs. Avoiding however redundant resolution steps does not neces-

sarily ensure the minimality of the proof indicated by a complete presupport tree. To obtain a minimal

and consistent proof for α we need to retrieve a complete presupport tree for ∆, α and a that satis-

fies the conditions for a minimal and consistent presupport tree. To check whether a complete presup-

port tree (N,A, f) satisfies the definition for a consistent presupport tree we can simply check whether

there are any arcs (x, x′), (y, y′) in A where x′ is the parent of x and y′ is the parent of y such that

Attacks(f(x), f(x′)) = Attacks(f(y), f(y′)). To check whether (N,A, f) satisfies the definition for

a minimal presupport tree, definition 4.2.6 would suggest testing whether subsets of the set of clauses

that represent the nodes of (N,A, f) can be used in a complete presupport tree for ∆, α and some

ai ∈ Disjuncts(α). In fact the structure of a consistent preupport tree can help deciding whether this

indicates a minimal proof for α. So given a consistent presupport tree for ∆, α and a we can decide

whether it is minimal by checking some of the properties of the tree.

A complete presupport tree corresponds with a concise linear deduction D from the set of clauses

Φ assigned to the non-root nodes. If Φ = {f(x) | x ∈ N} \ {a}, then D ∈ Deductions(Φ) where

D = {δ1, . . . , δn} is such that Disjuncts(δn) ⊆ Disjuncts(α) and Φ ⊆ D. D is composed of a li-

mited number of steps, each associated with a node of (N,A, f). Each step uses the preceding steps

to calculate SubtreeRes(z) for a node z ∈ N and then adds this as a new element of the deduction.

With this construction, if z is the child of the root node, then this is the last step of the deduction

and SubtreeRes(z) = δn. According to proposition 4.2.5, for a node z ∈ N with Children(z) =

{x1, . . . , xn}, it holds that SubtreeRes(z) = f(z) • SubtreeRes(x1) • . . . • SubtreeRes(xn). So,

each such step can be regarded as a ‘sub-deduction’ Dz of D that contributes in obtaining δn and

is obtained from the set of clauses in Subtree(z): Dz = {γ1, . . . , γz} where γz = SubtreeRes(z),

Dz ∈ Deductions({f(w) | w ∈ Subtree(z)}) and {f(w) | w ∈ Subtree(z)} ⊆ Dz .

To check whether Φ is minimal for entailing α we can check whether some clauses that contribute

to each resolution step can be omitted and as a result get a deduction D′ = {δ′1, . . . , δ′m} such that D′ ∈
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Deductions(Φ′) for some Φ′ ⊂ Φ and Disjuncts(δ′m) ⊆ Disjuncts(α). To decide whether it is possible

for this to happen we can look at the presupport tree and examine whether for some node x, there is a

node y that plays the same role as x inD and so sub-deductionDy ⊂ D can be removed fromD andDx

can be used instead in its place. If this is the case, then the set Φ′ = {f(p) | p ∈ (N \Subtree(y))}\{a}
is sufficient to entail α. Because the same clauses can be assigned to several nodes of a presupport

tree, it can be the case where {f(p) | p ∈ (N \ Subtree(y))} = {f(q) | q ∈ N}. Then, Φ′ = Φ

and the minimality condition is not affected. If it holds though that {f(p) | p ∈ (N \ Subtree(y))} 6=
{f(q) | q ∈ N}, then it means that {f(p) | p ∈ (N \ Subtree(y))} ⊂ {f(q) | q ∈ N} and since

a ∈ {f(p) | p ∈ (N \ Subtree(y))} ∩ {f(q) | q ∈ N}, the above can be re-written to {f(p) | p ∈
(N \ Subtree(y))} \ {a} ⊂ {f(q) | q ∈ N} \ {a} which is equivalent to Φ′ ⊂ Φ. So, in the case where

{f(p) | p ∈ (N \ Subtree(y))} 6= {f(q) | q ∈ N}, it holds that there is a subset Φ′ of Φ such that

Φ′ ` α. Then 〈Φ, α〉 is not an argument and by proposition 4.2.10 (N,A, f) is not a support tree so since

(N,A, f) is a consistent presupport tree follows that it is not a minimal presupport tree. Hence in such a

case where we investigate whether there is some redundancy in the proof for α caused by the steps that

correspond to two nodes x, y, we need to see whether {f(p) | p ∈ (N \Subtree(y))} 6= {f(q) | q ∈ N}
holds. The next paragraph explains which pairs of nodes are likely to cause redundancy and thus need to

be investigated.

A pair of nodes x, y can have some overlapping in their role in deduction D if it holds that

Disjuncts(SubtreeRes(x)) ∩ Disjuncts(SubtreeRes(y)) 6= ∅. This is because for a node x and Dx ⊆ D

as defined above, SubtreeRes(x) is the last element ofDx, and some b ∈ Disjuncts(SubtreeRes(x)) will

be used to resolve with some other clause in a later step of the deduction. Hence, if this b appears in

SubtreeRes(y) for some y ∈ N , it is possible for Dy to be subtracted from D and re-use Dx in its place.

It can be the case though where Disjuncts(SubtreeRes(x))∩Disjuncts(SubtreeRes(y)) ⊆ Disjuncts(α)

and so the disjuncts that SubtreeRes(x) and SubtreeRes(y) have in common are only the ones that are

in α. In this case there is no other b ∈ Disjuncts(SubtreeRes(x)) ∩ Disjuncts(SubtreeRes(y)) and so

SubtreeRes(x) is used in the deduction to resolve on disjuncts different than the ones SubtreeRes(y) is

used for. Apart from a ∈ Disjuncts(α) which indicates the clause a for the root of (N,A, f), the rest of

the disjuncts ai ∈ Disjuncts(α) ∩ Literals(Φ) do not play a role in the proof for α and can make it hard

to compare the deduction steps of D. Function Unresolved defined below can be used to deal with this.

For an x ∈ N , function Unresolved(x) gives the clause that consists of the disjuncts of SubtreeRes(x)

excluding the ones that are in α.

Definition 4.2.8 Let (N,A, f) be a complete presupport tree. For a node x ∈ N ,

Unresolved(x) =
∨

(Disjuncts(SubtreeRes(x)) \ Disjuncts(α))

The idea in using function Unresolved(x) is that it indicates for a node x which literals need

to be eliminated at this stage. Checking whether for a pair of nodes x, y ∈ N there is some

b ∈ Disjuncts(Unresolved(x)) ∩ Disjuncts(Unresolved(y)) gives an indication that there is a possibility

forDx to be used instead ofDy in the proof for α or vice versa. So condition Disjuncts(Unresolved(x))∩
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Disjuncts(Unresolved(y)) 6= ∅ can be used to locate which pairs of nodes x, y need to be examined on

whether they cause some redundancy in the proof that affects its minimality.

If some b ∈ Disjuncts(Unresolved(x)) ∩ Disjuncts(Unresolved(y)), then replacing Dy by Dx

in D can lead to a proof for α if for the rest of the disjuncts bi of Unresolved(x) there are clauses

in Φ \ {f(p) | p ∈ (N \ Subtree(y))} that can eliminate bi. From the way the complete pre-

support tree is built, if (N,A, f) satisfies the definition for a complete presupport tree, then for all

x ∈ N , Disjuncts(Unresolved(x)) ⊆ AncestorLabels(x). If there is a branch on (N,A, f) other

than the one where x belongs, where all the disjuncts of Unresolved(x) are used to label arcs, then

it means that there are nodes wi on this branch for which it holds that Disjuncts(Unresolved(x)) ∩
Disjuncts(Unresolved(wi)) 6= ∅. In particular, there is an arc (y, y′) on that branch where y′ is the pa-

rent of y such that Attacks(f(y), f(y′)) ∈ Disjuncts(Unresolved(x)) and Disjuncts(Unresolved(x)) ⊆
AncestorLabels(y). Then, Dx can replace Dy in D and Φ′ = {f(p) | p ∈ (N \ Subtree(y))} will be

sufficient to provide a proof for α. For the parent y′ of y, if Children(y′) = {y, y0, . . . , yn}, then by

proposition 4.2.5, SubtreeRes(y′) = f(y′) • SubtreeRes(y) • SubtreeRes(y0) • . . . • SubtreeRes(yn).

By replacing in this relation SubtreeRes(y) by SubtreeRes(x) we get a valid resolution step where

no tautologies are involved. This way we obtain a linear deduction D′y = {γ1, . . . , γk} where

γk = f(y′) • SubtreeRes(x) • SubtreeRes(y0) • . . . • SubtreeRes(yn) and it holds that Disjuncts(γk) \
Disjuncts(α) ⊆ Disjuncts(SubtreeRes(y′)). Then D′y ∈ Deductions(Φ′y) where Φ′y = {f(p) | p ∈
(Subtree(y′) \ Subtree(y)) ∪ Subtree(x)}. Continuing the deduction from y by using D′y we ob-

tain a deduction D′ ∈ Deductions(Φ′) where Φ′ = {f(p) | p ∈ (N \ Subtree(y))} \ {a}, and

D′ = {δ′1 . . . δ′m} is such that Disjuncts(δ′m) ⊆ Disjuncts(α). For a pair of nodes x, y such that

{f(p) | p ∈ (N \ Subtree(y))} 6= {f(q) | q ∈ N} this would mean that there is a Φ′ ⊂ Φ such

that Φ′ ` α and so (N,A, f) is a non-minimal presupport tree for ∆, α and a.

So, in order to decide whether a consistent presupport tree (N,A, f) is minimal, we need to check

first if there are pairs of branches that apart from the arc (z, z′) where z′ is the root node, they have

other arcs labeled by common literals. If they do not, then (N,A, f) is a minimal presupport tree

and we do not need to investigate further. If they do, then we check whether there is a pair of nodes

x, y such that Attacks(f(y), f(y′)) ∈ Disjuncts(Unresolved(x)) (where y′ is the parent of y) and

Disjuncts(Unresolved(x)) ⊆ AncestorLabels(y). If this holds and it also holds that {f(p) | p ∈
(N \Subtree(y))} 6= {f(q) | q ∈ N} then this means that for Φ′ = {f(p) | p ∈ (N \Subtree(y))}\{a}
it holds that Φ′ ⊂ Φ and Φ′ ` α and so 〈Φ, α〉 is not an argument and (N,A, f) is not a support tree.

Since we have assumed that (N,A, f) is a consistent presupport tree, then if (N,A, f) does not satisfy

the definition for a support tree it means (N,A, f) does not satisfy the definition for a minimal presup-

port tree for ∆, α and a.

Example 4.2.12 Let ∆ = {a∨¬d, p∨ q∨ d, p∨ q∨ a,¬p∨ q,¬q∨ p,¬p∨¬q,¬p∨¬q∨ a,¬p∨¬q∨
d,¬p ∨ ¬q ∨ c,¬p ∨ ¬q ∨ g,¬g} and α = a ∨ c. All the following consistent presupport trees for ∆, α

and a are non-minimal.
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¬a ¬a ¬a

| | |
a ∨ ¬d p ∨ q ∨ a p ∨ q ∨ a

| � � � �
p ∨ q ∨ d ¬p ∨ q ¬q ∨ p ¬p ∨ q ¬q ∨ p

� � � � � �
¬p ∨ q ¬q ∨ p ¬p ∨ ¬q ∨ c ¬p ∨ ¬q ∨ g ¬p ∨ ¬q ∨ c ¬p ∨ ¬q

� � |
¬p ∨ ¬q ∨ d ¬p ∨ ¬q ∨ a ¬g

In the first tree, let x be the node with f(x) = ¬p ∨ ¬q ∨ d and y be the node with f(y) = ¬p ∨ ¬q ∨ a.

Then, Unresolved(x) = ¬p ∨ ¬q ∨ d and Unresolved(y) = ¬p ∨ ¬q and it holds that Attacks(¬p ∨
¬q ∨ a,¬q ∨ p) ∈ Disjuncts(Unresolved(x)) and Disjuncts(Unresolved(x)) ⊆ AncestorLabels(y) and

{f(p) | p ∈ (N \Subtree(y))} = {¬a, a∨¬d, p∨q∨d,¬p∨q,¬q∨p,¬p∨¬q∨d} 6= {f(q) | q ∈ N}.
In the second tree, for x such that f(x) = ¬p ∨ ¬q ∨ c and y such that f(y) = ¬p ∨ ¬q ∨ g,

Unresolved(x) = ¬p ∨ ¬q and Unresolved(y) = ¬p ∨ ¬q and it holds that Attacks(¬p ∨ ¬q ∨ g,¬q ∨
p) ∈ Disjuncts(Unresolved(x)) and Disjuncts(Unresolved(x)) ⊆ AncestorLabels(y) and {f(p) | p ∈
(N \ Subtree(y))} = {¬a, p ∨ q ∨ a,¬p ∨ q,¬q ∨ p,¬p ∨ ¬q ∨ c} 6= {f(q) | q ∈ N}.

In the third tree, for x such that f(x) = ¬p ∨ ¬q ∨ c and y such that f(y) = ¬p ∨ ¬q,

Unresolved(x) = ¬p∨¬q and Unresolved(y) = ¬p∨¬q and it holds that Attacks(¬p∨¬q,¬q ∨ p) ∈
Disjuncts(Unresolved(x)) and Disjuncts(Unresolved(x) ⊆ AncestorLabels(y) and {f(p) | p ∈
(N \ Subtree(y))} = {¬a, p ∨ q ∨ a,¬p ∨ q,¬q ∨ p,¬p ∨ ¬q ∨ c} 6= {f(q) | q ∈ N}.

All the following consistent presupport trees are minimal.

¬a ¬a ¬a

| | |
a ∨ ¬d p ∨ q ∨ a p ∨ q ∨ a

| � � � �
p ∨ q ∨ d ¬p ∨ q ¬q ∨ p ¬p ∨ q ¬q ∨ p

� � � � � �
¬p ∨ q ¬q ∨ p ¬p ∨ ¬q ∨ g ¬p ∨ ¬q ∨ g ¬p ∨ ¬q ∨ c ¬p ∨ ¬q ∨ c

� � | |
¬p ∨ ¬q ∨ d ¬p ∨ ¬q ∨ d ¬g ¬g

Example 4.2.13 The following presupport tree for ∆ = {p ∨ q ∨ a,¬p ∨ q,¬q ∨ p,¬p ∨ ¬q},
α = a ∨ c and a is a consistent and minimal presupport tree. For all the pairs of nodes x, y for

which it holds that Attacks(f(y), f(y′)) ∈ Disjuncts(Unresolved(x)) (where y′ is the parent of y) and

Disjuncts(Unresolved(x)) ⊆ AncestorLabels(y) (i.e. the pairs x = x1, y = y1 or x = x2, y = y2 or

x = y1, y = y2 or x = y2, y = y1) it also holds that {f(p) | p ∈ (N \ Subtree(y))} = {f(q) | q ∈ N}
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so the minimality condition is not affected for (N,A, f).

¬a
|

p ∨ q ∨ a
� �

x1 ¬p ∨ q ¬q ∨ p x2

| |
y2 ¬p ∨ ¬q ¬p ∨ ¬q y1

4.3 Algorithms for producing proof trees
In this section I present the algorithms that implement the proposal for generating arguments by using

proof trees. First I present algorithm SearchTree that generates all the complete presupport trees for

a clause α and an a ∈ Disjuncts(α) from a knowledgebase ∆. Then, I present algorithm GetSupports

which, using the output of algorithm SearchTree, filters out the complete presupport trees that do not

satisfy the conditions for being support trees. Then, according to proposition 4.2.10, each of the support

trees retrieved gives an argument for α. If this algorithm is applied for all ai ∈ Disjuncts(α), then

according to proposition 4.2.9, for all the arguments for α from ∆ there is a support tree for ∆, α and

some ai ∈ Disjuncts(α) retrieved by the algorithm.

4.3.1 Algorithm for producing complete presupport trees

Algorithm 4.1 builds a depth-first search tree T that represents the steps of the search for arguments for

a claim α from a knowledgebase ∆. Every node v′ in T is a presupport tree and is an extension of the

presupport tree in its parent node v in T . The leaf node of every completed accepted branch is a complete

presupport tree.

The search is based on the query graph of α in ∆. The starting point for the search is the com-

plement a of one of the disjuncts of α which will also be the root of the retrieved presupport trees.

The idea in building presupport trees by using the structure of the query graph, is to start from a and

walk over the component of the graph that is connected to a (i.e. SubFocus(∆ ∪ {¬α}, a)) by follo-

wing the links in a way that the conditions for a complete presupport tree indicate until all the complete

presupport trees have been generated. The search takes place in a depth-first way. Every step of al-

gorithm SearchTree, which extends the search tree T by a node, consists of extending the presupport

tree (N,A, f) that represents the current leaf node v by one level when condition iii) of definition 4.2.3

needs to be satisfied for some of the current leaf nodes of (N,A, f). Function Extensions(v) gives all

the possible extensions of the search tree i.e. all the possible presupport trees that extend the presupport

tree in v by one level. Let v be a node in search tree T and let (N,A, f) be the presupport tree that v

represents. Let X = {x1, . . . , xn} be the set of leaf nodes of (N,A, f) that need to be extended in order

to satisfy the conditions for a complete presupport tree. These are the leaf nodes that contain at least

one disjunct in their clause representation for which neither condition i) nor condition ii) of definition

4.2.3 holds and hence a child node has to be added for condition iii) of the definition to be satisfied. The
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algorithm works by finding all the possible tuples of nodes Y = (y1, . . . , yn), . . . , Z = (z1, . . . , zn),

each of which can be the next level of nodes in (N,A, f) and satisfy the conditions for a complete pre-

support tree. Hence, each tuple Y retrieved by the algorithm is such that for each xi in X , for each

b ∈ Disjuncts(f(xi)) \ (AncestorLabels(xi) ∪ Disjuncts(α)) such that b 6∈ AncestorLabels(xi), there

is exactly one yj in Y such that Attacks(f(yj), f(xi)) = b, and for each yj there is a xi satisfying this

condition. So, function Extensions(v) generates for T all the next possible nodes for its current leaf v

where a next possible node v′ for the current branch can contain any presupport tree (N ′, A′, f ′) that is

an extension of the presupport tree (N,A, f) of node v produced as described above. If for a node v of

the search tree Extensions(v) = ∅, then it means that the current branch of the search tree cannot be ex-

panded any further below node v. This happens when for the presupport tree (N,A, f) that is contained

in node v

1. either (N,A, f) is a complete presupport tree

2. or for a node x in (N,A, f) a child node has to be added but all the clauses that can be assigned

to a child node of x have already been assigned to the ancestors of x

3. or for a node x in (N,A, f) and some b ∈ Disjuncts(f(x)) there is an arc (w,w′), s.t.

w′ ∈ Ancestors(x) and Attacks(f(w), f(w′)) = b and so according to proposition 4.2.3

(N,A, f) cannot be extended to a complete presupport tree.

Algorithm 4.1 SearchTree(a)
Let PresupportTrees = ∅
Let r be a node that contains (N0, A0, f0) s.t. A0 = ∅ and N0 = {x} with f0(x) = a
Let S be an empty stack
Push r onto S
while S is non-empty do

Let v be the top of S
pop S
if Extensions(v) 6= ∅ then

for all y ∈ Extensions(v) do
push y onto S

end for
else

if Accept(v) then
PresupportTrees = PresupportTrees ∪ {v}

end if
end if

end while
return PresupportTrees

In such a case where a leaf node v of the search tree has been reached, the algorithm uses boolean

function Accept(v) which either stores or rejects the presupport tree (N,A, f) in the leaf node v of the

currently built branch. Accept(v) rejects v in cases 2 and 3 given above. If case 1 holds, the presupport

tree (N,A, f) that represents v is a complete presupport tree for ∆, α and a and so is stored in the set

PresupportTrees of presupport trees that will be returned in the end. Because function Extensions(v)

is extending the presupport tree of each next new node in T according to the conditions of definition
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4.2.3, all the non-leaf nodes of a presupport tree (N,A, f) of a node v from T satisfy the conditions

for a complete presupport and Accept(v) only tests the leaf nodes of (N,A, f). After Accept(T ) has

either rejected the current branch of T , or stored the result of its leaf node, the algorithm backtracks and

continues to the next node of T to be expanded.

After this algorithm has been applied for all ai ∈ Disjuncts(α), and a search tree has been produced

for each ai, all the complete presupport trees for ∆, α and all ai are obtained.

Example 4.3.1 Let α = a∨m and ∆ = {a∨ b,¬b∨ b,¬b, a∨d∨f,¬f ∨¬e, e,¬d∨¬e, e∨ l,¬l,m∨
k,¬s∨ g, r ∨ j, j ∨¬s,¬s∨ k, p}. The query graph of α in ∆ is given below and contains the negation

¬a of a ∈ Disjuncts(α) which is the unique starting point for the search for arguments for α, since the

negation ¬m of m ∈ Disjuncts(α) does not appear in the graph. Figure 4.1 illustrates how algorithm

4.1 traverses this query graph starting from ¬a.

¬a ¬f ∨ ¬e
� � � | �

a ∨ b a ∨ d ∨ f e e ∨ l — ¬l
| � � | �

¬b ∨ b — ¬b ¬d ∨ ¬e

4.3.2 Algorithm for selecting the support trees

Algorithm SearchTree presented in the previous section returns all the complete presupport trees for ∆,

α and αi for some ai ∈ Disjuncts(α). By applying the algorithm for all ai ∈ Disjuncts(α) we obtain

all the complete presupport trees for ∆, α and all ai ∈ Disjuncts(α). By following this process, all

the arguments for α are generated, but along with the arguments other results that do not correspond

to arguments are also produced. A complete presupport tree does not necessarily indicate an argument.

In order to obtain all the arguments for α, we need to select for each ai the complete presupport trees

returned by algorithm SearchTree that satisfy the conditions for a consistent and minimal presupport

tree.

Selecting the presupport trees (N,A, f) that satisfy the definition for a consistent presupport tree

simply requires testing whether there are any arcs on the tree that are labeled by complementary disjuncts.

The simplest way to decide for a complete presupport tree whether it satisfies the consistency condition

is to store the set of literals that label the arcs of the tree in a set and check whether this set contains

a literal and its complement. This holds iff there is pair of arcs (w,w′), (v, v′) in A where w′ is the

parent of w and v′ is the parent of v such that Attacks(f(w), (w′)) = Attacks(f(v), (v′)). Function

IsConsistent((N,A, f)) tests this way whether a complete presupport tree (N,A, f) is consistent.

After rejecting the presupport trees that do not satisfy the consistency condition, the remai-

ning consistent trees have to be tested on whether they satisfy the minimality condition. Algorithm

IsMinimal((N,A, f)) tests a consistent presupport tree (N,A, f) on whether it is minimal, by ap-

plying the method described in section 4.2.4. The algorithm first tests whether there are branches

in the tree, that have arcs labeled by common literals. For this, it tests whether there are pairs of
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¬a

¬a
|

a ∨ b

¬a
|

a ∨ d ∨ f

¬a
|

a ∨ b
|

¬b ∨ b

¬a
|

a ∨ b
|
¬b

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e
| |

e ∨ l e

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e
| |
e e ∨ l

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e
| |

e ∨ l e ∨ l

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e
| |
e e

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e
| |

e ∨ l e
|
¬l

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e
| |
e e ∨ l

|
¬l

¬a
|

a ∨ d ∨ f
� �

¬d ∨ ¬e ¬f ∨ ¬e
| |

e ∨ l e ∨ l
| |
¬l ¬l

The result of applying algorithmsearchTree for α = a ∨ m where the starting nodev consists of¬a. The leaf node
of the first branch is rejected because fory with f(y) = ¬b ∨ b, b ∈ Disjuncts(f(y)) and¬b ∈ AncestorLabels(y)
so this cannot be expanded to a complete presupport tree. Theresults of the other branches are accepted and each of
them is a complete presupport tree for∆, α anda.

