
Daniel Marolt

Layout Automation in Analog
IC Design with Formalized and
Nonformalized Expert Knowledge

Dissertation

Layout Automation in Analog IC Design with
Formalized and Nonformalized Expert Knowledge

(Layoutautomatisierung im analogen IC-Entwurf mit
formalisiertem und nicht-formalisiertem Expertenwissen)

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Daniel Marolt

aus Reutlingen

Hauptberichter: Prof. Dr. habil. Jörg Schulze
Mitberichter: Prof. Dr.-Ing. Jürgen Scheible

Tag der mündlichen Prüfung: 04.06.2018

Institut für Halbleitertechnik der Universität Stuttgart

2018

Acknowledgments

Acknowledgments

A good novel tells us the truth about its hero;
but a bad novel tells us the truth about its author.

Gilbert Keith Chesterton (English writer)

If the dissertation at hand tells us the truth about its author, this is probably my fault. If it tells us the
truth about a heroic achievement in electronic design automation, this is due to a lot of honorable people
to whom I owe a debt of gratitude. Without their aid, the thought of writing this thesis at Reutlingen
University and receiving a doctorate from the University of Stuttgart would have been nothing but a
castle in the air.

First of all, I want to thank my doctoral advisors Prof. Dr. habil. Jörg Schulze from the University of
Stuttgart and Prof. Dr.-Ing. Jürgen Scheible from Reutlingen University for their unswerving confidence
in my ambitions, the steady guidance of my efforts, and the devoted support that helped me bring this
work to life and put it down on paper. My compliments also go to my co-examiners Ms. Prof. Dr.-Ing.
Nejila Parspour and Prof. Dr.-Ing. Jörg Roth-Stielow for their kind participation in my thesis defense at
the University of Stuttgart.

Further tribute shall be paid to Dipl.-Ing. Göran Jerke from the Robert Bosch GmbH, whose valuable
expertise and honest mentoring has been shaping my educational path since my earliest days as a rookie
student. I would also like to give due credit to Mr. Thomas Burdick and Dipl.-Phys. Peter Herth from
Cadence Design Systems for the open-minded exchange of big ideas and the fruitful cooperation that
came into existence in the orbit of this work.

Just as well, my colleagues at the Robert Bosch Center for Power Electronics deserve their share of
appreciation, be it for words of advice with respect to teething infants or for the constant replenishment
of coffee beans. Particular kudos is directed towards my doctoral comrades Andreas Gerlach, Florian
Leber, and Matthias Schweikardt for their technical input, collegial teamwork, and high spirits within
our research group.

I could not conclude this acknowledgment without taking my hat off to my father, mother, and
brother, who not only remained a constant source of motivational inspiration, clean laundry, and humor-
ous quips (respectively), but represent a splendid example for what can be accomplished by putting forth
sufficient diligence. The same is true for my in-laws, whose sedulous help –especially regarding our
housebuilding and houseworking duties– spared me the time to finish this dissertation.

Last but not least, my deepest gratefulness is dedicated to my wife: for believing in me whenever I
start to lose all faith in myself, and for presenting me with gifts that are more precious than any academic
title – such as a little child.

5

Contents

Contents

1 Introduction 12
1.1 Motivation for this Thesis . 12
1.2 Contribution of this Thesis . 14
1.3 Outline . 14

Part I: The Problem 16

2 The Aim of this Thesis 17
2.1 The Problem of Analog Layout Design . 17

2.1.1 Design Restrictions and Design Objectives . 18
2.1.2 Matching . 18
2.1.3 Levels of Design Hierarchy . 19
2.1.4 Main Design Tasks: Device Generation, Floorplanning, Placement, Routing . . . 20

2.2 Analog Layout Design: A Bottleneck in the Design Flow 22
2.3 The Design Style and the Design Flow – Digital vs. Analog 23

2.3.1 The Digital Design Style: Standardized . 23
2.3.2 The Analog Design Style: Full-custom . 24

2.4 Constraints: Formalized and Nonformalized Expert Knowledge 25
2.5 Necessity for a New Layout Automation Methodology 28

2.5.1 Optimization-based Layout Automation with Explicit Constraint Consideration . 28
2.5.2 Generator-based Layout Automation with Implicit Constraint Consideration . . . 29
2.5.3 New Methodology with Explicit and Implicit Constraint Consideration 30

3 State of the Art - Two Views on Existing Approaches 32
3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural

Generators . 32
3.1.1 Optimization Algorithms . 32

3.1.1.1 Constraint Handling . 33
3.1.1.2 Types of Constraints . 34
3.1.1.3 Comparison of Existing Approaches 38
3.1.1.4 Further Topics . 46
3.1.1.5 Optimization Algorithms – Conclusion 47

3.1.2 Procedural Generators . 47
3.1.2.1 Discerning Masters and Instances . 48
3.1.2.2 Constraint Handling . 48
3.1.2.3 Generator Programming Languages 50
3.1.2.4 Generator Development Tools . 51
3.1.2.5 Implemented Generator Examples 53
3.1.2.6 Procedural Generators – Conclusion 57

3.1.3 Other Approaches . 58
3.1.4 Combining Optimization and Generation – Conclusions for the New Approach . 59

6

Contents

3.2 An Abstract View on Existing Approaches: Two Fundamentally Different Automation
Paradigms . 60
3.2.1 Optimization Algorithms: Top-down Automation 60
3.2.2 Procedural Generators: Bottom-up Automation 61
3.2.3 Envisioning a New Automation Philosophy: Bottom-up Meets Top-down 63

4 Assessment Criteria for a Layout Methodology in the Analog Domain 66
4.1 Traditional Assessment Criteria . 66

4.1.1 Criteria Originating from the Digital Domain 67
4.1.2 Criteria Regarding the Supported Constraint Types 68

4.2 Relevant Assessment Criteria . 68
4.2.1 Design Productivity . 68

4.2.1.1 Effort and Expense . 68
4.2.1.2 Efficiency Gain . 71

4.2.2 Layout Quality . 71
4.2.2.1 Functionality . 72
4.2.2.2 Consistency . 74

4.3 Summary . 75

Part II: The Methodology 76

5 Clarification of the Task 77
5.1 Technical Aim . 77
5.2 Scientific Challenge . 77
5.3 Practical Ambition . 78

6 An Interdisciplinary Approach – Preliminary Considerations 79
6.1 Divide and Conquer – Distribute and Conquer . 79
6.2 Decentralization, Self-organization, Emergence . 80
6.3 Emergence: A Natural Phenomenon . 81

6.3.1 Forms of Emergence . 81
6.3.2 Emergence in Biology . 82
6.3.3 Emergence in Physics . 83
6.3.4 Emergence in Mathematics . 85

6.4 Principles of Self-organization . 85
6.4.1 The Basic Constituents of Self-organization . 86
6.4.2 Operational Closure and Structural Coupling 86
6.4.3 The Edge of Chaos . 87
6.4.4 Recursivity and Feedback . 87
6.4.5 Stigmergic Interaction . 88
6.4.6 Reducing Friction and Promoting Synergy . 88
6.4.7 The Virtue of Selfishness . 89
6.4.8 Law of Requisite Variety . 90

6.5 Models of Decentralized Systems: A Form of Artificial Life 90
6.5.1 Cellular Automata . 90
6.5.2 Game Theory . 92
6.5.3 Multi-Agent Systems . 93
6.5.4 Agent-based Models of Collective Motion . 94

6.6 Adaptation to the Problem of Analog Layout Design 95

7

Contents

7 The Methodology: Self-organized Wiring and Arrangement of Responsive Modules 96
7.1 Overview of the SWARM Methodology . 96

7.1.1 The Three Core Concepts of SWARM . 96
7.1.2 Depiction of SWARM’s Self-organization Flow 97

7.2 Responsive Modules . 100
7.2.1 Context Awareness . 100
7.2.2 Governing Modules . 101

7.2.2.1 Temporary Context Duplication . 101
7.2.2.2 Co-transformations in a Governing Module 103

7.2.3 Module Associations . 103
7.2.3.1 Supreme Commanders . 103
7.2.3.2 Hierarchical Module Associations 105
7.2.3.3 Co-transformations in a Module Association 106
7.2.3.4 Coordinate System Issues . 108

7.2.4 Layout Variability . 111
7.2.4.1 Intrinsic Variability . 111
7.2.4.2 Cumulative Variability . 112
7.2.4.3 Variability of Primitive Devices . 113
7.2.4.4 Variability of Simple Modules . 113

7.3 Module Interaction . 115
7.3.1 Assessment of the Participant’s Condition . 117

7.3.1.1 Interference . 117
7.3.1.2 Turmoil . 119
7.3.1.3 Protrusion . 123
7.3.1.4 Wounds . 125
7.3.1.5 Noncompliance . 127

7.3.2 Perception of the Free Peripheral Space . 129
7.3.2.1 Geometrical Recipe for Perceiving the Free Peripheral Space 130
7.3.2.2 Pervasion (Obstacles in the Free Peripheral Space) 131

7.3.3 Exploration and Evaluation of Possible Actions 132
7.3.3.1 Native Actions . 133
7.3.3.2 Custom Actions . 143
7.3.3.3 Full Variability . 145

7.3.4 Execution of the Preferred Action . 146
7.3.4.1 Action Preference . 147
7.3.4.2 Action Execution . 151

7.4 Interaction Control . 156
7.4.1 Scaling the Layout Zone . 156

7.4.1.1 Setting and Enlarging the Layout Zone 156
7.4.1.2 Tightening the Layout Zone . 160
7.4.1.3 Considering Rectilinear Layout Zones 162

7.4.2 Transient Tightening Policies . 167
7.4.2.1 Progressive Tightening . 169
7.4.2.2 Regressive Tightening . 174

7.4.3 Comfort Padding . 182
7.4.3.1 Solid Comfort Padding . 182
7.4.3.2 Volatile Comfort Padding . 183

7.5 Final Remarks About the Conception of SWARM . 187
7.5.1 Comparison with Optimization Algorithms . 187
7.5.2 Comparison with Decentralized Systems . 191

8

Contents

Part III: The Implementation 196

8 Implementation and Results 197
8.1 Examples of Emergence in SWARM . 197

8.1.1 Example of an Emerging Collective Motion . 197
8.1.2 Examples of an Emerging Optimal Layout Outcome 198
8.1.3 Examples of Nonterminating Interaction Cycles 206

8.2 Practical Floorplanning Examples . 210
8.2.1 Floorplanning Example with Rectangular Outline 210
8.2.2 Floorplanning Example with Nonrectangular Outline 212
8.2.3 Assessment . 212

8.3 Practical Place-and-Route Examples . 213
8.3.1 Usage of SWARM in the Design Flow . 213
8.3.2 Symmetric P-Input Operational Transconductance Amplifier 215
8.3.3 Folded Cascode P-Input Operational Transconductance Amplifier 221
8.3.4 Assessment . 226

8.3.4.1 Assessment Regarding Layout Quality 226
8.3.4.2 Assessment Regarding Design Productivity 228

9 Towards a Holistic Design Flow on Module Level 233
9.1 Cognate Topics Across the Three Different Design Domains 233

9.1.1 Works Concerning the Physical Domain . 234
9.1.2 Works Concerning the Structural Domain . 234
9.1.3 Works Concerning the Behavioral Domain . 235

9.2 The Scientific Value of SWARM: Meeting Bottom-up With Top-down 235

10 Summary and Outlook 237

Listings 240

Vocabulary 240
Abbreviations . 240
Mathematical Operators . 242
Geometrical Operators . 243
Symbols . 244
Index . 247

References 258
Bibliography . 258
Further Sources . 282

List of Figures 283

List of Tables 287

Appendix 288

A SWARM Outcomes for the Symmetric OTA Example 288

B SWARM Outcomes for the Folded Cascode OTA Example 292

9

Abstract

Abstract

Brevity is the soul of wit.
English proverb (from William Shakespeare’s Hamlet)

After more than three decades of electronic design automation, most layouts for analog integrated
circuits are still handcrafted in a laborious manual fashion today. Obverse to the highly automated
synthesis tools in the digital domain (coping with the quantitative difficulty of packing more and more
components onto a single chip – a desire well known as More Moore), analog layout automation struggles
with the many diverse and heavily correlated functional requirements that turn the analog design problem
into a More than Moore challenge. Facing this qualitative complexity, seasoned layout engineers rely
on their comprehensive expert knowledge to consider all design constraints that uncompromisingly need
to be satisfied. This usually involves both formally specified and nonformally communicated pieces of
expert knowledge, which entails an explicit and implicit consideration of design constraints, respectively.

Existing automation approaches can be basically divided into optimization algorithms (where con-
straint consideration occurs explicitly) and procedural generators (where constraints can only be taken
into account implicitly). As investigated in this thesis, these two automation strategies follow two fun-
damentally different paradigms denoted as top-down automation and bottom-up automation. The major
trait of top-down automation is that it requires a thorough formalization of the problem to enable a
self-intelligent solution finding, whereas a bottom-up automatism –controlled by parameters– merely
reproduces solutions that have been preconceived by a layout expert in advance. Since the strengths of
one paradigm may compensate the weaknesses of the other, it is assumed that a combination of both
paradigms –called bottom-up meets top-down– has much more potential to tackle the analog design
problem in its entirety than either optimization-based or generator-based approaches alone.

Against this background, the thesis at hand presents Self-organized Wiring and Arrangement of Re-
sponsive Modules (SWARM), an interdisciplinary methodology addressing the design problem with a
decentralized multi-agent system. Its basic principle, similar to the roundup of a sheep herd, is to let
responsive mobile layout modules (implemented as context-aware procedural generators) interact with
each other inside a user-defined layout zone. Each module is allowed to autonomously move, rotate and
deform itself, while a supervising control organ successively tightens the layout zone to steer the interac-
tion towards increasingly compact (and constraint-compliant) layout arrangements. Considering various
principles of self-organization and incorporating ideas from existing decentralized systems, SWARM is
able to evoke the phenomenon of emergence: although each module only has a limited viewpoint and
selfishly pursues its personal objectives, remarkable overall solutions can emerge on the global scale.

Several examples exhibit this emergent behavior in SWARM, and it is particularly interesting that
even optimal solutions can arise from the module interaction. Further examples demonstrate SWARM’s
suitability for floorplanning purposes and its application to practical place-and-route problems. The lat-
ter illustrates how the interacting modules take care of their respective design requirements implicitly
(i.e., bottom-up) while simultaneously paying respect to high-level constraints (such as the layout out-
line imposed top-down by the supervising control organ). Experimental results show that SWARM can
outperform optimization algorithms and procedural generators both in terms of layout quality and design
productivity. From an academic point of view, SWARM’s grand achievement is to tap fertile virgin soil
for future works on novel bottom-up meets top-down automatisms. These may one day be the key to
close the automation gap in analog layout design.

10

Kurzfassung

Kurzfassung

Nach mehr als drei Jahrzehnten Entwurfsautomatisierung werden die meisten Layouts für analoge inte-
grierte Schaltkreise heute immer noch in aufwändiger Handarbeit entworfen. Gegenüber den hochau-
tomatisierten Synthesewerkzeugen im Digitalbereich (die sich mit dem quantitativen Problem auseinan-
dersetzen, mehr und mehr Komponenten auf einem einzelnen Chip unterzubringen – bestens bekannt
als More Moore) kämpft die analoge Layoutautomatisierung mit den vielen verschiedenen und stark
korrelierten funktionalen Anforderungen, die das analoge Entwurfsproblem zu einer More than Moore
Herausforderung machen. Angesichts dieser qualitativen Komplexität bedarf es des umfassenden Ex-
pertenwissens erfahrener Layouter um sämtliche Entwurfsconstraints, die zwingend eingehalten werden
müssen, zu berücksichtigen. Meist beinhaltet dies formal spezifiziertes als auch nicht-formal übermit-
teltes Expertenwissen, was eine explizite bzw. implizite Constraint-Berücksichtigung nach sich zieht.

Existierende Automatisierungsansätze können grundsätzlich unterteilt werden in Optimierungsalgo-
rithmen (wo die Constraint-Berücksichtigung explizit erfolgt) und prozedurale Generatoren (die Con-
straints nur implizit berücksichtigen können). Wie in dieser Arbeit eruiert wird, folgen diese beiden Au-
tomatisierungsstrategien zwei grundlegend unterschiedlichen Paradigmen, bezeichnet als top-down Au-
tomatisierung und bottom-up Automatisierung. Wesentliches Merkmal der top-down Automatisierung ist
die Notwendigkeit einer umfassenden Problemformalisierung um eine eigenintelligente Lösungsfindung
zu ermöglichen, während ein bottom-up Automatismus –parametergesteuert– lediglich Lösungen repro-
duziert, die vorab von einem Layoutexperten vorgedacht wurden. Da die Stärken des einen Paradigmas
die Schwächen des anderen ausgleichen können, ist anzunehmen, dass eine Kombination beider Paradig-
men –genannt bottom-up meets top-down– weitaus mehr Potenzial hat, das analoge Entwurfsproblem in
seiner Gesamtheit zu lösen als optimierungsbasierte oder generatorbasierte Ansätze für sich allein.

Vor diesem Hintergrund stellt die vorliegende Arbeit Self-organized Wiring and Arrangement of Re-
sponsive Modules (SWARM) vor, eine interdisziplinäre Methodik, die das Entwurfsproblem mit einem
dezentralisierten Multi-Agenten-System angeht. Das Grundprinzip besteht darin, ähnlich dem Zusam-
mentreiben einer Schafherde, reaktionsfähige mobile Layoutmodule (realisiert als kontextbewusste proze-
durale Generatoren) in einer benutzerdefinierten Layoutzone interagieren zu lassen. Jedes Modul darf
sich selbständig bewegen, drehen und verformen, wobei ein übergeordnetes Kontrollorgan die Zone
schrittweise verkleinert um die Interaktion auf zunehmend kompakte (und constraintkonforme) Lay-
outanordnungen hinzulenken. Durch die Berücksichtigung diverser Selbstorganisationsgrundsätze und
die Einarbeitung von Ideen bestehender dezentralisierter Systeme ist SWARM in der Lage, das Phänomen
der Emergenz hervorzurufen: obwohl jedes Modul nur eine begrenzte Sichtweise hat und egoistisch seine
eigenen Ziele verfolgt, können sich auf globaler Ebene bemerkenswerte Gesamtlösungen herausbilden.

Mehrere Beispiele veranschaulichen dieses emergente Verhalten in SWARM, wobei besonders inter-
essant ist, dass sogar optimale Lösungen aus der Modulinteraktion entstehen können. Weitere Beispiele
demonstrieren SWARMs Eignung zwecks Floorplanning sowie die Anwendung auf praktische Place-
and-Route Probleme. Letzteres verdeutlicht, wie die interagierenden Module ihre jeweiligen Entwurfs-
anforderungen implizit (also: bottom-up) beachten, während sie gleichzeitig High-Level-Constraints
berücksichtigen (z.B. die Layoutkontur, die top-down vom übergeordneten Kontrollorgan auferlegt wird).
Experimentelle Ergebnisse zeigen, dass Optimierungsalgorithmen und prozedurale Generatoren von
SWARM sowohl bezüglich Layoutqualität als auch Entwurfsproduktivität übertroffen werden können.
Aus akademischer Sicht besteht SWARMs große Errungenschaft in der Erschließung fruchtbaren Neu-
lands für zukünftige Arbeiten an neuartigen bottom-up meets top-down Automatismen. Diese könnten
eines Tages der Schlüssel sein, um die Automatisierungslücke im analogen Layoutentwurf zu schließen.

11

1. Introduction

Chapter 1

Introduction

This “telephone” has too many shortcomings to be
seriously considered as a means of communication.

Western Union, internal memo (1876)

Electrical engineering is a broad discipline, having come a long way from the early experiments by
Benjamin Franklin, Alessandro Volta, André-Marie Ampère and other luminous scientists, over the be-
ginning electrification of the earth in the 1880s, up to the present-day impact of electronic data processing
and “new media” on almost every part of our life. A subsidiary but similarly multifaceted area is the field
of electronic design automation (EDA), to which this dissertation belongs. Therefore, to concretize the
subject of the presented work, this chapter deals with the question of what exactly this thesis is about.

1.1 Motivation for this Thesis

Due to an unparalleled technological progress and a lively receptiveness in society, economy and in-
dustry, microelectronic products inexorably continue to control, connect, and change our world in the
21st century. Apart from the triumphal procession of smartphones, contemporary achievements such as
activity trackers, delivery drones and electric vehicles, as well as the ongoing innovations regarding bio-
implants, driverless cars and the Internet of Things not only address numerous medical, logistical and
environmental problems of today, but profoundly revolutionize modern life in many more aspects.

Driven by a market demand for low-cost, multi-purpose, and densely integrated circuits (ICs), the
semiconductor industry can be seen to follow a trend towards system-on-chip solutions with a growing
amount of mixed-signal content, i.e., both digital and analog IC sections. And while digital circuits have
long been the main field of interest due to the ever-rising need for more computational power, now analog
circuitry also gains notable attention, primarily incited by the desire for functional diversification and
system integration. Amongst others, the soaring importance of sensor functionality and the sophistication
of advanced human-machine interfaces make analog circuit parts more and more indispensable.

To keep up with increasing chip complexity and shortening product life cycles, the task of creating
an IC design asks for electronic design automation, both in the digital and in the analog domain. But
although digital IC design already followed highly automated algorithmic synthesis flows early on, ana-
log circuits are commonly still handcrafted by expert designers with only a low grade of automation.
Especially the step of layout design, where a circuit schematic is to be turned into a physical circuit
implementation represents a severely time-consuming bottleneck in the overall design flow (depicted in
the simplified overview of Figure 1.1). Why is that so?

The task of putting a system specification into effect as an electronic circuit is a quite creative act.
This is particularly true for the step of analog layout design, on which this thesis is focused. Analog
layout design significantly depends on the involved designer’s expertise, intuition, and creativity, and is
therefore considered as an art by many of the experts in this field. This is also reflected by the title of
Alan Hastings’ The Art of Analog Layout [1], which is reckoned a standard work in the analog layout

12

1.1 Motivation for this Thesis

System Specification

Behavioral Design

Schematic Design

Layout Design

Layout Verification

Fabrication

Packaging / Test

Topic of this
Thesis

Bottleneck in the
IC Design Flow

Figure 1.1: Simplified illustration of the integrated circuit design flow.

community. Unfortunately, human qualities such as these cannot be easily automated to a degree that
meets industrial requirements. A view on EDA history suggests, that the extent of this observation was
not obvious from the very beginning.

The overwhelming success of digital design synthesis since the mid-1980s also immediately sparked
a golden age of analog EDA, culminating in a plethora of nameable tools around the year of 1990 which
aim at fully-automated analog layout creation. Prominent examples are ILAC [2], LADIES [3], ALSYN
[4] and many others, as shown in Figure 1.2. But with the exception of very special application cases,
these tools have not turned out to be generally capable of achieving the demanded level of layout quality.
This becomes particularly obvious when comprehensive expert knowledge is required to take care of the
intricate layout details that must be uncompromisingly satisfied in the analog domain to ensure proper
electrical performance.

1960 1970 1980 1990 2000 2010

Age of Gods Age of Heroes Age of Men

ANAGRAM

SALIM

SLAM

LAMP

LADIES RACHANA

MxSICO ALSYN
OPASYN

INALSYS

ADAM

ACACIA

STAT

KOAN /
ANAGRAM II

ROAD

KA III

ILAC

PUPPY-A

SPARCS-A

ALDA

LAYLA

WREN

RAIL

ART

WRIGHT

ALADIN

FAST-SP

ALDAC

DTA

SDAPS

LAYGEN

ALGv3

Plantage

AIDA

LEMAR

LAYGEN II
GASA

MIGHTY

Act of Creation
by EDA-Pioneers

EDA-Boom and
Burst of Innovations

Market Consolidation
and Return to Basics

Manual
Design

In-House
"CAD"
Tools

First Operational
Semiconductor IC

Published Layout Automation Works

Constraint Engineering

CAD
= Computer-Aided Design

Year

Figure 1.2: The “tides of EDA” with the bloom of analog layout automation systems around 1990.

After this era of euphoria (labeled as the “age of heroes” in the Tides of EDA [5], where EDA history
is divided into three ages) the realization set in, that analog design automation would not be accomplished
as easily as its digital counterpart. Following a sobered renunciation of full-fledged synthesis tools,
analog EDA until today primarily concentrates on the incorporation of expert knowledge in the form
of design constraints – a research field also referred to as constraint engineering. Still, despite lively
activities and remarkable scientific advancements in EDA, analog layout automation cannot be observed
to find evident acceptance in the industry so far. As Rob A. Rutenbar puts it: “Engineers don’t want
automated layout tools, because there is an aesthetic involved that serves as a surrogate for correctness”
[6]. It is precisely this issue that the thesis at hand means to overcome, as will now be explicated in
Section 1.2.

13

1. Introduction

1.2 Contribution of this Thesis

This thesis contributes an innovatively novel layout automation methodology for analog IC design. The
particular purpose of the presented methodology is to devise and realize an approach that combines the
algorithmic formalisms of digital-inspired synthesis tools with the less tangible aesthetic appeal of analog
layout mentioned by Rutenbar (see quotation above). As will be seen, these two ingredients correspond
to the notion of formalized and nonformalized expert knowledge in the title of this dissertation. So
far, it is fair to say that there exists no layout automation approach which facilitates a well-balanced
consideration of both.

Before commencing with the lecture of the thesis, the reader shall be advised of the following three
points:

• The presented work intends to do the splits between science and industry:
As indicated in Section 1.1, the field of analog layout automation has persistently revealed an in-
credible gap between academic effort and practical assertiveness. This thesis thoroughly examines
the roots of that discrepancy to carve out the misconceptions of existing automation approaches.
With the conviction that analog layout design cannot be tackled without a decided amount of prag-
matism, the developed methodology makes an earnest attempt to be both scientifically valuable
and industrially viable.

• The presented work pursues a fundamentally new idea of layout automation:
Many algorithmic automation approaches typically build upon an existing approach and improve
it by a certain delta, for example to increase its computational performance or to add some ca-
pabilities which allow to handle a special problem. In contrast, the idea behind the methodology
discussed in this thesis can be considered to be quite novel in a more profound way. This is
reflected in the extent of the description needed to cover the methodology in its entirety.

• The presented work interdisciplinarily joins ideas and concepts from different fields:
The developed methodology is the first one to address the problem of analog layout automation
with a system of individual, self-organizing layout modules. As such, this thesis not only sits
at the junction between electrical engineering and computer science, but crosses the boundaries
of various areas related to multi-agent systems. Inspired by natural phenomena in biology and
physics, these areas include software agents and artificial life, complexity theory and chaos theory,
synergetics and game theory, cybernetics and systems theory, as well as mathematics in general
and geometry in particular. An extra chapter is spent to pave the way for an understanding of the
methodology and its interdisciplinary approach.

It is also for these reasons that the thesis at hand has become relatively copious in volume. The following
Section 1.3 gives a survey of all chapters in order to outline how this thesis is structured.

1.3 Outline

The thesis is divided into three parts, each of which comprises three chapters.

Part I

Roughly speaking, the first part focuses on the problem that the thesis deals with. After covering some
relevant basics of analog layout design, Chapter 2 underlines the necessity for an automation methodol-
ogy that is able to consider both formalized and nonformalized expert knowledge. Taking a look at the
state of the art, Chapter 3 contemplates existing automation approaches first from a more concrete and
then from a rather abstract point of view, thereby discerning two distinct automation paradigms. While
the challenge of teaming these two paradigms represents the academically tough nut to crack, Chapter 4
is dedicated to the question by which criteria the practical viability of an analog layout methodology can
be assessed.

14

1.3 Outline

Part II

The second part is the main body that explicates the automation methodology developed in this work.
The reader may immediately jump here after merely skimming through the first part, since Chapter 5 re-
capitulates the technical, academical, and practical objectives discussed therein. Next, Chapter 6 deduces
the multi-agent approach of the developed methodology from the basic idea of decentralization, giving
insight into some astonishing capabilities of decentral organisms in nature and describing a couple of rel-
evant engineering concepts based on decentralized systems. Chapter 7 represents the core chapter of the
thesis and provides a comprehensive breakdown of the new methodology, starting off with an illustrative
overview before elaborating on the nuts and bolts in detail.

Part III

The third part of this thesis puts the developed methodology into action. Chapter 8 depicts its practical
implementation in an industrial IC design environment, demonstrating various different examples and
evaluating the obtained results. Chapter 9 places the presented work in a greater context and discusses its
incorporation into the overarching vision of a seamless “higher-level” design flow of which this method-
ology represents one piece. Finally, Chapter 10 concludes the thesis with a summary and an outlook. A
vocabulary at the very end lets the reader look up certain acronyms and technical terms, separating those
that are well-established in the field of EDA from those that are newly introduced in this thesis.

15

Part I

The Problem

2. The Aim of this Thesis

Chapter 2

The Aim of this Thesis

. . . and yet a true creator is necessity,
which is the mother of our invention.
Plato: The Republic, Book II, 369c

As already stated in the introduction, the essential aim of this thesis is to contribute a new method-
ology for analog layout automation which is able to take formalized as well as nonformalized expert
knowledge into account. Taking a closer look at the analog layout design problem, this chapter provides
the economic motivation and the technical background required to comprehend the necessity for such
a methodology. In the course of the subsequent discussion from Section 2.1 to Section 2.5, it will be
explained that taking both formalized and nonformalized expert knowledge into account is synonymous
to an explicit and implicit consideration of design constraints.

2.1 The Problem of Analog Layout Design

This section covers certain aspects of analog layout design that are important for an understanding of the
presented work, and introduces technical terms that will be referred to in the remainder of this thesis. As
mentioned in Section 1.1, the problem of layout design is to take a given electronic circuit and turn it
into a physical representation, which is itself also called a layout design.1 The purpose of that physical
representation is to describe the detailed chip geometries on the photolithographical masks which need to
be created for the various layers of the semiconductor manufacturing process. These geometries include
the layout of the circuit components and their electrical interconnections with interconnect holes between
isolating layers, as well as the so-called bondpads for the chip’s connections to its periphery, and all other
geometries such as inscriptions, logos and test structures.

Although the input circuit could be provided in the abstract form of a mere netlist, it is commonly
given as a visually graspable schematic diagram. This can be put down to two major reasons:

• In contrast to the digital domain, where circuits are synthesized from high-level specifications,
analog circuits are manually created by design experts. This necessitates a convenient display and
editing format.
• Turning an electronic circuit into a functioning layout involves the consideration of many de-

sign restrictions and design objectives which arise from an understanding of the circuit’s function.
Thus, the readability of a schematic diagram is not only irremissible for the circuit creator but also
for the layout designer.

The topic of design restrictions and design objectives will now be further addressed in Section 2.1.1.
Then, Section 2.1.2 deals with a very important principle called matching while Section 2.1.3 is dedicated

1So, the term layout design is ambiguous since it can denote either a resulting layout or the process of creating one. In the
remainder of this thesis, layout design is only used in the latter sense while the design result is simply referred to as a layout.

17

2. The Aim of this Thesis

to hierarchy levels in analog layout design, before Section 2.1.4 discusses the main design tasks called
device generation, floorplanning, placement, and routing.

2.1.1 Design Restrictions and Design Objectives

From a mathematical point of view, layout design is an optimization problem and can be regarded as
a search for an optimal solution inside an immensely huge solution space. Thereat, design restrictions
define a valid region in the solution space, while the design objectives specify an optimum inside that
valid region, as depicted in [7]. Design restrictions are commonly divided into three categories:

Technological restrictions are meant to ensure the manufacturability of the integrated circuit. They are
derived from the chosen semiconductor technology and formulated as geometrical design rules.
Design rules can be very complex, but most of them belong to one of the following groups: mini-
mum width, minimum distance, minimum overlap, or minimum enclosure.

Functional restrictions (also referred to as electrical restrictions) are supposed to guarantee the circuit’s
proper electrical functioning. They can be separated into circuit-specific requirements (e.g., to
prevent unwanted coupling effects) and process-specific requirements (such as the limitation of
current density in electrical wires to avoid electromigration).

Design-methodical restrictions are deliberately introduced to reduce the complexity of the layout de-
sign problem, thereby making the design task amenable to computer-aided automation approaches.
An example is given by layer-dependent wire directions for the purpose of automated routing (e.g.,
metal1: horizontal, metal2: vertical).

While design restrictions are strict confinements which (apart from the design-methodical restrictions)
must definitely be satisfied, design objectives represent gradual optimization goals that are pursued as
good as possible. They can be roughly classified into economic optimization goals and functional opti-
mization goals. Economic optimization goals include the reduction of product costs (e.g., by minimizing
the total chip area and the number of required metalization layers) as well as reducing the development
costs (e.g., by minimizing the design effort via design automation). Examples for functional optimiza-
tion goals are the minimization of the total wirelength as well as optimizing the chip’s heat dissipation
to prevent critical hot spots.

As the name implies, functional restrictions and functional optimization goals pertain to the func-
tionality of an integrated circuit. Herein, three basic issues can be embraced by the term functionality:

• Does the circuit work accurately enough to perform the desired function?
• How well is the circuit set up against long-term failure owing to effects of degradation?
• What measures are taken to prevent an instantaneous malfunctioning due to fabrication problems?

The latter two issues will be postponed to Chapter 4 since they can be considered secondary to the first
issue: accuracy. In the analog domain, accurate circuit behavior is of utmost importance. This is rooted
in the continuous-valued nature of analog signals, where even the slightest derogation from a circuit’s
nominal operating point can have a critical impact on its functionality. For that reason, many functional
restrictions and functional optimization goals –such as minimizing the distance between certain layout
components, for example– are pursued in favor of an essential and very characteristic principle of analog
design called matching, which is to be discussed in Section 2.1.2.

2.1.2 Matching

In short terms, matching is employed to obtain analog signal accuracy via “electrical symmetry”. This
can be understood as follows. The manufacturing tolerances exhibited by the many steps of an IC fabrica-
tion process are so large that their cumulative effect causes an unbearably high deviation in a component’s
parameters from their desired values. Hence, one can say that the absolute exactness of a circuit’s com-
ponents is extremely poor. However, the parametrical deviation among circuit components of the same

18

2.1 The Problem of Analog Layout Design

type are comparable. This means that the relative exactness of components from the same manufacturing
cycle (and even moreso regarding components on the same chip) are rather good [8].

In the analog domain, circuits are specifically designed and layouted in a way which takes advantage
of that relative exactness by “matching” certain components. With this technique, the electrical behavior
of these components can be effectively equalized in relation to each other so that inevitable variations
(not only manufacturing tolerances, but also other derogating influences such as thermal gradients and
parasitic effects) don’t affect their overall electrical functioning. This principle asks for (1) identifying
circuit components which should work electrically symmetric, and for (2) creating the layout such that it
attains that symmetric behavior. Without this technique, obtaining a functional analog integrated circuit
would be virtually impossible. Hence, achieving a good matching is one of the most important duties in
the daily work of analog layout designers.

The matching of circuit components in general requires that these components are of the same type
and that they have equal dimensions. Those necessities already have to be taken care of by the circuit
designer. Further matching measures in the layout often demand to place these components with consis-
tent orientations and to align them in a compact, interdigitated, common centroid arrangement [9] (for
an example, see Figure 3.14). As will be discussed in Chapter 3, matching also represents the primary
concern –and the major difficulty– for state-of-the-art layout automation approaches.

Typically, matching is demanded for circuit components which belong closely together because they
serve a dedicated and impartible electrical function. This is reflected in the practice of encapsulating
such components in a compound module, which leads over to Section 2.1.3.

2.1.3 Levels of Design Hierarchy

Analog IC layouts are usually built in a hierarchical fashion, which is achieved by putting design com-
ponents inside other design components. Prime design entities such as transistors are commonly given
as primitive devices, i.e., fundamental cells that do not have a subhierarchy. On higher levels, a group
of design entities which belong together –and thus form a functional unit– can also be encapsulated as
a single (but in this case hierarchical) cell. Like a primitive device, the functional unit thus becomes a
modular library component that can be instantiated in a layout (i.e., inside another cell).

To avoid semantical confusion when speaking of cells, it is appropriate to classify them with respect
to the characteristics that they exhibit depending on their location in the design hierarchy. For that
purpose, this thesis proposes and adheres to the following terminology:

Primitive devices are the bottom-level components in layout design and consist of plain polygons. For
the most part, they realize transistors, resistors, and capacitors. Other structures such as wells and
guardrings are often also implemented as primitive devices.

Simple modules represent well-established analog basic circuits with highly regular patterns. This
means that a simple module contains a set of identical primitive devices that are put together
in a strictly tiled, matrix-like arrangement.

Advanced modules also represent analog basic circuits, albeit being composed of different compo-
nents (primitive devices and simple modules). The components’ relative positions follow a well-
established, often symmetric arrangement, notwithstanding their actual dimensions.

Blocks are large hierarchical cells that perform high-level electrical functions. They consist of unequal
devices and modules, assembled in a rather irregular arrangement that has to be individually de-
termined by a layout expert in the respective case.

Chip denotes the top-level entity of a layout. It is made of hierarchical layout blocks (in case of a
mixed-signal chip: both analog and digital blocks) but can also contain single devices such as
power transistors that realize high-current output stages. Although a family of chips can share
topological similarities, a chip is always a unique design.

The proposed cell taxonomy is also displayed in Table 2.1, which gives a couple of examples for each
kind of cell. As indicated in the table, it can be said that the degree of (re-)utilization is basically
reciprocal to the level in the design hierarchy.

19

2. The Aim of this Thesis

Table 2.1: Classification of hierarchical cells in analog/mixed-signal design.

Hierarchy Examples Degree of
Level (Re-)Utilization

Chip Top Airbag Sensor Evaluation Circuits, ABS/ESP Brake very
Level Control Systems, Motor Drivers, Audio Amplifiers low

Blocks Block Analog-Digital Converters, Digital-Analog
low

Level Converters, Bandgaps, Voltage Regulators

Advanced Module Operational Transconductance Amplifiers
mediumModules Level Differential Amplifiers, Comparators

Simple Module Differential Pairs, Current Mirrors,
highModules Level Resistor Arrays, Capacitor Arrays

Primitive Device Transistors, Resistors, Capacitors, very
Devices Level Guardrings, Isolation Tanks high

2.1.4 Main Design Tasks: Device Generation, Floorplanning, Placement, Routing

As already indicated, creating an analog layout involves several tasks. The main design tasks are denoted
as device generation, floorplanning, placement and routing.

Device generation is the task of creating the layouts for the individual components of the given input
circuit. Herefor, every component needs to be individually layouted according to its respective sizing
(e.g., the channel width and channel length of a MOS transistor). In the past, this task has been an integral
duty on the shoulders of an IC design team. Today it is common practice that the primitive devices of
a semiconductor technology are readily delivered by the vendor as part of a so-called process design
kit (PDK) and usually implemented as procedural generators (which will be the topic of Section 3.1.2).
With the aid of such generators, many layout components come in a multitude of different possible layout
variants. Contrasting the use of standard cells in the digital domain, this variability represents an essential
trait of analog design which is indispensable for being able to satisfy the many different restrictions and
objectives of the design problem. Even primitive devices have an immense layout variability, and one
major source of this variability is device folding. For example, a native MOS transistor can be folded
by changing its so-called number of fingers. As shown in Figure 2.1, the transistor variants thus have
different aspect ratios while preserving the total channel width and channel length. Device generation is
already important during floorplanning for estimating the total size of a layout block.

Figure 2.1: Different layout variants of a MOS transistor with the same total channel width and length.

Floorplanning, as listed in Table 2.2 (a), is the task of specifying locations, aspect ratios, and pin
positions for the layout blocks of a chip. Therein, each block is treated as a black box whose area is
roughly estimated by the floorplan designer from generating the block’s devices. For economical and
electrical reasons, the primary objectives in floorplanning are to minimize the total layout area and the

20

2.1 The Problem of Analog Layout Design

total wirelength, as well as to optimize the power supply and the current flow. A hard restriction concern-
ing the layout area can be that the blocks must fit into a fixed outline, depending on the semiconductor
package chosen for the physical sealing of the chip during the final stage of the fabrication. In general,
the top-level chip boundary is demanded to be a rectangle whose aspect ratio should not depart too far
from a square. In the context of wirelength minimization, some blocks are required to be positioned close
to the chip boundary because they will later be connected with the periphery. On the other hand, it may
also be necessary to keep a certain minimal distance between dedicated blocks such that sensitive signals
are not disturbed by unwanted thermal and electrical influences. A large block can contain subordinate
blocks that also need to be floorplanned.

Table 2.2: The main tasks in analog layout design: (a) floorplanning, (b) placement, (c) routing.

(a) Floorplanning (b) Placement (c) Routing

Considered Circuit Blocks Primitive Devices Wire Segments + Vias
Components (treated as black boxes) and Modules (to cross metal layers)

Quantities to Block Locations Locations Wire Paths, Segment
be set by the Aspect Ratios Orientations Layers and Widths +
Design Task Pin Positions Layout Variants Via Positions and Sizes

Typical Rect. Chip Outline Block Outline No Wires Above Devices
Restrictions Block Distances Space for Routing Available Metal Layers

Chip Regions Parasitics Parasitics and Currents

Primary Minimize Area and Wire- Device Matching Minimize Number of Vias
Objectives length, Optimize Power Overall Symmetry and Num. of Metal Layers

Supply and Current Flow Homogenize Wire Density

After floorplanning, the internal full-custom layout of each block has to be created. This is done by
first of all generating the primitive devices in the layout block, as given by the circuit schematic. Provided
that procedural generators are available for all these devices, the mere layout creation for the primitive
devices proceeds in an automated way – a functionality commonly referred to as Generate from Source.
However, this does not release the designer from the duty of deciding upon the variant that each device
is to assume. That is done during the challenging tasks of placement and routing which follow this initial
device generation. Thereby, devices that belong together must be brought together and then need to be
connected with each other. In turn, these modules are then also placed and routed until the overall block
layout is complete.

Placement –see Table 2.2 (b)– not only means to move the layout components into appropriate lo-
cations, but may also require to rotate them and to vary their layout without affecting their electrical
function (for example by changing the number of fingers discussed above), such that all components fit
into the block outline defined during the floorplanning phase. As in floorplanning, it is desired to obtain
a device placement wherein the total area and wirelength are minimized, but usually these objectives first
and foremost stem from the need to obtain a good device matching. The same is true for higher-level
modules whose placement aims at achieving an overall symmetry of the layout block where the modules
are placed in. Opposing the need to place the components close to each other, a common demand is that
a sufficient amount of space must be reserved between the components to accommodate their routing.

The demand to allow for routing space between layout components is rooted in the fact that sen-
sitive circuitry often forbids electrical wires to be drawn above these components. As mentioned in
Table 2.2 (c), this has to be taken into account during the routing task. Another restriction is to confine
which metal layers are available for the routing. On the lower design levels, a common agreement is
that only the first two (i.e., the two bottommost) of the available metal layers may be used in order to
retain the remaining metal layers for the later top-level routing. Leading a wire across different metal
layers requires to connect the respective wire segments with a via (vertical interconnect access). The
size of a via and the width of a wire segment must be set with respect to the expected current load. In

21

2. The Aim of this Thesis

general, analog layout designers refrain from vias with only one clearance hole, but insist on using so-
called double-cut vias that are large enough to enclose at least two clearance holes. Primary objectives
in routing are to minimize the number of vias (i.e., to avoid crossing between metal layers if possible),
to minimize the number of metal layers (and thus the number of necessary photolithographical masks),
and to homogenize the overall wire density. In some cases, the routing of certain nets is also demanded
to be symmetric to each other.

In digital design, the different design tasks are mostly separated from each other and may be even
further divided (e.g., routing is usually performed in two steps called global routing and detailed routing).
By contrast, the tasks of device generation, floorplanning, placement, and routing are heavily interrelated
in the analog domain. This represents a significant obstacle for automation approaches and contributes
to the problem that analog layout design is a bottleneck in the overall design flow, as Section 2.2 is about
to point out.

2.2 Analog Layout Design: A Bottleneck in the Design Flow

Since layout design is an optimization problem, it can –in principle– be automatically solved using opti-
mization algorithms [10]. In the well-established synthesis flows of digital IC design, such optimization
algorithms (which will be covered in Section 3.1.1) are successfully employed to place and route mil-
lions and billions of logic gates per chip. Encouraged by this success, EDA keeps a resolute focus on
trying to adopt suchlike approaches in the analog domain. But despite an enormous amount of research
and development work over the past three decades, optimization-based automation has repeatedly met
with disapproval among the analog design community and is still struggling to find its way into indus-
trial environments. Thus, layout design is the step of the analog design flow with the least support by
commercially available tools [11].

Due to this rejection of the many existing automation approaches, analog layouts in practice are
predominantly still engineered by human experts in a laborious and largely manual fashion, putting up
with the downside that the design productivity is significantly lower than in the digital domain. Actually,
this can be acknowledged in two regards: (1) the effort for creating an analog layout is much higher than
for a digital layout, although (2) the number of design components is usually smaller by several orders
of magnitude. That circumstance, also known as the mixed-signal design problem [12], is illustrated in
Figure 2.2.

Figure 2.2: The mixed-signal design problem [12]: in the analog domain, the layout design productivity
is significantly lower than in the digital domain.

So, while optimization algorithms are effectively employed for digital design synthesis, they do not
find as much acceptance in the analog domain even though the conceded lack of automation involves
a severe economic penalty. The detriment of this bottleneck for the overall design flow is even more
worrisome when considering that time-to-market continually decreases due to shortening product life

22

2.3 The Design Style and the Design Flow – Digital vs. Analog

cycles and price deflation [13]. Still, in contrast to the digital domain, the persistent skepticism towards
analog design automation remains, and as will be discussed in Section 2.3, this fact can be put down
to entirely different design prerequisites originating from the disparate purposes of digital and analog
circuitry.

2.3 The Design Style and the Design Flow – Digital vs. Analog

Creating a layout is a very complex problem.2 But in terms of this complexity, one should clearly
distinguish between the discrete-valued nature of the digital domain and the continuous-valued nature of
the analog domain, considering the respective purposes of the two domains in IC design as illustrated
in Figure 2.3. These different purposes highly affect the corresponding design style and inherently the
corresponding design flow of digital and analog layout design, as will be explained in Section 2.3.1 and
Section 2.3.2 respectively.

Design
Flow

Design
Flow

Design
Style

to
le

ra
te

s

de
m

an
ds

de
m

an
ds

cu
ts

Nature

Purpose

Tendency

Challenges

Design Problem

Economic Competitiveness

Design
Style

serves

drives

stresses

involves

induces

claims

entails

serves

drives

stresses

involves

induces

claims

entails

Impact

IC Design

(Time-to-Market, Technological Progress, Shortening Product Life Cycles, ...)

Quality Gap

Reduction of the
Degrees of Freedom

Optimization-based
Automated Design

(Quantitative Complexity)
More Moore

Number of
Components on Chip

Miniaturization
and Integration

(Think, Compute, Store)
Data Processing

Discrete-valued

ok

Digital Domain Analog Domain

Nonlinearities, Parasitics
Thermal Gradients, ...

Functional
Diversification

(Sense, Act, Supply)
Chip Interfacing

Continuous-valued

Automation Gap

Experience-based
Manual Design

Exploitation of the
Degrees of Freedom

(Qualitative Complexity)
More than Moore

!

Figure 2.3: In the digital domain, the design flow determines the design style. In the analog domain, the
design style determines the design flow.

2.3.1 The Digital Design Style: Standardized

A conventional mixed-signal chip with both analog and digital content essentially takes a set of analog
input signals from its environment, converts them into discrete signals, processes them through digital
logic, and converts the processed data into analog output signals again to perform a certain function.
The data processing abilities of digital IC sections primarily depend on the amount of implemented
logic, thus driving the ongoing miniaturization and integration of microelectronic devices. Referring to
Moore’s Law [15], this challenge of putting more and more components onto an integrated circuit has

2Computationally, the problem of layout design is NP-hard [14]. This means that no known algorithm can ensure to find a
globally optimal solution in polynomial time.

23

2. The Aim of this Thesis

become well-known as More Moore [16], which emphasizes that the respective design complexity in
creating the physical layout is mainly a matter of quantity. Without support from design automation,
creating the layout for a modern digital IC that contains millions or billions of logic gates is not just a
question of economic efficiency, but is virtually impossible.

So, the quantitative complexity in digital layout design is addressed via automation approaches based
on optimization algorithms, but it should be noted that their practical application upon large-scale circuits
requires a considerable simplification of the overall design problem. As will be detailed in Section 3.1.1,
this is achieved by (1) abstracting the design problem –via (1a) a translation of the design problem
into a mathematical model and (1b) the introduction of design-methodical restrictions for the sake of
standardization, such as the use of fixed-height standard cells and the placement of standard cells in
rows– as well as (2) resorting to heuristics in order to trade optimality and completeness for runtime
reduction (also see EDA View in Figure 3.1 on page 33).

The mentioned simplification of the design problem benefits the optimization algorithm because it
reduces the degrees of freedom and diminishes the solution space. On the other hand, such a simplifica-
tion entails a loss of layout quality, because even an algorithmically optimal solution (which is not even
guaranteed to be found in case heuristics are used) is electrically suboptimal in reality. Yet, this quality
gap can be tolerated due to the discrete-valued nature of digital signals, and so the overall automation
strategy sustains itself (Figure 2.3, left). Therefore, in digital layout design the design flow determines
the design style, which is commonly referred to as standardized or semi-custom design [17].

2.3.2 The Analog Design Style: Full-custom

While digital sections can be thought of as the “brain” of an integrated circuit, analog parts represent the
indispensable interface of an IC to its continuous-valued environment and also serve as the subsystem
for powering the chip. In contrast to the persistent downscaling in the digital domain, analog content3

keeps up an eager interest to expand the functional diversity of ICs throughout and beyond all facets of
sensing and acting and to drive the implementation of system-on-chip designs. Reflecting the immanent
challenge to handle nonlinearities, parasitic coupling, thermal gradients, high voltages, external physical
influences and many other intricate effects, this desire is called More than Moore [16] and makes the
complexity of analog layout design –in contrast to its digital counterpart– rather an issue of quality.

In terms of this qualitative complexity, maintaining the integrity of analog signal transmission calls
for an optimal layout that comprehensively utilizes the entire spectrum and variety of all available degrees
of freedom [18]. For the most part, this –in turn– opposes optimization-based design automation because
an abstraction of the design problem and a lack of adequate heuristics cause the resulting layout solutions
to be insufficient for practical application. So, the loss of layout quality that is condoned in digital
design is precisely what cannot be tolerated in the analog domain due to the delicate sensitivities of its
continuous-valued signals.

In a nutshell, the need to exploit all degrees of freedom defies the use of optimization algorithms
because these require a reduction of the degrees of freedom. For that reason, analog layout design is still
done in a highly manual way and relies heavily on the knowledge, experience, skills, and inventiveness
of human experts. So, the lack of automation –the automation gap– is tolerated as the lesser of two
evils, since layout quality does not permit any tradeoffs (Figure 2.3, right). Thus, entirely opposite to the
digital domain, the design style –which is commonly referred to as full-custom design [19]– determines
the design flow, despite the inherent economic penalties with respect to design productivity. In other
words: the demand for automation is overruled by the layout quality requirements – and, as follows in
Section 2.4, these are intimately tied to the so-called design constraints.

3More generally, one should speak of non-digital content instead of analog content here, because it may also involve mi-
cromechanical and microfluidic devices, for example.

24

2.4 Constraints: Formalized and Nonformalized Expert Knowledge

2.4 Constraints: Formalized and Nonformalized Expert Knowledge

The quality of a layout depends on its satisfaction of the functional design restrictions and functional
design objectives. In the remainder of this thesis, such restrictions and objectives are subsumed under
the term design constraints (or just constraints).4 These constraints are the fulcrum: with the necessity
of meeting the extremely high accuracy demands of continuous-valued analog signals –encumbered by
the More than Moore challenges discussed before– determining the constraints and satisfying them is
the major difficulty in analog layout design. This also represents the Achilles heel of design automation,
since the constraints are where optimization algorithms commonly fail to achieve the demanded level of
layout quality.

In contrast to other publications where the term constraint is used to denote various kinds of manda-
tory restrictions, this work’s definition of constraints decidedly refers to circuit functionality and specifi-
cally includes not only strict confinements but also “nice-to-have” requests and optimization goals.5 The
practical reason is that such an understanding of constraints can already be found in the common parlance
of analog designers. More importantly, this also reflects the day-to-day business of real-life productive
design flows, where constraints are sometimes concisely described in a constraint management system
but may also appear in a rather loose (i.e., not computer-assisted) fashion, covering a broad range of
rigidity from “strongly required” to “only desired” and “as good as possible”.

Although strict confinements and optimization goals are entirely different constructs from a math-
ematical and logical point of view, in analog IC design the dividing line is rather blurred (also see
Figure 2.6). Apart from this, the above notion of constraints in this thesis is further legitimated by a
look at other disciplines. For example, in artificial intelligence the term soft constraints is used to denote
restrictions whose satisfaction is not mandatory [20] or to denote optimization goals with a certain de-
sirability [21], whereas strict confinements (i.e., restrictions which must be satisfied) are denoted as hard
constraints [22].

To put it another way, a constraint in analog IC design can be considered as an information (e.g.,
a restriction, objective, requirement, desire, request, instruction, or intention) not contained in a given
schematic circuit, but relevant to obtain a corresponding layout that achieves the intended circuit func-
tionality. Against this backdrop, the problem of layout design may be regarded as shown in Figure 2.4,
which underlines the integral role of constraints from the viewpoint that any layout design problem can
be said to expect three inputs: (1) a set of design rules, i.e., the technological restrictions, (2) a structural
description of the circuit, i.e., a netlist or preferably a schematic diagram, and (3) the design constraints,
i.e., the functional restrictions and objectives. Correspondingly, there are three mandatory obligations
for the resulting layout, relating to the three given inputs: the layout must (1) adhere to the design rules,
(2) match the given circuit, and (3) satisfy all design constraints.

Design Constraints

Netlist / Schematic

Design Rules

Given
Physical Circuit
Representation

Sought

must adhere to the

must match the

must satisfy theI IR

technological

circuit in form of a

function-relevant
Design Constraints

Netlist / Schematic

Design Rules

3

2

1

3

2

1

"Layout"

Figure 2.4: The layout design problem of turning an electronic circuit into a physical representation.

