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ABSTRACT: 

 

During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has 

shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been 

launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the 

potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For 

our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests 

analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground 

surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, 

gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance 

analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change 

detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also 

demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in 

mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from 

the data do not include shadows. These are significant advantages when the development of automated classification and change 

detection procedures is considered.  
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1. INTRODUCTION 

During the last 20 years, airborne laser scanning (ALS) has 

shown its high feasibility for automated mapping processes. The 

accurate 3D data, often combined with spectral information 

from digital aerial images, have allowed the development of 

methods for automated object extraction and change detection. 

In particular, important advancements have been achieved in the 

mapping of elevated objects such as buildings and trees (e.g., 

Hug, 1997; Rottensteiner et al., 2007; Guo et al., 2011).  

 

In addition to 3D modelling of objects, an important application 

area of ALS data has been automated change detection. 

Methods developed for change detection of buildings can be 

roughly divided into two groups based on the input data 

available. The first group uses new ALS data, possibly 

combined with new image data, and aims to detect changes 

compared to an existing building map (e.g., Matikainen et al., 

2003, 2010; Vosselman et al., 2005; Malpica et al., 2013). The 

second approach assumes that both old and new ALS datasets 

are available and the change detection method can rely on the 

comparison of these (e.g., Murakami et al., 1999; Richter et al., 

2013; Teo and Shih, 2013). In the first group of methods, the 

methods are directly linked to the existing building objects on a 

map, and change information is normally obtained for these 

objects. In the second group, the link between the change 

detection method and existing building maps or models is often 

weaker. 

 

The role of laser intensity has been relatively small in the 

development of object detection and change detection methods. 

Intensity information, increasingly also from full-waveform 

data, has been used in many classification studies (e.g., Hug, 

1997; Guo et al., 2011), but generally the geometric information 

of the laser scanner data has been more important. In 2008, 

EuroSDR (European Spatial Data Research) initiated a project 

‘Radiometric Calibration of ALS Intensity’ lead by the Finnish 

Geospatial Research Institute FGI and TU Wien in order to 

increase the awareness of intensity calibration. It was expected 

that someday multispectral ALS is available and then intensity 

of ALS will be of high value. Thus, earlier intensity studies 

(e.g., Ahokas et al., 2006; Höfle and Pfeifer, 2007) showing the 

concepts for radiometric calibration of ALS intensity, have been 

preparations for multispectral ALS.  

 

Laser scanning systems providing geometric and multispectral 

information simultaneously provide interesting possibilities for 

further development of automated object detection and change 

detection. Experiences on this field have been obtained, for 

example, from studies with a hyperspectral laser scanner 

developed at the FGI (Chen et al., 2010; Hakala et al., 2012). 

The system is a terrestrial one and has been successfully applied 

for vegetation analyses and separation of man-made targets 

from natural ones (e.g., Puttonen et al., 2015). Phennigbauer 

and Ullrich (2011) discussed the development and potential of 

multi-wavelength ALS systems. Briese et al. (2013) realized 

such an approach by using three separate ALS systems. The 

study concentrated on radiometric calibration of intensity data 

from an archaeological study area. Wang et al. (2014) used two 

separate ALS systems to acquire dual-wavelength data for 

classifying land cover. They found that the use of dual-

wavelength data can substantially improve classification 

accuracy compared to one-wavelength data. More extensive 

discussions and reference lists on these earlier developments of 
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multispectral laser scanning can be found, for example, in 

Puttonen et al. (2015) and Wichmann et al. (2015). 

