
199

Chapter 9

Breaking the Boundaries 
with Dynamically Loaded 
Applications

Sometimes we stare so long at a door that is closing that we see too late 
the one that is open.

—Alexander Graham Bell

In previous chapters, we have studied the firmware architectures and security hardening 
features of the security and management engine. Let’s recap the main design points:

The security and management engine’s firmware starts from •	
boot ROM (read-only memory), which is not erasable and not 
modifiable.

The boot ROM is the root of trust of the engine.•	

The majority of the engine’s firmware, including all applications, •	
are stored in a flash device, together with other system firmware 
such as BIOS (basic input/output system).

Firmware modules may be compressed with Huffman•	 1 or LZMA2 
to conserve the flash space. Firmware modules are not encrypted.

Metadata of all firmware modules (including the kernel and •	
various applications) is put together in a structure called manifest, 
also stored on the flash.

The manifest contains SHA-256•	 3 digests for every firmware 
module. SHA-256 is one of the most frequently used Secure Hash 
Algorithms.

The manifest is digitally signed by Intel with 2048-bit RSA•	 4 (Rivest, 
Shamir, and Adleman). The signature and the public key are both 
appended to the manifest.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/186810985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

200

During the boot process:

The ROM verifies the RSA signature of the manifest. The SHA-256 •	
fingerprint of Intel’s public key is hard-coded in the ROM.

The boot ROM verifies the SHA-256 digest of the first firmware •	
module that is loaded from the flash.

The integrity of subsequent modules is verified by one of the •	
modules that have been verified and loaded previously in the 
boot process.

When being loaded, a module performs the necessary •	
initializations, and then creates a “worker” thread that waits for 
events. Most common events are system interrupts, HECI (host-
embedded communication interface) messages initiated from the 
host, and service requests of other modules. Upon receiving an 
event, the module serves the event and waits for the next event.

By design, a module that runs on the engine must be compiled as part of the engine’s 
firmware system, registered in the manifest, and preinstalled on the flash. The set of 
firmware applications and modules for a given product is determined at the time of 
compilation and cannot be changed after it leaves Intel’s facility. From this perspective, 
the engine is a self-contained system, and doors are closed against loading new 
applications.

That being said, the engine is technically not a closed system, because it is capable 
of exchanging data with the external world at runtime. Notice that what is input to 
and output from the engine is only data, and may not be executable code. Running 
unauthorized code is a major violation of the security objectives of the engine.

Closed-Door Model
With the closed-door model, everything that can be executed on the engine is strictly 
controlled. Thanks to the integrity check mechanisms that are enforced during the boot 
process and runtime, the boundary of the engine is well guarded. It is very difficult for 
attackers to inject root kits and other malware to the system. The security architecture 
does not need to worry about possible vulnerabilities and potential flaws brought into the 
system by external applications. Therefore, the closed-door model is advantageous for 
security management.

Product quality-wise, the closed-door model makes validation simpler, because the 
functional testing is performed on predefined and constant configurations. Some of the 
common software and system problems, such as integration complexity and component 
compatibility, are not applicable.



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

201

Despite its security and stability, this design has its drawbacks:

•	 Expansion of the engine’s functionality is restricted by the flash 
space. There are multiple products of the firmware, and their 
sizes vary between approximately 1.5MB and 5MB, which is fairly 
small considering the ever-growing number of features carried 
by the engine. Increasing the size limit is not free. In today’s fierce 
competition environment, the BOM (bill of materials) cost is a 
pivotal consideration for all computer manufacturers. Raising the 
flash space consumed by the security and management engine 
requires flash chips of greater capacity, and hence adds the BOM 
costs for deploying manufacturers. When the size of the firmware 
binary reaches the maximum, new features can’t be rolled out 
without taking current features out of the firmware.

•	 Firmware update can be cumbersome. Adding new applications to 
the engine or fixing bugs in existing modules requires more than 
Intel’s development and validation effort. Rewriting firmware on 
the flash is a very privileged operation, and if done improperly, 
may render the system unbootable and result in a large number 
of support calls. Therefore, computer manufacturers have to test 
new firmware releases with all lines of products respectively and 
make sure there are no security or compatibility issues.

•	 Intel is the sole development owner for the security and 
management engine. Independent software vendors cannot build 
applications that run on the engine.

To address these drawbacks to some extent, newer versions of the security and 
management engine firmware include a module called the Dynamic Application Loader, 
or DAL for short. As indicated by the name, the DAL allows the engine to dynamically 
load and execute Java applets at runtime. The applets are not stored on the flash, but on 
the host’s hard drive. With the DAL, the embedded engine is no longer a closed-door 
realm. The engine is now open to more flexibility and possibilities to be explored.