Figure 4.1: Applying algorithm SearchTree
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nodes x, y from the set Leaves of leaf nodes of (N,A, f) for which it holds that the intersection

Λ = AncestorLabels(x) ∩ AncestorLabels(y) is non-empty. If Λ = ∅, then those branches do not

need to be tested further and the algorithm proceeds to next pair of branches to be tested. If Λ 6= ∅, then

the algorithm tests whether there is some node w on the branch where x belongs (where w may be equal

to x) and some z on the branch where y belongs (where z may be equal to y) such that Subtree(w) can re-

place Subtree(z) and result to a complete presupport tree. As explained in section 4.2.4, this can happen

if Unresolved(w) ⊆ AncestorLabels(z). If this holds, then as explained in section 4.2.4, if it is the case

where {f(p) | p ∈ (N \ Subtree(z))} = {f(q) | q ∈ N}, then the minimality condition is not affected

by removing Subtree(z) from the tree. Because {f(p) | p ∈ (N \ Subtree(z))} ⊆ {f(q) | q ∈ N},
in order to check whether {f(p) | p ∈ (N \ Subtree(z))} = {f(q) | q ∈ N} holds, it is suffi-

cient to check whether the cardinality of the two sets is the same. So, the algorithm tests whether

|{f(p) | p ∈ (N \ Subtree(z))}| 6= |{f(q) | q ∈ N}| holds. If this holds then it means that

{f(p) | p ∈ (N \ Subtree(z))} ⊂ {f(q) | q ∈ N} and so by replacing Subtree(z) by Subtree(w)

we obtain a complete presupport tree whose set of clauses is a subset of the clauses from (N,A, f).

Then, the definition for a minimal presupport tree is not satisfied for (N,A, f) so the algorithm returns

false. If |{f(p) | p ∈ (N \ Subtree(z))}| 6= |{f(q) | q ∈ N}| does not hold, it means that by replacing

Subtree(z) by Subtree(w) we obtain a complete presupport tree whose set of clauses is equal to the set

of the clauses from (N,A, f) and so the minimality of the tree is not affected by nodes w, z and the

algorithm proceeds to the next pair of nodes that is to be checked.

Algorithm 4.2 IsMinimal((N,A, f))
for all x, y ∈ Leaves do

Let Λ = AncestorLabels(x) ∩ AncestorLabels(y)
if Λ 6= ∅ then

Let w = x
while AncestorLabels(w) ∩ Λ 6= ∅ do

if Attacks(w,Parent(w)) ∈ Λ then
Node z = y
while AncestorLabels(z) ∩ Λ 6= ∅ do

if Unresolved(w) ⊆ AncestorLabels(z) then
if |{f(p) | p ∈ (N \ Subtree(z))}| 6= |{f(q) | q ∈ N}| then

return false
end if

end if
z = Parent(z)

end while
end if
w = Parent(w)

end while
end if

end for
return true

Example 4.3.2 All the accepted results of the search tree in figure 4.1 are consistent presupport trees.

From this tree, algorithm IsMinimal would reject the ones from the third and fourth branches.
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clauses-to-variables ratio |∆| = 15 |∆| = 20 |∆| = 25 |∆| = 30

1 3.000 6.000 9.000 13.00
2 3.000 6.000 11.00 17.00
3 2.000 6.000 12.50 238.0
4 2.000 5.000 14.00 466.5
5 2.000 4.000 8.000 178.0
6 1.000 3.000 6.500 71.00
7 1.000 5.000 4.000 9.000
8 0.000 1.000 4.000 6.000
9 1.000 1.000 2.000 6.000

10 1.000 2.000 2.000 7.000

Table 4.1: Experimental data on generating presupport trees

4.4 Experimental results

This section covers a preliminary experimental evaluation on generating arguments using the idea of

support trees using a prototype implementation programmed in java running on a modest PC (Core2

Duo 1.8GHz).

The experimental data were obtained using randomly generated clause knowledgebases according

to the fixed clause length model K-SAT ([70, 46]) where the chosen length (i.e. K) for each clause was

3 literals and the claim was a literal. The 3 disjuncts of each clause were chosen out of a set of N

distinct variables (i.e. atoms). Each variable was randomly chosen out of the N available and negated

with probability 0.5. For a fixed number of clauses, the number of distinct variables that occur in the

disjuncts of all the clauses determines the size of the query graph which in turn determines the size of the

search space and hence influences the performance of the system. For this reason, 10 different clauses-

to-variables ratios were used for each of the different cardinalities tested (where this ratio varied from 1

to 10). For the definition of the ratio the integer part of the division of the number of clauses in ∆ by the

number of variables N was taken(i.e. b|∆|/|N |c).

The evaluation was based on the time consumed by the system when searching for all the arguments

for a given literal claim and the randomly generated knowledgebases of 15 to 30 clauses. Hence, for

the results presented the smallest number of variables used was 1 and so for the case of a 15 clause

knowledgebase, the clauses-to-variables ratio is 10. The largest number of variables used was 30 and so

for the case of a 30 clause knowledgebase, and clauses-to-variables ratio is 1.

The preliminary results are presented in Table 4.1 which contains the median time consumed in

milliseconds for 100 repetitions of running the system for each different cardinality and each ratio from 1

to 10. In other words, each field of the table is the median time obtained from finding all the arguments for

a random claim in 100 different knowledgebases of fixed cardinality where the cardinality is determined

by the column of the table and the different clauses-to-variables ratios is determined by the row.

From the preliminary results in Table 4.1, we see that for a low clauses-to-variables ratio (≤ 2) the

number of variables is large enough to allow a distribution of the variables amongst the clauses such
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that it is likely for a literal to occur in a clause without its opposite occurring in another clause from the

set. As a result, the query graph tends to contain a small subset of the knowledgebase and the system

perfoms relatively quickly. The query graph tends also to be small in the case when a relatively small

number of variables are distributed amongst the clauses of the knowledgebase (i.e. when the ratio is

high) and this makes the occurrence of a variable and its negation in different clauses more frequent. As

a result, it is likely for a pair of clauses φ, ψ from ∆ to be such that |Preattacks(φ, ψ)| > 1 which will

then allow the Attacks relation to be defined among a small number of clauses and therefore the attack

graph will involve only a small subset of the knowledgebase. Hence, a large clauses-to-variables ratio

also makes the system perform quickly. From these preliminary results the worst case occurs for ratio

4, and this appears to be because the size of the query graph tends to be maximized. This indicates that

the clauses-to-variables ratio, rather than the cardinality of the knowledgebase is the dominant factor

determining the time performance for the system.

Overall, the system’s behaviour on this experiment is encouraging for further experimentation. The

datasets used for this experiment were designed so as to generate hard satisfiability problems that make

the system’s performance deteriorate. The fact that in the worst case, the median time for generating all

the arguments from a knowledgebase of 30 clauses was a fraction of a second gives positive evidence on

the efficiency of the underlying algorithms.

4.5 Discussion
This chapter introduced a proposal for generating arguments for claims that are clauses from knowledge-

bases that are clauses. This proposal is based on resolution and the arguments are produced by appying a

search on the query graph defined in chapter 3. By walking over the query graph minimal and consistent

proofs for the claim are obtained and the constraints according to which the steps of the search take place

are represented by proof trees. Theoretical results supporting the correctness of the proposal were given

along with some preliminary experimental results that motivate the practical use of the algorithms that

implement this theory.

The next chapter introduces algorithms that generate canonical undercuts based on the theory of

this chapter.



Chapter 5

Searching for canonical undercuts

The previous chapter provided a method for generating arguments for claims that are disjunctive clauses.

In order to produce argument trees that depict series of arguments and counterarguments we need a

mechanism than can support arguments whose claim is not necessarily a clause. Assume we want to find

a canonical undercut for an argument 〈Φ, α〉. This requires generating an argument with ¬∧Φ as the

claim and this is not supported by the proposal presented in the previous chapter. In this chapter I show

how the definitions and theoretical results of chapter 4 can be extended to generate canonical undercuts

for an argument.

The chapter starts by describing how the properties of the language of clauses C can be taken into

account to make the search for undercuts more efficient. It shows how when looking for canonical

undercuts for an argument that has Φ for support, we can use a subset Γ of Resolvents(Φ) that contains

the strongest clauses from Resolvents(Φ) and try to find arguments for ¬∧Γ instead. I explain how this

alternative can make the search for canonical undercuts more effective. Also, I explain how traversing a

support tree that contains the elements of Φ as its non-root nodes can be useful in generating this set Γ of

strong resolvents of Φ efficiently, and helps avoiding redundancy in producing resolvents. In addition,

I explain how we can use the support tree for producing supports for canonical undercuts. I provide

theoretical results and algorithms for the corresponding ideas. Finally, I introduce an algorithm which

by putting together the algorithms presented so far in chapters 3, 4 and 5, produces argument trees, and

an algorithm for implementing the warrant check introduced in definition 2.2.11 page 30.

5.1 Reducing the search space for canonical undercuts

Let A = 〈Φ, α〉 be an argument where Φ = {φ1, . . . , φn} is a set of clauses and α is a clause. Finding

counterarguments (i.e. canonical undercuts) for A requires finding arguments with ¬∧Φ as the claim.

Taking into account that the clauses from Φ are connected through the Attacks relation, we can focus the

search for counterarguments on negating
∧

Γ where Γ is a particular subset of the resolvents of Φ rather

than on negating
∧

Φ. This set Γ is the set of strong resolvents defined next and has some interesting

properties that can make the search for canonical undercuts effective.
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5.1.1 The set of strong resolvents

Definition 5.1.1 Let Φ be a set of clauses. Then, the set of strong resolvents of Φ, denoted

SResolvents(Φ) is defined as follows.

SResolvents(Φ) = {ψ ∈ Resolvents(Φ) | ¬∃ψ′ ∈ Resolvents(Φ) s.t. ψ′ 6= ψ

and Disjuncts(ψ′) ⊆ Disjuncts(ψ)}

Example 5.1.1 Let Φ = {¬e, e ∨ ¬k,¬j ∨ k,¬l ∨ j ∨ f}. Then, Resolvents(Φ) = {¬e, e ∨ ¬k,¬j ∨
k,¬l∨ j∨f,¬k, e∨¬j, k∨¬l∨f,¬j, e∨¬l∨f,¬l∨f} and SResolvents(Φ) = {¬e,¬j,¬k,¬l∨f}.

A set of clauses Φ is equivalent to its set of strong resolvents SResolvents(Φ). From this, the next

proposition follows where ≡ denotes equivalence.

Proposition 5.1.1 For a set of clauses Φ, ¬∧Φ ≡ ¬∧ SResolvents(Φ).

Proof: Clearly, Φ ≡ Resolvents(Φ) and Resolvents(Φ) ≡ SResolvents(Φ). Therefore, we get
∧

Φ ≡∧
SResolvents(Φ) and ¬∧Φ ≡ ¬∧SResolvents(Φ). �

Example 5.1.2 Continuing example 5.1.1, it holds that SResolvents(Φ) = {¬e,¬j,¬k,¬l ∨ f} and

¬∧SResolvents(Φ) = ¬
(
¬e ∧ ¬j ∧ ¬k(¬l ∨ f)

)
= (e ∨ k ∨ j ∨ l) ∧ (e ∨ k ∨ j ∨ ¬f) which is the

conjunctive normal form of ¬
(
¬e ∧ (e ∨ ¬k) ∧ (¬j ∨ k) ∧ (¬l ∨ j ∨ f)

)
= ¬ ∧ Φ

As a consequence of proposition 5.1.1 we obtain the following corollary.

Corollary 5.1.1 Let Φ, Ψ be sets of clauses. Then 〈Ψ,¬∧Φ〉 is an argument iff 〈Ψ,¬∧ SResolvents(Φ)〉
is an argument.

Proof: Follows from proposition 5.1.1. �

Assume we want to find a canonical undercut for an argument 〈Φ, α〉. 〈Ψ, �〉 is a canonical un-

dercut for 〈Φ, α〉 iff 〈Ψ,¬∧{φ1, . . . , φn}〉 is an argument, where {φ1, . . . , φn} is the canonical enu-

meration of Φ. According to corollary 5.1.1, searching for a support for an argument with claim ¬∧Φ

is equivalent to searching for a support for an argument with claim ¬∧ SResolvents(Φ). Therefore,

searching for a canonical undercut for an argument 〈Φ, α〉 is equivalent to searching for an argument

for ¬∧ SResolvents(Φ). Later in the chapter I explain why using ¬∧ SResolvents(Φ) instead of ¬∧Φ

as the claim for an argument can be useful in generating canonical undercuts for 〈Φ, α〉. In order to

explain this I first present some propositions. According to the proposition that follows, in the search for

canonical undercuts for 〈Φ, α〉 we can omit the clauses from ∆ that are subsumed by some clause from

Φ.

Proposition 5.1.2 Let A = 〈Φ, α〉 be an argument and let 〈Ψ, �〉 be a canonical undercut for A. Then,

∀ψ ∈ Ψ, ∀φ ∈ Φ, Disjuncts(φ) 6⊆ Disjuncts(ψ).

Proof: Let 〈Ψ, �〉 be a canonical undercut for an argument A where A = 〈Φ, α〉. Then Ψ ` ¬∧Φ and

Ψ ∪ {∧Φ} is a minimal inconsistent set. To show a contradiction suppose for some ψ ∈ Ψ and φ ∈ Φ,
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Disjuncts(φ) ⊆ Disjuncts(ψ) (and hence φ ` ψ). Then, (Ψ \ {ψ}) ∪ {φ} ∪ {∧Φ} ` ⊥ but because

φ ∈ Conjuncts(
∧

Φ), then (Ψ \ {ψ}) ∪ {∧Φ} ` ⊥ which contradicts the fact that Ψ ∪ {∧Φ} is a

minimal inconsistent set. �

In addition, for the clauses of SResolvents(Φ), the next corollary holds.

Corollary 5.1.2 Let A = 〈Φ, α〉 be a argument and let 〈Ψ, �〉 be a canonical undercut for A. Then,

∀ψ ∈ Ψ, ∀ρ ∈ SResolvents(Φ), Disjuncts(ρ) 6⊆ Disjuncts(ψ).

Proof: Let 〈Ψ, �〉 be a canonical undercut for 〈Φ, α〉. By Corollary 5.1.1, 〈Ψ,¬∧ SResolvents(Φ)〉
is an argument and so Ψ ∪ {∧SResolvents(Φ)} is a minimal inconsistent set. Let for some

ψ ∈ Ψ and ρ ∈ SResolvents(Φ), Disjuncts(ρ) ⊆ Disjuncts(ψ) (and hence ρ ` ψ). Then,(
(Ψ \ {ψ}) ∪ {ρ}

)
∪ {∧SResolvents(Φ)} ` ⊥ and ρ ∈ Conjuncts(

∧
SResolvents(Φ)), so

(Ψ \ {ψ}) ∪ {∧ SResolvents(Φ)} ` ⊥ which contradicts the fact that Ψ ∪ {∧SResolvents(Φ)} is

a minimal inconsistent set. �

Hence, by Corollary 5.1.2, when looking for canonical undercuts for an argument 〈Φ, α〉 we can

remove from the knowledgebase the clauses that are subsumed by some clause from SResolvents(Φ)

since these cannot be in the premises for a canonical undercut 〈Ψ, �〉 for 〈Φ, α〉. Then, the next corollary

also holds.

Corollary 5.1.3 Let 〈Φ, α〉 be an argument and 〈Ψ, �〉 be a canonical undercut for 〈Φ, α〉. Then, if

∆′ = {δ ∈ ∆ | ∃ρ ∈ SResolvents(Φ) s.t. ρ ` δ} it holds that Ψ ⊆ ∆ \∆′.

Proof: Follows from corollary 5.1.2. �

5.1.2 Using the strong resolvents to find canonical undercuts

The definition for a canonical undercut suggests that generating canonical undercuts for an argument

〈Φ, α〉 (i.e. finding arguments with claim ¬∧Φ) requires converting ¬∧Φ to its CNF Φ and find

arguments for Φ. However, conversion to CNF would be an inefficient way to deal with the problem as

the length of the CNF can be exponential to the length of the original formula.

As an alternative we can find the sets of all arguments Ai for each ¬ρi, ρi ∈ SResolvents(Φ) using

∆ ∪ SResolvents(Φ) as the background knowledge. Because
∧

SResolvents(Φ) is equivalent to
∧

Φ,

if for some Ψ ⊂ ∆, Ψ ∪ {∧ SResolvents(Φ)} is a minimal inconsistent set then Ψ ∪ {∧Φ} is also a

minimal inconsistent set. Since Ψ ∪ {∧ SResolvents(Φ)} is a minimal inconsistent set then there is a

Γ′i ⊆ SResolvents(Φ), Γi 6= ∅ such that Ψ ∪ Γ′i is a minimal inconsistent set and for some ρi ∈ Γ′i, if

Γi = Γ′i \ {ρi}, then 〈Ψ ∪ Γi,¬ρi〉 is an argument.

Using an element ρi of SResolvents(Φ) to find arguments for ¬ρi from ∆ ∪ SResolvents(Φ) helps

reducing the number of non-minimal proofs for ¬ ∧ Φ that may be produced during the search. The

fact that the premises in Φ are clauses linked with each other by resolution can be used when looking

for canonical undercuts 〈Ψ, �〉 for 〈Φ, α〉 to avoid using premises in Ψ that are subsumed in Φ but are
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not possible to detect before producing the set SResolvents(Φ). For example, assume we are looking for

canonical undercuts for 〈Φ, α〉= 〈{a∨ b∨ c,¬c∨ b,¬b}, a∨ d〉, hence we are looking for arguments for

¬
(
(a ∨ b ∨ c) ∧ (¬c ∨ b) ∧ ¬b

)
. It holds that SResolvents(Φ) = {a,¬c,¬b} so in order to find all the

arguments for ¬
(
(a∨b∨c)∧(¬c∨b)∧¬b

)
we can alternatively try to find all the arguments for ¬

(
a∧¬c∧

¬b
)
. For this we can use the negation ¬ρi of one of the elements ρi of SResolvents(Φ) and try to find

arguments for ¬ρi. Not all the arguments for these ¬ρi are necessarily canonical undercuts for 〈Φ, α〉,
but all the canonical undercuts for 〈Φ, α〉 are retrieved this way. Although this method generates non-

canonical undercuts besides canonical undercuts, it has the advantages that it does not require converting

¬ ∧ Φ to CNF and also that it narrows down the search to what actually needs to be proved. Later I

describe how we can decide which of these arguments for ¬ρi are canonical undercuts.

Besides the benefits mentioned above, using this method when looking for canonical undercuts for

〈Φ, α〉 can help in reducing the cardinality of the knowledgebase that needs to be considered during this

search. Any clause δ ∈ ∆ that is subsumed by some ρ ∈ SResolvents(Φ) can be removed from the

knowledgebase since, by Corollary 5.1.2, δ cannot be included in the premises of a canonical undercut

for 〈Φ, α〉. For instance, back to the example where we are looking for canonical undercuts for 〈Φ, α〉=
〈{a∨b∨c,¬c∨b,¬b}, a∨d〉, if we use the negation of a ∈ SResolvents(Φ) as the claim for an argument,

then Ψ = {¬a ∨ g,¬g ∨ ¬b, b ∨ e,¬e} is a support for an an argument for ¬a but it is not a support

for a canonical undercut for 〈Φ, α〉 because Ψ′ = {b ∨ e,¬e} is a subset of Ψ sufficient to entail ¬ ∧ Φ.

Removing ¬g ∨ ¬b from ∆ because it is subsumed in ¬b where ¬b ∈ SResolvents(Φ) not only reduces

the number of clauses considered during the search, but also means Ψ cannot be retrieved during the

search for canonical undercuts for 〈Φ, α〉.
Apart from the fact that removing from ∆ the clauses that are subsumed by some clause from

SResolvents(Φ) can reduce the cardinality of the background knowledge, it can result in a substan-

tially reduced closed graph as the search space for canonical undercuts. Let ∆′ = {δ ∈ ∆ | ∃ρ ∈
SResolvents(Φ) s .t. ρ ` δ}. Then, by corollary 5.1.3, ∆ \∆′ contains the premises for all the canonical

undercuts for 〈Φ, α〉. The clauses from ∆ \ ∆′ can be linked in the closed graph for ∆ to a number

of clauses from ∆′ that would not satisfy the connectivity condition for belonging to Closed(∆) if it

had not been for the clauses of ∆′. As an effect, Closed((∆ \ ∆′) ∪ SResolvents(Φ)) can contain a

smaller number of clauses than Closed(∆). Taking into account the fact that each δ ∈ ∆′ contains a

larger number of disjuncts than at least one ρ ∈ SResolvents(Φ), removing ∆′ from the knowledgebase

affects the connectivity of the graph and can result to a substantially reduced graph as the search space

for canonical undercuts for 〈Φ, α〉. This is demonstrated in the following example.

Example 5.1.3 Let ∆ = {q ∨ c,¬q ∨ p, q ∨ ¬c,¬p ∨ g,¬c ∨ b, a ∨ b ∨ c,¬g ∨ ¬b,¬a ∨ b,¬b, b ∨
e,¬e,¬a ∨ f,¬f, s ∨ t,¬s ∨m,¬m ∨ n, h ∨ j,¬j ∨ i}. Then, for Φ = {a ∨ b ∨ c,¬c ∨ b,¬b} and

α = a ∨ d, 〈Φ, α〉 is an argument. Assume we want to find all the canonical undercuts for 〈Φ, α〉. It

holds that SResolvents(Φ) = {a,¬c,¬b}. Let ∆′ = {δ ∈ ∆ | ∃ρ ∈ SResolvents(Φ) s .t. ρ ` δ}. Then,

∆′ = {¬c∨ b, a∨ b∨ c, q ∨¬c,¬g ∨¬b,¬b} and ∆ \∆′ = {q ∨ c,¬f,¬a∨ f,¬a∨ b, b∨ e,¬e,¬q ∨
p,¬p ∨ g, s ∨ t,¬s ∨m,¬m ∨ n, h ∨ j,¬j ∨ i} contains the supports for all the canonical undercuts
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for 〈Φ, α〉. In order to retrieve them we can use the closed graph for ∆′′ = (∆ \∆′) ∪ SResolvents(Φ)

= {q ∨ c,¬f,¬a∨ f,¬a∨ b, b∨ e,¬e,¬q ∨ p,¬p∨ g, s∨ t,¬s∨m,¬m∨ n, h∨ j,¬j ∨ i, a,¬b,¬c}.
The closed graph for ∆ is

¬b¬f ¬a ∨ f

q ∨ c ¬c ∨ b a ∨ b ∨ c ¬a ∨ b b ∨ e ¬e

¬q ∨ p q ∨ ¬c ¬g ∨ ¬b

¬p ∨ g

and the closed graph for ∆′′ is

¬b¬f ¬a ∨ f

a ¬a ∨ b b ∨ e ¬e

The closed graph for ∆′′ contains the supports for A1 = 〈{¬f,¬a ∨ f}, �〉, A2 = 〈{b ∨ e,¬e}, �〉
and A3 = 〈{¬a ∨ b}, �〉 that are all the canonical undercuts for 〈Φ, α〉 from ∆.

In order to find all the canonical undercuts 〈Ψi, �〉 for 〈Φ, α〉 we can find arguments for each ¬ρi,
where ρi ∈ SResolvents(Φ), using ∆ \ {δ ∈ ∆ | ∃ρ ∈ SResolvents(Φ) s.t. ρ ` δ} ∪ SResolvents(Φ) as

the background knowledge. We obtain in this way arguments 〈Ψi∪Γi,¬ρi〉 for each ¬ρi, where Ψi ⊆ ∆

and Γi ⊂ SResolvents(Φ) (where Γi can be the empty set). This is illustrated in the next example and

formalised in the proposition that follows after the example.