 

The first operational multispectral ALS system was launched by 

Teledyne Optech (Ontario, Canada) in January 2015 with the 

product name Titan. With this scanner, multispectral 

information is for the first time directly available for 3D ALS 

point clouds. The first studies based on Optech Titan data have 

been published. Wichmann et al. (2015) used data from 

Ontario, Canada, obtained with a prototype of the system, and 

evaluated the potential of the data for topographic mapping and 

land cover classification. They analysed spectral patterns of 

land cover classes and carried out a classification test. The 

analysis was point-based and used a single point cloud that was 

obtained by merging three separate point clouds from the three 

channels by a nearest neighbour approach. The intensity 

information was not calibrated. Wichmann et al. (2015) 

concluded that the data are suitable for conventional 

geometrical classification and that additional classes such as 

sealed and unsealed ground can be separated with high 

classification accuracies using the intensity information. They 

also discussed multi-return and drop-out effects (drop-outs 

referred to cases where returns are not obtained in all channels). 

For example, the spectral signature of objects such as trees 

becomes biased due to multi-return effects. Bakula (2015) also 

used Optech Titan testing data from Ontario. Digital surface 

models (DSMs) and digital terrain model (DTMs) created 

separately from the different channels were analysed. 

Differences occurred in vegetated areas and building edges due 

to various distributions of points. For DTMs, the differences 

were small. Bakula (2015) also showed intensity images created 

in raster format, a classification result produced in Terrasolid 

software, and scatter plots illustrating the intensity values in a 

few classes. 

 

Our article discusses the potential of this new single-sensor 

technology in map updating, especially in automated object 

detection and change detection. For our study, Optech Titan 

multispectral ALS data over a large suburban area in Finland 

were acquired. The data were acquired with an operational 

system, i.e., we did not use testing data. In this article, we will 

present the first results of automated object detection by 

applying the data. In particular, our objective was to study how 

the novel multispectral information can benefit land cover 

mapping. An object-based approach using rasterized data was 

used. Averaging of intensity data diminishes possible problems 

related to individual intensity values and helps to give an 

overall understanding of the capabilities of the new data. In 

addition, change detection of buildings will be demonstrated. In 

this case, we consider a “second-generation” ALS-based map 

updating approach where two ALS datasets are available: an old 

one based on conventional one-channel ALS and a new one 

from multispectral ALS. This is likely to become a realistic 

situation in many mapping organizations during the following 

years. The change detection approach exploits the possibility to 

compare the old and new datasets, but it also uses the 

multispectral data and it is directly linked to the existing 

building vectors.  

 

2. DATA 

2.1 Multispectral ALS data 

Multispectral Optech Titan data were acquired on 21 August 

2015 in cooperation with TerraTec Oy (Helsinki, Finland). The 

flying altitude was about 650 m above sea level. The scanned 

area included southern parts of the city of Espoo, next to 

Helsinki, and it covers about 50 km2 in total. In this article, we 

concentrate on analysing a suburban area of 4 km2 in 

Espoonlahti. The dataset includes three channels available as 

separate point clouds (Ch1: infrared, 1550 nm; Ch2: near-

infrared, 1064 nm; Ch3: green, 532 nm). The point density in 

one channel is about 6 points/m2, resulting in a total density of 

about 18 points/m2.  

 

The first part of preprocessing was carried out by TerraTec Oy 

and included some basic processing steps such as geoid 

correction and strip matching. Further processing was carried 

out at the FGI. A range correction was applied to the intensity 

information to make relative radiometric calibration (Ahokas et 

al., 2006; Kaasalainen et al., 2011). As expected, our 

preliminary analyses with uncorrected data showed that 

intensity values were highest in the middle of a flight line and 

decreased as the distance from the scanner increased. After the 

radiometric correction, functions of TerraScan software 

(Terrasolid Ltd., Helsinki, Finland) were used to cut overlap 

points and remove erroneously high or low points. Finally, 

three-channel intensity images and DSMs in raster format were 

created. In the intensity images, pixel values in each channel 

represent the average intensity value of first pulse and only 

pulse laser points in the corresponding channel. For creating the 

DSMs, a combined point cloud from all channels was used. 