As a side note, the difficulty of satisfying the constraints in analog layout design is associated with the
problem that constraint compliance cannot even be fully verified today due to a lack of descriptiveness.
The situation is quite different with obligations (1) and (2) in Figure 2.4: whether a layout adheres to

4Thus, the notion of satisfying a constraint can either imply the question if the constraint is satisfied but also how well the
constraint is satisfied.

5Still, whenever a distinction is necessary, this will be clearly articulated in this thesis.

25

2. The Aim of this Thesis

the design rules can be verified with a design rule check (DRC), while a layout versus schematic (LVS)
check determines if the layout matches the schematic circuit. Both kinds of checks are part and parcel of
the design flow.6 In modern IC design frameworks, the equality of circuit and layout is already asserted
during design (albeit on a symbolic level), which defines the so-called schematic-driven layout (SDL)
design flows that are common practice today. And although concepts for constraint management and
constraint verification are still in their infancy compared to DRC and LVS checks, it is generally agreed
that establishing a constraint-driven design flow is the next logical step in analog IC design [7][23].
However, this aim is not easy to achieve due to the diffuse nature of constraints.

Technically, constraints are rooted in the type, purpose, and application of the intended circuit, since
these attributes define the circuit’s particular functional requirements in terms of accuracy and robustness.
However, a designer’s ability to grasp all relevant constraints depends on how familiar the designer is
with the functionality of the circuit and its possible pitfalls, and also how versed the designer is in layout
creation (especially concerning the respective semiconductor technology). In that regard, constraints can
be considered as manifestations of expert knowledge.

Along with the circuit schematic, all respective constraints must somehow be communicated from
the circuit designer to the layout designer (if the circuit designer is also responsible for creating the
layout, then of course the constraints need not be communicated between different people – however,
the constraints must at least be mentally articulated by the designer). In doing so, it can be observed
that for every constraint, this can be done either in a more formal or in a rather informal way, and that in
today’s flows of manual layout design, both ways are encountered in equal measure. While there is not a
unique, distinguishing mark to determine whether a constraint appears in a formalized or nonformalized
representation, a distinction can be made according to several characteristics. A formalized constraint is
a constraint representation which

(1) expresses a clear and definite condition or relation,
(2) is unambiguous in that it leaves no room for interpretations,
(3) can be checked mathematically, logically, or algorithmically,
(4) is typically –but not necessarily– stored in a specific, computer-aided format, e.g., in the constraint

database of a constraint management system included in the IC design framework.

In contrast, a nonformalized constraint is a constraint representation which

(1) may fuzzily articulate any kind of functionality-relevant information,
(2) requires a semantical understanding and depends on the comprehension by the layout designer,
(3) can hardly be checked computationally but rather only according to the opinion of a human expert,
(4) is typically –but not necessarily– communicated to the layout designer via verbal conversation,

textual notes, or prosaic labels in the schematic diagram.

As an example, Figure 2.5 shows a couple of constraints entered into the constraint management system
of [24]. Most of these constraints (here those of type Alignment, Orientation, Distance, and Symmetry)
are thoroughly formalized and allow to be stated even more precisely by setting constraint-dependent
options (e.g., a certain edge for alignment or a maximum bound for the distance). However, the fact that
a constraint is stored in such a tool-assisted way does not necessarily signify a formalized representation:
for example, the constraint can just as well be only a prosaic comment (as is the case with constraint type
Note in Figure 2.5) and thus not be formalized at all.

Figure 2.6 shows several examples of nonformalized constraints, taken from actual designs of an IC
layout engineering group for automotive electronics, where these constraints are stored as text labels in
the schematic diagrams. Although all constraints are prosaic (and are therefore not directly processi-
ble computationally), those marked with an asterisk (*) can be considered to be formalized constraints
because they are quite unmistakable. However, most constraints are nonformalized, namely those con-
straints marked with a dagger (†). For example, some of these constraints imply several other require-
ments without clearly stating them (e.g., the requirements to achieve a good matching), while others
articulate such an imprecise restriction that it is definitely up to the understanding of the layout expert

6In fact, a finished layout must pass both checks, otherwise it is rejected by the semiconductor fabrication plant.

26

2.4 Constraints: Formalized and Nonformalized Expert Knowledge

Figure 2.5: Examples of largely formalized constraints, as entered into a constraint management system.

to deduce the respective implications. Finally, constraints marked with a double dagger (‡) describe –
strictly speaking– optimization goals, and are unspecific in the sense that their respective importance in
relation to the other design objectives is not given (and is thus also subject to the interpretation of the
layout expert).

Place on isotherm of
output stage and
resistors.

Match MN0
and I_NMIR0.

Interdigitate all
divider resistors.

Place all cmos
in DPN-tank.

Make metal routing from
drain/source of MN1-5 at
least 4 design units wide.

Use symmetric metal
to meet density rule.

Do not place Cu probe
pad near the array.

Place MP3 as close
to MN1 as possible.

Low ohmic connection
at Gate_T8.

Gates must be
connectable
with metal.

Place directly
side by side.

Insert Subcos.

Do not route metal
over this cell.

Equal resistance (<100 Ohm) from
SUSHL and SUSHH to the shunt.Arrangement

of resistors:
 4 3 2
 5 0 1
 6 7 8

Try to make hookup metal
as symmetric as possible.

Connection to GND as
low-ohmic as possible.

(†)

(†)

(‡)

(*)

(*)

(†)
(*)

(†)

(†)
(†)

(*) (*)

(†)

(†)(†)

(‡)

(‡)

Figure 2.6: Examples of largely nonformalized constraints, stored as prosaic labels in circuit schematics.

Looking at formalized and nonformalized constraint representations with regard to the respective
existence or absence of sufficient formal descriptiveness and semantical concreteness, one can basically
discern two forms of constraint consideration: an explicit consideration of constraints and an implicit
consideration of constraints. Formalized constraints can be considered explicitly, whereas nonformalized
constraints can only be considered implicitly.

Since both kinds of constraint representation can be encountered in today’s flows of manual layout
design, both forms of constraint consideration can be found. In general, it can be said that high-level de-
sign requirements usually must be specifically enunciated in a formalized way to be explicitly taken into
account by the layout designer, while low-level layout aspects are often implicitly taken care of by a sea-
soned layout expert without the need to formalize them. Quoting [25], analog designs are “exceptionally
rich in critical inexplicit constraints”.

27

2. The Aim of this Thesis

Now, the distinction between explicit and implicit constraint consideration can also be examined
in view of design automation, discerning the two prevalent automation strategies already mentioned
before: optimization algorithms and procedural generators. The background for this distinction are the
ruminations in Section 3.1, which point out that optimization algorithms can consider constraints only
explicitly (given that they are provided in a formalized fashion), while procedural generators can consider
constraints only implicitly (without the need to formalize them), and that no existing approach is truly
able to support both.

Recalling the fact that both formalized and nonformalized constraints are encountered in practice,
the following conclusion must be drawn: as long as it is not possible to make all constraints accessible
to either an entirely explicit or an entirely implicit constraint consideration, none of the two automation
strategies alone is able to tackle the problem of analog layout design in its entirety. This in turn substan-
tiates the neccessity for a new layout automation methodology, as will be discussed in Section 2.5.

2.5 Necessity for a New Layout Automation Methodology

With respect to the consideration of constraints, there are basically three approaches imaginable to ad-
dress the problem of analog layout automation: formalize all constraints and consider them explicitly
with an optimization-based approach (see Section 2.5.1), elide the formalization of constraints and con-
sider them all implicitly with a generator-based approach (see Section 2.5.2), or provide a new method-
ology that is able to consider constraints both explicitly and implicitly (see Section 2.5.3).

2.5.1 Optimization-based Layout Automation with Explicit Constraint Consideration

Trying to consider all design constraints in a purely explicit way using optimization algorithms is the
major focus of EDA advancement in academia. This is visualized in Figure 2.7, where constraints of
analog IC design have been figuratively illustrated as dots that are distributed across a two-dimensional
plane, depending on how adequately the constraints can be formalized and on how adequately they can
be anticipated in advance.

Adequacy of
Constraint Formalization

Adequacy of
Constraint Anticipation

high

high

low

low

Research & Development

Explicit Constraint
Consideration

Focus of EDA
Advancement in Academia

through
Optimization-based
Layout Automation

Constraints in
Analog Design=

Figure 2.7: Focus on optimization-based layout automation with explicit constraint consideration.

As indicated in the image, optimization algorithms are quite appropriate for targeting constraints
whose adequacy of formalization is high. For instance, a well-formalizable constraint is the so-called
Fixed Outline constraint (covered in Section 3.1.1.2) which demands that all components must fit inside
a given layout contour. This constraint represents an unambiguous requirement which exactly formulates
a practical design restriction one-to-one as a concise and verifiable geometrical condition.

However, a purely explicit constraint consideration requires that all constraints are explicitly ex-
pressed in a formal, comprehensive, unambiguous and consistent representation that can be processed by
the algorithm. While this is manageable in the digital domain, where most constraints can be described
quite concisely (such as a maximum signal delay, for example), the situation is different in the analog do-
main, since it is tremendously intricate and simply not possible nowadays to efficiently and sufficiently7

7The two terms signify an economic and a technical implication, which will also be reflected in Chapter 4.

28

2.5 Necessity for a New Layout Automation Methodology

describe the full diversity, various impacts and correlated dependencies of all functional design restric-
tions and design objectives in a formal fashion due to their More than Moore character. This difficulty
becomes particularly apparent when many tightly-linked, contrary, low-level layout requirements need to
be satisfied concurrently. Simply put, such constraints are extremely hard to formalize. A good example
is given by matching on device level, which

• involves several different constraints such as compactness, orientation, interdigitation, and com-
mon centroid (see Section 2.1.2),
• must still allow for certain degrees of freedom (e.g., a single-row or a dual-row arrangement as

shown in Figure 3.5 (a) and (b) respectively, on page 36),
• has to bring in line both the placement and the routing although the respective necessities may

oppose each other (see Figure 3.12 on page 44 for an example).

The gap between the transistor rows’ formal alignment edges in Figure 3.5 (b) indicates that translating
such design requirements into formalized constraint representations often fails to cover the needs of the
real world, while examples (b) and (c) in Figure 3.12 illustrate how even state-of-the-art automation
approaches can be seen to be incapable of performing placement and routing in harmony. Section 3.1.1
will discuss the inherent difficulties in greater detail, but for the argumentation in this chapter it suffices
to realize that these difficulties are undeniably confirmed by reality, where optimization-based tools have
not truly found their way into industrial design environments so far. Thus, from the present point of view,
one has to acknowledge that it is not possible to formalize all relevant design constraints in a practicable
and profitable way that facilitates a purely explicit constraint consideration.8

In spite –or because– of these issues, analog EDA research continues to work on a vast variety
of topics in the context of optimization algorithms, in particular dealing with the formalization and
consideration of constraints. But whether optimization algorithms and a purely explicit consideration of
constraints will someday be sophisticated enough to prevail beyond academic exercise and succeed in
analog layout automation as it is the case in the digital domain, remains open to debate. As [26] comes to
the point, constraint information is seldomly written down – and when it is, “its form differs from team
to team, product to product, and company to company”.

Even if all constraints are expressed in a formalized way, the layout solution that an optimization
algorithm might find can at most be as good as the mathematical model by which the algorithm works.
Furthermore, the use of inadequate heuristics may prevent the algorithm from finding the (theoretically)
optimal solution, while –on the other hand– an omission of heuristics makes it less likely that the algo-
rithm finds a feasible solution within practical runtime limits. Hence, the application of optimization-
based approaches to More than Moore problems is hindered by the reciprocity between the accurateness
of the modeling and the nearness of the model’s optimum to the solutions that can be expected to be
found by the algorithm.

2.5.2 Generator-based Layout Automation with Implicit Constraint Consideration

Although EDA research is strongly focused on optimization algorithms, comparably simple procedural
generators remain the most frequented pieces of automation in practice. Despite their petty abilities to
create layouts for –basically– primitive devices, they are practically indispensable for a human designer’s
day-to-day layout work. While academia has mostly overlooked them for the reason of being rather
trivial from a scientific perspective, industrial design teams can be observed to pursue an advancement of
simple device generators towards more powerful hierarchical generators which are able to create entire
layouts for small circuits consisting of multiple devices and their electrical interconnections.

As will be described in Section 3.1.2, the output of a procedural generator is denoted as a layout
result in this thesis, while –in contrast to an optimization algorithm– the cognitive layout solution is
not found by the automatism but is actually preconceived by the human expert who implements the
generator. On the one hand, this is what gives procedural generators the advantageous ability to consider

8Again, there is an economic and a technical implication here because practicable should be understood as “technically
feasible”, while profitable should be understood as “economically viable”.

29

2. The Aim of this Thesis

design constraints implicitly, but the immanent downside is the effort required to develop the generator
and the difficulty to think of all relevant design requirements in advance for incorporating them into the
implementation of the generator.

As indicated in Figure 2.8, procedural generators are particularly fruitful for addressing constraints
which can be easily anticipated. This makes procedural generators a perfect choice for automating simple
modules: the primary demand for such modules is to achieve a good device matching, and these matching
requirements are usually crystal-clear and can therefore be handled by the generators without the need
for further constraining. Regarding other constraints, which are rather encountered when proceeding
towards higher-level modules, the adequacy of anticipation is much lower. Again, an example is the
Fixed Outline constraint since it is not feasible to anticipate all potential outlines in advance, nor is it
expedient to preconceive layout solutions for all these outlines. Despite the technical possibility to do
this, the effort would be unreasonably high because such constraints are so hard to anticipate.

Adequacy of
Constraint Formalization

Adequacy of
Constraint Anticipation

high

high

low

low

Implicit Constraint
Consideration

Focus of EDA
Advancement in Practice

through
Generator-based

Layout Automation

R
es

ea
rc

h
&

D
ev

el
op

m
en

t

Constraints in
Analog Design=

Figure 2.8: Focus on generator-based layout automation with implicit constraint consideration.

In summary, it is not possible to anticipate all relevant design constraints in a practicable and prof-
itable way that facilitates a purely implicit constraint consideration.8 Due to this observation, the use of
procedural generators in the industry is not showing to be lucrative enough above the level of basic circuit
modules such as Current Mirrors and Differential Pairs. Mature generator development tools (as will be
presented in Section 3.1.2.4) can help reduce the implementation effort to a certain degree, but a more
profound conceptual breakthrough which allows to meet the economic and technical implementation
demands of higher-level modules has yet to be delivered. Until then, the development of procedural gen-
erators keeps grappling with a tradeoff between the generators’ implementation effort and their potential
benefit for design productivity.

2.5.3 New Methodology with Explicit and Implicit Constraint Consideration

The figures above visualize an important argument: most design constraints either have a high adequacy
of anticipation or a high adequacy of formalization. This can for example be seen in the already men-
tioned matching requirements and the Fixed Outline constraint respectively (as discussed in Section 2.5.1
and Section 2.5.2). A couple of –comparably few– constraints can be both adequately anticipated and
formalized. An example would be the restriction to prevent routing wires from running above transistor
channels. This demand is commonly adhered to by procedural generators implicitly, although an opti-
mization algorithm would just as well be able to take this constraint into consideration when explicitly
being told to do so. At the other end of the spectrum, there may always be a minority of constraints that
can neither be adequately anticipated nor formalized. Presumably, such exotics will never be completely
addressable via design automation but always rely on human expertise.

For the remaining “ordinary” constraints, the preceding contemplations advocate a novel automation
strategy that combines the assets of optimization algorithms and procedural generators to support an
explicit as well as an implicit consideration of constraints. Such an automation strategy is meant to
facilitate a truly balanced consideration of both formalized and nonformalized representations of expert
knowledge, since these are equally indispensable to cope with the More than Moore design complexity

30

2.5 Necessity for a New Layout Automation Methodology

in the analog domain. This conclusion phrases the focus of this work and marks the technical aim of
this thesis. As shown in Figure 2.9, a suchlike methodology has significantly more potential for analog
layout automation than optimization-based or generator-based approaches alone.

Adequacy of
Constraint Formalization

Adequacy of
Constraint Anticipation

Implicit & Explicit
Constraint Consideration

through
New Methodology of
Layout Automation

Focus of this Work:

high

high

low

low
Constraints in
Analog Design=

Combine the two
Automation Strategies

Figure 2.9: Novel automation strategy with explicit and implicit constraint consideration.

But how can these two automation strategies be married? As Figure 2.7 and Figure 2.8 hint at,
procedural generators and optimization algorithms are oriented in such different ways that they are not
compatible with each other off the shelf. When combined, the strengths of the one automation strategy
redound to a disadvantage for the other. This crux shall be confirmed by two thought experiments based
on two obvious ideas:

• The first idea is to include procedural powers in an optimization algorithm by applying that algo-
rithm not to a set of primitive devices (as is typically done) but to a set of generator-based modules.
Thereby, many placement and routing tasks on device level can be performed by the modules in-
stead of the algorithm. Furthermore, the modules may provide the valuable variability that would
otherwise be lost due to inadequately strict, explicit constraints on the devices. However, this
variability is detrimental for the algorithm because the supported degrees of freedom blow up the
solution space that is to be searched through. Metaphorically speaking, there are more fish to catch
but the algorithm has to fish in a much larger amount of muddy water.
• The second idea is to inject algorithmic capabilities into a procedural generator by facilitating an

exertion of influence on the generator’s contents through some form of intervention (e.g., forcing
some of the subdevices inside the generator to be placed at a certain side). If suchlike abnormalities
do not have to be preconceived by the generator developer, this would reduce the implementation
effort, but at the same time it would be fateful for the generator because of its inability to handle
such an unforeseen –i.e., not anticipated– situation (in this example: to automatically adjust the
positions of the other subdevices). Similar to the body of a transplant recipient, the generator can
be thought of as a closed organism rejecting a donor organ.

From these considerations, it becomes clear that a combined algorithmic-procedural approach needs
to engage the two automation strategies in a harmonic way such that decisions of the one strategy are
not fatal for the other. However, this does not mean to separate the two strategies up to isolation nor
to diminish the authority of one strategy near to insignificance: in either case, the two counterparts
would not really profit from each other. Instead, a truly hybrid methodology is supposed to join the two
automation strategies in a balanced relationship where each one is able to react to the other’s doings.

As will be detailed in Chapter 3, no such methodology has been developed so far, which adds au-
thority to the question in how far this endeavor is realizable – if at all. The inherent difficulty (and
likewise, the big opportunity) will be nailed down in Section 3.2.3: providing a methodology that facili-
tates an explicit and implicit consideration of constraints means to combine two fundamentally different
automation paradigms.

31

3. State of the Art - Two Views on Existing Approaches

Chapter 3

State of the Art - Two Views on Existing
Approaches

The most insidious world-views are held by
people who have never viewed the world.

Alexander von Humboldt (German explorer)

This chapter is dedicated to existing EDA approaches for automatic layout creation, discerning be-
tween optimization algorithms and procedural generators. Section 3.1 first takes a concrete look on
existing approaches to pinpoint the shortcomings of these two automation strategies before Section 3.2
examines that state of the art from a more abstract point of view. In continuation of the argumentation
in Chapter 2, the subsequent discussion concludes that facilitating a combined explicit and implicit con-
sideration of constraints requires the coalescence of two fundamentally different automation paradigms
here denoted as top-down automation and bottom-up automation. This comprehension delineates the
scientific challenge of the work presented in this thesis.

3.1 A Concrete View on Existing Approaches: Optimization Algorithms
and Procedural Generators

While EDA research has put forth a rich variety of analog layout automation approaches over the past
decades, these can be divided into two fundamental categories already mentioned in Chapter 2: optimiza-
tion algorithms and procedural generators. The following Section 3.1.1 and Section 3.1.2 will describe
these two automation strategies in greater detail, elaborating on their strengths and weaknesses. Then,
although a couple of further and seemingly hybrid approaches have also been developed, Section 3.1.3
points out that no existing approach facilitates a sincere combination of both automation strategies. Fi-
nally, Section 3.1.4 draws a couple of conclusions for the new approach taken by this thesis.

3.1.1 Optimization Algorithms

With reference to [27], the development of optimization algorithms in EDA largely concentrates on
a canonical form depicted in the center of Figure 3.1, where a single candidate layout is repeatedly
optimized in a loop of solution space exploration and candidate evaluation. An exploration engine
navigates through the solution space to refine the candidate layout. If the algorithm is constructive,
the refinement is achieved by successively completing the candidate layout, whereas in the case of an
iterative algorithm, the candidate layout is repeatedly modified. An evaluation engine validates if the
new candidate layout satisfies all design restrictions, and rates its quality according to a formal metric
(e.g., a cost function that is to be minimized). Depending on the rating, the layout is accepted or rejected
and the cycle of optimization continues until the final solution to the given layout design problem is
obtained with respect to a certain stop criterion.

32

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

Designer

Constraints

Formalized
Layout Design

Knowledge

Layout
Solution

EDA ExpertProblem Modeling
Standardization

Heuristics

Optimization Algorithm
Explicit
Constraint Consideration

EDA View

User View
Develop ment of

flows into

devises

facilitates

General-Purpose
Programming

Language

fed tosets finds

chooses
Automation
Knowledge

Problem-specific

Layout
Candidate

Exploration Engine

Evaluation Engine

(traverse solution space)

(rate candidate solution)

Calculated
Rating

Figure 3.1: Working principle of an optimization algorithm (adapted from [27]).

The EDA View in Figure 3.1 (which has already been referred to in Section 2.3.1) as well as the
constraint-related entries in the User View will now be further discussed in Section 3.1.1.1.

3.1.1.1 Constraint Handling

Thanks to their abstract nature, a particular strength of optimization-based layout algorithms is that
they can be versatilely applied to various kinds of circuits. An affiliated asset is their ability to take
into account formal expressions of high-level design constraints which easily elude the scope of human
attention in manual design. But as already mentioned in Section 2.3.1, an optimization algorithm –apart
from applying heuristics and design-methodical standardization– works by translating the optimization
problem into a mathematical model, thereby specifically optimizing just the modeled aspects [28].

This means, that a design constraint is not taken into consideration unless the algorithm is explicitly
told to do so. In other words, the expert knowledge that goes into the development of an optimization
algorithm –usually implemented with a general-purpose programming language– (see EDA View in
Figure 3.1) can be considered as automation knowledge, but it does not involve any palpable layout
design knowledge. Instead, all relevant layout design knowledge for a specific design problem must be
completely formalized as explicit constraints that can be handled by the algorithm (see User View in
Figure 3.1). This imperative represents a tremendous challenge because it involves several requisites. As
illustrated in Figure 3.2, for every single constraint these requisites are:

(1) Semantics:
The user must think of how the constraint can be precisely articulated in formal terms.

(2) Syntax:
The constraint must be formally describable, which requires a dedicated “language”.

(3) Formulation:
The user must formally describe the constraint, which can take significant effort.

(4) Consistency:
The constraint must not conflict with other constraints (although optimization goals are often mu-
tually contradictory).

(5) Processibility:
The algorithm must be able to take that type of constraint into consideration.

(6) Computation:
Regarding the problem at hand, the algorithm must find a solution that satisfies the constraint.

With regard to the More than Moore complexity of analog IC design, the difficulty to address each and
every constraint in this manner restrains an incorporation of human expertise into the automation. The
initial requisite alone (i.e., getting the detailed implications of a constraint semantically right in the first
place) represents a major obstacle for the employment of optimization algorithms in practice. These
semantics raise the question, what types of constraints can be addressed at all (Section 3.1.1.2).

33

3. State of the Art - Two Views on Existing Approaches

Semantics1

Formulation3

Syntax2

Consistency4 Processibility5

Computation6

Constraint Formalization

Constraint Consideration

Designer

Constraints fed tosets
Layout
Solution

finds
Layout
Candidate

Exploration Engine

Evaluation Engine

(traverse solution space)

(rate candidate solution)

Calculated
Rating

Figure 3.2: The requisites of formalizing and explicitly considering a design constraint.

3.1.1.2 Types of Constraints

The different types of constraints that have been algorithmically addressed so far in literature, can be
divided into placement constraints and routing constraints. In general, placement constraints may also
play a role in floorplanning, but many of these constraints –especially those that are meant to ensure a
good matching– are of rather little interest for floorplanning compared to device placement. Frequently
encountered placement constraints, as applied to a set of layout components, are illustrated in Figure 3.3
and can be briefly described as follows:

Alignment:
A specific edge of each component lies on the same horizontal or vertical axis.

Abutment:
The components are aligned in one direction and placed adjacent to each other in the orthogonal
direction.

Boundary:
Each component is placed along the left, right, top, or bottom border of the layout.

Clustering:
The components are placed adjacent to a given target component so they form a cluster.

Common Centroid:
Subgroups of components are placed such that their geometrical centers fall onto the same location.

Distance (Proximity/Separation):
The distance of two components is greater than a specified minimum and/or less than a specified
maximum.

Equal Parameters:
All components to be matched are identical, i.e., each one has assumed the same layout variant.

Fixed Outline:
Every component is placed within a specified rectilinear or rectangular layout contour.

Orientation:
The components are rotated or flipped such that all of them have equal or mirror-inverted orienta-
tion.

Preplacement:
Components are placed in a predetermined fixed location to which they must adhere.

Symmetry:
Identical components are placed in mirror-inverted orientation about a horizontal or vertical axis.

Symmetry Island:
The components are placed in symmetry and each of them abuts at least one of the other compo-
nents.

34

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

Alignment Abutment Boundary

Clustering Common Centroid Distance

Fixed OutlineEqual Parameters Orientation

Preplacement Symmetry Symmetry Island

Figure 3.3: Illustration of common placement constraints in optimization-based layout automation.

One point of critique that can be brought up here is how cumbersome certain constraints are to express
an actually plain desire. As an example, if a group of devices need to be arranged in a two-dimensional
matrix-like fashion (e.g., a resistor array), the only serviceable type of constraint to formally express
this request is the Alignment constraint. However, specifying one single Alignment constraint does not
suffice: for an n by m array of devices with n columns and m rows, n + m Alignment constraints need
to be specified. And although the effort to do so already is unnecessarily high, it does not yet state
any demands about the horizontal pitch ∆x between the array columns nor about the vertical pitch ∆y
between the array rows. This would require another n−1 Distance constraints to set the desired distance
of the array columns, plus m− 1 Distance constraints for the array rows.

As an example, Figure 3.4 shows an 8 by 6 resistor array which requires eight constraints for the
horizontal alignments and six constraints for the vertical alignments. With 7 plus 5 additional constraints
for the distances, there is a total of 26 constraints to be formulated. But then, even if that amount
of effort is spent, these constraints do not yet express how the devices should be interdigitated across
that array (which ironically is often the basic reason for such an array arrangement). There is another
issue, because on every device at least two constraints are imposed (horizontal Alignment and vertical
Alignment, possibly plus Distance constraints). This means that the algorithm must first of all be able to
consider more than one such constraint per device. Much more convenient than such a constraint-based
approach would be to employ an automatism specifically dedicated to the creation of device arrays and
requiring only three parameters: the interdigitation pattern, the horizontal pitch, and the vertical pitch.

Unfortunately, one cannot stint on the constraining effort since all constraints need to be formally ex-
pressed: it already occurs with one missing constraint that the algorithm is not bound to produce a feasi-

35

3. State of the Art - Two Views on Existing Approaches

vertical
alignment

vertical
alignment

vertical
alignment

vertical
alignment

vertical
alignment

vertical
alignment

horizontal
alignment

horizontal
alignment

horizontal
alignment

horizontal
alignment

horizontal
alignment

horizontal
alignment

horizontal
alignment

horizontal
alignment

Δx Δx Δx Δx Δx Δx Δx

Δy

Δy

Δy

Δy

Δy

Figure 3.4: Resistor array requiring an awkwardly large number of placement constraints.

ble solution even if all other constraints are satisfied. But there is more to that issue because –on the other
hand– the constraints can also be too strict in two aspects. One aspect is denoted as overconstraining,
i.e., a situation where the articulated constraints cannot be satisfied because they formally contradict
each other. Discovering such conflicts in advance requires an inference system that is able to resolve all
articulated constraints via a logical calculus (also see Section 3.1.1.4). However, the dependencies can
be so convoluted that an a priori constraint resolution is hardly possible.

The other aspect is that many formal constraint representations are too static to express geometric
variability. For example, an Alignment constraint could be used to enforce a Current Mirror layout where
all transistors are assembled side by side in one single row, as in the example of Figure 3.5 (a). However,
the transistors can also be folded and spread over two rows. Although such an arrangement even improves
the matching, it is not admitted by the Alignment constraint because the alignment edge of the transistors
in the first row is not the same as the alignment edge of the transistors in the second row (b). Since this
kind of variability often is a vital requisite to be capable of satisfying all constraints across an entire chip
design, its absence from formal constraint representations is a big problem for optimization-based layout
automation.

(a)

(b)

alignment edge
(all transistors)

alignment edge (second row)

alignment edge (first row)

Figure 3.5: Transistor arrangement with (a) satisfied and (b) violated Alignment constraint.

Routing constraints (see Figure 3.6), including those already mentioned in Section 2.1.4 as well as
further ones addressed in literature, are:

Blockage:
Prohibition of wires above certain areas such as the channel of a transistor.

36

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

Layer Limitation:
Limited set of metal layers available for the segments of a wire.

Wire Width:
Variable widths of a wire’s segments, depending on the respective current load.

Sensitivity:
Decoupling of sensitive nets from noisy nets via wire separation or wire shielding.

Double-Cut Vias:
The vias of a wire contain two clearance holes (at least).

Length Matching:
The segments of two wires add up to the same total wirelength respectively.

Common Centroid:
Nets are routed symmetrically with respect to a common center point.

Symmetry:
Nets are routed symmetrically with respect to a common axis.

Topological Matching:
The segments of two wires match in number, length, layer, and bends.

Blockage Layer Limitation Wire Width

Sensitivity Double-Cut Vias Length Matching

Common Centroid Symmetry Topological Matching

metal1
metal2
metal3
metal4
metal5

I1 I2 I3 I4

I1 + I2 + I3 + I4

I1 + I2 + I3 + I4

I1 I2 I3 I4

sensitive
net

sensitive
net

noisy
net

shielding
wire

GND

separation

2 9

6
8

7
5

8

4

7

6
12

8

8

10

10
4

4

6

6

12
12

2

2

detour

dummy
bridge

Figure 3.6: Illustration of common routing constraints in optimization-based layout automation.

Routing constraints are good to exemplify one major nuisance: in individual cases, a violation of an
otherwise obligatory constraint may be necessary, but even if that violation is electrically uncritical it is
rejected as a formal dissatisfaction of the constraint. For example, the Layer Limitation constraint can be
used to enforce a device-level routing which employs only metal1 and metal2. For some nets these layers
might not suffice, but unfortunately the constraint does not permit the usage of a metal3 wire here even
if it would be unproblematic to have a few of such metal3 wires in the device-level routing. This formal
obstinacy can prevent the routing algorithm from finding a solution at all. Theoretically, it might be
possible to allow for the specification of certain exceptions. However, this would not only require further
constraining effort but also insight into (or feedback from) the algorithm to see where such exceptions
could be helpful.1

1Then again, if the algorithm is not deterministic, these exceptions would become futile when re-running the algorithm.

37

3. State of the Art - Two Views on Existing Approaches

Another facet of that problem is that even the slightest deviation from a constraint causes formal
dissatisfaction. If, for instance, there is a marginal difference in the length of two wires (e.g., because the
routing grid causes potential wire detours to cover an odd number of grid units in distance where an even
number would have been necessary instead), then the Length Matching constraint is formally violated
(unless a certain tolerance has been specified, which would again involve more constraining effort in
turn). Figure 3.7 shows an example with a wire whose length of 7 is to be matched by another wire. With
a direct, axis-oriented connection –as seen in image (a)– that other wire has a length of 4 (the wire’s so-
called Manhattan distance). By adding a detour as in (b), the wire’s length can be increased to 6 (which
is still not enough) while the next possible detour overexpands the wire to a length of 8 (c). Obtaining
the desired wire length 7 necessitates to put some wire nodes off the routing grid (d). In practice, where
the grid size is typically much smaller than the length of a routing wire, length mismatches as in (b) and
(c) are electrically negligible but would still represent a formal constraint violation.

2

(a)

2

2
1

3

1

2

(b)

2

2
1

2

2

2

(c)

2

2
1

2

1

Length to
match: 7

obtained
Length: 4

1

1

Length to
match: 7

obtained
Length: 6

Length to
match: 7

obtained
Length: 8

2

3

2

(d)

2

2
1

2

1

Length to
match: 7

obtained
Length: 7

1.5

2.5
off-grid

Figure 3.7: Inability of satisfying a Length Matching constraint and staying on the routing grid.

The illustrated problem points to a further aspect: a constraint can be entirely contradictory to a
design-methodical restriction. To give an example, assume that a transistor is to be used as a diode, which
is done by connecting the transistor’s gate with its drain. Unfortunately, there is a failure mechanism
known as plasma-induced gate oxide damage (where a gate dielectric can break down by collecting
electrical charges due to reactive-ion etching during manufacturing). One common measure to prevent
this so-called antenna effect is to connect the transistor gate with a diffusion using only metal1. However,
if there is a design-methodical restriction claiming horizontal wires to be created on metal1 and vertical
wires to be created on metal2 (or vice versa), then a metal1-only connection is not possible because the
connection includes a horizontal and a vertical wire segment. The first restriction case is exemplified
in Figure 3.8 (a) while the second case is illustrated in image (b): in both cases, a Layer Limitation
constraint demanding a metal1-only connection would not be satisfied. Such a connection, as shown in
(c), involves a violation of the design-methodical restriction.

Apart from the described troubles with the formalized types of placement and routing constraints,
another question is inhowfar existing approaches are able to handle these constraints in the first place.
This question is subject to the following Section 3.1.1.3.

3.1.1.3 Comparison of Existing Approaches

Due to the complexity of the layout design problem, most optimization-based approaches concentrate on
just one of the different design tasks. Thus, only few approaches deal with the challenge of performing

38

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

metal1

(b)(a) (c)

metal2 metal2 metal1 metal1 metal1

Figure 3.8: Violating either a Layer Limitation constraint (a)(b) or the routing layer preference (c).

placement and routing simultaneously, although these two tasks are heavily correlated. For every task
from (1) floorplanning, (2) placement, and (3) routing to the (4) combined placement and routing, a
representative selection of existing approaches is provided in each of the subsequent paragraphs. This is
done with a particular focus on the types of constraints that can be handled by the different approaches.

(1) Floorplanning

While the early work of [29] (one of the first general floorplan automatisms from 1983) did not
take wirelength into account, most contemporary floorplanning approaches are able to pursue both main
objectives of the floorplanning task, i.e., area minimization and wirelength minimization. The primary
design restriction in floorplanning is the layout contour into which the sought floorplan has to fit; but as
Table 3.1 shows, some approaches do not pay respect to this Fixed Outline constraint. If the floorplanning
targets only a certain part of the chip, it can even be the case that the outline is not necessarily rectangular
but arbitrarily rectilinear (e.g., L-shaped or T-shaped). However, none of the existing floorplanning
approaches supports such nonrectangular outlines, as is reflected by the table.

Table 3.1: Comparison of selected floorplanning approaches for analog layout design.

Ref- Year of Considered Supported Floorplan Deter- Solution
erence Public. Fix Outline Variability Structure ministic Approach

[30] 1989 rectangular var. width only slicing yes standard cell approach
[31] 1991 none discrete only slicing yes fix slicing tree traversal
[32] 1993 not reported none nonslicing yes local transformations
[33] 2003 rectangular full nonslicing no Simulated Annealing
[34] 2004 rectangular free shapes nonslicing no modified Min-Cut
[35] 2004 rectangular nondiscrete nonslicing no Simulated Annealing
[36] 2006 rectangular full nonslicing no Simulated Annealing
[37] 2006 rectangular none trapez. rows partly named Traffic
[38] 2007 none none nonslicing no evolution. computation
[39] 2011 none none nonslicing no Simulated Annealing
[40] 2014 rectangular none not reported no swarm algorithm
[41] 2014 not reported none reported only slicing no Simulated Annealing
[42] 2015 rectangular full only slicing yes analytical approach

One decisive aspect that distinguishes floorplanning from placement is that the aspect ratios of the
floorplan blocks may have full variability with dimensions in a continuous range (whereas the devices in
placement usually have just discrete variability, i.e., a finite set of different layout variants that they can
assume). Nevertheless, only few approaches support this kind of full variability, as can again be seen
in Table 3.1. Apart from this deficiency, a further shortcoming is that some approaches are limited to

39

3. State of the Art - Two Views on Existing Approaches

so-called slicing floorplan2 structures. This design-methodical restriction reduces the solution space in
favor of the floorplanning algorithm but is usually insufficient for practical analog designs because these
may in general ask for a –computationally more challenging– nonslicing floorplan.

Last but not least, the majority of floorplanning approaches are not deterministic, as Table 3.1 un-
derlines. Unfortunately, nondeterministic behavior is often itemized as one major reason for the low
acceptance of optimization-based layout automation approaches in practice. In particular, it represents a
serious hurdle for the constraining process: since it is seldomly possible to get all constraints adequately
formalized straight away, the constraining typically consists of repeatedly re-running the algorithm and
gradually specifying further constraints depending on the algorithm’s solution. However, if the algorithm
behaves in a nondeterministic way, such a stepwise constraining approach becomes highly unintuitive,
unsystematic, and uncomfortable.

Still, many floorplanning approaches approximate the optimal solution via the stochastic Simulated
Annealing algorithm [44], a metaheuristic technique that mimics the slow annealing of solids in met-
allurgy. Simulated Annealing is an example of a “hill-climbing” algorithm which can abandon local
optima in favor of better optima by temporarily accepting worse solutions. An attribute of Simulated
Annealing is that the probability of accepting a worse solution slowly decreases with runtime, analogous
to the decline of an atom’s thermodynamic energy in the annealing material. Despite the reservations
against nondeterministic algorithms, Simulated Annealing remains the most popular optimization en-
gine in published works, not only for the floorplanning task but even more in placement.

(2) Placement

With classic approaches such as Force-Directed Placement [45] (1975) and the Min-Cut algorithm
[46] (1977), the task of placement is by far the most actively investigated EDA topic in the analog
domain. For that reason, the representative selection of placement approaches shown in Table 3.2 focuses
on works that have been published within the last ten years. For each of the listed approaches, the table
indicates which types of placement constraints are taken into consideration respectively. And as can be
seen, there is no single approach that covers all types of placement constraints. A closer look reveals that
two of the constraints depicted in Figure 3.3 are missing from Table 3.2, namely Equal Parameters and
Orientation. This is because virtually every placement approach (and definitely every one of those listed
in the table) supports the Symmetry or Symmetry Island constraint, which implies that the equality of
the respective components’ parameters and the consistency of their orientation is also taken into account.
Therefore, it is superfluous to list those two constraints in the table individually.

A major deficiency among existing placement approaches, apart from a few works such as [64] or
[65], is their lack of support for custom device interdigitation. Metaphorically speaking, device interdig-
itation is the staff of life in practice, where high accuracy requirements for a group of devices are served
by splitting each device into a set of smaller devices such that they can be intermingled with each other in
a two-dimensional fashion. To that end, the devices are usually dispersed throughout a matrix-like array
according to a custom interdigitation pattern which yields a common centroid arrangement. However,
this goes beyond a mere Common Centroid constraint because the granularity and the concinnity of the
interdigitation determines how good the matching of the device group really is in the face of parasitic
disturbances.

Apart from this device interdigitation, there are several other placement constraints which cannot be
addressed with existing approaches so far. As an example, temperature variations on the chip can lead to
thermal gradients which entail a critical discrepancy in the electrical behavior of certain design compo-
nents. To avoid this kind of mismatch, a custom remedy is to place these components on an isothermal
curve. Unfortunately, no placement algorithm is capable of considering this practice through a formal
constraint (although such a constraint is probably even more suitable for algorithmic consideration than
the prevalent –but troublesome– attempts in device matching, where the established types of constraints

2A floorplan is denoted as a slicing floorplan if it can be obtained by recursively bisecting a rectangle via horizontal and
vertical lines, otherwise it is called a nonslicing floorplan [43].

40

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

Table 3.2: Comparison of selected placement approaches for analog layout design. The abbreviated
constraints are: Alignment (AL), Abutment (AB), Boundary (BD), Clustering (CL), Common
Centroid (CC), Distance (DS), Fixed Outline (FO), Preplacement (PP), Symmetry (SY), and
Symmetry Island (SI).

Ref- Year of Considered Constraints Deter- Solution
erence Public. AL AB BD CL CC DS FO PP SY SI ministic Approach

[47] 2006 x x x yes Less Flexibility First
[48] 2006 x x x x x x x no Simulated Annealing
[49] 2007 x no Simulated Annealing
[50] 2007 x no Simulated Annealing
[51] 2008 x x no Simulated Annealing
[52] 2008 x x x x yes named Plantage
[53] 2009 x no Simulated Annealing
[54] 2009 x x no Simulated Annealing
[55] 2009 x x x no Simulated Annealing
[56] 2010 x x no Simulated Annealing
[57] 2010 x x x x no Simulated Annealing
[58] 2011 x x x no Simulated Annealing
[59] 2011 x x x x x x x x no Simulated Annealing
[60] 2012 x no Simulated Annealing
[61] 2013 x x x x x x x no Simulated Annealing
[62] 2015 x x no Simulated Annealing
[63] 2016 x x x x yes Microsoft Z3 SMT

are meant to achieve electrical symmetry via geometrical symmetry). A similar constraint not supported
so far is the requirement of placing components on an isobar to prevent piezoelectric effects.

Another problem with optimization-based placement approaches is that the components to be placed
are commonly treated as black boxes: this does not pay respect to the mutual interdependency between a
component’s layout and the placement. For example, let there be two transistors: one with a bulk pin to
its right and one with a bulk pin to its left, as in Figure 3.9 (a). Placing these transistors side by side can
be done as in (b) such that their bounding boxes adjoin, but a more elegant solution is shown in (c) where
the two bulk pins lie on top of each other. For that purpose however, also known as diffusion sharing,
the algorithm must be able to acknowledge that such an overlapping of the transistors’ bounding boxes
is indeed valid, i.e., the algorithm must have an understanding of the transistors’ inner layout. Things
can get even more difficult: if the transistors are rotated as in (d), the bulk pins lie on opposite sides. In
that case, it could be convenient to change the transistor parameters so as to modify the bulk locations
(e) such that the transistors can again share their bulk diffusions (f). Yet, no placement algorithm can be
expected to have the finesse for taking care of such subtle –but important– issues.

As is the case with the floorplanning approaches discussed before, most placement approaches suffer
from the detriment that they are not deterministic. Again, Table 3.2 certifies that the stochastic Simulated
Annealing algorithm is by far the most popular choice of optimization engine (also see [66]), despite the
resentment that its randomized behavior has been courting in the design community. Even if this and all
the other shortcomings described so far are disregarded, there remains the undeniable point of criticism
that detaching the task of placement from the task of routing also detaches the expectable solutions from
the requirements of reality. Although some approaches (including [56], [58], [60], and [61]) take certain
routability considerations into account during placement, they are still subject to a separate routing step.

(3) Routing

While routing algorithms have already been proposed in the 1960s (e.g., Lee’s maze router [67]
and Hightower’s line router [68]), Table 3.3 lists a representative selection of modern approaches and

41

3. State of the Art - Two Views on Existing Approaches

(a) (b) (c)

(d) (e) (f)

right bulk
left bulk

bottom bulk top bulk

right bulk

left bulk

diffusion sharing

diffusion sharing

placement based on
bounding boxes

Figure 3.9: Example showing the interdependency between a component’s layout and the placement.

indicates which of the routing constraints illustrated in Figure 3.6 are taken into consideration by each
of these approaches. The Blockage constraint is omitted from the table since the ability to avoid layout
obstacles is an essential claim for any routing algorithm. As can be seen, the constraint coverage here
is even lower than with the placement approaches of Table 3.2 because many routing approaches are
rather focused on just one or only a few particular constraints. Furthermore, it is again the case that other
constraints which play important roles in real designs (such as complying with a maximal voltage drop,
for example) are still absent from algorithmic consideration so far.

Table 3.3: Comparison of selected routing approaches for analog layout design. The abbreviated con-
straints are: Layer Limitation (LL), Wire Width (WW), Sensitivity (SN), Double-Cut Vias
(DV), Length Matching (LM), Common Centroid (CC), Symmetry (SY), and Topological
Matching (TM).

Ref- Year of Considered Constraints Solution
erence Public. LL WW SN DV LM CC SY TM Approach

[69] 2001 x current-driven Steiner tree generation
[70] 2006 x multi-expansion-step maze algorithm
[71] 2009 x dynamic programming + A*-heuristics
[72] 2010 x x x A*-search + maze algorithm
[73] 2011 x x gridless routing based on A*-search
[74] 2012 x x x evolutionary computation
[75] 2012 x x tile-based detouring + rip-up & re-route
[76] 2014 x x x x x integer linear programming
[77] 2014 x integer linear programming
[78] 2015 x x x x integer linear programming

Apart from the evident inability to consider all types of routing constraints, an even more primal
grievance is that some formalized constraint types are purely theoretical. As an example, [76] introduced
the Common Centroid constraint for routing, claiming that it can reduce unwanted electrical effects and
balance the parasitic resistances and capacitances. However, this argument is dubious since such para-
sitics do not depend on the mere symmetry of the wires but on (the interplay with) their surroundings.
Hence, routing two wires in a common centroid fashion can even be unfavorable as it may induce addi-
tional unwanted coupling with the wires’ neighborhoods. More accusatory, one might come to see this
as a sad example of questionable EDA activity: establishing merely academical constraint types due to
their suitability for algorithmic consideration but far from the necessities of reality.

Table 3.3 does not mention whether a routing approach is deterministic or not since this information
is hard to obtain from the respective publications. Even if an approach utilizes a deterministic algorithm
as its basic search engine, some form of randomization may have been introduced such that the overall
behavior is nondeterministic (and thus again a barrier for the required constraining). Although Simulated

42

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

Annealing can be used for routing, most existing approaches resort to other solutions. As the table shows,
there seems to be a trend towards integer linear programming at the moment. This may be due to the fact
that integer linear programming facilitates a constructive routing method with parallel net consideration,
as opposed to a sequential one where the nets are routed one by one. Other parallel or quasi-parallel
routing methods involve hierarchical approaches [79] or rip-up and re-route techniques [80].

Despite such concepts, routing algorithms still do not live up to the difficulties in the analog domain
when multiple nets need to be handled simultaneously. One notorious difficulty stems from the neces-
sity to arrange devices in a highly interdigitated fashion: the problem for the routing is that such an
arrangement entails a lot of wire crossings. In the digital domain, the number of wire crossing can be
greatly reduced in advance by being considered during placement, whereas the need for interdigitation
in analog designs rather exacerbates that problem. As an example, Figure 3.10 shows –only– four inter-
digitated transistors that are to be connected in a crosswise manner. Using a state-of-the-art auto-router,
an error message is displayed saying that the auto-router is unable to perform the desired routing. The
auto-router’s recommendation to let the user try a different interdigitation is apt evidence of the described
dilemma, i.e., having either a good arrangement or good routability – but not both.

Figure 3.10: An auto-router’s inability to connect four interdigitated devices in a crosswise manner.

Equivalent to the strong interdependency between the components’ inner layouts and the placement
(see Figure 3.9 above), a suchlike mutual relationship can also be observed between the component
layouts and their routing. For instance, Figure 3.11 (a) shows a transistor with three separate gate fingers.
Such a transistor usually features a dedicated parameter by which the underlying generator can be told
to connect these gate fingers automatically (b). Although this feature is quite welcome in most cases,
it can also be obstructive for certain routing requirements. Image (c) exemplifies this with a close-up
section from an industrial layout, showing four three-finger transistors connected in a crosswise manner
(as would have been desired in Figure 3.10). In consideration of the antenna affect (already discussed
in the context of Figure 3.8), the transistor gates are connected using only metal1. As can be seen, this
achievement involves an inventive routing solution with unconventional nonrectangular gate extensions
where each gate contact covers only one specific half of the gate. To achieve such a routing, an algorithm
would have to realize the impropriety of the transistors’ own gate connections (b) and turn them off –
hard to imagine how an algorithm could be smart enough for such an accomplishment.

Altogether, the routing task is a splendid example for the practical arduousness of constraint formal-
ization. During design, the human brain’s aptitude for visual thinking often lets a layout expert come
up with inventive routing solutions, which are extremely cumbersome to circumscribe in formal terms,
i.e., as constraints. Even if all these constraints are formally articulated (requisites (1)–(3) in Figure 3.2)
and the routing algorithm is indeed able to find a solution that satisfies all these constraints (requisites
(4)–(6) in Figure 3.2), this proceeding can be kind of perverted when the designer formalizes the expert
knowledge such that it makes the routing algorithm find the layout solution that the designer already had
in mind from the beginning. As long as the drawing effort for realizing that layout solution by hand is
less than the effort for appropriately formalizing the design constraints, an algorithmic routing approach
cannot compete with expert manual design.

43

3. State of the Art - Two Views on Existing Approaches

Figure 3.11: Example showing the interdependency between a component’s layout and the routing.

(4) Combined Placement and Routing

While algorithmic routers may have their merits on higher design levels, they face immense diffi-
culties coping with the layout necessities at device level (as evidenced by the previous examples). And
it is in particular at device level, where the trouble with separating the routing task from the placement
task becomes most obvious. To illustrate this, Figure 3.12 (a) shows eight transistors which have been
placed in a way that pays respect to several matching principles such as alignment, orientation, and inter-
digitation. Image (b) displays a routing solution obtained with a commercially available auto-router. On
the one hand, the routing itself is qualitatively poor due to its asymmetric wire guiding, excessive path
lengths, use of single-cut vias, and disproportionately large area occupation. On the other hand, this in
turn has a negative impact on the matching that had been established before: as can be seen, the transis-
tors have been torn apart and re-oriented by the auto-router. The alternative solution of (c), obtained with
another industry-standard tool, depicts the penalty for keeping the transistors in place: the majority of the
wires run above the transistors (thus violating the Blockage constraint). In contrast, the manual solution
in (d) demonstrates a highly compact routing which succeeds in satisfying both objectives: preserving
the desired placement without leading any wires above the devices.

Figure 3.12: Example illustrating the importance of performing placement and routing in unison.

Although the example of Figure 3.12 underlines the importance of addressing the tasks of placement
and routing in unison, most approaches follow a divide-and-conquer practice of separating the place-
ment task from the routing task. This practice can not only be found in the purely placement-oriented
and purely routing-oriented works discussed above, but also in the host of fully-automatic layout syn-

44

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

thesis tools from around the year of 1990 (see Figure 1.2). Likewise, many such tools from the current
millennium continue this habit of place-and-route.

For example, the ALDAC tool [81] from 2002 first obtains a placement with Simulated Annealing,
and then performs an algorithmic routing (using two metal layers – one for vertical wire segments and
one for horizontal wire segments) which is not further described. The layout system DTA [82] (2004)
also uses Simulated Annealing for the placement task, while the subsequent routing is done via an algo-
rithm merely referred to as a shortest path finding algorithm without providing any details. The SDAPS
approach [83] –also published in 2004– divides the placement into a core-circuit placement (achieved
with an unspecified deterministic algorithm) and a bias-circuit placement (again based on Simulated An-
nealing) and also separates the routing of critical nets (done with the A*-search) from the routing of
general nets (performed via some improved maze routing algorithm).

The LAYGEN system [84] from 2005 employs evolutionary computation for the placement task,
which is then followed by a two-stage routing process where a predefined prototype routing is first
adjusted to the target circuit and then algorithmically optimized via genetic mutations. LAYGEN II [85]
(2012) extends this approach to a fully automatic from-scratch layout generation of the routing in case
no prototype is given; still, the routing process is kept separated from the placement. Together with the
circuit synthesis tool GENOM-POF [86], LAYGEN II has been integrated into the design automation
environment AIDA [87] in 2012.

More interesting are those layout automation approaches which combine placement and routing to
some extent. As an example, the work of [88] (2004) proposes a two-stage placement two-stage routing
technique: a global placement is performed at first via a combination of Simulated Annealing with
evolutionary computation, to be then followed by a detailed placement wherein a minimum-Steiner-tree-
based global routing is done, before finally a detailed routing is obtained through a modified maze router.
Unfortunately, it is not reported which types of constraints this approach is able to take into account,
but the follow-up publication [89] (2006) of that work mentions support for Symmetry and Proximity
constraints during placement.

In [90] (2010), the routing is not really incorporated into the placement but at least considered therein.
The placement engine –again based on Simulated Annealing– is capable of handling Symmetry, Com-
mon Centroid, and Clustering constraints. By taking congestion into account, the placer attempts to leave
sufficient space between the devices with regard to the subsequent routing. Then, the nets are routed one
by one on two metal layers, using a multi-pin maze routing algorithm which is able to perform symmetric
routing. To route two nets symmetrically, one of them is routed first and will then be mirrored to produce
the routing of its counterpart.

A similar approach is provided in [91] (2010), which is dedicated to the issue of device symmetry
and wire symmetry. The proposed placement algorithm considers the Symmetry and Proximity con-
straints and also takes wire symmetry into account during the placement, not only for wires between the
symmetric devices but also for connections with other devices. In contrast to the majority of other works,
the placement is performed with a deterministic algorithm called DeFer [92]. After the placement, the
symmetric routing is obtained with a pattern router or a maze router, although it is conceded that manual
work may be necessary if certain nets are unroutable.

The work of [93] (2013) contributes an automatism for simultaneous placement and routing. The
presented technique consists of two phases: in the first phase, a dynamic-programming-based global
routing via A*-search is performed in conjunction with an integrated packing procedure; in the second
phase, a performance-aware algorithm creates the detailed routing. These two phases are repeated in
a Simulated Annealing optimization loop until the final solution is obtained, taking into account Wire
Width and Symmetry constraints as well as considering the overall direction of the current flow while
minimizing the total wirelength, bend number, and via count.