Example 5.1.4 In order to obtain the canonical undercuts of example 5.1.3, by using the negation of

ρ1 = a and ρ2 = ¬b from SResolvents(Φ) as claims for arguments we obtain

A′1 = 〈Ψ1 ∪ Γ1,¬ρ1〉 = 〈{¬f,¬a ∨ f} ∪ ∅,¬a〉,
A′2 = 〈Ψ2 ∪ Γ2,¬ρ2〉 = 〈{b ∨ e,¬e} ∪ ∅, b〉,
A′3 = 〈Ψ3 ∪ Γ3,¬ρ1〉 = 〈{¬a ∨ b} ∪ {¬b},¬a〉
A′4 = 〈Ψ4 ∪ Γ4,¬ρ2〉 = 〈{¬a ∨ b} ∪ {a}, b〉

The part Ψi (i=1. . . 4) of each the support sets Ψi ∪ Γi of the arguments above, which contains clauses

from ∆, gives a support for a canonical undercut for 〈Φ, α〉= 〈{a ∨ b ∨ c,¬c ∨ b,¬b}, a ∨ d〉.

It is not always the case though that an argument 〈Ψi ∪ Γi,¬ρi〉 where Ψi ⊆ ∆,

Γi ⊂ SResolvents(Φ) and ρi ∈ SResolvents(Φ) indicates a support Ψi for a canonical un-

dercut 〈Ψi, �〉 for 〈Φ, α〉. For Ψi, it holds that it is consistent and Ψi ` ¬
∧

SResolvents(Φ)

(and hence Ψi ` ¬
∧

Φ). It can be the case though where Ψi is not minimal for entailing

¬∧ SResolvents(Φ) so 〈Ψi,¬
∧

SResolvents(Φ)〉 is not an argument and there is a Ψj ⊂ Ψi such

that 〈Ψj ,¬
∧

SResolvents(Φ)〉 is an argument. In this case, there is a Γj ⊂ SResolvents(Φ) such that

Ψj ∪ Γj is a minimal inconsistent set. Then, for some ρj ∈ Γj (where possibly ρj = ρi) it holds that
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〈(Ψj ∪ Γj) \ {ρj},¬ρj〉 is an argument. After having found all the arguments for all the ¬ρi we can

decide which ones indicate canonical undercuts for 〈Φ, α〉 by comparing them and checking whether for

some 〈Ψi ∪ Γi,¬ρi〉 there is some 〈Ψj ∪ Γj ,¬ρj〉 (where ρj may or may not be equal to ρi) such that

Ψj ⊂ Ψi. The Ψi for which this condition does not hold for any Ψj are canonical undercuts for 〈Φ, α〉.
The correctness of using strong resolvents for finding arguments is captured in the following result.

Proposition 5.1.3 Let 〈Φ, α〉 be an argument. 〈Ψ, �〉 is a canonical undercut for 〈Φ, α〉 iff there is a

ρi ∈ SResolvents(Φ) and a Γi ⊂ SResolvents(Φ) (possibly the empty set) such that 〈Ψ ∪ Γi,¬ρi〉 is an

argument and there is no Ψ′ ⊂ Ψ and Γj ⊂ SResolvents(Φ) and ρj ∈ SResolvents(Φ) (where ρj can

be equal to ρi) such that such that 〈Ψ′ ∪ Γj ,¬ρj〉 is an argument.

Proof: (→) Let A = 〈Φ, α〉 be an argument and 〈Ψ, �〉 be a canonical undercut for A. Then 〈Ψ,¬∧Φ〉
is an argument and 〈Ψ,¬∧SResolvents(Φ)〉 is also an argument. Then, Ψ ∪ {∧ SResolvents(Φ)} is

a minimal inconsistent set and so there is an Γ′i ⊆ SResolvents(Φ) such that Ψ ∪ Γ′i is a minimal

inconsistent set and Γ′i 6= ∅ because otherwise Ψ ` ⊥ would hold and 〈Ψ, �〉 would not be a canonical

undercut forA. Then, there is a ρi ∈ Γ′i, and if Γi = Γ′i\{ρi} then 〈Ψ∪Γi,¬ρi〉 is an argument, so there

exists a ρi ∈ SResolvents(Φ) and a Γi ⊂ SResolvents(Φ) (possibly the empty set) such that 〈Ψ∪Γi,¬ρi〉
is an argument. Moreover, there is no Ψ′ ⊂ Ψ, Γj ⊂ SResolvents(Φ) and ρj ∈ SResolvents(Φ) such

that 〈Ψ′ ∪Γj ,¬ρj〉 is an argument because then Ψ′ ∪Γj ∪{ρj} would be a minimal inconsistent set and

Ψ′ ` ¬∧(Γj ∪ {ρj}) from which follows that Ψ′ ` ¬∧(SResolvents(Φ)) and so Ψ′ ` ¬∧Φ and this

contradicts the assumption that 〈Ψ, �〉 is a canonical undercut for 〈Φ, α〉.
(←) Assume that for some Ψ ⊆ ∆, ρi ∈ SResolvents(Φ), Γi ⊂ SResolvents(Φ) (possibly the

empty set) 〈Ψ ∪ Γi,¬ρi〉 is an argument. Then Ψ is consistent and Ψ ` ¬∧(Γi ∪ {ρi}) from which

follows that Ψ ` ¬∧SResolvents(Φ). Also assume and there are no Ψ′ ⊂ Ψ, Γj ⊂ SResolvents(Φ)

and ρj ∈ SResolvents(Φ) (where ρj can be equal to ρi) such that 〈Ψ′ ∪ Γj ,¬ρj〉 is an argument. Then,

Ψ ∪ Γi ∪ {ρi} is a minimal inconsistent set and there is no Ψ′ ⊂ Ψ and Γ′j ⊆ SResolvents(Φ) such that

Ψ′ ∪ Γ′j is a minimal inconsistent set, so there is no Ψ′ ⊂ Ψ such that Ψ′ ∪ {∧ SResolvents(Φ)} ` ⊥,

and hence there is no Ψ′ ⊂ Ψ such that Ψ′ ` ¬∧ SResolvents(Φ), from which follows that

〈Ψ,¬∧SResolvents(Φ)〉 is an argument and 〈Ψ, �〉 is a canonical undercut for 〈Φ, α〉. �

Example 5.1.5 Let ∆ = {e∨q∨f,¬f∨e,¬e∨¬f, f, e∨¬q}. Then 〈Φ, α〉= 〈{e∨q∨f,¬f∨e}, e∨q〉
is an argument and SResolvents(Φ) = {¬f ∨ e, e ∨ q}. Moreover, the following are arguments:

A1 = 〈Ψ1 ∪ Γ1,¬ρ1〉 = 〈{f,¬e ∨ ¬f, e ∨ ¬q} ∪ ∅,¬(e ∨ q)〉
A2 = 〈Ψ2 ∪ Γ2,¬ρ2〉 = 〈{f,¬e ∨ ¬f} ∪ ∅,¬(¬f ∨ e)〉,

and Ψ2 ⊂ Ψ1 so 〈Ψ1, �〉 is not a canonical undercut for 〈Φ, α〉. 〈Ψ2, �〉 is a canonical undercut for

〈Φ, α〉.

To sum up, in order to generate all the canonical undercuts for an argument 〈Φ, α〉 from a knowled-

gebase ∆ we can start by generating the set SResolvents(Φ) and producing arguments for the negation

¬ρi of each ρi ∈ SResolvents(Φ) using ∆\{δ ∈ ∆ | ∃ρ ∈ SResolvents(Φ) s.t. ρ ` δ}∪SResolvents(Φ)

as the knowledgebase. This process produces for each ¬ρi, arguments 〈Ψi∪Γi,¬ρi〉 where Ψi ⊆ ∆ and
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Γi ⊂ SResolvents(Φ) (where Γi may be the empty set). After having generated all these arguments for

all ¬ρi we can decide which ones indicate canonical undercuts for 〈Φ, α〉 by rejecting the ones that do

not satisfy proposition 5.1.3. Then, the part Ψi of the support of the remaining arguments 〈Ψi∪Γi,¬ρi〉
is a support for a canonical undercut for 〈Φ, α〉.

Example 5.1.3 demostrated how producing the set SResolvents(Φ) and removing from ∆ the

clauses that are subsumed by clauses in SResolvents(Φ) can provide a reduced search space for ca-

nonical undercuts for 〈Φ, α〉. Producing the set of strong resolvents though can be inefficient since the

number of resolvents produced by applying resolution exhaustively on a set of clauses can be large.

So, we need a mechanism that produces this set efficiently. In Section 5.3, I provide an algorithm that

by traversing a support tree that contains the clauses from Φ in its non-root nodes produces the set

SResolvents(Φ) in a way that controls the number of resolvents produced. Another point to address at

this stage is that in order to generate arguments for each ¬ρi we need a method that can generate an

argument for a negated clause and so far the theory and algorithms presented in previous chapters deal

with generating arguments for disjunctive clauses. The topic of the next section is how we can use the

support tree in order to generate arguments that have a negated clause as their claim.

5.2 Using a support tree to generate canonical undercuts
In section 5.1.2 it was demonstrated how using the clauses from SResolvents(Φ) and finding arguments

for each ¬ρi of each ρi ∈ SResolvents(Φ) can be used in order to generate undercuts for an argument

〈Φ, α〉. This requires finding arguments for the negated clause ¬ρi. The support tree has been proposed

as a way to find arguments for a claim that is a disjunctive clause. In this section I describe how the

support tree can be used again as the structure to provide the arguments for ¬ρi, which in this case is a

conjunctive clause.

Let (N,A, f) be a support tree for ∆, α and a where α is a clause consisting of a unique literal.

Then, Disjuncts(α) = {a}, and a represents the root node of (N,A, f). If Γ′ is the set of non-root nodes

of (N,A, f), then by proposition 4.2.10 〈Γ′, α〉 is an argument and for Γ = Γ′ ∪ {¬α} it holds that Γ is

a minimal inconsistent set. Because ¬α = a, then if p0 is the root of (N,A, f) it holds that f(p0) = ¬α
and so Γ is equal to the set of clauses assigned to the nodes of the tree, i.e. Γ = {f(x) | x ∈ N}.
Then, since Γ is a minimal inconsistent set, for all γ ∈ Γ it holds that 〈Γ \ {γ},¬γ〉 is an argument.

Hence, in order to find an argument for a negated clause ¬γ, we can find a support tree (N,A, f) for

a claim α that consists of a unique disjunct, where γ is assigned to a node in (N,A, f) and obtain in

this way a minimal inconsistent set that contains γ. For this we can construct a clause γ′ that consists

of the literals of γ together with an arbitrary literal p whose atom does not appear anywhere in the

knowledgebase or the disjuncts of γ. i.e. γ′ =
∨

(Disjuncts(γ) ∪ {p}) where p 6∈ Literals(∆∪{γ}) and

p 6∈ Literals(∆ ∪ {γ}). Using α′ = p as the clause for which a support tree will be constructed from

∆ ∪ {γ′}, ensures that γ′ will be contained in all the minimal inconsistent sets that also contain p and

all the minimal inconsistent sets that contain γ′ are the ones that also contain p. If (N,A, f) is a support

tree for ∆ ∪ {γ′}, α′ = p and p ∈ Disjuncts(α′), then {f(x) | x ∈ N} is a minimal inconsistent set

and {γ′,¬p} ⊂ {f(x) | x ∈ N}. From the way γ′ is constructed it holds that γ′ ∧ ¬p ≡ γ. Then,
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{f(x) | x ∈ N} \ {γ′,¬p} ∪ {γ} is a minimal inconsistent set, so 〈{f(x) | x ∈ N} \ {γ′,¬p},¬γ〉 is

an argument and {f(x) | x ∈ N} \ {γ′,¬p} ⊆ ∆. Therefore, the nodes of (N,A, f) that are located

below the node represented by γ′ correspond to a support for an argument for ¬γ.

Example 5.2.1 The support tree (N,A, f) of example 4.2.4 from chapter 4 gives an argument for α =

d ∨m ∨ g from ∆ = {¬b ∨ d ∨ f ∨ g, a ∨ b ∨ c ∨ d,¬a ∨ k ∨ j,¬j ∨ d,¬k,¬c ∨ l,¬l,¬f,¬d ∨ b ∨
g,¬g ∨ b,¬b,¬d ∨ ¬j, j,¬g, c ∨ l}.

¬d
|

¬b ∨ d ∨ f ∨ g
� �

a ∨ b ∨ c ∨ d ¬f
� �

¬a ∨ k ∨ j ¬c ∨ l
� � |

¬j ∨ d ¬k ¬l
The set of clauses corresponding to the non-root nodes of (N,A, f) is Φ = {¬b ∨ d ∨ f ∨ g, a ∨ b ∨
c ∨ d,¬a ∨ k ∨ j,¬j ∨ d,¬k,¬c ∨ l,¬l,¬f}. Then, 〈Φ, α〉 is an argument and SResolvents(Φ) =

{¬f,¬k,¬a ∨ j, d ∨ ¬a, d ∨ g, d ∨ b,¬c,¬l,¬j ∨ d}. Assume we want to find a canonical undercut

for 〈Φ, α〉 and for this we look for an argument for the negation of γ = d ∨ g ∈ SResolvents(Φ). If

γ′ = d ∨ g ∨ p and α′ = p, and ∆′ = ∆ ∪ {γ′} ∪ SResolvents(Φ), the following is a support tree for

∆′, α′ and p.

¬p
|

d ∨ g ∨ p
� �

¬d ∨ b ∨ g ¬g ∨ b
� � |
¬b ¬g ∨ b ¬b

|
¬b

For z such that f(z) = γ′ = d ∨ g ∨ p, if Ψ = {f(x) | x ∈ Subtree(z) \ {z}}, then Ψ = {¬b,¬g ∨
b,¬d ∨ b ∨ g}, and 〈Ψ,¬d ∧ ¬g〉 is an argument and is equal to 〈Ψ,¬γ〉.

5.3 Algorithms
In this section I present the algorithms that generate counterarguments and argument trees by using the

algorithms introduced in chapters 3 and 4 and additional algorithms that implement the theory from

this chapter that concerns strong resolvents. First I give the algorithm that generates the set of strong

resolvents of a set Φ that corresponds to the non-root nodes of a support tree (N,A, f) by traversing

(N,A, f). Then, I introduce the algorithm that produces canonical undercuts for an argument 〈Φ, α〉 by

making use of the set of strong resolvents of Φ. Finally, I give the algorithm which, putting together all

the algorithms given so far in chapters 3-5, generates an argument tree.
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5.3.1 Algorithm for generating resolvents

Let 〈Φ, α〉 be an argument, where α and the formulae from Φ and are clauses. In chapter 4 it was

proved that there is an a ∈ Disjuncts(α) such that (N,A, f) is a support tree for ∆, α and a, such

that Φ = {f(x) | x ∈ N} \ {a}. In previous paragraphs of this chapter it was described how using the

negation of each of the clauses from SResolvents(Φ) as claims for arguments can be useful for generating

canonical undercuts for 〈Φ, α〉. This section introduces an algorithm that generates SResolvents(Φ)

based on the structure of the suppport tree (N,A, f) that corresponds to Φ.

Apart from providing a minimal and consistent proof for a claim α, a support tree can also be used

to generate SResolvents(Φ) efficiently. The way the support tree is built helps minimizing the number

of disjuncts of the resolvents produced when the order in which the resolution of clauses happens is

indicated by a post-order traversal of (N,A, f).

Given for an argument 〈Φ, α〉 a support tree (N,A, f) for ∆, α and a that corresponds to Φ, i.e.

Φ = {f(x) | x ∈ N} \ {a}, algorithm GetSResolvents((N,A, f)) returns the set SResolvents(Φ).

Using function ResolveSubtree(y) the algorithm assigns a set of clauses to each node y, that repre-

sents the set of strong resolvents produced by {f(x) | x ∈ Subtree(y)}. Initially, before the traversal

takes place, for each non-root node y from N , ResolveSubtree(y) is initialized to be equal to {f(y)}
and for the root node it is initialized to be equal to the empty set (since a 6∈ Φ and a will not be

considered when applying resolution in order to produce the set SResolvents(Φ)). Each node is vi-

sited after all its children have been visited. Every time a child x of node y is visited, the value of

Resolvents(ResolveSubtree(x) ∪ ResolveSubtree(y)) is assigned to ResolveSubtree(y). Every time set

ResolveSubtree(y) is updated, the clauses for which there is a stronger clause in ResolveSubtree(y) are

removed using function RemoveSubsumed. In this way, the number of resolvents produced at each step

is controlled and the comparison for subsumed clauses is focused on each node and happens locally.

Hence, for each node y that has been visited and processed during the traversal, ResolveSubtree(y)

gives the set of strong resolvents of the set of clauses that represent its subtree. When the root node

root is reached during the traversal, the algorithm outputs ResolveSubtree(root) which is the set

SResolvents({f(x) | x ∈ N} \ {a}) = SResolvents(Φ). In order to traverse the tree, the algorithm

uses functions FirstChild(x), Parent(x), and NextSibling(x) which, given a node x, return respectively

the first child of x, the parent of x and the next sibling of x in (N,A, f). Boolean function Visited(x)

indicates whether node x has been visited so far during the traversal.

In the case where (N,A, f) is a support tree that has been retrieved while looking for a ca-

nonical undercut 〈Ψ, �〉 for some argument that has a support Ψ′, then apart from clauses from Ψ,

(N,A, f) can also contain clauses from SResolvents(Ψ′). As explained in section 5.1.2, in order to

find a canonical undercut for an argument with support Ψ′ we look for arguments 〈Ψ∪Γ,¬ρ〉 for all the

ρ ∈ SResolvents(Ψ′) from (∆ \∆′)∪SResolvents(Ψ′) where ∆′ is the set of clauses that are subsumed

by some clauses from SResolvents(Ψ′), Ψ′ ⊂ ∆ and Γ ⊂ SResolvents(Ψ′). In this case, the presupport

tree contains the clauses of Ψ∪Γ, where Γ may or may not be equal to the empty set. Then, the traversal

would produce SResolvents(Ψ ∪ Γ) rather than SResolvents(Ψ). In order to avoid this, the nodes z of
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(N,A, f) for which f(z) ∈ Γ, have the value for ResolveSubtree(z) initialized to be the empty set. This

way, no clauses from Γ are involved in the resolvents produced by the traversal of (N,A, f). For the

same reason, in all support trees the root node has its value for ResolveSubtree initialized to be equal to

the empty set since it does not represent a clause from the set for which the set of strong resolvents has

to be generated.

Algorithm 5.1 GetSResolvents((N,A, f))
1: x = root
2: while x 6= null do
3: if FirstChild(x) 6= null & Visited(x) == false then
4: Visited(x) = true
5: x = FirstChild(x)
6: else
7: y = Parent(x)
8: ResolveSubtree(y) = Resolvents(ResolveSubtree(y) ∪ ResolveSubtree(x))
9: ResolveSubtree(y) = RemoveSubsumed(ResolveSubtree(y))

10: if NextSibling(x) 6= null then
11: x = NextSibling(x)
12: else
13: x = Parent(x)
14: end if
15: end if
16: if x == root then
17: return ResolveSubtree(x)
18: end if
19: end while

The following example illustrates how algorithm GetSResolvents works on one of the support trees

of example 5.2.1. The clause representation of each node x is used to denote x, and each corresponding

line of the algorithm operation is given on the right hand side of each step. The tree on which the

algorithm is applied represents the search for an argument 〈Φ, α〉 for a clause α and not the search for

a canonical undercut, hence the set of non-root nodes from (N,A, f) is equal to Φ and all the non-root

nodes x have their value for ResolveSubtree(x) initialized to be equal to {f(x)}. For the root node,

since it does not have its clause representation in Φ, its value for ResolveSubtree is initialised to be equal

to the empty set.

Example 5.3.1 Let (N,A, f) be the first support tree of example 5.2.1 where Φ = {¬b ∨ d ∨ f ∨ g, a ∨
b ∨ c ∨ d,¬a ∨ k ∨ j,¬j ∨ d,¬k,¬c ∨ l,¬l,¬f}. The following represents the sequence of operations

that corresponds to the application of algorithm 5.1 on (N,A, f).

GetSResolvents((N,A, f))

x = ¬d (1)

Visited(¬d) = true, x = ¬b ∨ d ∨ f ∨ g (4),(5)

Visited(¬b ∨ d ∨ f ∨ g) = true, x = a ∨ b ∨ c ∨ d (4),(5)

Visited(a ∨ b ∨ c ∨ d) = true, x = ¬a ∨ k ∨ j (4),(5)

Visited(¬a ∨ k ∨ j) = true, x = ¬j ∨ d (4)(5)

y = ¬a ∨ k ∨ j (7)



5.3. Algorithms 95

ResolveSubtree(¬a ∨ k ∨ j) = {¬a ∨ k ∨ j,¬j ∨ d,¬a ∨ k ∨ d} (8),(9)

x = ¬k (11)

y = ¬a ∨ k ∨ j (7)

ResolveSubtree(¬a ∨ k ∨ j) = {¬a ∨ k ∨ j,¬j ∨ d,¬a ∨ k ∨ d,¬k,¬a ∨ j,¬a ∨ d} (8)

ResolveSubtree(¬a ∨ k ∨ j) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d} (9)

x = ¬a ∨ k ∨ j (13)

y = a ∨ b ∨ c ∨ d (7)

ResolveSubtree(a ∨ b ∨ c ∨ d) = {a ∨ b ∨ c ∨ d,¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d, b ∨ c ∨ d ∨ j, b ∨ c ∨ d}
(8)

ResolveSubtree(a ∨ b ∨ c ∨ d) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d, b ∨ c ∨ d} (9)

x = ¬c ∨ l (11)

Visited(¬c ∨ l) = true, x = ¬l (4),(5)

y = ¬c ∨ l (7)

ResolveSubtree(¬c ∨ l) = {¬c ∨ l,¬l,¬c} (8)

ResolveSubtree(¬c ∨ l) = {¬l,¬c} (9)

x = ¬c ∨ l (13)

y = a ∨ b ∨ c ∨ d (7)

ResolveSubtree(a ∨ b ∨ c ∨ d) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d, b ∨ c ∨ d,¬l,¬c, b ∨ d} (8)

ResolveSubtree(a ∨ b ∨ c ∨ d) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d,¬l,¬c, b ∨ d} (9)

x = a ∨ b ∨ c ∨ d (13)

y = ¬b ∨ d ∨ f ∨ g (7)

ResolveSubtree(¬b∨ d∨ f ∨ g) = {¬b∨ d∨ f ∨ g,¬j ∨ d,¬k,¬a∨ j,¬a∨ d,¬l,¬c, b∨ d, d∨ f ∨ g}
(8)

ResolveSubtree(¬b ∨ d ∨ f ∨ g) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d,¬l,¬c, b ∨ d, d ∨ f ∨ g} (9)

x = ¬f (11)

y = ¬b ∨ d ∨ f ∨ g (7)

ResolveSubtree(¬b ∨ d ∨ f ∨ g) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d,¬l,¬c, b ∨ d, d ∨ f ∨ g,¬f, d ∨ g} (8)

ResolveSubtree(¬b ∨ d ∨ f ∨ g) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d,¬l,¬c, b ∨ d,¬f, d ∨ g} (9)

x = ¬b ∨ d ∨ f ∨ g (13)

y = root (7)

ResolveSubtree(root) = {¬j ∨ d,¬k,¬a ∨ j,¬a ∨ d,¬l,¬c, b ∨ d,¬f, d ∨ g} (8),(9)

return ResolveSubtree(root) (17)

The set of clauses returned by the algorithm is {¬j ∨ d,¬k,¬a∨ j,¬a∨ d,¬l,¬c, b∨ d,¬f, d∨ g} and

is the set SResolvents(Φ) of strong resolvents of Φ.