Maximum and minimum DSMs, presenting the highest or 

lowest height within the pixel, respectively, were created. The 

pixel size of the intensity images used in the present study was 

20 cm. The pixel size of the DSMs was 1 m. For the intensity 

images, the small pixel size was preferred to better represent 

small details such as narrow roads. For the DSMs, the larger 

pixel size appeared advantageous to avoid some noise in 

building edges and to remove most of the vegetation from the 

minimum DSMs. Figure 1 shows a three-channel intensity 

image covering the study area discussed in this article. In Figure 

2, the intensity image can be compared with a conventional 

aerial ortho image. It should be noted, however, that the 

acquisition time of the images was different. In the Titan data, 

deciduous trees are in full leaf, while the aerial ortho image is 

from leaf-off conditions in early spring. 

 

 
 

Figure 1. Three-channel intensity image of the 2 km × 2 km 

study area (Channels 1–3 in red, green and blue, respectively). 

Reference points used in the analysis are shown on the image. 
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Figure 2. Comparison of an aerial ortho image and Titan 

intensity image in a 300 m × 300 m subarea. Ortho image © 

National Land Survey of Finland, 2013. 

 

2.2 Reference points 

A land cover classification test field established previously was 

used as reference data (see Matikainen and Karila, 2011). A set 

of 332 reference points was used in the present study. The 

location and land cover of these points was checked and 

updated to correspond to the current situation. The updating 

was based on visual interpretation of the Titan data and open 

datasets available from the National Land Survey of Finland 

(NLS), the City of Espoo, Google Maps 

(https://maps.google.com) and Google Street View. Field 

checks were used to support the analysis and to check uncertain 

cases. The reference points basically have information on object 

types and surface types. For the present study, the information 

was generalized to the following classes:  

 Building (88 points): Different types of buildings (e.g., 

high-rise residential, low-rise residential, public) with 

different roof materials and colours are included.  

 Tree (81 points): Includes coniferous and deciduous trees in 

forest, in gardens and along roads.   

 Asphalt (62 points): In addition to 58 asphalt points, 4 road 

or parking place points with tile surface were included.  

 Gravel (15 points): Includes soft, non-vegetated surfaces 

with different grain sizes.  

 Rocky area (16 points): Includes rocky areas with bare or 

slightly vegetated surface (typically some moss). 

 Low vegetation (70 points): This class includes grass (19 

points), meadow (31), forest floor (4), vegetable gardens 

(9), and low bushes (7). The sub-classes were combined due 

to the small number of points in a class or uncertainty in 

separating the classes even in field checks (grass and 

meadow). 

Water areas were excluded from the analysis by using a water 

mask derived from topographic map data. 

 

2.3 Old building map and old DSM 

A building map representing the situation in 2005 was used as 

an old map in change detection. The data were originally 

obtained from the City of Espoo and edited at the FGI to 

correspond to the situation in 2005. An old DSM based on 

Optech ALTM 3100 ALS data acquired in 2005 was also used 

as input data in the change detection. The DSM represented the 

minimum height values for 0.3 m × 0.3 m pixels. More detailed 

descriptions of these old datasets can be found in Matikainen et 

al. (2010). 

 

2.4 DTM 

As DTM, we used a national DTM produced by the NLS. A 

similar DTM could have been derived from the Titan data, but 

since in complex suburban areas, there are some areas needing 

manual editing, an existing DTM was applied. The NLS DTM 

is available in raster format, and it has a pixel size of 2 m × 2 m. 

The DTM is based on national laser scanner data with a 

minimum point density of 0.5 points/m2. The production 

process includes automatic classification and manual 

corrections also using aerial images (NLS, 2016).  