Meanwhile, more importantly, the security objectives of the engine remain the same 
and the security protection strength is not degraded because of the DAL.

DAL Overview
The DAL is implemented as an application in its isolated task in the firmware 
architecture. See Chapter 4 for details on the engine’s task isolation design. Because the 
DAL loads an application from the host, it is active only when the host is awake. The DAL 
is not available if the host is in the sleep state. The relationships between the DAL task 
and other firmware components are depicted in Figure 9-1.



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

202

DAL task PAVP task

Inter-task
call manager

Kernel

Embedded system

K ernel drivers

Utility task
(HECI, etc.)

TLS task

K ernel drivers
Kernel drivers

Host

EPID task

Figure 9-1. The DAL task and its relationships with other firmware components

To support functionality requirements of the loaded applets, the DAL task consumes 
several kernel services and other peer tasks:

•	 Cryptography driver: Provides implementations of popular 
cryptography algorithms, including AES5 (advanced encryption 
standard), SHA, HMAC6 (keyed-hash message authentication 
code), RSA, random number generator, and so forth.

•	 Storage manager: Secure nonvolatile storage for DAL 
management data and applet specific secrets.

•	 Protected runtime clock: Provides secure timer services for 
applets.

•	 Image verifier: The DAL replies on the kernel to verify the digital 
signatures on the dynamically loaded applications.

•	 PAVP (protected audio and video path) task: Some applets—for 
example, the applet that is part of the Intel IPT7 (identity 
protection technology) solution—require secure display path 
that is not visible to software running on the host operating 
system. See Chapters 8 and 10 for more details on PAVP and IPT, 
respectively.

•	 EPID (enhanced privacy identification) task: Some applets realize 
functionalities that require Intel platform’s hardware support. The 
EPID algorithm and SIGMA protocol are utilized to authenticate 
the platform and establish secure sessions between the host/
server application and the loaded applet. Refer to Chapter 5.

•	 TLS (transport layer security) task: Provides applets with secure 
PKI (public key infrastructure) support.



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

203

•	 Utility task: This task implements a number of interesting 
services, for example, CPU and chipset information, firmware 
status report, power states, HECI, and so forth. The HECI is the 
channel for the host to transmit the application’s binary image to 
the DAL firmware task for execution.

Due to these dependencies, the firmware product that features the DAL must also 
support these tasks. The DAL task is not consumed by any other firmware modules. Note 
that the DMA (direct memory access) is not used for transmitting applets from the host to 
the engine. To further minimize security risks, the DMA driver is not available to applets 
to invoke.

DAL Architecture
The DAL is essentially a Java virtual machine that enables the operation of Java applets 
in the security and management engine’s firmware environment. The Java applets in 
bytecode implement their designed functionalities that can be executed in the firmware. 
The components that make up the DAL feature are shown in Figure 9-2.

Loadable Java applets and classes

Java Virtual Machine (JVM) interpreter
and memory manager

Pre-installed classes:
Cryptography

EPID
Secure storage

etc.

Native API

DAL task

Figure 9-2. Components of the DAL

A service layer (classes) can also be loaded from the host together with the applets. 
The service layer may realize utilities such as HECI. In addition, the DAL task preinstalls 
select services, such as cryptography and EPID, without needing to load from the host. 
Those services are specific to the firmware engine and they are expected to be used by 
most applets.



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

204

The native API (application programming interface) component receives the Java 
API calls, performs conversion, and in turn calls appropriate kernel API or other tasks. 
It serves as a proxy so the Java classes do not need to be aware of the engine’s specific 
interfaces.

Loaded Java applets are free to take advantage of various services offered by the 
engine, but there is no guarantee regarding performance, due to a few facts. Firstly, to 
save resources, when multiple applets are loaded to the system, the DAL and the installer 
application may decide to temporarily unload an applet and reinstall it later as needed. 
This procedure may delay the applet’s responses to requests from the host. Secondly, 
the DAL task shares hardware resources with other firmware capabilities running in the 
security and management engine. The engine is a multithreaded environment, and the 
amount of clock cycles allocated to a specific thread is not guaranteed.

With these considerations, the DAL is not intended for loading major features to the 
engine. Rather, it is designed for offloading critical security components of a consumer 
solution, for example, the Intel IPT. In contrast, loading the entire or a large part of the 
AMT (advanced management technology) firmware application from the host at runtime 
is not an appropriate usage of the DAL.