5.3.2 Algorithms for generating counterarguments

As described in paragraph 5.1.2, given an argument 〈Φ, α〉, and the requirement to find all the canonical

undercuts for 〈Φ, α〉 from ∆, we can start by looking for all the arguments



5.3. Algorithms 96

Args(¬ρ1) = 〈Ψ1
1 ∪ Γ1

1,¬ρ1〉, . . . 〈Ψ1
k ∪ Γ1

k,¬ρ1〉
...

Args(¬ρn) = 〈Ψn
1 ∪ Γn1 ,¬ρn〉, . . . 〈Ψn

m ∪ Γnm,¬ρn〉

for all ρ1 . . . ρn ∈ SResolvents(Φ) from ∆∪SResolvents(Φ) where Ψi ⊆ ∆ and Γi ⊂ SResolvents(Φ).

As explained in paragraph 5.1.2, we can use the set ∆′′ = (∆ \ {δ ∈ ∆ | ∃ρ ∈ SResolvents(Φ) s .t. ρ `
δ}) ∪ SResolvents(Φ) as the knowledgebase from which all these arguments are generated. Also, as ex-

plained in section 5.2, although the support tree is defined with respect to a disjunctive clause and is rela-

ted to finding arguments for claims that are clauses, we can use it to find arguments for a negated clause

¬ρi. For this we can construct a clause ρ′i consisting of the literals of ρi together with an arbitrary literal

p whose atom does not appear anywhere in ∆ or α, and hence anywhere in ∆′′.

Algorithm 5.2 GetCounterarguments((N,A, f))
Undercuts = ∅,Canonical = ∅
SResolvents(Φ) = GetSResolvents((N,A, f))
∆′′ = RemoveSubsumedOf(∆,SResolvents(Φ))
∆′′ = ∆′′ ∪ SResolvents(Φ)
Let v be node that contains (N,A, f) s.t. N = {x}, A = ∅, {f(x) | x ∈ N} = {p}
for all ρi ∈ SResolvents(Φ) do
ρ′i = Augment(ρi, p)
∆′′ = ∆′′ ∪ {ρ′i}
PresupportTreesi = SearchTree(v)
for all (Nj , Aj , fj) ∈ PresupportTreesi do

if ¬IsConsistent((Nj , Aj , fj)) then
PresupportTreesi = PresupportTreesi \ {(Nj , Aj , fj)}

else
if ¬IsMinimal((Nj , Aj , fj)) then
PresupportTreesi = PresupportTreesi \ {(Nj , Aj , fj)}

end if
end if

end for
Undercuts = Undercuts ∪ PresupportTreesi
∆′′ = ∆′′ \ {ρ′i}

end for
Canonical = getCanonical(Undercuts)
return Canonical

Then, a support tree (N,A, f) for ∆′′∪{ρ′i}, α′ = p and p indicates an argument for ¬ρi where the sup-

port of this argument is the set of clauses that represent (N,A, f) excluding clauses α′ = p and ρ′i. Let

function Augment(ρi, p) return ρ′i as described above, and let RemoveSubumedOf(∆,SResolvents(Φ))

return the set ∆\{δ ∈ ∆ | ∃ρ ∈ SResolvents(Φ) s .t. ρ ` δ}. Then, given the support tree (N,A, f) that

corresponds to argument 〈Φ, α〉, algorithm GetCounterarguments((N,A, f)) returns the set of all ca-

nonical undercuts for 〈Φ, α〉. For this, for each ρi ∈ SResolvents(Φ), a search tree Ti is generated by

algorithm SearchTree of chapter 4 for α′ = p where the knowledgebase is ∆′′∪{ρ′i}. Each of the results

of Ti is then examined on whether it satisfies the conditions for a consistent and minimal presupport tree

by using function IsConsistent and algorithm IsMinimal introduced in chapter 4. The ones that do satisfy

these conditions are added to set Undercuts and the algorithm proceeds in the same way by building a

tree Tj associated to the next ρj ∈ SResolvents(Φ) using ∆′′ ∪ {ρ′j} (where ρ′j = Augment(ρj , p)) as
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the knowledgebase until all the clauses from SResolvents(Φ) have been examined.

After having generated all these arguments, the algorithm refines which indicate canonical under-

cuts for 〈Φ, α〉 by comparing them with function getCanonical. The 〈Ψi
s ∪ Γis,¬ρi〉 for which there is

no 〈Ψj
l ∪ Γjl ,¬ρj〉 (where ρj may be equal to ρi) such that Ψj

l ⊂ Ψi
s, indicate a canonical undercut

〈Ψi
s, �〉 for 〈Φ, α〉. Because the literals from each ρi are linked to the literals of the clauses of each

support Ψi
s ∪ Γis for 〈Ψi

s ∪ Γis,¬ρi〉, it is more likely for a Ψj
l from 〈Ψj

l ∪ Γjl ,¬ρj〉 to be contained in

Ψi
s from 〈Ψi

s ∪ Γis,¬ρi〉 when these are arguments for the same claim i.e. when it holds that ρi = ρj .

For this reason, function getCanonical first compares the supports for arguments that correspond to

each ρi ∈ SResolvents(Φ) individually and reject the ones that cannot indicate a canonical undercut for

〈Φ, α〉 as described above. Then, it compares the supports for the remaining arguments of different ρi, ρj

and similarly it rejects the ones that according to proposition 5.1.3 do not indicate a canonical undercut

for 〈Φ, α〉.

5.3.3 Algorithm for argument trees

In this section I introduce an algorithm which, putting together the algorithms given so far generates an

argument tree. Given the support tree (N0, A0, f0) for ∆, α and a, that corresponds to an argument for

α, algorithm ArgumentTree((N0, A0, f0)) generates an argument tree that has 〈{f0(x) | x0 ∈ N0} \
{a}, α〉 as its root. It uses function Node((N,A, f), parentNode) which, given a support tree (N,A, f),

creates an argument tree node structure that is identified by (N,A, f) and has parentNode as its parent

in the argument tree.

Algorithm 5.3 ArgumentTree((N0, A0, f0))
Arcs = ∅, N odes = ∅
root = Node((N0, A0, f0), null)
S is an empty Stack
push root onto S
while S is not empty do

topNode = ((Nt, At, ft), t′) is the top of S
pop S
Canonical = GetCounterarguments((Nt, At, ft))
Γ = GetSResolvents((Nt, At, ft))
for all (N,A, f)∈ Canonical do

Ψ = ({f(x) | x ∈ N \ root} ∩∆) \ Γ
if Ψ 6⊆ BranchClauses(topNode) then
newNode = Node((N,A, f), topNode)
BranchClauses(newNode) = BranchClauses(topNode) ∪Ψ
Arcs = Arcs ∪ {(newNode, topNode)}
Nodes = Nodes ∪ {newNode}
push newNode onto S

end if
end for

end while
return (Arcs,Nodes)

With the method described in section 5.1.2, when looking for canonical undercuts for an argument that

has support Ψ′, a canonical undercut 〈Ψ, �〉 is retrieved for this argument by finding arguments 〈Ψ ∪
Γ,¬ρi〉 for some ρi ∈ SResolvents(Ψ) where Γ ⊂ SResolvents(Ψ′). Therefore, apart from the support
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tree (N0, A0, f0) of the root argument, the rest of the nodes of the argument tree are identified by support

trees (N,A, f) that may contain clauses from the set of strong resolvents of their parent node in the

argument tree. So, the support for each undercut 〈Ψ, �〉 is given by the relation Ψ = ({f(x) | x ∈
N \ root} ∩∆) \ Γ where root is the root of (N,A, f).

The algorithm generates the tree in a depth-first way and a branch stops expanding when either

there is no canonical undercut for the current leaf from the knowledgebase, or the canonical undercuts

for the current leaf have supports whose clauses have all been used in the supports of the arguments of

the branch and so the branch cannot be extended further because this would violate condition (2) of the

definition of the argument tree. Function BranchClauses gives for each node of the argument tree the set

of clauses that appear in the supports of its ancestor nodes in the branch where it belongs and is used by

the algorithm to monitor whether a new node can be added on the tree without violating condition (2) of

the definition of the argument tree.

The next paragraph provides an algorithm for checking whether an argument tree is warranted.

5.3.4 Algorithm for the warrant check

As discussed in chapter 2, paragraph 2.2.3, we can assess whether an argument tree is warranted by

marking its nodes as defeated or undefeated by a recursive mechanism. All the leaf nodes are mar-

ked as undefeated and then all the nodes that have at least one undefeated child are marked as de-

feated. If through this process the root node is marked as defeated then the argument tree (and the

root) is not warranted while if the root node is marked as undefeated then the argument tree is warran-

ted.

Algorithm 5.4 Mark((N,A))
Node next = theRoot
while next 6= null do

if FirstChild(next) 6= null && Visited(next) == false then
Visited(next) = true
next = FirstChild(next)

else
if Parent(next) == null then

return
end if
if Defeated(next) == false then

Defeated(Parent(next)) = true
end if
if NextSibling(next) 6= null then

next = NextSibling(next)
else

next = Parent(next)
end if

end if
end while

Given an argument tree (N,A), algorithm Mark((N,A)) assigns a boolean value to the nodes of (N,A)

which is set to true for a node that is marked as defeated and false for the opposite. The algorithm

assigns these values by traversing the tree. Boolean function Defeated keeps track of the value assigned
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to a node. Initially all the nodes x have the value for Defeated(x) initialised to be equal to false .

The algorithm uses functions FirstChild(x), Parent(x), and NextSibling(x) which, given a node

x, return respectively the first child of x, the parent of x and the next sibling of x in (N,A). Boolean

function Visited(x) indicates whether node x has been visited so far during the traversal. Every node in

the tree is visited after all its children have been visited and its value for defeated is assigned with respect

to the values assigned to its children nodes.

After Mark((N,A)) has assigned the values for defeated to the nodes of the tree, the tree can be

evaluated on whether it is warranted by checking the value assigned to its root node.

5.4 Discussion
This chapter provided a proposal for generating canonical undercuts for arguments whose supports are

from C. The theory of chapters 3 and 4 was extended to deal with canonical undercuts, and algorithms

that implement this theory were introduced. Finally, an algorithm that generates argument trees based on

the algorithms of chapters 3, 4 and 5 was given, along with an algorithm that assigns the values defeated

or undefeated to the nodes of an argument tree, providing this way the means for evaluating whether the

argument tree is warranted.

In the next chapter I present the software implementation of an argumentation system that is based

on these algorithms and empirical evaluation of the algorithms through experimentation on the system.



Chapter 6

Implementation

This chapter introduces JArgue, an argumentation engine that implements argumentation based on clas-

sical propositional logic using the algorithms introduced in chapters 3-5. It is developed in Java and can

be used with propositional clauses, where a claim for an argument, which is a disjunctive clause, and a

knowledgebase that consists of disjunctive clauses are given as input.

The input is given through a simple graphical user interface from which a text file containing the

knowledgebase is loaded to the system, and a claim for arguments is typed in the appropriate field. The

system first generates all the supports for arguments for the given claim from the given knowledgebase

and displays them in a list. The user can then select one of the supports from this list, and the system

generates an argument tree where the root of the tree is the argument with the selected support. This tree

can then be evaluated on whether it is warranted (according to the warrant mechanism introduced in [12]

and discussed in chapter 2), providing this way an evaluation for the root argument.

The chapter starts by describing the architecture of the software and proceeds by presenting the

functionality of the system’s graphical user interface. It closes with an experimental evaluation on gene-

rating argument trees using JArgue.

6.1 System architecture
JArgue is developed in Java and implements the theory and algorithms introduced in chapters 3-5. Some

of the most important classes of the system are described below.

Class Clause constructs objects that represent propositional clauses given the String representa-

tion of a clause. It implements operations like resolution between pairs of clauses, negation of a literal,

comparison of clauses on which is stronger than the other or whether two clauses are equivalent or equal

and the Attacks and Preattacks functions as these are defined in chapter 3.

Class ClauseKb constructs objects that represent sets of propositional clauses given either the

String representation of a set or an array of Clause objects that are the elements of the set. It stores

Clause objects in its instance variable elements and implements the standard set operations of union,

intersection, subtraction and equality check as well as consistency check and resolution in between its

elements.

Class GraphNode constructs objects that represent nodes for a graph. Each GraphNode object
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is initialised given a Clause object and is used by classes that represent graphs. It contains boolean

instance variables that keep track of its state, i.e. whether it has been visited or not in a search of a graph

where it may belong.

Class AttackGraph constructs an attack graph for a ClauseKb object as this is defined in

chapter 3. For each Clause contained in the input ClauseKb, a GraphNode object is created and

stored in a 2-dimensional array that acts as an adjacency matrix. AttackGraph implements operations

for traversing the graph and checking connectivity of nodes.

Class FocalGraph constructs a focal graph object for a given ClauseKb and a Clause as the

epicentre. It contains an AttackGraph instance variable where GraphNode objects costructed for

the input clauses are stored. This AttackGraph is the main structure that is used in order to traverse

and isolate the connected component that corresponds to the focal graph for the given epicentre in the

given knowledgebase as this is defined in chapter 3. The class also implements operations that are used

by other classes in order to walk over the graph and retrieve supports for arguments.

Class PresupportSupertree represents a search tree as introduced in chapter 4 for a

given claim and knowledgebase (i.e. Clause and ClauseKb objects respectively). It has a

FocalGraph object as an instance variable that represents the corresponding query graph. Method

getPresupportTrees carries out a search for arguments for the given claim using the structure

of the query graph and based on algorithm SearchTree introduced in chapter 4. It creates during the

search Node objects, each of which is identified by a GraphNode from the query graph. A Node

object differs from a GraphNode object in that it has properties that make it suitable for a tree node

rather than a simple graph node, for example instance variables and functions related to its ancestors and

children. Tuples of Node objects that represent an extension to a node of the search tree are stored in

PresupportTreeLevel objects each of which represents an element of set Extensions introduced

in the algorithm. All the leaves of this search tree that correspond to complete presupport trees are stored

in an array.

Given one the results of function getPresupportTrees of class PresupportSupetree,

class PresupportTree constructs an object that has the properties of a complete presupport tree.

It implements methods that check whether a presupport tree is minimal and consistent as described in

chapter 4 and methods that carry out traversals like for instance post-order traversals that compute the

value SubtreeRes(x) for a node x.

By the results of chapter 4 and 5, a minimal and consistent presupport tree can be associated to

a support for an argument. Class ArgumentTreeNode constructs objects that are initialised given

a PresupportTree object. In addition, it contains instance variables that keep track of the parent

and the children on an ArgumentTreeNode object, a boolean value that keeps track of the state

defeated/undefeated during the warrant check process of an argument tree where this node may belong,

as well as the union of supports of all its ancestor nodes so that condition (2) of the definition for an

argument tree can be ensured for each newly created argument tree node.

Finally, class ArgumentTree represents an argument tree that consists of ArgumentTreeNode
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objects. Function getTree(ClauseKb,PresupportTree) generates an argument tree where the

root ArgumentTreeNode is initialized by the given presupportTree and the tree expands by ap-

plying algorithm ArgumentTree from paragraph 5.3.3. The class implements algorithm 5.4 for marking

the nodes of an ArgumentTree object as defeated or undefeated and using function isWarranted

determines whether an argument tree is warranted.

Figure 6.1 shows a diagram of the major clases that compose JArgue.

6.2 Using the system
This section starts by describing the input format for JArgue and continues by demonstrating the func-

tionality of the application.

6.2.1 Giving the input

The language of the input is composed as follows: ‘!’ is used for the symbol of negation ¬, ‘|’ is used

for the symbol of disjunction ∨, and a propositional atom can be a string of characters other than the

symbols introduced above and ‘,’ or ‘&’. A clause is a disjunction of positive/negative atoms (i.e. lite-

rals) composed as described above. Some examples of clauses in this syntax are: a, !a, a|b|c, !a|b, !c|!d,

bird(Tweety), !bird(Tweety)|flies(Tweety). A knowledgebase is written as a string of clauses

where each clause is separated from its previous by ‘,’. The string of the input knowledgebase has

to be written in one line and saved in a text file located in the directory with the software (for example

C:\workspace\JArgue \Example3.txt).

6.2.2 Functionality

A knowledgebase and a claim for arguments can be loaded to the system through the application window.

The knowledgebase is loaded by a selection window that opens when pressing the ‘knowledgebase’

button. The claim is typed in the field provided.
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ArgumentTree

theRoot:ArgumentTreeNode
Delta:ClauseKb
getTree(ClauseKb,PresupportTree):ArgumentTreeNode
mark():void
isWarranted():Boolean

ArgumentTreeNode

parent:ArgumentTreeNode
children:Vector
defeated:Boolean
actualSupport:ClauseKb
ancestorClauses:ClauseKb
supportTree:PresupportTree
resolvents:ClauseKb
firstChild():ArgumentTreeNode
getParent():ArgumentTreeNode
getChildAt(Integer):ArgumentTreeNode
nextSibling():ArgumentTreeNode

PresupportTree

claim:Clause
clClaim:Clause
branchesAttacks:Vector
branchesClauses:Vector
arcs:Vector
leaves:Vector
readLevels(PresupportTreeLevel):Node
isConsistent():Boolean
isMinimal():Boolean
replaces(Node,Node,ClauseKb):Boolean
getSuccessors(Node):Vector
setSubtreeResolvents():void
postorder():void PresupportTreeLevel

parent:PresupportTreeLevel
levelNodes:Vector
expands:Boolean
setExpandable():Boolean
isConsistent:Boolean
copyLevel(PresupportTreeLevel):PresupportTreeLevel

PresupportSupertree

knowledgebase:ClauseKb
claim:Clause
clauseClaim:ClauseKb
queryGraph:FocalGraph
branches:Vector
branchesKbs:Vector
allPresupports:Vector[]
getPresupportTrees(Node):Vector
containsNode(Vector,Node):Boolean
containsGraphNode(Vector,Node):Boolean
getNewLinkCombinations(Node,FocalGraph):GraphNode[][]
updateAttackedDisjuncts(PresupportTreeLevel):void
getPrewalkNodes(PresupportTreeLevel):Vector
getPrewalkKnowledgebase(PresupportTreeLevel):ClauseKb
getNewLevels(PresupportTreeLevel,FocalGraph)

FocalGraph

knowledgebase:ClauseKb
epicentre:Clause
clauseEpicentre:Clause
focal:ClauseKb
closure:AttackGraph
combinations:GraphNode[][]
sizes:Vector
getClosureKnowledgebase(ClauseKb,Clause):ClauseKb
getClosureGraph(aKnowledgebase,startingClause):AttackGraph
searchAttackGraph(ClauseKb,Clause):AttackGraph
groupAttackersN(Node):Vector[]
getAllLinkCombinations(FocalGraph,GraphNode):GraphNode[][]

AttackGraph

knowledgebase:ClauseKb
elements:GraphNode[][]
storeGraph:GraphNode[][]
getElementAt(Integer,Integer):GraphNode
isEmpty(Integer,Integer):Boolean
getSize():Integer
removeNode(Integer):void
removeNode(GraphNode):void
getLocation(GraphNode):Integer
isConnected(GraphNode):Boolean
getAttackers(GraphNode):Vector
groupAttackers(GraphNode):Vector[]

Node

parent:Node
graphNode:GraphNode
children:Vector
attackedDisjuncts:ClauseKb
branchClauses:ClauseKb
branchAttacks:ClauseKb
parentAttack:Clause
subtreeResolvent:Clause
subtreeResolvents:ClauseKb
mark:Boolean
visited:Boolean
leaf:Boolean
reject:Boolean
isAttacked():Boolean
rejectNode():void
setVisited():void
setLeaf():void
nextSibling():Node
isLeaf():Boolean
firstChild():Node
addChild(Node):void
setSubtreeResolvents(ClauseKb):void
setSubtreeResolvent(Clause):void
copyNode():Node
copyNode(Node):Node

GraphNode

clause:Clause
attackers:Vector
flag:Boolean
setState(Boolean):void
setClause(Clause):void
getClause():Clause
getClause(GraphNode):Clause
isVisited():Boolean
isVisited(GraphNode):Boolean
isEmpty():Boolean
hasEqualClause(GraphNode):Boolean

ClauseKb

elements:Vector
readSet(String):Vector
readSet(Clause[]):Vector
addClause(Clause):void
removeElementAt(int):void
containsClause(Clause):Boolean
getClause(Integer):Clause
getCardinality():Integer
isEmpty():Boolean
getSubsets():ClauseKb[]
isConsistent(ClauseKb):Boolean
contains(ClauseKb):Boolean
strictlyContains(ClauseKb):Boolean
equalsKb(ClauseKb):Boolean
setUnion(ClauseKb,ClauseKb):ClauseKb
setIntersection(ClauseKb,ClauseKb):ClauseKb
setSubtraction(ClauseKb,ClauseKb):ClauseKb
stringRepresentation():String
containsDuplicate():Boolean
removeDuplicates():void
removeSubsumedOf(Clause):void
resolveWithClause(Clause,ClauseKb):ClauseKb
copy(ClauseKb):ClauseKb

Clause

disjuncts:Vector
readFromKnowledgebase(ClauseKb):Vector
readClause(String):Vector
getLength():Integer
getStringDisjunct(Integer):String
getClauseDisjunct(Integer):Clause
containsDisjunct(String):Boolean
containsDisjunct(Clause):Boolean
toString():String
getPreattacks(Clause,Clause):ClauseKb
getPreattacks(Clause):ClauseKb
getAttacks(Clause,Clause):ClauseKb
getAttacks(Clause):ClauseKb
isAttackedBy(Clause):Boolean
AttacksBy(Clause,Clause):Boolean
equalsClause(Clause):Boolean
strictlyStrongerThan(Clause):Boolean
strongerThan(Clause):Boolean
isEquivalentTo(Clause):Boolean
negateLiteral(Clause):Clause
disjunctsComplements():ClauseKb
isTautology():Boolean
disjunctsToKnowledgebase():ClauseKb
resolve(Clause,Clause):Clause
copy(Clause):Clause
isEmpty():Boolean

Figure 6.1: Diagram with the major classes of JArgue
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By pressing the ‘Generate’ button, all the supports for arguments for the given query from the

loaded knowledgebase are displayed in a list. By selecting one of these sets and pressing the ‘Select root

for argument tree’ button, the argument tree with the chosen root is displayed on the right hand side of

the window. Finally, by pressing the ‘Warrant check’ button the system tests whether this argument tree

is warranted.

By selecting a different root argument from the list, a new argument tree can be generated for the

newly selected root.
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In addition, a different claim for arguments from the same knowledgebase can be loaded through

the application window by deleting the old claim and retyping the new one in the claim field. By pressing

the ‘Clear’ button all the inputs and output are cleared off the system and a new knowledgebase can be

loaded. The knowledgebase of the following example is adapted from [42]. and concerns arguments

for and against choosing a baby name. The claim for this example is: acceptable(adrian) and the

knowledgebase is

∆ = {¬easy to remember(adrian)∨acceptable(adrian),¬all like(adrian)∨acceptable(adrian),

¬mom hates(adrian) ∨ some dislike(adrian),¬short(adrian) ∨ easy to remember(adrian),

¬dad hates(adrian) ∨ some dislike(adrian),¬too commom(adrian) ∨ dad hates(adrian),

¬uncle has(adrian) ∨ dad hates(adrian),¬mom said ok(adrian) ∨mom not hate(adrian),

¬all like(adrian) ∨ ¬some dislike(adrian), all like(adrian) ∨ some dislike(adrian),

¬mom hates(adrian)∨¬mom not hate(adrian),mom hates(adrian)∨mom not hate(adrian),

mom said ok(adrian), short(adrian), all like(adrian),mom hates(adrian)}

Apart from the tree representation displayed or the right hand side of the window the text repre-

sentation of the last tree generated is stored in a text file which is located in the directory with the code.

