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Abstract Ozone and nitrogen oxides (NOx) are air
pollutants with known associations to adverse
health effects on humans. Few studies have simul-
taneously measured ozone and nitrogen oxides
with high spatial resolution. The main aim of this
paper was to assess the levels and variation of
ground-level ozone, NO2 and NOx in two
Swedish cities. An additional aim was to describe
the levels of these pollutants within and between
three different types of measurement sites (regional
background, urban background and traffic sites)
and within and between different measurement pe-
riods of the year. Three weekly sampling cam-
paigns of NOx and ozone were conducted simulta-
neously at 20 sites in two Swedish regions using
Ogawa badges. Ozone was measured at 20 addi-
tional sites in each area. The median ozone

concentration for all measurements was statistically
significantly higher in Malmö (67 μg/m3) com-
pared to Umeå (56 μg/m3), and in both cities,
ozone levels were highest in April. Measurement
period was a more important factor for describing
the variation in ozone concentrations than the type
of measurement site. The levels of NO2 and NOx

were statistically significantly higher in the Malmö
area (8.1 and 12 μg/m3) compared to the Umeå
area (4.5 and 8.9 μg/m3). The levels were gener-
ally highest at the sites categorized as traffic,
while the variability between different seasons
was sparse.

Keywords Ozone .Nitrogenoxides .Diffusivesampler .
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Introduction

Ozone (O3) and nitrogen oxides (NOx) comprising
nitrogen dioxide (NO2) and nitric oxide (NO) are
among the most important contaminants in urban
areas, as they have been associated with adverse
effects on human health and the natural environment.

Ozone is an important oxidant in the tropo-
sphere and is formed through chemical reactions
in the presence of NOx and volatile organic com-
pounds (VOCs), under the influence of solar radi-
ation. The reactions between NO, NO2 and O3 in
the atmosphere is theoretically a Bnull cycle^ with
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no net production or destruction of O3, as the
effect of reaction 2 is the reverse of reaction 1:

NOþ O3→NO2 þ O2 ð1Þ

NO2 þ hvþ O2→NOþ O3 ð2Þ
To generate a net production of ozone, NO has to be

converted to NO2 without consuming ozone. In the
presence of VOCs in the atmosphere, through reactions
with NO and atmospheric peroxides (RO2), this can be
accomplished, leading to an accumulation of ozone. The
chemical coupling between O3 and NOx through reac-
tions 1 and 2 results is an indissoluble link between NO2

levels and O3 levels, which implicates a reduction in O3

concentrations at high NO concentrations. Ozone pro-
duction is dependent on the state of NOx, as NO2 and
NO increase the production and dissociation of O3,
respectively. Consequently, an increased NO/NO2 ratio
reduces the ozone concentration (Melkonyan and
Kuttler 2012).

The levels of ozone at a specific location is in brief
dependent on the concentration of ozone in the free
troposphere, long-range transport of ozone and its pre-
cursor emissions and locally produced ozone. Important
sinks of ozone are local depletion by reactions with NO
in the vicinity of NOx emissions (i.e. urban areas) and
deposition of ozone to the ground (WHO 2008).
Biogenic volatile organic compounds (BVOCs ), e.g.
isoprenes and terpenes, emitted from plants, also play an
important role in the formation of secondary pollutants
such as ozone (Oderbolz et al. 2013). The background
level of ozone, defined as the ozone concentration in a
given area that is not assignable to local anthropogenic
sources, has an annual variation and differs with latitude
and altitude (Vingarzan 2004). On a global scale, current
levels of background ozone have increased approxi-
mately two times compared to the levels measured over
a century ago (Vingarzan 2004). This is explained by
influence from human activities on ozone levels in
parallel with industrial development. Over the past three
decades, the increasing ozone trend has declined or
remained constant, probably due to decreasing NOx

emissions in Europe and North America (Vingarzan
2004). Background sites in the Northern Hemisphere
have shown a spring maximum peaking in May with an
increasing concentration in a south to north direction at
the latitudinal range 10–60° (Vingarzan 2004). Ozone is
known to have a large-scale spatial variation, but studies

in Sweden and Great Britain have shown that there is
also a considerable local spatial variability driven by
local emissions and meteorology (Coyle et al. 2002;
Klingberg et al. 2012; Sundberg et al. 2006). Coastal
sites, e.g. within a few kilometres from the coast, have
shown higher ozone levels than inland sites due to low
deposition velocity of ozone over water (Entwistle et al.
1997; Klingberg et al. 2012; Piikki et al. 2009).