In [94] (2016), a deterministic mixed-signal layout synthesis approach extending the DeFer algorithm
(see above) is described. The approach can generate various mixed-signal layout solutions through the
integration of routing path planning, detailed placement, and detailed routing during an enumerative
packing based on shape functions and dynamic programming. The packing procedure explores possible
placements and considers Proximity, Symmetry, and Symmetry Island constraints while minimizing the

45

3. State of the Art - Two Views on Existing Approaches

total wirelength and separating analog signal paths from digital signal paths to eliminate switching noise.
The detailed routing is done via wire ordering (to avoid intersecting wires) followed by the application
of a channel router.

Despite the recent advances towards combined placement and routing, these approaches are still far
from mastering all the other problems related to formal constraint consideration as discussed before.
On the contrary, it even seems that performing placement and routing –more or less– hand in hand can
only be achieved at the expense of other sacrifices, e.g., conceding that only few types of constraints are
taken into consideration (compared to the placement-only and routing-only approaches listed in Table 3.2
and Table 3.3). Then again, with the prospective ability to consider many more placement and routing
constraints simultaneously, the other side of the coin is that the troubles wander onto the shoulders of the
user, raising the difficulty to formalize all these constraints in a self-consistent representation that is both
as strict as necessary (to satisfy all design requirements) and as loose as possible (to exploit all degrees
of freedom).

3.1.1.4 Further Topics

To be taken into account by an optimization-based layout automation approach, design constraints not
only have to be algorithmically processible but also need to be available in the appropriate hierarchical
design scope. Thus, apart from the representation and consideration of constraints, the EDA branch of
constraint engineering deals with a couple of further topics briefly outlined as follows:

• Constraint generation denotes the automatic derivation of constraints based on a topological circuit
analysis. For example, this can be achieved by identifying particular subcircuit structures in a given
schematic design, for which the subcircuit-specific constraints can then be generated as done in
[95] or [96].
• Constraint unification is a term used in [97] to denote the formalization of constraints in a uni-

fied, general description format (opposing a self-defined format as found in many other works).
The authors propose a universal and easily extensible constraint semantic based on OpenAccess
[98], an API (application programming interface) for EDA tool integration aimed at providing
interoperability between IC design environments.
• Constraint transformation is the method of mapping an abstract constraint into a more concrete

constraint or vice versa [99]. Thereby, the constraint nature might change, e.g., an electrical con-
straint such as a maximal voltage drop is turned into a physical constraint such as wire length
[100].
• Constraint propagation passes constraints through different levels of the design hierarchy such

that they become available in the respective cell [101]. Especially constraints that form relations
between components in different hierarchical contexts are of pivotal importance here [102]. A
systematic classification of the constraint propagation problem is given in [103].
• Constraint resolution can be used to make logical conclusions on a set of related constraints, which

allows to simplify them, to resolve mutual dependencies, and to discover conflicts. As an example,
the constraint engineering system [104] performs constraint resolution via concepts of constraint
logic programming [105].
• Constraint management is attained with a software architecture that enables the storage, access,

organization, and synchronization of constraints [106]. To keep the constraints up to date and
guarantee their consistency and integrity, a close interaction between the management system and
the design data is required [107].

Although these topics seem to be (and indeed may be) fruitful and beneficial aids for algorithmic con-
straint consideration, they can also be regarded as collateral requisites that are only made necessary by
an algorithm’s dependence on a formalization of the design problem. From that point of view, constraint
engineering largely represents a massive overhead that could be eluded if many constraints are taken into
account in a different –i.e., nonformalized– way.

46

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

3.1.1.5 Optimization Algorithms – Conclusion

In a nutshell, the powerful versatility of optimization-based layout automation is counterpointed by the
need and the difficulty of comprehensively considering all design constraints in a formalized way. The
various problems discussed in this Section 3.1.1 can be summarized and categorized according to the six
requisites in Figure 3.2 as follows:

(1) Semantics:

• Ineptness of turning geometrical conceptions into adequate formal expressions.
• Close interdependency between component layouts and placement requirements.
• Close interdependency between component layouts and routing requirements.

(2) Syntax:

• Lack of syntactical support for articulating the permitted layout variability.
• Missing facilities for specifying necessary, uncritical constraint exceptions.
• Many practically relevant constraints not yet formally describable at all.

(3) Formulation:

• Unreasonably high constraining effort due to inadequate formal constraint types.
• Constraining becomes unintuitive because of nondeterministic algorithmic behavior.
• Auxiliary effort to make constraints available in the current hierarchical context.

(4) Consistency:

• Formal overconstraining hard to detect, leading to unresolvable contradictions.
• Functional constraints and design-methodical restrictions coming into conflict.

(5) Processibility:

• No known approach is able to consider all existing types of formalized constraints.
• Some constraint types are academically interesting but bear no relation to reality.
• Enhancing a specific ability of an algorithm compromises some of its other qualities.

(6) Computation:

• Challenge of considering multiple converse design requirements simultaneously.
• Focus on placement or routing instead of performing both tasks in unison.
• Rejection of acceptable solutions due to marginal constraint violations.

The difficulties with formal constraint handling are further accompanied by the necessity to diminish the
solution space via a simplification of the design problem. This entails a trade-off between the optimality
of the best theoretical solution and the algorithm’s ability to find that theoretical optimum. All these
considerations illustrate why pursuing purely optimization-based automation alone is far from able to
cope with the More than Moore complexity of analog layout design.

However, one should not come to think that such approaches are of no avail – they have just been
devised as “universalists”: an optimization algorithm can be versatilely applied to various circuit classes,
but concedes losses in terms of layout quality. Thus, the bottom line for this work is to take advantage of
that versatility while countervailing the qualitative shortcomings of optimization-based approaches with
other automatisms. This intention reaches out to Section 3.1.2 about procedural generators.

3.1.2 Procedural Generators

In layout design, a procedural generator is a parameterized design entity defined by two things: a specifi-
cation of its supported input parameters and a script-like, successive command sequence that implements
its functionality. As indicated in the User View of Figure 3.13, most of these commands are simple de-
sign operations (e.g., draw, copy, move) reflecting the duties of manual “polygon pushing”. In action, a
procedural generator takes a set of user-given input parameters (more precisely: parameter values) and
follows the sequence of commands to produce a customized layout result for a specific design com-
ponent. That result is namely an output of polygons whereas (in contrast to optimization algorithms)

47

3. State of the Art - Two Views on Existing Approaches

the cognitive layout solution is not found at runtime, but was preconceived by the design expert who
implemented the generator (see EDA View).

Formalized
Layout Design

Knowledge

Design Expert

C
o

m
m

a
n

d
S

e
q

u
e

n
c

e

Expert's Best Practice
Legacy Know-how

Layout Solution

Nonformalized
Layout Design

Knowledge

Parameters
parse parameters...
create groups...
draw shapes...
copy shapes...
move shapes...
place vias...

Layout
Result

...
...

Procedural Generator

Implicit
Constraint Consideration

EDA
Expert

Develop ment of
flows into

deter-
mines Generator

Development
Tool

imple-
ments

accelerates

creates

Designer

User View

fed tosets

EDA View

advises

uses

Problem-specific

Figure 3.13: Working principle of a procedural generator.

Before addressing the EDA View of Figure 3.13 in the remainder of this chapter, Section 3.1.2.1 first
discusses some important fundamentals of procedural generators.

3.1.2.1 Discerning Masters and Instances

As is the case with ordinary library components (see Section 2.1.3), procedural generators are usually
also made available as cells –which can be used by being instantiated– and are thus commonly referred to
as parameterized cells (PCells). In that regard, a subtle distinction should be made between the generator
itself, which is called the master, and its concrete instantiations in the design, which are denoted as
instances. Formally, a procedural generator can be defined like a mathematical function g:

g : X → Y, (3.1)

x 7→ y. (3.2)

In that notation, where g can be considered as the behavior of the generator, equation 3.1 represents the
master and equation 3.2 represents an instance. The domain X (domain in the mathematical sense) is
given by the set of input parameters supported by the generator. For a set I = {I1, I2, . . . , In} of n input
parameters, the generator’s domainX is the Cartesian product of the individual parameters’ domains DI :
X = DI1 × DI2 × · · · × DIn .

The codomain Y depends on the type of the generator, which is not necessarily a layout generator
but can for example also be a circuit generator that is able to create a schematic circuit. In the latter case,
Y can be denoted as S (the universe of schematic circuits), in the former case as L (the universe of layout
designs). The mathematical image g(X) of the procedural generator is always a subset of that codomain:
g(X) ⊂ Y . When being instantiated, the generator takes x, which is a set of parameter values, and
produces y = g(x), which is a circuit or layout contained in that image, i.e., y ∈ g(X). The question of
how the generator is able to handle design constraints thereby, will now be addressed in Section 3.1.2.2.

3.1.2.2 Constraint Handling

Apart from design automation, one other major approach to increase design productivity is re-use. How-
ever, the re-use of existing, handcrafted layouts is impeded by several reasons: (a) circuits are too
application-specific, (b) small circuit modifications heavily impact the layout, (c) the semiconductor
technology may change, and (d) the shape of the layout doesn’t fit into the available space. The common
problem behind all these reasons is basically the same: a fix layout has no degrees of freedom [7]. Hence,
re-using such fix layouts inevitably requires manual adjustments, which often leads to an unsystematic
and unmanageable proliferation of layout variants.

48

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

Procedural generators resolve this problem through parametrical generalization and thus naturally
combine the two main efficiency-raising measures available in analog layout design by facilitating au-
tomation through re-use. In that manner, the re-use occurs on a higher level of abstraction since it is not
achieved by simply duplicating a singular layout, but by imitating a human expert’s design procedure
of engineering such a layout. This augments the copy-paste fashion of layout re-use to a more sophisti-
cated form of re-using expert knowledge – which inherently includes the consideration of crucial design
requirements. That merit already holds good for primitive devices, but becomes even more adjuvant
regarding generators of entire modules.

So, although a procedural generator “only” replicates a layout expert’s best practice, it represents an
effective instrument to capture practical know-how in a straightforward automatism, utilizing a design
team’s legacy portfolio of IC projects as a valuable resource of field-tested, silicon-proved layout solu-
tions. While the input parameters of a procedural generator can be regarded as formalized layout design
knowledge allowing to customize the generator’s output for a specific design problem (see User View in
Figure 3.13), the automatism in itself already contains an essential amount of layout design knowledge
in a nonformalized way since the layout solution was preconceived in advance (see EDA View in Fig-
ure 3.13). This trait gives procedural generators the advantageous ability to consider design constraints
implicitly, i.e., without the need to formalize them.

As an example, Figure 3.14 (a) shows an instance of a procedural generator creating a Differential
Pair layout for two transistors A and B. Thereat, the generator implicitly takes care of all requirements
that are crucial to achieve a highly accurate two-dimensional matching without having been explicitly
told to do so. As discussed in Section 3.1.1.2, these can be divided into placement constraints and routing
constraints:

• Placement:

– the two transistors are interdigitated by being split into a cross-coupled AB/BA array of four
devices (also known as a so-called Quad layout),

– the devices are identical and are aligned according to a common centroid arrangement,
– each device is flipped in a different way such that they are all oriented symmetrically to the

overall center point,
– the placement is highly compact, i.e., vertically the devices are placed as close as possible

while preserving sufficient space for lateral wires, and horizontally the devices are abutted
such that they even share their bulk pins to save space.

• Routing:

– all routing wires run alongside the devices and thus not on top of them,
– only two metal layers (metal1 and metal2) are utilized for the entire routing,
– the overall routing scheme effectuates electrical symmetry and homogenous wire density,
– every employed via has two clearance holes, i.e., no single-cut vias are used.

Notwithstanding the implicit consideration of all these constraints, one should observe that the routing of
the transistor gates in the layout of instance (a) includes horizontal metal2 wires. For some semiconductor
technologies this is not a problem, but for others it is critical regarding the already mentioned antenna
effect. On this account, the generator provides a parameter by which the routing can be switched into
an alternative variant exemplified in instance (b). Here, the transistor gates are automatically connected
using only metal1, following the inventive manual routing solution with nonrectangular gate extensions
known from Figure 3.11 (c).

Beside such powerful abilities in terms of constraint consideration, procedural generators go strong
regarding several other aspects that have been identified as weaknesses of optimization algorithms in
Section 3.1.1. Above all, Figure 3.14 demonstrates the natural ability of procedural generators to create
layouts wherein devices are simultaneously placed and routed. Furthermore, procedural generators elude
the need for an abstract mathematical problem modeling and design-methodical standards. Likewise,
neither runtime nor randomness are an issue because the execution of the generator’s command sequence
proceeds fast and deterministic without resorting to heuristics.

49

3. State of the Art - Two Views on Existing Approaches

Figure 3.14: Instances of a procedural generator, creating a cross-coupled Differential Pair layout.

All these assets are based on the fact that every procedural generator targets one specific type of
design component. Apart from primitive devices, procedural generators are particularly expedient for
automating simple modules as defined in Table 2.1, i.e., basic circuits with high regularity in the lay-
out (as is the case in Figure 3.14) for which feasible layout solutions are well-known from years of
practical experience. This is why procedural generators are of much greater interest in industry than in
academia, which in turn explains why –in contrast to optimization algorithms– the amount of publica-
tions on generator-based approaches is rather small. Beside the procedural generators themselves, a more
elementary issue is the question which programming languages can be used for their implementation, as
is about to be covered in Section 3.1.2.3.

3.1.2.3 Generator Programming Languages

In terms of computer science, one can distinguish between (1) general-purpose languages without partic-
ular support for generator programming, and (2) domain-specific languages [108] that have been specif-
ically developed for that purpose.

(1) General-Purpose Languages

Today’s semiconductor industry is dominated by the three IC development frameworks of the three
market-leading EDA companies, and each of these frameworks features its own general-purpose lan-
guage that can be used for generator programming.

Mentor Graphics’ Pyxis Custom IC Design Platform provides AMPLE (Advanced Multi-Purpose
LanguagE), a C-like scripting language which enables the coding of parameterized cells. In the Galaxy
Design Platform by Synopsys, the interpreted high-level programming language Python is used for the
implementation of so-called PyCells. The Cadence Virtuoso design environment has the proprietary
scripting language SKILL3 for PCell development [109]. SKILL is based on the functional programming
language Scheme, which itself is a dialect of the list-based programming language Lisp. SKILL has also
been extended into another dialect called SKILL++ in order to support object-oriented programming.

SKILL-based PCells can be converted into Python-based PyCells using the programm Sk2Py [110].
Through the plug-in mechanism of OpenAccess it is also possible to include procedural generators writ-
ten in C++ [111].

3SKILL is not an acronym – it is a name.

50

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

(2) Domain-Specific Languages

Domain-specific languages for generator programming have already come up in the 1970s, but only
a few selected works shall be outlined here. With STICKS [112] (1978), a design component can be de-
scribed as a symbolic stick diagram which is then compiled into a DRC-correct mask layout. Layla [113]
(1985) is a Pascal-based language for the description of hierarchical technology-independent layouts,
which is able to translate an existing layout into a Layla program. This design by example methodology
can also be found in the interactive approach of [114] (1990), where annotations in a handcrafted layout
allow to specify instructions for the parameterized module generator that is produced from that layout.
The approach also supports the creation of circuit generators able to create transistor-level schematics.

With the concept of [115] (1992), a parameterized cell can be obtained from a fix example layout
in a graphical way through the definition of stretch lines, repetition groups, and conditional inclusions.
The work of [116] (1998) presents the description language MOGLAN and provides a graphical user-
interface (GUI) for writing, translating, executing, and debugging module generators. A comprehensive
survey of generator description languages and concepts from before the year 2000 is given in [117].
After that time, the charm of graphical generator development support has directed EDA attention from
programming language concepts towards the realization of professional generator development tools
(Section 3.1.2.4). Still, a domain-specific language can serve as the intellectual foundation for a graphical
tool – an idea that has also been employed in the context of this work (as will be covered in Section 8.3).

Figure 3.1 indicates that graphical generator development tools are favored over mere domain-
specific languages since they can accelerate the implementation of procedural generators more effec-
tively. And as will be seen in Section 3.2.3, providing such tools to capture a design expert’s layout
knowledge also represents one essential stepping stone for the automation philosophy behind this thesis.

3.1.2.4 Generator Development Tools

The following works are professionally implemented generator development tools, most of which are
offered by corporate EDA vendors as commercially available software products. Such tools are meant to
simplify the programming of circuit and layout generators by fostering the development of parameterized
cells through design experts, providing graphical programming facilities to relieve these design experts
from the burden of textual codification effort.

Freescale’s PCell Compiler [118] is referred to as an apparatus that interprets a so-called structure
layout and compiles a parameterized cell from it. Apart from determining and analyzing shape rela-
tionships in the structure layout, this method creates links between related shapes and maps them into
a shape tree wherein dimension properties of related shapes are automatically calculated via shape gen-
eration functions. The approach is implemented as a computer program product, but no information is
given about any GUI support.

The IPGEN 1Stone Developer [119] is part of the 1Stone tool set that enables the implementation
of parameterizable layout generators based on a generic engineering model (GEM). The methodology
allows to interactively design these generators –denoted as analog IP (intellectual property)– based on
GEM code, with support for development, execution, testing, and verification. Through a virtual-grid
symbolic layout principle, where all technology-related data is represented via variable design rules, the
analog IP is technology-independent. Circuit generators can also be created with 1Stone.

SpringSoft’s Laker Custom Layout Automation System [120] facilitates parameterized generators
denoted as user-defined devices (UDDs). Layout shapes can be imported into a UDD script and then
be equipped with “constraints” that apply certain “procedures” to the shapes (e.g., an Align constraint
calls an Align procedure). The development of an UDD is largely menu-based, but some graphical (i.e.,
layout-based) programming is also supported. For example, the edges that are to be aligned with the
Align procedure can be directly selected on the layout shapes.

The HiPer DevGen (High Performance Device Generator) [121] by Tanner EDA is a generation
engine that automatically creates the layout of primitive devices and simple modules, based on design
inputs, matching requirements, and manufacturing design rules for the specific semiconductor technol-
ogy. It is not reported, inhowfar HiPer DevGen supports the development of custom generators. HiPer

51

3. State of the Art - Two Views on Existing Approaches

DevGen is built upon Tanner’s existing T-Cell architecture of parameterized cells, which provides some
utilities for T-Cell programming. This is done by drawing layout shapes and configuring operations that
are applied to these shapes using StretchPort lines and RepeatGroups.

AnaGlobe’s Geometric Object Layout Formula (GOLF) [122] is an OpenAccess-based layout editor
that features an interoperable PCell design environment. It facilitates the creation of hierarchical lay-
out generators based on the composition of layout components whose attributes can be parameterized
through the hierarchy. Power is added to the generators via a set of predefined geometrical operations,
while new ones can be specified by writing own code in C++, Python, Perl, or the tool command lan-
guage TCL. The GOLF design environment also offers functionalities for previewing, debugging, and
documenting the PCell that is currently being developed.

Ciranova PyCell Studio [123] is a group of tools that use a special Python API for the development
of PyCells. The tools comprise a layout viewer, a Python shell programming environment, an integrated
development environment (IDE) with debugging capabilities, and a plug-in for OpenAccess. Since the
Python language supports object-oriented programming, the methods of the Python API are organized
in classes that include shape and instance classes, design classes, technology classes, geometric classes,
utility classes, connectivity classes, and classes for higher-level functions such as contact rings. However,
the IDE does not support graphical programming, so the PyCell development occurs through purely
textual coding.

The Berkeley Analog Generator (BAG) [124] is an integrated framework for the development of cir-
cuit and layout generators in Python. It uses the Python API and the IDE of PyCell Studio and provides
own helper classes (collections of template architectures and design routines) to ease the generator pro-
gramming. For layout-related functions, these helper classes are referred to as layout styles. An example
is the Array layout style, where an array of unit cells is generated according to a certain interdigitation
pattern. The Array class can also be used to create flexible circuit structures such as a resistor string
Digital-Analog Converter (DAC) with a variable number of bits. While BAG does not feature further
development facilities in terms of graphical programming, its particular asset is that it addresses all steps
of the design flow from testbench creation and circuit simulation to physical verification and extraction.

Fraunhofer’s IIP Framework (IIP: Intelligent Intellectual Property) [125] provides an abstract pro-
gramming interface –again based on Python– which can be used for developing object-oriented circuit
and layout generators. A unique feature of the framework is that these generators can not only be de-
veloped in a highly technology-agnostic manner, but that they are also independent from the design
environment. To employ the generators in a specific design environment, it is therefore necessary to
implement an appropriate low-level interface which is able to access the respective design database via
interprocess communication (currently, interfaces for the design environments of Cadence and Synopsys
already exist). Another subtlety in that regard is that the generators are in fact not created as parameter-
ized cells, but that they produce persistent library cells. Apparently, the IIP Framework neither comes
with a GUI, nor does it enable graphical generator programming.

Cadence PCell Designer [126] is a layout PCell development platform based on an industrial in-
house methodology conceived at Bosch [127]. The PCell Designer GUI facilitates an advanced graphical
PCell programming approach that consists of three windows shown in Figure 3.15. The (1) drawing
window allows to draw layout shapes and to instantiate layout devices. These can be imported into
the (2) command window where sophisticated GUI support helps to specify geometrical, arithmetical,
logical, and other operations within a structured command tree that defines the execution flow of the
PCell. The result of the PCell evaluation can be instantaneously previewed for any number of PCell
samples instantiated in a (3) rendering window. Apart from debugging, documentation and deployment
capabilities, PCell Designer enables

• working with hierarchically nested groups of shapes and subinstances,
• halo-crossprobing between the command window and the two layout windows,
• deriving PCells from other PCells in an object-oriented manner of inheritance, and
• articulating complex geometrical expressions with a dedicated geometry query language.

Although the beginnings of analog EDA date back to the 1980s, the history of professional generator
development tools is not older than this millennium and still gains momentum. This observation reflects

52

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

 1 Drawing Window

Command
Window

 3 Rendering Window

2

Figure 3.15: The three windows of the PCell Designer tool [126]: (1) drawing window, (2) command
window, (3) rendering window.

a change of mind in EDA, encouraged by the insight that the practical benefit of procedural generators
has not yet been exploited to the full degree. To do so, the biggest leverage is brought to bear by the
advancement towards graphical generator programming concepts, letting designers automate their design
routines in a straightforward way that hardly deviates from their daily business. This underlines the value
of a designer’s expert knowledge for analog layout automation.

Apart from graphical programming, the tools described above show that there are many other av-
enues for improving generator development (supporting both layout and circuit generators, hierarchical
PCells, object-orientation and inheritance, technology-independence, design environment interoperabil-
ity, export and import of IP, debugging and verification, etc.). The other side of the coin is found in the
difficulty to meet all these opportunities with one single tool and to exploit all of them in practice without
getting entangled in the details.

Even though significant progress in these directions is still expected to be made by further work
on generator development tools, this can in the end “only” lower the implementation effort but does
not exempt the generator developer from the duty to preconceive the generator in its entire variability
and anticipate all design constraints in advance. Without overcoming that burden, the development of
procedural generators reaches an inevitable limit as soon as advanced modules (in the sense of Table 2.1)
are tackled. This obstacle is substantiated by implemented generator examples published in recent years,
as follows in Section 3.1.2.5.

3.1.2.5 Implemented Generator Examples

Publication [128] presents a layout generator for a fully differential Operational Amplifier with folded
cascode and class AB output stage. It consists of simple modules (again as defined in Table 2.1) which
are assembled according to a street principle adapted from the structure of digital standard cells. A fix
height –which can be specified through a parameter– is used for all of these modules while their width
depends on the dimensions of their internal devices. The modules are positioned side by side across two
lanes with their interconnections being drawn above, below, and in between the lanes. The generator
has been developed with the 1Stone Developer tool. Also shown is an example of migrating another
amplifier layout to a different semiconductor technology, but it is not made clear inhowfar that amplifier
layout has been implemented as a generator.

53

3. State of the Art - Two Views on Existing Approaches

In [129], a Current Mirror layout and a Capacitor Array layout is shown, produced via layout genera-
tors that facilitate interdigitated device arrangements. Furthermore, a layout generator for a single-ended
Operational Amplifier is presented. Three different variants with different layout arrangements are de-
picted, but no precise information is given about the total variability of the generator. Finally, three
different layouts for a single-ended single-stage Analog-Digital Converter (ADC) are depicted, as cre-
ated by a dedicated generator. Regarding variability, again it is not reported how and to what extent
the layout arrangement can be customized through parameters. The authors also mention the realiza-
tion of circuit generators and hint at the implementation of parametric behavioral models within these
generators. As above, the 1Stone Developer tool has been used for the generator development.

The approach of [130] provides a layout generator tool aimed at creating matrix-like layouts for
analog basic circuits and arrays of passive devices. With a particular focus on device interdigitation,
the tool consists of a pattern generator module for the automatic proposal of interdigitation patterns, a
placement module able to construct an array of devices based on such an interdigitation pattern, and
a routing module which facilitates different routing styles and variable wire widths. The creation of
guardrings and dummy devices is also supported, but no further details are given about these features,
nor about the implementation of the generator tool. Layouts for a Differential Pair and a Switched-
Capacitor Integrator circuit are shown as examples.

Extending the work of [131], a highly flexible Current Mirror PCell has been developed in the scope
of this thesis and presented in [132]. The immense variability of the PCell –created with Cadence PCell
Designer– is attained by supporting a comprehensive set of degrees of freedom, which are:

• multiple topologies (simple, cascode, wide-swing),
• various transistor types (NMOS, PMOS, . . .),
• arbitrary device sizes (width, length, fingers, . . .),
• free scalability (number of devices, number of outputs),
• user-specified current mirror ratios (1:1, 2:3:4, . . .),
• multi-row interdigitation (AB/BA, ABA/BAB, . . .),
• different routing styles (symmetric, compact, . . .),
• detailed layout settings (spacings, wire widths, . . .).

Since it is neither possible nor practical to cover all degrees of freedom, finding the most profitable trade-
off between parametrical customizability and PCell development effort is one major issue in this context.
The PCell examples given in [132] represent only a marginal fraction of the total variability that is being
covered. This demonstrates the respectable magnitude of functionality that can already be achieved with
procedural generators for simple modules like this Current Mirror.

However, one has to realize that the development of such a module profits from the regularity in its
layout arrangement and the identity of its internal devices. This means that many parameters (e.g., the
device type or the device size) do not affect the essence of the resulting layout. Figuratively, it can be said
that –for example– changing the number of devices only scales the layout in a kind of “linear” way since
it adheres to the same generator behavior. In contrast, supporting different topologies is more disruptive
because it typically requires an implementation of separate branches in the generator code. Yet, this is
not problematic if only a small and finite set of topologies has to be covered, as is usually the case.

The situation is entirely different with advanced modules and larger blocks due to the irregularity in
the arrangement of their submodules. This entails much more layout interdependencies between these
submodules and thus blows up the generator’s variability in a “nonlinear” way. To give an example, one
may consider an advanced module such as in Figure 3.16 (a), consisting of ten simple modules (named
M1 to M10). With a different sizing of the devices in module M1, the overall module constellation would
not fit that well (b). Thus, making the layout more compact either asks for (c) a complete re-arrangement
of all modules to eliminate dead space, or (d) turning some modules into another layout variant if the
overall arrangement is to be maintained, e.g., due to certain placement constraints, or (e) both changing
certain module variants and re-arranging the modules, e.g., to obtain a desired aspect ratio.

This example illustrates a fundamental problem: anticipating such contingent, application-dependent,
high-level constraints (as opposed to the obligatory, type-specific, low-level constraints of simple mod-
ules) virtually compels a generator developer to preconceive the entire variability of the generator in

54

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

M1
M2

M3M4

M5 M6 M7

M8 M9
M10

M1

M
2

M3

M4

M7

M8 M9

M
10M

6

M
5

M2
M3M4

M5 M6 M7

M8 M9
M10

M1

M2
M3

M4

M7

M8 M9

M1

M5 M
6

M10
M1

M4

M
8 M2

M3

M7

M10 M9

M6

M5

(a) (b)

(c)
(d)

(e)

Advanced Module with
Ten Simple Modules

Different Sizing of the
Devices in Module M1

Re-Arrangement of the Modules Alternative La yout Variants
of Certain Modules

Alternative Layout Variants
and Re-Arrangement

of the Modules

M

M

M

Module

Rotated Module

Alternative Layout
Variant of Module

Figure 3.16: Example showing the major degrees of freedom in the variability of an advanced module.

advance. The irony herein is that although such a constraint diminishes the potential solution space in
the concrete case, it prevents a reduction of the solution space that is to be covered by the generator
(and implemented by the generator developer) because the concrete case –and thus the prospective set of
constraints– is not known at the time of development. Hence, the generator has to be prepared in advance
for all possible situations that might be encountered during design.

In general, the variability of an advanced module consisting of several submodules must be able
to cope with three basic requirements: (1) the device sizing given by the schematic circuit, (2) potential
constraints for the positioning of the submodules, (3) the contour and size of the layout space available for
the module, e.g., imposed by a Fixed Outline constraint. These requirements correspond to three major
degrees of freedom that have to be supported by the module generator in accordance with each other:
(1) different dimensions of the submodules due to all possible device sizes, (2) different arrangements of
the submodules in all possible constellations, and (3) different layout variants of the submodules in all
possible permutations.

With these degrees of freedom, the combinatorial growth quickly becomes immense: while the num-
ber of layout variants that need to be preconceived for the implementation of a simple module is discrete
and finite, the variability of an advanced module is effectively continuous and infinite. So, this small
step from the level of simple modules to the next higher level of advanced modules already is so drastic
that the problem complexity escalates to an extent which defies a purely generator-based automation
approach. This statement is backed up by the observation that the published examples of such advanced
modules (e.g., the Operational Amplifier of [129] and the Switched-Capacitor Integrator circuit of [130])
do not mention which degrees of freedom are being covered in total so it can be assumed that only a small
subset of the potential variability is supported. Just as well, reducing the degrees of freedom by sticking
to a standard-height row-based placement as in the street principle of [128] is no feasible solution. So
far, no attempt at establishing such “analog standard cells” has achieved evident success in practice.

In the end, it should be remembered that optimization algorithms find it particularly difficult to cope
with the interdependencies between component layouts, placement and routing at device level (see Sec-
tion 3.1.1.3) whereas these issues can be effortlessly mastered by procedural generators (Figure 3.14).
On the other hand, procedural generators struggle with the interdependencies at module level when it
comes to cover the immense variability stemming from the possible device sizings, different arrange-
ments, and alternative variants of the modules (Figure 3.16) – a challenge where optimization algorithms
score with the versatility of their self-intelligent solution finding. This exemplifies that the strengths of
the two automation strategies may enrich one another, which fortifies the approach of this thesis.

Another strength of generator-based automation is elaborated in the work of [133]. It proposes a tech-
nique for the construction of procedural generators that are capable of producing layouts with 45-degree

55

3. State of the Art - Two Views on Existing Approaches

polygons. The geometric structures are described in a format called parameterized Caltech intermediate
form [134] and an example of a parameterized two-turn octagonal spiral inductor is given. Drawing
45-degree layout structures is an ability scarcely found in algorithmic approaches (two exceptions being
the routers of [135] and [136]). However, this ability can play an important role for certain applications,
e.g., for the creation of transmission lines with 45-degree bends in high frequency designs (having the
advantage that their electrical behavior, in contrast to that of right-angled bends, does not have to be
especially simulated).

As already mentioned, a perennial issue in the context of procedural generators is how to conveniently
migrate a procedural generator to a different semiconductor technology. This desire feeds the incentive
to implement such generators as technology-independent as possible. For that purpose, the work of [137]
proposes a generator programming interface based on a technology abstraction layer where technology-
specific parts are separated from the (topo-)logical parts of a generator implementation. Another idea is
presented in [138], where an abstract placement graph is extracted from the generator code at runtime and
then utilized in a post-processing step to resolve technology-related layout issues according to a library
of critical layout structures, without the need to change any line of code. Still, technology-dependence is
often cited as a soft spot of procedural generators.

A preliminary work for this thesis has been done in [139]: Figure 3.17 shows a “Pad-over-Active”-
aware PCell, where a bondpad area can be manually defined by mouse. The area is passed to the PCell
as a pointlist and then processed in order to adjust the generated layout such that only the part of the top-
level routing that belongs to the bondpad’s net runs below the bondpad area (as can be seen in the image,
the routing finger in the middle –which belongs to another net– is shortened thereby). A generalization
of this concept is known as fluid shapes and facilitates an arbitrary shaping of complex layout structures
such as guardrings. An example of a fluid guardring PCell is displayed in [140]. The basic idea behind
this approach (i.e., encapsulating complex data in a single parameter) is not necessarily limited to such
structures but can be extended to consider a PCell’s entire neighborhood. For example, in [141] a set
of layout devices is turned into a parameter value and passed to a PCell which re-creates the devices
internally, measures their pin positions and generates an appropriate routing.

rectangular bondpad
area, manually de-

fined by mouse

area information
passed to the PCell

automatic adaptation
of the routing inside

the layout PCell

"Pad-over-Active"-aware

Power-LDMOS
Layout PCell:

Figure 3.17: “Pad-over-Active”-aware PCell which processes geometric input (adapted from [139]).

That idea is also utilized and even further enhanced in this thesis to break up the seclusion of a pro-
cedural generator which results from being an enclosed library component and isolates every generator
instance from its layout context. For a primitive device, this isolation is welcome, leaving the device’s
predefined set of input parameters as a dedicated interface for controlling the device generator. How-
ever, this interface represents a real obstacle for an advancement towards higher-level modules, making
it difficult to feed more complex data into a generator instance and missing the chance to get valuable in-
formation out of such an instance. This detriment not only bars the user from customizing the instance’s
contents in a convenient way, but also precludes the implementation of more sophisticated concepts such
as a multilateral communication between different instances.

Since this thesis concentrates on layout design, circuit generators are of rather little interest here.
However, they can play a vital role for a seamless inclusion of layout generators into the design flow.
This is because most SDL functionalities such as Generate from Source, crossprobing, and symbolic

56

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

LVS checking rely on a strict correspondence between schematic components and layout components.4

Hence, to maintain a seamless SDL design flow, a module generator in the layout asks for a corresponding
counterpart on the schematic side [142], and this is where circuit generators come into play.

Unfortunately, publications on circuit generators are rare. The work of [143] uses SKILL to im-
plement a parameterized multi-conductor transmission line with a variable number of pins, as well as
a buffer component of changeable buffer type. The authors point at the combinatorial amount of com-
ponent variants that would have to be provided if no parametrization was utilized – the involved design
effort, maintenance overhead, and hampered usability is obvious. In [144], an example of a SKILL-
based inverter is presented, employing parametrization to create multi-fingered subtransistors via dis-
crete devices, thus achieving more accurate simulation results through a more realistic consideration of
parasitics.

For SDL design flow reasons, [145] provides a Current Mirror circuit PCell to accompany the layout
PCell shown in [132]. Of course, the circuit PCell covers several topologies with the same extent of
variability as its layout counterpart. Inventive means to edit-in-place and flatten instances of the circuit
PCell are also demonstrated: the former enables an editing mode where subtransistors of an instance
become temporarily accessible to enact modifications, the latter dissolves the instance by replacing it
with its internal circuitry. In this context, it should be noted that a circuit PCell is in fact a pair of two
PCells: a schematic PCell that generates the topological structure of the circuit, and a symbol PCell that
describes its interface (pins, terminals) and visual appearance.

The topic of schematic and symbol PCells will again be picked up in Chapter 9 –for the incorporation
of the developed automation methodology into the design flow– while the rest of this thesis remains
focused on layout design.

3.1.2.6 Procedural Generators – Conclusion

As a résumé, the trait of targeting a specific circuit class gives a procedural generator the natural ability to
take intricate design constraints into account in an implicit way, eluding the necessity to formalize them.
Hence, a parameterized cell can –opposite to an optimization algorithm– be regarded as a “specialist”: it
is able to produce layout results in full-custom quality, but despite the degrees of freedom it may offer, it
is limited to a particular family of closely related circuit variants. In summary, the assets of procedural
generators are:

• Re-use of expert knowledge on a higher level of abstraction.
• Variability is directly realized through the generator parameters.
• No demand for constraining and thus no risk of overconstraining.
• Ability to perform both placement and routing simultaneously.
• No need for problem modeling, design-methodical restrictions, or heuristics.
• Deterministic (even predictable) behavior and fast runtime.

As has been illustrated in this Section 3.1.2, procedural generators are suitable for automating simple
modules. However, they already drop the ball when proceeding to the next higher level of advanced
modules, obstructed by a couple of hindrances:

• Necessity for preparatory generator specification work, with the difficulty to determine the best
trade-off between parametrical customizability and implementation effort.
• An efficient generator implementation relies on dedicated tools covering several concepts (e.g.,

graphical programming, support for hierarchy, object-orientation, geometrical operators).
• Additional overhead is required to make a generator as technology-independent as possible.
• Implicitly considering potential constraints that are not yet known during generator development

relies on explicitly preconceiving and implementing the generator’s entire variability in advance.
• The variability of an advanced module is effectively continuous and infinite, rooted in the close

interdependencies between all possible device sizes, arrangements, and layout variants of its sub-
modules.

4Even though auxiliary constructs such as a one-to-many or many-to-one mapping between schematic and layout exist,
hierarchical breaks of that kind are a constant source of trouble.

57

3. State of the Art - Two Views on Existing Approaches

• Conventional parameter interfaces are a bottleneck for the transfer of more complex information
(e.g., geometrical data) into, out of, and between generator instances.
• A seamless inclusion of layout generators into the SDL flow requires the implementation (and

consequent usage) of corresponding circuit generators.

By now it should have been credibly shown how hard it is to get ahead with analog layout automation
using either optimization algorithms or procedural generators. So, what about other approaches which
incorporate both algorithmic and procedural aspects (Section 3.1.3)?

3.1.3 Other Approaches

This section is supposed to point out that all existing layout automation approaches basically belong
either to the category of optimization-based approaches (Section 3.1.1) or to the category of generator-
based approaches (Section 3.1.2). Although some layout automation tools look like hybrid approaches,
on closer examination they always reveal a distinct emphasis on one of the two automation strategies and
the respective manner of constraint consideration, which is either explicit or implicit.

As an example, one may contemplate the ModGen tool [146], that is meant to assist designers in
the placement and routing of device groups which constitute simple modules. Regarding the placement,
ModGen helps the designer by aligning all devices in a regular array, according to an interdigitation
pattern that the designer provides via a dedicated pattern editor. As helpful as that may be, it is merely
an editing aid that does not implicitly consider any placement constraints. The subsequent routing is
performed with a traditional algorithmic auto-router. If routing constraints are to be considered, they
need to be formally entered into an associated constraint manager GUI. Thus, the ModGen tool is plainly
geared towards a purely explicit consideration of constraints.

Surely, most optimization-based placement approaches utilize procedural generators for components
on the lowest design levels, and some of those approaches such as [147] even acknowledge that cer-
tain low-level duties like interdigitation should be handled by these generators rather than through an
algorithmic consideration of explicit placement constraints. However, this understanding remains unsat-
isfied if the generators fall short of covering the required parametrical variability or if the optimization
engine fails to exploit that variability to the full extent. And indeed, contemporary optimization-based
approaches can only be observed to employ fairly trivial generators, so the workload –and more impor-
tantly: the constraint handling– clearly lies on the shoulders of the algorithm instead of being equitably
apportioned between the algorithm and the generators.

In addition to such constraint-driven automation approaches, [148] identifies two other layout syn-
thesis methodologies: (1) layout migration with retargeting, and (2) layout synthesis with knowledge
mining.

The former methodology produces a new layout based on an existing legacy layout from a different
semiconductor technology instead of creating the whole layout from scratch. This is done by extract-
ing a symbolic template from the legacy layout to deduce placement and routing constraints from that
handcrafted layout solution. Then, the layout is reconstructed in the new technology and optimized via
compaction techniques that try to maintain the deduced constraints. Examples are given in [149], [150],
[151], and [152].

Because this methodology is limited to a strict preservation of the circuit topology (except [153],
which allows for certain variations), layout synthesis with knowledge mining investigates an entire repos-
itory of legacy circuits and layouts. By analyzing these legacy designs, a knowledge database is auto-
matically filled with constraint information about subcircuits of the legacy designs. During synthesis,
this information can then be applied to corresponding subcircuits of the new design, as done in [154] and
[155] for example.

Although these two template-based methodologies aim at incorporating existent design expertise into
the algorithmic layout creation, they do not facilitate the kind of re-use achieved with procedural genera-
tors (see Section 3.1.2.2). Instead, the informal expert knowledge contained in a given layout is extracted
and translated into a formalized representation of constraints. This formalized expert knowledge is then
passed to an algorithmic optimization engine to be processed in a conventional, purely explicit fashion.

58

3.1 A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators

Most algorithmic works in analog layout automation pursue the canonical way of optimizing a sin-
gle candidate solution (see Figure 3.1), but there are also approaches that operate on an entire pool of
candidate solutions. Such approaches constitute the branch of population-based optimization and one
prominent technique of that branch is evolutionary computation [156], which has already appeared in
Section 3.1.1.

Evolutionary computation is a subfield of artificial intelligence that puts forth algorithms inspired
by Darwinian principles of evolution. As an example, the work of [157] employs a genetic algorithm
for analog module placement, while the placement approach GASA [158] combines a genetic algorithm
with Simulated Annealing, which was utilized in the work of [88]. A couple of other approaches that
make use of evolutionary computation have also been referenced already ([38], [74], [84]).

Another popular technique among population-based optimization approaches is represented by meth-
ods of swarm intelligence [159]. Two widely recognized types of such so-called swarm algorithms are
known as Ant Colony Optimization [160] and Particle Swarm Optimization [161], both of which have
been applied in the floorplanning approach of [40] (see Table 3.1). In [162], a modified Particle Swarm
Optimization algorithm is used for the area optimization of a two-stage amplifier.

Apart from these population-based approaches, only few other concepts from the field of artificial
intelligence have also been considered in analog layout automation. As an example, [163] investigates
the use of artificial neural networks for module placement while [164] presents a floorplanning approach
based on a neural learning algorithm. Fuzzy logic, despite its application to many different problems, has
been of almost no interest for layout design so far, the placement approach of [165] being one exception.
Compared to layout automation, a much richer spectrum of optimization techniques has been employed
for circuit sizing [166], including Ant Colony Optimization [167] and Particle Swarm Optimization
[168].

3.1.4 Combining Optimization and Generation – Conclusions for the New Approach

All in all, it is fair to say that every layout automation approach existing so far can be classified as basi-
cally being either an optimization-based approach (where design constraints are taken into consideration
explicitly), or a generator-based approach (where design constraints are taken into consideration implic-
itly). Distinctive traits are the versatility of the automatism in the former approach, and the quality of the
resulting layouts in the latter. To get hold of both, the following suggestions for the undertaking of this
thesis can be deduced from the findings of Section 2.5 and Section 3.1:

• Merge optimization and generation into a symbiosis where both respond to each other.
• Conquer the design problem by delegating and distributing design tasks in a balanced way.
• Take care of the high-level constraints and all low-level layout details at the same time.
• Exploit all degrees of freedom instead of reducing the solution space via standardization.
• Diminish the constraining effort as well as the preliminary generator development effort.
• Share the workload while performing the different design tasks in a highly concurrent fashion.
• Refrain from randomization but make the automation methodology completely deterministic.

However, as should be obvious by now, optimization algorithms and procedural generators represent
such different automation strategies that the above suggestions for combining them involve a couple of
problems (P) raising questions (Q) for which the following answers (A) are disclosed right away:

P: An algorithm reigns like a “dictator” whereas a generator works like a “slave”.
Q: How can the two parties join forces in a more “democratic” form of government?
A: Engage algorithmic optimization and generator-based layout creation in a bilateral relationship.

P: An algorithm finds its layout solution at runtime while that of a generator is preconveived in advance.
Q: How can the temporal and conceptual gap between the two forms of solution finding be bridged?
A: Let a generator’s set of preconceived layout solutions flow into the algorithmic solution finding.

P: An algorithm surveys the overall problem whereas a generator concentrates on a specific purpose.

59

3. State of the Art - Two Views on Existing Approaches

Q: How can these two strategies, with their disparate perspectives, be made to meet in the middle?
A: Make the algorithm split and spread the decision-making across several individual generators.

P: An algorithm asks for diminishing the solution space, a generator exploits its degrees of freedom.
Q: How can the algorithm be enabled to handle the immense variability introduced by the generator?
A: Reduce the algorithm’s authority and scope of responsibility by giving it only indirect powers.

P: An algorithm performs unforeseen actions but a generator can only cope with expected situations.
Q: How can the generator be enabled to manage influences that have not been anticipated in advance?
A: Equip the generators with the capability of reacting to changes of their layout context.

P: Algorithmic optimization proceeds repetitively, executing a generator is a straight and sealed process.
Q: How can the features of a generator be fully utilized during the flow of successive solution finding?
A: Let the generators interact with each other in repetitive cycles throughout the optimization.

P: An algorithm for NP-hard problems often involves randomization while a generator acts predictably.
Q: How can a combination of algorithmic optimization and layout generation be expected to behave?
A: The behavior of such an approach is supposed to be deterministic but not entirely predictable.

To fathom the prospects of combining optimization-based automation and generator-based automation,
Section 3.2 looks at these two automation strategies from a more academic perspective.

3.2 An Abstract View on Existing Approaches: Two Fundamentally Dif-
ferent Automation Paradigms

The concrete view of Section 3.1 on the practical application of optimization-based approaches (Sec-
tion 3.1.1) and generator-based approaches (Section 3.1.2) shows that they are quite reciprocal regarding
the versatility of the automatism and the quality of its resulting layouts. Looking at these approaches from
a more abstract perspective, it becomes apparent that optimization algorithms and procedural generators
are not only different from each other in several aspects, but that they are downright complementary.
This leads to the definition of two distinct automation paradigms (in Section 3.2.1 and Section 3.2.2)
and to a vision of combining these two paradigms (in Section 3.2.3).

3.2.1 Optimization Algorithms: Top-down Automation

The following items reprise some essential characteristics of optimization algorithms, as already dis-
cussed in Section 3.1.1.1:

(1) An optimization algorithm cycles through an exploration-evaluation loop to repeatedly optimize a
candidate layout.

(2) In this manner, the algorithm is meant to self-intelligently find the solution for a given design
problem (thus re-inventing the solution anew every time).

(3) For that purpose, the algorithm works on an abstract mathematical model of the design problem.
(4) The problem modeling allows the algorithm to take certain design constraints into consideration

explicitly.
(5) All design requirements must be expressed in a formal way (i.e., all relevant expert knowledge

must be completely formalized) such that the algorithm can find a feasible solution at runtime.

Putting it straight, optimization algorithms rely on a complete formalization of the overall solution find-
ing. As such, one can say that this strategy typifies a distinct automation paradigm, roughly outlined
by the points above. That paradigm will be denoted as top-down automation in this thesis. Thus, the
term top-down is not used in the usual sense of relating to a design hierarchy, but to denote the nature of
automation, which must make sure to model the entire problem as a whole.

60

3.2 An Abstract View on Existing Approaches: Two Fundamentally Different Automation Paradigms

Optimization algorithms follow a distinct automation
paradigm here denoted as top-down automation.

While certain aspects of the design problem can be modeled easily, the consideration of intricate
layout details incurs a severe complication of the overall formalization, which commonly leads to quali-
tatively insufficient automation results. This loss of layout quality accompanies the qualitative penalties
that are induced by resorting to design-methodical standards and by employing heuristics. With respect
to the size of a layout problem, the quality losses are quite characteristic when compared against the
best possible degree of layout quality (i.e., manual expert design). This characteristic quality curve is
depicted in Figure 3.18 (a).

Being based on an abstraction of the design problem, top-down automation involves a significant
initial loss of layout quality. On the other hand, this way of reducing the degrees of freedom enables such
automatisms to handle layout problems of immense quantitative complexity. With increasing problem
size, the quality decline continues further, but becomes more and more marginal. The overall quality gap
can be tolerated in the digital domain, but dissatisfies the quality requirements of analog design.

Best Possible
Quality

Demanded
Quality in the

Analog Domain

Demanded
Quality in the

Digital Domain

Tolerated
Quality Gap in

the Digital Domain

Problem Size

Layout
Quality

Improvement
of the Quality

Gradient

(a) Characteristic Quality Curve (b) Impact of Enhancements

Small Impact
in the Analog

Domain

(b1) (b2)

Figure 3.18: Quality characteristics of top-down automation.

Figure 3.18 (b) illustrates another aspect of this automation paradigm: a slight qualitative improve-
ment of a top-down automatism practically has no effect on its usefulness in the analog domain. Even
though such an improvement may noticeably lift the quality curve (b1), the initial quality loss prevents
the automatism from becoming suitable for analog designs (b2). That finding is confirmed by EDA his-
tory: although optimization-based layout algorithms have been successively improved over the past three
decades, no breakthrough can be seen in the industry.

This observation puts another spin on the use of the term top-down. A huge and very real problem
for the industrial adoption of optimization-based automation approaches is their affinity to completely
replace existing design flows in a revolutionary way. This “all or nothing at all” habit of imposing an
optimization-based design methodology top-down does not find acceptance as long as that methodology
fails to cover the design problem in its entirety and to achieve the demanded level of layout quality. The
situation is quite different with procedural generators, as follows in Section 3.2.2.

3.2.2 Procedural Generators: Bottom-up Automation

Recapitulating Section 3.1.2.2, the subsequent enumeration (corresponding to the items listed in Sec-
tion 3.2.1) sums up the trademarks of layout automation with procedural generators:

(1) A procedural generator follows a straight sequence of commands to draw a customizable layout.
Thus, the generator does not cycle through a repetitive loop that optimizes a candidate layout.

61

3. State of the Art - Two Views on Existing Approaches

(2) The generator only (re-)produces a layout result. The inventive task of thinking up an optimal
layout solution is completely left to the human expert who implements the generator (preferably
re-using existing design knowledge instead of re-inventing the solution anew).

(3) With the introduction of parameters, a procedural generator enables a generalization of the pre-
conceived solution (which increases the degrees of freedom). This contrasts an abstraction of the
problem (which lessens the degrees of freedom).

(4) On that basis, constraints can be taken into consideration implicitly (i.e., in a nonformalized way).
This is done without the need to express these constraints explicitly (i.e., to provide them in a
formalized representation).

(5) The entire set of solutions that is to be covered by the generator (i.e., the mathematical image of
the generator, as introduced in Section 3.1.2.1) must be preconceived in advance by the generator
developer. The generator itself merely mimics the expert’s laborious drawing work, but does not
help the design problem to be solved at runtime.

Regarding the nature of automation, a comparison of the above items with those in Section 3.2.1 spot-
lights that the characteristics of procedural generators are distinctly different from the characteristics of
optimization algorithms. Hence, it is consequent to say that procedural generators follow a distinctly
different automation paradigm. This paradigm will be denoted as bottom-up automation in this thesis.
The term bottom-up is quite appropriate considering its well-known usage to denote processes that do
not have a particular intent. For example, biological evolution is said to proceed bottom-up since life has
no ultimate goal [169]. The same is true from the viewpoint of a procedural generator: in contrast to
an optimization algorithm, a generator is not eager to solve a design problem – in fact, it does not even
“know” about the problem itself.

Procedural generators follow a distinct automation
paradigm here denoted as bottom-up automation.

The particular strength of bottom-up automation is the ability to satisfy complex, low-level design
requirements implicitly. In practice, that ability is limited by the question to what extent a feasible layout
solution can be predetermined and generalized in advance. Thus, compared to top-down automation,
bottom-up automatisms have an inverse characteristic curve in terms of layout quality, as illustrated in
Figure 3.19 (a).

For small problem sizes, the achievable layout quality is close to full-custom. However, larger prob-
lems lead to an increasing drop of layout quality due to the difficulty to anticipate all relevant design
requirements and keep up sufficient parametric variability. So, bottom-up automation can ensure the
demanded degree of layout quality up to a certain problem size, but still a significant automation gap has
to be tolerated in the analog domain.

However, Figure 3.19 (b) illustrates the evident advantage that even a small improvement of the
quality curve (b1) pushes the limits of automatable problem sizes to a perceptibly greater extent in the
analog domain (b2). This particular trait is also disparate from the characteristics of top-down automation
and underlines why industrial companies prefer to drive the development of bottom-up automatisms,
since every contribution reveals an immediate gain in design productivity.

This aspect further reinforces the usage of the term bottom-up, because automatisms such as procedu-
ral generators can be introduced into present design flows in an evolutionary –instead of a revolutionary–
fashion. In that way, existing design flows can be incrementally improved step by step, and are thus
literally augmented from the bottom up. Beyond this obvious benefit for layout efficiency, such an ad-
vancement could –in the long run– turn out to be even more seminal than is apparent at first sight. This
expectation is rooted in the belief that bottom-up automation may pave the way to a successful utiliza-
tion of top-down approaches. In Section 3.2.3, advancing the degree of design automation bottom-up is
sketched out as one of three major milestones on an envisioned path of combining the two paradigms.

62

3.2 An Abstract View on Existing Approaches: Two Fundamentally Different Automation Paradigms

Best Possible
Quality

Demanded
Quality in the

Analog Domain

Demanded
Quality in the

Digital Domain

Problem Size

Layout
Quality

Automatable Problem Size
in the Analog Domain

Automation Gap in the Analog Domain

Advancement
of the Auto-

matism

(a) Characteristic Quality Curve (b) Impact of Enhancements

Great Impact
in the Analog

Domain

(b1) (b2)

Figure 3.19: Quality characteristics of bottom-up automation.

3.2.3 Envisioning a New Automation Philosophy: Bottom-up Meets Top-down

Summing up the discussion of Section 3.2.1 and Section 3.2.2, top-down automation and bottom-up
automation exhibit quite converse automation characteristics. To put it more positively, the respective
strengths and weaknesses of the two automation paradigms do not merely oppose each other but may
rather complement one another. So, although EDA research considers procedural generators to be less
worthwhile than optimization algorithms, the abstract view of Figure 3.18 and Figure 3.19 on the two
automation strategies justifies that these should be granted equal scientific relevance for analog layout
automation since both underlying paradigms do have their particular assets.

On that account, outreaching the largely concurrent work on optimization algorithms and procedural
generators in academia and industry, this section pronounces a new mission for EDA: to explore the
full potential of both paradigms and drive their convergence towards a novel bottom-up meets top-down
design flow [170]. Presumably, a well-balanced combination of the two automation paradigms has much
more potential for analog EDA than bottom-up or top-down approaches alone.