 

3. METHODS 

3.1 Land cover classification 

Our main interest in this study was to investigate the usefulness 

of multispectral ALS features in land cover classification. The 

DSM and intensity image data were first segmented into 

homogeneous regions, and various attributes (features) were 

calculated for the segments. These steps were carried out by 

using the eCognition software (Trimble Germany GmbH, 

Munich) and its multiresolution segmentation algorithm (Baatz 

and Schäpe, 2000). The reference points were used to determine 

training segments for different land cover classes. The potential 

of the features for separating the classes were then investigated 

by using histograms and machine learning analyses with the 

random forests method. Functions of the Matlab software (The 

Mathworks, Inc., Natick, MA, USA) and its Statistics and 

Machine Learning Toolbox were used for this purpose.  

 

The random forests method (Breiman, 2001; Breiman and 

Cutler, 2004) is a further development of classification trees 

(Breiman et al., 1984), and it belongs to ensemble classification 

methods. The basic classification tree algorithm creates one 

classification tree automatically based on training data. In the 

random forests method, a large number of trees is created and 

the classification result is obtained as a voting result. Each tree 

is constructed by using part of the training cases (the remaining 

cases are called out-of-bag data). If a training set has N cases, N 

cases are selected at random, but with replacement, for creating 

a tree. At each node of a tree, m variables out of M (the total 

number of variables) are selected at random and used to find the 

best split. The trees are not pruned. This approach is known to 

lead to an accurate classifier, and it also provides the possibility 

to calculate feature importance and an estimate of the 

classification error based on the out-of-bag data. The method 

does not overfit. (Breiman and Cutler, 2004.) Both the 

classification tree and random forests methods are well suited 

for classifying data with a large number of features. They do not 

require separate feature selection or normalization of feature 
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values. Both methods have also been successfully used for 

classifying ALS data (for application of random forests, see, for 

example, Guo et al., 2011). In our study, we used the Matlab 

function ‘fitensemble’ to construct ensembles of classification 

trees. The functions ‘oobLoss’ and ‘predictorImportance’ were 

used to calculate the out-of-bag classification error and feature 

importance, respectively. The classification error was calculated 

as the fraction of misclassified data. The feature importance 

analysis is based on changes in the risk due to splits on every 

predictor (Mathworks, 2015). 

 

Finally, actual land cover classifications for the area under 

analysis were carried out in eCognition. The Random Trees 

implementation (OpenCV, 2016) available in the eCognition 

software was used. High objects (height > 2.5 m) were 

classified as buildings and trees. Low objects were classified as 

asphalt, gravel, rocky areas and low vegetation.  

 

3.2 Change detection 

A simple change detection procedure using old building 

vectors, old DSM, new DSM, new intensity image and DTM as 

input data was developed and implemented in eCognition. The 

change detection procedure includes the following main steps: 

 Analysis of building segments derived from the old map. 

These are classified as OK, demolished or changed by using 

the DTM and the old and new DSMs. Changed buildings 

detected at this stage have changes in height. 

 Detection of new buildings from the new data. This is 

carried out by segmenting the minimum DSM outside the 

old buildings and separating buildings from ground and 

trees by using height and intensity information.  

 Combination of old and new buildings into a new building 

level and analysing this level. One building can now contain 

sub-segments labelled as old and new. This can occur due to 

real changes such as extension of the building but also 

because the building in the DSM is typically slightly 

different from the same building on the map. The final class 

is determined on the basis of the relative size of the sub-

segments. If the final classification is Old building OK, the 

original shape and size of the building on the map is 

retained. For new and changed buildings, the shape will be 

based on the new DSM. 

Detailed rules used in our change detection demo will be 

presented in Section 4.3. 

 

4. RESULTS 

4.1 Analysis of class separability and feature importance 

Segmentation was first carried out based on the maximum 

DSM. This DSM shows tree canopies in their full size, and it 

basically represents the same information as the intensity image 

that was created from first pulse and only pulse points. 

Segments were divided into high and low segments based on 

their mean height (difference between mean values in the 

maximum DSM and DTM). The threshold value was 2.5 m. 