The major source of NOx in urban areas is motor
vehicle exhaust. The main proportion of the NOx is
emitted as NO, while a smaller proportion is emitted
directly as NO2. Even though the total amount of NOx

has a downward trend in Europe, the NO2 share of NOx

emissions has increased in recent years and is dependent
on the vehicle, fuel type, exhaust treatment technology
and driving conditions (Carslaw 2005).

Ozone and NO2 levels have been studied for many
locations in the world (Clapp and Jenkin 2001; Garcia
et al. 2005; Im et al. 2013; Mazzeo et al. 2005;
Melkonyan and Kuttler 2012; Notario et al. 2013;
Song et al. 2011; Syri et al. 2001). Often, the measure-
ments are performed by means of continuous on-line
monitors at one measurement site. However, these mon-
itors cannot provide information on concentrations at a
finer scale, to provide the spatial variations in levels
over a greater geographical area. Diffusive samplers
are an ideal tool to study the spatial distribution of the
concentration of certain compounds as they are inex-
pensive and require no power. Diffusive samplers are,
unlike on-line monitors, easily deployed at many sites
simultaneously and give the opportunity to carry out
surveys over wide geographical areas to obtain the
spatial distribution.

This work is part of a study designed to develop a
Land Use Regression (LUR) model for ozone exposure
to be used in epidemiological studies (Malmqvist et al.
2014). In doing this, the local spatial variation of ozone
in two study areas, Malmö and Umeå, in different parts
of Sweden was evaluated. The Land Use Regression
study also included simultaneous measurements of NO2

and NOx.
The main aim of this paper was to assess the levels

and variations in levels of ground-level ozone, NO2 and
NOx between and within two Swedish cities, during
three different measurement periods and at three differ-
ent types of measurement sites (regional background
sites, urban background sites and traffic sites). Another
objective was to estimate how type of measurement site
and measurement period influenced the variability in

161 Page 2 of 12 Environ Monit Assess (2017) 189: 161



concentrations and the ratio between selected pollutants.
To our knowledge, there is no study that has measured
ozone and NOx simultaneously at somany sites (n = 20),
with repeated measurements in three periods (April,
May/June and August) in two parts of a country.

Materials and methods

Study areas

The sampling campaigns were conducted simultaneous-
ly in two Swedish regions approximately 1250 km geo-
graphically apart from each other (Fig. 1); Malmö, on
the south-west coast (55° 36′ N, 13° 00′ E, elevation
18 m), with about 330,000 inhabitants, and Umeå with
approximately 120,000 inhabitants, on the northeast
coast (63° 50′N, 20° 15′ E, elevation 14m). The climate
between the regions differs, with a milder climate in the
Malmö region (mean annual temperature: 9.0 °C) and a
colder climate in the Umeå region (mean annual tem-
perature: 3.8 °C) (SMHI, Swedish Meteorological and
Hydrological Institute 2016).