Loading an Applet
A Java applet package can be obtained from various resources, such as software vendors’ 
distributions and web sites. On Windows, a host software program loads applets to the 
security and management engine through the Intel dynamic application loader host 
interface service. Because the engine does not persistently store applets in its nonvolatile 
memory, an applet must be reloaded when the host power cycle is reset. However, it is 
worth emphasizing that the DAL firmware treats the first time that an applet is loaded to 
the engine differently from consequent loads of the same applet in the future.

In the engine’s secure nonvolatile storage, the DAL maintains a database of all 
applets that it has loaded at least once and their metadata. An entry of the database 
records, among other attributes, the unique identification of the applet, its version 
number, and its security version number. When an applet is loaded for the first time, 
a new entry is created in the database for the new applet. The entry is examined and 
updated as necessary.

Upon receiving a request from the host to load an applet, the DAL first checks 
whether an instance of the applet with the same identification has been loaded 
previously in this power cycle. If so, the host must first ask the DAL to unload the applet 
before loading it to the DAL again. The DAL does not voluntarily unload an applet unless 
the host requests so. The reason for reloading an applet may be to update the applet to a 
newer version. This is shown in Figure 9-3.



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

205

A loadable Java applet is always packaged with its corresponding manifest.  
The structure of the manifest is similar to what is shown in Figure 4-1 in Chapter 4. 
Specifically for security, the following fields are critical in the loading process:

Applet identification.•	

DAL flag, indicating this is a DAL manifest.•	

Version number.•	

Security version number. A security version is assigned to every •	
applet release. If vulnerabilities are found in an applet, then the 
new applet release that fixes the vulnerabilities will be assigned 
an incremented security version.

RSA signature of the manifest.•	

RSA public key.•	

SHA-256 digest of the applet.•	

The applet to be loaded also specifies the minimum version of the engine’s firmware 
that is required to run this applet. Earlier firmware releases may not be equipped with 
the necessary infrastructures to support the applet. The process of loading an applet is 
illustrated in Figure 9-4.

Host requests DAL to
load applet A

Is applet A
already loaded?

Yes

No

Receive applet A from
HECI buffer

Ask host to unload
applet A first

Abort

Figure 9-3. Handling an applet load request



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

206

Receive applet from
HECI buffer

No

Firmware version
is compatible?

Yes

YesWas the same applet
loaded before?

Is security version
smaller than stored value?

Is security version
greater than stored value

in database?

Abort

No

Yes

Yes

No

Update the security
version in database

No

Manifest is verfied?

Load applet to memory

Add an entry to
database for this applet

Was the same applet
loaded before?

Yes

Yes

No

Figure 9-4. Process of loading an applet



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

207

The loading process starts from the DAL task receiving the complete applet package, 
including the manifest, from the host in the HECI buffer. As introduced in Chapter 3, a 
HECI message has limited capacity, depending on the engine’s configuration. If the size 
of the applet package is greater than the capacity of a HECI message, then the package 
will be split and come in multiple messages.

After possessing the applet, the DAL first verifies that the firmware currently 
operating on the engine is capable of executing the applet. The DAL aborts the loading if 
the firmware is too old to support the applet. A firmware update will not be automatically 
launched in this case. The user must manually update the engine’s firmware in order to 
run the applet.

If the applet has been loaded before, then the DAL makes sure that its security 
version is not smaller than the one stored in the database. If this is not the case, then it 
may be a rollback attack that exploits the vulnerability in an older applet release and the 
DAL shall reject to load the applet. If the security version is greater than what is shown 
in the database, then the DAL updates the database with the newer value. If the DAL 
has never seen this applet before, then it creates an entry for it in the database after the 
integrity check passes.

The manifest validation is performed by invoking the kernel API. The manifest must 
be signed with the same RSA key that signs the manifest for the engine’s firmware image 
loaded from the flash.

Secure Timer
The DAL provides applets with secure timer services that measure the time elapsed 
between a Set timer call and a Get current timer value call. When multiple applets are 
running simultaneously, each applet may create one or more independent timers. The 
timer is useful for applications that must enforce durations—for example, a one-time 
password that expires every 30 seconds.

Host Storage Protection
The engine is allocated with only limited flash space for its data partition. Therefore, to 
reduce the flash footprint, it is recommended that the Java applets do not store data on 
the flash. Instead, applets’ nonvolatile data, especially if its size is large, should be placed 
on the host’s hard drive.

To facilitate and protect the host storage mechanism, the DAL provides an 
encryption key and an integrity key for every applet. A typical usage would be to encrypt 
data using the encryption key, append an HMAC-SHA-256 signature (generated using 
the integrity key) to the encrypted data, and then send the blob of encrypted data and the 
signature to the host for storage. To retrieve the data, the applet simply fetches the blob 
from the host, verifies the HMAC signature using the integrity key, and then decrypts 
using the encryption key. Optionally, anti-replay protection can also be applied to data 
blobs if necessary, to mitigate rollback attacks (replacing a blob with an older version).