Low segments were merged to each other and resegmented 

based on the three-channel intensity image. Training segments 

for buildings and trees were then picked from the high 

segments, and training segments for asphalt, gravel, rocky 

areas and low vegetation were picked from the low segments. If 

there was a reference point inside a segment, this segment 

became a training segment of the corresponding class.  

 

Features selected for the classification analysis and calculated 

for training segments are shown in Table 1. The importance of 

the features for separating different classes from each other was 

tested by analysing different classification cases shown in Table 

2. In each case, 1000 classification trees were created, and the 

out-of-bag classification error and feature importance were 

calculated. The results are shown in Table 2 and Figure 3. Our 

main interest was to investigate the intensity features and low 

level classes that are challenging to distinguish based on one-

channel ALS data. In the case of buildings and trees, different 

feature combinations (intensity or DSM) were tested. In this 

case, it is well known that DSM data provide useful features, 

such as the difference between maximum and minimum DSMs 

and texture features. Here we were interested in studying what 

is the additional contribution of the multispectral intensity 

features. Histograms of three most important intensity features 

are shown for three classification cases in Figure 4. 

 

Feature number Feature name 

1 (Int.) Brightness (mean value of the mean 

intensity values in different channels) 

2, 3, 4 (Int.) Mean intensity in Ch1, Ch2, Ch3 

5, 6, 7 (Int.) Intensity quantile 25% in Ch1, Ch2, Ch3 

8, 9, 10 (Int.) Intensity quantile 50% in Ch1, Ch2, Ch3 

11, 12, 13 (Int.) Intensity quantile 75% in Ch1, Ch2, Ch3 

14, 15, 16 (Int.) Intensity ratio in Ch1, Ch2, Ch3 (ratio is 

calculated by dividing the mean intensity 

in one channel by the sum of the mean 

intensity values in all channels)  

17 (Int.) PseudoNDVI (normalized difference 

vegetation index) = (Mean Ch2 – Mean 

Ch 3)/(Mean Ch2 + Mean Ch3) 

(Wichmann et al., 2015)  

18 (DSM) maxDSM – minDSM (difference 

between mean values) 

19 (DSM) Standard deviation of the maxDSM 

20 (DSM) Standard deviation of the minDSM 

21 (DSM) Grey-level co-occurrence matrix 

(GLCM) homogeneity of the maxDSM 

(texture feature) 

22 (DSM) GLCM homogeneity of the minDSM 
 

Table 1. Features used in the classification analysis. “Int.” refers 

to intensity features and “DSM” refers to DSM features.  

 

Classes to separate Features 

in use 

Out-of-bag 

classification 

error 

Five most 

important 

features 

Buildings/Trees Int. 0.00595 15, 17, 16, 

10, 7 

Buildings/Trees DSM 0.0179 18, 19, 20, 

21, 22 

Buildings/Trees Int. and 

DSM 

0.00595 15, 17, 18, 

16, 10 

Roads etc. (included 

asphalt and 

gravel)/Rocky 

areas/Low vegetation 

Int.  0.0186 17, 15, 16, 

9, 12 

Asphalt/Gravel/Rocky 

areas/Low vegetation 

Int. 0.0311 15, 16, 17, 

12, 3 

Asphalt/Gravel Int. 0.0395 16, 14, 11, 

17, 8 
 

Table 2. Results of the random forests analysis. In each case, 

1000 classification trees were created based on training data.  
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a) b) 

  
c) d) 

Figure 3. Importance of features (see Table 1) in separating different classes from each other. a) Roads etc. (class includes asphalt 

and gravel), rocky areas, and low vegetation. b) All low classes, i.e., asphalt, gravel, rocky areas, and low vegetation. c) Asphalt and 

gravel. d) Buildings and trees. Both intensity and DSM features (feature numbers 1–22) were tested case d), while only intensity 

features (feature numbers 1–17) were tested in the other cases. 