Sampling equipment and methodology

Ogawa diffusive samplers (Ogawa & Company,
PompanoBeach, FL, USA)were used tomonitor ozone,
NO2 and NOx. The sampling and the subsequent ion
chromatography analysis of NO2, NOx and ozone, re-
spectively, have been described in detail previously
(Hagenbjork-Gustafsson et al. 2010; Malmqvist et al.
2014). In short, the Ogawa sampler has a cylindrical
body with two ends, which enables simultaneous mon-
itoring of NO2 and NOx. Each end holds a collection
filter, coated with a reactive chemical, one for trapping
NO2 and the other for trapping NOx. NO is calculated as
the difference between the NOx and the NO2 concentra-
tion. For ozone measurements, another Ogawa sampler,
provided with a collection filter for ozone, was used and
deployed in the direct vicinity of the NO2/NOx sampler.
All measurements were performed by diffusive sam-
plers as weekly averages of NO2, NOx and ozone,
respectively, and co-located measurements of these sub-
stances were taken at 20 sites in each study area. Ozone
measurements were taken at 20 additional sites in each
study area. The measurement sites were categorized in
three groups: regional background sites, urban

Fig. 1 The two study areas showing the location of the sampling
measurement sites in each area. Triangular dots show the location
of the 40 ozone measurement sites in each area. Circular dots
show the location of the 20 NOx + ozone measurement sites in

each area. Black dots represent traffic sites; grey dots represent
urban background sites; unfilled dots represent regional back-
ground sites
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background sites and traffic sites depending on traffic
density, distance from major roads, distance from other
roads and population density, according to the criteria by
EUROAIRNET. A more detailed description of the
categorization and the study area has been given else-
where (Malmqvist et al. 2014).

Three sampling campaigns were carried out in 2012;
16–24 April; 28 May–4 June; 20–27 August. The
Ogawa samplers were mounted at about 2.5 m above
ground level. All samplers were prepared and analysed
at the division of Occupational and Environmental
Medicine, Umeå University, Umeå. The coated filters
were supplied by the manufacturer (Ogawa, USA).

Statistical analysis

Differences in concentrations of ozone, NO, NO2 and
NOx between cities, type of measurement site and mea-
surement period were tested using the Kruskal-Wallis
test and Mann-Whitney U test. Linear regression was
used to assess the relation between these air pollutants
and to determine the amount of the total variance ex-
plained by the determinants city, type of measurement
site and measurement period. The analyses were strati-
fied by city, and differences in intercept and slope were
tested by incorporation of an interaction term. Nitric
oxide concentrations were log transformed in the anal-
yses of determinants. A p value of less than 0.05 was
considered to be statistically significant. Statistical anal-
yses were carried out using R version 2.14.0 (R Core
Team 2017).

Results

The mean temperatures and wind speed during the three
measurement periods were in Malmö in April 7.4 °C
and 3.6 m/s, in May/June 11.8 °C and 3.6 m/s and in
August 18.2 °C and 2.8 m/s, respectively, and in Umeå
in April 4.0 °C and 2.8 m/s, in May/June 9.0 °C and
4.0 m/s and in August 12.4 °C and 3.3 m/s (wind data
missing), respectively (SMHI 2016). During the third
measurement period, 96 h of wind data for Umeå were
missing between 23rd and 27th of August.

During the three measurement periods, Malmö had
prevailing winds from SSE in April, from SW in May/
June and from SSW in August. Umeå had predominant
winds from SE in two of the measurement periods

(April and August) and from S in the May/June mea-
surement period (SMHI 2016).

Ozone

The median ozone concentration for all sites and all
measurements (n = 120 in each city) was statistically
significantly higher in Malmö (67 μg/m3) compared to
Umeå (56 μg/m3) (p < 0.001) (Table 1, Supplementary
Table S1, Supplementary Table S2).

The median ozone concentration reached its maxi-
mum in April, and the lowest median concentration was
found in August in both areas (Fig. 2, Supplementary
Table S1 and Supplementary Table S2). Even though
this phenomenon was more pronounced in the Umeå
area compared to the Malmö area, the ozone concentra-
tion was statistically significantly higher in April than in
August in both areas. The two areas had approximately
equal range (difference between the highest and the
lowest concentration) in ozone concentrations within
each measurement period, with the exception of a high
range of concentrations in April in Umeå (53.1 μg/m3)
due to two deviating concentrations (Fig. 3,
Supplementary Table S1 and Supplementary
Table S2). However, when examining the determinants
of the ozone concentration, measurement period to a
much greater extent explained the variability in ozone
concentration in Umeå (88%) compared to Malmö
(26%) (Supplementary Table S3).