The encryption key and the integrity key are persistent for the same applet even if 
the engine has gone through power cycles. Derived from a bit string that is randomly 
generated when the DAL is initialized for the first time on a platform and the applet’s 
unique identification, the keys are unique for the applet that runs on the specific 



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

208

platform. In other words, an applet is not able to make use of a data blob that was created 
by another applet; cloning a data blob from one platform to another would not pass the 
integrity check. It is up to individual applets to decide the proper reaction to take upon 
blob failures.

Security Considerations
Naturally, alongside the openness of the DAL come new security concerns. Specific 
security requirements are set for safeguarding the engine with the existence of the DAL:

Applets can be executed only after being loaded by the DAL •	
firmware application. Modules in a manifest that is intended for 
the DAL shall not be executed directly on the engine’s embedded 
processor.

The DAL shall not load manifests that are intended to be loaded •	
by the engine’s regular boot process.

The DAL shall enforce context separation among distinct applets.•	

The DAL shall record the greatest security version numbers for •	
each applet respectively, for rollback attack detection.

An applet shall follow security design guidelines for regular •	
firmware applications, such as using minimum privileges, 
minimizing attack interfaces, and so on.

The first two bullets are the most critical requirements. Because the applets’ 
manifests are signed with the same RSA key that signs the firmware image, the 
architecture must mitigate image replacement attacks where an attacker replaces the 
firmware image on the flash device with an applet image, which will pass the signature 
verification conducted by the boot ROM.

The countermeasure employed by the architecture is to introduce a “DAL” flag in 
the manifest. The firmware’s boot process will not load a manifest with a DAL flag set. 
Conversely, the DAL will not load a manifest if its DAL flag is not set.

Reviewing and Signing Process
Applets may be developed by Intel or third-party software vendors. The process for 
reviewing and signing an applet is the same regardless of whether Intel or a third-party is 
the applet developer. The high-level process is described in Table 9-1.



Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

209

Table 9-1. Applet Reviewing and Signing Process

Stage Name Activity

1 Applet creation Vendor creates the applet.

2 Applet review Intel reviews the applet for functionality, security, 
and privacy.

3 Manifest creation Intel creates preproduction manifest and provides 
to the vendor.

4 Preproduction testing Vendor tests and debugs the applet on a 
preproduction security and management engine. 
Sometimes a simulator is used instead. Go back to 
stage 1 if any change is made to the applet.

5 Presigning Intel makes sure the content of the applet is 
identical to what is in the final preproduction 
manifest.

6 Signing approval Approvers review and sign the manifest. Critical 
manifest parameters (such as security version 
number and DAL flag value) are displayed to 
approvers for a final review.

7 Signing The signing tool replaces the RSA public key and 
the signature in the preproduction manifest with a 
production RSA public key and signature.

8 Production testing Vendor tests the applet on a production security 
and management engine.

9 Ready for distribution Vendor is ready to distribute the applet.

References
 1.  D.A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” 

Proceedings of the I.R.E., September 1952, pp. 1098–1102.

 2.  Igor Pavlov, “LZMA Software Development Kit,” http://7-zip.org/sdk.html, 
accessed on December 12, 2013.

 3.  National Institute of Standards and Technology, “Secure Hash Standard (SHS),” 
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 
accessed on November 17, 2013.

 4.  RSA Laboratories, PKCS #1 v2.1: RSA Cryptography Standard,  
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf, accessed on 
November 17, 2013.

http://7-zip.org/sdk.html
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf


Chapter 9 ■ Breaking the Boundaries with dynamiCally loaded appliCations

210

5.  National Institute of Standards and Technology, “Advanced Encryption Standard 
(AES),” http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 
accessed on November 17, 2013.

6.  National Institute of Standards and Technology, “The Keyed-Hash Message 
Authentication Code (HMAC),” http://csrc.nist.gov/publications/fips/
fips198-1/FIPS-198-1_final.pdf, accessed on November 17, 2013.

7.  Intel Identity Protection Technology, http://ipt.intel.com, accessed on  
April 20, 2014.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://ipt.intel.com/

	Chapter 9: Breaking the Boundaries with Dynamically Loaded Applications
	Closed-Door Model
	DAL Overview
	DAL Architecture
	Loading an Applet
	Secure Timer
	Host Storage Protection

	Security Considerations
	Reviewing and Signing Process

	References