The content of this file is updated every time new argument tree is generated and replaced by the newly

created argument tree.
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6.3 Experimental evaluation

This section covers experimental evaluation on JArgue using randomly generated knowledgebases of

fixed cardinality. Two different experiments were conducted where different kinds of input sets were

used.

The first experiment involved generating 1000 non-empty argument trees using randomly generated

knowledgebases of 50 distinct clauses each. 25 of these clauses were 2-place clauses (i.e. clauses that

consist of 2 disjuncts) and the remaining 25 were 1-place clauses (literals). The claim of the root of each

argument tree was a literal.

The knowledgebases were constructed out of 30 distinct atoms. Each atom was selected out of 30

available using java class Random, and was negated with probability 0.5, constructing this way a literal.

Tuples of 2 literals that were generated with this method were then used to construct a 2-place clause.

The number of 30 atoms was chosen for this experiment because for the fixed number of 25 2-place

and 25 1-place input clauses, it gives a variation of results that range from very small single node trees

to large trees that consist of hundreds of nodes. The largest argument tree produced in this experiment

consists of 9137 nodes.

Table 6.1 presents the results of the experiment. The 1000 non-empty trees generated are separated

in 8 different groups according to the number of nodes they contain. The first column identifies the

interval in which lie the trees associated with the corresponding row of results. For example, a tree that

consists of 6 nodes is associated with the first row of the table while a tree that consists of 10 nodes is

associated with the second row of the table. The second column lists the percentage of trees that belong

to the corresponding interval and the third column lists the average number of nodes in these trees. So

for example, according to the values given in the first row of the table, 36.6% of the trees produced (i.e.

366 out of the 1000 produced overall) contain a number of nodes that is greater or equal to 1 and smaller

than 10. The average number of nodes in these trees is 3. The fourth column of the table lists the average

size of the query graph of the claim of the root in the knowledgebase. The fifth column lists the average

support cardinality in the nodes of the corresponding argument trees. The sixth column lists the average

number of branches of the trees in the corresponding interval and the seventh column gives the average

depth of these trees, where the root node is considered to be at depth 0, every child of the root at depth 1

and from then on the depth increments by 1 for each level. The eigth column lists the average time taken

in minutes in order to generate a tree in the interval by running the software on an ordinary PC. So, for

example, with the values given in the first row, the average time taken to generate an argument tree with

an average of 3 nodes is 1 to 4 milliseconds (which is rounded to zero in the table), the time taken in

order to generate an argument tree with an average of 245 nodes is 0.15 mins (i.e. 9 seconds) and so on.

The associated per node times in milliseconds are listed in the last column.

The average cardinality of the supports of the nodes of the trees in the different intervals varies

between 1.56 and 2.35 with the lowest average of 1.56 corresponding to the smaller trees in interval

[1 − 10) and the highest average of 2.35 corresponding to the larger trees in the interval [7500, 10000).

The depth and width of an argument tree tend to increase concurrently, and as a result increase the overall
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nodes interval % trees nodes
tree |Query| |support| width depth mins

tree
msecs
node

[1, 10) 36.6 3 9.7 1.52 1.68 0.86 0.00 29.69
[10, 100) 32.2 39 20.3 2.04 19 3.57 0.02 34.02
[100, 500) 12.8 245 24.7 2.30 118 5.18 0.15 36.81
[500, 1000) 6.7 695 23.3 2.32 323 6.13 0.48 39.79
[1000, 2500) 4.8 1619 24.0 2.32 802 6.46 1.24 44.77
[2500, 5000) 4.4 3586 28.3 2.26 1812 7.57 3.64 59.02
[5000, 7500) 1.9 5958 28.9 2.31 3125 7.74 7.73 77.00
[7500, 10000) 0.6 8667 29.8 2.35 4332 7.83 17.63 120.5

Table 6.1: Experimental data on generating argument trees with knowledgebases of 1 and 2-place clauses

number of nodes in the tree. Increased depth of an argument tree indicates that there is a relatively high

level of inconsistency in the search space and this is also reflected in the width of tree. This also suggests

an increased density in the query graph where the clauses of the search space can be combined in many

different ways together and give different sequences of arguments and counterarguments. By observing

the results that concern the query graph sizes in the fourth column of the table it seems that the levels

of inconsistency play a more important role in the size of an argument tree than the size of the search

space. So for instance, it could be expected that trees in intervals [100, 500) where the average tree size

is 245 nodes would have their nodes generated from substantially reduced search spaces in comparison

to trees in interval [500, 1000) where the average tree size is 695 nodes. In the results of the experiment

though this is not the case and in contrary the average query graph that corresponds to trees in interval

[100, 500) is larger that the average query graph that corresponds to trees in interval [500, 1000). The

fact that the size of the search space is not the dominant factor in determining the size of an argument

tree can also be observed by comparing the results in the last three rows of the table where the average

query graph sizes vary only from 28.3 to 29.8 for trees with average sizes from 3586 to 8667 nodes. So

graphs that vary in size by one node on average produce argument trees that vary by more than 5000

nodes on average. The results in the last column of the table demonstrate how the average per node time

increases with the size of the argument tree where a node belongs. This could be explained as follows:

high levels of inconsistency indicate dense graphs which in turn cause an increased number of cycles

that makes the search for arguments more complex.

A similar experiment was conducted that involved 3-place instead of 2-place clauses. Randomly

generated knowledgebases of 25 identical 3-place and 25 identical 1-place clauses were constructed out

of 30 identical atoms with the method described in the previous experiment. These knowledgebases

were then used in order to construct argument trees for literal claims. Because the trees produced with

this kind of input sets tend to contain a relatively small number of nodes (less than 10 nodes) and the

sample of 1000 argument trees did not provide sufficient variation on the results, this experiment involved

producing 2000 argument trees. The results of this experiment are displayed in table 6.2.

For the results of table 6.2 the same comments with the previous experiment apply in terms of how

the values of different parameters vary. Again the time per node increases as the size of the argument
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nodes interval % trees nodes
tree |Query| |support| width depth mins

tree
msecs
node

[1, 10) 47.85 3 21.66 2.22 2 0.92 0.01 113.29
[10, 100) 28.7 33 26.94 2.72 18 2.8 0.09 139.07
[100, 500) 14.25 241 30.73 3.06 136 4.76 0.6 147.62
[500, 1000) 4.4 719 29.42 3.15 405 5.65 1.86 158.16
[1000, 2500) 3.55 1584 29.65 3.34 895 6.08 4.2 162.45
[2500, 5000) 0.6 3375 28.75 3.19 1892 6.83 10.04 167.25
[5000, 7500) 0.65 6217 32.23 3.17 3835 7 38.5 392.92
[7500, 10000) 0 - - - - - - -

Table 6.2: Experimental data on generating argument trees with knowledgebases of 1 and 3-place clauses

tree increases, the depth and width of the tree increase together and the size of the search space does not

seem to be the major factor in influencing the size of the trees produced.

By comparing tables 6.1 and 6.2 we can see that for trees within same ranges in the two tables,

with knowledgebases that contain 3-place clauses the average support sizes are larger, and the trees are

wider and less deep than with knowledgebases that contain 2-place clauses instead. The average supports

are larger because having a larger number of disjuncts in the input clauses means that there is a larger

number of literals that need to be resolved in order to produce a proof and hence additional clauses

need to be added in a set in order to apply resolution. Larger supports in turn, tend to make the search

for counterarguments more complicated and therefore the average time per node taken when producing

argument trees is increased in this experiment compared to the previous experiment for trees with similar

sizes. In addition, arguments with larger supports tend to have a larger number of canonical undercuts

resulting this way in trees that are wider on average compared to trees from the previous experiment

that have a smaller number of clauses in their supports. The average depth of trees in this experiment

on the other hand tends to be smaller than in the first experiment for trees within same ranges. This

could be explained as follows. Assume An = 〈Φn, �〉 is a canonical undercut and therefore a potential

child of node An−1 which is the current leaf on a branch with nodes A1, . . . , An−1 that have supports

Φ1, . . . ,Φn−1 respectively. Then, increasing number of elements in each of Φ1, . . . ,Φn−1 has as a

consequence for condition (2) of the definition of the argument tree (Φ1 ∪ . . . ∪ Φn−1 ⊆ Φn) to be

reached at smaller depths than if supports Φ1, . . . ,Φn−1 had smaller cardinality on average. Therefore,

the argument trees in this experiment tend to stop extending in depth earlier that the ones in equivalent

ranges from the previous experiment.

Figure 6.2 shows how the time per node varies with the size of the argument tree where a node

belongs. Each curve corresponds to one of the experiments described above, one curve is for test sets

that contain 3 and 1-place clauses and the other for test sets that contain 2 and 1-place clauses. Axis

x contains the values for the average per node time in milliseconds for trees whose overall number of

nodes is identified by the associated value on axis y. Each of the values on axis y is the upper limit of

the interval where the trees that contain the corresponding nodes belong.

The fact that with this artificial data, argument trees that consist of hundreds of nodes can be ge-



6.4. Discussion 109

10 100 500 1000 2500 5000 7500 10000
0

100

200

300

400

500
per node time variation with the size of the tree

Sets w ith 3-place 
clauses
Sets w ith 2-place 
clauses

tree size

tim
e 

pe
r n

od
e 

in
 m

se
cs

Figure 6.2: Comparison in time per argument tree node for knowledgebases with 2-place and 3-place
clauses

nerated in less than a minute motivates for further experimentation and use of the system with actual

data from real world applications. The system has also been tested with knowledgebases adapted from

examples of hypothetical cases in published papers [41, 9, 42] and actual data from the medical domain

[52]. These knowledgebases are listed in appendix A. The argument trees produced with these datasets

were relatively small (5 nodes at most). Most of these trees were generated at fractions of a second while

the trees produced using the medical knowledgebases where the length of the input string was large (8-55

characters for each literal) was a few seconds for a knowledgebase of 107 elements.

6.4 Discussion
This chapter presented JArgue, a software system developed in java that implements the theoretical

work presented in chapters 3-5. Empirical evaluation of the system demonstrated the viability of the

underlying algorithms. For knowledgebases containing 1 and 2-place clauses, argument trees consisting

of 1 to 999 nodes were produced in less than 0.5 minutes on average, trees consisting of 1000 to less

than 7500 nodes were produced in 1.24 to 7.73 minutes on average, while trees with 7500 up to 10000

nodes were produced on an average of 17.6 minutes. With knowledgebases of 1 and 3-place clauses,

trees consisting of 1 to 999 nodes were produced in less than 2 minutes on average, trees consisting of

1000 to less than 5000 nodes were produced in 4.2 to 10 minutes on average and trees with 5000 to 7500

nodes were produced on an average of 38 minutes.

The performance of the system with this artificial data where argument trees of up to 1000 nodes

were produced in less that 2 minutes motivates further experimentation and practical use of the software.



Chapter 7

Extending to first-order logic

Although classical propositional logic provides a language strong enough in many cases to represent

detailed information and simulate human reasoning, it lacks some important features. In propositional

logic information is represented as propositions that are simple declarative statements. First-order logic,

on the other hand, involves predicates that can be used to express relations between individuals (e.g

binary predicates) and quantification, that provides the means for generalising statements that can be

instantianted by particular constants. In this way, it offers further advantages in representing knowledge,

in comparison to propositional logic.

This chapter extends the work presented in chapters 3-4 for generating arguments in propositional

logic to generating arguments in a first-order language of clauses. The chapter starts by defining this

language and proceeds by introducing relations on its elements. It continues with definitions of graphs

equivalent to the graphs for propositional clauses introduced in chapter 3 and then introduces trees that

represent a search for arguments by walking over the graphs. It closes with an algorithm that implements

this search for arguments in the language of first-order clauses.

7.1 Argumentation for a language of quantified clauses
For a first-order language F , the set of formulae that can be formed is given by the usual inductive

definitions of classical logic. In equivalence to the work on propositional logic presented so far which

involves disjunctive clauses, the work of this chapter involves first-order disjunctive clauses. The lan-

guage used here is a restricted function-free first-order language of quantified clauses F consisting of

n-ary predicates (n ≥ 1) where both existential and universal quantifiers are allowed. The arguments

considered have claims that consist of one disjunct (i.e. unit clauses). This language is composed of the

set of n-ary (n ≥ 1) predicates P , a set of constant symbols C, a set of variables V , the quantifiers ∀ and

∃, the connectives ¬ and ∨ and the bracket symbols ( ). The clauses of F are in prenex normal form,

consisting of a quantification string followed by a disjunction of literals. Literals are trivially defined

as positive or negative atoms where an atom is an n-ary predicate. The quantification part consists of a

sequence of quantified variables that appear as parameters of the predicates of the clause. These need

not follow some ordering, that is any type of quantifier (existential or universal) can preceed any type of

quantifier.
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Example 7.1.1 If {a, b, d, e} ⊂ C and {x, y, z, w} ⊂ V , then each of the following formulae is a clause

in F .
∀x∃z(P (x) ∨ ¬Q(z, a))

∃x∃z(P (x) ∨ ¬Q(z, a)

∀w∃x∃z(P (x) ∨ ¬Q(z, a) ∨ P (b, w, x, z))

∀w(¬Q(w, b, a))

¬Q(e, b, a) ∨R(d),¬P (a, d)

In addition ∀w(¬Q(w, b, a)) is a unit clause, ¬Q(e, b, a) ∨ R(d) is a ground clause and ¬P (a, d) is a

ground unit clause.

Although the language used in this chapter is different to the one used in the rest of the thesis,

the conditions for the definition for an argument are identical with the only difference that the know-

ledgebases and claims considered here are first-order clauses. In addition, for simplicity the claims are

first-order unit clauses.

Example 7.1.2 Consider the following knowledgebase where each element is from F . ∆ =

{∀x(¬P (x) ∨ Q(x)), P (a),∀x∀y(P (x, y) ∨ ¬P (x)), R(a, b), ∃x(R(x, b)), ∃x(¬S(x, b))}. Some

arguments from ∆ are:

〈{∀x(¬P (x) ∨Q(x)), P (a)}, Q(a)〉 〈{R(a, b)},∃x(R(x, b))〉
〈{∀x∀y(P (x, y) ∨ ¬P (x)), P (a)},∀y(P (a, y))〉 〈{P (a)},∃y(P (y))〉

7.2 Relations on first-order clauses
Applying resolution on first-order clauses raises difficulties and complications that are not introduced

in the propositional case. In the propositional case, it is simple to identify complemenary literals and

determine whether resolution can be applied for a pair of clauses. In the first-order case it is not as simple

to distinguish complementary literals. Given a pair of first-order literals, in order to decide whether they

are complementary, apart from their predicate and their sign, their quantification needs also to be taken

into account. Considering these factors and by unifying a pair of literals we can then decide whether these

are complementary or not. Moreover, in order to avoid producing tautologies when applying resolution

to a pair of clauses, these clauses must have exactly one pair of complementary literals in between them.

Since deciding whether a pair of literals are complementary requires considering the issues discussed

above, then deciding whether resolution can be applied to a pair of clauses also requires considering

these factors, and hence is much more complicated than in the propositional case. Defining the equivalent

Preattacks and Attacks relations for first-order clauses requires some additional definitions introduced

in this section.

In the functions onF defined in this chapter, the terms ‘variable’ and ‘constant’ are used in the usual

way. In addition, a ‘term’ is either a variable or a constant. Functions Variables(X) and Constants(X)

return the set of all variables and constants respectively that appear in a literal or a clause or a set X .

The set of bindings defined below for a language L denotes the set of all substitutions of a variable
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x by the terms t in the language.

Definition 7.2.1 For a language L, with variables V and constant symbols C, the set of all bindings B
is {x/t | x ∈ V and t ∈ V ∪ C}.

A set of bindings B can be applied to a clause φ in order to create an instance of φ by function

Assign(φ,B) defined next.

Definition 7.2.2 For a clause φ and a set of all bindings B ⊆ B, Assign(φ,B) returns clause φ with the

values of B assigned to the terms of φ. So, for each x/t, if x is a variable in φ, then x is replaced by t

and the quantifier of x is removed.

Example 7.2.1 Let φ = ∃x∀y∃z∀w(P (c, x) ∨ Q(x, y, z) ∨ R(y, c, w)). Some assignments for φ with

the corresponding values from the given sets of bindings assigned to its variables are:

B1 = {x/a, z/b}, Assign(φ,B1) = ∀y∀w(P (c, a) ∨Q(a, y, b) ∨R(y, c, w))

B2 = {x/a, y/b, z/b}, Assign(φ,B2) = ∀w(P (c, a) ∨Q(a, b, b) ∨R(b, c, w))

B3 = {x/a, z/b, w/b}, Assign(φ,B3) = ∀y(P (c, a) ∨Q(a, y, b) ∨R(y, c, b))

B4 = {x/a, y/a, z/b, w/b}, Assign(φ,B4) = P (c, a) ∨Q(a, a, b) ∨R(a, c, b)

B5 = {w/z}, Assign(φ,B5) = ∃x∀y∃z(P (c, x) ∨Q(x, y, z) ∨R(y, c, z))

Function Assign(φ,B) gives a specific instance of φ, indicated by the bindings in B. The two

functions defined next return all the possible instances for a clause φ and the elements of a set of clauses

Ψ respectively. In the following, the symbol ℘(B) denotes the power set of a set B.

Definition 7.2.3 For a clause φ, Assignments(φ) returns the set of all the possible instances of φ, while

for a set of clauses Ψ, SetAssignments(Ψ) returns the set of all the possible instances of all the clauses

in Ψ.

Assignments(φ) = {Assign(φ,Bi) | Bi ∈ ℘(B)}.
SetAssignments(Ψ) =

⋃
φ∈Ψ{Assignments(φ)}.

The assignment functions are used to create partial instances of the clauses from the knowledgebase

during the search for arguments. Assuming instead a universal prenex form of the clauses as the basis

of the search would make it hard to distinguish pairs of atoms that could be unified in between clauses.

This would make it hard to distinguish pairs of complementary literals, and therefore to locate clauses

on which resolution could be applied. As no restrictions apply to the order of the quantifiers in the

quantification of a clause from F , the scope of interchanging universal and existential quantifiers in

a clause φ is taken into account when a partial instance of φ is created, like in Skolemization. For

this, function Prohibited(φ) is defined to return the sets of bindings that would not be allowed for φ in

Skolemization.

Definition 7.2.4 Let φ be a clause. Then, Prohibited(φ) ⊆ ℘(B) returns the set of sets of bindings such

that for each B ∈ Prohibited(φ) there is at least one yi/ti ∈ B such that yi is a universally quantified
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variable which is in the scope of an existentially quantified variable xi for which either xi = ti or

xi/ti ∈ B.

Example 7.2.2 For the sets of bindings of example 7.2.1, B3, B4, B5 ∈ Prohibited(φ) and B1, B2 /∈
Prohibited(φ).

Function ExistentialGrounding(φ,B) defined next, gives a partial instance of a clause φwhere each

of the existentially quantified variables is replaced by a distinct arbitrary constant from C\Constants(φ).

For simplicity, for the definition of this function, the set of bindings B that is assigned to φ in order to

produce the partial instance of φ is from ℘(B), including the bindings from Prohibited(φ). Later in the

chapter, where the function is used in the search for arguments, the sets of bindings considered for φ are

refined using function Prohibited(φ).

Definition 7.2.5 For a clause φ, ExistentialGrounding(φ,B) = Assign(φ,B) where B ∈ ℘(B) is such

that:

(1) xi/ti ∈ B iff xi ∈ Variables(φ) and xi is existentially quantified

(2) ti ∈ C \ Constants(φ) and

(3) for all xj/tj ∈ B, if xj 6= xi then tj 6= ti.

If φ′ = ExistentialGrounding(φ,B) for some φ ∈ F and B ∈ ℘(B), φ′ is an existential instance of φ.

Example 7.2.3 For φ = ∃x∀y∃z∀w(P (c, x)∨Q(x, y, z)∨R(y, c, w)), Constants(φ) = {c} and so each

of the elements of the set of constants I = {a, b} ⊂ C \ Constants(φ) can be used for the substitution

of each of the existentially bound variables x, z. For B = {x/a, z/b}, ExistentialGrounding(φ,B)

= ∀y∀w(P (c, a) ∨Q(a, y, b) ∨R(y, c, w)).

The next definition introduces function Disjuncts(φ) for a first-order clause φ, that returns the set

of literals (i.e. predicates) that appear as disjuncts in φ.

Definition 7.2.6 For a clause φ = Q1x1, . . . ,Qmxm(p1 ∨ . . . ∨ pk), Disjuncts(φ) returns the set of

disjuncts of φ. Disjuncts(φ) = {p1, . . . , pk}.

For a literal pi ∈ Disjuncts(φ), function Unit(φ, pi) returns the unit clause that consists of pi along

with its corresponding quantification in φ.

Definition 7.2.7 Let φ = Q1x1, . . . ,Qmxm(p1 ∨ . . . ∨ pk). Then, for each pi ∈ Disjuncts(φ), function

Unit(φ, pi) returns the unit clause that has pi as its unique disjunct and the part of the quantification

Q1x1, . . . ,Qmxm of φ that involves the variables that occur in pi as its quantification: Unit(φ, pi) =

Qjxj . . .Qlxl(pi) where {Qjxj , . . . ,Qlxl} ⊆ {Q1x1, . . . ,Qmxm} and {xj , . . . , xl} = Variables(pi).

Example 7.2.4 Let φ = ∀x∀y∃z(P (x) ∨ Q(a) ∨ ¬R(x, y, z, b) ∨ S(a, b, c)) and let p = P (x), q =

Q(a), r = ¬R(x, y, z, b) and s = S(a, b, c). Then, Disjuncts(φ) = {p, q, r, s} and

Unit(φ, p) = ∀x(P (x))

Unit(φ, q) = Q(a)
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Unit(φ, r) = ∀x∀y∃z(¬R(x, y, z, b))

Unit(φ, s) = S(a, b, c)

Function Units(φ) returns the set of unit clauses produced by applying function Unit(φ, pi) to all

the literals pi ∈ Disjuncts(φ).

Definition 7.2.8 For a clause φ, Units(φ) = {Unit(φ, pi) | pi ∈ Disjuncts(φ)}.

Example 7.2.5 Continuing example 7.2.4, for φ = ∀x∀y∃z(P (x)∨Q(a)∨¬R(x, y, z, b)∨S(a, b, c)),

Units(φ) = {∀x(P (x)), Q(a),∀x∀y∃z(¬R(x, y, z, b)), S(a, b, c)}

The next definition formalises the contradiction relation between a pair of first-order unit clauses.

This definition together with the Units function is used later in order to apply resolution on first-order

clauses.

Definition 7.2.9 Let φ and ψ be unit clauses. Then, φ and ψ contradict each other iff φ ` ¬ψ. Then ψ

is a complement of φ and this is denoted φ = ψ.

Example 7.2.6 According to definition 7.2.9, the following hold.

¬P (a, b) = P (a, b)

∀x(Q(x, a)) = ¬Q(c, a)

∃x∃y(S(x, y)) = ∀x∀y(¬S(x, y))

The two definitions that follow redefine the Attacks and Preattacks relations for pairs of first-order

clauses.

Definition 7.2.10 Let φ, ψ be clauses. Then,

Preattacks(φ, ψ) = {αi ∈ Units(φ) | ∃αj ∈ Units(ψ) s.t. αi = αj}.