InMalmö, the ozone concentrations were statistically
significantly higher at regional background sites, than at
traffic sites (p = 0,009). The concentrations in Umeå
showed the same pattern, however not statistically sig-
nificant (Table 1; Figs. 2 and 3). The range in ozone
concentrations within each group of measurement sites
was larger in Umeå compared toMalmö, and the highest
concentration range (65.8 μg/m3) was found at regional
background sites in Umeå (Fig. 2, Supplementary
Table S2). When examining the determinants of the
ozone concentration, the type of measurement site in-
fluenced the variability in ozone concentration more in
Malmö (9%) than in Umeå (2%) (Supplementary
Table S3).

The highest ozone concentration in Malmö (95.2 μg/
m3) was measured at a regional background site in
April, and the lowest (51.2 μg/m3) at a heavy traffic
site. There was no relation between the distance from the
coast and the ozone concentrations in theMalmö region.
In Umeå, the highest ozone concentration (93.3 μg/m3)
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was measured at an inland regional background site in
April, which contributed to the high spatial variation in
concentrations in April. One distinctive coastal site was
included in the Umeå area. This site had the highest
median concentration during all measurement periods
(66.2 μg/m3) and the highest and exceptional highest
concentrations in May/June and August, respectively.
The lowest concentration in the Umeå area (26.5μg/m3)
was measured at a heavy traffic street canyon site in the
city of Umeå. This site also had the lowest median
concentration over all measurement periods (40.2 μg/
m3), which contributed to the large spatial variation in
ozone concentrations in Umeå.

NO2, NOx and NO

The levels of NO2 and NOx were statistically signifi-
cantly higher in the Malmö area, 8.1 and 12 μg/m3 as
median concentration of all measurements (n = 60),
compared to the Umeå area (4.5 and 8.9 μg/m3)
(p < 0.001) (Table 1, Supplementary Table S1,
Supplementary Table S2). The highest NO2 and NOx

concentrations, 40 and 103 μg/m3, respectively, were,
however, measured in Umeå and were two to three times
higher than the highest concentration in Malmö
(Table 1). The concentrations were statistically signifi-
cantly higher at traffic sites than at regional background
sites in both cities (NO2: p = 0.000; 0.000; NOx:
p = 0.000; p = 0.000 inMalmö and Umeå, respectively),
however, the concentrations were similar over the dif-
ferent measurement periods (Table 1, Supplementary
Table S1, Supplementary Table S2).

The range of NO2 and NOx concentrations within
different groups of measurement sites was small within
regional background sites and urban background sites.
Within traffic sites, the range was higher, especially in
Umeå (37.5 and 97.4 μg/m3 for NO2 and NOx, respec-
tively) (Figs. 4 and 5, Supplementary Table S1 and
Supplementary Table S2). The type of measurement site
explained 42 and 48% of the variability in NO2 concen-
trations in Malmö and Umeå, and the corresponding
figures for NOx were 57% in Malmö and 34% in
Umeå (Supplementary Table S4). When studying the
range in concentrations for all measurements by mea-
surement period, the range was generally higher in
Umeå than in Malmö (Figs. 4 and 5, Supplementary
Table S1 and Supplementary Table S2). Measurement
period was of less importance for the variability of NO2

(4% in Malmö and 10% in Umeå) and NOx (7% inT
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Malmö and 9% in Umeå) concentrations than measure-
ment site (Supplementary Table S4).