This assumption is backed by the characteristic curve in Figure 3.20, which is envisioned as the ulti-
mate aim of a prospective EDA roadmap following five individual steps: (1a) provide tools for capturing
expert design knowledge implicitly, (1b) transform the implicit expert knowledge into new bottom-up
automatisms, (1c) integrate these automatisms into present design flows –compendiously, these three
steps are meant to (1) promote bottom-up automation– in order to (2) tailor top-down approaches to the
new bottom-up automatisms, and ultimately (3) combine the two paradigms. These five steps are now
sketched out in greater detail.

Step 1a: Human expertise is essential for analog layout automation, but unfortunately layout design-
ers are not accustomed to explaining their solution procedures in an explicitly formalized way.
Therefore, step 1a is to develop innovative tools for capturing expert design knowledge implicitly.
These tools should allow design experts to describe solution procedures for specific design tasks in
an intuitive fashion which corresponds to the designers’ mentality. The request to build effective
bridges, that match the designers’ way of thinking as closely as possible, is a great challenge and
unfurls a fruitful, yet largely unexplored field for EDA.

Step 1b: Tools resulting from step 1a allow layout experts to transform their invaluable design knowl-
edge into dedicated new automatisms. Hence, the purpose of step 1b is a further advancement of
bottom-up automation in order to cover the design levels where top-down approaches typically fail
to achieve the demanded degree of layout quality. This task raises the question, up to what levels
of functionality bottom-up automation will have to proceed. As already mentioned, bottom-up

63

3. State of the Art - Two Views on Existing Approaches

Best Possible
Quality

Demanded
Quality in the

Analog Domain

Problem Size

Layout
Quality

Closing the Automation Gap

Characteristic Quality Curve of
Bottom-up Automation

1. Milestone
2. Milestone

3. Bottom-up meets Top-down

Characteristic Quality Curve of
Top-down Automation

Tolerated
Quality Gap in

the Analog Domain

Quality Curve Combined from
Both Automation Paradigms

Figure 3.20: Path towards the envisioned bottom-up meets top-down design flow.

automatisms are particularly suited for the layout generation of simple modules (see Table 2.1)
that perform prime analog functions and display highly regular layout patterns.

Step 1c: Opposing the unfavorable affinity of new design methodologies to completely replace existing
design flows, step 1c is to seamlessly introduce the newly developed automatisms of step 1b into
present design flows in an evolutionary way. In [124], this suggestion of raising the automation
degree bottom-up rather than fiddling about algorithmic synthesis ad nauseam has even been pro-
claimed as a paradigm shift. The development and integration of the new bottom-up automatisms
immediately results in an improved characteristic curve as visualized in Figure 3.20 (1. Milestone).
This curve marks the eventual impact of steps 1a, 1b, and 1c, thus representing the first major mile-
stone for meeting bottom-up with top-down.

Step 2: The second major milestone –and goal of step 2– is to adapt existing top-down approaches
to the capabilities of bottom-up automation, as seen in Figure 3.20 (2. Milestone). Bottom-up
automatisms allow top-down approaches to delegate crucial low-level design tasks downwards, and
therefore to concentrate solely on higher-level requirements, which simplifies the overall layout
problem significantly. Thus, the continuation of research work on an explicit consideration of
high-level constraints remains a vital task for future EDA, but the practical benefit of constraint-
aware optimization will be much greater on these levels than on the lower levels, where constraint
handling has become second nature to the designers.

Step 3: In step 3, the advanced bottom-up automatisms of the first milestone are to be joined with the
adapted top-down approaches of the second milestone. This will result in the ultimate bottom-
up meets top-down design flow, which represents the third and final milestone. As illustrated in
Figure 3.20 (3. Bottom-up meets Top-down), this accomplishment of combining the strengths of
both paradigms is expected to be a major breakthrough for EDA. According to that characteristic
curve, a balanced coalescence of bottom-up and top-down automation should have the potential
to close the automation gap in analog layout design and to maintain the level of quality that is
uncompromisingly demanded in the analog domain.

Tapping the full potential of bottom-up automation, in order to cover the crucial design levels of analog
basic circuits, can simplify the overall optimization problem significantly. This move mirrors a similar
step that has been taken in the digital domain: the introduction of standard cells, which allow synthesis
tools to operate on gate level rather than on transistor level. Equivalently, bottom-up automatisms can
help to elevate the analog design flow to the module level. The pivotal difference is that the modules
are not standardized but parameterized, in order to cover all necessary degrees of freedom. Yet, an open

64

3.2 An Abstract View on Existing Approaches: Two Fundamentally Different Automation Paradigms

problem is how top-down approaches can be enabled to cope with that immense variability. From the
outset, bottom-up and top-down automation are not offhand compatible with each other, which is why so
far no existing EDA achievement has accomplished to provide a truly balanced combination of the two
paradigms.

One additional remark should be made in this matter, since a look at Figure 3.13 suggests that a
procedural generator already incarnates both paradigms: on the one hand, the generator contains nonfor-
malized expert knowledge, and on the other hand, the generator is controlled by input parameters which
can be regarded as formalized expert knowledge. However, a procedural generator still represents a pure
bottom-up automatism because its set of layout solutions is entirely preconceived, providing parameters
to –figuratively speaking– let the designer “choose” one specific instance from that set.5 In other words,
each permutation of parameter values maps to one particular layout variant in a predictable (not just de-
terministic) way. In contrast, the trademark of a potential bottom-up meets top-down design flow would
be to produce layout results that can only be predicted in parts but not in their entirety.

To put it in a nutshell, the envisioned design flow implies to combine two fundamentally different
automation paradigms, as this is supposed to be the key for a successful automation of analog layout
design. The scientific challenge in pursuit of that philosophy is to answer the question, if and how
the two different paradigms can be brought together. To be capable of determining the practical virtue
of such an endeavor, Chapter 4 deals with the question, by what assessment criteria an analog layout
methodology is to be judged.

5Apart from this, it can be said that the expert knowledge reflected by the setting of the parameter values is most of all
circuit knowledge (primarily concerning the circuit topology and the device dimensions) rather than layout knowledge. Hence,
these parameter values predominantly specify what is wanted – but, how to realize this in the layout is implicitly specified by
the implementation of the procedural generator.

65

4. Assessment Criteria for a Layout Methodology in the Analog Domain

Chapter 4

Assessment Criteria for a Layout
Methodology in the Analog Domain

Beware of the half-truth. You may
have gotten hold of the wrong half.

Unknown Author

It is the pronounced purpose of the work presented in this thesis to be not only scientifically valuable,
but practically useful as well. Therefore, this chapter discusses what assessment criteria an analog layout
methodology must go by to find acceptance in practice. The term layout methodology is deliberately
favored over speaking of an automation approach here because an assessment metric should also be
applicable to a largely manual design flow, for example.1 As will be shown in Section 4.1, the academic
criteria that are traditionally consulted in literature do not tell the whole truth because they usually do
not consider industrial practicability from a holistic perspective. For that reason, Section 4.2 works out
a more expedient assessment chart which leads to the conclusion that the evaluation of an analog layout
methodology is –equivalent to the qualitative complexity in the analog domain– not just a matter of More
Moore but a rather complicated More than Moore issue, as will be summarized in Section 4.3.

4.1 Traditional Assessment Criteria

With the intention of facilitating objective comparisons, automation approaches are commonly evaluated
through benchmark circuits (see for example [171]). While such an evaluation is quite substantive in the
digital domain, for analog design that practice is not differentiated enough so far. Concerning floorplan-
ning and placement algorithms, a set of benchmark circuits have been archived at the Microelectronics
Center of North Carolina (MCNC) [172].2 As listed in Table 4.1, the five MCNC benchmarks that are
most often referred to for analog layout automation contain between 9 and 49 cells denoted as “building
blocks”.

As this denomination already indicates, these cells have fixed dimensions and therefore they do not
adequately represent typical analog devices or modules that feature certain degrees of freedom (such as
the number of fingers in a MOS transistor, as shown in Figure 2.1 on page 20). Hence, it is fair to say
that these benchmarks are not even suited for the evaluation of analog floorplanning approaches (unless
fixed dimensions are assumed for every floorplan block), but much less for analog placement. Although
initiatives to define new analog benchmark suites have recently been contemplated [173], no progress
can be seen so far.

1Unfortunately, some criteria only apply if some way of automation is included. That is why the subsequent paragraphs
sometimes speak of automation approaches (and their automatisms). Otherwise, the more general notion of a layout methodol-
ogy (and its mechanisms) is used.

2Meanwhile, these benchmark circuits have moved to the Collaborative Benchmarking Laboratory at North Carolina State
University.

66

4.1 Traditional Assessment Criteria

Table 4.1: Overview of the five most referenced MCNC benchmark circuits.

Circuit Cells Symm. Cells Nets I/O

apte 9 8 97 73
xerox 10 N/A 203 2
hp 11 8 83 45
ami33 33 6 123 42
ami49 49 4 408 22

The assessment criteria which are traditionally referred to in literature can be divided into criteria that
obviously stem from the digital domain (Section 4.1.1) and analog-oriented criteria that are concerned
with the question which constraints can be taken into consideration (Section 4.1.2).

4.1.1 Criteria Originating from the Digital Domain

A look at the many existing publications on optimization-based layout automation approaches reveals
that these approaches are commonly compared according to the following three primary criteria:

• runtime,
• total area,
• total wirelength.

It goes without saying that these criteria have been simply taken over from the digital domain, but it is
quite questionable how meaningful they are for analog design. Of course, in the digital domain these
criteria matter enormously because their impact scales with the number of components on the chip.
Thus, even the slightest reduction in runtime, area occupation, or wirelength that may be measured for a
given test circuit, can make a truly noticeable difference when applied to industrial ICs with millions and
billions of logic gates. And, regarding the ongoing progress towards upcoming technology nodes with
ever-rising integration density, these criteria will remain increasingly relevant in the future.

In the analog domain however, one should honestly admit that such digital-inspired criteria are only
secondary. For instance, present-day papers on the development of leading-edge automation approaches
and their application to more or less representative analog circuits report runtime results in the range of
a few minutes or even seconds. But despite the incessant pursuit of further performance improvements,
such ambitions are beside the point when contemplating the fact, that an analog layout expert in an
industrial design environment readily spends days and weeks to handcraft a full-custom layout block
[174]. As already explained in Section 2.3.2, the downside for design productivity is tolerated as the
lesser of two evils in order to attain the demanded degree of layout quality.

The situation is similar with respect to area and wirelength. Surely, these are two very important opti-
mization goals – however, this is not just for predominantly quantitative reasons (as in the digital domain)
but rather for qualitative reasons, namely matching. Hence, although literature on EDA advancements
keeps on reporting increasingly better area and wirelength minimization in novel placement and routing
approaches, the true merit of these achievements only becomes apparent when both placement and rout-
ing are performed together. Otherwise, layout solutions like the one depicted in Figure 3.12 (b) might
be produced. And such layout solutions are not merely rejected in practice due to the large area and
wirelength per se, but because of the poor matching that this detriment entails.

The bottom line of these ruminations is that such quantitative More Moore assessment criteria as
traditionally drawn on in literature are not adequate enough to account for the true aptitude of an analog
automation approach (or layout methodology in general). In essence, the obstacle for a solid assessment
is equivalent to the “problem modeling dilemma” faced by optimization algorithms (as discussed at the
end of Section 2.5.1): either the assessment metric is too elaborate to allow for a formal treatment, or it
only concentrates on very few selected aspects and thus oversimplifies the matter.

67

4. Assessment Criteria for a Layout Methodology in the Analog Domain

4.1.2 Criteria Regarding the Supported Constraint Types

What EDA research got definitely right, is that quantitative comparisons alone do not have sufficient
explanatory power in the analog domain, but that qualitative attributes must also be considered. In liter-
ature, this comprehension has manifested itself in the question which types of constraints an automation
approach is able to handle. Unfortunately, such a valuation is still insufficient to adequately cover the
complexity and diversity of the many design restrictions and design objectives in the analog domain.
Only one missing constraint can already impair the functioning of the circuit even if all other constraints
are satisfied. And furthermore, as described in Chapter 3, many design necessities are not even addressed
by today’s formal constraint representations.

The decision to translate abstract design requirements into more precise geometrical relations is com-
prehensible since it not just allows them to be conveniently targeted via optimization-based automation
but also enables a formal verification of constraints. Yet, this formal ascertainability again involves a
dilemmatic deviation from reality: comparing automation approaches based on the types of constraints
they support does not tell whether the resulting layouts will really satisfy all functional requirements.
In that regard, the absolute truth only lies in the final silicon. Theoretically, processing the layout into a
measurable IC would be one requisite for a truly cogent benchmarking, but this is not feasible in practice.
Instead, one may take a look at productive design flows, where layouts are signed off according to the
expert’s experience-based opinion that the chip will indeed work as expected.

So, equivalent to the development of an analog automation approach, performing a credible, ob-
jective, and thorough comparison with other layout methodologies in both quantitative and qualitative
regard is a challenge of its own. While that subject might even fill an entire dissertation by itself, it is not
the central topic of this thesis. To provide a pragmatic assessment approach without boiling the problem
down to a few formally graspable criteria, Section 4.2 makes an attempt at giving the full picture of all
aspects that can play a role in assessing a layout methodology for practical application. This compilation
may serve as the basis for an informal but –more importantly– holistic assessment.

4.2 Relevant Assessment Criteria

Basically, a layout methodology’s practical value for an industrial customer –in relation to the status quo,
i.e., the currently established layout methodology– can be judged by two factors: (1) the methodology’s
impact on the customer’s design productivity and (2) the degree of layout quality that it is able to achieve.
Both factors in turn depend on multiple subcriteria which will now be discussed in Section 4.2.1 and Sec-
tion 4.2.2 respectively. Therein, the industrial customer is presumed to be a semiconductor manufacturer
with an in-house circuit and layout design department but without a proprietary business division for
EDA.

4.2.1 Design Productivity

Most publications on analog layout automation approaches emphasize the assets of these approaches,
forgetting to mention that their utilization is not really gratis but requires a certain kind of “investment”.
This is to say that the impact on design productivity is not only determined by the potential benefit
but also by the involved costs. In the mindmap-like depiction of Figure 4.1, that benefit is referred
to as efficiency gain while the costs can be comprised of what is denoted here as effort (labor costs)3

and expense (financial costs). Section 4.2.1.1 and Section 4.2.1.2 go into greater detail. A formulaic
expression for the calculation of layout design effort will be given by equation 8.2 in Section 8.3.4.2.

4.2.1.1 Effort and Expense

If a layout methodology includes some way of automation, the types of costs –i.e., effort or expense–
partially depend on the focus of the chosen automation strategy. The following considerations distin-
guish between optimization-based automation using a commercial synthesis tool and generator-based

3Effort in the sense of labor costs is the product of (wo-)manpower and time (e.g., a person-month).

68

4.2 Relevant Assessment Criteria

Effort / Expense

Implementation

Verification

Migration
Concepts

IP Develop-
ment Tool

License Fees

Support
Costs

Documentation

Tool
Setup

Flow
Integration

Constraining
(Algorithm)

Training /
Tutorials

Re-Usability
(Generator)

Number of Projects
per Technology

Universality
(Algorithm)

Performance

Determinism

Parametric
Variability

Potential
Applications
per Project

Suitability for
other Technologies

Customization
(Generator)

Computational
Power

Evaluation

Look & Feel

Specification

Design
Productivity

Efficiency Gain

In-House IP
(Generators)

Commercial
Synthesis

Tool

Utilization in
Design Project

Time Saving
per Utilization

Total Number
of Utilizations

Technical
Input

Success
Rate

Designer's
Conviction

Purchase
Price

Figure 4.1: Assessment criteria for a layout methodology’s impact on design productivity.

automation with in-house IP. Additionally, it should be noted that the utilization of such automatisms in
a design project also involves some effort.

Commercial Synthesis Tool

In case the focus is on the use of optimiztion-based automation, the customer is supposed to acquire
a dedicated commercial synthesis tool from an EDA vendor. This is because –without a proprietary
business division for EDA– a semiconductor company usually cannot bring up the human resources to
develop its own synthesis tool, nor to take over and continue a universitarian implementation. Such
works have a greater chance of being adopted in industry if sold to an EDA vendor or professionalized
through a start-up enterprise able to provide contractual troubleshooting, long-term tool maintenance,
and future software improvements.

Buying a commercial tool often claims different kinds of expenses: on the one hand, there are the
fixed costs of purchasing the tool, while on the other hand, it may be necessary to budget running costs
such as license fees and support charges. Apart from these financial expenses, the decision of purchasing
a commercial tool typically asks for a thorough evaluation on the customer’s side. This can also involve a

69

4. Assessment Criteria for a Layout Methodology in the Analog Domain

substantial amount of company-internal effort for fathoming potential applications, performing testcases
and analyzing the results, as well as measuring and extrapolating the benefit for the company.

In-House IP (Generators)

If the automation focus is on the use of procedural generators, these are assumed to be developed by
the customer as in-house IP that is specifically tailored to the respective product portfolio. Similar to
the evaluation effort above, this first of all requires some specification effort for determining which
generators are lucrative to be implemented, for detailing their layout content, and for defining their
parametric variability. The parametric variability in turn dictates the effort for implementing a generator;
however, that effort can be reduced by employing a dedicated development tool which may either be
devised in-house or purchased commercially.

In the latter case, technical input can be given by the customer in order to guide the conception and
ongoing enhancements of the development tool. Suchlike input might also be addressed towards further
refinements of a synthesis tool, albeit to a lesser degree since algorithmic synthesis is farther away from
the customer’s expertise than IP development. Acquiring a development tool also calls for financial
expenses, but these are expected to be less than those for a synthesis tool because IP development is a
job for a few dedicated design experts during predevelopment (not for all layout designers in all design
projects), and thus requires less licenses and less support.4

Apart from the specification and implementation effort, a procedural generator requires comprehen-
sive verification in terms of DRC and LVS. The verification effort can be significant because these checks
do not have to be applied to a single layout but to a multitude of parameterized layout variants to cover
as much of the generator’s parameter space as possible [175].5 Additionally, the development of a pro-
cedural generator involves documentation effort for commenting its implementation. This can be helpful
for later adjustments and for migrating the generator to another semiconductor technology. The effort for
the latter can be reduced by implementing a generator as technology-independent as possible, accepting
the downside that devising intelligent migration concepts causes certain overhead in advance.

Utilization in Design Project

Regardless of whether the customer’s automation focus lies on in-house generators or on a purchased
synthesis tool, each individual utilization of the respective automatisms in a design project also involves
some effort. Initially, there is the fixed effort for integrating these automatisms into the design flow. In
the case of generator-based automation, that issue is less problematic –though not negligible– because
procedural generators are a natural element of the design flow anyway (at least when primitive devices
are concerned, whereas higher-level module generators may introduce certain SDL problems due to
hierarchical inconsistencies). In the case of a synthesis tool, the installation effort (or feasibility in the
first place) depends on the tool itself: if the tool is not compatible with the existing design flow, additional
interfaces such as OpenAccess (see [98]) might be necessary.

Next, it can be necessary to account for trainings and tutorials in order to teach designers in the han-
dling of the automatisms. In the case of a procedural generator, that handling is denoted as customization
and represents the task of providing appropriate parameter values to customize the resulting layout. This
task requires an understanding of the parameters but is still relatively low compared to the constraining
effort required to apply an algorithmic synthesis tool to a specific layout problem. In addition to this
constraint formalization, there may be further setup effort in terms of tool settings, options, preferences,
configurations, and problem-specific fine-tuning. That effort in turn depends on the look & feel of the
tool which decides how intuitive its utilization is.

4The PyCell Studio [123] described in Section 3.1.2.4 can even be downloaded for free.
5Due to the growing capabilities of procedural generators, inventing formal verification methods has also become a topic of

interest in EDA research [176].

70

4.2 Relevant Assessment Criteria

4.2.1.2 Efficiency Gain

The overall efficiency gain of a certain layout automatism (or more generally: a mechanism of the layout
methodology) can be calculated from the time by which the layout creation process is accelerated with
each utilization (i.e., the saved effort), multiplied by the total number of its utilizations.

Time Saving per Utilization

The time that a layout designer saves with each utilization can be arithmetically obtained by subtracting
the runtime of the automatism from the working time that the designer would have required without it.
The runtime of the automatism is mainly determined by its performance. In the case of a conventional
procedural generator, the runtime is negligible because it seldomly spans more than several seconds. In
the case of an optimization algorithm where millions of computational operations need to be performed,
the runtime is significantly higher and may noticeably depend on the available computational power.
Furthermore, the performance can be heavily influenced by the setup of the tool and by the coherence of
the constraining for a particular problem.

Inhowfar it is possible to make compelling statements about the runtime of an optimization algorithm
can also be up to the question of whether the algorithm is deterministic or not. Another issue in this
context is the success rate of the algorithm: if a probabilistic algorithm has to be applied n times to the
very same problem (maybe with slightly different settings) before it produces an adequate solution (or a
solution at all), then the total runtime is in fact n times as high. The report of [177] points out that it is
important for algorithms to be deterministic such that predictability can be achieved in the design flow.
Beside this practical aspect, there is also a psychological effect involved because designers have become
increasingly skeptical towards automation approaches whose success rate is subject to “good luck” (as
in the case of Monte Carlo algorithms).

Total Number of Utilizations

Such skepticism should not be underestimated since it can severely detract from a designer’s conviction
and thus the personal willingness to utilize an automatism. Apart from that, the total number of utiliza-
tions is primarily given by the amount of potential applications per design project. In the case of an
optimization algorithm, this applicability is correlated with the universality of the algorithm. In the case
of a procedural generator, the decisive factor is the generator’s re-usability which in turn depends on the
generator’s parametric variability. As an example, the investigations of [178] revealed that the Opera-
tional Transconductance Amplifier (OTA) is the most widely used analog circuit class in automotive IC
designs. In that regard, it may be profitable to automate the OTA class with a procedural generator, but
the generator’s re-usability is only brought to bear to the full extent if the generator covers the enormous
topological variance of OTA circuits.

Of course, the total number of utilizations is not necessarily limited to one design project. Instead,
an industrial customer has a sincere interest in exploiting the potential efficiency gain throughout all
design projects in a semiconductor technology. To reckon the prospective benefit that can be expected
in the long run, it is even worthwhile to determine an automatism’s suitability for other technologies.
In the case of a procedural generator, that suitability goes hand in hand with the ease of migrating the
generator to a different technology, which in turn relies on the effort that has been spent for devising
intelligent migration concepts in advance. Thus, the network of assessment criteria with respect to design
productivity comes full circle in Figure 4.1, but does not yet say anything about layout quality. This is a
complicated matter in its own right and will be addressed in Section 4.2.2.

4.2.2 Layout Quality

As illustrated in Figure 4.2, assessment criteria for the quality of a layout design go far beyond what is
covered by the types of constraints found in literature. Regarding this layout quality, one can discern
two facets: one facet is defined by those quality aspects that affect the circuit’s physical functionality; the
other facet is denoted as consistency and deals with the hierarchical organization of the layout. In other
words, the first facet (discussed in Section 4.2.2.1) is only concerned with the mere geometrical mask

71

4. Assessment Criteria for a Layout Methodology in the Analog Domain

data, while the latter facet (see Section 4.2.2.2) relates to the structural constitution of a layout, which
can be quite valuable for the designer despite its irrelevance for circuit functionality.

Layout
Quality

Functionality

Consistency

Accuracy

Reliability

MaintainabilityTransparency

Modularization
Convenience of

Manual Adjustments

Reproducibility

Heat
Dissipation

Number
of used
Routing
Layers

Visual
Inspection

Guard-
rings

Compact-
ness

Orientation

Inter-
digitation

Diffusion
Sharing

Current-Carrying Capacity

Antenna
Rules

Density
RulesYield

Total
Area

Overall
Symmetry

Double-Cut Vias

Best Practice

Device
Matching

Dummy
Devices

SDL
Conformity Further

Processibility

Applicability in
later Projects

Convenience of
Technology Migration

Tool Chain CompatibilityDeterminism

Bulk
Contacts

Legacy Design
Know-how

Equal
Parameters

Aspect
Ratio

Other Measures...

Central Location Total Via Number

Number of Wire Bends

Legal Responsibility

Design
Iterations

PDK Updates

Re-Use
Library

Channel
Stoppers

Figure 4.2: Assessment criteria for a layout methodology’s aptitude regarding layout quality.

4.2.2.1 Functionality

In the following ruminations (heavily drawing upon [1]), functionality-relevant layout quality aspects are
divided into three different categories concerning accuracy, reliability, and yield.

Accuracy

Attaining a properly functioning IC with accurate (and robust) signals under both nominal (and extreme)
conditions is of utmost priority. This is where well-known constraints in terms of compactness, equal
parameters, orientation and interdigitation are involved to achieve a good device matching. An important
issue in this regard is to provide bulk contacts in the vicinity of the devices so the semiconductor substrate
is brought to a defined potential. If the devices contribute their own bulk contacts, then it is suitable to
abut the devices and let their bulk contacts coincide (as done in Figure 3.5 on page 36), because this

72

4.2 Relevant Assessment Criteria

so-called diffusion sharing is beneficial for compactness. For very high accuracy demands, it can also be
necessary to insert dummy devices such that all of the functional devices see the same neighborhood.

In addition to these matching principles for the devices of certain modules that perform basic analog
functions, it is often desired to arrange those modules in an overall symmetric fashion as well. Thereby,
particularly critical modules are usually placed in the center of a layout block (or the chip) to avoid edge
effects and to minimize piezoelectric disturbances. Apart from such measures, many design decisions for
maintaining signal accuracy in the face of nonlinearities and parasitics are those being made implicitly –
according to the best practice solutions that originate from years of experience and reflect the invaluable
know-how which has already been obtained through a rich fund of silicon-proved legacy layouts.

Reliability

As semiconductor fabrication processes move towards denser technology nodes in the nanometer range,
an increasingly delicate problem is posed by reliability failures which occur in the field and shorten the
lifetime of a semiconductor product. To prevent or retard such faults that entail an irreversible physical
damage to the IC, several techniques may be adhered to during layout design. For example, to prevent
hot spots caused by the dissipation loss of a power transistor, its layout can be enlarged to reduce its
ohmic resistance and distribute its heat dissipation across a greater area. Another issue is given by long-
term effects such as the degradation of routing wires due to electromigration. This can be addressed by
increasing a wire’s current-carrying capacity via the wire width and by minimizing the number of wire
bends since these bends are especially susceptible to electromigration.

Wherever poly or metal wires run above lateral NPN or PNP diffusions, an unwanted short can be
caused by a parasitic field effect. This can be prevented via so-called channel stoppers, e.g., by increasing
the vertical distance between the wires and the substrate to reduce the strength of the electric field, or
by inserting additional diffusions that increase the doping concentration in the substrate and impede
an inversion. Another event that leads to a malfunction of an IC can be observed if an isolating p-n
junction accidentally starts conducting and thereby injecting minority charge carriers into the nearby
region. This effect may lead to the formation of parasitic bipolar structures resulting in substrate currents
and error currents in neighboring active regions. One layout measure to prevent this problem is to collect
the diffusing minority carriers with additional p-n junctions which are denoted as guardrings. Such
guardrings can not only be inserted for reliability reasons but also to protect sensitive circuitry from
parasitic influences that detract from the circuit’s accuracy.

Other reliability-critical effects (→ and possible remedies) are: latchup, which leads to an escalating
fault current due to positive feedback (→ insert additional well and substrate contacts), hot electrons that
are injected into the gate oxide of a transistor and shift its threshold voltage (→ decrease the doping near
the transistor’s drain diffusion) and substrate debiasing, caused by voltage drops due to substrate currents
(→ insert an additional current-free net in star-wiring topology). Some problems that entail reliability
faults cannot be parried with mere layout measures but also require attention already during circuit de-
sign. Examples include electrostatic discharge –ESD– (which requires special protection circuits), and
dielectric breakdown (which has to be considered during circuit design by avoiding overvoltages). Both
of these events can destroy the thin gate oxides of MOS transistors and lead to circuit failure in the field.

Yield

The third category of functionality-relevant layout quality aspects relates to yield losses, where chips
instantly become nonfunctional due to variations in the fabrication process. With the exception of sys-
tematic process variations that affect entire wafers, many yield losses can be reduced through dedicated
layout measures. As an example, using double-cut vias and minimizing the total via number is not only a
reliability precaution with respect to electromigration, but has become a more and more important yield
factor because it lowers the chance of open vias caused by particles and contamination. Similarly, being
able to create a layout with as few routing layers as possible is a qualitative asset since less layers mean
fewer processing steps and thus a lesser likelihood of inducing defects during the fabrication.

Some yield losses are not necessarily defect-induced but rather design-induced since they result from
highly layout-dependent physical problems [179]. One such problem can be encountered in the fabri-
cation process during layer planarization via chemical mechanical polishing: to avoid surface dishing

73

4. Assessment Criteria for a Layout Methodology in the Analog Domain

due to overpolishing, certain density rules must be met in the layout. Another problem is the already
mentioned plasma-induced gate oxide damage (discussed in the context of Figure 3.8 found on page 39).
To prevent this so-called antenna effect, several remedies are available during layout design, enforced
by dedicated antenna rules. As the names imply, density rules and antenna rules represent design rules
–which are even covered by the DRC– but on the other hand, they are more intricate than other design
rules (e.g., minimal wire width) and are therefore also akin to design constraints.

Apart from the possibility of reducing fabrication-induced yield losses through such specific mea-
sures as described above, the manufacturing yield can also be increased by minimizing the total area
of an IC. If more dies can be fabricated per wafer, then the percentage of nonfunctional dies becomes
smaller. The effect is in fact two-fold since this percentage comprises those dies that become defective
due to inevitable fabrication parasitics, as well as the scrap dies that are unusable because of their lo-
cation on the rim of the wafer. A further issue in this context is that the contour of a chip layout must
satisfy a certain aspect ratio given by the chosen semiconductor package. This Fixed Outline constraint
also applies to the shape of a layout block, which has been previously specified during floorplanning.

4.2.2.2 Consistency

Although physical functionality is the primary concern in IC design, a layout’s consistency is also a
highly important qualitative facet. To understand this criterion, one may imagine the extreme case of a
layout that is given as a completely flat cell where any modifications can only be made on polygon level.
Without providing any (nonphysical) meta-data about the logical organization, hierarchical structure and
parameter values of the modules that constitute the layout, such a scenario severely detracts from the
overall layout quality in two regards: transparency and maintainability.

Transparency

The notion of transparency is meant to capture several aspects. First and foremost, it deals with the
question of how well a designer can see through a layout that has –for example– been created by a
synthesis tool. Feeling insecure about such a layout solution is more than a matter of discomfort: as
long as no formal verification method is capable of checking all design constraints in an automated
way, a visual inspection by the human expert remains indispensable for evaluating the quality of a layout
solution in terms of functionality. Signing off such a layout without assuring oneself of its correctness (to
the best of one’s knowledge and belief) not only risks technical failure in the field but can even become
a serious issue of legal responsibility.

Another aspect in that context is reproducibility, which in turn relies again on determinism. On the
one hand, this allows a designer to retrace and thus gain more insight into the automatisms by which
a layout was produced. On the other hand, reproducibility also offers the possibility of re-running the
same procedure or algorithm with some slightly different options, in order to effectuate selective im-
provements. Volatile solutions which are not reproducible should at least allow the designer to conve-
niently enact manual adjustments, e.g., to let best practice experience flow into the final solution where
the automatism failed to include such knowledge. For that purpose, it is advantageous if the layout is
organized in familiar modules as known from previous legacy designs. Furthermore, this modularization
is supposed to match the corresponding schematic circuit, such that schematic and layout are completely
SDL-conform.

Maintainability

SDL conformity is not only a matter of immediate transparency, but can also be quite instrumental in
maintaining a design throughout subsequent design steps (and beyond). In this regard, maintainability
indicates how well a layout and its corresponding schematic can be further processed (worked upon) un-
til the final mask data is taped out. This requires compatibility with the other routines of the tool chain,
e.g., for performing parasitic extractions that are then backannotated to the schematic for re-simulation.
Since an IC design seldomly turns out to be “first time right”, a certain degree of structural orderliness is
expected in the layout and the schematic to allow for swift design iterations without unpleasant compli-
cations. This argument is not to be shrugged off too carelessly, since modern design environments have

74

4.3 Summary

become so convoluted that any inconsistencies in the design can easily lead to netlisting difficulties on
the schematic side and verification problems on the layout side, for example.

Design iterations can also be necessitated by PDK updates, whereby design rules and design com-
ponents (i.e., the behavior of the PDK’s primitive device generators) can change before the design is
finished. Here, the consistency of the layout is pivotal for handling such a PDK update. If the layout
contains the affected design components as parameterized instances, these can be re-evaluated according
to their new behavior; otherwise, if for example the layout is completely flat (i.e., has no hierarchy), the
mere polygons do not reflect the update’s changes in the layout and therefore require an utter re-design.
If design rules have changed, it can be extremely helpful if the layout is hierarchically organized via
parameterized cells on device and module level. This allows to correct DRC errors of certain modules
in one fell swoop by revising only the respective master PCell, since this revision is then automatically
taken over by all PCell instances throughout the entire layout.

After tape-out, the maintainability of a design can be even more rewarding with respect to re-use,
considering the design’s applicability in later IC projects. In many cases, only specific parts of the
design are of interest, which again emphasizes the importance of appropriate modularization. With the
intention of fostering re-use, industrial design teams decide to gather certain prototypical modules and
store them in dedicated re-use libraries for potential applications in other designs. This practice may not
only be directed to designs of the same semiconductor technology, but also in farsighted anticipation of
future projects with denser integration – driven by the desire to put more functionality into an IC without
increasing its total area. This is where the consistency of a layout can have a dramatic impact on the
convenience of migrating the design to upcoming technology nodes. In the best case, only the primitive
devices of the old design need to be substituted by the new PDK components while the remaining design
entities adapt themselves to the new technology in a more or less automatic way. Of course, this is still
wishful thinking, but the organizational structure of a layout can provide some valuable groundwork here
nonetheless.

4.3 Summary

For practical application, an analog layout methodology has to be both technically feasible and econom-
ically viable. Unfortunately, traditional assessment criteria commonly referred to in literature are largely
More Moore oriented and do not adequately cover all relevant aspects. For that reason, this chapter
provided a more comprehensive overview of criteria that need to be taken into account for a thorough
assessment of any layout methodology. The considerations distinguish between two basic factors: the
impact on the design productivity of a potential customer and the layout quality that can be achieved.
All in all, it is determined that assessing the value of a layout methodology requires to answer four
elementary questions:

• Design productivity:

– How much effort and expense must the customer put into the methodology?
– What does the customer gain from the methodology in terms of efficiency?

• Layout quality:

– Is the resulting layout good enough to fulfill the desired circuit functionality?
– How well does the layout structure resemble the consistency of a manual design?

As the enormous amount of criteria behind these questions indicates, giving firm answers is anything
but trivial. This is no surprise because one could say that making an objective assessment is not just a
question of More Moore, but a quite difficult More than Moore challenge which reflects the qualitative
complexity of analog design. This of course also implies that no generally-admitted, formal assessment
metric can be conceived since the emphasis on (or relevance of) certain aspects always varies from
case to case. Nevertheless, having unfurled an expedient chart of assessment criteria in Section 4.2,
the preceding discussion can act as a good starting point and will be revisited for evaluating the layout
automation methodology which is about to be developed in Part II of this thesis.

75

Part II

The Methodology

5. Clarification of the Task

Chapter 5

Clarification of the Task

When people will not weed their own minds,
they are apt to be overrun by nettles.

Horace Walpole (British politician)

This chapter reprises the considerations of Part I in a nutshell to capture the essence of the task that
is to be treated in this thesis. As was discussed in the previous three chapters, that task exhibits three
different tenors: (1) the technical aim to achieve, (2) the scientific challenge behind that aim, and (3) the
practical ambition of this work.

5.1 Technical Aim

Chapter 2 explicated that the problem of analog layout is a severe bottleneck in the design flow of inte-
grated circuits because automation attempts have persistently failed to satisfy the high quality demands
of practical analog ICs or are too narrowly focused on specific applications. In industrial environments,
analog layout design is still done in a largely manual fashion today and heavily relies on human expertise
to cope with the More than Moore character of the analog domain. That invaluable expert knowledge
of seasoned layout engineers is pivotal for satisfying the diverse host of intricate design constraints that
need to be taken into account to obtain the desired functionality. While some design constraints can be
concisely expressed through formalized constraint representations, many requirements are simply com-
municated in a nonformalized way due to the difficulty and effort for describing them formally.

Existing automation approaches can be basically divided into optimization-based approaches and
generator-based approaches. The former automation strategy works algorithmically and is capable of
considering formally expressed design constraints explicitly. In contrast, the latter automation strategy
works procedurally and can consider design constraints only implicitly, but without the need to formalize
them. So far, no automation approach supports a well-balanced consideration of formalized and nonfor-
malized constraints, although both kinds of constraint representation are equally indispensable to cope
with the qualitative complexity of the analog design problem. For that reason, the technical aim of this
thesis is to combine the advantages of the two automation strategies into a novel layout methodology able
to consider design constraints both explicitly and implicitly.

5.2 Scientific Challenge

In Chapter 3, the working principles of optimization algorithms and procedural generators have been
illustrated. An optimization algorithm works by iterating through a repetitive loop of solution space
exploration and candidate evaluation. Thereby, a proposed candidate layout is successively refined with
respect to explicitly expressed optimization goals as well as confinements of the solution space. Due to
the problem complexity, optimization algorithms usually focus on one specific design task (floorplan-
ning, placement, or routing). A procedural generator follows a straight sequence of commands to create

77

5. Clarification of the Task

a customizable layout, depending on the generator’s input parameter values. Procedural generators for
layout design are commonly implemented as parameterized cells (PCells) that can be used by being
instantiated. In contrast to an optimization algorithm, a procedural generator has the natural ability to
perform both placement and routing simultaneously.

A characteristic trait of optimization algorithms is that they translate the layout problem into an ab-
stract mathematical model and optimize exactly the modeled aspects – not one thing more. Examining
that strategy, this thesis identifies a distinct underlying paradigm denoted as top-down automation. In
contrast to optimization algorithms, which self-intelligently find a layout solution at runtime, a procedu-
ral generator merely (re-)produces a layout result while the actual solution is preconceived by the human
expert who implemented the generator. So, procedural generators follow a fundamentally different au-
tomation paradigm here denoted as bottom-up automation. While optimization algorithms rely on an
abstraction of the problem (to lessen the degrees of freedom) and repeatedly re-invent the solution anew,
procedural generators pursue the generalization of a known solution (to increase the degrees of freedom)
which facilitates a parameterized way of layout re-use.

Relying on a complete formalization of the problem at hand, optimization algorithms are universal-
ists: they can be flexibly applied to a wide range of circuits, but concede losses in layout quality (due
to the inconvenience of having to formalize all design requirements, and also because of the algorithmic
inability to take all these design requirements into consideration). In contrast, procedural generators are
specialists: they produce layouts in full-custom quality but are limited to specific design tasks like au-
tomating a certain device type or circuit class (and may still require significant predevelopment effort for
covering sufficient parametrical variability and to anticipate all design requirements within the range of
the respective design task in advance). Hence, the strengths and weaknesses of top-down and bottom-up
automation precisely complement each other. This insight suggests, that converging the two paradigms
towards a new bottom-up meets top-down flow may not only facilitate a consideration of both formalized
and nonformalized constraints, but could be the key to close the gap of analog layout automation one
day. However, the heterogeneity of top-down and bottom-up automatisms poses the scientific challenge
of investigating how these two fundamentally different paradigms can be combined at all.

5.3 Practical Ambition

Apart from establishing the theoretical foundations for a substantially new layout methodology, this
thesis also intends to underline its practical usefulness. For that purpose, the field is plowed in two
regards: not only to prepare the ground for the philosophy of an innovative bottom-up meets top-down
flow, but also to straighten out some misconceptions from the past 30 years of analog EDA. In particular,
this adverts to the mistake of comparing analog automation approaches in a More Moore style, as is
traditionally done in literature. Chapter 4 argued that a thorough assessment adheres to many diverse
criteria and is therefore a nontrivial More than Moore issue. In short, evaluating a layout methodology
is supposed to consider both its impact on a customer’s design productivity (which may not only yield
an efficiency gain but also demands some effort and expense) as well as the degree of achievable layout
quality (which has two facets referred to as functionality and consistency).

Based on these ruminations, the practical ambition of this work is to demonstrate its implementation
in practice and to assess its true value for industrial application. Knowing about the tremendous com-
plexity of analog layout design (and the unfortunate habit of previous EDA achievements to overestimate
oneself), it is only fair not just to point at the assets of the new methodology but also to give an honest
account of its shortcomings and to concede for which scope of problems it is really suitable. While
providing an objective comparison of analog layout approaches is difficult in general, this is particularly
true for the thesis at hand because its merit is not merely to extend some existing automation technique in
one specific regard, but to pioneer an innovative, rather unconvential, and quite interdisciplinary multi-
agent approach. Building upon the basic idea of distributing the layout design tasks in a decentralized
way, Chapter 6 introduces the phenomena and the concepts from which that systemic approach can be
deduced, before Chapter 7 describes the complete methodology in detail.

78

6. An Interdisciplinary Approach – Preliminary Considerations

Chapter 6

An Interdisciplinary Approach –
Preliminary Considerations

The future is already here – it’s
just not very evenly distributed.

William Gibson (American-Canadian writer)

This chapter provides some preliminary considerations for an understanding of the interdisciplinary
approach that will be taken by the layout methodology proposed in this thesis. First of all, Section 6.1
articulates the basic idea of tackling the analog layout design problem by distributing the design tasks
across autonomously interacting, parameterized layout components. Next, Section 6.2 calls attention
to three seminal terms in that context: (1) decentralization, (2) self-organization, and (3) emergence.
For historical and didactical reasons, these three terms are then elucidated in reverse order: Section 6.3
illustrates the phenomenon of emergent behavior, while Section 6.4 discusses certain principles of self-
organization, until Section 6.5 presents a relevant spectrum of existing models and implementations of
decentralized systems. Finally, Section 6.6 alludes to the adaptation of these topics to the analog layout
design problem, thus directly segueing into the description of the novel methodology in Chapter 7.

6.1 Divide and Conquer – Distribute and Conquer

As already discussed in Section 3.2, optimization algorithms and procedural generators follow two fun-
damentally different automation paradigms. But in one respect, it can be said that they share a common
drawback: the determination of the layout solution is effected in a totally centralized way. Either, the
algorithm has to solve the entire design problem all alone, or the layout solution must be completely
preconceived by the design expert who develops the generator.

In the case of an optimization algorithm, one central optimization engine takes care of every design
decision, thus performing the solution finding in a “dictatorial” fashion. However, the burden of having
to consider all design constraints explicitly, leads to the quality gap shown in Figure 3.18 (page 61).
Dividing the design problem top-down into separate placement and routing steps –as it is done in the
digital domain– can surely reduce the problem complexity, but is obviously not a feasible pragmatism in
the analog domain due to the strong interdependence of the different design tasks (as underlined by the
example in Figure 3.12 on page 44).

In the case of a procedural generator, trying to realize a high-level circuit module with a powerful
layout PCell, the developer of the PCell must be “prophetic” enough to foresee all design eventualities
in advance. This, and the difficulty of covering the entire variability with a reasonable amount of de-
velopment effort leads to the hunched-down curve and the automation gap in Figure 3.19 (page 63). Of
course, the design problem can be unraveled hierarchically, using generators as building blocks to form
more complex modules in a bottom-up fashion. Still, such an approach has not yet shown to be profitable
enough above the level of simple modules (as defined in Table 2.1).

79

6. An Interdisciplinary Approach – Preliminary Considerations

This thesis proposes a more concerted divide-and-conquer approach: a system, where layout design
tasks are distributed across multiple autonomous layout components which are able to interact with each
other to solve the design problem by themselves. The idea is motivated by the observation that such de-
centralized systems can outperform “classical” approaches when targeting problems of high complexity
[180]. While it has been criticized that the term complexity is often used without giving a clear definition
[181], one widespread view in complexity theory is that the complexity of a system is associated with the
number of system components and the connections by which they are interrelated [182].

In [183], that view is phrased as: “in order to have a complex you need: 1) two or more distinct parts,
2) that are joined in such a way that it is difficult to separate them”. This notion of a complex system is
quite reminiscent of the qualitative complexity in analog layout design, where the design components are
mutually so perturbing and the design constraints so heavily entwined, that it is not generally possible to
decompose the problem in the conventional, purely reductionist top-down fashion, nor to assemble the
solution in a constitutive, building-block-based bottom-up style. Instead, a decentralization approach is
much more promising to tackle the problem – especially when taking a look at how remarkably interest-
ing and seemingly intelligent decentralized systems can behave (Section 6.2).

6.2 Decentralization, Self-organization, Emergence

Nature demonstrates some striking examples of decentralized organisms, such as the flocking behavior
exhibited by a group of birds: although each bird chooses its own course itself, their aggregate activity
can lead to impressive cohesive motions [184]. Most prominently, as illustrated in Figure 6.1 (taken from
[185]), large birds can often be observed to migrate in a V-formation, which is not only fascinating to
watch but has some vitally important benefits such as reduced predation risk [186] and aerodynamic gains
[187] (which also led to an adoption of such behavior in air forces: the so-called echelon flight formation
for military aircraft [188]). Again, it should be emphasized that the collective flocking behavior arises
–without central guidance– from the local actions of the flock’s individual members. The birds manage
to self-organize, wherein the joint achievement of the flock goes beyond the capabilities and the grasp of
each individual animal. This form of suprasummativity1 exemplifies an intriguing phenomenon called
emergence [191], which can not only be encountered in nature but also in many other fields, as will be
illustrated in Section 6.3.

Figure 6.1: Flock of blue geese in V-formation, photographed at the Mississippi Delta [185].

If emergence occurs in a decentralized system, it can lead that system from an initially entropic state
into a form of overall order. Such a process represents one acknowledged notion of self-organization
[192] (although, providing a universal definition of self-organization is again a debate of its own [193]).
An interesting question is, under which circumstances self-organization can occur – not only to explain

1The term suprasummativity originates from Gestalt psychology [189], where it denotes the principle, that the human mind
acquires meaningful perceptions by forming a global whole that is independent of its parts in the perceptual system [190].

80

6.3 Emergence: A Natural Phenomenon

certain observable occurrences of self-organization but also to learn how self-organizing systems can be
built to solve practical problems [194]. The latter intention is also pivotal for the work in this thesis,
because the interaction of the layout components has to be engineered such that it evolves into a flow of
self-organization, turning an initially disordered candidate layout into a “perfectly ordered” (DRC-clean,
LVS-correct, and constraint-compliant) layout result. Research on the principles of self-organization is
still rather juvenile, but many appealing theories have been formulated since the 1940s, particularly in
the field of cybernetics. Notable works that are relevant to the topic of this thesis will be presented in
Section 6.4.

A characteristic trait of decentralized systems is distributed control [195], which means that authority
is allotted to multiple subsidiary entities of the system. With respect to layout automation, the benefit of
suchlike decentralization is not just to share the workload, but rather to break down the complexity of
the design problem – or, in other words, to meet the problem complexity with a system that is itself very
complex (in the sense of [182] and [183] above). To achieve this, an important preparation is to decouple
the system entities from the total complexity of the overall problem by making them autarkic (i.e., self-
sufficient) and letting them interact with each other using only local information, without knowledge
about the global state of the system [196]. In general, this also implies that the behavior of each entity
is to be based on very few and very simple rules [197]. The relationship between such rules on the
microscopic level and the resulting macroscopic behavior (terms used by [198]) are investigated in many
existing models and implementations, some of which can be subsumed under the term artificial life (A-
Life) [199]. Relevant achievements, from simulators of biological organisms to artificial systems that
have been specifically designed for solving mathematical problems, will be covered in Section 6.5.

Interestingly, the close relatedness of the three topics emergence, self-organization, and artificial life
(which will be detailed in the subsequent three sections), becomes especially apparent in the following
formulation: “The theoretical focus of A-Life is the central feature of living things: self-organization.
This involves the spontaneous emergence, and maintenance, of order out of an origin that is ordered to a
lesser degree.” [200]. The following Section 6.3 shows some illustrious examples of emergence.

6.3 Emergence: A Natural Phenomenon

The idea of a whole that is greater than the sum of its parts, dates back to Aristotle and the time of
the ancient Greeks [201], but it was not until 1875 that the term emergent was coined by the English
philosopher G. H. Lewes regarding certain effects of a chemical reaction [202]. These two perceptions
already indicate that the definition of emergence has an epistemological aspect and an ontological aspect
[203]. Epistemologically speaking, emergence is an attribute denoting that the global properties of a
system cannot be reduced to the properties of its lower-order parts [204]. For example, the color of gold
cannot be derived from examining a single gold atom [205]. In ontological terms, emergence is a process
whereby new, collective structures evolve over time through interactions of simpler subunits [206]. This
phenomenon accounts for the observation that intelligent behavior can arise from interacting entities that
are individually not “terribly smart” [207]. The two aspects of emergence have lead to a distinction
between different forms of emergence, as will be discussed in Section 6.3.1.

6.3.1 Forms of Emergence

In taxonomies for emergence, the epistemological meaning above relates to what has been denoted as
nominal emergence [208] (Figure 6.2, left). Nominal emergence can further be divided into intentional
and unintentional emergence [209]. As an example for intentional emergence, the function of a machine
is an emergent property of its components (e.g., the ability to tell the time is an emergent property
of a clock’s inner gears and wheels). Unintentional emergence mainly refers to statistical quantities
of aggregations with many identical particles (e.g., the volume of a gas). While the epistemological
meaning of emergence has, above all, incited a philosophical debate about the overuse of reductionism
in physics research [210], the ontological notion is not only more relevant for the work in this thesis, but
also more spectacular (as the examples in this section are about to show).

81

6. An Interdisciplinary Approach – Preliminary Considerations

Emergence

Nominal
Emergence

Non-nominal
Emergence

Intentional
Emergence

Unintentional
Emergence

Strong
Emergence

Weak
Emergence

Examples: Volume
of a Gas

Life, Mind,
Consciousness

Purpose
of a Clock

Flocking
Behavior

Epistemological Aspect Ontological Aspect

denotes a
Property

denotes a
Process

Target of
this Thesis

Figure 6.2: Overview of the different forms of emergence as commonly classified in literature.

The ontological, i.e., non-nominal, form of emergence is characterized by a dynamic behavior which
is unexpected and unpredictable, whereat philosophers like to distinguish between strong and weak forms
of non-nominal emergence [211] (Figure 6.2, right). Strong emergence (also denoted as radical emer-
gence [212]) refers to processes that cannot even in principle be derived from lower-level processes
[213]. Often-cited examples are life, mind, consciousness, and culture (also see [214]). However, the
existence of strong emergence is contentious, with critics pointing to the obvious lack of evidence [215].
Weak emergence refers to processes where the macroscopic behavior is completely determined by the
causal dynamics of its parts, but can only be predicted by performing a complete simulation [216] (which
is often not possible because not all details about the parts and their dynamics are known [211]).

While the idea of strong emergence remains subject to philosophical discourses (surrounded by a lot
of controversy), it is the understated notion of weak emergence that attracts scientific interest, mainly in
complex systems theory [217], and also represents the target of this thesis. Speaking of weak emergence,
the following real-life examples are by definition “weak” – but phenomenologically quite astonishing
nonetheless. For that reason, the remainder of this thesis simply uses the term emergence to denote that
form of non-nominal emergence which is so relevant for the presented work.

6.3.2 Emergence in Biology

Emergent cohesive motions of animate beings are not only exhibited by flocks of birds (as in Figure 6.1),
but can also be observed in many other aggregations of congeneric creatures such as shoals/schools2 of
fish [218], herds of mammals [219], swarms of insects [220], or crowds of people [221] (see Figure 6.3,
with pictures from [222], [223], [224], and [225]).3 Behavior of that kind is collectively denoted as
swarm behavior or swarming. As such, these two terms do not only apply to swarms of insects, but to
animals in general and also to inanimate entities. A highly topical example for the latter case is swarm
robotics [227], a field of interest that is predicated on biological studies of natural swarm behavior.
Likewise, swarming has also been the inspiration for the population-based Particle Swarm Optimization
technique discussed in Section 3.1.3.

A captivating example of intelligent swarm behavior is given by ant colonies such as in Figure 6.4
(image taken from [228]), especially in respect of the ants’ collective ability to find the shortest path
between their nest and a nearby food source [229]. As explained in [230], every wandering ant deposits
a pheromone trail which in turn attracts other ants that intensify the pheromone trail. Since pheromones
evaporate over time, the amplification of the pheromone density correlates inversely with the distance
that the ants need to travel down a path and back again. Thus, the discovery of the shortest path emerges
automatically from the individual movements of the ants. This pheromone-guided ant behavior has also
found its way into computational optimization: it served as the blueprint for the Ant Colony Optimization
algorithm (again, see Section 3.1.3).

2Shoaling means that some fish stay together and form a social group, swimming around arbitrarily. Schooling means that
the fish are all swimming in the same direction.

3This kind of emergent behavior cannot be attributed to groups of canids because they involve dominance, e.g., an alpha
wolf among a pack of wolves [226].

82

6.3 Emergence: A Natural Phenomenon

Figure 6.3: Emergent cohesive motions of animate beings: a school of jacks [222], a herd of deer [223],
a swarm of bees [224], and a crowd of humans [225].

Figure 6.4: Safari ants foraging for food on the Chogoria route of Mount Kenya [228]. The shortest path
to the food source emerges from the aggregate pheromone deposition of the ants.

6.3.3 Emergence in Physics

Emergent behavior can not only be found among sentient beings, but also on atomic and molecular
levels. One shining example is crystallization, the process where microscopic particles aggregate in a
thermodynamic solid state and form highly ordered lattice structures. In nature, crystallization is nicely
demonstrated by snowflakes, where due to subtle differences in crystal growth conditions –depending
on temperature and humidity– polymorphic crystal structures with different geometries abound [231].
Despite the immensely wide variety of sizes and shapes, the aggregation of the ice molecules often
leads to an emergence of dihedral symmetry in symmetry group D6 (i.e., six-fold radial symmetry) on
the macroscopic scale [232]. This phenomenon is also shown by the magnified snowflake exemplar in

83

6. An Interdisciplinary Approach – Preliminary Considerations

Figure 6.5 (photography by [233]), which has six variously shaped ice arms grown, thus constituting the
characteristic stellate appearance well known from snowflakes.