Example 7.2.7 According to definition 7.2.10, the following relations hold.

7.2.7.1) Preattacks(∀x(¬N(x) ∨R(x)), N(a) ∨ ¬R(b)) = {∀x(¬N(x)),∀x(R(x))}
7.2.7.2) Preattacks(∀x(¬N(x) ∨R(x)), N(a) ∨ ¬R(a)) = {∀x(¬N(x)),∀x(R(x))}
7.2.7.3) Preattacks(P (a) ∨ ¬Q(b),¬P (a) ∨Q(b)) = {P (a),¬Q(b)}
7.2.7.4) Preattacks(∀x(P (x) ∨ ¬Q(a, x)),∃x(¬P (a) ∨Q(x, b))) = {∀x(P (x))}
7.2.7.5) Preattacks(∃x(¬P (a) ∨Q(x, b)),∀x(P (x) ∨ ¬Q(a, x)) = {¬P (a)}

Like in the propositional case, the Attacks relation is defined for a pair of clauses in the special case

where the Preattacks relation returns a singleton set.

Definition 7.2.11 For a pair of clauses φ, ψ, if for some α ∈ Units(φ), Preattacks(φ, ψ) = {α} then

Attacks(φ, ψ) = α, otherwise Attacks(φ, ψ) = Attacks(ψ, φ) = null.

Example 7.2.8 For examples 7.2.7.1, 7.2.7.2 and 7.2.7.3, Attacks(φ, ψ) = null. For example 7.2.7.4 it

holds that Attacks(φ, ψ) = ∀x(P (x)) and for example 7.2.7.5, it holds that Attacks(φ, ψ) = ¬P (a).
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Although the Attacks relation might be null for a pair of clauses φ, ψ, it can sometimes have a

non-null value for instances of φ and ψ.

Example 7.2.9 In Example 7.2.7.1, let φ = ∀x(¬N(x) ∨ R(x)) and ψ = N(a) ∨ ¬R(b). Then

|Preattacks(φ, ψ)| > 1 and so, Attacks(φ, ψ) = null. There are instances φ′ of φ though for which

Attacks(φ′, ψ) 6= null. Let B1 = {x/a}, and B2 = {x/b}. Then for φ1 = Assign(φ,B1) = ¬N(a) ∨
R(a) and φ2 = Assign(φ,B2) = ¬N(b)∨R(b), Attacks(φ1, ψ) = ¬N(a) and Attacks(φ2, ψ) = R(b).

For all other instances φ′ of φ Attacks(φ′, ψ) = null.

Example 7.2.10 In example 7.2.7.2, let γ = ∀x(¬N(x) ∨ R(x)) and δ = N(a) ∨ ¬R(a). Then,

for all the instances γ′ of γ, |Preattacks(γ′, δ)| 6= 1 and so there is no instance γ′ of γ for which

Attacks(γ′, δ) 6= null.

7.3 Connection Graphs for first-order clauses
Similarly to the propositional case, given a set of first-order clauses it is possible to define graphs where

the nodes are clauses from ∆ and the arcs are defined using the Preattacks and Attacks functions for

pairs of nodes. The definition for the connection graph in the first-order case remains the same with the

definition for the propositional case.

Definition 7.3.1 Let ∆ be a clause knowledgebase of first-order clauses. The connection graph for ∆,

denoted Connect(∆), is a graph (N,A) where N = ∆ and A = {(φ, ψ) | Preattacks(φ, ψ) 6= ∅}.

Example 7.3.1 Let ∆ = {∀x∀y(¬Q(x, y)), ∃x∀y(Q(x, y)∨R(x, y)),∀y(¬P (y)∨Q(b, y)), Q(a, b)∨
¬N(a, b), ∀x(¬R(x, x)∨S(x, y)),¬Q(a, b)∨N(a, b),∀x(P (x)),∀y∃x(P (d)∨P (a)∨M(x, y)),¬S(a),

∀x∀y(¬M(x, y)), ∀x∀y(¬S(x, y)), ∀x(N(x)),¬N(b),∀x(¬N(x)∨F (x)), S(a)∨P (a, b)}. Then, the

following is the connection graph for ∆.

∀x∀y(¬Q(x, y)) ∃x∀y(Q(x, y) ∨R(x, y))

∀y(¬P (y) ∨Q(b, y)) Q(a, b) ∨ ¬N(a, b) ∀x(¬R(x, x) ∨ S(x, y))

∀y∃x(P (d) ∨ P (a) ∨M(x, y)) ∀x(P (x)) ¬Q(a, b) ∨N(a, b)

∀x∀y(¬M(x, y)) ∀x∀y(¬S(x, y))

¬N(b) ∀x(N(x))

∀x(¬N(x) ∨ F (x))

S(a) ∨ P (a, b)

¬S(a)

As demonstrated in example 7.2.9, for a pair of first-order clauses φ, ψ the Attacks relation might

be null but for instances φ′, ψ′ of φ, ψ the attack relation can be non-null. So, it is not always possible

to identify whether for a pair of clauses that is such that Preattacks(φ, ψ) 6= ∅ there can be instances
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φ′, ψ′ for which the Attacks relation is not null unless specific instances of the clauses are produced. For

this reason, in the first-order case the closed graph is defined in terms of the Preattacks relation.

Definition 7.3.2 Let ∆ be a clause knowledgebase. The closed graph for ∆, denoted Closed(∆), is the

largest subgraph (N,A) of Connect(∆), such that for each φ ∈ N , for each β ∈ Disjuncts(φ) there is

a ψ ∈ N with β ∈ Preattacks(φ, ψ).

Example 7.3.2 Continuing example 7.3.1, the following is the closed graph for ∆.

∀x∀y(¬Q(x, y)) ∃x∀y(Q(x, y) ∨R(x, y))

∀y(¬P (y) ∨Q(b, y)) Q(a, b) ∨ ¬N(a, b) ∀x(¬R(x, x) ∨ S(x, y))

∀y∃x(P (d) ∨ P (a) ∨M(x, y)) ∀x(P (x)) ¬Q(a, b) ∨N(a, b)

∀x∀y(¬M(x, y)) ∀x∀y(¬S(x, y))

¬N(b) ∀x(N(x))

Given a clause φ from ∆, the focal graph of φ in ∆ is the component of Closed(∆) that contains φ.

Definition 7.3.3 Let ∆ be a clause knowledgebase and φ ∈ ∆. The focal graph of φ in ∆ denoted

Focal(∆, φ) is defined as follows: If there is a component X in Closed(∆) containing node φ, then

Focal(∆, φ) = X , otherwise Focal(∆, φ) is the empty graph. Clause φ is called the epicentre of the

focal graph.

Example 7.3.3 Continuing example 7.3.1, the following is the focal graph of ψ = ∀x∀y(¬Q(x, y)) in

∆.

∀x∀y(¬Q(x, y)) ∃x∀y(Q(x, y) ∨R(x, y))

∀y(¬P (y) ∨Q(b, y)) Q(a, b) ∨ ¬N(a, b) ∀x(¬R(x, x) ∨ S(x, y))

∀y∃x(P (d) ∨ P (a) ∨M(x, y)) ∀x(P (x)) ¬Q(a, b) ∨N(a, b)

∀x∀y(¬M(x, y)) ∀x∀y(¬S(x, y))

Moreover, the following is the focal graph of φ = ∀x(N(x)) in ∆.

¬N(b) ∀x(N(x))

The query graph of a clause α in ∆ is defined below. For simplicity, in the first-order case conside-

ration is limited to queries that are unit clauses. Then, the negation ¬α of α is also a disjunctive clause

consisting of a unique disjunct and the query graph of α in ∆ consists of a unique component.
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Definition 7.3.4 Let ∆ be a set of first-order clauses and α be a first-order unit clause. Then, the query

graph of α in ∆, denoted Query(∆, α), is the focal graph of ¬α in ∆ ∪ {¬α}.

Example 7.3.4 Let ∆′ = {∃x∀y(Q(x, y)∨R(x, y)),∀y(¬P (y)∨Q(b, y)), Q(a, b)∨¬N(a, b), ∀xP (x),

∀x(¬R(x, x)∨S(x, y)),¬Q(a, b)∨N(a, b),∀y∃x(P (d)∨P (a)∨M(x, y)),¬S(a), ∀x∀y(¬M(x, y)),

∀x∀y(¬S(x, y)), ∀x(¬N(x)∨S(x)), ∀x(N(x)), S(a)∨P (a, b)}. Then, ∆′ = ∆ \ {∀x∀y(¬Q(x, y))}
where ∆ is the knowledgebase of example 7.3.1. Moreover, if α = ∃x∃y(Q(x, y)), then ¬α =

∀x∀y(¬Q(x, y)) which is equal to ψ from example 7.3.3 and ∆ = ∆′ ∪ {¬α}. Since the query graph

of α in ∆′ is by definition equal to the focal graph of ¬α in ∆′ ∪ {¬α}, then Query(∆′, α) is equal to

Focal(∆,¬α) which is the graph of example 7.3.3.

For the query graph, the following proposition holds with respect to the search for arguments for a

claim α that is a unit clause .

Proposition 7.3.1 Let α be a first-order unit clause and let (N,A) = Query(∆, α). If 〈Φ, α〉 is an

argument (where Φ ⊆ ∆), then Φ ⊂ N .

Proof: Since 〈Φ, α〉 is an argument, then Φ ∪ {¬α} is a minimal inconsistent set and so there exists

a closed tableau for this set, and there is no Γ ⊂ Φ ∪ {¬α} such that Γ is inconsistent, so there is

no Γ ⊂ Φ ∪ {¬α} that has a closed tableau. In order for a tableau of Φ ∪ {¬α} to be closed, for

each φ ∈ Φ ∪ {¬α}, for each β ∈ Units(φ), there should be at least one clause φ′ ∈ Φ ∪ {¬α} with

β ∈ Units(φ′). Otherwise, if for some φ this does not hold, then either there should be at least one

branch of the tableau which is open, or the tableau for Φ∪ {¬α} \ {φ} is closed and this contradicts the

assumption that Φ ∪ {¬α} is a minimal inconsistent set. Since it holds that for each φ ∈ Φ ∪ {¬α}, for

each β ∈ Units(φ), there is at least one clause φ′ ∈ Φ ∪ {¬α} such that β ∈ Units(φ′), then it holds

that for each φ ∈ Φ ∪ {¬α}, for each β ∈ Units(φ), there is at least one clause φ′ ∈ Φ ∪ {¬α} with

β ∈ Preattacks(φ, φ′) so for all φ ∈ Φ ∪ {¬α} and for all β ∈ Units(φ) there is a φ′ ∈ Φ ∪ {¬α} such

that β ∈ Preattacks(φ, φ′) hence for all φ ∈ Φ ∪ {¬α}, it holds that φ ∈ Closed(Φ ∪ {¬α}). Since

this holds for all φ ∈ Φ ∪ {¬α} it also holds for ¬α that ¬α ∈ Closed(Φ ∪ {¬α}). Moreover, since

Φ ∪ {¬α} ⊆ ∆ ∪ {¬α} and ¬α ∈ Closed(Φ ∪ {¬α}), it holds that Closed(Φ ∪ {¬α}) is a subgraph of

Focal(∆ ∪ {¬α},¬α) and by definition Focal(∆ ∪ {¬α},¬α) = Query(∆, α) and so it also holds that

Closed(Φ ∪ {¬α}) is a subgraph of Query(∆, α). Therefore, Φ ∪ {¬α} ⊆ N and also ¬α 6∈ Φ since

Φ is a support for an argument for α (otherwise it would hold that Φ ∪ {¬α} = Φ and Φ ` ⊥ since

Φ ∪ {¬α} ` ⊥), so Φ ⊂ N . �

Example 7.3.5 Consider the query graph (N,A) of α = ∃x∃y(Q(x, y)) in ∆ from example 7.3.4.

Some arguments for α from ∆ are:

〈Φ1, α〉 = 〈{∀y(¬P (y) ∨Q(b, y)),∀x(P (x))},∃x∃y(Q(x, y))〉
〈Φ2, α〉 = 〈{∀y(¬P (y)∨Q(b, y)),∀y∃x(P (d)∨P (a)∨M(x, y)),∀x∀y(¬M(x, y))},∃x∃y(Q(x, y))〉

For Φ1 and Φ2 it holds that Φ1 ⊂ N and Φ2 ⊂ N .



7.4. Proof trees for first-order clauses 118

Like in the propositional case, the query graph of α in ∆ can be used as the search space when

looking for arguments for α from ∆. By applying search algorithms based on the structure of the graph

it is possible to obtain arguments for α. This is the topic of the next section.

7.4 Proof trees for first-order clauses
Given a first-order unit clause α as a claim for an argument, it is possible to retrieve a support for an

argument for α by walking over the query graph of α in ∆ and applying resolution. This requires a

unification process, between complementary literals that indicate paths traversed during the search. The

selection of the paths to be traversed takes place in a similar way to that in the propositional case. An

assignment tree depicts the process of walking over the query graph of α in ∆ and unifying literals that

indicate paths in the search for arguments for α, and hence represents a tentative proof of an argument

for α.

Definition 7.4.1 Let ∆ be a clause knowledgebase and α be a unit clause and let ∆′ = ∆∪{¬α}. An as-

signment tree for ∆ and α is tuple (N,A, e, f, g, h) whereN is a set of nodes andA is a set of arcs such

that (N,A) is a tree and e, f, g, h are functions such that: e : N 7→ ∆′, f : N 7→ SetAssignments(∆′),

g : N 7→ ℘(B), h : N 7→ SetAssignments(∆′) and

(1) if p is the root of the tree, then e(p) = ¬α
(2) f(p) is an existential instance of e(p) s.t. Constants(f(p)) ⊆ Constants(g(p))

(3) for any nodes p, q in the same branch, if e(p) = e(q) then g(p) 6= g(q)

(4) for all p ∈ N, g(p) ∩ Prohibited(e(p)) = ∅
(5) for all p ∈ N,h(p) = Assign(f(p), g(p))

(6) for all p, q ∈ N , if p is the parent of q, then Attacks(h(q), h(p)) 6= null

(7) for all p, q ∈ N , (Constants(f(p)) \ Constants(e(p)))
⋂

Constants(∆′) = ∅, &

(Constants(f(p)) \ Constants(e(p)))
⋂

(Constants(f(q)) \ Constants(e(q))) = ∅

Each of the functions e, f, g, h for a node p gives the state of the tentative proof for an argument

for α. Function e(p) identifies for p the clause φ from ∆ ∪ {¬α} associated with node p and f(p) is

an existential instance of e(p). g(p) is a set of bindings that when assigned to e(p) creates the instance

h(p) of e(p). Hence, g(p) contains the set of bindings that create the existential instance f(p) of e(p)

together with the bindings that unify atoms of contradictory literals connected with arcs on the tree as

condition 6 indicates. Condition 7 ensures that the existential instances used in the proof are created by

assigning to the existentially quantified variables of a clause e(p) constants that do not appear anywhere

else in ∆∪ {¬α} or the other instances of the clauses of the tentative proof. Finally, condition 3 ensures

that an infinite sequence of identical nodes on a branch will be avoided in an assignment tree.

In all the examples that follow, assignment trees are represented by the value h(p) for each node p,

where no existentially bound variables appear. Hence, all the variables that appear in a tree representation

are universally quantified and so universal quantifiers are omitted for simplicity.
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Example 7.4.1 Let ∆ = {∀y(¬P (y)∨Q(b, y)), ∀y∃x(P (d)∨P (a)∨M(x, y)), R(c), ∀x∀y(¬M(x, y)),

∃x∀y(Q(x, y) ∨R(x, y)), Q(a, b) ∨ ¬N(a, b), ∀x∀y(L(x, y, a)), ∀x(¬R(x, x) ∨ S(x, y)), ¬Q(a, b) ∨
N(a, b), ∀x∀y(¬S(x, y)), ¬L(c, d, a), ∀x(P (x)), ¬R(c, a)}. The following is an assignment tree for

∆ and α = ∃x∃y(Q(x, y)).

¬Q(b, d) p0 e(p0) = f(p0) = ∀x∀y(¬Q(x, y)), g(p0) = {x/b, y/d}

| e(p1) = f(p1) = ∀y(¬P (y) ∨Q(b, y)), g(p1) = {y/d}

¬P (d) ∨Q(b, d) p1 e(p2) = ∀y∃x(P (d) ∨ P (a) ∨M(x, y)), g(p2) = {x/l}

| f(p2) = ∀y(P (d) ∨ P (a) ∨M(l, y))

P (d) ∨ P (a) ∨M(l, y) p2 e(p3) = f(p3) = ∀y(¬P (y) ∨Q(b, y)), g(p3) = {y/a}

� � e(p4) = f(p4) = ∀x∀y(¬M(x, y)), g(p4) = {x/l}

¬P (a) ∨Q(b, a) p3 ¬M(l, y) p4

An assignment tree for ∆ and α does not necessarily indicate a proof for α. It provides a structure

which, with additional constraints does provide a proof for α. Some of these constraints are introduced

in the definition for a complete assignment tree.

Definition 7.4.2 A complete assignment tree (N,A, e, f, g, h) is an assignment tree such that for any

x ∈ N if y is a child of x then there is a bi ∈ Units(h(x)) such that Attacks(h(y), h(x)) = bi and for

each bj ∈ Units(h(y)) \ {bi}
(1) either there is exactly one child z of y s.t. Attacks(h(z), h(y)) = bj

(2) or there is a node w in the branch containing y s.t. bj = Attacks(h(y), h(w))

Definition 7.4.3 A grounded assignment tree (N,A, e, f, g, h) is an assignment tree such that for any

x ∈ N , h(x) is a ground clause.

Example 7.4.2 The assignment tree of example 7.4.1 is neither complete nor grounded. It is not a

complete assignment tree because for Q(b, a) ∈ Units(h(p3)) the conditions of definition 7.4.2 do not

hold. Adding a node p5 as a child of p3 with e(p5) = f(p5) = ∀x∀y(¬Q(x, y)), g(p5) = {x/b, y/a}
for which h(p5) = ¬Q(b, a) gives a complete assignment tree. It is not a grounded assignment tree

because for nodes p2 and p4 h(p2) = P (d) ∨ P (a) ∨M(l, y) and h(p4) = ¬M(l, y) are non-ground

clauses. If we substitute the non-ground term y in h(p2) and h(p4) with the same arbitrary constant

value (e ∈ C for instance), the resulting tree still satisfies the conditions for an assignment tree and it is

also a grounded assignment tree.
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¬Q(b, d) ¬Q(b, d) ¬Q(b, d)

| | |
¬P (d) ∨Q(b, d) ¬P (d) ∨Q(b, d) ¬P (d) ∨Q(b, d)

| | |
P (d) ∨ P (a) ∨M(l, e) P (d) ∨ P (a) ∨M(l, y) P (d) ∨ P (a) ∨M(l, e)

� � � � � �
¬P (a) ∨Q(b, a) ¬M(l, e) ¬P (a) ∨Q(b, a) ¬M(l, y) ¬P (a) ∨Q(b, a) ¬M(l, e)

| |
¬Q(b, a) ¬Q(b, a)

assignment tree 1 assignment tree 2 assignment tree 3

(grounded) (complete) (grounded & complete)

For a complete grounded assignment tree the following holds regarding the entailment of the groun-

ded clause represents the root.

Lemma 7.4.1 If (N,A, e, f, g, h) is a complete grounded assignment tree for ∆ and α, where p0 is the

root, then {h(p) | p ∈ N \ {p0}} ` ¬h(p0).

Proof: This proof proceeds as follows. It is proved first that a complete grounded assignment tree

(N,A, e, f, g, h) is isomorphic to a support tree (N ′, A′, f ′) and then by regarding the ground clauses

of (N,A, e, f, g, h) as propositional clauses and using the properties of a complete presupport tree pre-

sented in chapter 4, the lemma is shown to hold.

Let (N,A, e, f, g, h) be a complete grounded assignment tree for ∆ and α and let p0 be its root

(i.e. e(p0) = ¬α). Then, (N,A, e, f, g, h) is isomorphic to a complete presupport tree (N ′, A′, f ′) for

∆′ = {h(p) | p ∈ N}, α′ = ¬h(p0) and a′ = ¬h(p0) where for each p ∈ N , there is a p′ ∈ N ′ such

that h(p) = f ′(p′) and for each node p′ ∈ N ′, there is a p ∈ N such that f ′(p′) = h(p) (and hence

{h(p) | p ∈ N} = {f ′(p′) | p′ ∈ N ′}). Let p′0 be the root of (N ′, A′, f ′) (i.e. f ′(p0) = h(p0))

Then, (N ′, A′, f ′) satisfies the conditions of definition 4.2.1 for ∆′, α′ and a′:

Condition (1) of definition 4.2.1 holds for (N ′, A′, f ′) because condition (1) of definition 7.4.1 and

condition (1) of definition 7.4.2 hold for (N,A, e, f, g, h).

Condition (2) of definition 4.2.1 holds for (N ′, A′, f ′) because condition (3) of definition 7.4.1 holds for

(N,A, e, f, g, h).

Condition (3) of definition 4.2.1 holds for (N ′, A′, f ′) because condition (6) of definition 7.4.1 holds for

(N,A, e, f, g, h).

Moreover, (N ′, A′, f ′) satisfies the conditions of definition 4.2.3. For each non-root x′ ∈ N ′, for every

b ∈ Disjuncts(f ′(x′)):

Condition (i) of definition 4.2.3 does not hold because α′ consists of a unique disjunct so

Disjuncts(α′) \ {a′} = {¬h(p0)} \ {¬h(p0)} = ∅ and hence b 6∈ ∅. Then, for b ∈ Disjuncts(f ′(x′)), if
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x ∈ N is such that f ′(x′) = h(x)

either condition (ii) of definition 4.2.3 holds for b ∈ Disjuncts(f ′(x′)) in (N ′, A′, f ′) because condition

(2) of definition 7.4.2 holds for b ∈ Units(h(x)) in (N,A, e, f, g, h), or

condition (iii) of definition 4.2.3 holds for b ∈ Disjuncts(f ′(x′)) in (N ′, A′, f ′) because condition (1)

of definition 7.4.2 holds for b ∈ Units(h(x)) in (N,A, e, f, g, h).

So, (N ′, A′, f ′) satisfies definition 4.2.3 and (N ′, A′, f ′) is a complete presupport tree for ∆′, α′ and a′

where {f ′(p′) | p′ ∈ N ′} = {h(p) | p ∈ N}. Then, by proposition 4.2.7, {f ′(p′) | p′ ∈ N ′\{p′0}} ` α′

and because {f ′(p′) | p′ ∈ N ′ \ {p′0}} = {h(p) | p ∈ N \ {p0}}, then {h(p) | p ∈ N \ {p0}} ` α′ and

since α′ = ¬h(p0), then {h(p) | p ∈ N \ {p0}} ` ¬h(p0). �

Using the last lemma, the following proposition can be proved.

Proposition 7.4.1 If (N,A, e, f, g, h) is a complete grounded assignment tree for ∆ and α, where p0 is

the root then {e(p) | p ∈ N} \ {e(p0)} ` α.