The median NO concentration was similar in Umeå
(4.9 μg/m3) and in Malmö (5.0 μg/m3) for all measure-
ments (Table 1, Supplementary Table S1, Supplementary
Table S2). The highest NO concentration (63 μg/m3),
though, was measured at a street canyon traffic site in
Umeå and was more than three times higher than the
highest NO concentration measured in Malmö (19 μg/

m3) (Table 1). For both areas, the NO concentrations were
statistically significantly higher at traffic sites and lower at
regional background sites, (p = 0.003; 0,000; in Malmö
and Umeå, respectively); however, measurement period
did not influence the concentrations. The range of NO
concentrations within the different groups of measurement
sites was almost equal in both areas, except for the group
consisting of traffic sites in Umeå for which the range was
higher (61.4) (Table 1). It should be noted that as the NO

Fig. 2 Left: distribution of ozone concentrations at regional back-
ground sites, urban background sites and traffic sites in theMalmö
area and in the Umeå area. Median, 25th and 75th percentiles are
shown in the box; whiskers indicate the 10th and 90th percentiles
and individual outliers are shown as numbered points. Right:

distribution of ozone concentrations for all sites in the sampling
campaigns in April, May/June and August, respectively, in the
Malmö area and in the Umeå area. Median, 25th and 75th percen-
tiles are shown in the box; whiskers indicate the 10th and 90th
percentiles and individual outliers are shown as numbered points

Fig. 3 Distribution of ozone concentrations in April, May/June
andAugust at regional background sites, at urban background sites
and at traffic sites in Malmö (left figure) and in Umeå (right

figure). Median, 25th and 75th percentiles are shown in the box,
whiskers indicate the 10th and 90th percentiles and individual
outliers are shown as numbered points
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concentration is derived from an indirect measurement
(NO=NOx-NO2), the variation in NO levels is dependent
of the NO2 and NOx concentrations.

Relationship between measured pollutants

The NO2/NOx ratio was slightly higher in Malmö, with a
median ratio of 0.6 in all groups of measurement sites and
measurement periods (Supplementary Table S1). In Umeå,
the median ratio was 0.3 for regional background sites, 0.5

for urban background sites and 0.4 for traffic sites
(Supplementary Table S2).

The median ratio O3/NO2 for all measurements was
slightly higher in Umeå (12.0) compared to Malmö (8.7),
and in both cities, the ratio was several times higher at
regional background sites compared to traffic sites
(Supplementary Table S1, Supplementary Table S2). The
median ratio O3/NO2 was highest (41.6) at the regional
background sites in Umeå and almost five times higher
than the median ratio at the traffic sites in this city (8.9)

Fig. 4 Left: distribution of NO2 concentrations at regional back-
ground sites, urban background sites and traffic sites in theMalmö
area and in the Umeå area. Right: distribution of NO2 concentra-
tions for all sites in the sampling campaigns in April, May/June

and August, respectively, in theMalmö area and in the Umeå area.
Median, 25th and 75th percentiles are shown in the box, whiskers
indicate the 10th and 90th percentiles and individual outliers are
shown as numbered points

Fig. 5 Left: distribution of NOx concentrations at regional back-
ground sites, urban background sites and traffic sites in theMalmö
area and in the Umeå area. Right: distribution of NOx concentra-
tions for all sites in the sampling campaigns in April, May/June

and August, respectively, in theMalmö area and in the Umeå area.
Median, 25th and 75th percentiles are shown in the box, whiskers
indicate the 10th and 90th percentiles and individual outliers are
shown as numbered points
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(Supplementary Table S2). InMalmö, the ratio was similar
independent of measurement period (Supplementary
Table S1). However, in Umeå, the ratio was lowest in
August (5.0) and highest in May/June (17.4)
(Supplementary Table S2).

Discussion

Ozone

The median ozone concentration was higher in the
Malmö area than in the Umeå area for all measurements.
During all three measurement periods, the prevailing
wind in Malmö came from south-east to south-west
which implicates higher ozone levels in the south of
Sweden due to transport of ozone and ozone precursors
from other highly polluted regions in Europe. Despite
predominant winds from south and south-east, with
greater distance to other polluted areas, Umeå is expect-
ed to have less long-range transport of ozone and ozone
precursors. Another fact that could contribute to lower
levels of ozone in Umeå might be the vicinity to forests
dominated by conifer trees and birches (Betula sp.)
which show high emissions of terpenes (Oderbolz
et al. 2013). Studies have shown that the ozone levels
are reduced over Northern Scandinavia due to
ozonolysis of terpenes (oxidation of terpenes by ozone)
(Curci et al. 2009).