Figure 6.5: Stellate snowflake with dihedral symmetry [233] – an example of emergence in physics.

While crystals are structures of solid matter, emergence can also be encountered in liquids. For in-
stance, one of the most commonly studied emergent phenomena in fluid mechanics is Rayleigh-Bénard
convection [234]: in a thin layer of liquid which is slightly heated from the bottom, the temperature
gradient leads to an upward conduction of thermal energy and thus an upwelling of lesser density fluid
from the bottom layer, which –at a certain point– spontaneously becomes ordered on the macroscopic
level (referred to as spontaneous order). This results in the appearance of rotating convection cells with
regular patterns such as hexagons, eyes, and traveling waves (see samples in Figure 6.6, extracted from
[235]). The formation of these so-called Bénard cells cannot be predicted due to their high sensitiv-
ity to the system’s microscopic initial conditions. Suchlike behavior is denoted as deterministic chaos
[236] (also known as the butterfly effect) and is subject to chaos theory. Another popular example of
deterministic but chaotic behavior can be seen in the response of a double-rod pendulum [237].

Figure 6.6: Samples of spontaneous order in liquids, emerging via Rayleigh-Bénard convection [235].

84

6.4 Principles of Self-organization

6.3.4 Emergence in Mathematics

Some geometric figures exert fascination for being self-similar at all scales. Such patterns are referred to
as fractals and can also be considered as examples of emergence [238]. A fractal’s infinite self-similarity
emerges from a simple rule or operation that is applied recursively. While fractals can be readily found
in nature (see, for instance, a Romanesco broccoli), they are a particular topic of scientific interest in
mathematics – namely, in the branch of fractal geometry. One prominent fractal shape is the so-called
Koch snowflake [239], which is constructed by drawing an equilateral triangle and then recursively
modifying each side of the triangle by dividing the side into three segments and buckling the middle
segment into another triangle. Figure 6.7 (created by [240]) shows a colored example of such a Koch
snowflake (exhibiting the same radial symmetry as the real snowflake encountered in Figure 6.5).

Figure 6.7: Fractal shapes like this Koch snowflake [240] can be regarded as examples of emergence.

Apart from attaining geometric beauty, fractal structures have also been used for engineering pur-
poses. For instance, they find practical application in the design of fractal antennas as employed in
telephone and microwave communications [241]. Due to their recursive pattern generation, fractals are
commonly said to be self-replicative. Interestingly, it was work on self-replicating systems in the 1940s
that led to the origination of a concept known as the cellular automaton. As will be described in Sec-
tion 6.5.1, cellular automata are discrete models used in mathematics –but also in many other fields of
science– to simulate dynamical systems and investigate emergent phenomena. The thematic related-
ness of these topics is further confirmed by the fact that recursivity is considered to be one principle of
self-organization, as Section 6.4 is about to touch upon.

6.4 Principles of Self-organization

The terms emergence and self-organization are sometimes used synonymously (e.g., see the debate in
[242]), but they actually denote two different concepts and can exist in isolation [243] (although, as [244]
puts it, this can be considered a matter of definition). As an example, a tornado is an emergent weather
phenomenon but it would be presumptuous to call its appearance a product of self-organization. Vice
versa, a group of castaways on a deserted island might democratically self-organize themselves, without
any ranking of leadership, in order to survive – in that case, the ultimate purpose (i.e., survival) is only
nominally emergent. The crucial question is, what ingredients are in general required –or helpful– to
achieve a flow of self-organization, especially with the intention to provoke a form of emergence which
is not merely nominal. Section 6.4.1 first introduces four basic constituents of self-organizing systems
before Section 6.4.2 to Section 6.4.8 elaborate on seven self-organization fundamentals discussed in
literature. Inhowfar all these ingredients can also be found in the layout methodology worked out by this
thesis will be subject to Section 7.5.

85

6. An Interdisciplinary Approach – Preliminary Considerations

6.4.1 The Basic Constituents of Self-organization

Referring to [245], which contemplates self-organization from a managerial point of view, a company
team involves –apart from (1) the team itself, i.e., a group of interacting workers– three more constituents
in order to self-organize: (2) a set of behavioral rules by which the workers may act, (3) pressure to get
the group going, and (4) clear goals that are made known to the group. Urged on by these goals, one can
say that there is a perpetual cycle of pressure being exerted on the workers and thus stimulating them, with
the workers constantly trying to satisfy that pressure by acting according to the given rules (while each
worker may simultaneously attempt to pursue his or her own individual goals). These four constituents,
illustrated in Figure 6.8 (a), can in general be found in any self-organizing system. And as will be shown
in Section 7.1.1, they also represent the pillars of the designated layout methodology – however, with
one subtle reservation, because if the goals are completely known to the workers, achieving these goals
is only an intentional, nominally emergent property.

Goals

Pressure

Workers

Rules
regul arize
Beha vior

made
known to

pursuing
Individual Goals

stim
u

la
tes

tr
y

to
 s

at
is

fy
bo

tto
m

-u
p top-dow

n

1

3

24 Goals

Pressure

Workers

Rules
regul arize
Beha vior

made
known to

imp ose
 Go alsexerted

via

pursuing
Individual Goals

stim
u

la
tes

tr
y

to
 s

at
is

fy
bo

tto
m

-u
p top-dow

n

1

3

24

(a) Nominal Self-organization (b) Emergent Self-organization

Figure 6.8: The basic constituents of self-organization: (1) workers, (2) rules, (3) pressure, (4) goals.

The situation is different in insect societies such as ant colonies (see Section 6.3.2), where labor is
said to be distributed: such a system is accredited with the advantage that individual workers do not need
to share information about how to achieve the desired collective aim [246]. Although shared knowledge
can be necessary in a cooperating company team, the ant colony is better off without it: assessing the
global state of the system would even be disadvantageous for the colony because “seeing the whole” is
both perceptually and conceptually overburdening for any single ant [247]. In that case, detaching the
workers from the colony’s overall goal is even beneficial and yields an emergent form of self-organization
which is not merely nominal. This poses the dilemmatic question, how suchlike emergent behavior can
be aroused to solve a specific problem without plainly setting the ultimate goals. As will be covered in
Section 7.1.1, this thesis takes an approach –indicated in Figure 6.8 (b)– where the achievement of the
goals is not effectuated all directly (i.e., by making them completely known to all workers) but also by
imposing the goals via the pressure and thereby steering the workers’ actions in an indirect fashion.

6.4.2 Operational Closure and Structural Coupling

Exerting pressure to evoke emergent behavior means to put a self-organizing system “on the spot” by
changing its environmental conditions. If the system is unable to influence these conditions, its only
possible response is to accommodate itself to the new situation by changing its own internal structure.
A system capable of maintaining itself in this way, can be called autopoietic.4 According to [249], au-
topoietic systems are operationally closed, i.e., neither does the system alter its environment nor does the
environment directly participate in the systems internal operations. For that reason, operational closure
entails that the system must rely on self-organization (at least from the environment’s perspective).

In contrast to allopoietic systems, the connection between an autopoietic system and its environment
is not a causal chain with inputs and outputs, but a latent relationship referred to as structural coupling
[250]: the environment cannot directly manipulate but only irritate the system to spur a self-produced

4The term autopoiesis was coined in cognitive biology to explain the nature of living organisms [248].

86

6.4 Principles of Self-organization

change (which, over time, is denoted as structural drift). At the same time, an autopoietic system is said
to be cognitively open. This cognitive openness denotes that the system does not exist in isolation but is
receptive to events in its environment and able to adapt itself to environmental perturbations [251]. Such a
system, which is capable of increasing its chance of survivability in a turbulent world by accommodating
itself to a changing environment, is also called a complex adaptive system.

6.4.3 The Edge of Chaos

The work of [252], which examined the behavior of cellular automata (see Section 6.5.1) in 1990, iden-
tified a phase transition from highly ordered to highly disordered dynamics which was likely to produce
emergent computation (because near that phase transition, the cellular automaton had the greatest po-
tential for the support of information storage, transmission, and modification). The transition region,
located in the vicinity of the border between stable and unstable automaton behavior, became known as
the edge of chaos (in [253] initially denoted as onset of chaos). Figure 6.9 (adapted from [254]) illus-
trates the edge of chaos as the order parameter regime where high-level structures of a system appear on
the macroscopic scale. The spontaneous order of these structures is said to be metastable because it is
usually short-lived and can be rapidly replaced by disorder due to disturbances of that balanced state.

Low-Level
Structures

High-Level
Structures

Complexity

Order
(stable)

Chaos
(unstable)

Edge of Chaos
(metastable)

Macroscopic Level

Microscopic Level

Order ParameterPhase Transition

Figure 6.9: Operating at the edge of chaos [254] is considered as one principle of self-organization.

Until today, the phrase edge of chaos has also been adopted in various other fields of science (includ-
ing physics, biology, and sociology) to describe the observation that many systems operate in a region
between order and chaos, where the capabilities of the system are maximal [255]. For example, regarding
creativity in cognitive systems, it is alleged that innovation occurs right at the edge of chaos [256]. On
this note, but in more general terms, complexity theorists note that the proximity of a system’s operating
point to the edge of chaos is decisive for the evocation of emergent behavior and self-organization [257].

6.4.4 Recursivity and Feedback

A constant background theme of self-organization is recursion [258]. It is often put on record that a
system’s ability to reach a stable –or metastable– configuration (also denoted as an attractor) involves
some kind of recursivity. In the context of systems theory, recursivity means that the output of some
operation serves as the input for its next operation, i.e., cause and effect mutually influence each other
[259]. In [260], such a recursive system is called a nontrivial machine and described as a finite state
machine: it has the property that the response for a certain stimulus is not necessarily the same when
the same stimulus is applied at a later time. Thus, in contrast to a trivial machine (which effectively
denotes a combinatorial circuit, i.e., a system whose output depends only on its input), the behavior of
a nontrivial machine is history-dependent and analytically unpredictable even though it is synthetically
deterministic. This analytical unpredictability means that an experimenter –without knowledge about
the inner workings of the machine– is not able to “crack the code” just by observing sequences of input-
output pairs. According to [261], all autopoietic systems (Section 6.4.2) are organized recursively.

87

6. An Interdisciplinary Approach – Preliminary Considerations

Recursivity is commonly understood as feedback, whereat two types of feedback are discerned:
positive feedback and negative feedback. Regarding the latter, control cycles for error-controlled reg-
ulation are based on a negative feedback loop which counteracts a system variable’s deviation from the
target value (the so-called setpoint). In contrast, positive feedback (sometimes also referred to as self-
enhancement, amplification, or autocatalysis) reinforces fluctuations of a variable and thus promotes
changes in a system. For that reason, positive feedback can result in a snowballing effect that may even
destroy the system (resonance disaster), but interestingly it can also lead to an equilibrium instead [262].
As an example, one may consider the foraging behavior of ants (see Section 6.3.2): the pheromone
deposition is continuously increased by attracting more ants that deposit further pheromones. However,
suchlike stabilization in fact also involves negative feedback in the end: an exhaustion of resources [263].
In this example, when the entire ant colony ultimately follows the pheromone trail, there are no more
ants left to amplify the pheromone density any further. In complex self-organizing systems, there usually
are several interlocking feedback loops, both positive and negative.

6.4.5 Stigmergic Interaction

While operational closure and structural coupling (Section 6.4.2) designate a form of oblique corre-
lation between a system and its environment, a similar relationship called stigmergy [264] can also be
encountered among the entities that interact within the system. Stigmergy is a mechanism of indirect
coordination whereby entities in a decentralized system communicate with each other not directly but
via modifications of their environment [265]. Stigmergy was first observed in social insects, with one
example (already given in Section 6.3.2) being the way ants exchange information by laying down traces
of pheromone. Accordingly, algorithmic Ant Colony Optimization techniques involve a deposition of
“virtual pheromones” [266].

Another –nonbiological– example is provided in [267], where self-organizing traffic lights stigmer-
gically co-control each other via the car density of the traffic that they regulate. This example, displayed
in Figure 6.10 (adapted from [267]), illustrates that stigmergy is not only an integral part of collective
intelligence in natural organisms, but that it is also considered to be an expedient principle for designing
self-organizing systems [268]. For instance, the work of [269] implements stigmergic interaction be-
tween a group of mobile robots whose movements are coordinated through local configurations of their
environment.

Moving Vehicle

Waiting Vehicle

Green Traffic Light

Red Traffic Light

Figure 6.10: Stigmergy: the traffic lights do not communicate directly, but via the regulated traffic [267].

6.4.6 Reducing Friction and Promoting Synergy

One term that regularly appears in the context of emergence and self-organization is synergy [270].
There even exists a dedicated scientific branch called synergetics [271] (the science of cooperation), but
still, the term synergy is ambiguous. Often, synergy is paraphrased with the Aristotelian formulation
that the whole is greater than the sum of its parts [272]. In that case, the term is synonymous to the

88

6.4 Principles of Self-organization

epistemological understanding of emergence (see Section 6.3.1). In [273], synergy is referred to as the
combined effect of an interaction, so the term is used in the ontological sense of emergence. Sometimes,
synergy does not denote the effect of an interaction but the interaction itself (e.g., in [274]). Despite
this equivocality, there seems to be consensus in two regards. First, synergy always indicates a form of
cooperation. Second, while emergence rather represents a long-term phenomenon resulting from many
interacting entities, the term synergy can apply to a single (inter-)action.

Mirroring both of these aspects, the author of [275] understands synergy as a correlation or concourse
of action. In this spirit, but with a focus on the design of self-organizing systems, the author of [276]
speaks of synergy when the action of an entity is not only beneficial for the entity itself but also for the
other entities (and thus for the entire system). So, a synergistic action amounts to a “win-win” situation.
If an entity increases its own satisfaction at the cost of the other entities, this is denoted as friction. The
main premise of the work in [276] is that reducing friction and promoting synergy in a self-organizing
system will result in better performance. This is backed by the observation, that evolutionary processes
also tend towards synergistic relationships on the level of genes and genomes [277].

6.4.7 The Virtue of Selfishness

As already mentioned in Section 6.4.1, it can be advantageous if the interacting entities of a self-
organizing system have only local information and elide any global knowledge about the system’s overall
state. Carrying this notion a bit farther, one might suggest to design the individual entities not only as
ignorant, but even as selfish [278], so as to dumb down their decision-making. Intuitively, it may appear
doubtful to assume that a group of such egoistic individuals could interact in a way that is beneficial for
the system as a whole. However, a strong case for this idea of egoism can be made by studying nature
once again. In particular, the selfish herd theory [279] states that –in contrast to previous beliefs– the
gregarious behavior of animal species is not owing to mutual benefits of the animals but results from
selfishness: in the face of predators, each animal tries to put other conspecifics between itself and the
predator, which inevitably leads to an aggregation of the herd –as for example seen in Figure 6.11 (photo
by [280])– and to a reduction of predation risk for the entire group. Thus, the aggregate behavior of that
population is not rooted in cooperation but in competition.

Figure 6.11: According to the selfish herd theory, animals aggregate out of selfishness (photo: [280]).

The characteristics of such competitive settings are mathematically investigated in noncooperative
game theory (see Section 6.5.2), where egoistical players are called self-interested. However, as [281]
points out, self-interested does not necessarily mean that the players want to cause harm to each other, but
that they act according to their individual preferences and within their own scope of action. Regarding
the contemplations of Section 6.4.6 about synergy, this remark connotes that –although synergy implies

89

6. An Interdisciplinary Approach – Preliminary Considerations

cooperation instead of competition– the selfishness of an entity can still allow for synergistic actions. An
equivalent notion can also be found in economics, where the metaphor of Adam Smith’s invisible hand
describes that society can benefit from the self-interested efforts of individuals [282].

6.4.8 Law of Requisite Variety

A herd’s reaction to predatory danger (as discussed in Section 6.4.7) exemplifies the pivotal question
which escorted all of the preceding ruminations in this Section 6.4: how apt is a self-organizing system in
responding to disturbances that emanate from its environment? One fundamental answer to that question
is found in Ashby’s law of requisite variety [283]. By Ashby’s definition, variety denotes the total
number of potential distinct states of a system. In a more general sense, variety is the repertoire of
actions available to a system. Ashby’s law (also known as the first law of cybernetics [284]) says: the
larger the repertoire of actions available to a system, the larger the variety of environmental disruption
the system is able to compensate.

Ashby’s law of requisite variety can be understood as a condition for dynamic stability under external
perturbations, and is also considered as a simpler version of Shannon’s Tenth Theorem [285]. Two further
notions shall be brought up here: first, according to Ashby, variety is a measure for the complexity
of a system [286], and second, Ashby’s law has also been phrased as “variety absorbs variety” [287].
These two notions elucidate the statement that was made in Section 6.2 about the approach taken by the
methodology in this thesis: to address the complex problem of analog layout with a system that is itself
very complex. In other words, variety of action is required by the methodology to cope with the many
degrees of freedom and the diversity of constraints that are so characteristic of the analog IC domain.

6.5 Models of Decentralized Systems: A Form of Artificial Life

Inspired by the phenomenological occurrences of emergence (see Section 6.3) and with respect to the
oft-enunciated principles of self-organization (Section 6.4), various models of decentralized systems have
been proposed since the middle of the 20th century, targeting the examination of emergent behavior as
well as the practical utilization of self-organizing structures. And although no approach specifically
addresses the problem of layout automation in analog IC design, it is worthwhile to survey a couple
of relevant achievements. Therefore, this Section 6.5 presents an overview of existing concepts in that
field, particularly concentrating on those ideas that have influenced the work of this thesis (as will be
indicated in each of the following subsections and comprehensively summarized in Section 7.5). It has
already been mentioned that a couple of implemented (i.e., computer-based) models of decentralized
systems imitate natural biological processes and are, for that reason, often referred to as artificial life
[288]. A famous example –the Game of Life– will be given in the following Section 6.5.1, which covers
the concept of cellular automata.

6.5.1 Cellular Automata

The concept of cellular automata, suggested by Stanislaw Ulam and taken on by John von Neumann
for his work on self-reproducing systems in the 1940s [289], can be considered the first exemplification
of artificial life. A cellular automaton is a space- and time-discrete mathematical model, given as an
n-dimensional lattice of cells each of which behaves like a finite state machine. At any point in time,
all cells are in one of a finite number of states, and with every time step, each cell changes or keeps
its state according to a simple transition function that involves the state of the cell itself and the states
of its neighboring cells [290]. In their most illustrative form, cellular automata have two dimensions
(represented as an orthogonal grid of adjacent squares), each cell switches between two states, and a
cell’s neighborhood is comprised of the cell’s eight surrounding cells.

One example of such a cellular automaton is Conway’s Game of Life [291], which was devised in
1970 and attracted much interest in and beyond academia. In Conway’s Game of Life, every cell is in
a state of being “alive” or “dead” and –depending on its neighboring cells– either dies (due to isolation
or overpopulation), lives on (to the next generation) or becomes alive (as if by reproduction) at the next

90

6.5 Models of Decentralized Systems: A Form of Artificial Life

time step. The fascination with the Game of Life emanates from its visualization of emergent behavior,
because –based on this simple set of rules– quite interesting patterns arise after several generations. These
include static patterns (still lifes), periodic patterns (oscillators), moving patterns (gliders, spaceships),
self-copying patterns (replicators), patterns that emit other patterns (guns, rakes, breeders), and patterns
that take a large number of generations to stabilize or vanish (methuselahs). Figure 6.12 shows some
examples of such patterns as well as a Garden of Eden (an orphan pattern that has no predecessor and
can therefore not appear beyond the automaton’s initial configuration). Apart from the surprising ways,
in which such complex configurations evolve over time, a scientifically interesting aspect of the cellular
automaton is its computational power: since it is possible to construct counters and logic gates by letting
gliders interact with each other, Conway’s Game of Life is Turing complete [292].5

Figure 6.12: Examples of patterns in Conway’s Game of Life, a two-dimensional cellular automaton.

Another Turing complete system that can be described as a cellular automaton is Langton’s Ant
from 1986 [293]. It simulates step-wise orthogonal movements of a single virtual ant whose decisions
are based on two simple rules. Over thousands of steps, these rules lead to complex behavior, as the
ant can be observed to first create plain symmetric patterns, which later become chaotic and irregular,
until the ant’s motion eventually leads to the emergence of a straight, diagonal, indefinitely repeating
ant trail. Similar to Conway’s Game of Life, Langton’s Ant is not only interesting for its capability of
universal computation (proven in [294]), but for the evolvement of captivating patterns such as spirals
and snowflake-like, hexagonal structures (in a generalized concept known as Turmites). Langton’s Ant
can be implemented within Wireworld, a cellular automaton first presented in 1987 [295]. The cells
in Wireworld cover four different states and behave with respect to four very trivial rules. Like the
previously mentioned examples of cellular automata, Wireworld is computationally universal, despite
the simplicity of its state transitions. It is particularly designed to simulate electronic circuits and has
even been used to implement a Turing complete computer.

Until today, many types of cellular automata have been developed and are being investigated for
various practical applications such as image recognition, task scheduling, and cryptography [296]. Apart
from that, their computational capabilities and the diversity of emergent patterns soon inspired scientists
to draw certain parallels between cellular automata and the complexity of natural processes. Already in
1969, Konrad Zuse proposed that even the evolution of the universe itself is, at heart, digitally computed
by some sort of cellular automaton, presuming that physical laws are not continuous by nature but dis-
crete [297]. In 2002, Stephen Wolfram published an extensive study of cellular automata to pronounce
their importance for science in general, supposing huge potential for providing insight into the behavior
of complex systems in all kinds of fields [298].

The bearing of cellular automata for this thesis is plain: just like the simple interactions of an automa-
ton’s cells leads to the emergence of “living” higher-level structures, the designated layout methodology
attempts to let the overall layout solution emerge from the dynamics of interacting lower-level layout
components. And as will be seen in Section 7.5, some particular aspects of cellular automata (e.g.,
including an entity’s local areal neighborhood into its decision-making, or changing the “state” of an
entity) can also be identified in the novel layout methodology.

5In computability theory, Turing completeness signifies that a system can be used to simulate a Turing machine (which
is an abstract mathematical computation model). This means, that such a system is generally capable of performing all data
manipulation tasks which are also accomplishable by real-world computers.

91

6. An Interdisciplinary Approach – Preliminary Considerations

It is interesting to note that the main inventor of cellular automata, von Neumann, was also one of
the founders of modern game theory, as follows in Section 6.5.2 (by the way, Conway’s Game of Life is
also referred to as a zero-player game).

6.5.2 Game Theory

One key discipline to model the self-interested decision-making of entities in a decentralized system is
game theory [299], which is the mathematical study of strategic interaction among independent rational
players who try to maximize their so-called payoff . Game theory primarily serves the examination of
coalitional or competitive behavior in such situations and the prediction of probable outcomes. Com-
monly, this is achieved by identifying so-called solution concepts which allow game theorists to deduce
equilibrium strategies for each player. The most influential solution concept in game theory is the Nash
equilibrium [300], where no player can increase his or her own payoff by unilaterally choosing another
strategy. The payoff is usually represented by a utility function which –in short– maps a player’s prefer-
ence for a possible outcome to a real number.

Game theory distinguishes between many different types of games. Considering the criteria that can
also be recognized in the work of this thesis, a game can be

• a cooperative game (where groups of players can form coalitions) or a noncooperative game
(where each player makes individual choices),
• a discrete game (where all players choose from a finite set of strategies) or a continuous game

(where strategies are chosen from an infinite continuous set),
• a symmetric game (where the payoffs for a strategy are independent of the player, as in Figure 6.13)

or an asymmetric game (where changing the identities of the players changes their payoffs, as if
the players had taken on different roles),
• a constant-sum game (where each player’s gain/loss comes at the expense/benefit of the other

players) or a non-constant-sum game (where the aggregate gains and losses are not the same for
every outcome),
• a simultaneous game (where all players choose their strategy without knowing about the other

players’ choices) or a sequential game (where players decide one after another, having –at least
some– knowledge of the other players’ prior choices),
• a perfect-information game (a sequential game where a player always knows all choices previously

made by the other players) or an imperfect-information game (a sequential game where a player
may have only partial or no knowledge of earlier choices).

If a game is played multiple times, the game being repeated is called the stage game. A game, that is
played a finite and known number of times, is denoted as a finitely-repeated game, whereas a game that
is played infinitely often or a finite but unknown number of times is referred to as an infinitely-repeated
game.

Games in game theory can be represented in various ways. The most fundamental game represen-
tation is the normal form because many game-theoretic settings can be reduced to normal-form games.
Simply put, the normal form allows to represent the payoffs for a set of n players, depending on the
vector of chosen actions (called an action profile), in an n-dimensional payoff matrix. A textbook ex-
ample of a game that can be represented in normal form is the well-known Prisoner’s Dilemma [301]
(depicted in Figure 6.13). Since the normal form does not support any notion of sequence, sequential
games are often reasoned about in the so-called extensive form representation. An example of such an
extensive form game, where the successive actions of the players are represented in a rooted game tree,
is Centipede [302]. Both the Prisoner’s Dilemma and the Centipede game illustrate the paradoxical case
that two players might choose not to cooperate although both would be better off by doing so.

Game theory is used to model real-life situations of conflict and coordination. In the 1940s, game
theory was initially developed to understand economic behavior [303], but today it also plays an impor-
tant role in disciplines as diverse as political science, biology, psychology, philosophy, and computer
science. With respect to this thesis, game theory is interesting since the decision-making of the interact-
ing layout components in the novel layout methodology can also be regarded from a game-theoretical

92

6.5 Models of Decentralized Systems: A Form of Artificial Life

-1
-1

-3
0

0
-3

-2

Player B

P
la

ye
r

A

Action c
(confess)

Action d
(deny)

A
ct

io
n

c
(c
on
fe
ss
)

A
ct

io
n

d
(d
en
y)

Two criminals A and B are imprisoned,
not able to communicate with each other.

If A and B confess the crime, then
both remain imprisoned for 1 year.

If A confesses and B denies the crime, then
A is imprisoned for 3 years and B is freed.

If A and B deny the crime, then
both remain imprisoned for 2 years.

If A denies and B confesses the crime, then
B is imprisoned for 3 years and A is freed.

Description Normal-Form Representation

•

•

•

• Symmetry Axis

-2

B's
Set of

Actions

A's
Set of

Actions

-3
0

One of 22

Action Profiles

B's
Payoff

A's
Payoff

Payoff
Matrix

Two purely rational self-interested players would both deny the crime (Nash equilibrium).

Figure 6.13: The Prisoner’s Dilemma – a noncooperative, discrete, symmetric game in normal form.

point of view. However, these layout components are no mathematical conceptions of abstract players
but concrete computational entities – such as the entities used to build multi-agent systems, which will
be the topic of the subsequent Section 6.5.3.

6.5.3 Multi-Agent Systems

Multi-agent systems [304] are a relatively new field of computer science that followed a 1980s trend
from classically centralized approaches of artificial intelligence towards distributed control. A multi-
agent system is defined as a network of loosely coupled agents that interact with each other in a given
environment. Therein, an agent [305] is a computational entity such as a software program or a robot
(with the corresponding environment being a virtual space or a real physical setting, respectively). Such
an agent is commonly accredited with the following characteristics:

• the agent is able to perform actions upon its environment,
• the agent is autonomous in its decisions about how to act,
• the agent has a particular degree of intelligence (and often mobility),
• the agent has a limited viewpoint with only incomplete information about its environment,
• the agent is rational in that it adheres to a goal-directed behavior following clear preferences.

According to [306], agents can be grouped into the following five classes: simple reflex agents, model-
based reflex agents, goal-based agents, utility-based agents, and learning agents. As a side note in refer-
ence to Section 6.5.1, multi-agent systems are related to cellular automata with respect to the considera-
tion that both implement a complex system (in the sense of [182] and [183], as mentioned in Section 6.1),
albeit at two ends of the spectrum: compared to each other, cellular automata are complex systems with
simple agents, whereas multi-agent systems are simple systems with complex agents [307].

In [308], multi-agent systems are denoted as concepts of distributed artificial intelligence that com-
plement artificial intelligence and artificial life. Although multi-agent systems can (and are usually meant
to) exhibit some form of collectively intelligent behavior, they must be distinguished from certain meth-
ods of swarm intelligence, which are investigated in the context of mathematical optimization and thus
represent an algorithmic sub-branch of artificial intelligence. As already discussed in Section 3.1.3, a
method of swarm intelligence such as Particle Swarm Optimization (for which a lot of different applica-
tions exist [309]) is a population-based optimization technique where the solution space is explored by
multiple particles, each of which represents one candidate solution to the optimization problem. This
is a fundamental difference towards a multi-agent system, in which every agent contributes to solving a
global problem but is not itself a solution to the problem.

While the idea of multi-agent systems has not gained widespread recognition up until the mid-1990s,
interest in the field is now growing significantly, to some extent spurred by the initiated technical evolu-
tion towards the Internet of Things and Industry 4.0 [310]. Today, the usefulness of multi-agent systems
is actively examined in a large host of diverse applications, such as aircraft maintenance [311], supply

93

6. An Interdisciplinary Approach – Preliminary Considerations

chain management [312], and energy resource scheduling [313], just to name a few. With the thesis at
hand, the problem of layout automation is added to that palette since the interacting layout components
of the new layout methodology can –according to the five characteristics above– also be understood as
agents. However, an extraordinary trait therein is that each of these agents is not only meant to help in
solving the actual layout problem but in fact represents a part of its solution.

It should be mentioned that the term multi-agent system is sometimes confused with the notion of an
agent-based model, although the two concepts are not the same – as will be explained in Section 6.5.4.

6.5.4 Agent-based Models of Collective Motion

There is a considerable overlap between multi-agent systems and agent-based models, but a subtle dis-
tinction can be made [314]: multi-agent systems are understood as an engineering approach (i.e., to solve
particular problems), whereas agent-based models rather have a share in analytical science (such as in
simulating the behavior of biological organisms). While agent-based modeling can be used to imitate
a wide variety of decentralized systems in numerous domains, this section is particularly focused on
models of collective motion, as exhibited by ensembles whose members perform spatial moves. Such
models, in which the environment represents a geographical space, are called spatially explicit [315].
That conception also applies to this thesis, regarding the intention to let autonomous layout components
interact with each other inside a layout cell.

The first suchlike agent-based simulation model was Reynolds’ Boids from 1987 [316], an artificial
life program that animates the flocking behavior of birds (or “creatures” in general). As illustrated in
Figure 6.14, Boids implements a so-called distributed behavioral model where the collective, polarized
motion of the flock emerges from three simple steering rules obeyed by each individual flockmate (re-
ferred to as a boid: a bird-like “bird-oid” object). In [317], these steering rules are denoted as separation
(steer to avoid crowding flockmates), alignment (attempt to match the heading and speed of flockmates),
and cohesion (steer to move towards the average position of flockmates). As in a cellular automaton, the
steering rules involve a boid’s local-only neighborhood, such that each flockmate reacts solely to nearby
neighbors in its immediate vicinity.

Separation Alignment Cohesion

Figure 6.14: Depiction of the three simple steering rules in Reynolds’ Boids (adapted from [317]).

Concerning the definition of such a neighborhood, a basic question is whether the environment of the
boids’ flock is two- or three-dimensional (as in [318]). Apart from this dimensionality, the neighborhood
is further defined by its extent – a property for which two prevalent models can be consulted [319]. In
the so-called metric distance model, a boid is only affected by those of its neighbors that are located
within a certain range. This accounts for three different, concentric, circular zones (zone of repulsion,
zone of alignment, zone of attraction) which correspond to the three steering rules above. In contrast, the
topological distance model lets a boid pay attention to a fixed number of its closest neighbors, regardless
of their respective distance. A hybrid metric-topological composition model is presented in [320].

Several behavioral extensions of Reynolds’ original Boids program have been proposed by others.
For example, the authors of [321] complement the alignment rule (see above) with a force that facilitates
a change of leadership. The work of [322] provides an additional rule called escape and incorporates the
effect of fear. This idea can also be found in [323], where the conception of Boids is adopted for the
emulation of artificial fishes which are driven by three mental state variables: fear, hunger, and libido.

94

6.6 Adaptation to the Problem of Analog Layout Design

Emotions and sensations of this kind have also inspired certain facets of the work in this thesis. Another
interesting aspect in that regard is memory, which has for example been worked into the animal group
formation model of [324] and will also be an element of the layout methodology that Chapter 7 is about
to present.

Encouraged by Boids, spatially explicit agent-based models can also be found in other disciplines.
Examples include the cellular-automaton-based Nagel-Schreckenberg model for freeway traffic simu-
lation [325], as well as the Vicsek model of nonbiological self-propelled particles (also referred to as
self-driven particles) in physics [326]. A perseverative issue in suchlike agent-based modeling is the
question of what the simplest possible sets of rules are that lead to the emergence of synchronized, col-
lective motion [327]. However, it is important to note that in contrast to a flock of birds or a convoy of
cars, the interacting components in the layout methodology provided by this thesis are not supposed to
exhibit a unidirectional laminar movement but an overall flow that can rather be described as a motion of
centripetal yet turbulent convergence.

For simulating the behavior of decentralized systems, a plethora of general-purpose agent-based
simulation toolkits –both proprietary and open source– are readily available (with a comprehensive sur-
vey being given in [328]). As an example, the Java Agent Development Framework (JADE) [329] is a
software framework for the development of intelligent agents in Java, based on the Foundation for Intel-
ligent Physical Agents (FIPA) standards for hetereogeneous and interacting agents. However, tools such
as these are of no further interest here due to the specialized topic of this thesis, for which a tailor-made
implementation had to be provided (as will be covered and demonstrated in Chapter 8).

6.6 Adaptation to the Problem of Analog Layout Design

Incited by the ideas portrayed in this chapter, the thesis at hand strives to address the task of analog
layout automation by implementing a system of interacting layout components with distributed control.
The conceptual approach behind this methodology is highly interdisciplinary, drawing from (A) the
developments of decentralized systems, (B) the investigations of self-organizing structures, and (C) the
observations of emergent behavior discussed in the preceding sections:

(A) The composition of the proposed system follows the idea of decentralization. Hence, the setup of
the taken approach is in line with other models of artificial life as covered in Section 6.5.

(B) The interaction demeanor of the system’s individual layout components is carefully worked out in
an endeavor to pay respect to the principles of self-organization described in Section 6.4.

(C) The behavior of the overall system is supposed to let full-custom quality layouts emerge from its
execution, mirroring the natural phenomenon of emergence as illustrated in Section 6.3.

The detailed elaboration of the new layout methodology is about to follow in Chapter 7. Therein, the
overview of Section 7.1 describes the composition of the system (A), while the interaction demeanor of
the system’s layout components (B) is subject to Section 7.2, Section 7.3, and Section 7.4. As already
mentioned, parallels to existing models of decentralized systems as well as the incorporation of the
presented principles of self-organization into the work of this thesis are summarized in Section 7.5. The
emergent behavior of the system (C) will be depicted in the examples of Chapter 8.

95

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Chapter 7

The Methodology: Self-organized Wiring
and Arrangement of Responsive Modules

In our narrow house of boards, bestride
the whole creation, far and wide;

move thoughtfully, but fast as well,
from heaven through the world to hell.
Johann Wolfgang von Goethe: Faust

(translated by Walter Kaufmann)

This thesis proposes an analog layout automation methodology where layout components interact
with each other in a decentralized flow of self-organization that leads to emergent behavior. As will be
discussed in this chapter, the layout components –denoted as responsive modules– are autonomous, mo-
bile, rational, computational entities (and thus agents, in accordance with the definition in Section 6.5.3).
On that basis, the presented methodology neither implements a purely optimization-based top-down ap-
proach nor a purely generator-based bottom-up approach (as defined in Section 3.1.1 and Section 3.1.2),
but represents a multi-agent system which teams the two automation strategies. The new methodology is
henceforth referred to as Self-organized Wiring and Arrangement of Responsive Modules (SWARM)
[330], wherein the terms arrangement and wiring denominate the tasks of placement and routing.1

SWARM is meant to be used by layout designers for the creation of analog layouts that fit within a
given, sufficiently large, rectilinear outline. As will be discussed here (and demonstrated in Chapter 8),
the SWARM methodology is able to include both formalized and nonformalized expert knowledge into
the automation by effectuating an explicit and implicit consideration of design constraints.

7.1 Overview of the SWARM Methodology

As will be outlined in Section 7.1.1, SWARM is composed of three core concepts that are dexterously
correlated with each other. To give an impression of how these concepts are supposed to engage in a pur-
posive interaction, Section 7.1.2 sketches the designated self-organization flow in a superficial example.
In Section 7.2, Section 7.3, and Section 7.4, each of the three concepts will be discussed in a section of
its own. Section 7.5 completes this chapter with some final remarks about the conception of SWARM,
discerning it from optimization algorithms and then also taking a retrospective look back at Chapter 6.

7.1.1 The Three Core Concepts of SWARM

The left part of Figure 7.1 reprises the depiction of Figure 6.8 (b) from Section 6.4.1, stating that a truly
emergent self-organizing system requires four basic constituents: (1) a group of interacting workers,

1Semantically, arrangement and wiring are thus used as synonyms for placement and routing here, but the choice of diction
is deliberate. This is not only for the sake of the SWARM acronym but mainly because –in the parlance of EDA– the terms
placement and routing are commonly understood as optimization-based automation techniques.

96

7.1 Overview of the SWARM Methodology

bo
tto

m
-u

p top-dow
n

Constituents of Emergent Self-organization Three Core Concepts of SWARM

Goals

Pressure

Workers

Rules
regul arize
Beha vior

made
known to

Interaction Control
imp ose
 Go alsexerted

via

imp ose
Const raints

Participants:
 Responsive Modules

Module
Interaction
regul arize
Beha vior

stim
u

la
tes

tr
y

to
 s

at
is

fy

Parameters
Constraints

fed
to

fed
to

considering
Implicit Constraints

pursuing
Individual Goals

stim
u

la
tes

tr
y

to
 s

at
is

fy
bo

tto
m

-u
p top-dow

n

1

3

2

1

3

24 4

Problem-specific

Figure 7.1: The constituents of emergent self-organization and the corresponding SWARM concepts.

(2) a set of behavioral rules, (3) the exertion of pressure, and (4) overall goals that can be directly
communicated to the workers and indirectly inducted via the pressure. As illustrated in the right part of
Figure 7.1, all these constituents can also be found in SWARM. Excluding the goals, which are always
specific to the particular layout problem (i.e., the respective design restrictions and design objectives),
the SWARM system itself is thus composed of three problem-independent core concepts:

Responsive Modules: The concept of the already mentioned responsive modules is SWARM’s analogon
to the workers in Figure 6.8. As Section 7.2 will discuss in greater detail, a responsive module is a
context-aware procedural generator that can act on its own behalf within its design environment.

Module Interaction: SWARM allows a set of responsive modules to interact with each other and to
arrange themselves inside a given layout territory. During this module interaction, each module
acts according to a set of relatively simple behavioral rules, which will be the topic of Section 7.3.

Interaction Control: To steer the module interaction towards a compact and constraint-compliant lay-
out arrangement, SWARM implements a supervising interaction control organ that exerts pressure
by stimulating the modules and by imposing the design restrictions and objectives (i.e., the goals)
onto the module interaction. The interaction control organ will be addressed in Section 7.4.

Before going into the three core concepts in detail, Figure 7.2 shows the layout automation approach of
SWARM, as opposed to the working principles of optimization algorithms and procedural generators (see
Figure 3.1 and Figure 3.13 respectively). SWARM combines these two automation strategies, since each
responsive module has the bottom-up capabilities of a procedural generator, while the interaction control
organ provides a top-down perspective on the design problem. Consequently, the design restrictions and
objectives that can be committed to SWARM comprise both module parameters as well as formalized
constraints.

On that basis, high-level constraints are imposed by the interaction control organ to be then explicitly
considered during the module interaction, while each individual module simultaneously takes care of its
innate low-level constraints implicitly. To underline the decentralized character of this module interaction
approach, the layout that emerges from SWARM via self-organization is denoted as the layout outcome
(taken from game theory and contrasting the terms layout solution in Figure 3.1 and layout result in
Figure 3.13). Section 7.1.2 provides an exemplary depiction of SWARM’s self-organization flow.

7.1.2 Depiction of SWARM’s Self-organization Flow

Although various kinds of decentralized systems have been developed in the past decades (see Sec-
tion 6.5), SWARM is the first suchlike system whose interacting entities are layout modules. As already
done in Figure 7.1 and Figure 7.2, these interacting modules are subsequently denoted as participants in
order to discern them from the miscellaneous notions of entities found in other existing systems, some
of which are listed in Table 7.1.

97

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

bo
tto

m
-u

p top-dow
n

Interaction Control
imp ose

Const raints

Participants:
 Responsive Modules

Module
Interaction
regul arize
Beha vior

stim
u

la
tes

tr
y

to
 s

at
is

fyfed
to

fed
to

Parameters
Constraints Layout

Outcome

Constraint Consideration
Explicit

Implicit
Constraint Consideration

Formalized
Layout Design

Knowledge

Designer

sets leads to

Design Expert

Expert's Best Practice
Legacy Know-how

Layout Solution

Nonformalized
Layout Design

Knowledge EDA
Expert

Develop ment of
flows into

deter-
mines Generator

Development
Tool

imple-
ments

accelerates
EDA View

advises

uses

Decentralization
Self-organization

Emergence

EDA Expert

Develop ment of

examines chooses
Knowledge
of Systemic
Behavior

facilitates

General-Purpose
Programming

Language

flows into

EDA View

User View

Problem-specific

The SWARM Methodology

Figure 7.2: Working principle of the SWARM system, as opposed to Figure 3.1 and Figure 3.13.

Table 7.1: Denomination of interacting entities in selected examples of decentralized systems.

Name Year Description Entities

Conway’s Game of Life [291] 1970 Two-dimensional Cellular Automaton Cells
Centipede [302] 1981 Extensive Form Game (Game Theory) Players
Reynolds’ Boids [316] 1987 Agent-based Simulation Model Boids
Particle Swarm Optimization [309] 1995 Population-based Optimization Algorithm Particles
JADE [329] 2001 Java Agent Development Environment Agents
SWARM [330] 2015 Multi-Agent Layout Automation Approach Participants

The self-organization in SWARM is structured as a so-called run which, in its most elementary form,
follows the flow of control depicted in Figure 7.3. Given a set of participants (responsive modules),
SWARM takes an initial module constellation that may for example be template-based, handcrafted,
or randomly created. Next, SWARM takes the user-defined zone Z (which demarcates the available
layout territory) and centers the outline of Z on the bounding box of the initial constellation. After this
initialization phase, the supervising control organ enlarges Z such that its area is significantly greater
than the sum of the participants’ individual areas (see Section 7.4). Then, the self-organization phase
starts with a so-called round of interaction, where each participant is allowed to perform an action (see
Section 7.3). By performing an action, a participant undergoes a transformation: it may move inside
the layout zone Z, may also rotate around its center, and may even deform itself into a different layout
variant with nominally equal electrical behavior (see Section 7.2). The actions in one round are meant to
emulate a concurrent behavior but are in fact executed sequentially.

Multiple rounds of interaction are repeated until no action at all is performed within one round. This
situation is denoted as a settlement because each participant has settled at a definite position. If the
module constellation is viable, which means that all participants are in a legal and satisfying position,
then Z is slightly tightened to induce further rounds of interaction and thus another settlement (other-
wise, the participants failed in finding an appropriate arrangement, and the SWARM run gets aborted).
This tightening-settlement cycle continues until Z is tight, which means that Z has reached its origi-
nal, user-defined size that marks the available layout space. The last settlement ends the SWARM run

98

7.1 Overview of the SWARM Methodology

and represents the layout outcome of the overall self-organization. In the end, a finalization phase gives
the opportunity to perform some dedicated post-processing on the obtained layout. This may involve
auxiliary tools or can be accomplished manually.

Prepare Initial Constellation

Set and Enlarge Zone

Let Each Participant Act

Settled?

Viable?

Tight?

Post-process Layout Outcome

Tighten Zone

Abort

No

Yes
No

Yes

Yes

R
ou

n
ds of In

teraction

T
igh

ten
in

g-S
ettlem

en
t C

ycles

C
o

m
p

lete
S

W
A

R
M

R

u
n

No

no participant has
executed an action

zone has reached
user-defined size

all participants are
in a valid position

each participant
may take action:
move, rotate, deform

outline
is defined
by the user

template-based,
handcrafted, ran-
domly generated, ...

self-organization
succeeded

(failure)

§

†

‡

†

§

*

*

*

*

End: Return Finished Layout *

Start: Instantiate Components *generate
from source

Phase 1:
Initialization

Phase 2:
Self-organization

Phase 3:
Finalization

(done)

Application
Framework

* † Interaction
Control Organ

‡ Responsive
Modules

Executive SWARM
Components:

§ Auxiliary Tools /
Manual Contribution

Figure 7.3: Flow of control in a SWARM run (initialization, self-organization, and finalization phase).

Figure 7.4 provides an exemplary depiction of a SWARM run. The example shows seven partici-
pants being successively goaded towards a compact arrangement inside a rectangular layout zone. This
illustration brings a vivid biological analogon to mind, because SWARM’s idea of autonomous layout
modules that perform areal movements across the plane of an increasingly tightened layout territory,
imitates the roundup of livestock. For instance, a shepherd drives a group of sheep together just be en-
circling them (affecting the group like a predator – also see Figure 6.11), thereby leaving it up to every
single animal to find its individual place among the herd. In SWARM, the participating layout modules
can be thought of as sheep, with the supervising control organ taking on the role of the shepherd.

instantiate
components

prepare initial
constellation

T
ig

h
te

n
-

in
gs

zone size is
changed by
supervising

control organ

participants
successively
take actions

no participant
has executed

an action

R
ou

n
ds

 o
f

In
te

ra
ct

io
n

S
et

tle
-

m
en

ts

until zone reaches
the user-defined size

inter- actions inter- actions

 inter- action inter- action

inter- actions

 inter- action

Start

set outline of
user-defined zone

enlarge zone tighten zone

until

End

self-organization
succeeded

post-
processing

return
finished
layout

Phase 1:
Initialization

Phase 3:
Finalization

Phase 2:
Self-organization

Figure 7.4: Exemplary depiction of a SWARM run, visualizing the analogy to the roundup of livestock.

99

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

During the module interaction, the contour of Z is employed as an explicit Fixed Outline (see Sec-
tion 3.1.1.2) constraint. In that regard, the outline of the layout zone represents a strict confinement,
but with the approach of making Z progressively smaller, it is thus used to pursue a basic optimization
goal: minimizing the total layout area. In a similar way, SWARM is also able to address the other major
optimization goal commonly found in analog layout design: minimizing the total wirelength. This issue
is not depicted in Figure 7.4, but will be broached in Section 7.3.1. Also not shown in the example above
is the fact that a participant is not necessarily a single module, but may be an association of multiple
components. This aspect is the central topic of the following Section 7.2 about the first core concept of
SWARM.

7.2 Responsive Modules

The responsive modules in SWARM are realized as procedural generators, enhanced with a couple of
additional capabilities: they can react to changes of their environment (Section 7.2.1), they can be used
to administrate a group of design components (Section 7.2.2), they can be imposed onto each other in
a hierarchical fashion (Section 7.2.3), and they are able to assume a different layout variant from an
exhaustive set of possible alternatives (Section 7.2.4).

7.2.1 Context Awareness

As already said, the layout modules in SWARM interact with each other as agents. This presupposes
an ability to sense, reason, and act. Since a procedural generators is a piece of software, it can be read-
ily implemented in a way that facilitates intelligent reasoning. But in their common form, procedural
generators are conceptually not able to access their environment. Therefore, sensing and acting requires
to enhance the conventional concept of procedural generators with a specific feature, subsequently re-
ferred to as context awareness. Context awareness allows an instance of a procedural generator (1) to
read information from its design context and (2) to modify that context, including –self-referentially–
the instance itself. With these abilities, the instance can realize a responsive design entity that reacts to
environmental changes like a reflex agent does as shown in Figure 7.5 (a).

Procedural
Generator

re
as
on

C
o

m
m

a
n

d
S

e
q

u
e

n
c

e

P
ar

am
et

er
s

sense

E
n

vi
ro

n
m

en
t

Agent

act

re
as
on

read

D
es

ig
n

 C
on

te
xt

Procedural
Generator

modify

re
as
on

C
o

m
m

a
n

d
S

e
q

u
e

n
c

e

P
ar

am
et

er
s

read

D
es

ig
n

 C
on

te
xt

modify

(a) Reaction Mechanism
of a Reflex Agent

(b) Responsive Module
 with Direct Access

(c) Responsive Module
 with Indirect Access

Interface
Fabric

Figure 7.5: Via context awareness, procedural generators can react to environmental changes as agents.

The most straightforward way of implementing context awareness is to equip a procedural generator
with direct access to its design context, as illustrated in Figure 7.5 (b). However, such an endeavor re-
quires a fundamental extension to the IC design framework itself, which cannot be accomplished without
additional efforts on the vendor’s side. An initial implementation of that approach has led to the concept
of FR PCells [331], but this concept is still in its infancy and no official release for productive use is
available so far.

Therefore, as shown in Figure 7.5 (c), SWARM takes a different approach which facilitates indirect
access, abusing a generator’s parameters to communicate information between an instance and its design

100

7.2 Responsive Modules

context, as also done in [139] and [140] (see Section 3.1.2.5). For that purpose, SWARM implements a
dedicated interface fabric which reads data from the design context, encapsulates it in a single parameter
value, and passes that value to the instance. After extracting and processing the context data, the instance
also writes its response into a single value and stores it in a parameter (which is thus not used as an input
parameter but as an output parameter). The interface fabric parses that response value and –if necessary–
modifies the design context on behalf of the instance (as will be seen in Section 7.2.2). In contrast to a
FR PCell, the instance must be actively re-evaluated if its design context is changed.

7.2.2 Governing Modules

Based on context awareness, a procedural generator for a simple module (in the sense of Table 2.1)
can be easily realized as a single (i.e., self-contained) responsive layout module. This is feasible, if
a corresponding generator such as a circuit PCell is available on the schematic side. If instead, the
schematic circuit is flat, i.e., comprised of primitive devices, then the Generate from Source step (see
Section 2.1.4) places corresponding devices in the layout.

One possibility to get to the module level on the layout side is presented in [332], which performs
a circuit structure recognition in the schematic diagram to identify functional units and replace the re-
spective devices in the layout with parameterized modules. A drawback of that technique is the problem
to maintain SDL-conformity since the 1:1 device correspondence between schematic and layout has to
be sacrificed for this purpose. A better method in that regard is made possible by the powers of context
awareness, as it allows for using a responsive module in the layout to “manage” a group of devices. A
responsive module of that kind is referred to as a governing module.

7.2.2.1 Temporary Context Duplication

If the context awareness of a governing module is implemented via indirect access, the need to gather a
large regiment of detailed geometrical information (e.g., the individual pin positions, gate finger shapes,
and bounding boxes of multiple transistors that need to be “managed”) and encapsulate that informa-
tion in a single parameter value may be cumbersome. A more elegant idea, which can be understood
as temporary context duplication is presented in [141] (and is also pursued in this thesis): the mod-
ule re-instantiates the devices internally so it can then determine all relevant geometries from these
“clones” (which may be deleted afterwards). For that approach, the module requires only the type,
the parameter values, the location, and the orientation of each external device. Based on that informa-
tion, the utilization of a governing module generally follows an adoption process –written as a sequence
A = (Ab,Ad,Am,As)– which is basically comprised of four operations (although not all of these
operations are mandatory in every case):

(1) Absorption: “create an image of the outside” (symbol Ab)
The module reads the external device information (in the case of direct access) or receives it from
the interface fabric (indirect access), and re-instantiates the devices internally.

(2) Adaptation: “measure and calculate inside” (symbol Ad)
The module determines all relevant device geometries and creates its internal layout as per these
geometries, thus computing certain correcting quantities. The internal devices can then be deleted.

(3) Amendment: “modify the outside” (symbol Am)
The module transforms (moves and/or rotates) each external device according to the computed
correcting quantities. If the context access is indirect, the transformation data is encapsulated in a
parameter value and then put into effect by the interface fabric.

(4) Assimilation: “harmonize the inside with the outside” (symbol As)
The module repeats operations (1) and (2) in order to adjust its internal layout with respect to the
new arrangement of its external devices (again, the internal devices may then be deleted). Now,
the module and its context are supposed to be in perfect conformance with each other.

As an example, Figure 7.6 illustrates the utilization of a governing module which is based on the
Differential Pair procedural generator from Figure 3.14. Initially, there are four transistors in the layout,

101

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

as column Context shows. In (1), the module absorbs these transistors and instantiates them internally.
Column Module displays the inner layout of the module instance. In the design, the module with its
internal transistors lies precisely on top of the external transistors, as can be seen in column Design.

Next (2), the module determines the pin positions of all internal transistors, connects them by cre-
ating wires and vias following a preconceived routing scheme –thereby also computing the correcting
quantities mentioned above–, and then deletes the internal transistors such that only the wiring remains
inside the module. Afterwards (3), the module pushes the external transistors together according to the
correcting quantities computed before.2 In that positioning, the correcting quantities reserve sufficient
vertical space to accommodate the wiring between the transistors, which clarifies why the correcting
quantities were calculated in conjunction with the previous creation of the wiring. Finally (4), the mod-
ule generates its layout anew to harmonize the wiring with the modified design context. In the end, the
external transistors and the wiring inside the module constitute an optimal Quad layout.

Context Module Design

(1) absorption

(2) adaptation

(3) amendment

(4) assimilation

+ =

+ =

+ =

+ =

Figure 7.6: Adoption process of a governing module, exemplified for a Differential Pair (Quad layout).

2In this example, the basic interdigitation of the transistors –specified by their initial relative locations (1)– is not changed
through the amendment operation. Instead, the transistors are only compacted (according to a module-specific, preconceived,
simple, row-based compaction scheme).