 

   
   

   
   

   
Figure 4. Histograms of training segments in different classes. Top: buildings and trees. Middle: roads etc. (class includes asphalt and 

gravel), rocky areas, and low vegetation. Bottom: asphalt and gravel. For each case, the three most important intensity features 

according to the feature importance analysis (Table 2, Figure 3) are shown. 
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4.2 Land cover classification 

The actual land cover classification result for the study area is 

shown in Figure 5. More detailed figures of the results can be 

found in Ahokas et al. (2016).The segmentation and selection of 

training segments were carried out as described in Section 4.1. 

The Random Trees implementation available in eCognition was 

used to create 1000 trees for classifying high segments into 

buildings and trees and 1000 trees for classifying low segments 

into asphalt, gravel, rocky areas and low vegetation. In the 

classification of high segments, both DSM and intensity 

features were used. The classification of low segments was 

based on the intensity features. As a postprocessing step, 

buildings smaller than 20 m2 were reclassified as tree. Most of 

such very small buildings are misclassifications.  

 

 
Figure 5. Result of land cover classification (class High object 

includes a few very small segments that remained unclassified 

in further building/tree classification). 

 

4.3 Change detection 

The change detection was demonstrated in a smaller area. The 

results are presented in Figure 6. The rules and threshold values 

applied in the change detection are listed in the following. 

DSM_DIF is the absolute value of the difference between the 

mean heights in the new and old DSMs; h is the height of the 

segment, i.e., the difference between the mean heights in the 

new DSM and DTM; Ratio Ch2 is the mean intensity value in 

Channel 2 divided by the sum of the mean values in all 

channels. The feature Ratio Ch2 and its threshold value were 

obtained from the classification tree analysis. Levels refer to 

segmentation levels. The main steps of the change detection 

included: 

 Analysis of building segment level 1 derived from the old 

map (segments correspond to buildings): 

o DSM_DIF ≤ 2.5 m -> Old building OK 

o DSM_DIF > 2.5 m and h ≤ 2.5 m -> Old building 

demolished  

o Otherwise -> Old building changed 

 Segmentation of the new DSM outside the old buildings 

and analysis of this DSM segment level (in change detection 

we used the minimum DSM because it is advantageous in 

the analysis of buildings). 

o h > 2.5 m and Ratio Ch2 < 0.3005144 -> New building  

 Combination of all buildings into building segment level 2 

and analysis of this level. Building segments connected to 

each other were merged to one segment.  

o Area < 20 m2 -> unclassified (to remove small 

erroneous building segments) 

o Relative area of sub-objects Old building demolished ≥ 

0.1 -> Old building demolished 

o Relative area of sub-objects Old building changed ≥ 0.1 

-> Old building changed 

o Relative area of sub-objects New building ≥ 0.9 -> New 

building 

o Relative area of sub-objects New building ≥ 0.5 -> Old 

building changed 

o Otherwise -> Old building OK 

Finally, the original shape of buildings classified as Old 

building OK was retained by converting them back to sub-

objects and removing building parts classified as New 

building.  

 

   

 
 

Figure 6. Automated change detection for buildings. The figure shows the old DSM and old building vectors (left), the new DSM 

(middle), and the change detection result (right). The legend applies to the change detection result. Some areas were excluded from 

the change detection analysis due to missing data in the old DSM. Original building vectors © the City of Espoo (edited by the FGI). 
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5. DISCUSSION 

Visual analysis of multispectral intensity images produced from 

the Optech Titan data suggests that the data are very promising 

for mapping applications, especially considering automated 

analyses. Unlike conventional passive aerial imaging, the 

multispectral ALS technology is independent of external 

illumination conditions, and intensity images produced from the 

data do not include shadows (see Figure 2). This means a very 

significant advantage when the development of automated 

classification and change detection procedures is considered. 

For example, roads near trees or buildings are better visible on 

the Titan intensity image than on an aerial ortho image. The 

direct availability of both geometric and multispectral 

information from the single sensor also simplifies preprocessing 

and data analysis workflows.  