Continuous measurements of ozone concentrations at a
number of regional background sites in Sweden support
this, showing a significantly higher number of episodes of
high concentrations in the southern part of Sweden than in
the north due to transport of ozone from other parts of
Europe. The Swedish air quality limit as an 8-h mean for
ozone is 120 μg/m3, set to protect human health. There is
an indication of a downward trend of exceedances at
regional background sites in Sweden, but the variation in
ozone levels from 1 year to another is large, so the trend is
unclear. Our measured levels over three measurement
periods in 2012, 67 and 56 μg/m3 in Malmö and Umeå,
respectively, are comparable to the annual mean measured
by continuous ozone monitors, the same year, 60 and
56 μg/m3, near Malmö and Umeå (Sjöberg et al. 2014).

The Swedish environmental quality objective BClean
Air^ has specified a target value, taking sensitive groups
into consideration, which states that the ground-level
ozone should not exceed 70 μg/m3 calculated as an
8-h mean and 80 μg/m3 as an hourly mean. These target

values are greatly exceeded in all regions in Sweden,
even in the northern part (Sjöberg et al. 2014). Our
measurements over 1 week showed the highest concen-
tration of 95 μg/m3, which indicates hourly levels ex-
ceeding the target value.

The ozone concentration was highest in April and
lowest in August in both areas, but this pattern was more
pronounced in Umeå than in Malmö. This is in accor-
dance with other studies that found an ozone maximum
in spring (Clapp and Jenkin 2001; Scheel et al. 1997).
Scheel et al. found that the annual ozone maximum was
shifted from spring in the north of Europe (79° N) to late
summer in Austria and Hungary (Scheel et al. 1997).
The ozone concentration has an annual variation, and
hypothetically, the highest concentration should be
found at the solar maximum, which occurs in summer
in the Northern Hemisphere. However, historical time
series ozone measurements taken at Arkona on the
Baltic coast, at Montsouris in Paris, France, and in
Athens showed a clear spring maximum peak (Monks
2000). In a German study, Scheel et al. showed that the
annual ground-level maximum in northern Europe oc-
curred in spring, while in south-eastern Europe, the
maximum concentrations were found in late summer
(Scheel et al. 1997). The spring ozone maximum is a
phenomenon characteristic of the Northern Hemisphere
(Scheel et al. 1997) and is explained by several factors,
of which one of the causes may be the stratospheric–
tropospheric ozone exchange in spring (Monks 2000).
However, the main reason is suggested to be the accu-
mulation of peroxyacetyl nitrate (PAN), carbon dioxide
and non-methane volatile organic compounds (VOCs)
in combination with increased solar radiation, tempera-
ture and emissions of biogenic isoprene, which altogeth-
er leads to a photochemically driven spring maximum
(Gibson et al. 2009). The continuous measurements of
ozone levels in Sweden also show the highest concen-
trations in spring (March–May) with a maximum arriv-
ing slightly earlier in the northern part than in the south-
ern part of the country. These measurements show that
during the year our study took part, 2012, the maximum
ozone concentration near Umeå (Vindeln) was found in
March, while near Malmö (Vavihill), the ozone maxi-
mum occurred 2 months later (Sjöberg et al. 2014).The
aforementioned German study also showed, from ozone
measurement data collected from 25 European sites
during 1989 to 1993, a summertime ozone gradient with
increasing ozone levels from the north-west of Europe
to the south-east.
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The ozone concentrations were highest at the region-
al background sites, decreasing at urban background
sites and lowest at traffic sites in both cities. Other
studies have found the same pattern, with low concen-
trations at traffic sites and higher concentrations at rural
sites (Im et al. 2013; Melkonyan and Kuttler 2012; Syri
et al. 2001). This is explained by the rapid reaction
between NO and O3 close to the points of emission. At
traffic sites, the dominant NOx emission from vehicle
exhaust is NO. A consequence of the reaction between
NO and O3 is that O3 is consumed and ozone levels here
are lower.