102

7.2 Responsive Modules

7.2.2.2 Co-transformations in a Governing Module

With temporary context duplication, context awareness is not only utilized during the self-organization
phase, but already in the initialization phase of a SWARM run: if the given schematic is flat, a governing
module can be imposed on each group of devices that needs to be managed as a compound functional
unit. From then on, it is the governing module’s duty to care for these “children” it has adopted. That
is to say, a transformation of the entire module during the self-organization is in fact a set of correlated
transformations (co-transformations), which involves the transformation of the governing module itself
and a corresponding transformation if its adopted children. So, if the governing module moves or rotates
when interacting with other modules, it has to make sure that its children are also moved and rotated
accordingly. To deform itself into another layout variant, the governing module repeats the adoption
process and moves/rotates its children thereby. If the deformation includes a deformation of the children,
the children are deformed first, and then the governing module repeats the adoption process.

Figure 7.7 gives an example of such a deformation, pertaining to the Differential Pair module above.
Starting off with the previous module variant from Figure 7.6, the co-transformation of the adopted
children consists of –first– deforming each of the four transistors from a 1-finger variant into a 2-finger
variant (0), and –second– moving the transistors according to their new layout geometries, which is done
in (1)–(3) as part of the adoption process. Then, the co-transformation of the governing module is to
deform itself by assimilating itself in (4), which represents the last operation of the adoption process and
sees the overall module layout turn into a 2-finger variant of the Quad.

7.2.3 Module Associations

Like in the examples of Figure 7.6 and Figure 7.7, it is usually the case that the positioning of a module’s
adopted devices strongly depends on the designated wiring. In that situation, it is suitable to perform
both of these tasks with one single, panfunctional governing module, as it is done by the Differential Pair
module above. If there is not such a strong dependence, two separate modules can be employed for the
two different tasks.

Figure 7.8 shows a Current Mirror that involves three governing modules. One module is a pure Po-
sitioning module which does not create any physically relevant layout shapes and is therefore denoted as
a meta-module. So, the adoption process APos of that module includes only an absorption and an amend-
ment operation (for which the correcting quantities are already computed during the absorption). This
adoption process can be written as APos = (AbPos,−, AmPos,−) to indicate that there is no adaptation
and no assimilation involved (as is characteristic of a meta-module). Another module –referred to as a
Wiring module– provides the connectivity. The third module is an Info module that writes device iden-
tifiers onto the transistors to display how they have been interdigitated. The latter two modules do not
perform amendments (which eliminates the need for assimilations), so their respective adoption process
AWir and AInf only consists of an absorption and an adaptation operation (see Figure 7.8). The entire
construct, for the reason of involving more than one governing module, is called a module association.

7.2.3.1 Supreme Commanders

In every module association, one of its governing modules has to be implemented as a supreme comman-
der which rules over the other modules (denoted as associated modules) and maintains the consistency
of the entire construct. Thus, if the module association is about to perform a transformation, it is in the
supreme commander’s authority to apply the respective co-transformation to its adopted children and
associated modules. If the transformation includes a deformation, the supreme commander also has to
trigger the adoption process for each associated module once again. As it is the case in Figure 7.8, these
are not supposed to perform amendments, but if they do, then they need to trigger the adoption process
for the supreme commander anew (which again affects the entire module association). Attention must
be paid in order to avoid an infinity loop here. This responsibility is left to the module developer, as well
as the question which module is destined to act as supreme commander: normally, it is the module that
performs the primary design task (as defined by the developer). If –instead of a module association– only
one panfunctional governing module is involved, that module is by definition a supreme commander.

103

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Context Module Design

(1) absorption

(2) adaptation

(3) amendment

(4) assimilation

+ =

+ =

+ =

+ =

+ =

+ =

(0) deform devices

 Previous
 Variant

New Variant

Figure 7.7: Exemplary deformation of a governing module, involving a set of co-transformations.

104

7.2 Responsive Modules

=

Positioning Module Wiring Module Info Module

Module Association (Current Mirror)

Context Design

Supreme Commander Associated Module Associated Module

APos = (AbPos, −, AmPos, −) AWir = (AbWir, AdWir, −, −) AInf = (AbInf, AdInf, −, −)

Adopted Children

1 2 3

Figure 7.8: Example of a Current Mirror module association consisting of three governing modules.

The Current Mirror layout from Figure 7.8 is reprised in Figure 7.9 to illustrate a deformation of the
module association. In this example, the deformation of the module association is based on a rotation of
its adopted children. Initially (a), the context of the module association is made up of the four aligned
transistors from the design of the previous variant. To perform a deformation, the supreme commander
–here: the Positioning module– first applies the appropriate co-transformation to its adopted children,
which in this case means to rotate each device by 90◦. Then (b), the Positioning module adopts the de-
vices anew (viaAPos) to move them closer together and align them. This represents the co-transformation
of the supreme commander, who furthermore cares for the co-transformation of its associated modules.
That means, the Positioning module triggers their respective adoption process again (AWir and AInf),
which leads to the new layout variant: a Current Mirror design whose transistors are rotated “upright”,
as opposed to the previous layout variant of the module association, where the transistor channels run
“across” the design. These two transistor orientations will again be picked up in Section 7.2.4.2.

7.2.3.2 Hierarchical Module Associations

A module association may not only be comprised of primitive devices and governing modules, but can
also incorporate other module associations. Thus, module associations can be hierarchically imposed
onto one another to build larger design components, as Figure 7.10 illustrates with an example. Initially
(a), there are two groups of transistors in the design, with seven devices per group. Next (b), two Cur-
rent Mirrors are created from each group of transistors according to the adoption process known from
Figure 7.8. As indicated in column Module Hierarchy (Figure 7.10 again), there are now two module as-
sociations, each of which contains three governing modules. All three of these governing modules adopt
the seven transistors, with the Positioning module representing the supreme commander of its module
association. In (c), the two module associations are adopted by the Positioning module of a Symmetric
Current Mirror Pair (marked with an asterisk to distinguish it from the other Positioning modules), which
has the purpose of keeping two Current Mirrors next to each other side by side.

The amendment operation Am∗Pos of this adoption process A∗Pos effectuates a movement and a ro-
tation of the two Current Mirrors, which is applied to the two supreme commanders as their respec-
tive co-transformation. Each of the supreme commanders then also cares for the corresponding co-
transformation of its adopted children and of its associated modules. Since the amendment operation
does not include a deformation, the entire set of co-transformations involves only translational moves
and rotations (such that –in contrast to Figure 7.9– the transistors on device level need not be adopted
once again by the governing modules in the module association). The obtained layout is a symmetric
arrangement of the two Current Mirrors as shown in column Design of Figure 7.10.

105

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Module Association (Current Mirror)

Module Association (Current Mirror)

Positioning Module Wiring Module Info Module

rotate devices

Design Context

Supreme Commander

=

Positioning Module Wiring Module Info Module

Context Design

trigger adoptionSupreme Commander

(b)

(a)

Previous Variant

New Variant

Associated Module Associated Module

=

trigger adoption

APos = (AbPos, −, AmPos, −) AWir = (AbWir, AdWir, −, −) AInf = (AbInf, AdInf, −, −)

1 2 3

0

Adopted Children

Adopted Children

Figure 7.9: Exemplary deformation of a module association via (a) device rotation and (b) re-adoption.

7.2.3.3 Co-transformations in a Module Association

Table 7.2 lists the possible transformations that a module association can undertake by performing a
movement M , a rotation R, and/or a deformation D. These transformation elements are subsequently
referred to as morphisms Φ. Further shown in the table are the involved co-transformations that the
adopted children (indexed I), the supreme commander (indexed II), and the associated modules (indexed
III) need to undergo. As should be clear from the discussion so far, each of these co-transformations
can also consist of different morphisms. To mark the order, in which the individual morphisms are
performed, two symbols are introduced. A diamond � indicates that two morphisms are commutative,
i.e., a morphism Φa can precede or succeed another morphism Φb. In contrast, a triangle . denotes a
noncommutative order: Φa . Φb says that Φa cannot succeed but only precede Φb.

It it important to note that each rotation R in a co-transformation has the same pivotal point as the
rotation of the module association. This is to say that the components of the module association are not
rotated around their individual points of origin. Instead, the pivotal point is always the center point of the
entire module association. By the same token, that center point is also supposed to be identical before
and after a deformation D. Items in square brackets represent an optional morphism, while A denotes a
re-adoption for the purpose of deforming the module association. Deformations are also reflected by the

106

7.2 Responsive Modules

Transistor

Transistor

Module
Level 1

Device
Level

Transistor

Module Association (Current Mirror)

Wiring
Module

Positioning
Module

Info
Module

Transistor

Wiring
Module

Positioning
Module

Info
Module

Posi t ioning Module*

Transistor

Module
Level 2

Module
Level 1

Device
Level

Device
Level

DesignModule Hierarchy

Module Association (Current Mirror)

Module Association (Symmetric Current Mirror Pair)(c)

(b)

(a)

Supreme
Commander

Associated
Module

Associated
Module

APos AInf
A Wir

Supreme
Commander

Associated
Module

Associated
Module

APos AInf
A Wir

APos*

AmPos*
Wiring
Module

Info
Module

Positioning
Module

Supreme Commander

APos*

AmPos*AmPos*

AmPos*

Transistor

AmPos*
Wiring
Module

Info
Module

Positioning
Module

AmPos*AmPos*

AmPos*

Figure 7.10: Example of a hierarchical module association with (a) 14 transistors on device level, which
are adopted by (b) two Current Mirror module associations, which are in turn adopted by a
(c) Symmetric Current Mirror Pair.

Table 7.2: Possible transformations of a module association with corresponding co-transformations.
Items in square brackets are optional morphisms, while A denotes a re-adoption. A diamond
� denotes commutativity, whereas a triangle . signifies noncommutativity.

Transformation Co-transformations
of the Module Association Adopted Supreme Associated

Movement Rotation Deformation Children (I) Commander (II) Modules (III)

M - - MI �MII �MIII

- R - RI �RII �RIII
M R - (MI �RI) � (MII �RII) � (MIII �RIII)
- - D (([R′I] � [D′I]) . M

′
I) . AII . AIII

M - D (MI � (([R′I] � [D′I]) . M
′
I)) . AII . AIII

- R D (RI � (([R′I] � [D′I]) . M
′
I)) . (RII . AII) . (RIII . AIII)

M R D (MI �RI � (([R′I] � [D′I]) . M
′
I)) . (RII . AII) . (RIII . AIII)

107

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

appearance of M ′, R′, and D′: these are morphisms of the adopted children that serve the deformation
of the module association, as was exemplified in Figure 7.9. So, a movement M ′ of the adopted children
is not equal to the movement M of the module association.

At first glance, it might be surprising to see that in some cases a movementM of the module associa-
tion leads to a corresponding movementMII of the supreme commander and a corresponding movement
MIII of its associated modules, while in other cases it does not. The latter can be observed in those cases
where the transformation of the module association also contains a deformation D. It is in those cases,
that the supreme commander and its associated modules perform a re-adoption AII and AIII to account
for the deformation. And since this re-adoption occurs after movement M has already been applied to
the children that are to be adopted, the new locations of these children immanently manifest themselves
in the supreme commander and the associated modules without the need to perform explicit movements
MII and MIII .

Using the notation Φa � Φb to express that morphism Φa is followed by morphism Φb, the de-
formation of the Differential Pair module in Section 7.2.2.2 and the deformation of the Current Mirror
module in Section 7.2.3.1 can be formally expressed in the style of Table 7.2. Concerning the first of
these two examples, the visualization in Figure 7.7 helps to see which co-transformations are involved in
the deformation of the Differential Pair:

D′I �M ′I � AII . (7.1)

Since the Differential Pair is realized with a single governing module, it does not feature any associated
modules and therefore the deformation does not involve a re-adoption AIII . Regarding the second
example, the deformation of the Current Mirror in Figure 7.9 can be expressed as:

R′I �M ′I � AII � AIII . (7.2)

In both examples, M ′I is in fact performed by the amendment operation of the supreme commander’s
adoption process, while the important aspect aboutAII is its assimilation operation. In the latter example
though,AII is moot because the supreme commander is a pure Positioning module (i.e., a meta-module).
Still, both expressions are in line with the sequence of co-transformations articulated in Table 7.2.

7.2.3.4 Coordinate System Issues

The preceding ruminations reveal that amendments do not only play an important role during the initial-
ization phase of a SWARM run, but whenever a module deforms itself into another layout variant. Now,
one should remember that for every amendment, the respective modifications are determined inside the
module but are applied to its outside design context. On that account, one particular issue has to be kept
in mind: the internal coordinate system of a module instance is not necessarily equal to the coordinate
system of its context (unless the instance’s point of origin is (0, 0) and the instance is not rotated). For
that reason, some detailed thoughts need to be spent on the adoption process, and –first of all– on the
absorption operation therein. As already mentioned in the beginning of Section 7.2.2, the absorption
operation requires the type, the parameter values, the location, and the orientation of each external com-
ponent. The former two items can be neglected for the following discussion, because only the location
and the orientation depend on the coordinate system.

The location L of a design component is subsequently expressed as a pair of coordinates L = (x, y),
where x denotes the horizontal coordinate and y denotes the vertical coordinate of the location. Re-
garding the orientation O of a design component, it must be acknowledged that the component may not
only be rotated by a certain angle but that it can also be flipped around a certain axis. As illustrated in
Figure 7.11, this results in a total of eight possible orientations each of which can be formally denoted
viaOh̄ = (α, h̄). The angle α of a component’s orientation is to be interpreted counterclockwise and can
assume one of four possible values: α ∈ {0◦, 90◦, 180◦, 270◦}. Flipping can occur horizontally (around
a vertical axis) or vertically (around a horizontal axis). As Figure 7.11 shows, the value for h̄ indicates
horizontal flipping, with h̄ ∈ {0, 1}. Value h̄ = 1 means that the design component is horizontally
flipped, whereas h̄ = 0 signifies that the component is not flipped. Vertical flipping does not provide

108

7.2 Responsive Modules

additional orientations because any orientation that involves a vertical flip, can also be obtained with an
appropriate rotation and a horizontal flip. The equivalence between the horizontal notation Oh̄ = (α, h̄)
for orientations based on horizontal flipping, and the vertical notation Oυ = (α, υ) for orientations
based on vertical flipping υ, is given in Table 7.3.

α = 0°

h = 0

h = 1

α = 90° α = 180° α = 270°

_

_

Figure 7.11: Eight orientations of a design component, depending on angle α and horizontal flipping h̄.

Table 7.3: Equivalence between horizontal notation and vertical notation for a component’s orientation.

Horizontal Notation Vertical Notation
Oh̄ = (α, h̄) Oυ = (α, υ)

(0◦, 1) (180◦, 1)
(90◦, 1) (270◦, 1)
(180◦, 1) (0◦, 1)
(270◦, 1) (90◦, 1)

In the initialization phase of a SWARM run, the absorption operation of a module instance works
straightforward because the module can be instantiated in default orientation, i.e., with Oh̄ = (0◦, 0).
For every component that is to be absorbed, the following location coordinates xi and yi, as well as the
orientation specifiers αi and h̄i must be passed to the module instance for internal context duplication:

xi = xA − xP , (7.3a)

yi = yA − yP , (7.3b)

αi = αA, (7.3c)

h̄i = h̄A, (7.3d)

where xA and yA are the coordinates of the component to Absorb, while xP and yP are the coordinates of
the Procedural module instance, with αA and h̄A representing the orientation specifiers of the component
to Absorb. During the self-organization phase of a SWARM run, the orientation of a module instance can
become Oh̄ 6= (0◦, 0), which must be taken into account by the absorption operation. This is achieved
by transforming the location coordinates and the orientation specifiers converse to the orientation of the
module instance, as will now be explained in greater detail.

Regarding the location coordinates, these need to be rotated by−αP in order to compensate the angle
αP in the orientation of the module instance. From planar trigonometry, the rotation of a point (x, y)
around an angle α can be calculated via:

x′ = x · cos(α)− y · sin(α), (7.4a)

y′ = x · sin(α) + y · cos(α). (7.4b)

109

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

For the absorption operation, this rotation must proceed around the origin of the module instance. This
means, that x = xA− xP and y = yA− yP . To take flipping into account, the location coordinates must
first be flipped in reverse before the rotation is applied. In this thesis, the possible orientations of a design
component (see Figure 7.11) are expressed via the notation (α, h̄), which means that the component is
first rotated by α and then horizontally flipped in case h̄ = 1. Concerning the absorption operation, this
is why the reverse flipping of the location coordinates must be performed prior to the reverse rotation.3

This can be conveniently achieved with the term 1−2h̄P , which evaluates either to 1 (in case h̄P = 0) or
to−1 (in case h̄P = 1) and can thus be used to negate (or not negate) the horizontal coordinate xA−xP .
The full formulas for the calculation of xi and yi are shown in equation 7.6.

Regarding the orientation specifiers (αA, h̄A) of the component to absorb, these must –like the loca-
tion coordinates– also be “reversed” to equalize the orientation of the module instance. For each possible
component orientation (αA, h̄A) and for all possible module orientations (αP , h̄P), Table 7.4 lists the
reversed component orientation (αi, h̄i) that must be passed to the module instance for internal context
duplication.

Table 7.4: Reversed orientation of a component that is to be absorbed by a rotated governing module.

reversed component orientation (αi, h̄i) for all possible module orientations (αP , h̄P)
(αA, h̄A) (0◦, 0) (90◦, 0) (180◦, 0) (270◦, 0) (0◦, 1) (90◦, 1) (180◦, 1) (270◦, 1)

(0◦, 0) (0◦, 0) (270◦, 0) (180◦, 0) (90◦, 0) (0◦, 1) (90◦, 1) (180◦, 1) (270◦, 1)
(90◦, 0) (90◦, 0) (0◦, 0) (270◦, 0) (180◦, 0) (90◦, 1) (180◦, 1) (270◦, 1) (0◦, 1)
(180◦, 0) (180◦, 0) (90◦, 0) (0◦, 0) (270◦, 0) (180◦, 1) (270◦, 1) (0◦, 1) (90◦, 1)
(270◦, 0) (270◦, 0) (180◦, 0) (90◦, 0) (0◦, 0) (270◦, 1) (0◦, 1) (90◦, 1) (180◦, 1)
(0◦, 1) (0◦, 1) (90◦, 1) (180◦, 1) (270◦, 1) (0◦, 0) (270◦, 0) (180◦, 0) (90◦, 0)
(90◦, 1) (90◦, 1) (180◦, 1) (270◦, 1) (0◦, 1) (90◦, 0) (0◦, 0) (270◦, 0) (180◦, 0)
(180◦, 1) (180◦, 1) (270◦, 1) (0◦, 1) (90◦, 1) (180◦, 0) (90◦, 0) (0◦, 0) (270◦, 0)
(270◦, 1) (270◦, 1) (0◦, 1) (90◦, 1) (180◦, 1) (270◦, 0) (180◦, 0) (90◦, 0) (0◦, 0)

As can be seen in that table, the component to absorb has to be rotated into a flipped orientation
if and only if either the component is in a flipped orientation or if the module instance is in a flipped
orientation. This relation is an exclusive or (XOR), which in Boolean logic means that h̄i = h̄A ⊕ h̄P .
In arithmetic terms, this can be expressed as:

h̄i = 1− |h̄A + h̄P − 1|. (7.5)

Equivalent to the reverse rotation of the component location (xA, yA) (see above), the angle αA of the
component has to be rotated by −αP . Intuitively, this is expected to be achievable by simply calculating
αi = αA−αP . But, as Table 7.4 shows (see top-left and bottom-right quadrants), this is only true in case
h̄i = 0. If h̄i = 1 (see top-right and bottom-left quadrants, marked gray) then the reversed angle must be
calculated as αi = αA +αP . The reason for this subtlety is illustrated in Figure 7.12: a positive rotation
of a component that is in a regular (i.e., not flipped) orientation, entails an increase of the component’s
angle (a), but rotating a component in flipped orientation causes a decrease of the angle (b). The correct
sign can be included by putting a factor before αP . That factor is calculated as 2h̄i − 1, which evaluates
to 1− 2 · |h̄A + h̄P − 1|.

Putting it all together, the advanced expressions for calculating the location coordinates and orienta-
tion specifiers from equation 7.3 can now be written in closed form as follows:

xi = (1− 2h̄P) · (xA − xP) · cos(−αP)− (yA − yP) · sin(−αP), (7.6a)

yi = (1− 2h̄P) · (xA − xP) · sin(−αP) + (yA − yP) · cos(−αP), (7.6b)

αi = αA + (1− 2 · |h̄A + h̄P − 1|) · αP , (7.6c)

h̄i = 1− |h̄A + h̄P − 1|. (7.6d)

3The order “first rotate, then flip” in the notation Oh̄ = (α, h̄) is just a question of definition. It could just as well be
defined vice-versa, for both horizontal flipping and vertical flipping. However, it is important that this order is respected by the
absorption operation.

110

7.2 Responsive Modules

Oħ = (180°, 0)

90°

Oħ = (270°, 0) Oħ = (180°, 1)

90°

Oħ = (90°, 1)

(a) Regular Orientation (b) Flipped Orientation

+90° -90°

Figure 7.12: Angle change of a rotated component in (a) regular orientation and (b) flipped orientation.

With these formulas, the expressions from equation 7.3 become obsolete, because the trivial case that
the module instance is in default orientation (0◦, 0) is of course also covered by the calculations in
equation 7.6: setting αP = 0◦ and h̄P = 0 in equation 7.6 leads to the expressions given in equation 7.3.
Thus, the formulas of equation 7.6 are valid for a module’s adoption process in the initialization phase
of a SWARM run, and also when the module rotates and deforms itself during the self-organization
phase. Pertaining to the initial remark of this Section 7.2.3.4, the coordinate system issues that have
been discussed above with regard to reading a module’s design context, must equivalently be taken into
account when the module is modifying its design context.

7.2.4 Layout Variability

With the ability to deform itself into a different layout variant, a governing module can cover various
aspect ratios without altering its nominal electrical behavior. For that purpose, a governing module must
–in addition to the layout operations discussed in Section 7.2.2 and Section 7.2.3– first of all be able
to tell the respective degrees of freedom for the circuit it implements. These degrees of freedom define
the variability V of the module, i.e., the set of all feasible layout variants that the module can assume.
Depending on the degrees of freedom, a distinction can be drawn between discrete variability, where the
set of assumable layout variants is limited, and full variability, where the module is able to change its
dimensions in a continuous range.

SWARM supports both kinds of variability. However, if a module features full variability, possible
deformations cannot be set out in advance but are determined ad hoc during the module interaction. For
that reason, the topic of full variability will be deferred to Section 7.3. Thus, the subsequent discussion
concentrates on discrete variability, which is the prevalent kind of variability on the level of simple
modules.

7.2.4.1 Intrinsic Variability

Every design component has an intrinsic variability V́. For example, in the case of a parameterized
MOS transistor (referred to as type MT), the degree of freedom for potential deformations is its number
of fingers (see Figure 2.1), here denoted as f. Formally, the possible values for f are given by Df, which
represents the domain of that parameter. In the particular case of f, which is defined as an integer
parameter, this domain is in general a subset of the set N+ of positive natural numbers: Df ⊂ N+. For
a particular instance MT of the transistor, the domain is DMT,f = {1, 2, . . . , fmax}, where the parameter
value fmax for the maximum number of fingers depends on the transistor’s total channel width.

Simply put, DMT,f defines the intrinsic variability V́MT of the transistor instance. More formally, the
intrinsic variability can be expressed as a function gMT of DMT,f where gMT represents the behavior4 of

4The behavior gMT corresponds to the behavior g mentioned in Section 3.1.2.1, which is an “introversive” generator behavior
and should not be mistaken for the “extroversive” interaction behavior that will be subject to Section 7.3.

111

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

the transistor generator:
V́MT = gMT

(
DMT,f

)
. (7.7)

As an alternative notation, the intrinsic variability is henceforth written as a mapping from the domain of
a parameter to the set of corresponding layout variants. In the case of the MOS transistor instance, the
mapping is thus written as:

V́MT⇐ DMT,f. (7.8)

The use of this notation is encouraged due to its compactness. This becomes even more evident when
multiple parameters are involved, as the following Section 7.2.4.2 is about to show.

7.2.4.2 Cumulative Variability

If transistors are adopted by a governing module, the intrinsic variability of the transistors contributes
to the variability of the module. An example is the Differential Pair module in Figure 7.7, which de-
forms itself from a 1-finger variant into a 2-finger variant by incrementing the number of fingers in each
of its transistors. However, a module may further provide its own intrinsic variability. Regarding the
deformation in Figure 7.9, the Current Mirror module association deforms itself into a different variant
without modifying the layout of its adopted transistors, but simply by rotating them. So, the orientation
of these transistors, a parameter here denoted as o is one degree of freedom of the Current Mirror CM
with the domain DCM,o = {across, upright}. Another degree of freedom is given by the possibility to
break the positioning from the depicted single-row variant into a dual-row variant. Hence, the domain
of this positioning parameter p is DCM,p = {single, dual}. With these degrees of freedom, the intrinsic
variability V́CM of a Current Mirror instance CM is defined by the Cartesian product DCM,o × DCM,p.

Apart from this, the Current Mirror can also change the number of fingers in its adopted transistors.
Thus, the total variability of the module instance, referred to as its cumulative variability Ṽ, is given by
DCM,o × DCM,p × DMT,f. In general terms, the cumulative variability ṼP of a Parameterized design
component P is the product of its own intrinsic variability V́P and the cumulative variability ṼA of its
Adopted children:

ṼP = V́P × ṼA. (7.9)

Regarding the Current Mirror module above, please note that ṼA = V́A because the cumulative variability
of a transistor is identical to its intrinsic variability: ṼMT = V́MT. This equation holds true for all primitive
devices (since they do not have a subhierarchy) and allows to calculate a module’s cumulative variability
from the bottom up. On that basis, inserting ṼP for ṼA on the next higher module level is the key to
determine the cumulative variability of a hierarchical module association. For example, the two Current
Mirrors in a Symmetric Current Mirror Pair module SCMP (as in Section 7.2.3) can either be positioned in
their default orientation (see Figure 7.10 (b)) or be rotated (as done in Figure 7.10 (c)). Thus, comparable
to the transistors in a Current Mirror module, this orientation o of the Current Mirrors in a Symmetric
Current Mirror Pair is a degree of freedom with DSCMP,o = {across, upright}, which defines the
intrinsic variability V́SCMP. Then, the cumulative variability ṼSCMP of an instance SCMP evaluates to

ṼSCMP (7.10)

=

︷ ︸︸ ︷
V́SCMP × ṼCM (7.11)

= V́SCMP ×
︷ ︸︸ ︷
V́CM × ṼMT (7.12)

= V́SCMP × V́CM ×
︷︸︸︷
V́MT (7.13)

and can be obtained from

ṼSCMP =

V́SCMP︷ ︸︸ ︷
gSCMP

(
DSCMP,o

)
×

V́CM︷ ︸︸ ︷
gCM
(
DCM,o

)
× gCM

(
DCM,p

)
×

V́MT︷ ︸︸ ︷
gMT
(
DMT,f

)
(7.14)

112

7.2 Responsive Modules

which can be expressed more compactly using the notation introduced in equation 7.8:

ṼSCMP⇐ DSCMP,o × DCM,o × DCM,p × DMT,f. (7.15)

Based on this calculation principle, all governing modules and module associations are able to determine
the total variability that they may exploit to perform deformations. This is a crucial qualification for
Section 7.3, because the more exhaustive the variability of a module is, the more choices of action the
module will have during a self-organization run.

7.2.4.3 Variability of Primitive Devices

Talking about the self-organization in SWARM, one remark should be made about primitive devices.
Primitive devices are native devices that come with the semiconductor technology as part of the PDK.
Thus, they are not responsive and are therefore not able to perform actions by themselves, nor are they
meant to be capable of answering questions about their variability. To remedy these deficiencies, a
variator module can be employed. A variator module is a meta-module with the sole purpose to adopt
and manage a single, primitive device instance. To perform deformations, it is the variator module’s job
to determine the variability of that instance.

As should become apparent from the discussion above, the variability of a primitive device is (in
contrast to that of the modules introduced so far) usually instance-specific.5 In the case of a MOS
transistor, as already mentioned in Section 7.2.4.1, the variability is defined by V́MT⇐ DMT,f with

DMT,f = {1, 2, . . . , fmax} = {1, 2, . . . , b wch
wmin
c}, (7.16)

where wch is the total channel width of the transistor instance and wmin is the minimum channel width
(and thus also the minimum finger width) for that type of transistor.

7.2.4.4 Variability of Simple Modules

To explicate the variability of common, analog basic circuits that belong to the level of simple modules, it
is apposite to expose which of these circuits have been implemented in SWARM, and what components
these circuits are made up of in this implementation.

Showing device identifiers as done by the Current Mirror in Figure 7.8 is a largely circuit-independent
thing to do. Similarly, the style of device positioning is quite comparable among several circuits, and even
the wiring in these circuits shares a lot of common ground. For that reason, it is feasible to address these
three tasks by implementing three generic governing modules, as seen in the bottom rows of Table 7.5.
The Info module I is so generic, that it can be employed as-is for every basic circuit which allows for
custom device interdigitation. The Positioning module P and the Wiring module W provide parameters
for switching between slightly different positioning and wiring behaviors in order to cover several circuit
types as well. Thus, the Wiring module W and the Wiring modules WCM, WCS, and WWS (which target
different types of Current Mirror circuits) are implemented as one single procedural generator, providing
a parameter to choose the respective topology. The situation is the same with the Positioning module
P and its offshoots PBK (which implements a so-called current mirror Bank), PCS (which represents a
Cascode module), and PSP (which realizes a Symmetric Pair module). The Differential Pair module
PWDP is a panfunctional module since it performs both positioning and wiring.

Table 7.6 lists the analog basic circuits that have been implemented in SWARM utilizing the gov-
erning modules presented in Table 7.5. Also included is the MOS Transistor primitive device, as well
as two kinds of circuits that have not been discussed so far: the Cascode Current Mirror CCM and the
Wide-swing Current Mirror WCM. Layout examples of these circuits are given by the module instances in
Figure 7.13 and Figure 7.14 respectively.

For every kind of circuit listed in Table 7.6, column Components shows which types of components
(governing modules and primitive devices) the circuit has been realized with. Also given for each circuit

5However, it may also be the case with a module that it has to concede an instance-specific curtailment in its variability,
e.g., to satisfy a certain design constraint.

113

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Table 7.5: Generic governing modules and their topological offshoots, as implemented in SWARM.

Module Purpose Comment Based on

WWS wiring for Wide-swing Current Mirror W
WCS wiring for Cascode Current Mirror W
WCM wiring for Current Mirror W
PSP positioning Symmetric Pair module P
PCS positioning Cascode module P
PBK positioning Bank module P
PWDP positioning and wiring for Differential Pair –
I show interdigitation generic Info module –
W wiring generic Wiring module –
P positioning generic Positioning module –

Table 7.6: Analog basic circuits covered by SWARM, based on its implemented governing modules.

Circuit Abbr. Components Ductility Examples

Symmetric Current Mirror Pair SCMP CM + PSP 8 · fmax Figure 7.10
Wide-swing Current Mirror WCM MT + PBK + PCS + WWS 2 · fmax Figure 7.14
Cascode Current Mirror CCM MT + PBK + PCS + WCS 2 · fmax Figure 7.13
Current Mirror CM MT + PBK + WCM 4 · fmax Figure 7.9
Differential Pair DP MT + PWDP 2 · fmax Figure 7.7
MOS Transistor MT – fmax Figure 2.1

is the total number of its possible deformation variants, denoted as its ductility d. For a circuit realized
as a module (or module association) P , the module’s ductility dP is simply the mathematical cardinality
of the module’s cumulative variability:

dP = |ṼP|. (7.17)

If P = {P1, P2, . . . , Pk} is a set denoting the types of components that a circuit is realized with, and
if (for every P in P) the set IP = {IP,1, IP,2, . . . , IP,n} denotes the input parameters that can be varied
as degrees of freedom to perform deformations, then the ductility d can be formally calculated as the
product

d =
k∏
i=1

n∏
j=1

|DPi,IPi,j |. (7.18)

However, one should take note that in some cases the ductility may actually be smaller than what equa-
tion 7.18 suggests. This situation occurs either (1) if the variability of a module is reduced for layout
reasons, or (2) when there is a dependence between at least two degrees of freedom. Both aspects can be
observed in the CCM circuit and the WCM circuit (as is reflected by column Ductility in Table 7.6):

• Aspect (1) is showcased by the practice to place all transistors in each of these circuits in an upright
orientation only. From a layout perspective, this is quite convenient because it allows to connect
the transistor gates in a straightforward way just by drawing stripes of poly across the transistors.
The evident downside is –of course– the reduction in variability that stems from this confinement.
• Concerning aspect (2), two such dependencies can be encountered in both the CCM circuit and the
WCM circuit. The first dependence pertains to the intrinsic variability of the Bank module PBK and
the Cascode module PCS: if, and only if, the Bank module breaks its positioning from a single-row
layout into a dual-row variant, then the Cascode module must do so as well (such a deformation
is depicted in Figure 7.13). So, the combined variability in these degrees of freedom pBK and pCS

is not the Cartesian product DBK,p × DCS,p but only the subset {(single, single), (dual, dual)}.
The second dependence can be found in the cumulative variability of PBK and PCS: the number

114

7.3 Module Interaction

of fingers is supposed to be equal among the transistors of both modules. The deformation in
Figure 7.14 illustrates how both modules change from a 2-finger variant into a 3-finger variant.
Setting the number of fingers to different values is not only disadvantageous in regard of matching,
but also leads to a significant amount of dead space, since the total channel width of the Bank
transistors is usually identical to that of the Cascode transistors. Therefore, keeping the number of
fingers identical represents a constraint that is implicitly considered by SWARM’s modules (which
comes up to the motivation of this thesis).

Figure 7.13: Cascode Current Mirror deformation from (a) single-row variant into (b) dual-row variant.

For each of the circuits in Table 7.6, column Examples as a summary again refers to those figures
in this thesis which illustrate the respective module layout and the module’s layout variability. Regard-
ing layout variability, the thoughts in this work are supposed to be universally valid, independent of the
semiconductor technology at hand. In contrast, the layout details of the implemented modules are not
strictly part of the SWARM methodology itself, but always depend on the chosen semiconductor technol-
ogy, the intended application, and other factors. Thus, the concrete module implementation in practice
always lies under the authority of the respective design team (i.e., the Design Expert in Figure 7.2). But
although the implementations in this thesis can be regarded as being only exemplary, they demonstrate
how governing modules and module associations allow to automate the layout creation of basic circuits
on the level of simple modules. At higher levels, additional and more groundbreaking automation con-
cepts need to be embraced. One such automation concept is the module interaction that will now be
described in Section 7.3 and represents the second core concept of SWARM.

7.3 Module Interaction

To form the desired layout block, the governing modules and module associations from Section 7.2 are
to be arranged in a constellation that fits within a user-defined zone and explicitly satisfies all design
constraints that are not yet implicitly covered by the modules themselves. At this level, irregular (non-
matrix) constellations and arbitrary aspect ratios of the zone outline need to be served. Based on the
considerations of Section 7.2.4, the modules may provide sufficient variability to achieve that goal, but
the enormous amount of possible variations and constellations raises a combinatorial challenge. Instead

115

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Figure 7.14: Wide-swing Current Mirror deformation from (a) 2-finger variant into (b) 3-finger variant.

of exploring this immense solution space in a top-down manner, the modules are –as outlined in Sec-
tion 7.1– impelled into a flow of module interaction to let them find a suitable arrangement on their
own.

Following the idea of decentralization, the modules in SWARM interact upon a maxim of self-
determination: in a selfish pursuit of its own personal well-being, each participating module repeatedly
chooses its individual course itself, always based on some simple utilitaristic rules and just a local as-
sessment of its current situation. For that purpose, the modules’ layout-generating abilites, which can
be considered their introversive behavior (see Section 7.2.4.1), are extended by an extroversive behav-
ior, which dictates a module’s reaction to changes of its environment. The extroversive behavior is not
necessarily identical among all modules (which are now, in the context of interaction, again referred
to as participants), but it always abides by a common action scheme comprised of the following four
measures:

(1) assessing the participant’s condition (see Section 7.3.1),
(2) perceiving its free peripheral space (see Section 7.3.2),
(3) exploring and evaluating possible actions (see Section 7.3.3),
(4) executing the preferred action or staying idle (see Section 7.3.4).

These four measures are exemplarily illustrated in Figure 7.15. Considering a constellation of six partic-
ipants as in (1), assume that it is participant P ’s turn to take an action. Following the action scheme, P
begins by assessing its condition. Since P detects interference with another participant, P strives for an
action that improves its condition. To do so, P perceives the vacant area around it, because most of the
possible actions are based on this so-called free peripheral space. As shown in (2), SWARM determines
the free peripheral space by extending each of P ’s four edges it its respective direction until another par-
ticipant or the zone outline is encountered. Then, as indicated in (3), P explores and evaluates all actions
available in the current situation. Some of these actions only affect the participant itself, while the other
actions also involve other participants. Next, the actions are compared such that the one which improves
P ’s condition the most can be chosen and executed. In (4), the executed action is even synergistic (see
Section 6.4.6): P trades places with another participant and both get rid of their interference.

116

7.3 Module Interaction

P

(1) Participant P assesses
its condition.

(2) P perceives its free
peripheral space S.

(3) P explores and evalu-
ates possible actions.

(4) P executes the
preferred action.

inter-
ference

detected

P
SP

(free peripheral space)

P
push

aside?

crawl
away?

trade
places?

P

places
traded

Figure 7.15: A participant’s actions follow a common action scheme consisting of four measures.

In the remainder of this section, every single measure of the action scheme will now be covered in a
subsection of its own (see Section 7.3.1, Section 7.3.2, Section 7.3.3, and Section 7.3.4, respectively).

7.3.1 Assessment of the Participant’s Condition

In terms of game theory (see Section 6.5.2), SWARM can be considered an infinitely-repeated, non-
cooperative, discrete, asymmetric, non-constant-sum, sequential, perfect-information game in extensive
form, with an unknown number of stage games. In each stage game (here: a round of interaction), every
participant acts in a self-interested way to improve its personal situation. This utility-theoretic attitude
is a characteristic trait of noncooperative game theory, but unlike typical utility functions which map a
player’s preferences to some real numbers (thus quantifying the player’s favored “states of the world”
[281]), SWARM implements a more sophisticated decision-making model built around a participant’s
condition.

The condition of a participant P decides whether there is a need to take action or not. Action is pro-
voked when the condition sustains negative influence, which can be exerted by five different influencing
factors. These influencing factors are largely based on the fact that all participants are geometric objects
with a rectangular bounding box and thus have an area, in contrast to dot-like entities found in some
other systems.

The two major influencing factors are denoted as interference (repulsion of participants due to over-
laps, as already indicated in Figure 7.15) and turmoil (attraction of participants due to connectivity),
which can –depending on their magnitude– provoke an action. In contrast, a participant is forced to take
an action if it suffers at least one of the other three influencing factors: protrusion (overhang beyond
the zone outline), wounds (regions on P which repeatedly overlapped with other participants in previous
rounds of interaction), or noncompliance (violation of constraints).6

For each kind of influencing factor, every participant has a particular desire to reduce and eliminate
the factor’s negative influence on its condition. This will be subsequently discussed in detail for each
individual kind of influencing factor.

7.3.1.1 Interference

Interference is when a participant overlaps one or multiple other participants, as illustrated in Figure 7.16.
The interference (written Υ) of a participant P is a sum of troubles τ between P and n overlapping
participants P1, P2, . . . , Pn:

ΥP =

n∑
i=1

τi. (7.19)

Therein, each individual trouble τi is defined as

τi = ωi + ϑi (7.20)

where both ωi and ϑi are scalar values: ωi is called the overlap of P and Pi, while ϑi is the aversion of
P towards Pi.

6However, there are situations, where the participant may temporarily tolerate even wounds and noncompliance, for example
when performing a so-called Re-entering action (see Section 7.3.3.1).

117

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

P

Trouble
due to Overlap

Layout Zone Z

Interference

Figure 7.16: Illustration of interference for a participant P .

The overlap ωi of P and Pi is their intersection area, multiplied with the area of Pi. The first
multiplicand is denoted as the intensity of the overlap, while the second multiplicand is called tenacity.
Using the geometrical operators from page 243, the calculation of the overlap can be expressed as

ωi = P u Pi︸ ︷︷ ︸
intensity

· Pi︸︷︷︸
tenacity

. (7.21)

One remark should be made about the operator, which determines the bounding box of a geometrical
object. Since a participant P is not a rudimentary geometrical object (i.e., a mere shape such as a
polygon) but a hierarchical design component, the bounding box of P must be determined by examining
all physically relevant shapes throughout the entire subhierarchy of P .

Definition 7.1. Consider a participant P , given as an instance of a procedural generator. Let P contain
a set of geometrical shapes G and a set of subinstances P . For the semiconductor technology at hand, let
Λ be the set of layout layers that are physically relevant (e.g., excluding logical layers, auxiliary layers
and text layers). Then, the set G′ of physically relevant shapes inside P is a subset of G containing every
geometrical shape G whose layout layer `G is a physically relevant layer:

G′ = {G | G ∈ G ∧ `G ∈ Λ}. (7.22)

To determine the bounding box of a hierarchical design component, the operator can now be defined in
a recursive fashion7 as follows:

P =

((
min

(
min
∀G∈G′

(
`G
)
, min
∀P ′∈P

(
`(P ′)

))
,min

(
min
∀G∈G′

(
⊥G
)
, min
∀P ′∈P

(
⊥(P ′)

)))
,(

max
(

max
∀G∈G′

(
aG
)
, max
∀P ′∈P

(
a(P ′)

))
,max

(
max
∀G∈G′

(
>G
)
, max
∀P ′∈P

(
>(P ′)

))))
.

(7.23)

This expression returns the bounding box of P in rectangle notation ((x̌, y̌), (x̂, ŷ)), where (x̌, y̌) repre-
sents the south-western vertex of the bounding box and (x̂, ŷ) represents the north-eastern vertex of the
bounding box.

With the inclusion of the tenacity Pi into equation 7.21, the repulsion against P is correlated
with the size of the overlapping participant Pi. This idea comes to the fore in the calculation of the
prospective8 interference that P can achieve by performing an action: if P is compelled to move into
a new location where it also overlaps with another participant P ′, P thus prefers a smaller participant
over a larger one (because the prospective interference is smaller). Since P ′ then in turn has to perform
an action to get rid of the interference, being rather small than large is advantageous for the progress
of self-organization because finding a new location is easier for smaller participants. In other words,

7The formula is recursive since P also appears on the right-hand side of the expression as P ′. This recursive formulation
is valid because the deepest component in each branch of P ’s subhierarchy has no subinstances, i.e., P = ∅ for every leaf
component of the subhierarchy tree.

8See Section 7.3.4.

118

7.3 Module Interaction

including Pi into equation 7.21 achieves that the necessity to move away from situations of interference
is inclined to propagate from larger participants to smaller participants. Therefore, the actions to perform
become less and less disruptive which benefits the convergence of the overall interaction flow.

Participant’s Desire 1 (Interference):
If a participant does not overlap with other participants, then the participant is said to be clear. During
the interaction, every participant strives to act in a way such that it becomes clear. If P denotes the set
of all participants, then the desire of a participant P regarding interference is to achieve that

∀P ′ ∈ P P, P u P ′ = ∅ (7.24)

which means that
ΥP = 0. (7.25)

In the beginning of the interaction, there is no aversion among the participants. So, the initial aversion
is zero:

ϑi,0 = 0. (7.26)

The same is true for the initial number of clashes γ between the participants. Hence:

γi,0 = 0. (7.27)

An overlap ωi of P and Pi increases P ’s aversion towards Pi such that the aversion changes from the
current value ϑi,j to the new value ϑi,j+1 according to the formula

ϑi,j+1 = (ϑi,j + ωi) · (γi,j + 1). (7.28)

Here, γi,j is the previous number of clashes between P and Pi. After the calculation of ϑi,j+1, the
number of clashes is incremented to the value

γi,j+1 = γi,j + 1 (7.29)

due to the overlap. If there is no overlap between participants P and Pi within one round of interaction,
the aversion drops to the value

ϑi,j+1 = ϑi,j · ϕ (7.30)

where ϕ is a conciliation quota chosen within the interval [0, 1]. If ϕ = 1, there is no conciliation. In
this case, the aversion is never reduced but can only become larger, which means that

ϑi,j+1 ≥ ϑi,j . (7.31)

As soon as the interacting participants yield a settlement that is viable, the aversion and the number of
clashes are both reset to zero for each pair of participants.

7.3.1.2 Turmoil

Turmoil is used to take distances between participants into account during the interaction. As shown
in Figure 7.17, the distance between two participants is modeled as a straight connection between their
centerpoints. Formally, every connection C is a quadruple (L1, L2, e, s) where L1 and L2 are the two
endpoints of C, while e is called the emphasis and s represents the strength of the connection. Both e
and s are scalar values that remain constant during a SWARM run.

The emphasis e ∈ R is 1 by default and can –depending on the particular requirements of the
problem at hand– be individually set by the user within the interval (0, 1] to downgrade the importance
of a connection in relation to the other connections (there being a distinction between SWARM’s idea
of emphasis and the algorithmic notion of a weight, as will be discussed in Section 7.5.1). The strength
s ∈ N+ of a connection between two participants P1 and P2 is automatically calculated as the sum

s = η1 + η2 − 1 (7.32)

119

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

P
Tension

in a Connection
Layout Zone Z

Turmoil

Figure 7.17: Illustration of turmoil for a participant P .

where η1 and η2 represent the total number of connections of P1 and P2 respectively (the subtrahend−1
effectuates that the common connection of P1 and P2 is not counted twice). Similar to the idea of tenacity
in equation 7.21, the consideration of strength has the purpose of streamlining the self-organization. As
illustrated in Figure 7.18, a participant is rather drawn to another one having many connections than to
one having fewer connections, which reduces the number of participants that need to follow this motion
due to connectivity.

PsC = 2 sC = 6

Figure 7.18: Effect of the strength sC of a connection C on a participant’s action.

The condition of a participant sustains negative influence, if its distance to a connected participant
exceeds a certain threshold. For any connection, this so-called relaxation threshold % is defined as
follows.

Definition 7.2. Given a set P of participants inside the layout zone Z, consider a connection C between
two participants P1 and P2. Let Q1 be a square with an area equal to the area of P1, and let r1 be the
radius of the smallest possible circle around Q1. Furthermore, let λ be a leeway coefficient calculated
as

λ =

√
Z

P
=

√√√√√ Z∑
P∈P

P
(7.33)

where Z is the area of Z and P is the sum of the participants’ individual areas. Then, the value

%C,1 =
λ · r1

eC
(7.34)

where eC represents the emphasis of C, is denoted as the “personal” relaxation threshold of P1 for
connection C. With %C,2 as the personal relaxation threshold of P2, the sum

%C = %C,1 + %C,2 (7.35)

is defined as the “total” relaxation threshold of connection C.

120

7.3 Module Interaction

P1

 P2

Q1

Q2

r1/eC

λ · r2/eC

r2/eC

λ · r1/eC

personal relaxation
threshold of P1

personal relaxation
threshold of P2

overstrain

Figure 7.19: Personal relaxation thresholds and overstrain between two connected participants.

To illustrate the idea of relaxation threshold, Figure 7.19 shows the connection C of two participants
P1 and P2, each of which is circumfered by its personal relaxation threshold %C,1 and %C,2 (for λ = 1.5
and eC = 1). The difference lC − (%C,1 + %C,2) between the length lC of the connection and the total
relaxation threshold is denoted as overstrain in the figure.

The radius r of the smallest possible circle around a square Q is half the diagonal of Q and can be
determined via

r =
1

2

√
2 Q . (7.36)

According to the definition above, the area of Q1 is equal to the area of P1. This is also true for the area
of Q2 and P2:

Q1 = P1 , Q2 = P2 . (7.37)

Using equation 7.36 and equation 7.37, the relaxation threshold can thus be calculated in closed form
according to the following formula:

%C =
λ · r1

eC
+
λ · r2

eC
(7.38)

=
λ

eC
· (r1 + r2) (7.39)

=
λ

eC
·
(

1

2

√
2 P1 +

1

2

√
2 P2

)
(7.40)

=
λ√

2 · eC
·
(√

P1 +
√

P2

)
. (7.41)

The length lC of a connection C is simply the Euclidean distance between its endpoints L1 and L2. With
L1 = (x1, y1) and L2 = (x2, y2), the length is given by Pythagoras’ theorem:

lC = L1L2 =
√

(x1 − x2)2 + (y1 − y2)2. (7.42)

Participant’s Desire 2 (Turmoil):
If the length of a connection C is below its relaxation threshold %C , the connection is said to be relaxed
(otherwise unrelaxed). During the interaction, every participant strives to act in a way such that all of
its connections become relaxed, in which case the participant itself is said to be relaxed. If CP denotes
the set of a participant P ’s connections, then the participant’s desire regarding turmoil is to achieve that

∀C ∈ CP , lC ≤ %C . (7.43)

121

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Using ζP ∈ N0 to denote the number of P ’s unrelaxed connections, the desire of P to become relaxed
can be shortly written as

ζP = 0. (7.44)

The leeway coefficient λ prevents the participants from clumping together when there is still much
space left in the beginning of a SWARM run. With every zone tightening, λ becomes smaller and
approaches 1 since Z is successively downsized towards a minimal outline Z ′ whose area equals P :

lim
Z→Z′

λ(Z) = lim
Z→Z′

√
Z

P
= 1 . (7.45)

Assuming that the area of a participant is roughly the same among all layout variants the participant can
deform into, the relaxation threshold of a connection C only depends on λ since eC is a constant value.
Thus, the relaxation threshold %C can also be written as a function of Z, which successively converges
towards

lim
Z→Z′

%C(Z) = lim
Z→Z′

λ(Z)︸ ︷︷ ︸
=1

· 1

eC
· (r1 + r2) =

r1 + r2

eC
(7.46)

throughout the course of a SWARM run. In this fashion, the participants are carefully drawn into their
final arrangement without depriving them of the leeway they need to organize themselves. If the emphasis
of a connection C is set to the default value eC = 1, the relaxation threshold during the last tightening-
settlement cycle is %C = r1 + r2, so the two participants P1 and P2 are expected to move into immediate
vicinity of each other.

The above considerations deal with the modeling of a single connection C. But since a participant
can be connected to multiple other participants, multiple connections must be taken into account during
the interaction. For that purpose, the turmoil Θ of a participant P is calculated by adding up the so-called
tension θ in each of P ’s n connections C1, C2, . . . , Cn:

ΘP =
n∑
i=1

θi. (7.47)

The concept of tension elucidates the notion of the term turmoil: a participant virtually is “in a turmoil”
for being “torn” apart by its omnidirected connections, all of which influence the actions of the participant
like tensely strained rubber straps. The respective tension θ in a connection C is given by

θ(lC) =

{
lC · sCeC ⇔ lC ≤ %CeC(
(lC + 1

2 − %CeC)2 − 1
4 + %CeC

)
· sCeC ⇔ lC > %CeC

(7.48)

where the only nonconstant values are the connection’s relaxation threshold %C (which is changed with
each tightening of the layout zone) and the connection’s length lC (which is meant to be reduced via
moves of the participants). For

lC ≤ %CeC︸ ︷︷ ︸
=λ·(r1+r2)

(7.49)

the relation of tension to length is linear, otherwise it is quadratic to penalize longer distances more
severely und thus vivify the interaction. As illustrated by the graph in Figure 7.20, the constituent formu-
las of equation 7.48 are chosen such that the entire function is continuous and differentiable. Therefore,
using θ†(lC) and θ‡(lC) to denote the constituent formulas for lC ≤ %CeC and lC > %CeC respectively,
the tension θ†(%CeC) equals the tension θ‡(%CeC) as proven by:

θ(lC) for lC≤%CeC︷ ︸︸ ︷
θ†(%CeC) =

θ(lC) for lC>%CeC︷ ︸︸ ︷
θ‡(%CeC)

%CeC · sCeC =
(
(%CeC + 1

2 − %CeC)2 − 1
4 + %CeC

)
· sCeC

%C sC e
2
C =

(
(1

2)2 − 1
4 + %CeC

)
· sCeC

%C sC e
2
C = %CeC · sCeC

%C sC e
2
C = %C sC e

2
C .

122

7.3 Module Interaction

Equivalently, the slope of θ†(lC) is identical to the slope of θ‡(lC) for lC = %CeC . Using θ′†(lC) = sCeC
and θ′‡(lC) = (2lC +1−2%CeC) ·sCeC to notate the derivatives of θ†(lC) and θ‡(lC) respectively, where
θ′‡(lC) has been determined after expanding

θ‡(lC) =
(
(lC + 1

2 − %CeC)2 − 1
4 + %CeC

)
· sCeC

=
(
l2C + 2lC(1

2 − %CeC) + (1
2 − %CeC)2 − 1

4 + %CeC
)
· sCeC

= (l2C + lC − 2%CeC lC + (1
2)2 − %CeC + %2

Ce
2
C − 1

4 + %CeC) · sCeC
= (l2C + lC − 2%CeC lC + %2

Ce
2
C) · sCeC ,

the proof can be given as:

θ′(lC) for lC≤%CeC︷ ︸︸ ︷
θ′†(%CeC) =

θ′(lC) for lC>%CeC︷ ︸︸ ︷
θ′‡(%CeC)

sCeC = (2%CeC + 1− 2%CeC) · sCeC
sCeC = sCeC .

ϱC eC

θ(lC)

lC0
0

θ(lC) ∝ lC θ(lC) ∝ lC
2

ϱC sC eC
2

Figure 7.20: Tension in a connection between two participants, depending on the connection’s length.

7.3.1.3 Protrusion

P
Protrusion

beyond Z
Layout Zone Z

Figure 7.21: Illustration of protrusion for a participant P .

Protrusion is the case when a participant does not completely lie within the current outline of the
layout zone, as depicted in Figure 7.21. In that case, the participant is forced to take an action. Geomet-
rically, the protrusion Ψ of a participant P can be written as

ΨP = P u Z (7.50)

where Z (the complement of Z) denotes the territory beyond the layout zone.