Proof: By lemma 7.4.1, {h(p) | p ∈ N \ {p0}} ` ¬h(p0) where by the definition for an assignment

tree h(p0) is an instance of e(p0) and e(p0) = ¬α. Then, ({h(p) | p ∈ N \ {p0}}) ∪ {h(p0)} is

an unsatisfiable grounding of ({e(p) | p ∈ N \ {p0}}) ∪ {e(p0)} = {e(p) | p ∈ N}. Hence, since

e(p0) = ¬α, it follows that ¬α ∈ {e(p) | p ∈ N} and since {e(p) | p ∈ N} ` ⊥ then {e(p) | p ∈
N} \ {¬α} ` α which is equivalent to {e(p) | p ∈ N} \ {e(p0)} ` α. �

Example 7.4.3 For the complete and grounded assignment tree of example 7.4.2, {e(p) | p ∈ N} \
{¬α} = {∀y(¬P (y) ∨ Q(b, y)),∀y∃x(P (d) ∨ P (a) ∨M(x, y)), ∀x∀y(¬M(x, y))} ` α where α =

∃x∃y(Q(x, y)).

Although all the assignment trees in example 7.4.2 correspond to the same subset of clauses e(p)

from ∆, it is not always the case that a non-grounded or non-complete assignment tree is sufficient to

indicate a proof for α.

The following definitions introduce additional constraints on the definition of a complete assign-

ment tree (N,A, e, f, g, h) for ∆ and α that give properties related to the minimality and the consistency

of the proof for α indicated by the set of nodes in the assignment tree. In the following, for an arc (q, p)

of an assignment tree (N,A, e, f, g, h), p denotes the parent of q.

Definition 7.4.4 Let (N,A, e, f, g, h) be a complete assignment tree for ∆ and α. Then,

(N,A, e, f, g, h) is a minimal assignment tree if for any arcs (q, p), (q′, p′) where

Attacks(h(q), h(p)) = Assign(β, g(q)) for some β ∈ Units(e(q)), and

Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) for some β′ ∈ Units(e(q′))

β ` β′ holds iff e(q) = e(q′).

Example 7.4.4 The following (N,A, e, f, g, h) is a complete assignment tree for a knowledgebase ∆

and α = ∃x(¬M(x)), with {e(p) | p ∈ N} = {∀x(M(x)), ∀x(¬S(x) ∨ ¬M(x) ∨ ¬T (x)),∀x(S(x) ∨
N(x)),∀x(T (x)∨N(x)),∀x(¬N(x)), ∀x(¬N(x)∨R(x)),∀x(¬R(x))} ⊆ ∆∪{¬α}. (N,A, e, f, g, h)
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is not minimal because of arcs (q, p), (q′, p′). In this tree, g(q) = ∅ and g(q′) = ∅. For β =

∀x(¬N(x)) ∈ Units(e(q)) and β′ = ∀x(¬N(x)) ∈ Units(e(q′)) it holds that:

Attacks(h(q), h(p)) = Assign(β, g(q)) = ∀x(¬N(x)) and

Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) = ∀x(¬N(x))

and β ` β′ but e(q) 6= e(q′).

M(x)
|

¬S(x) ∨ ¬M(x) ∨ ¬T (x)
� �

S(x) ∨N(x)p T (x) ∨N(x)p′

| |
¬N(x)q ¬N(x) ∨R(x)q′

|
¬R(x)

If a copy of the subtree rooted at q′ in (N,A, e, f, g, h) is substituted by the subtree rooted at q, a

minimal assignment tree (N ′, A′, e′, f ′, g′, h′) with {e(p) | p ∈ N ′} = {∀x(M(x)),∀x(¬S(x) ∨
¬M(x) ∨ ¬T (x)),∀x(S(x) ∨N(x)),∀x(T (x) ∨N(x)),∀x(¬N(x))} is obtained. Similarly, if a copy

of the subtree rooted at q in (N,A, e, f, g, h) is substituted by the subtree rooted at q′, another mi-

nimal assignment tree (N ′′, A′, e′′, f ′′, g′′, h′′) with {e(p) | p ∈ N ′′} = {∀x(M(x)),∀x(¬R(x)),

∀x(¬S(x)∨¬M(x)∨¬T (x)),∀x(S(x)∨N(x)),∀x(T (x)∨N(x)),∀x(¬N(x)∨R(x))} is obtained.

M(x) M(x)
| |

¬S(x) ∨ ¬M(x) ∨ ¬T (x) ¬S(x) ∨ ¬M(x) ∨ ¬T (x)
� � � �

S(x) ∨N(x) T (x) ∨N(x) S(x) ∨N(x) T (x) ∨N(x)
| | | |

¬N(x) ¬N(x) ¬N(x) ∨R(x) ¬N(x) ∨R(x)
| |

¬R(x) ¬R(x)

The next definition introduces the notion of a consistent assignment tree.

Definition 7.4.5 Let (N,A, e, f, g, h) be a complete assignment tree for ∆ and α. Then,

(N,A, e, f, g, h) is a consistent assignment tree if for any arcs (q, p), (q′, p′) where

Attacks(h(q), h(p)) = Assign(β, g(q)) for some β ∈ Units(e(q)) and

Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) for some β′ ∈ Units(e(q′))

β ` β′ holds iff e(q) = e(p′).

Example 7.4.5 The following complete (and minimal) assignment tree (N,A, e, f, g, h) for some ∆

and α = ∃x∃y(Q(x, y)) with {e(p) | p ∈ N} = {∀x∀y(¬Q(x, y)),∀x∀y(P (a) ∨ ¬P (b) ∨
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Q(x, y)),∀x(¬P (x)), ∀x(P (x))} ⊆ ∆ ∪ {¬α} is not consistent because of arcs (q, p), (q′, p′). In

this tree, g(q) = {x/a} and g(q′) = {x/b}. For β = ∀x(¬P (x)) ∈ Units(e(q)) and β′ = ∀x(P (x)) ∈
Units(e(q′)), it holds that:

Attacks(h(q), h(p)) = Assign(β, g(q)) = ¬P (a) and

Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) = P (b)

and β ` β′ but e(q) 6= e(p′).

¬Q(x, y)
|

P (a) ∨ ¬P (b) ∨Q(x, y)p = p′

e(q) = ∀x(¬P (x)) � � e(q′) = ∀x(P (x))

g(q) = {x/a} ¬P (a)q P (b)q′ g(q′) = {x/b}

An assignment tree (N ′, A′, e′, f ′, g′, h′) with the same representation as the above can be formed

from the set of clauses {e(p) | p ∈ N ′} = {∀x∀y(¬Q(x, y)), ∀x∀y(P (a) ∨ ¬P (b) ∨ Q(x, y)),

¬P (a), P (b)} ⊆ ∆ ∪ {¬α}. In this case, (N ′, A′, e′, f ′, g′, h′) satisfies the conditions of definition

7.4.5. Although the two trees have identical representations, in the tree below where e(q) = ¬P (a) and

e(q′) = P (b), for β = ¬P (a) ∈ Units(e(q)) and β′ = P (b) ∈ Units(e(q′)), ¬P (a) 6` P (b) so arcs

(q, p), (q′, p′) do not violate the conditions for a consistent assignment tree.

¬Q(x, y)
|

P (a) ∨ ¬P (b) ∨Q(x, y)p = p′

e(q) = ¬P (a) � � e(q′) = P (b)

g(q) = ∅ ¬P (a)q P (b)q′ g(q′) = ∅

Example 7.4.6 The following assignment tree (N,A, e, f, g, h) for ∆ and α = ∃x(¬M(x)) where

{e(p) | p ∈ N} = {∀x(M(x)),∀x(¬S(x)∨¬T (x)∨¬M(x)),∀x(S(x)∨¬P (x)∨¬N(x)), ∀x(P (x)∨
Q(x)), ∀x(¬Q(x)),∀x(T (x) ∨ N(x))} ⊆ ∆ ∪ {¬α} is a consistent assignment tree. For q, q′, where

g(q) = ∅ and g(q′) = ∅, for β = ∀x(N(x)) ∈ Units(e(q)), β′ = ∀x(¬N(x)) ∈ Units(e(q′))

Attacks(h(q), h(p)) = Assign(β, g(q)) = ∀x(N(x)) and

Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) = ∀x(¬N(x))

and it holds that β ` β′ and e(q) = e(p′).
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M(x)
|

¬S(x) ∨ ¬T (x) ∨ ¬M(x)
� �

S(x) ∨ ¬P (x) ∨ ¬N(x)p T (x) ∨N(x)p′

� � |
P (x) ∨Q(x) T (x) ∨N(x)q S(x) ∨ ¬P (x) ∨ ¬N(x)q′

| |
¬Q(x) P (x) ∨Q(x)

|
¬Q(x)

For a minimal and consistent grounded assignment tree the following result holds.

Proposition 7.4.2 Let (N,A, e, f, g, h) be a complete, minimal and consistent grounded assignment

tree for ∆ and α. Then 〈Φ, α〉 with Φ = {e(p) | p ∈ N} \ {¬α} is an argument.

Proof: Let (N,A, e, f, g, h) be a complete, minimal and consistent grounded assignment tree for ∆

and α where p0 is the root node. In order to prove that 〈{e(p) | p ∈ N} \ {¬α}, α〉 is an argument,

it is proved that {e(p) | p ∈ N} is a minimal inconsistent set. By proposition 7.4.1, {e(p) | p ∈
N} \ {e(p0)} ` α from which follows that {e(p) | p ∈ N} \ {e(p0)} ∪ {¬α} ` ⊥ which is equivalent

to {e(p) | p ∈ N} ` ⊥. By the definitions for a minimal and consistent assignment tree follows that

for each φ ∈ {e(p) | p ∈ N}, for each β ∈ Units(φ), there is exactly one clause φ′ ∈ {e(p) | p ∈ N}
with β ∈ Units(φ′), otherwise the conditions of either definition 7.4.4 or definition 7.4.5 would be

violated. Using this remark and assuming that {e(p) | p ∈ N} is not a minimal inconsistent set leads

to contradiction. Assume there is a Ψ ⊂ {e(p) | p ∈ N} such that Ψ ` ⊥ and without loss of

generality assume this Ψ is a minimal inconsistent set. Then, Ψ has a closed tableau and for all ψ ∈ Ψ,

for all γ ∈ Units(ψ) there exist ψ′ ∈ {e(p) | p ∈ N} \ {ψ} with γ ∈ Units(ψ′). Otherwise, if

for some ψ this does not hold, then either there is at least one branch of the tableau which is open, or

the tableau for Ψ \ {ψ} is closed and this contradicts the assumption that Ψ is a minimal inconsistent

set. Since Ψ ⊂ {e(p) | p ∈ N} and the clauses of {e(p) | p ∈ N} are all linked with each other

through complementary units, there is at least one χ ∈ Ψ with some δ ∈ Units(χ) for which there is

a χ′ ∈ {e(p) | p ∈ N} \ Ψ such that δ ∈ Units(χ′). Otherwise Ψ and {e(p) | p ∈ N} \ Ψ would

be disjoint components in the query graph of α in ∆ and they could not represent nodes in the same

assignment tree. Then, since Ψ is a minimal inconsistent set and has closed tableau, for this χ ∈ Ψ

and δ ∈ Units(χ) there is some χ′′ ∈ Ψ such that δ ∈ Units(χ′′), and since Ψ ⊂ {e(p) | p ∈ N}, it

follows that {χ′′, χ′} ⊂ {e(p) | p ∈ N} and χ′′ 6= χ′ since χ′ ∈ {e(p) | p ∈ N} \ Ψ and χ′′ ∈ Ψ.

This contradicts the fact that that for χ ∈ {e(p) | p ∈ N} and δ ∈ Units(χ) there is exactly one

clause in {e(p) | p ∈ N} with δ in its units since this holds for both χ′ and χ′′. Therefore, there is

no Ψ ⊂ {e(p) | p ∈ N} such that Ψ ` ⊥ and so {e(p) | p ∈ N} is a minimal inconsistent set and

〈{e(p) | p ∈ N} \ {¬α}, α〉 is an argument. �
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Example 7.4.7 The following is a grounded assignment tree for ∆ and α = ∃x∃y(Q(x, y)), derived

from the consistent assignment tree of example 7.4.5 where the remaining variables have been instantia-

ted by arbitrary constants.

¬Q(c, d)
|

P (a) ∨ ¬P (b) ∨Q(c, d)
� �

¬P (a) P (b)

This (N,A, e, f, g, h) is a complete minimal and consistent grounded assignment tree and the set of

clauses from ∆ that correspond to the non-root nodes i.e. {e(p) | p ∈ N} \ {¬α} = {∀x∀y(P (a) ∨
¬P (b) ∨Q(x, y)), ¬P (a), P (b)} is a support for an argument for α.

The converse of the last proposition does not always hold. If 〈Φ, α〉 is an argument, where Φ ⊆
∆, it does not necessarily mean that there exists a minimal and consistent grounded assignment tree

(N,A, e, f, g, h) for ∆ and α such that Φ = {e(p) | p ∈ N} \ {¬α}.

Example 7.4.8 Consider the argument 〈Φ, α〉 where Φ ⊆ ∆ is such that Φ = {∀x(P (x)∨Q(x)∨S(x)),

∀x(¬P (x)∨Q(x)), ∀x(¬Q(x)∨P (x)), ∀x(¬P (x)∨¬Q(x))} and α = ∃x(S(x)). The only complete

assignment trees (N,A, e, f, g, h) for ∆ and α for which Φ = {e(p) | p ∈ N} \ {¬α} are the ones

below.

¬S(x) ¬S(x)
| |

P (x) ∨Q(x) ∨ S(x) P (x) ∨Q(x) ∨ S(x)
� � � �

¬P (x) ∨Q(x) ¬Q(x) ∨ P (x) ¬Q(x) ∨ P (x) ¬P (x) ∨Q(x)
| | | |

¬P (x) ∨ ¬Q(x) ¬P (x) ∨ ¬Q(x) ¬P (x) ∨ ¬Q(x) ¬P (x) ∨ ¬Q(x)

By substituting variable x by an arbitrary constant we obtain two complete grounded assignment trees

neither of which is minimal or consistent. So for 〈Φ, α〉 there there is no minimal and consistent assign-

ment tree (N,A, e, f, g, h) for ∆ and α such that Φ = {e(p) | p ∈ N} \ {¬α}. 1

Because of the complicated nature of first-order logic, the work presented in this chapter is limited

to the sound, but not complete solution based on assignment trees for searching for arguments. The next

section presents algorithms which, given a knowledgebase of first-order clauses and a unit clause α as a

claim for an argument, generates complete minimal and consistent assignment trees for ∆ and α.

1These trees are in fact identical and the algorithm introduced in the next paragraph would only produce one of the two. They
are both included in the example in order to demonstrate exhaustive consideration of all the possible complete assignment trees for
this set and root.
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7.5 Algorithms
This section introduces the algorithms that search for all the complete minimal and consistent assignment

trees for a unit clause α from a knowledgebase of first-order clauses ∆. If a grounded version of a

complete minimal and consistent assignment tree exists, then according to proposition 7.4.2 this indicates

an argument for α. The search is based on the structure of the query graph of α in ∆. The query graph

can be retrieved by using the algorithm for the focal graph introduced in chapter 3, adapted for first-order

clauses where the connectivity criterion is as in the definition for the closed graph for first-order clauses

given in this chapter. Since α in a unit clause, Query(∆, α) consists of a unique component. Then,

algorithm GetFocal(∆ ∪ {¬α},¬α) of chapter 3 page 49 (algorithm 3.1) returns the query graph of α

in ∆. The query graph is then used in order to apply search algorithms that produce assignment trees as

described in the next section.

7.5.1 Algorithm for producing complete assignment trees

By using the structure of the query graph of α in ∆ it is possible to generate supports for arguments for

α by a walking over the graph and producing assignment trees. Algorithm 7.1 builds a depth-first search

tree T that represents the steps of the search for arguments for α from ∆. The algorithm proceeds in a

way similar to that of the propositional case presented in chapter 4. Every node in T is an assignment

tree, every node is an extension of the assignment tree in its parent node. The leaf node of every complete

accepted branch is a complete assignment tree.

The idea in building assignment trees by using the structure of the query graph, is to start from the

negation of the claim and walk over the graph by following the links and unifying the atoms of pairs of

contradictory literals connected with arcs. Hence, the algorithm at the same time follows the arcs of the

graph and also produces partial instances of the clauses it visits as the unification of atoms indicates.

The order in which the clauses in the graph are visited is established by the conditions of defi-

nitions 7.4.1 and 7.4.2. For a node v of T , function Extensions(v) gives all the possible extensions

of the search tree below node v i.e. all the possible assignment trees that extend the assignment tree

(N,A, e, f, g, h) contained in node v by one level. Each such extension v′ contains an assignment tree

(N ′, A′, e′, f ′, g′, h′) that extends (N,A, e, f, g, h) with respect to the conditions of the definition for a

complete assignment tree and by using the paths the query graph indicates. If for a node v of the search

tree Extensions(v) = ∅, then it means that the current branch of the search tree cannot be extended any

further below node v. This happens either because the assignment tree (N,A, e, f, g, h) that is contained

in v is a complete assignment tree or because it cannot be extended further because for some node y in

(N,A, e, f, g, h) a child node y′ needs to be added but no clause from the query graph can be assigned

to y′ without violating the conditions of the definition for an assignment tree. In order to decide whether

it is the first or the second case, function Accept(v) checks whether a solution has been found. Hence,

Accept(v) tests whether the assignment tree in the leaf node v of the currently built branch of T is a

complete assignment tree. If (N,A, e, f, g, h) cannot be extended further because it is a complete assi-

gnment tree, Accept(v) returns true and node v is stored in the set AssignmentTrees that is returned

in the end, otherwise the node is rejected. Then the algorithm backtracks and continues to the next node
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of tree T to be expanded.

The partial instances produced while walking over the graph are generated with respect to the condi-

tions of definition 7.4.1. Every time a clause φ on the graph is visited, a node q for an assignment tree

is created with e(q) = φ. For this node, an existential-free instance of e(q) is generated by substituting

each of its existentially quantified variables with an arbitrary constant that does not appear anywhere in

∆ ∪ {¬α} or in the instances already created during the search. This instantiation initializes the value

g(q) and sets the value f(q) for q: f(q) = Assign(e(q), g(q)). The value of h(q) is also initialized at this

stage to be equal to f(q). After node q has been initialized as an assignment tree node, another instantia-

tion process follows, which is based on unifying the atoms of the contradictory units in h(q) and its parent

with their most general unifier. This updates values g(q) and h(q). Let p be the parent of q in an assign-

ment tree. If θ ⊂ ℘(B) is the most general unifier of the atoms of a pair of contradictory units from h(q)

and h(p), then g(q) = g(q)∪ θ and h(q) = Assign(h(q), g(q)). Every time such a unification binding is

retrieved for a current leaf node q of (N ′, A′, e′, f ′, g′, h′), its values may affect the links in the rest of

the assignment tree. Any of the corresponding clauses that can be associated through a sequence of arcs

in the assignment tree with the variables of e(q) can be affected by the bindings in θ. For this reason, for

each node v′ in Extensions(v), function PropagateAssignments(v′) propagates for each newly created

node q in the assignment tree (N ′, A′, e′, f ′, g′, h′) that is contained in v′, the values of g(q) to the nodes

that are affected by this assignment. It updates this way the values of g(r) and hence h(r) for the nodes

r whose variables are associated with the bindings of q. There are cases where this propagation of values

causes violation of the conditions of the definition of the assignment tree. For instance, when updating

the value g(r) for a node r in (N ′, A′, e′, f ′, g′, h′), the updated g(r) may be from Prohibited(e(r)),

violating this way condition (4) of definition 7.4.1. This means that the currently built assignment tree

cannot develop into a complete assignment tree. For this, after every time PropagateAssignments(v′)

is applied, another function, Reject(v′) checks whether PropagateAssignments(v′) has caused such a

problem in the assignment tree contained in v′. If the function returns false for a node v′, the algorithm

then continues recursively for v′.

Algorithm 7.1 FirstOrderSearchTree(v)
if Extensions(v) 6= ∅ then

for all w ∈ Extensions(v) do
PropagateAssignments(w)
if ¬Reject(w) then

FirstOrderSearchTree(w)
end if

end for
else

if Accept(v) then
AssignmentTrees = AssignmentTrees ∪ {v}

end if
end if
return AssignmentTrees

Figure 7.1 represents the result of searching for arguments for α = ∃x∃y(Q(x, y)) using the query

graph of α in ∆ which is the first of the components of the graph from example 7.3.3. The results
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of the first and second branch of the search tree (at the leaf) are complete assignment trees. The third

branch is rejected because for node p with e(p) = f(p) = h(p) = Q(a, b) ∨ ¬N(a, b) there is only

one arc in the graph that connects e(p) with a clause that contains a complement of ¬N(a, b). This

is clause ¬Q(a, b) ∨ N(a, b) but a child q of p with e(q) = ¬Q(a, b) ∨ N(a, b) cannot be created

because there is no assignment g(q) for which Attacks(h(q), h(p)) 6= null. The last branch of the

search tree is rejected because adding node s with e(s) = ∀x(¬R(x, x) ∨ S(x, y)) as a child of r with

h(r) = Q(e, y) ∨ R(e, y) requires unifying R(x, x) with R(e, y) which updates the value of g(r) to

g(r) = {x/e, y/e} ∈ Prohibited(e(r)) and so condition 4 of the definition for an assignment tree is

violated.
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¬Q(x, y)

¬Q(b, y)

|
¬P (y) ∨Q(b, y)

¬Q(a, b)

|
Q(a, b) ∨ ¬N(a, b)

¬Q(e, y)

|
Q(e, y) ∨R(e, y)

¬Q(b, d)

|
¬P (d) ∨Q(b, d)

|
P (d) ∨ P (a) ∨M(l, y)

¬Q(b, d)

|
¬P (d) ∨Q(b, d)

|
P (d)

¬Q(e, e)

|
Q(e, e) ∨R(e, e)

|
¬R(e, e) ∨ S(e, y)

¬Q(b, d)

|
¬P (d) ∨Q(b, d)

|
P (d) ∨ P (a) ∨M(l, y)

� �
¬P (a) ∨Q(b, a) ¬M(l, y)

¬Q(b, d)

|
¬P (d) ∨Q(b, d)

|
P (d) ∨ P (a) ∨M(l, y)

� �
¬P (a) ∨Q(b, a) ¬M(l, y)

|
¬Q(b, a)

A search tree generated using algorithmFirstOrderSearchTree. Each node of this search tree represents an assignment
tree which extends the assignment tree contained in its parent node by one level. For this, the algorithm adds clauses
each of which attacks its parent clause on a different unit. The atoms of the contradictory units between a parent and
a child are unified and the bindings of the unification are passed on to any other clauses that may be affected in the
assignment tree by this node.

Figure 7.1: Applying algorithm FirstOrderSearchTree
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7.5.2 Algorithms for selecting the minimal and consistent assignment trees

Given the accepted results of algorithm 7.1 (i.e. the complete assignment trees generated by

the algorithm), algorithm IsMinimal(N,A, e, f, g, h) tests whether the complete assignment tree

(N,A, e, f, g, h) satisfies the conditions for a minimal assignment tree.

Algorithm 7.2 IsMinimal(N,A, e, f, g, h)
for all (q, p), (q′, p′) ∈ A do

Let Attacks(h(q), h(p)) = Assign(β, g(q)),Attacks(h(q′), h(p′)) = Assign(β′, g(q′))
if β ` β′ && e(q) 6= e(q′) then

return false
end if

end for
return true

Given a complete assignment tree (N,A, e, f, g, h), the next algorithm tests whether (N,A, e, f, g, h)

satisfies the conditions for a consistent assignment tree.

Algorithm 7.3 IsConsistent(N,A, e, f, g, h)
for all (q, p), (q′, p′) ∈ A do

Let Attacks(h(q), h(p)) = Assign(β, g(q)),Attacks(h(q′), h(p′)) = Assign(β′, g(q′))
if β ` β′ && e(q) 6= e(p′) then

return false
end if

end for
return true

Example 7.5.1 The following assignment tree is the first of the accepted results of the search tree in

figure 7.1.