Determinants of variability in O3 levels

Although we measured ozone during April, May/June
and late August, the measurement period explained the
major part (38%) of the variability in the ozone concen-
tration for both cities, whereas the city (Malmö or
Umeå ) exp l a i n ed 32% o f t h e v a r i ab i l i t y
(Supplementary Table S3). City and measurement peri-
od together explained 70% of the variability, whereas
type of measurement site only explained 2% of the
variability in the ozone concentration (Supplementary
Table S3). In Umeå, type of measurement site and
measurement period together explained 89% of the var-
iability in ozone concentrations, whereas the same var-
iables explained only 35% in Malmö (Supplementary
Table S3). One possible reason may be that the ozone
spring maximum is more pronounced in the north of
Sweden than in the south. Another reason may be trans-
port of ozone and ozone precursors from other parts of
Europe, affecting the levels of ozone at all measurement
periods and all types of measurement sites more in
southern Sweden than in the north.

NO2, NOx and NO

The mean concentrations of NO2, measured over three
measurement periods, were low (8.8 and 5.7 μg/m3 in
Malmö and Umeå, respectively) in view of the Swedish
air quality limit of 40 μg/m3 as an annual mean. The
concentrations were highest at traffic sites and lowest at
regional sites, in both regions. This is expected, as the
most important anthropogenic sources of NOx are on-
road vehicles, working machines and energy produc-
tion. With an increased distance from the main sources,
the concentrations at regional background sites are low
in Sweden. As part of Sweden’s environmental

monitoring programme, NO2 concentrations are mea-
sured continuously at a number of regional background
sites around the country. The concentrations have de-
creased over the last decade, and the levels show a clear
south–north gradient in which the concentration of NO2

at several measurement sites in the north of Sweden
represents about 15% of the levels in the south. This is
due to transportation of NO2 from Central Europe to the
southern part of Sweden (Naturvårdsverket 2016). The
mean annual concentration of NO2 at a regional back-
ground site in the vicinity of Malmö in 2012 (Vavihill)
was 4.9 μg/m3. In northern Sweden, the corresponding
annual mean 2012 in Rickleå was 1.5 μg/m3

(Naturvårdsverket 2016). In our study, the mean con-
centration of NO2 at regional background sites showed
the same pattern, with a mean concentration of 5.9 μg/
m3 in the Malmö area and 2.0 μg/m3 in the Umeå area.
In 2012, Malmö had twice as many passenger cars and
lorries as Umeå (Transport Analysis 2016), which may
explain the higher NO2 and NOx concentrations in
Malmö. Interesting to notice, however, is that the
highest NO2 concentration (40 μg/m3) was measured
at a street canyon traffic site in Umeå, the smaller of the
two cities and situated in the north of Sweden (Table 1).
This was twice as high as the highest concentration
measured in Malmö.

Determinants of variability in NO2 and NOx levels

Unlike the case with ozone, the variable explaining the
major part (31%) of the variability in the NO2 concen-
trations for both cities was type of measurement site,
whereas measurement period explained 5% of the var-
iability (Supplementary Table S4). For NOx, the type of
measurement site was an even more important factor
explaining 36% of the variability in concentrations for
both cities, while measurement period explained 7% of
the variability. The city (Malmö or Umeå) was
explaining more of the variability in NO2 (19%) than
in NOx concentrations (5%). Together, city and type of
measurement site explained 52 and 42% of the variabil-
ity in NO2 and NOx concentrations, respectively
(Supplementary Table S4).

This study was carried out in April, May/June and
early August, which explains the minor impact of mea-
surement period on NO2 and NOx concentrations. If the
measurements also had included the winter season, the
concentrations probably would have been higher due to
very low temperature, inversion, increased emissions
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from cold-started vehicles and residential heating, and
measurement periodwould have beenmore important to
explain the concentrations. The impact of these factors
is more pronounced in the northern part of Sweden, why
including also the winter months would have increased
the concentrations of NO2 and NOx more in Umeå than
in Malmö.