123

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Depending on the grade of protrusion, a participant is denoted as lost (entirely outside Z), prone
(partially outside Z), or safe (entirely inside Z). Each of these three cases is illustrated in Figure 7.22
and bijectively maps to a distinct geometrical condition as follows:

P is

lost ⇔ ΨP = P

prone ⇔ ΨP @ P

safe ⇔ ΨP = ∅.
(7.51)

PP P

P is lost P is prone P is safe

ΨP ΨP ΨP = Ø

Z Z Z

Figure 7.22: The three grades of protrusion: a participant can be either lost, prone, or safe.

Participant’s Desire 3 (Protrusion):
As mentioned above, a participant that does not at all protrude the layout zone is said to be safe. During
the interaction, every participant strives to act in a way such that it becomes safe. So, the desire of a
participant P regarding protrusion is to achieve that

ΨP = ∅. (7.52)

If a participant would become prone after performing one of its potential actions, it is good to know
how far exactly the participant would protrude the layout zone horizontally and vertically. As will be
discussed in the end of Section 7.3.3.1, this protrusion extent (ψx, ψy) can be used to correct the potential
action such that it leads the participant into a safe location. To determine the protrusion extent of a prone
participant, eight different cases of protrusion are to be distinguished, as shown in Figure 7.23. In that
regard, it is important to note that the layout zone may be rectilinear, not just rectangular.

(a2)

(c1)(b1)

(d2)

(a1) (d1)

(b2) (c2)

ψy

ψy

ψx

ψy

ψx

Figure 7.23: The different cases of protrusion for a prone participant and a rectilinear layout zone.

Referring to the eight images in Figure 7.23, there are five cases in which it is not possible to de-
termine an unambiguous protrusion extent, depending on the number and the form of those parts of a
participant P that lie inside and outside the layout zone Z:

124

7.3 Module Interaction

(a1) There are more than one disjunct parts of P that lie outside of Z.
(a2) There are more than one disjunct parts of P that lie inside of Z.
(b1) The part of P inside Z is rectangular, but the outside part is a concave polygon with more than one

reflex interior angle (i.e., an interior angle greater than 180◦).
(b2) The part of P outside Z is rectangular, but the inside part is a concave polygon with more than one

reflex interior angle.
(c1) The part of P outside Z and the part inside Z are both not rectangular.

In these five cases, no action correction is performed due to the lack of an unequivocal protrusion extent.
Furthermore, this is justified by the conjecture that the likelihood of encountering one of these cases is
rather low. If Z is rectangular, cases (a1) and (b1) are merely theoretical, while the occurrence of cases
(a2), (b2) or (c1) is even impossible. In the remaining three cases, the calculation of the protrusion extent
is well-defined and trivial:

(c2) The part of P outside Z and the part inside Z are both rectangular. In this case, the protrusion
extent is given by the dimensions of the part outside Z.

(d1) The part of P outside Z is rectangular and the inside part is a concave polygon with only one reflex
interior angle. As in (c2), the protrusion extent is given by the dimensions of the part outside Z.

(d2) The part of P inside Z is rectangular and the outside part is a concave polygon with only one reflex
interior angle. Then, the protrusion extent is given by the bounding box dimensions of P minus
the dimensions of the part inside Z.

With the aim of performing an action correction, an important matter must be respected if the protrusion
occurs at an edge (not at a vertex) of the layout zone: either the horizontal or the vertical protrusion
extent must be zero since an axis-oriented action correction is desired in this case. More specifically, if
P protrudes Z upwards or downwards –as in the example of (c2)– this requires that ψx = 0 (to obtain
a purely vertical action correction). If P protrudes Z leftwards or rightwards, then ψy = 0 (horizontal
action correction). This can be achieved by calculating the protrusion extent in the same way as described
above regarding case (d2).

Whether a geometrical shape G is a rectangle, can be determined by evaluating if the condition
G = G holds true. When it is known that every angle in G is a right angle, an alternative option is to

check if the number of vertices is |G| = 4. Whether a rectilinear, not self-intersecting polygon G has
exactly one reflex interior angle, can be determined by evaluating if |G| = 6. Thus, the calculation of the
protrusion extent for the cases (c2), (d1), and (d2) can be done according to the following formulas

ψx =

{
a(P u Z)− `(P u Z) ⇔ | P u Z| = 6 ∧ | P u Z| = 4

a(P)− `(P)− a(P u Z) + `(P u Z) ⇔ | P u Z| = 4 ∧ | P u Z| ≤ 6
(7.53a)

ψy =

{
>(P u Z)−⊥(P u Z) ⇔ | P u Z| = 6 ∧ | P u Z| = 4

>(P)−⊥(P)−>(P u Z) +⊥(P u Z) ⇔ | P u Z| = 4 ∧ | P u Z| ≤ 6
(7.53b)

where | P u Z| = 4 ∧ | P u Z| = 4 represents case (c2), | P u Z| = 6 ∧ | P u Z| = 4 represents case
(d1), and | P u Z| = 4 ∧ | P u Z| = 6 represents case (d2).

7.3.1.4 Wounds

When a participant P assesses its condition, every overlap ω between P and another participant inflicts
wounds on P , as exemplified in Figure 7.24. Formally, a wound W is a pair (ρ, ς) which has a specific
rectangular region ρ on P and a discrete severity ς represented as a natural number ς ∈ N0.

An overlap between P and another participant P ′ inflicts a new wound W on P which has a severity
ςW = 1 and covers the overlap region ρW = P u P ′. If that region also overlies an existing wound
W ∗ on P , then the wound is aggravated throughout the part of W ∗ overlain by ρW . That is to say, the
severity of the wounded part ρW uρW ∗ is incremented by ∆ς , wherein the value for ∆ς is either 2 (ifW ∗

was inflicted by P ′) or 1 (if W ∗ was inflicted by a participant other than P ′). Those parts of a wound,

125

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

P
Wound on PLayout Zone Z

(caused by)

Figure 7.24: Illustration of wounds for a participant P .

that do not become aggravated due to an overlap, can ameliorate. This is achieved by decrementing the
severity of those parts by 1. If the severity drops below zero, then that part of the wound vanishes and is
said to be healed.

One particular comment should be made about the implementation of the wounds concept. Aggra-
vating the overlain part ρ∗ of an existing wound can be done by geometrically separating that part from
the wound and then incrementing its severity to the new value ς∗. However, this leads to the necessity
of dealing with arbitrarily intricate polygonal contours of wounded parts. A convenient alternative is
simply to inflict a new wound with the increased severity ς∗ on top of the existing wound, covering the
region ρ∗. With this practice, geometrical operations on wounds involve only rectangular regions, as
Figure 7.25 illustrates in an example.

View
from
Above

P
P'

P

P'

ς = 0
ς = 1

ς = 2 P
P'

ς = 0 ς = 1

ς = 0 ς = 1
ς = 2

P

P'

ς = 0
ς = 2

ς = 3
ς = 2

ς = 1
ς = 2

ς = 1

ς = 3

ς = 2 ς = 2

ς = 1
P

P'

ς = -1 ς = 0

P

P'

ς = -1
ς = 2

ς = 3
ς = 1

ς = 0
ς = 2

ς = 1

ς = 3

ς = 2 ς = 2

ς = 1

View
from
the Side

P
P'

ς = 0

P

P'

ς = 2

ς = 3

ς = 0
ς = 2

ς = 1

ς = 3

ς = 2 ς = 2

ς = 1

(-1)

(-1)(-1) (removed)

(a) Overlap
 Detection

(b) Infliction/
 Aggravation

(c) Amelioration (d) Healing

W1
W2

W3

W4

W5 W6

W7

(removed)

Figure 7.25: Exemplary depiction of how a participant P gets wounded by another participant P ′.

For this example, Figure 7.25 shows a view from above onto the layout, and a cross section through
the “stack” of wounds. Both depictions are given for the four different stadiums of the wound infliction
which can be described as follows:

(a) Overlap Detection:
Given is a participant P with three wounds: a wound W1 with a severity of ς = 0, a wound W2

with ς = 1, and a wound W3 with ς = 2. As illustrated in the image, P is overlapped by another
participant P ′ which was already responsible for having inflicted wound W1 in a previous round
of interaction.

(b) Infliction/Aggravation:
The overlap inflicts a new wound W4 on P with a severity of ς = 1, covering the overlap region
P u P ′. Since the overlap also intersects W1 and W2 in parts and encompasses W3 in full, these

126

7.3 Module Interaction

wounds are aggravated. That means, the overlap region P ′uρW1 is aggravated by causing another
wound W5 with ς = 2 (i.e., ∆ς = 2, since W1 was inflicted by P ′), while the regions P ′ u ρW2

and P ′ u ρW3 are aggravated from ς = 1 to ς = 2 and from ς = 2 to ς = 3, which is achieved via
new wounds W6 and W7 respectively (i.e., ∆ς = 1, since W2 and W3 were not inflicted by P ′).

(c) Amelioration:
Now that the new wounds (W4, W5, W6, and W7) have been added to P , the old wounds (W1,
W2, and W3) are ameliorated. This is done via decrementing the respective severity by ∆ς = −1.
For W3, the severity thus becomes ς = 1, and for W2, the severity reaches ς = 0. For W1, the
severity drops to the (actually excluded) value ς = −1, which is thus subject to healing in the next
stadium.

(d) Healing:
Since the severity ofW1 has gone below zero, the wound has fully healed and is therefore removed
from the stack of wounds. Hence, it is again true that the severity of all remaining wounds is
ς ∈ N0. Since the new wound W7 covers the old wound W3 not only in parts but in full, W3 is in
fact inane and can therefore also be removed.

When the aggravation of a wound exceeds a critical severity ςc, the wound is said to be critical and the
participant is forced to perform an action. In that case, the participant begins a strategy of recuperation
and chooses its subsequent actions such that the wound is not aggravated any further before being fully
healed. By the same token, a participant is not allowed to aggravate another participant’s wound if that
wound is currently subject to recuperation.

Participant’s Desire 4 (Wounds):
If a participant’s wound is overlapped by another participant despite being subject to recuperation, or if
a participant overlaps another participant’s wound which is currently subject to recuperation, then the
participant is said to be in an unhealthy location, otherwise in a healthy location. During the interaction,
every participant strives to act in a way such that it does not get into an unhealthy location. If P denotes
the set of all participants andW †P represents a participant P ’s set of wounds that are currently subject
to recuperation, then the desire of a participant P regarding wounds is to achieve that

∀P ′ ∈ P P , (@W ∈ W †P : P ′ u ρW 6= ∅) ∧ (@W ′ ∈ W †P ′ : P u ρW ′ 6= ∅). (7.54)

Using
W ‡
Pn = {W ∈ W †P | ∃P

′ ∈ P P : P ′ u ρW 6= ∅} (7.55)

to denote the set of P ’s recuperating wounds currently overlapped by other participants, and using

W ‡
Po = {W ′ | ∃P ′ ∈ P P : W ′ ∈ W †P ′ ∧ P u ρW ′ 6= ∅} (7.56)

to denote the set of other participants’ recuperating wounds currently overlapped by P , then P is in a
healthy location if the unionW ‡

Pon of both sets is empty:

W ‡
Pon =W ‡

Pn ∪W
‡

Po = ∅. (7.57)

Wounds are a pivotal element of SWARM, akin to the idea of aversion in Section 7.3.1.1 but with
different motives in two regards. First, aversion has a long-term effect in that it hinders a perpetual
interference of two participants, whereas a critical wound has an immediate impact. Second, as aversion
correlates with the area of an overlap, wounds are more effective for preventing marginal interferences.
A careful balance in the modeling of both aversions and wounds is one key to a fluent progress of self-
organization in SWARM.

7.3.1.5 Noncompliance

Noncompliance indicates that a participant, in its current location, violates at least one explicitly formu-
lated design constraint. An example is given in Figure 7.26, where participant P violates an Alignment

127

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Layout Zone Z P

alignment constraint

Noncompliance

Figure 7.26: Illustration of noncompliance for a participant P .

constraint. Noncompliance specifically addresses only hard constraints (strict confinements), since soft
constraints (optimization goals) are incorporated into SWARM via other mechanisms. Mentioning two
examples for the latter, wirelength minimization is achieved with the consideration of turmoil (Sec-
tion 7.3.1.2), while minimization of the total area is pursued through the successive tightening of the
layout zone (Section 7.4).

Formally, a hard constraint imposes a certain restriction on a set M of design objects denoted as
the constraint members. For a concrete, hard constraint H of constraint type tH , there must be a type-
dependent verification function vtH (M) whose codomain is the Boolean domain B = {0, 1}. A return
value of 1 indicates that the constraint H is currently satisfied for its constraint membersMH , whereas
a return value of 0 indicates that the constraint is currently not satisfied.

For example, in the case of an Alignment constraint such as in Figure 7.26, where the constraint
membersM are supposed to be aligned by their bottom edge, the verification function vAlignment can be
expressed as

vAlignment(M) =

{
1 ⇔ ∃y ∈ R : ∀P ∈M,⊥(P) = y

0 ⇔ otherwise.
(7.58)

IfHP denotes the set of all hard constraints that have been imposed on a participant P , i.e.,

HP = {H | H ∈ H ∧ P ∈MH}, (7.59)

withH representing the set of all hard constraints in the current design, then participant P is in a state of
noncompliance if

∃H ∈ HP : vtH (MH) = 0. (7.60)

Participant’s Desire 5 (Noncompliance):
If a participant does not violate any explicitly formulated hard design constraint, then the participant is
referred to as compliant. During the interaction, every participant strives to act in a way such that it
becomes compliant. So, the desire of a participant P regarding noncompliance is to achieve that

∀H ∈ HP , vtH (MH) = 1. (7.61)

Using H ‡P = {H ∈ HP | vtH (MH) = 0} to denote the set of hard constraints imposed on participant
P that are currently not satisfied, P is compliant if that set is empty:

H ‡P = ∅. (7.62)

As has been stated in Chapter 2, it is the essential aim of this thesis to provide the means for a
comprehensive consideration of design constraints. To that effect, the conception of noncompliance
represents only one of several instruments. While it should again be remarked, that each participant is
supposed to take care of its own particular design constraints implicitly, there are also multiple distinct
flavors of explicit constraint consideration in SWARM:

128

7.3 Module Interaction

• As already mentioned above, wirelength minimization is achieved by the conception of turmoil,
while minimization of the total area is addressed through the successive tightening of the layout
zone. Wirelength minimization and area minimization represent optimization goals, also referred
to as soft constraints.
• Noncompliance, as an influencing factor, can be utilized to target hard design constraints. In that

regard, noncompliance is feasible for constraints that are supposed to be satisfiable via SWARM’s
native catalog of actions (which will be described in Section 7.3.3).
• Certain design constraints cannot be adequately covered by SWARM’s native catalog of actions.

However, for such constraints a participant may provide and pursue its own dedicated kind of ac-
tion. An example is the action called Imitation, by which a participant mimics another participant’s
transformations, as will be discussed in Section 7.3.3.2.
• Design constraints pertaining to the distance between two participants, can be included in the

model of tension (see Section 7.3.1.2). Apart from the emphasis value (which acts as a “soft”
quantifier), a hard restriction –such as a maximum distance– can be imposed by overriding a
connection’s relaxation threshold with the desired value.
• Some design constraints just imply, that a participant may not assume certain layout variants.

That is to say, the participant is not allowed to exploit its entire variability during the interaction.
Instead, the permitted variability is reduced to a subset of the participant’s total variability. For
example, a Current Mirror may be prevented from deforming itself into a single-row variant for
reasons of matching.

In summary, if a participant is not affected by any of the above influencing factors (interference,
turmoil, protrusion, wounds, noncompliance), then the participant is said to be contented. Otherwise,
the participant strives for action because it is discontented. When contented, no action is required, but
nonetheless the participant attempts to perform a movement in this case if possible: to center itself
within its free peripheral space (which will now be covered in Section 7.3.2). If that is not possible, the
participant lingers where it is. Although the centering does not improve the participant’s condition, it is
regarded as a betterment of its situation, imagining that the participant “feels best” when it can equalize
the distances to its nearby neighbors.

7.3.2 Perception of the Free Peripheral Space

Layout Zone Z

P

Free Peripheral
Space of P

Figure 7.27: The free peripheral space of a participant P is the vacant area around it.

The basis for a participant’s exploration of possible actions is the vacant area around it (and, for
actions involving other participants, also the vacant areas around them). While there are various possi-
ble conceptions of how this free peripheral space could be specified, SWARM provides the following
unambiguous definition, in accordance with the exemplary depiction of Figure 7.27.

Definition 7.3. Given the layout zone Z as a rectilinear polygon, let P be a participant located (at least
partially) inside Z. LetB be the rectangular bounding box around the part of P that is completely inside
Z. For every edgeE ofB, let the corridor KE be a rectangle beginning atE and sprawling away from P
to infinity with a width equal to the length of E. Let K be a set containing the four corridors of P and let
U be a set of obstacles containing the complement of Z as well as the bounding boxes of all participants

129

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

except P . Then, the free peripheral space SP of P is uniquely defined as the largest possible rectangle
around P not containing any intersection K u U .

7.3.2.1 Geometrical Recipe for Perceiving the Free Peripheral Space

P P P

B
Z

(a) Participant P and Zone Z (b) Part of P inside Z (c) Enlarged Layout Zone

ɛ

Z'

P

(d) The four Corridors of P

P

(e) Obstacles in Corridors

Knorth

Keast

Ksouth

(f) Free Peripheral Space

Kwest SPP

Figure 7.28: A participant’s geometrical recipe for perceiving its free peripheral space.

Geometrically, a participant can perceive its free peripheral space as described below and illustrated
in Figure 7.28. For a participant P and a layout zone Z –such as in Figure 7.28 (a)– the bounding box
around the part of P inside Z –see (b)– is given by

B = (Z u P) (7.63)

and the four edges of B can be determined as lines
(
(x1, y1), (x2, y2)

)
via

Enorth =
(
(`B,>B), (aB,>B)

)
, (7.64a)

Eeast =
(
(aB,⊥B), (aB,>B)

)
, (7.64b)

Esouth =
(
(`B,⊥B), (aB,⊥B)

)
, (7.64c)

Ewest =
(
(`B,⊥B), (`B,>B)

)
. (7.64d)

Notwithstanding the theoretical definition above, the corridors of these four edges cannot sprawl to in-
finity in practice. For calculating the free peripheral space, the corridors just need to go beyond the zone
outline Z, no matter how far. For that purpose, as shown in image (c), it is suitable to define an auxiliary
rectangular zone outline

Z ′ = }ε(Z) (7.65)

which is obtained by getting the bounding box of Z and enlarging it by an arbitrarily small positive
number ε > 0. Then, the four corridors of K –depicted in (d)– can be defined as

Knorth =
(
(`B,>B), (aB,>Z ′)

)
, (7.66a)

Keast =
(
(aB,⊥B), (aZ ′,>B)

)
, (7.66b)

Ksouth =
(
(`B,⊥Z ′), (aB,⊥B)

)
, (7.66c)

Kwest =
(
(`Z ′,⊥B), (`B,>B)

)
. (7.66d)

130

7.3 Module Interaction

If P represents the set of all participants, then the set of obstacles U containing the complement of Z and
the bounding boxes of all participants expect P is given by

U = Z t (P P) (7.67)

and allows to determine the obstacles’ intersections with each individual corridor via

Unorth = Knorth u U , (7.68a)

Ueast = Keast u U , (7.68b)

Usouth = Ksouth u U , (7.68c)

Uwest = Kwest u U , (7.68d)

as indicated by the criss-cross hatching in image (e). With the bounding boxes around these intersections
–lightly grayed in (e)–, the four bounding box edges that face towards P demarcate the free peripheral
space SP , which can thus be perceived by evaluating the expression

SP =
((
a(Uwest),>(Usouth)

)
,
(
`(Ueast),⊥(Unorth)

))
(7.69)

and therefore yields the free peripheral space SP illustrated in image (f) of Figure 7.28.

7.3.2.2 Pervasion (Obstacles in the Free Peripheral Space)

Although the given definition of free peripheral space is quite convenient, it may occur that the free
peripheral space is not really “free” for the reason of being pervaded by an obstacle. This situation is
denoted as pervasion and can be divided into two different cases:

• The first case is illustrated in Figure 7.29. Image (a) shows a participant P being overlapped by
another participant P ′. This means that P is in a state of interference (see Section 7.3.1.1), and
therefore the overlapping part of P ′ intersects the free peripheral space of P . The situation is
similar if the obstacle is not another participant but the complement of the layout zone. As can be
seen in image (b), participant P may be in a state of protrusion (see Section 7.3.1.3) where the
part of P inside Z is not rectangular. In this situation, the bounding box B around that part –and
thus, the free peripheral space as well– also protrudes beyond the given layout zone. So, in both
Figure 7.29 (a) and Figure 7.29 (b) the free peripheral space is not truly vacant due to the impaired
condition of the participant.
• The second case is depicted in Figure 7.30, which points out the fact that the free peripheral space

can contain up to four so-called blind spots. These blind spots are comprised of SP K (i.e., those
parts of the free peripheral space outside the four corridors Knorth, Keast, Ksouth, Kwest). Obstacles
in a blind spot, such as participant P ′ in image (a), are accidentally overlooked when P perceives
its free peripheral space. As above, a similar situation arises when the obstacle is the complement
of the layout zone. Unless the zone outline is strictly rectangular, the free peripheral space can
inadvertently exceed the bounds of the layout zone as in the example of image (b). So, in both
Figure 7.30 (a) and Figure 7.30 (b) the free peripheral space is not entirely vacant because of its
blind spots.

Luckily, neither of these cases is problematic, since eventual situations of interference or protrusion will
be detected before a participant performs an action. Furthermore, it should be noted that blind spots be-
come less and less troublesome throughout the course of a SWARM run: due to the successive tightening
of Z, the arrangement of participants becomes increasingly compact and thus the area of blind spots ap-
proaches zero. This observation is visualized in Figure 7.31. In the initial constellation (a), there is a
high degree of pervasion: almost the entire layout zone is littered with blind spots, such that every single
participant is overlooked by at least one of its neighbors. As shown by the intermediate constellation of
(b), where only five out of the nine participants pervade another participant’s free peripheral space, the
degree of pervasion becomes smaller throughout the self-organization flow. In the final constellation (c),

131

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

P'

(a) Pervasion due to Interference

P

P

(b) Pervasion due to Protrusion

SPSP

part of P' inside SP part of Z inside SP

Figure 7.29: Pervasion of a participant’s free peripheral space due to its bad condition.

P'

P

(a) Pervasion due to overlooked
 other Participant

(b) Pervasion due to overlooked
 Zone Bounds

part of P' inside SP

P

part of Z inside SP

blind
spot

Figure 7.30: Pervasion of a participant’s free peripheral space due to blind spots.

the arrangement is so compact that no pervasion at all is encountered in the relatively small areas of the
remaining blind spots.

In addition to the above two cases, one can identify a third case, in which the idea of free peripheral
space becomes completely moot. That is, if a participant has become lost (again see Section 7.3.1.3), SP
entirely lies beyond the given layout zone. In this case, a dedicated Re-entering action, which does not
rely on the participant’s free peripheral space, is used to hurl the participant back into the layout zone as
will now be described in Section 7.3.3.

7.3.3 Exploration and Evaluation of Possible Actions

Every action that a participant can perform is basically a set of transformations for all participants Pι
involved in the action. As introduced in Section 7.2.3.3, each transformation T is a triple T = (M,R,D)
that may comprise a movement M , a rotation R, and a deformation D:

• The movement M is a two-dimensional vector M = (∆x,∆y) that displaces the participant
without altering its aspect ratio. To obtain another aspect ratio, a rotation or a deformation need to
be included in the transformation.
• The rotation R either rotates the participant around its center point or preserves its orientation. If

the participant can be treated as a “black box” during the self-organization phase of the SWARM
run, then it suffices to consider rotationsR ∈ {0◦, 90◦}which either keep or invert the participant’s
aspect ratio.
• The deformation D ∈ {V1, V2, . . . , Vd} refers to one of the d layout variants that the participant

can assume (as given by its cumulative variability Ṽ). The higher the ductility d is, the more
variants are available for potential deformations. A deformation always changes the participant’s
aspect ratio to that of the assumed layout variant but does not dislocate its center point.

Depending on the prospective aspect ratio, the participant’s next measure is to spot an assortment of pos-
sible locations it might eventually decide to head for. Serving this purpose, different kinds of actions are

132

7.3 Module Interaction

high degree of pervasion
medium degree of pervasion

no pervasion

(a) Initial Constellation
(b) Intermediate Constellation

(c) Final Constellation

Figure 7.31: Successive decline of free peripheral space pervasion caused by blind spots.

at hand, including SWARM’s catalog of native actions (Section 7.3.3.1), constraint-specific custom ac-
tions (Section 7.3.3.2), and a special kind of functionality to account for full variability (Section 7.3.3.3).

Every action that the participant explores, also has to be evaluated. First and foremost, this is neces-
sary in order to see whether an action is valid at all.

Definition 7.4. An action is valid if it leads the participant into a location that is devoid of protrusion,
wounds and noncompliance. Otherwise the action is invalid. If the participant currently is in an invalid
location, then an invalid action that somehow improves the participant’s condition (as done by the Re-
entering action described below) is called tolerable. If an action is exacted by a constraint (such as the
Imitation action in Section 7.3.3.2), the action is mandatory. An action is defined as acceptable if it is
valid, tolerable, or mandatory.

Actions that are not acceptable can be immediately discarded. Among the acceptable actions, the
respective evaluation then allows to compare the actions’ prospective interference and turmoil. This
decides, which action will be finally performed, if an action is performed at all (Section 7.3.4).

7.3.3.1 Native Actions

Although particular design requirements may necessitate dedicated actions (such as the already men-
tioned Imitation that will be discussed in Section 7.3.3.2), SWARM implements a fundamental catalog
of nine different actions considered to be adequate as a kind of natural, “instinctive” demeanor. Regard-
ing a participant P and a layout zone Z, each of these actions is subsequently discussed in a paragraph
of its own, with each paragraph providing

• a description of the respective action,
• the instructions to put the action into practice,
• additional comments about the action in general, and
• an illustration that depicts the action in a demonstrative example.

As already mentioned, some actions only involve participant P whereas other actions may also involve
further participants. In either case, participant P (i.e., the participant who decides about the action to be
performed) is denoted as the leading participant.

It should again be emphasized that each of the following paragraphs concentrates on how an action
is explored, but not when that action is explored nor when (if at all) it gets indeed performed within
SWARM’s common action scheme. These open questions will be answered in Section 7.3.4, covering
the preference of actions as well as the overall flow of action execution.

133

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Re-entering

Description: Re-entering is performed when participant P is lost. This action has the sole
aim of catapulting P back into the given layout zone Z at the nearest possible loca-
tion. Re-entering thus remedies protrusion, while disregarding all other influencing
factors covered in Section 7.3.1.

Instructions: (1) If participant P is lost, then for each edge E of the rectilinear layout zone Z,
determine whether E is a horizontal edge or a vertical edge.

(2) If E is a horizontal edge, determine and memorize a purely vertical move by
which P aligns its southern (if P is below E) or northern (if P is above E)
edge with E. If E is a vertical edge, determine and memorize a purely
horizontal move by which P aligns its western (if P is to the left of E) or
eastern (if P is to the right of E) edge with E.

(3) If a memorized move would lead P into a state of protrusion, correct the move
such that it leads P to an allegedly safe location. For a vertical move, this
implies an offset to the right (if P is to the left of E) or to the left (if P is to the
right of E). For a horizontal move, this implies an offset upwards (if P is
below E) or downwards (if P is above E). Formally, one can say:
∀E ∈ Z,ME = (∆x,∆y) with

∆x =

{
max(`E − `(P), 0) + min(aE − a(P), 0) ⇔ E is horizontal
max(xE − `(P), 0) + min(xE − a(P), 0) ⇔ E is vertical

∆y =

{
max(yE −⊥(P), 0) + min(yE −>(P), 0) ⇔ E is horizontal
max(⊥E −⊥(P), 0) + min(>E −>(P), 0) ⇔ E is vertical.

(4) Sort the memorized moves by the Euclidean distance of the movements and let
P perform the move with the smallest distance.

Comments: As will be discussed in Section 7.4, the tightening of the layout zone is supposed to
be realized in a way such that no participant gets lost through a tightening. However,
this is not that easy to accomplish in case the layout zone is a nonrectangular polygon.
Keeping the implementation simple, and conceding that a participant can thus get lost,
Re-entering is a convenient action to remedy such situations.
Of course, Re-entering actions can also be explored for participants that are only prone
but not entirely lost. In some cases, such a move may turn out to be a better alternative
than an Evasion action (described next). For that reason, Re-entering actions can also
be encountered in SWARM runs where the layout zone is rectangular.

Illustration:

P

P PP
Δy

Δx

Figure 7.32: Exemplary visualization of a Re-entering move.

134

7.3 Module Interaction

Evasion

Description: Evasion is only applicable when P is prone. With this action, P moves back
into the layout area Z, evading other participants by going sideways.

Instructions: (1) If P is prone, then perceive its free peripheral space SP (based on the
rectangular part B of P that lies inside Z, as described in Section 7.3.2).

(2) Get the width wP and the height hP of P . These quantities are relative to the
coordinate system and can be formally calculated as follows:

wP = a(P)− `(P),

hP = >(P)−⊥(P).

(3) Determine the three locations inside SP by which P aligns its bounding box
with the nearest edge or with one of the two nearest vertices of SP . In case SP
lies to the right of P (as in the illustration below), the set of locations for
potential moves is

Lnew =
{ (
`SP + 1

2wP ,>SP −
1
2hP

)
, // north-west of SP(

`SP + 1
2wP ,

1
2(⊥SP +>SP)

)
, // center-west of SP(

`SP + 1
2wP ,⊥SP + 1

2hP
) }

. // south-west of SP

For the cases in which SP lies above, below, or to the left of P , the set of
locations is to be determined analogously.

(4) Let P move such that its center point lies at one of the new locations Lnew. As
is the case with most of the actions that follow, it is up to the participant’s
decision-making which one of the explored actions will eventually be
performed (see Section 7.3.4). Thus, the subsequent action descriptions are
only meant to expound the principal idea behind each action, regardless of the
question which action will finally be chosen.

Comments: If P protrudes Z at one of its convex vertices (not at one of its edges as shown in the
example below), i.e., if wB < wP ∧ hB < hP , then SP does neither definitely lie
above, nor below, nor to the left, nor to the right of P . In that case, the participant
should try to align its bounding box with the nearest vertex and with one of the two
nearest edges of SP .
IfZ is not a rectangular layout zone, it can happen that P protrudesZ at a concave ver-
tex. This represents a case of pervasion due to protrusion (as depicted in Figure 7.29).
To address such situations, the Evasion action would have to be enhanced, but for
convenience it is also possible to skip the Evasion attempt in favor of one of the other
actions which may just as well help P to get back into the layout zone.

Illustration: P

P P

SP

P

Figure 7.33: Exemplary visualization of a Evasion move.

135

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Centering

Description: Centering is an elementary action where P aligns its center point with the cen-
ter point of its free peripheral space. As such, Centering is not necessarily meant to
solve conflict situations, but rather to balance the distances between participants when
they are contented (also see the remark at the end of Section 7.3.1).

Instructions: (1) Perceive P ’s free peripheral space SP (as explained in Section 7.3.2).
(2) Determine the center point of SP to go for it as the new location Lnew:

Lnew =
(

1
2(`SP + aSP), 1

2(⊥SP +>SP)
)
.

(3) Let P move such that its center point lies at the new location Lnew.

Comments: A mandatory concern here and in general is the definition of a minimal movement
distance m to prevent infinitesimal actions. This is not only for reasons of perfor-
mance, but to prevent a group of contented participants from Centering themselves ad
infinitum. As the current implementation of SWARM shows, it is feasible to correlate
m with the amount of free space in Z such that it changes dynamically during the
self-organization.

Illustration:

Lnew

P

SP

P
P

P

Figure 7.34: Exemplary visualization of a Centering move.

Lingering

Description: Lingering occurs if P is contented but cannot perform a Centering (e.g., due to
prospective interference with an obstacle in a blind spot). In that case, P deliberately
does nothing but to stay where it is, waiting for the next round of interaction.

Instructions: (1) The situation is expected to be such that P is contented and attempts to
perform a Centering.

(2) Determine if P would become discontented through the Centering.
(3) If P would become discontented, let P stay at its current location.

Comments: It should again be emphasized that Lingering is an action where the participant remains
idle intentionally, as opposed to the case where a participant cannot perform an action
although it would like to do so for the reason of being discontented.

Illustration:

P
P

P
P

Figure 7.35: Exemplary visualization of a Lingering move.

136

7.3 Module Interaction

Budging

Description: Budging makes P spot additional vacant room by perceiving the four free pe-
ripheral spaces from the viewpoints of its four corners. Then, P tries to slip into an
appropriate location within that “secondary” free peripheral space.

Instructions: (1) For each vertex of P ’s bounding box, perceive the secondary free peripheral
space from the viewpoint of the vertex (with infinitely narrow corridors
emanating from the vertex).

(2) Find a suitable location Lnew inside SNE
P (free peripheral space from the

viewpoint of the north-eastern vertex), SSE
P (of the south-eastern vertex), SSW

P

(of the south-western vertex), or SNW
P (of the north-western vertex). One basal

location is the center point of the free peripheral space (see comments below).
(3) Let P move such that its center point lies at the new location Lnew.

Comments: Of course, vertices that lie inside another participant’s bounding box, can be discarded
right off the bat. For the other vertices, several locations inside the respective free pe-
ripheral space (in addition to its center point) might be probed as suitable targets. The
specification, which of these targets are to be explored, is denoted as an exploration
plan (also see the formal definition in Section 7.3.4.2).
For example, an exhaustive exploration plan would be letting P try to align its cen-
ter point, its northern edge, north-eastern vertex, eastern edge, south-eastern vertex,
southern edge, south-western vertex, western edge, and north-western vertex with the
corresponding element of the free peripheral space. However, in the current imple-
mentation of SWARM, only the center point of the participant’s free peripheral space
is taken into consideration as the potential new location for P .
This is prompted by the desire to find an adequate trade-off for a participant’s ef-
forts on the local level. On the one hand, it is important to explore a rich fund of
diverse actions that the participant may then choose from. On the other hand, a par-
ticipant should refrain from investing too much labor into exploring a single kind of
action, because the impairments of a participant’s condition (e.g., interference or pro-
trusion) are ultimately remediated by the totality of all participants’ actions across
several tightening-settlement cycles.
Balancing the three different core concepts (to bring the variability of the responsive
modules, the possibilities of the module interaction, and the tightening conduct of the
interaction control organ into a well-adjusted flow of self-organization) is a particular
necessity but also a powerful setscrew of the SWARM methodology.

Illustration:

P P

SP
SE

P
Lnew P

Figure 7.36: Exemplary visualization of a Budging move.

Swapping

Description: Swapping lets P trade places with another participant P ′. That is, P jumps
into the free peripheral space of P ′ and P ′ in turn jumps into the free peripheral space
of P .

137

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Instructions: (1) Perceive the free peripheral space SP of P and, considering another participant
P ′, perceive the free peripheral space SP ′ of P ′.

(2) Determine if a Swapping with P ′ should be explored. In that case, the
Swapping is said to be promising (see comments below).

(3) If a Swapping appears to be promising, determine the center point of SP ′ as the
new location Lnew for P , and determine the center point of SP as the new
location L′new for P ′:

Lnew =
(

1
2(`SP ′ + aSP ′), 1

2(⊥SP ′ +>SP ′)
)
,

L′new =
(

1
2(`SP + aSP), 1

2(⊥SP +>SP)
)
.

(4) Let P move with its center point to the new location Lnew and pull P ′ with its
center point to the new location L′new.

Comments: In general, it is worthwhile to explore Swappings with all other participants. But as
indicated above, it might be feasible to elide a presumably futile Swapping to save
computation time – according to a specific heuristic. As an example for such a heuris-
tic, one may try to make a prediction by comparing the size of P and SP with the size
of P ′ and SP ′ , and then only explore that Swapping if the deviation regarding size
does not exceed a certain proportion.
An action worth being explored according to such a –or a similar– heuristic is qual-
ified as promising. Here, it must be clearly understood, that the adjective promising
approves the exploration of an action, not the execution of that action (which is au-
thorized by the predicate acceptable, as specified in Definition 7.4). The postulated
saving in computation time results from the fact, that comparing two sizes is compu-
tationally less expensive than having to assess the prospective conditions of the two
participants (if the action is indeed explored and therefore also has to be evaluated –
considering all influencing factors).
Unfortunately, it is not trivial to find an appropriate rule of thumb that reliably tells
whether a Swapping would probably be useful or not. Experiments show that sur-
prisingly often P opts for a Swapping that would otherwise have been rejected by
a heuristic such as comparing sizes (or aspect ratios, or both, for that matter). On
these grounds, the current implementation of SWARM by default explores all possible
Swappings with all other participants. So, the issue of finding an adequate heuristic is
worth being kept in mind and may be examined in future research, but is not broached
any further within the scope of this thesis.
Another remark should be made about the fact that a Swapping need not necessarily
imply that the two participants center themselves within the free peripheral space of
their counterpart. Instead, the participants might pursue a more exhaustive exploration
plan as also discussed in the comments of the Budging action above.

Illustration:

P
P'SP

SP' P
P'L'new

Lnew

PP'
P

P'

Figure 7.37: Exemplary visualization of a Swapping move.

138

7.3 Module Interaction

Pairing

Description: Pairing means that P jumps next to another participant P ′, thereby pushing P ′

aside such that both participants then share the free peripheral space of P ′.

Instructions: (1) Considering another participant P ′, determine if a horizontal Pairing, a vertical
Pairing, or both (or none) are promising and should therefore be explored.

(2) For a horizontal Pairing, get the width wP of P and the width wP ′ of P ′. For a
vertical Pairing, get the height hP of P and the height hP ′ of P ′.

(3) For a horizontal Pairing, determine a horizontal movement where P ′ is pushed
to the right, and a horizontal movement where P ′ is pushed to the left (such
that P and P ′ will be centered around the vertical symmetry axis of P ′ after
the Pairing). The respective ∆x is

∆x = −1
2wP ′ +

1
2(wP + wP ′) = 1

2wP

and ∆x = 1
2wP ′ −

1
2(wP + wP ′) = −1

2wP

such that the potential movements MP ′ for P ′ can be shortly written as

MP ′ = (±1
2wP , 0).

With a vertical Pairing, the potential movements for an upwards-push and a
downwards-push can be equivalently given as

MP ′ = (0,±1
2hP).

(4) Calculate the new location Lnew for P accordingly, which can be done in a way
that is analogous to the calculation of MP ′ above. For a horizontal Pairing, the
respective locations accompanying a rightwards-push and a leftwards-push can
thus be compactly expressed as

Lnew =
(

1
2

(
`(P ′) + a(P ′)

)
∓ 1

2wP ′ ,
1
2

(
⊥(P ′) +>(P ′)

))
while the respective locations for a vertical Pairing can be calculated via

Lnew =
(

1
2

(
`(P ′) + a(P ′)

)
, 1

2

(
⊥(P ′) +>(P ′)

)
∓ 1

2hP ′
)
.

(5) Push P ′ by MP ′ and let P move with its center point to the new location Lnew.

Comments: In the basic form of Pairing, as described above and as currently implemented in
SWARM, participant P aligns its vertical (horizontal) center with the vertical (hori-
zontal) center of P ′ when performing a horizontal (vertical) Pairing. Additionally, it
would also be possible to follow a more comprehensive exploration plan and let P ex-
plore further options of alignment, where P aligns its northern or southern edge with
the corresponding edge of P ′ (for a horizontal Pairing), and likewise its western or
eastern edge (for a vertical Pairing).
On the other hand, as indicated above, the participant might dismiss the exploration
of a Pairing if it does not look promising at first sight (based on a heuristic such as
a comparison of the participants’ aspect ratios, for example). This idea has also been
discussed in the comments of the Swapping action, with the mentioned caveats un-
fortunately also applying here to a similar extent. Therefore, the participants in the
current implementation of SWARM by default decide that all possible Pairings are
promising (and thus worthy of exploration). Still, the idea of not exploring certain
actions based on some heuristic to save computation time might be investigated in the
future.

139

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Illustration:
P

P'

SP

SP'
P' P P'
wP'

P
wP

P

P'

Figure 7.38: Exemplary visualization of a Pairing move.

Hustling

Description: Hustling is an action by which P remains where it is, but pushes away all
other participants that currently overlap P . These other participants are pushed as far
as necessary such that P gets rid of their interference and becomes clear again. So
far, Hustling is the only action that may involve more than two participants.

Instructions: (1) For every partipant P ′ that overlaps P , measure the width w′u and the height
h′u of the overlap region P u P ′.

(2) For each of these participants, check whether the horizontal extent of the
overlap is larger than the vertical extent. In the first case, determine a vertical
movement to get rid of P ′. In the second case, determine a horizontal
movement for that purpose. If P ′ denotes the set of participants that overlap P ,
one can formally say: ∀P ′ ∈ P ′ the respective movement MP ′ is

MP ′ =

{
(0, h′u) or (0,−h′u) ⇔ w′u > h′u
(w′u, 0) or (−w′u, 0) ⇔ otherwise

where the polarity of the pushing depends on whether P ′ overlaps P from the
northern (⇒ h′u), southern (⇒ −h′u), eastern (⇒ w′u), or western (⇒ −w′u)
side of P .

(3) Push every overlapping participant P ′ away via the respective MP ′ .

Comments: Similar to some of the other actions discussed so far (i.e., Budging, Swapping, Pair-
ing), a more exhaustive exploration plan might be pursued here. For example, P might
try both the horizontal and the vertical movement above, regardless of the overlap’s
dimensions. In addition, P may even attempt to exert a movement MP ′ = (w′u, h

′
u)

such that P ′ is pushed away both horizontally and vertically. In its current implemen-
tation however, SWARM sticks to the instructions above, exploring either a vertical
movement or a horizontal movement for every overlapping participant P ′, but not
both. As with the other actions mentioned at the beginning of this comment, this is
done to keep the participant’s exploration effort rather low for this particular kind of
action.
There are situations, where P does not become completely clear by performing a
Hustling, for example when P is properly enclosed by another participant P ′ (i.e.,
P @ P ′). Generally speaking, this is the case if P pushes P ′ away in a direction
where P ′ juts beyond P on both sides of P . However, such a situation is not that
problematic since it does not jeopardize the entire Hustling action: despite the re-
maining overlap, the Hustling may still be better than all other actions explored by
P .

140

7.3 Module Interaction

Illustration:

P P P P

Figure 7.39: Exemplary visualization of a Hustling move.

Yielding

Description: Yielding is only done if P suffers from interference but cannot find an appro-
priate action. In this case, P determines the polygon YP (the so-called yielding
region, which circumscribes the part of P inside layout zone Z excluding the overlap
regions) and aligns its center with the geometric centroid (i.e., the barycenter) of YP .

Instructions: (1) If P is in a state of interference, determine the polygon YP . If P ′ denotes the
set of participants that overlap P , YP can be formally obtained with

YP = P (Z t P ′).

(2) Find the geometric centroid of the yielding region YP , which is to be used as
the new location Lnew for P . Calculating the signed area of YP via

YP
± =

1

2

n∑
i=1

(xi · yi+1 − xi+1 · yi)

where (x1, y1), (x2, y2), . . . , (xn, yn) are the vertices along the contour of YP
(with xn+1 = x1 and yn+1 = y1), the centroid of YP is given by the
coordinates

xc =
1

6 YP
±

n∑
i=1

(xi + xi+1) (xi · yi+1 − xi+1 · yi),

yc =
1

6 YP
±

n∑
i=1

(yi + yi+1) (xi · yi+1 − xi+1 · yi).

(3) Let P move with its center point to the new location Lnew = (xc, yc).

Comments: The name of this action suggests that the participant abandons itself to some sort of
makeshift maneuver. Although this can not be entirely disavowed (since indeed no
helpful action could be found so far by the participant), Yielding has a rightful place
among the catalog of native actions and should not be frivolously repudiated, because
a Yielding often has a reviving effect on the self-organization flow when stuck in a
period of stagnation.
One reason for this is that a yielding participant ignores all influencing factors apart
from protrusion (like in a Re-entering). Another reason is that Yielding typically leads
to interference with all neighboring participants that P is currently oppressed by (as
in the example below). In many cases, this animates the neighbors to move away a bit
instead of continuing to shove P around in endless repetitive circles.

141

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Illustration:

PP YP Lnew

centroid of YP

Figure 7.40: Exemplary visualization of a Yielding move.

Although each of the above illustrations depicts mere movement-based transformations, every kind
of action can also involve a rotation and/or a deformation. During a participant’s action exploration,
this is basically taken into account by first determining the would-be aspect ratio and then spotting the
new location for the participant. This proceeding is mandatory for those kinds of action, where the new
location depends on the participant’s aspect ratio, as in the Evasion example given by Figure 7.41 (a).
On the other hand, there are also actions where the new location is independent from the aspect ratio,
like with the Centering example shown in Figure 7.41 (b). For these actions, it is –of course– wise not
to recalculate the new location again and again for all possible orientations and layout variants that the
participant can assume.

P P P

Explored Evasion
(Movement only)

Explored Evasion
(Movement + Rotation)

Perception of the
Free Peripheral Space

P

Initial
Situation

(a)

SP
>0

Initial
Situation

(b)

P

Perception of the
Free Peripheral Space

P SP

Explored Centering
(Movement only)

P

Explored Centering
(Movement + Deformation)

P
Lnew Lnew

Lnew Lnew

Figure 7.41: The new location of a participant can be (a) dependent or (b) independent of its aspect ratio.

As described above, certain actions (e.g., Evasion) make the participant align itself with the layout
zone Z, such that the participant is definitely safe afterwards. But with most of the other actions, the
participant takes the risk of getting into a state of protrusion. While it is unlikely to get completely
lost (which can only happen in the course of a Pairing), the participant must often face the chance
of becoming prone. In such a case, the action need not be turned down, but can be corrected via the
protrusion extent ψ introduced in Section 7.3.1.3. This is done by simply subtracting the horizontal and
the vertical part of the protrusion extent from the respective element of the movement vector such that

M = (∆x− ψx,∆y − ψy). (7.70)

However, one must pay attention here: if ψx and ψy are not signed (since equation 7.53 returns absolute
values), the action correction above only works if the participant protrudes Z in upward or rightward

142

7.3 Module Interaction

direction. Otherwise, the respective protrusion extent has to be added to ∆x and ∆y, not subtracted.
An example of an action correction is presented in Figure 7.42. Initially, P and P ′ both suffer from
interference with other participants. After perceiving the free peripheral spaces SP and SP ′ , P explores a
potential Swapping with P ′. Originally, the action would lead both participants into a state of protrusion,
but when adjusting the movements by −ψy and ψx respectively, the prospective situation is safe for P
and P ′. Although the action correction again entails some overlaps with other participants, the Swapping
might still be performed because the overall interference is reduced thereby.

Initial
Situation

Perception of the
Free Peripheral Space

P

Potential Swapping Potential Swapping

P'

P

P' P

P'

P

P'

SP

SP' -ψy

ψx

(with Protrusion) (after Correction)

Figure 7.42: Action correction example: P ’s move is corrected downwards, the move of P ′ rightwards.

To sum it up, Table 7.7 provides an overview that lists SWARM’s catalog of native actions. For
each action, the table indicates how many participants would be moved (i.e., transformed) thereby, under
which condition of the leading participant the action is explored, under which prospective condition of
the involved participants the action is deemed to be acceptable, and whether this predicate stems from
the fact that the action is valid or tolerable. The third possibility according to Definition 7.4 –the action
being mandatory– so far only applies to custom actions, which will now be discussed in Section 7.3.3.2.

Table 7.7: Overview of SWARM’s catalog of native actions.

Action Number of moved Explored if leading Acceptable if all involved Action
Participants Participant P is Participants will be is

Re-entering 1 lost safe tolerable
Evasion 1 prone safe & healthy & compliant valid
Centering 1 not lost safe & healthy & compliant valid
Lingering 0 contented contented valid
Budging 1 safe safe & healthy & compliant valid
Swapping 2 safe safe & healthy & compliant valid
Pairing 2 safe safe & healthy & compliant valid
Hustling 1 . . . n safe & not clear safe & healthy & compliant valid
Yielding 1 not lost & not clear safe tolerable

7.3.3.2 Custom Actions

Depending on the layout problem at hand, it may occur that SWARM’s catalog of native actions is not
adequate when a participant needs to satisfy some particularly rigorous design constraints. In such cases,
it can be advisable to equip the participant with its own particular behavior by implementing some custom
action that the participant is to pursue. This idea will now be elucidated by means of the Imitation action
that was already brought up in Section 7.3.1.5.

For matching reasons, it may be demanded that a participant behaves symmetrically to another partic-
ipant, such that (1) the two participants have equal dimensions, that (2) they are aligned in one direction,
and that –in the orthogonal direction– (3) they are kept at the same distance on either side of a certain
axis. There is no need to point out that the odds of meeting all these demands via SWARM’s native
actions are quite bad. An alternative is to let the two participants be managed by a superordinate gov-
erning module such as the Symmetric Pair known from Figure 7.10. However, that module is meant to

143

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

keep its two submodules closely together with a certain fixed space in between. This approach would
be infeasible if there was another module between the two participants, the more so when that module
changes its aspect ratio throughout the self-organization. This is where the Imitation action comes to the
rescue.

Imitation

Description: Imitation is a custom action by which a participant P mimics another partici-
pant’s transformations. The Imitation action can thus be employed to satisfy a
Symmetry constraint (see Figure 3.3 in Section 3.1.1.2). Since an Imitation ac-
tion is irrevocable, it does not pay respect to the influencing factors described in
Section 7.3.1.

Instructions: (1) If P is to behave in horizontal or vertical symmetry to another participant P ′,
get the location L′ = (xP ′ , yP ′), which is supposed to be the center point of P ′:

L′ =
(1

2

(
`(P ′) + a(P ′)

)
,
1

2

(
⊥(P ′) +>(P ′)

))
.

(2) Calculate the new location Lnew for participant P . If xsym and ysym denote the
horizontal and vertical coordinate of the specified iso-oriented symmetry axis
respectively, the new location can be determined via

Lnew =

{
(2xsym − xP ′ , yP ′) ⇔ horizontal symmetry
(xP ′ , 2 ysym − yP ′) ⇔ vertical symmetry.

(3) Get the dimensions (wP ′ , hP ′) of P ′ with the width wP ′ = a(P ′)− `(P ′)
and the height hP ′ = >(P ′)−⊥(P ′).

(4) Make P assume another layout variant that conforms to the dimensions
(wP ′ , hP ′) and let P move with its center point to the new location Lnew.

Comments: In what way P is able to assume another layout variant that comes up to the dimen-
sions of P ′, depends on the variability of P (see Section 7.2.4). If P has only discrete
variability, but is –as a layout module– constructed identically to P ′, then P can sim-
ply take over the parameters of P ′. If P and P ′ are constructed differently, some
additional savvy might be necessary to help P choose the layout variant that at least
comes closest to that of P ′.
The instructions above assume that P has full variability (also see the next Sec-
tion 7.3.3.3) and can take on dimensions in a continuous range. In this case, the
purpose of the Imitation action is to match P with P ′ not (or not only) for the sake of
P or P ′, but to achieve overall symmetry in the layout constellation as a whole – in
this manner enforced explicitly.
As indicated above (and illustrated below), the Imitation action allows to leave some
mutable room for other participants scrimmaging between P and P ′ – a feature that
could not be adequately effectuated by using a superordinate governing module in-
stead (in particular with respect to the consideration that this mutable room dynami-
cally adjusts itself to the in-between participants during the self-organization). Vice
versa, the Imitation action does not facilitate interdigitation, which in turn is an easy
job for a governing module (like the Quad shown in Figure 7.6, for example). Fol-
lowing a given interdigitation pattern, such a module can take care of corresponding
placement constraints implicitly.
So, the ability to team suchlike modules (incorporating nonformalized expert knowl-
edge) with custom actions like Imitation (embodying formalized expert knowledge) is
a powerful competence of SWARM regarding the title of this thesis.

144

7.3 Module Interaction

Illustration:

P
P'

P
P'

P
P' PP'Lnew

Figure 7.43: Exemplary visualization of a Imitation move.

So far, no coercive remarks have been made about the order in which the individual participants
should act. But for custom actions, this order might be of exceptional relevance with regard to the
efficiency of the self-organization. This is particularly evident in the Imitation action, where it is most
reasonable to let participant P act as soon as P ′ has taken an action. Elsewise, all transformations
performed by other participants in response to the action of P ′ might be more or less in vain, because
they need to be remedied after P performs its irrevocable, ensuing Imitation move.

As the name indicates, custom actions are special-purpose actions and are thus not as generic as
SWARM’s catalog of native actions. Hence, it is not too much to ask that a participant provide its
own custom actions as required. Still, a custom action –including the Imitation action above– may
prove useful on such a regular basis that the action is deemed to be more universal than other custom
actions. For future developments, it might therefore be worth a thought to include such actions into
SWARM as extensions to the catalog of native actions. One action-related functionality, that has already
been implemented in SWARM apart from the native actions covered in Section 7.3.3.1 addresses design
components with full variability (as will now be described in Section 7.3.3.3).

7.3.3.3 Full Variability

If a participant covers multiple discrete layout variants, SWARM considers these via deformations during
the action exploration, as has been discussed at the end of Section 7.3.3.1. The proceeding is different
with participants that support full variability and are here denoted as elastic. An elastic participant P has
a width wP , a height hP , and an area P = wP · hP . It starts out with some initial dimensions winit

P and
hinit
P , but during the interaction P can change wP and hP into the new values wnew

P and hnew
P within the

respective range

w̌P ≤ wnew
P ≤ wP hP

ȟP︸ ︷︷ ︸
= ŵP

and ȟP ≤ hnew
P ≤ wP hP

w̌P︸ ︷︷ ︸
= ĥP

(7.71)

(where w̌P and ȟP allow to individually specify a minimal width and a minimal height for P , which
also defines the maximum width ŵP and the maximum height ĥP), such that the area of P remains
unaltered:9

wnew
P · hnew

P = wP · hP . (7.72)

Most of SWARM’s native actions are geared towards some free peripheral space (e.g., for the Centering
of a participant P , it is that of P ; for the Swapping with another participant P ′, it is that of P ′). If P is
elastic, then P must be able to fit its aspect ratio to the dimensions (wS , hS) of such a free peripheral
space S, thereby literally “pouring” into the vacant region. Thus, P ’s new layout variant is not one of a
discrete set of layout variants {V1, V2, . . . , Vd}, but rather a function of the free peripheral space that is
currently available. With this function, five elastic deformation behaviors are explored per action, such
that participant P either

9In reality, the area of such a layout component is usually not exactly constant for different aspect ratios, but only approx-
imately – this is due to certain layout structures on the fringe. The smallest possible variant then is that of a square layout
because the circumference-to-area quotient (and thus the portion of the fringe structures) reaches a minimum in that case.