¬Q(b, d)
|

¬P (d) ∨Q(b, d)w
|

P (d) ∨ P (a) ∨M(l, y)t
� �

¬P (a) ∨Q(b, a)v ¬M(l, y)
|

¬Q(b, a)

In this (N,A, e, f, g, h) there are no (q, p), (q′, p′) ∈ A where Attacks(h(q), h(p)) = Assign(β, g(q)),

Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) for which β ` β′ so the tree is a minimal assignment

tree and algorithm 7.2 returns true. There are arcs (v, t), (t, w) ∈ A where e(w) = ∀y(¬P (y) ∨
Q(b, y)) with g(w) = {y/d}, e(t) = ∀y∃x(P (d) ∨ P (a) ∨ M(x, y)) with g(t) = {x/l} and

e(v) = ∀y(¬P (y) ∨ Q(b, y)) with g(v) = {y/a} such that for β′ = P (d) ∈ Units(e(t)) and for

β = ∀y(¬P (y)) ∈ Units(e(v)) the following hold.

Attacks(h(v), h(t)) = Assign(β, g(v)) = ¬P (a) and

Attacks(h(t), h(w)) = Assign(β′, g(t)) = P (d)
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and ∀y(¬P (y)) ` ¬P (d) so ∀y(¬P (y)) ` P (d) which means that β ` β′ so this pair of nodes is exami-

ned further by the algorithm. It holds though in addition that e(v) = e(w) = ∀y(¬P (y) ∨ Q(b, y))

so these arcs do not affect the conditions for a consistent assignment tree and the algorithm re-

turns true. By substituting in this tree variable y in literals M(l, y) and ¬M(l, y) by the same ar-

bitrary constant, a minimal and consistent grounded assignment tree is obtained. The set of clauses

{∀y(¬P (y) ∨ Q(b, y)),∀y∃x(P (d) ∨ P (a) ∨M(x, y)),∀x∀y(¬M(x, y))} that corresponds to the set

of non-root nodes of this tree is a support for an argument for α = ∃x∃y(Q(x, y)).

The second of the accepted results of the search tree in figure 7.1 (i.e. the leaf of the second

branch of T ) is a complete assignment tree that also satisfies the condition for a minimal and consistent

assignment tree and is already grounded. The set of clauses {∀y(¬P (y) ∨ Q(b, y)),∀x(P (x))} ⊂ ∆

that corresponds to the non-root nodes of this tree is also a support for an argument for α

7.6 Discussion
Classical first-order logic has many advantages for representing and reasoning with knowledge. Howe-

ver, it is well established that first-order logic is undecidable [24]. There is no algorithm that can take

as input an arbitrary set of clauses Ψ and determine whether or not Ψ is satisfiable. This raises limi-

tations on the method presented in this chapter for generating arguments in first-order logic by using

resolution and unification because the process can loop forever generating new resolvents. In general, it

is impossible to determine whether or not this generation will be productive in arriving at a refutation.

In this chapter I proposed a method for retrieving arguments in a rich first-order language. This

method was partly based on the ideas for propositional logic presented in Chapter 4 and it was proved

to be sound. Developing a solution that is both sound and complete is an interesting point for further

investigation.



Chapter 8

Conclusions

8.1 Argumentation overview
Computational argumentation has become a topic of increasing interest in AI research over the last

decade. It provides a context for resolving conflicts that features human behaviour. These conflicts

may arise in the form of arguments and counterarguments in a monological presentation of pros and

cons when evaluating a situation, or as a dialogue where two or more agents are interacting. Therefore,

it provides the means for analysing and assessing information, which is a daily task for humans and

consequently its automation can be useful in various applications. Substantial work has been done on

argumentation based on specific applications, some of these include

1. Medical applications where argumentation can be useful in assessing the strengths and weakness

of alternative solutions to a clinical problem [52, 48, 38].

2. Legal applications where reasoning often takes place in a context of dispute and disagreement and

argumentation offers the grounds for logical analysis of legal arguments [66]. Further applications

of argumentation in political philosophy involve e-democracy where argumentation can be useful

for communicating information and facilitating structured debate. [6].

3. Sharing information e.g. for professionals that do collaborative work in distributed teams and at

asynchronous timings, or for instance for idea linking in social networks [71, 3].

The use of argumentation in various applications encourages further research on the topic and

creates the necessity of developing theory and tools to automate the process.

Various existing formalisations for argumentation provide different approaches to representing in-

formation and evaluating the credibility of arguments according to different criteria. The objective of

this thesis was to develop theory that can make computational argumentation based on classical proposi-

tional logic viable for practical applications. This problem is interesting since classical logic is a strong

tool for representing and reasoning with knowledge, and hence is an appealing option for argumentation.

It provides a powerful language strong enough to represent in detail complicated information. It has

a simple and intuitive syntax and semantics, and it is supported by well established proof theory and

extensive foundational results. However, it has the tradeoff that generating arguments in classical logic



8.2. Contribution of this work 133

is a computationally challenging task. Not much theoretical work has been done with respect to this

issue, while no implemented working system for argumentation based on classical logic existed before

this thesis. For these reasons, it was interesting to develop algorithms that implement argumentation in

classical logic and produce, based on these algorithms, a prototype software system.

8.2 Contribution of this work
The work of this thesis contributed in the area of computational argumentation by providing the theore-

tical background for algorithms that search for arguments in classical propositional logic efficiently. It

adapted widely used automated theorem proving techniques and extended them to fit the requirements

of argumentation (i.e. minimal and consistent proofs). The problem was approached in three directions:

1. Reducing the number of formulae considered when searching for arguments. Chapter 3 in-

troduced algorithms which, given a claim in CNF and a knowledgebase that contains formulae in

CNF, isolate a part of the knowledgebase that contains all the formulae that may be premises for

arguments for the given claim. It was proved that using this part of the knowledgebase rather than

the initial knowledgebase for generating arguments still provides a complete method. Experimen-

tation using hard satisfiability examples gave positive evidence on the efficiency of the approach.

In addition to decreasing the number of clauses considered in a search for arguments, this tech-

nique retrieves this reduced search space in the form of a connection graph which provides the

basis for the next step which is applying algorithms for generating arguments.

2. Generating arguments using the reduced search space. By using the results of chapter 3,

chapter 4 provided a sound and complete proposal for generating arguments for claims that are

disjunctive clauses from knowledgebases that consist of disjunctive clauses. The corresponding

algorithms that are based on the structure of the graphs introduced in chapter 3, search for argu-

ments by traversing the corresponding isolated part of the knowledgebase. The algorithms were

evaluated by using randomly generated datasets that were designed to make the process of gene-

rating arguments computationally challenging.

3. Generating counterarguments efficiently. The theory of chapter 4 concerns generating argu-

ments for claims that are disjunctive clauses. Generating canonical undercuts, which is the form

of counterargument employed in this work, is a more complicated task. Chapter 5 extended the

work of chapter 4 to deal with generating canonical undercuts. The algorithms for generating

canonical undercuts were in turn adapted by an algorithm that generates argument trees which

was implemented in a software system and evaluated by experimentation on randomly generated

datasets.

Although the work of this thesis is mainly based on classical propositional logic, an extension of

the work in chapters 3 and 4 that involves classical first-order logic is introduced in chapter 7. Chapter

7 presents a proposal for generating arguments in a rich first-order language of clauses. Like in the

propositional case, initially a part of the knowledgebase that contains all the clauses that can play a role
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for an argument for the given claim is isolated using connection graphs. This reduced search space,

which is in the form of a connection graph, is then traversed using a search algorithm in a way that

the set of clauses visited during the search indicates a proof for the given claim. Additional subsidiary

algorithms then check this proof for minimality and consistency. This was proved to be a sound method

for generating arguments in this first-order language of clauses.

In addition to the theoretical work on algorithms, this thesis contributed in the area of computational

argumentation by providing the first software system that implements argumentation based on classical

propositional logic. This system, presented in chapter 6, has been tested thoroughly using complex

example sets. It comes as a simple standalone application with comprehensive functionality that can be

used by other research groups.

8.3 Assessment and further work
The aim of this thesis was to develop theory and software for argumentation in classical propositional

logic which, by addressing the computational issues involved, provide an efficient solution for practical

argumentation. These goals have been accomplished since both the theoretical and the practical part have

been developed. Experimental evaluation of the implemented software has shown positive evidence of

the usefulness of the underlying theory, especially in comparison with an earlier naive software imple-

mentation that did not involve any study on the algorithmic efficiency of the problem [29]. Apart from

the empirical evaluation, the quality of the theoretical work of this thesis has been assessed through peer

reviews in conferences and journals where it has been submitted and accepted for publication.

Further improvements that can be done to extend the existing work involve overcoming the language

restrictions involved. This could help in using the algorithms and their implementation directly with

real world data that may involve propositions that make use of conjunction. Part of this work involves

formulae in conjunctive normal form, while the rest is restricted to propositional clauses. The language of

propositional clauses is rich enough to express rules which are widely used in logic programming, while

sets of clauses are sufficient to express conjunctions of clauses. Still, a good point to address in further

work would be extension of the algorithms presented in this thesis to the full syntax of propositional

logic.

It would also be interesting to see the system’s performance in generating argument trees using

different kinds of undercuts. Using direct undercuts for example (undercuts that negate exactly one

of the premises of the argument attacked) would make the search for counterarguments less complex

than when searching for canonical undercuts but it could possibly cause an explosion on the number of

nodes of an argument tree. Using the implemented software would allow for a comparison of the two

approaches.

Another point that could be addressed is duplication of results returned by the algorithms that gene-

rate arguments. The fact that the algorithms produce search trees that may have the same set of clauses

arranged in different structures causes redundancy that could possibly be avoided by some technique that

would predict this by investigation on the structure of the graphs.

Another topic where further work could be conducted is the algorithms for first-order logic pre-
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sented in chapter 7. Because of the complicated nature of first-order logic, the proposed mechanism

for generating arguments in first-order is relatively simple but sufficient to provide a sound solution to

the problem. With additional constraints, a complete mechanism could possibly be developed. In addi-

tion, an interesting idea would be the software implementation of a system that builds argument trees in

first-order logic.

Additional work could be done in testing the system with applications that involve domains with

large datasets and integration with other resources (e.g. databases). It would be interesting to assess the

system’s usability in conjunction with external applications and have access to actual data. The datasets

used in the thesis for benchmarking the algorithms were designed so as to generate hard satisfiability

problems that possibly do not depict the level of inconsistency that appears in real world applications.

The fact that the software responded to this kind of data and produced argument trees that consist of

hundreds of nodes at reasonable time is encouraging for using the system with non-artificial data.

8.4 Discussion
The aim of this thesis was to develop algorithms that address the computational issues that arise when

constructing arguments in classical propositional logic. The approach to the problem was based on adap-

ting existing automated theorem proving techniques and extending them in the argumentation context.

The viability of the proposal was assessed by empirical studies undertaken on a software system that im-

plements the algorithms introduced in the thesis. Part of the theoretical work was extended to classical

first-order logic, which provides an interesting topic for further work.



Appendix A

Example knowledgebases

The following knowledgebase is adapted from the medical domain of breast cancer where rules are

developed from the results of published clinical trials [52].

!hasPosIntent(p.q)|hasTreatment(p.q), !hasNegIntent(p.q)|notHasTreatment(p.q),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!ERPos(q)|

!hasTreatment(p.s)|!Tamoxifen5YrCourse(s)|hasDeltaRisk(p.IncreasedBrCaDFS1.5),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!ERPos(q)|!hasTreatment(p.s)|

!Tamoxifen2YrCourse(s)|hasDeltaRisk(p.IncreasedBrCaDFS1.21),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!ERPos(q)|!hasTreatment(p.s)|

!Tamoxifen2YrCourse(s)|hasDeltaRisk(p.IncreasedOS1.2),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!ERPos(q)|!hasTreatment(p.s)|

!ChemoTamRegimeTypes(s)|hasDeltaRisk(p.IncreasedOS1.2),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNNeg(q)|!hasTreatment(p.s)|

!TamoxifenMore5YrCourse(s)|hasDeltaRisk(p.DecreasedBrCaDFS0.8),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!TamoxifenMore5YrCourse(s)|!NoChangeBrCaDFS(t)|

!refersDisease(t.q)|hasDeltaRisk(p.t),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!TamoxifenMore5YrCourse(s)|!NoChangeOS(t)|!refersDisease(t.q)|

hasDeltaRisk(p.t),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNPos(q)|!hasTreatment(p.s)|

!TamoxifenMore5YrCourse(s)|!NoChangeOS(t)|!refersDisease(t.q)|

hasDeltaRisk(p.t),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|

!LNPos(q)|!hasTreatment(p.s)|!TamoxifenMore5YrCourse(s)|!NoChangeBrCaDFS(t)|

!refersDisease(t.q)|hasDeltaRisk(p.t),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNNeg(q)|

!TamoxifenMore5YrCourse(s)|notHasTreatment(p.s),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNPos(q)|!Aged50Plus(p)|
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!hasTreatment(p.s)|!ACTChemoTam(s)|hasDeltaRisk(p.IncreasedBrCaDFS1.2),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNPos(q)|!Aged50Plus(p)

|!hasTreatment(p.s)|!ACTChemoTam(s)|hasDeltaRisk(p.IncreasedOS1.1),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNPos(q)|!Aged50Plus(p)|

!hasTreatment(p.s)|!PAFTChemoTam(s)|hasDeltaRisk(p.IncreasedBrCaDFS1.3),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNPos(q)|!Aged50Plus(p)|

!hasTreatment(p.s)|!PFTChemoTam(s)|hasDeltaRisk(p.IncreasedBrCaDFS1.1),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!ERPos(q)|!LNNeg(q)|

!hasTreatment(p.s)|!MFTChemoTam(s)|hasDeltaRisk(p.IncreasedBrCaDFS1.05),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!ERPos(q)|!LNNeg(q)|

!hasTreatment(p.s)|!CMFTChemoTam(s)|hasDeltaRisk(p.IncreasedBrCaDFS1.05),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!ERPos(q)|!LNNeg(q)|

!hasTreatment(p.s)|!MFTChemoTam(s)|hasDeltaRisk(p.IncreasedOS1.03),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!ERPos(q)|!LNNeg(q)|

!hasTreatment(p.s)|!CMFTChemoTam(s)|hasDeltaRisk(p.IncreasedOS1.02),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!Postmenopausal(p)|!LNPos(q)|

!hasTreatment(p.s)|!EarlyCMFTChemoTam(s)|

hasDeltaRisk(p.IncreasedBrCaDFS1.1),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!Postmenopausal(p)|!LNPos(q)|

!hasTreatment(p.s)|!LateCMFTChemoTam(s)|!NoChangeBrCaDFS(t)|

!refersDisease(t.q)|hasDeltaRisk(p.t),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!Postmenopausal(p)|!LNPos(q)|

!ERPos(q)|!hasTreatment(p.s)|!CMFTChemoTam(s)|

hasDeltaRisk(p.IncreasedBrCaDFS1.1),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!Postmenopausal(p)|!LNPos(q)|

!HRPos(q)|!hasTreatment(p.s)|!CMFTChemoTam(s)|

hasDeltaRisk(p.IncreasedRiskSideEffects23),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!Postmenopausal(p)|!LNPos(q)|

!HRPos(q)|!hasTreatment(p.s)|!CMFTChemoTam(s)|!NoChangeOS(t)|

hasDeltaRisk(p.t),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!Postmenopausal(p)|

!hasTreatment(p.s)|!Tamoxifen(s)|hasDeltaRisk(p.DecreasedRiskBrCa0.55),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!Postmenopausal(p)|

!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaRisk(p.IncreasedRiskEndometrialCancer6.4),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasDisease(p.r)|

!EndometrialCancer(r)|!hasTreatment(p.s)|!Tamoxifen(s)|!PoorPrognosis(t)|

hasPrognosis(r.t), !Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|
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!hasDisease(p.r)|!EndometrialCancer(r)|!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaRisk(p.DecreasedEndoCaDSS0.66),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!LNNeg(q)|!ERPos(q)|

!hasTreatment(p.s)|!Tamoxifen5YrCourse(s)|

hasDeltaRisk(p.IncreasedRiskEndometrialCancer7.5),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.IncreasedRiskEndometrialCancer2.3),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasDisease(p.r)|

!EndometrialCancer(r)|!hasTreatment(p.s)|!Tamoxifen(s)|!PoorPrognosis(t)|

notHasPrognosis(r.t),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasRisk(p.RiskEndometrialCa0.005),

!Women(p)|!hasTreatment(p.s)|!Tamoxifen(s)|

hasRisk(p.RiskEndometrialAbnormality3.9),

!Women(p)|!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaRisk(p.NoChangeRiskEndometrialAbnormality1),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!hasTreatment(p.s)|

!Tamoxifen40mg(s)|hasDeltaRisk(p.DecreasedRiskBreastCancer0.6),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!hasTreatment(p.s)|

!Tamoxifen40mg(s)|hasDeltaRisk(p.IncreasedRiskEndometrialCancer6.0),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!hasTreatment(p.s)|

!Tamoxifen40mg(s)|hasDeltaRisk(p.IncreasedRiskGastricCa3.0),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.IncreasedRiskEndometrialCancer4.1),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.IncreasedRiskCRC1.9),

!Women(p)|!hasDisease(p.q)|!EarlyBreastCancer(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.IncreasedRiskGastricCa3.2),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!AdjuvantTreatment(s)|hasDeltaRisk(p.IncreasedRiskVenousThrombosis3.4),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.IncreasedRiskVenousThrombosis3.4),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|

!Postmenopausal(p)|hasDeltaLevel(p.DecreasedPlasmaFibrinogenLevel0.85),

!Women(p)|!hasDisease(p.q)|!BreastAdenoCa(q)|!hasTreatment(p.s)|

!Tamoxifen(s)|!Postmenopausal(p)|

hasDeltaLevel(p.DecreasedPlasmaPlateletCount0.92),
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!Women(p)|!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaRisk(p.IncreasedRiskCataracts1.14),

!Women(p)|!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaRisk(p.IncreasedRiskEndometrialCancer2.53),

!Women(p)|!hasTreatment(p.s)|!Tamoxifen20mg(s)|!RiskOvarianCyst(t)|

hasRisk(p.t),

!Women(p)|!hasTreatment(p.s)|!Tamoxifen20mg(s)|

hasRisk(p.RiskOvarianCyst0.06),

!Women(p)|!Postmenopausal(p)|!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaRisk(p.IncreasedRiskPersistentSideEffects2.3),

!Women(p)|!hasSymptoms(p.q)|!HotFlushes(q)|!hasDisease(p.u)|

!BreastAdenoCa(u)|!hasTreatment(p.s)|!ClonidineRegime(s)|

hasDeltaRisk(p.DecreasedRiskHotFlushes0.8),

!Women(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|!hasTreatment(p.s)|

!Tamoxifen(s)|!IncreasedRiskRetinopathy(r)|hasDeltaRisk(p.r),

!Women(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasRisk(p.RiskRetinopathy0.12),

!Women(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|!LNNeg(p)|

!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaLevel(p.DecreasedCholesterol0.88),

!Women(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|!LNNeg(p)|

!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaLevel(p.DecreasedLDL0.88),

!Women(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.DecreasedRiskFatalMI0.37),

!Women(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.DecreasedRiskCardiacDisease0.68),

!Women(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|!hasTreatment(p.s)|

!Tamoxifen(s)|hasDeltaRisk(p.IncreasedCardiacDSS1.52),

!Women(p)|!Postmenopausal(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|

!LNNeg(u)|!hasTreatment(p.s)|!Tamoxifen(s)|

hasDeltaLevel(p.IncreasedLumbarBMD1.006),

!Women(p)|!Postmenopausal(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|

!LNNeg(u)|!hasTreatment(p.s)|!Tamoxifen30mg(s)|

!IncreasedLumbarBMD(r)|hasDeltaLevel(p.r),

!Women(p)|!Postmenopausal(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|

!LNNeg(u)|!DecreasedRadialBMD(r)|hasDeltaLevel(p.r),

!Women(p)|!Postmenopausal(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|
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!LNNeg(u)|!hasTreatment(p.s)|!Tamoxifen30mg(s)|!NoChangeRadialBMD(r)|

hasDeltaLevel(p.r),

!Women(p)|!Postmenopausal(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|

!LNNeg(u)|!hasTreatment(p.s)|!Tamoxifen5YrCourse(s)|

hasDeltaLevel(p.IncreasedLumbarBMD1.008),

!Women(p)|!Postmenopausal(p)|!hasDisease(p.u)|!BreastAdenoCa(u)|

!LNNeg(u)|hasDeltaLevel(p.DecreasedLumbarBMD0.993),

!Women(p)|!Postmenopausal(p)|!hasTreatment(p.s)|!Tamoxifen20mg(s)|

hasDeltaLevel(p.IncreasedLumbarBMD1.012),

!Women(p)|!Premenopausal(p)|!hasTreatment(p.s)|!Tamoxifen20mg(s)|

Women(p),hasDeltaLevel(p.DecreasedLumbarBMD0.986), hasPosIntent(p.q),

hasNegIntent(p.q), hasDisease(p.q), EarlyBreastCancer(q),hasTreatment(p.s),

Tamoxifen5YrCourse(s), Tamoxifen2YrCourse(s),ChemoTamRegimeTypes(s),

TamoxifenMore5YrCourse(s), BreastAdenoCa(q),LNNeg(q), refersDisease(t.q),

NoChangeOS(t),LNPos(q), NoChangeBrCaDFS(t),Aged50Plus(p),ACTChemoTam(s),

PAFTChemoTam(s),PFTChemoTam(s), MFTChemoTam(s),EarlyCMFTChemoTam(s),

LateCMFTChemoTam(s),CMFTChemoTam(s),HRPos(q),Tamoxifen(s),LNNeg(u),

PoorPrognosis(t),EndometrialCancer(r),AdjuvantTreatment(s),ERPos(q),

Postmenopausal(p),Tamoxifen20mg(s),RiskOvarianCyst(t),hasSymptoms(p.q),

hasDisease(p.u),BreastAdenoCa(u),ClonidineRegime(s),Tamoxifen30mg(s),

IncreasedRiskRetinopathy(r),NoChangeRadialBMD(r)

The following knowledgebase describes the payment example adapted from [41].

!goodJob|payment,!tooLateJob|badJob,!incompleteJob|badJob,

!not(accordingToSpec)|!delivered|incompleteJob,!reqA|!reqB|accordingToSpec,

delivered,not(reqB),goodJob,not(accordingToSpec),reqA,reqB,goodJob|badJob,

!goodJob|!badJob,!not(accordingToSpec)|!accordingToSpec,

not(accordingToSpec)|accordingToSpec,

!reqA|!not(reqA),reqA|not(reqA),!reqB|!not(reqB),reqB,not(reqB)

The next knowledgebase describes the baby name example adapted from [42].

!easy to remember(adrian)|acceptable(adrian),

!all like(adrian)|acceptable(adrian),

!short(adrian)|easy to remember(adrian),short(adrian),

!mom hates(adrian)|some dislike(adrian),mom hates(adrian),

!dad hates(adrian)|some dislike(adrian),
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!too commom(adrian)|dad hates(adrian),

!uncle has(adrian)|dad hates(adrian),

!mom said ok(adrian)|mom not hate(adrian), mom said ok(adrian),

!all like(adrian)|!some dislike(adrian),all like(adrian),

all like(adrian)|some dislike(adrian),

!mom hates(adrian)|!mom not hate(adrian),

mom hates(adrian)|mom not hate(adrian)

The next knowledgebase contains the prison example adapted from [9].

!prison|punish,!fine|punish,!service|punish,!prison|deter,!prison|protect,

!prison|!rehab,!fine|deter,!service|!deter,!service|rehab,prison,fine,

service
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