Together, measurement period and type of measure-
ment site explained 45 and 59% of the variability inNO2

concentrations in Malmö and Umeå, respectively,
whereas the corresponding figures for the variability in
NOx concentrations were 63 and 44% in Malmö and
Umeå, respectively (Supplementary Table S4). This
might be explained by the odd fact that Umeå had higher
NO concentrations at some sites, while both NOx and
NO2 concentrations were higher in Malmö.

Relationship between measured pollutants

The median NO2/NOx ratio was slightly higher in
Malmö than in Umeå and the same for all site types.
The vehicle fleet size, twice as many in Malmö as in
Umeå, together with the higher levels of ozone to react
with NO to form NO2, might explain the higher ratio in
Malmö.

In Umeå, the NO2/NOx ratio was slightly smaller at
traffic sites than at urban background sites in accordance
with previously published results from the ESCAPE study
(Cyrys et al. 2012). The higher ratio at urban background
sites indicates reactions of primary emitted NO to NO2 to
increase at greater distance to busy streets.

Themoderate difference in ratios between traffic sites
and urban background sites might reflect the composi-
tion of the vehicle fleet. It is known that modern diesel
cars emit higher amounts of primary NO2 compared to
petrol-fuelled cars, which increase the NO2/NOx ratio
(Grice et al. 2009). The proportion of diesel cars in
Sweden more than doubled during the period 2008 to
2012 (Transport Analysis 2016) and should have a
significant effect upon the NO2 levels, especially at
road-side locations. Besides, the use of particulate filters
to reduce particle emissions in diesel vehicles increases
the NO2/NOx ratio, as some of the particulate filters are
based on oxidation of NO to NO2 (Grice et al. 2009;
Wild et al. 2017).

As expected, the ratio O3/NO2 was highest in region-
al background and most pronounced in Umeå
(Supplementary Table S2).

Strengths and weaknesses

As mentioned in the BIntroduction^, to our knowledge,
there is no study that has measured ozone and NOx

simultaneously at so many sites (n = 20), with repeated
measurements in three measurement periods in two
parts of a country. This enabled the study of ratios
between ozone and NO2, which are important for the
understanding of ozone levels in different places. It
would have been interesting also to include winter mea-
surements, assuming higher NOx levels and very low
ozone levels. As the climate in the two study areas is
different, there might be some seasonal lag between the
two study areas. This could be an issue when comparing
measurement periods between the two areas. Ogawa
samplers used in the study have been used in earlier
studies (Gibson et al. 2009; Hauser et al. 2015; Jerrett
et al. 2009; Mukerjee et al. 2009) and are considered to
be a reliable technique to measure ozone and NOx

(Bhangar et al. 2013; Hagenbjork-Gustafsson et al.
2010; Sather et al. 2007).

Conclusion

In both cities, the highest ozone levels were found
in April, and Malmö had higher levels of ozone in
comparison to Umeå. We found a considerable
spatial variation in ozone concentrations within
the two city areas. The ozone levels as well as
the range of measured concentrations were highest
at regional background sites in both cities. For
NO2 and NOx, Malmö showed higher median
levels than Umeå. However, there were no differ-
ence in concentrations between the different mea-
surement periods in either of the cities. The spatial
variation in NO2 concentrations within each area
was smaller than the variation in ozone concentra-
tions in both cities. For ozone, the measurement
period had a greater impact on variability in con-
centrations than type of measurement site. For
NO2 and NOx, the type of measurement site ex-
plained most of the variability in concentrations,
while measurement period was of less importance.
The importance of measurement period as an ex-
planatory variable for NO2 and NOx concentrations
would have increased if the measurements had also
included the winter months. The median NO2/NOx

ratio was 0.6 in Malmö and 0.4 in Umeå.
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