 

Results from the random trees analysis clearly support the 

hypothesis that the multispectral intensity information is useful 

for land cover classification. Out-of-bag classification errors 

calculated based on the training data were remarkably small in 

all tested cases (Table 2). According to the feature importance 

analysis, features requiring multispectral data, i.e., intensity 

ratios and PseudoNDVI, were very useful. Some of them always 

appeared among the most important features.  

 

The results suggest that multispectral ALS data have high 

potential for separating ground surface classes from each other. 

Similar results were also reported by Wichmann et al. (2015). In 

our case, the low classes included asphalt, gravel, rocky areas 

and low vegetation. These classes cannot be separated on the 

basis of height data, and results based on one channel intensity 

data are not likely to be very reliable. For example, as shown in 

the histograms of Figure 4, asphalt and gravel as one class 

(roads etc.) were well separated from rocky areas and low 

vegetation using the feature PseudoNDVI. Rocky areas, on the 

other hand, were best separated from low vegetation using Ratio 

Ch2. Useful features for separating asphalt from gravel included 

Ratio Ch3, Ratio Ch1, and 75% quantile in Ch1. Buildings and 

trees can be separated from each other by using DSM data. 

However, also in this case the multispectral feature Ratio Ch2 

was clearly the most important feature among the tested ones 

(Figure 3).  

 

On the basis of visual evaluation, the land cover classification 

result shown in Figure 5 is relatively good. The most prominent 

errors are some bridges classified as buildings. This occurred 

because the DSM and DTM have a clear height difference in 

these places. The bridges were thus classified as high objects, 

which were further divided into buildings and trees. Further 

improvements are needed to avoid such misclassifications. In 

operational map updating work, use of a road database would 

be one viable solution. A closer look reveals that smaller errors 

also occur in the results. Future work should include a detailed 

analysis of the classification accuracy, preferably in a separate 

testing area and with a larger number of reference points. The 

out-of-bag classification error gives an estimate of the 

classification error, but it should be noted that the number of 

reference points was relatively small, especially in classes 

gravel and rocky area. This is likely to have some effect on the 

results. Our plan is to continue the tests with larger reference 

datasets. More land cover classes could also be included in the 

analyses. 

 

Change detection utilizing the multispectral Titan data together 

with an old DSM and old building vectors was demonstrated in 

a small area. The availability of two DSMs allowed 

straightforward height comparisons for existing buildings. 

Multispectral information was exploited in the detection of new 

buildings. In the future, the development of automated change 

detection and map updating procedures can be extended to 

other types of objects, including roads and land cover classes of 

the ground surface. Based on our study, we believe that 

multispectral ALS data provide a good basis for this work. The 

first methods can utilize multispectral data together with 

information from existing databases and one-channel ALS 

datasets. Later, further improvements are expected when 

comparison approaches based on two or more multispectral 

ALS datasets can be developed.  

 

6. CONCLUSIONS 

With the Optech Titan sensor, multispectral information is for 

the first time directly available for 3D ALS point clouds. The 

technology is independent of external illumination conditions, 

and intensity images produced from the data do not include 

shadows. These are significant advantages when the 

development of automated analysis methods is considered. We 

studied the potential of this new single-sensor technology in 

map updating, especially in automated object detection and 

change detection. Results from a random forests analysis 

suggest that the multispectral intensity information is useful for 

land cover classification, also when considering low objects 

such as roads and land cover classes of the ground surface. An 

out-of-bag estimate for classification error was about 3% for 

separating classes asphalt, gravel, rocky areas and low 

vegetation from each other. For buildings and trees, it was 

under 1%. According to a feature importance analysis, 

multispectral features based on several channels were more 

useful that those based on one channel. Automatic change 

detection utilizing the new multispectral ALS data, an old DSM 

and old building vectors was demonstrated. In the future, the 

development of automated change detection and map updating 

procedures can be extended to other types of objects, including 

roads and land cover classes of the ground surface.  
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