145

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

(a) keeps its current aspect ratio,
(b) reassumes its initial aspect ratio,
(c) changes into a variant with square aspect ratio,
(d) fits its width to that of the free peripheral space (and adjusts its height),
(e) or fits its height to that of the free peripheral space (and adjusts its width).

These behaviors and the respective change of P ’s current width wP and current height hP into the new
values wnew

P and hnew
P are listed in Table 7.8 and illustrated in Figure 7.44 by means of a Centering action

for an exemplary, given situation.

Table 7.8: Listing of the five deformation behaviors explored by an elastic participant.

New Variant New Width New Height

(a) Current variant wnew
P = wP hnew

P = hP

(b) Initial variant wnew
P = winit

P hnew
P = hinit

P

(c) Square variant wnew
P =

√
wP hP hnew

P =
√
wP hP

(d) Width-fitted wnew
P = min(max(wS , w̌P), wP hP /ȟP) hnew

P = wP hP /w
new
P

(e) Height-fitted wnew
P = wP hP / h

new
P hnew

P = min(max(hS , ȟP), wP hP /w̌P)

P

Given Situation

P P

(a) (b)
Current Variant Initial Variant

P

Square Variant
(c)

P

Width-fitted Variant
(d)

P

Height-fitted Variant
(e)

SP

wP

hP

wP
init

hP
init

wSP

hSP
wP hP
wSP

wP hP
hSP

wP hP√

wP hP√

wP

hP

Figure 7.44: Illustration of the five deformation behaviors explored by an elastic participant.

The five deformation behaviors do not constitute an action of its own, but are automatically fathomed
during a participant’s exploration of SWARM’s native actions in case the participant is elastic. There-
upon, the “static” traversal of discrete layout variants (including different orientations) during the action
exploration is simply substituted by probing the five alternatives of “dynamic” deformation. As with
SWARM’s native actions, every elastic deformation has to be evaluated to check whether it represents
a valid action or not. Otherwise, it could –for example– happen, that the participant P moves into an
unhealthy location, overlapping a critical wound of another participant which penetrates a blind spot of
P ’s free peripheral space.

7.3.4 Execution of the Preferred Action

After having explored and evaluated an assortment of potential actions, the fourth and final measure of
SWARM’s action scheme makes a participant choose and execute the most preferred one of these actions.
To understand this decision-making, the following Section 7.3.4.1 illuminates by what judgment one

146

7.3 Module Interaction

action is preferred over another. In some cases, no such comparison has to be made because a satisfactory
action can be performed right away, thus eliminating the need to investigate further alternatives. Such
cases can best be comprehended from regarding the action execution in its entirety, which is therefore
done in Section 7.3.4.2 and rounds out the current Section 7.3 in a synoptical fashion.

7.3.4.1 Action Preference

Comparing two actions to determine which one is preferable presupposes that both actions are valid. As
already mentioned at the outset of Section 7.3.3, the preference then depends on two criteria: interference
and turmoil. If no turmoil is involved (i.e., the connectivity is disregarded), then the comparison metric
described in paragraph (1) suffices, otherwise the more elaborate comparison metric of paragraph (2) is
employed. For the sake of convenience, an action is preliminarily considered as a single transformation
T of only one participant P – this can be assumed without loss of generality. Afterwards, paragraph (3)
discusses how the metrics can be generalized to address actions that involve multiple participants.

(1) Comparison Metric for Interference Only

Some layout problems elude the necessity to take distances between participants into consideration
during the module interaction. For instance, this is the case if the locations of the participants in relation
to each other have been predefined in advance via a placement template (in SWARM enacted by con-
straints, as in the examples of Section 8.3). Then, no turmoil needs to be accounted for, which simplifies
the action comparison significantly: if two actions are given as a transformation Ta and a transformation
Tb, with Υnew

P (Ta) and Υnew
P (Tb) denoting the prospective interference that the acting participant P will

sustain when performing the corresponding action, then action Ta is preferred over action Tb if

Υnew
P (Ta) < Υnew

P (Tb). (7.73)

In the case that Υnew
P (Ta) > Υnew

P (Tb), then action Tb is preferred over action Ta. If the prospective
interference of the two actions are equal, then the participant chooses the action with the lesser Euclidean
distance of the involved translational movement Ma = (∆xa,∆ya) or Mb = (∆xb,∆yb). Therefore, if√

(∆xa)2 + (∆ya)2 <
√

(∆xb)2 + (∆yb)2 (7.74)

then action Ta is preferred over Tb. If the distances of the movements are equal, the action that has
been explored first, will be preferred over the other action. In that regard, it is worthwhile to think about
the order in which the actions –and in particular the layout variants that the participant can assume–
are to be explored. This order should not be arbitrary, since it gives some valuable control over the
decision-making such that –for example– squarish layout variants are preferred over layout variants with
more extreme aspect ratios (or vice versa, depending on the problem at hand), e.g., to achieve a better
matching. However, a detailed investigation of this topic is beyond the scope of this thesis.

If the participant finds an action T with Υnew
P (T) = 0 (such that there will be no interference at

all), then this action can be immediately performed without exploring further alternatives. If Υnew
P > 0

for all explored actions, then the comparison condition 7.73 makes P execute the action with the least
prospective interference – but only if

Υnew
P (T)−ΥP < 0 (7.75)

which means that the prospective interference Υnew
P (T) must be less than P ’s present interference ΥP .10

Such an action is called beneficial. If Υnew
P (T) = 0, the action is denoted as adjuvant. In all these cases,

no constraint (e.g., template-induced) is violated since only valid actions are considered, as said above.
If no beneficial action can be found, but P is discontented, then P performs a Yielding, even if it is

not beneficial. As already mentioned in Section 7.3.3.1, Yielding leaves P in an unsatisfactory condition
but has the effect that, if P is jammed in between multiple other participants P ′, then P will deliberately
interfere with all of them. Thus every P ′ ∈ P ′ is provoked to move away such that P can again try to
find a beneficial action on its next turn.

10It is not necessary to take the absolute value |Υ| of interference here (nor in equation 7.73), since it is always the case that
Υ ≥ 0, which means that interference can never be negative.

147

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

(2) Comparison Metric for Interference and Turmoil

To take distances between participants into account as well, condition 7.73 has to be enhanced such
that it also includes a participant’s turmoil. The following definition explains how this enhancement leads
to condition 7.77 and condition 7.78. In that regard, it should be recapitulated that the distance between
two participants is modeled as a straight connection C, and that the connection is said to be relaxed if
the length of C is below its relaxation threshold %C (as described in Section 7.3.1.2).

Definition 7.5. For a participant P , the value ζP is defined as the number of its unrelaxed connections
(also see Section 7.3.1.2). An action T changes ζP by the amount ∆ζP (T), which is denoted as the so-
called relaxation delta. If ∆ζP (T) < 0, then T represents a relaxing action. Two actions Ta and Tb are
said to be equally relaxing if both are relaxing or if they have the same relaxation delta. This definition
can be written in form of the following logical expression:

∆ζP (Ta) < 0 ∧∆ζP (Tb) < 0 ∨∆ζP (Ta) = ∆ζP (Tb). (7.76)

The idea of relaxation delta is illustrated in the example of Figure 7.45. Participant P , having a total
of five connections (C1, C2, . . . , C5), is about to act. Initially (a), connections C1, C2 and C3 are not
relaxed (i.e., unrelaxed), while C4 and C5 are relaxed, which means that ζP = 3. With the Centering
shown in image (b), connections C1 and C2 become relaxed, while C3 remains unrelaxed, C4 remains
relaxed, and C5 becomes unrelaxed. Thus, the new number of unrelaxed connections is ζP = 2, such
that the relaxation delta is ∆ζP = −1. Hence, the action performed here represents a relaxing action.

P
PSP

Relaxed
Connection

Unrelaxed
Connection

Connections:

C5

C1 C2

C4

C3

C5

C1 C2

C4

C3

(a) Initial Situation (b) After Centering

Figure 7.45: A relaxing action decreases a participant’s number of unrelaxed connections.

With these conceptions in the sphere of relaxation, the comparison condition 7.73 is now enhanced,
distinguishing two cases. If two actions are not equally relaxing, they are simply compared by their
relaxation deltas. Otherwise, as will be detailed farther below, the prospective interference and the
prospective turmoil are taken into account to rate an action. This is done by adding up the relative
change of interference and turmoil, written as δΥP and δΘP respectively. Thus, if two actions Ta and
Tb are not equally relaxing, they are compared via condition

∆ζP (Ta) < ∆ζP (Tb) (7.77)

while otherwise –i.e., if Ta and Tb are equally relaxing– the following condition

δΥP (Ta) + δΘP (Ta) < δΥP (Tb) + δΘP (Tb) (7.78)

is applied. Therein, the relative change of interference δΥP (T) achieved via action T is defined as

δΥP (T) =
Υnew
P (T)−ΥP

Υref
P

(7.79)

where ΥP again is P ’s present interference while Υnew
P (T) denotes the prospective interference that P

achieves with T . The reference value Υref
P is given as

Υref
P =

{
ΥP ⇔ ΥP > 0

P 2 ⇔ otherwise.
(7.80)

148

7.3 Module Interaction

Here, the value P 2 is used as a worst-case baseline for interference, reflecting the situation where P
is completely overlapped by another participant. This trouble is approximated by putting P (the area
of P) to the square, such that it represents the intensity of the trouble on the one hand, and the trouble’s
tenacity on the other hand (also see equation 7.21 in Section 7.3.1.1). Since it is always the case that
P > 0, the calculation of the reference value Υref

P does never risk to run into a division by zero problem.
Furthermore, P > 0 (or rather P 2 > 0) means that the relative change of interference δΥP (T) is
beneficial if and only if

δΥP (T) < 0. (7.81)

Considering distances between the participants, δΘP (T) defines the relative change of turmoil for a
participant P (equivalent to equation 7.79 above) as follows:

δΘP (T) =
Θnew
P (T)−ΘP

Θref
P

(7.82)

with ΘP and Θnew
P (T) denoting P ’s present and prospective turmoil. With Θ̂P being the greatest turmoil

that participant P has encountered so far, the reference value in equation 7.82 is defined as

Θref
P =

{
ΘP ⇔ ΘP > 0

Θ̂P ⇔ otherwise.
(7.83)

Having equation 7.83 cover the circumstance that the present turmoil could be zero is analogous to the
case distinction made in equation 7.80. However, during the module interaction the chance of running
into a constellation where the turmoil is indeed ΘP = 0, can be assumed to be minuscule. As discussed
in Section 7.3.1.2, a participant’s turmoil is calculated as the sum of tensions in its connections. For a
connection C with its length lC , its emphasis eC , its strength sC , and its relaxation threshold %C , it is
always true that lC ≥ 0, eC > 0, sC > 0 and %C > 0. From equation 7.48, this means that the tension
θ in a connection can never be negative (as confirmed by Figure 7.20), such that also the turmoil of a
participant is always ΘP ≥ 0. For a participant P with connections CP , the turmoil ΘP can only become
zero if the tension in –and thus the length of– every connection in CP is zero:

ΘP = 0 ⇐⇒ ∀C ∈ CP , lC = 0. (7.84)

This incident can be neglected since it is extremely unlikely to occur. But in the beginning of a SWARM
run, one would definitely encounter that ΘP = 0 (which inevitably means that Θ̂P = 0 as well because
Θ̂P = ΘP in that moment) if all participants were centered at the very same location. So, in order
to avoid a division by zero problem here, the initial constellation of the participants P must be chosen
such that in formal terms (using CP,P ′ to denote that C connects participant P with participant P ′) the
following statement is true:

∀P ∈ P, ∃CP,P ′ ∈ CP : LP 6= LP ′ (7.85)

which means that for every participant P , at least one participant P ′ among its connected participants
must be stationed at a location LP ′ that is different from the location LP of P . This is easily achieved
by choosing an initial constellation without any interference (i.e., ∀P ∈ P,ΥP = 0). Since it can be
expected that Θref

P > 0, the relative change of turmoil δΘP (T) is beneficial if and only if

δΘP (T) < 0. (7.86)

Hence, condition 7.81 and condition 7.86 justify why the sum of δΥP (T) and δΘP (T) is used for the
action comparison in condition 7.78, which achieves that the action with the best compromise between
prospective interference and prospective turmoil will finally be picked. Again, that action will only be
executed if it is beneficial, which implies that

δΥP (T) + δΘP (T) < 0. (7.87)

This condition indicates, that an acion is considered to be beneficial even if it concedes an increase in
either (a) interference or (b) turmoil, as long as that increase is more than counterbalanced by a decrease
in (a) turmoil or (b) interference, respectively.

149

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

(3) Actions Involving Multiple Participants

As to the without loss of generality remark at the beginning of this Section 7.3.4.1, the entire com-
parison metric described above can also be applied to actions that involve transformations of more than
one participant. This is basically done by accumulating the respective quantities (i.e., the interference Υ,
the turmoil Θ, and the relaxation delta ∆ζ).

To generalize the notation used so far, let Υnew
P (T) with P = {P, P ′, P ′′, . . . } denote the prospective

collective interference of an action T (i.e., a set of transformations {T, T ′, T ′′, . . . }) that is initiated by
the leading participant P , but involves further participants (i.e., P ′, P ′′, etc.). Then, the comparison
condition 7.73 can also be generalized such that it reads

Υnew
P (Ta) < Υnew

P (Tb). (7.88)

In the same manner, but now to compare the collective relaxation delta, condition 7.77 becomes

∆ζP(Ta) < ∆ζP(Tb) (7.89)

while condition 7.78 –in order to compare the collective relative change of Υ and Θ– turns into

δΥP(Ta) + δΘP(Ta) < δΥP(Tb) + δΘP(Tb). (7.90)

One might fall prey to the misbelief that the collective interference Υnew
P (T) is calculated by adding

up all prospective interferences of the individual participants that perform a transformation due to the
action. This can be correct in some cases such as for example in Figure 7.46 (a): regarding the potential
Pairing of P with P ′, the trouble of P and the trouble of P ′ are disjunct and must both be added together.
However, the situation is different if two (or more) of the involved participants interfere with each other.
That is because in such a case, the mutual trouble would be wrongly included twice, as exemplified in
Figure 7.46 (b), where P explores a Pairing with P ′ which involves an action correction to make sure
that P ′ is safe: P overlaps P ′ and P ′ overlaps P , so they share the same trouble, which should therefore
only be counted once.

Initial Situation

P

P'

Potential Pairing

PP'

Initial Situation

P

P'

Potential Pairing

P P'

(a) Potential Action
with Disjunct
Troubles

(b) Potential Action
with Mutual
Trouble

Figure 7.46: In contrast to disjunct troubles (a), mutual trouble (b) must be counted only once.

Considering an action that involves two participants (i.e., the leading participantP and another partic-
ipant P ′), for example a Pairing (as in Figure 7.46) or a Swapping, the prospective collective interference
is correctly calculated via

Υ new
{P,P ′}(T) =

∑
P ∗∈ P∗ P

τ new
P,P ∗(T) +

∑
P ∗∈ P∗\{P ′,P}

τ new
P ′,P ∗(T) (7.91)

150

7.3 Module Interaction

where P∗ represents the set of all participants and the notation τ new
P,P ∗(T) is used to denote the prospective

trouble between two participants P and P ∗. With this formula, potential trouble between the involved
participants P and P ′ is included in the first addend but excluded from the second addend, and is thus
only counted once, as desired. In this spirit, the formula can be extended to target the calculation of
Υnew
P (T) in general, thus also addressing actions with |T | > 2 (where more than two participants are

involved) such that the prospective collective interference is correctly compared in condition 7.88.
Just as well, one must pay heed to this subtlety in the calculation of the present collective interference

ΥP , and –equivalently– in the calculation of the prospective collective turmoil Θnew
P (T) and the present

collective turmoil ΘP , such that a connection’s tension is not counted more than once. This guarantees,
that the collective relative change of Υ and Θ in condition 7.90 is correct. Finally, also the calculation of
the collective relaxation delta ∆ζP(T) –used for the comparison in condition 7.89– must make sure not
to doubly count a connection that becomes relaxed due to action T .

7.3.4.2 Action Execution

The two tasks of exploring potential actions and choosing the most preferred action cannot be clearly
separated from each other in terms of consecution. Instead, they proceed in a rather intermingled way
before the chosen action is finally executed. This will now be explained by the subsequent description,
which elucidates the liaison of the two tasks within the entirety of SWARM’s action scheme. The prosaic
description is literally “in line” with the more algorithmic representation provided by Algorithm 1.

Let there be a participant P , whose turn it is to take an action. Following the action scheme, P ’s first
measure (line 1ff.) –as covered in Section 7.3.1– is to assess its condition in order to determine if

• P is clear: ΥP = 0 (see Section 7.3.1.1 on interference),
• P is relaxed: ζP = 0 (see Section 7.3.1.2 on turmoil),
• P is safe: ΨP = ∅ (see Section 7.3.1.3 on protrusion),
• P is healthy: W ‡

Pon = ∅ (see Section 7.3.1.4 on wounds),
• P is compliant: H ‡P = ∅ (see Section 7.3.1.5 on noncompliance).

Next, P ’s second measure (line 6) is to perceive its free peripheral space SP according to the geometrical
recipe given in Section 7.3.2.

Then, P ’s third measure is to explore and evaluate potential actions, whereby an adjuvant action
can already be chosen for execution during the action exploration. Choosing an action is done by storing
the action in a variable here denoted as Tfinal, which is initialized with a null value in the beginning of the
action exploration (line 7). As long as that variable is null, the action exploration continues, otherwise
the participant proceeds with the execution of that action. Looking forward to the case that no action
is chosen during the action exploration, every valid action is memorized in a set Tvalid (initialized in
line 8), from which the best action can then be chosen afterwards.

Custom actions: If custom actions such as the Imitation action from Section 7.3.3.2 are defined on P ,
these are explored first of all (see the for-loop in line 9ff.). When a custom action Tcustom is deemed
acceptable, the action is stored in Tfinal and the participant can immediately exit the for-loop.

Re-entering: Given that no custom action has been chosen, SWARM’s native actions from Section 7.3.3.1
are explored. Starting off with the case that P finds itself being lost, then a Re-entering action
TRe-entering is determined and stored in Tfinal (line 17ff.). By definition, the action is tolerable be-
cause it eliminates P ’s protrusion.

Centering: Next, the participant –if it is not lost– explores potential Centering actions (line 21ff.). For
all orientations O ∈ O and for all layout variants VP ∈ ṼP that P can assume, an action TCentering
is determined and evaluated. If the prospective location is safe, healthy and compliant, then the
action is valid and therefore memorized in Tvalid. If P would even become clear and relaxed, then
the action is adjuvant and is thus stored in Tfinal, letting the participant exit the for-loop.

Lingering: In case no adjuvant Centering action could be found, the participant checks if it is currently
clear, relaxed, safe and compliant (line 32). If that is so, P is contented (this can be said without
checking for wounds, since a participant is definitely healthy if it is clear). Then, an “empty”

151

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Algorithm 1 SWARM’s action scheme as acted upon by a participant P

Measure 1: Assessment of the Participant’s Condition
1: ΥP ← interference
2: ζP ← unrelaxed connections (turmoil)
3: ΨP ← protrusion
4: W ‡

Pon ← unhealthy wounds
5: H ‡P ← dissatisfied constraints (noncompliance)
Measure 2: Perception of the Free Peripheral Space
6: SP ← free peripheral space
Measure 3: Exploration and Evaluation of Possible Actions
7: Tfinal ← null
8: Tvalid ← {}
9: for all kinds of custom actions defined on P do

10: if Tfinal = null then
11: determine custom action Tcustom
12: if Tcustom is acceptable then . this means the action is valid, tolerable, or mandatory
13: Tfinal ← Tcustom ; exit for-loop
14: end if
15: end if
16: end for
17: if Tfinal = null AND ΨP = P then
18: determine Re-entering action TRe-entering . the action is tolerable since Ψ new

P = ∅
19: Tfinal ← TRe-entering
20: end if
21: if Tfinal = null AND ΨP 6= P then
22: for all (O, VP) ∈ (O× ṼP) do
23: determine Centering action TCentering with respect to SP
24: if Ψ new

P = ∅ ANDW ‡
Pon

new = ∅ ANDH ‡P new = ∅ then . this means the action is valid
25: Tvalid ← Tvalid TCentering
26: if Υ new

P = 0 AND ζ new
P = 0 then . this means the action is adjuvant

27: Tfinal ← TCentering ; exit for-loop
28: end if
29: end if
30: end for
31: end if
32: if Tfinal = null AND ΥP = 0 AND ζP = 0 AND ΨP = ∅ ANDH ‡P = ∅ then . P is contented
33: Tfinal ← TLingering
34: end if
35: if Tfinal = null AND ΨP = ∅ then
36: for all N of P do
37: perceive secondary free peripheral space SNP
38: for all (O, VP , X) ∈ (O× ṼP ×X) do
39: determine Budging action TBudging with respect to SNP
40: if Ψ new

P = ∅ ANDW ‡
Pon

new = ∅ ANDH ‡P new = ∅ then . this means the action is valid
41: Tvalid ← Tvalid TBudging
42: if Υ new

P = 0 AND ζ new
P = 0 then . this means the action is adjuvant

43: Tfinal ← TBudging ; exit for-loops
44: end if
45: end if
46: end for
47: end for
48: end if

152

7.3 Module Interaction

Algorithm 2 SWARM’s action scheme as acted upon by a participant P (continued)

49: if Tfinal = null AND ΥP > 0 AND ΨP = ∅ then
50: determine Hustling action THustling for participants Pι
51: if ∀Pι ∈ Pι,Ψ new

Pι
= ∅ ANDW ‡

Pιon
new = ∅ ANDH ‡Pι

new = ∅ then . means the action is valid
52: Tvalid ← Tvalid THustling
53: if ∀Pι ∈ Pι,Υ new

Pι
= 0 AND ζ new

Pι
= 0 then . this means the action is adjuvant

54: Tfinal ← THustling ; exit for-loop
55: end if
56: end if
57: end if
58: if Tfinal = null AND ΨP = ∅ then
59: for all P ′ ∈ P P do
60: perceive free peripheral space SP ′ of P ′

61: if promising then
62: for all X ∈ X do
63: determine Swapping action TSwapping for P and P ′ with respect to SP and SP ′
64: if Ψ new

P = ∅ ANDW ‡
Pon

new = ∅ ANDH ‡P new = ∅ then
65: if Ψ new

P ′ = ∅ ANDW ‡
P ′on

new = ∅ ANDH ‡P ′
new = ∅ then

. this means the action is valid
66: Tvalid ← Tvalid TSwapping
67: if Υ new

P = 0 AND ζ new
P = 0 then

68: if Υ new
P ′ = 0 AND ζ new

P ′ = 0 then . this means the action is adjuvant
69: Tfinal ← TSwapping ; exit for-loops
70: end if
71: end if
72: end if
73: end if
74: end for
75: end if
76: end for
77: end if
78: if Tfinal = null AND ΨP = ∅ then
79: for all P ′ ∈ P P do
80: perceive free peripheral space SP ′ of P ′ . can be re-used from the Swapping exploration
81: if promising then
82: for all X ∈ X do
83: determine Pairing action TPairing for P and P ′ with respect to SP ′
84: if Ψ new

P = ∅ ANDW ‡
Pon

new = ∅ ANDH ‡P new = ∅ then
85: if Ψ new

P ′ = ∅ ANDW ‡
P ′on

new = ∅ ANDH ‡P ′
new = ∅ then

. this means the action is valid
86: Tvalid ← Tvalid TPairing
87: if Υ new

P = 0 AND ζ new
P = 0 then

88: if Υ new
P ′ = 0 AND ζ new

P ′ = 0 then . this means the action is adjuvant
89: Tfinal ← TPairing ; exit for-loops
90: end if
91: end if
92: end if
93: end if
94: end for
95: end if
96: end for
97: end if

153

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Algorithm 3 SWARM’s action scheme as acted upon by a participant P (continued)

98: if Tfinal = null AND ΨP @ P then
99: for all (O, VP , X) ∈ (O× ṼP ×X) do
100: determine Evasion action TEvasion with respect to SP
101: if Ψ new

P = ∅ ANDW ‡
Pon

new = ∅ ANDH ‡P new = ∅ then . this means the action is valid
102: Tvalid ← Tvalid TEvasion
103: if Υ new

P = 0 AND ζ new
P = 0 then . this means the action is adjuvant

104: Tfinal ← TEvasion ; exit for-loop
105: end if
106: end if
107: end for
108: end if
109: if Tfinal = null then
110: if Tvalid 6= { } then . this means that at least one valid action has been found
111: sort Tvalid by benefit . sorting is done according to the comparison metric
112: store the best action in Tbest
113: if Tbest is beneficial OR ΨP 6= ∅ ORW ‡

Pon 6= ∅ ORH ‡P 6= ∅ then
114: Tfinal ← Tbest
115: end if
116: end if
117: end if
118: if Tfinal = null AND ΥP > 0 AND ΨP 6= P then
119: identify the polygonal yielding region YP
120: determine Yielding action TYielding with respect to YP
121: if Ψ new

P = ∅ ANDW ‡
Pon

new = ∅ ANDH ‡P new = ∅ then . this means the action is valid
122: Tfinal ← TYielding
123: end if
124: end if

Measure 4: Execution of the Preferred Action
125: if Tfinal 6= null then
126: if ∃T ∈ Tfinal :

√
(∆xT)2 + (∆yT)2 ≥ m ∨O new

PT
6= OPT ∨ V new

PT
6= VPT

OR ΨP 6= ∅ ORW ‡
Pon 6= ∅ ORH ‡P 6= ∅ then . m is the minimal movement distance

127: for all T ∈ Tfinal do
128: apply transformation T to the respective participant PT
129: end for
130: end if
131: end if

Lingering action with ∆x = 0 and ∆y = 0 is stored in Tfinal. Mathematically speaking, the
Lingering action represents the identity element among SWARM’s actions (i.e., a neutral element
such as the ones used in algebraic structures).

Budging: Unless P lingers where it is, potential Budging actions are explored if the participant is
safe (line 35ff.). For each vertex of P ’s bounding box P , represented as a node N , the sec-
ondary free peripheral space SNP is perceived for action exploration. How exhaustive that ex-
ploration is done, depends on the exploration plan which can be abstractly thought of as a set
X = {X1, X2, . . . , Xn}. Therein, each X represents one possible exploration scenario with re-
spect to the kind of action being explored. For a Budging, every exploration scenario specifies one
possible edge or vertex of SNP that P can align itself with. So, for every possible orientation O, for
any layout variant VP of P , and for each exploration scenario X , an action TBudging is determined
and evaluated. If the action is valid, it is memorized in Tvalid; if the action is even adjuvant, it is
stored in Tfinal (as also done in the exploration of Centering actions).

154

7.3 Module Interaction

Hustling: Provided that no adjuvant action has yet been found, a Hustling action THustling is explored
(line 49ff. in Algorithm 2), subject to the condition that the participant is safe but not clear (oth-
erwise the exploration of a Hustling action would be futile). As above, the explored action is
memorized in Tvalid in case it is valid; and is further stored in Tfinal if it is adjuvant – however,
this has to take not only P into account, but all participants Pι that are involved in the action.11

Computationally, determining a Hustling action is cheap (even if a more exhaustive exploration
plan is pursued), therefore it is opportunely done prior to the subsequent exploration of the other
kinds of actions, which raise higher combinatorial expenses (especially Swapping and Pairing).

Swapping: If P is safe, the action exploration continues with Swapping actions (line 58ff.). For every
participant P ′ among the set P P (the set of all participants except P), the free peripheral space
SP ′ is perceived. Then, as discussed under Swapping in Section 7.3.3.1, the participant might try
to predict whether a Swapping of P and P ′ is promising or not. If yes, then an action TSwapping is
explored for every exploration scenario X of the exploration plan X . If the prospective locations
are safe, healthy and compliant for both participants P and P ′, then the action is valid and hence
gets memorized in Tvalid. If both participants would even become clear and relaxed, then the action
is adjuvant and is thus used as the final action Tfinal.

Pairing: In the same manner, potential Pairing actions are explored (line 78ff.). For every other partic-
ipant P ′, the free peripheral space SP ′ is to be determined. In view of this, it is feasible to save
the free peripheral spaces during the Swapping exploration such that they can now be retrieved
without the need to perceive them anew. If a Pairing of P with P ′ looks promising (depending on
SP ′), then for every exploration scenarioX in the exploration plan X an action TPairing is explored.
If the action is valid (again regarding both participants), it is memorized in Tvalid. If the action is
adjuvant (regarding both participants), then it is used as the final action Tfinal.

Evasion: Be it that still no adjuvant action is available and that the participant is prone, potential Evasion
actions are finally explored by the participant (line 98ff. in Algorithm 3). For each orientation O,
for any layout variant VP of P and for every exploration scenario X in the exploration plan X , an
action TEvasion is determined and evaluated. As with the other kinds of actions, the explored action
is memorized in Tvalid if it is valid; in case the action is even adjuvant, it is stored in Tfinal.

Best action: In the event that the participant has not been able to find an adjuvant action, the best non-
adjuvant valid action is chosen (line 109ff.). This presupposes that at least one valid action has been
found (i.e., Tvalid 6= { }). The memorized actions of Tvalid are sorted according to the comparison
metric given in Section 7.3.4.1, such that the best action (the action with the greatest benefit) can
be chosen and stored in Tbest. However, that action is only used as the final action Tfinal if (a) it is
beneficial –see condition 7.75 and condition 7.87– or (b) if the participant’s current location is not
safe (ΨP 6= ∅), not healthy (W ‡

Pon 6= ∅), or not compliant (H ‡P 6= ∅). Thus in case (b), the best
action will be performed even if it is not beneficial, otherwise such a best action is rejected.

Yielding: Given that by now the action exploration has not put forth a valid action Tfinal to perform, the
participant checks if it suffers from interference (ΥP > 0), because then a Yielding action can be
explored. This is done if the participant is not lost (line 118ff.). For that purpose, the polygon
YP (introduced as the yielding region in Section 7.3.3.1) is identified, which in turn allows P to
determine the Yielding action TYielding. If the action is valid, then it is used as the final action Tfinal,
regardless of whether this represents a beneficial action or not.

The action exploration is followed by the action execution, which marksP ’s fourth measure (line 125ff.).
Executing an action first of all implies that a valid action has been determined (i.e., Tfinal 6= null). In
that case, the participant then affirms that the action is not trivial.

Definition 7.6. An action T is not trivial if at least one of its transformations T ∈ T is not trivial. A
transformation T is not trivial (a) if the length of its movement vectorMT is not smaller than the minimal
movement distance m, or (b) if T would turn the respective participant PT into a different orientation

11In the implementation, checking for Ψ new
P = ∅ (prospective protrusion of the leading participant P) is in fact superfluous

because P itself is already safe and does not move. However, checking for Υ new
P = 0 (prospective interference) is necessary

since the Hustling action may be unsuccessful, either because P is properly enclosed by another participant (as explained in
Section 7.3.3.1 under Hustling) or because an action correction is involved (see Section 7.3.1.3).

155

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

O new
PT

due to a rotation RT , or (c) if T would change that participant into another layout variant V new
PT

due to a deformation DT , or (d) if the leading participant P currently is in an invalid location (not safe,
not healthy, or not compliant).

Trivial actions are discarded because their potential benefit is insignificant, which tends to retard the
overall self-organization flow rather than to enliven it. If the action Tfinal is not trivial, then it is executed,
i.e., every transformation T of the action is applied to the respective participant PT . This concludes
the way in which the leading participant P acts upon SWARM’s action scheme. Directing the overall
inter-action towards the desired layout outcome is up to the interaction control organ – SWARM’s third
core concept, that will now be addressed in Section 7.4.

7.4 Interaction Control

As exposed in Chapter 6, immense power can be ascribed to self-organizing, decentralized structures.
But to tap the full potential of such structures, regarding the design of bottom-up systems for practical
utilization, [333] points out: “the bottom is not enough. You need a bit of top-down as well.” This is
why SWARM includes an interaction control organ which supervises the modules’ actions of Section 7.3
from a top-down perspective and carefully steers the interaction in order to enforce the emergence of a
constraint-compliant, compact constellation that fits within the user-defined layout zone Z.

As illustrated in the control-flow depiction of Figure 7.3, the steering of the module interaction
proceeds in an indirect fashion which is achieved by repeatedly changing the size of the user-defined
layout zone. This represents the main task of the interaction control organ and will be explicated in Sec-
tion 7.4.1. Extending these considerations, the notion of transient tightening policies is then introduced
in Section 7.4.2. A further idea within that orbit is to envelop each participating module in a personal
comfort padding correlated with the tightening of the layout zone. As will be discussed in Section 7.4.3,
this idea is meant to smooth the self-organization flow and to equilibrate the evocation of emergent
behavior throughout a SWARM run.

7.4.1 Scaling the Layout Zone

In line with the depiction of Figure 7.3, the interaction control organ’s task of scaling the user-defined
layout zone incorporates two discernible jobs: (1) setting and enlarging the zone in the beginning of the
self-organization phase, and then (2) tightening the layout zone after each settlement. The former job will
be addressed in Section 7.4.1.1, while Section 7.4.1.2 covers the details of the latter job. For arbitrarily
rectilinear12 layout zones, some particular considerations must be made, as Section 7.4.1.3 will discuss.

7.4.1.1 Setting and Enlarging the Layout Zone

(a) Setting the
Layout Zone

(c)User-defined
Layout Zone

(b) Initial Module
Constellation

Enlarging the
Layout Zone

(d)

Figure 7.47: Setting and enlarging the user-defined layout zone in the beginning of the self-organization.

Demarcating the layout territory that is available for the design problem at hand, the layout zone Z
is expected to be given by the user as a rectangular or rectilinear polygon such as in Figure 7.47 (a).
Then, for an initial module constellation –i.e., a set of n participants P = {P1, P2, . . . , Pn}– as in

12In the remainder of this thesis, the term rectilinear especially points to the case where the layout zone is not rectangular.

156

7.4 Interaction Control

Figure 7.47 (b), the interaction control organ determines the rectangular bounding box P around all
participants, denoted as the constellation frame F and calculated via

F = P =

((
min
∀P∈P

(
`(P)

)
, min
∀P∈P

(
⊥(P)

))
,
(

max
∀P∈P

(
a(P)

)
, max
∀P∈P

(
>(P)

)))
(7.92)

in rectangle notation. To put Z into its initial location as in the example of Figure 7.47 (c), the interaction
control organ moves it by(1

2

(
`F − `Z + aF − aZ

)
,
1

2

(
⊥F −⊥Z +>F −>Z

))
(7.93)

which is the vectorial difference of the constellation frame’s center point and the center point of the layout
zone’s bounding box. Throughout the remaining SWARM run, the layout zone is never again moved or
transformed in another way apart from being resized. Foremost, prior to the first round of interaction, Z
is enlarged such that the area of the layout zone becomes considerably larger than the totaled areas of the
individual participants, as can be seen in Figure 7.47 (d).

It is important to note, that the aspect ratio of Z is not modified thereby. This implies that the enlarge-
ment of Z is not achieved through an equal, absolute dilation of its edges (as done by the grow operator
}ε on page 243), but via a scaling operation that works in relation to the current size of Z. Considering
a geometrical shape G in general, this scaling operation takes a relative, percental contraction amount
ξ ∈ R in the right-open interval (−∞, 0.5) and applies it to the shape quadrilaterally, i.e., in all four
directions of the coordinate system (in the two-dimensional layout plane).

Figure 7.48 exemplifies this contraction operation with a given rectangle (a) of width w and height h:
a contraction amount of ξ = −0.5 stretches the rectangle by an absolute edge displacement ε = 0.5 · w
to the left and to the right, whereas the vertical edge displacement is 0.5 ·h both upwards and downwards,
such that the rectangle becomes four times as large in this particular case (b). The increase in size with
respect to ξ can be universally given as the quotient of the shape’s new area Gnew and its old area Gold
via the following formula (which holds true for ξ ≤ 0.5):

Gnew

Gold
=

(w − 2ξw) · (h− 2ξh)

w · h
=
w(1− 2ξ) · h(1− 2ξ)

w · h
= (1− 2ξ)2. (7.94)

Thus, as the term contraction suggests, the shape is enlarged by a negative contraction amount (ξ < 0)
and made smaller by a positive contraction amount (ξ > 0). This is deliberate, owing to the fact that the
layout zone Z is much more often subject to a tightening than to an enlargement.

-ξ

-ξ

-ξ-ξ ξ
ξ

ξ
ξ -0.5 w -0.5 w

-0.5 h

-0.5 h

h

w

(b) Rectangle after Negative Contraction(a) Given Rectangle

Figure 7.48: Relative enlargement of a given rectangle via negative contraction.

To generalize the contraction operation in regard of arbitrary polygons, the contraction operator ~ξ

is introduced. Formally, describing the polygonal shape G as a closed polygonal chain, i.e., a sequence
G = (N1, N2, . . .), where each node N represents one vertex of G with coordinates (xN , yN), the
contraction operator moves every node N to the new location Nnew according to the directive

Nnew =
(

(1− 2ξ)xN + ξ (`G+ aG), (1− 2ξ) yN + ξ (⊥G+>G)
)
. (7.95)

157

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

This directive guarantees that the center point of the shape is not dislocated through the contraction. The
proof can be given by inserting the center point’s coordinates xN = 1

2(`G+aG) and yN = 1
2(⊥G+>G)

into equation 7.95, as this leads to the new location

Nnew =
(

(1− 2ξ) 1
2(`G+ aG) + ξ (`G+ aG), (1− 2ξ) 1

2(⊥G+>G) + ξ (⊥G+>G)
)

(7.96)

=
(

(1
2 −

1
22ξ + ξ) (`G+ aG), (1

2 −
1
22ξ + ξ) (⊥G+>G)

)
(7.97)

=
(

1
2 (`G+ aG), 1

2 (⊥G+>G)
)

(7.98)

which is the same location as before. The preservation of the center point can also be observed in
Figure 7.49, where a contraction operation with ξ = −0.5 is applied to a rectilinear octagon. Following
the directive of equation 7.95, Table 7.9 lists how the coordinates of each node change from their old
into their new values. Also shown is that –like in the example of Figure 7.48– the area of the polygon is
quadruplicated in this case.

N1

N2 N3

N4 N5

N6

N7

N8

center
of polygon

N1

N2 N3

N4 N5

N6

N7

N8

(b) Polygon after Negative Contraction(a) Given Polygon

Figure 7.49: Relative enlargement of a given polygon via negative contraction.

Table 7.9: Coordinates of the octagon nodes from the negative contraction example of Figure 7.49.

Nodes Old New

N1 (4, 2) (−2,−1)
N2 (4, 6) (−2, 7)
N3 (7, 6) (4, 7)
N4 (7, 8) (4, 11)
N5 (14, 8) (18, 11)
N6 (14, 5) (18, 5)
N7 (16, 5) (22, 5)
N8 (16, 2) (22,−1)

center (10, 5) (10, 5)
area 60 240

By applying such a negative contraction, the enlargement of the layout zone’s initial user-defined
size Z0 in the beginning of the self-organization –see Figure 7.47 (d)– can be correctly achieved. For
that purpose, a kickoff enlargement multiplier κ ∈ R with κ ≥ 1 allows to specify the size Z1 of the
layout zone for the 1st tightening-settlement cycle in relation to the intrinsic minimum P (the sum of
the participants’ individual areas, as introduced in Definition 7.2). The kickoff enlargement multiplier
is to be provided by the user as desired, considering the rule of thumb that Z should be made roughly
thrice as large as the intrinsic minimum.

158

7.4 Interaction Control

Internally, the respective contraction amount ξ must be calculated from the kickoff enlargement mul-
tiplier κ. This relationship can be easily deduced from equation 7.94 as follows:

Z1

Z0
= (1− 2ξ)2 (7.99)

κ · P
Z0

= (1− 2ξ)2 (7.100)√
κ · P
Z0

= 1− 2ξ (7.101)

ξ =
1

2
− 1

2

√
κ · P
Z0

. (7.102)

It should be mentioned, that no ±
√
... distinction must be made in the root extraction of equation 7.101

because the contraction amount is always ξ < 0.5 (which means that the term 1 − 2ξ above cannot be
less than zero). An exemplary kickoff enlargement is given in Figure 7.50: the individual areas of the
seven participants (a) add up to the intrinsic minimum P = 18, while the initial size of the layout zone
(b) with width w = 6 and height h = 4 is Z0 = 24. For a kickoff enlargement of κ = 3, the contraction
amount is calculated as

ξ =
1

2
− 1

2

√
3 · 18

24
=

1

2
− 1

2

√
9

4
=

1

2
− 1

2

3

2
= −1

4
. (7.103)

With this negative contraction, the new dimensions (c) of the layout zone are w = 9 and h = 6 such that
its area becomes Z1 = 9 · 6 = 54 which is thrice the intrinsic minimum, as desired.

(a) Initial Constellation (b) Setting the Layout Zone (c) Enlarging the Layout Zone

ξ = -1/4

w = 6

h
=

 4

w = 9

h
=

 6

ϰ = 3

participants' total area = 18 layout zone area = 24 layout zone area = 54
kickoff

enlargement

Figure 7.50: Exemplary illustration of a layout zone’s kickoff enlargement.

In the initial module constellation, the participants are expected to be loosely scattered inside the
kickoff zone Z1 (as in the example of Figure 7.50). Just as well, the situation is fine if the participants
are heaped up in the middle, overlapping each other. In that case, the participants will first disperse
across Z1 in the incipient tightening-settlement cycle before successively congregating in the remaining
tightening-settlement cycles (as illustrated in Figure 7.4). However, one might also encounter quite the
opposite case where the participants are initially located so far apart that some of them even lie beyond
Z1. In that situation, it may be preferable to overrule κ in order to enlarge the layout zone such that all
participants are definitely safe before the interaction begins.

This can be achieved by determining the difference in height between the initial layout zone Z0 and
the constellation frame F (which defines the vertically minimal kickoff enlargement), as well as the
respective difference in width (which defines the horizontally minimal kickoff enlargement). Including
the contraction amount calculated from the user-specified kickoff enlargement multiplier κ, the safe

159

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

contraction amount ξsafe can be obtained from the following formula:13

ξsafe = min

(
1

2
− 1

2

√
κ · P
Z0︸ ︷︷ ︸

user-specified
kickoff enlargement

,
>Z0 −>F
>Z0 −⊥Z0

,
⊥F −⊥Z0

>Z0 −⊥Z0︸ ︷︷ ︸
vertically minimal

kickoff enlargement

,
aZ0 − aF
aZ0 − `Z0

,
`F − `Z0

aZ0 − `Z0︸ ︷︷ ︸
horizontally minimal
kickoff enlargement

)
. (7.104)

Figure 7.51 gives an example. Presented in image (a) are eight participants with a total area of P = 44,
with the initial layout zone Z0 being a 6 by 8 rectangle and the constellation frame F having a width
of 12 and a height of 14. For a user-specified kickoff enlargement multiplier κ = 3, the contraction
amount is ξ = 1

2 −
1
2

√
(3 · 44)/(6 · 8) = −0.33, but one participant would be completely lost thereby

while three participants would be prone, as can be seen in image (b). With the vertically minimal kickoff
enlargement κ = 3.34 –achieved via ξ = −3

8 = −0.375 and illustrated in image (c)– two participants
would still be prone. However, a contraction amount of ξ = −3

6 = −0.5 leads to the horizontally minimal
kickoff enlargement κ = 4.36 which finally produces a zone size for Z1 where all participants are safe,
as shown in image (d), and thus represents the safe contraction amount in this case.

Z0

F

(a) Layout Zone and
Constellation Frame

(b) User-specified
Kickoff Enlargement

(c) Vertically Minimal
Kickoff Enlargement

(d) Horizontally Minimal
Kickoff Enlargement

Figure 7.51: Safe contraction amount, corresponding to the horizontally minimal kickoff enlargement.

7.4.1.2 Tightening the Layout Zone

Now that a negative contraction provided the kickoff enlargement which turned Z0 into Z1, the module
interaction begins. Therein, the interaction control organ applies positive contraction operations to the
layout zone in order to achieve a tightening of Z1, Z2, Z3 and so on after each settlement. Here, the
respective contraction amount defines how rigorous the tightening policy is – considering the following
two tenets, which represent two extremes in this regard:

• First, the tightening policy should sufficiently “put the screws” on the participants, which is to say
that at least one participant should be prone after each tightening. Otherwise, i.e., if all participants
are completely safe after each tightening, the tightening policy is too lenient and the layout zone
does never reach its initial size but will instead approach a limit much greater than Z0 . This would
even be true in the hypothetical case that the minimal movement distance m is set to zero. The
final layout zone size approached by Z would depend on the constellation itself, as exemplified in
Figure 7.52.
• Second, the tightening policy should refrain from overpacing, which is to say that no participant

should be lost after a tightening. Otherwise, the lost participants are forced to perform a Re-
entering move instead of being able to choose the best action from a set of alternative options.
Altough this is not a dealbreaking issue, such a tightening policy can in general be considered too
aggressive as it tends to bring about unwanted chaotic behavior.

13In fact, the two terms for the vertically minimal kickoff enlargement are redundant in equation 7.104 because the layout
zone Z0 is centered on the constellation frame F . The same is true regarding the two terms for the horizontally minimal kickoff
enlargement.

160

7.4 Interaction Control

.

Figure 7.52: If the tightening policy is too lenient, the desired zone size cannot be reached.

Whether the tightening policy is too lenient or too aggressive, the ultimate implications are the same: the
module interaction does not converge towards the desired goal. Hence, for every ith tightening-settlement
cycle (with i ∈ N+) the two tenets above define the task of finding a contraction amount ξi which tightens
the layout zone from Zi into Zi+1 after the settlement such that

∀P ∈ P, (∃P : ΨP @ P) ∧ (@P : ΨP = P). (7.105)

To facilitate a concise specification of the tightening policy’s rigorousness, the pressing rate $ ∈ R
in the open interval (0, 1) is introduced. It allows to set ξi depending on the desired protrusion extent
ψ of the participants (see Section 7.3.1.3), wherein each ψ is calculated relative to the participant’s
dimensions. This means, ξi is chosen such that the layout zone is tightened as much as possible without
letting any participant P have a horizontal protrusion extent ψx,P larger than $-times the width wP of
P , nor a vertical protrusion extent ψy,P larger than $-times the height hP of P .

ϖ = 0
(lenient)

ϖ = 1
(aggressive)

ϖ = 0.5
(moderate)

wP

hPP

Zi

Zi+1ϖ∙wP

Pressing Rate:

Figure 7.53: Visualization of a tightening policy’s rigorousness, depending on the pressing rate.

In this manner, the pressing rate makes it possible to fine-tune the tightening policy in a continuous
range between the two excluded endpoints $ = 0 (lenient) and $ = 1 (aggressive), as illustrated in
Figure 7.53. In general, it is sensible to work with a pressing rate near $ = 0.5, which is referred to as
a moderate tightening policy. For a given $, the interaction control organ’s consequential task per each
tightening is to minimize the area of the layout zone while making sure that

(∀P ∈ P, ψx,P ≤ $ ·wP ∧ ψy,P ≤ $ · hP) ∧ (∃P ∈ P : ψx,P = $ ·wP ∨ ψy,P = $ · hP). (7.106)

This is achieved by calculating the respective contraction amount ξi according to the following formula:

ξi = min

(
min
∀P∈P

(northern edge︷ ︸︸ ︷
>Zi −>(P) +$>(P)−$⊥(P)

>Zi −⊥Zi

)
, min
∀P∈P

(southern edge︷ ︸︸ ︷
⊥(P) +$>(P)−$⊥(P)−⊥Zi

>Zi −⊥Zi

)
,

min
∀P∈P

(aZi − a(P) +$a(P)−$`(P)

aZi − `Zi︸ ︷︷ ︸
eastern edge

)
, min
∀P∈P

(`(P) +$a(P)−$`(P)− `Zi
aZi − `Zi︸ ︷︷ ︸
western edge

))
.

(7.107)

This formula bears some resemblance to the formula for ξsafe in Section 7.4.1.1, because the first two
fractions here (which concern the northern edge and the southern edge) represent the equivalent to those

161

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

of the vertically minimal kickoff enlargement in equation 7.104 while the other two fractions (eastern
edge and western edge) correspond to those of the horizontally minimal kickoff enlargement therein.
However, it is important to note that –in contrast to equation 7.104– the terms are not redundant here
for two reasons: (1) the layout zone is not perfectly centered on the constellation since the minimal
movement distance is larger than zero, and (2) the maximally permitted protrusion extent is relative to a
participant’s dimensions, as already mentioned above.

P5

P2

P4

P1

P3
P5

P2

P4
(8,3)

(19,7)
(3,10)

(24,12)
(6,15)

(12,21)

(18,18)

(30,20)

(27,4)

(33,14)

ξi = 0.17

ξi = 0.19

ξi = 0.21
ξi = 0.13

Zi Zi

Zi+1

Zi

(a) Settled Participants (b) Contraction Amounts (c) Zone Tightening

Figure 7.54: Exemplary illustration of a zone tightening, calculated from the pressing rate.

Table 7.10: Bounding box coordinates of the objects in the tightening example of Figure 7.54.

Object Bounding Box

Z ((0, 0), (36, 24))
P1 ((6, 15), (12, 21))
P2 ((18, 18), (30, 20))
P3 ((27, 4), (33, 14))
P4 ((8, 3), (19, 7))
P5 ((3, 10), (24, 12))

To illustrate the calculation of the contraction amount via equation 7.107, Figure 7.54 shows an
exemplary zone tightening for a constellation of five settled participants inside a layout zone Zi, as given
in image (a). The coordinates of the layout zone rectangle and those of the particicpants’ bounding
boxes are given in Table 7.10. With a –rather lenient– pressing rate of $ = 0.25 the contraction amount
according to equation 7.107 becomes

ξi = min
(

min(

P1,P2︷ ︸︸ ︷
0.19, 0.19, 0.52, 0.75, 0.52),min(0.69, 0.77, 0.27,

P4︷︸︸︷
0.17, 0.44),

min(0.71, 0.25, 0.13︸︷︷︸
P3

, 0.55, 0.48),min(0.21︸︷︷︸
P1

, 0.58, 0.79, 0.3, 0.23)
) (7.108)

where the five values in each of the four ancillary min-terms correspond to the five participants (P1, P2,
P3, P4, P5) respectively. In the first term (concerning the northern edge), the smallest contraction amount
is given by P1 and P2, in the remaining terms it is given by P4 (southern edge), P3 (eastern edge), and
again P1 (western edge), as indicated in image (b). Among these four values, the smallest one is

ξi = min(0.19, 0.17, 0.13, 0.21) = 0.13 (7.109)

which is the contraction amount construed from the eastern edge. Using this value, image (c) shows
how the layout zone is tightened into Zi+1. As can be seen, P3 now has a horizontal protrusion ex-
tent of ψx,P3 = $ · wP3 while all other participants have lesser protrusion extents, which means that
condition 7.106 is fulfilled.

7.4.1.3 Considering Rectilinear Layout Zones

The tightening formulas described so far work well for rectangular layout zones. But for rectilinear (i.e.,
nonrectangular) layout zones one can inadvertently ensnarl in situations where condition 7.106 is vio-

162

7.4 Interaction Control

lated. This is not overly problematic because the surplus protrusion extent usually is rather small; and
even if a participant is completely lost, a Re-entering move helps to bring it back into the layout zone.
On this account, the tightening formulas above can be adequately used for rectangular as well as for rec-
tilinear layout zones. Implementing a safe tightening procedure (where all participants definitely adhere
to the maximally permitted protrusion extent) is more elaborate in the rectilinear case. To explicate this
topic, the following ruminations sketch out the subtleties that must be paid attention to.14

Figure 7.55 (a) displays a settlement of seven participants inside a hexagonal layout zone Zi. Due to
the notch, there are two edges (named E1 and E2) which deviate from the bounding box Zi. Applying
the formula of equation 7.107 for a pressing rate of $ = 0.5 would lead to the tightened layout zone
Z∗i+1 by which P2 violates its permitted protrusion extent ψy,P2 in vertical direction. This violation –
referred to as the protrusion excess– is colored deep black in image (b). To obtain the correct contraction
amount, equation 7.107 must be enhanced such that it considers all edges of the layout zone. However,
one further issue must be taken into account: when determining a potential contraction amount with
respect to a particular edge E and a particular participant P , it may be that E does not even touch P
because the length of E is smaller than the layout zone’s respective dimension (i.e., the width of Zi if
E is a horizontal edge, the height of Zi if E is a vertical edge). In that case, the potential contraction
amount is to be discarded. Image (b) exemplifies such a situation: calculatorily, P1 and E2 determine the
maximal contraction amount, but it is discarded since E2 remains completely aloof from P1 (not only
for that contraction amount, but even regardless of ξ – the trajectory in the image visualizes how the first
node of E2 wanders distant to P1 when scaling the layout zone). Next in size is the contraction amount
determined by P2 and E2. In contrast to the (P1, E2) pair, E2 is in touch with P2 for that contraction
amount and is therefore called afferent to P2. In fact, this value is the smallest among all determinable
contraction amounts and thus represents the desired ξi. The resultant zone tightening is illustrated in
image (c): as can be seen, the desired protrusion extent is now met by P2 and undercut by all other
participants as should be.

Z*
P1 P2

P5

P7

P1 P2
P3

P4P5

P6 P7

E1 E2
Zi Zi

ψy,P2
violated

 node
trajectory

Zi+1

Zi

Zi+1

(a) Settled Participants (b) Excessive Protrusion (c) Zone Tightening

ψy,P2
met

Figure 7.55: Exemplary illustration of a zone tightening for a rectilinear layout zone.

For rectilinear layout zones, another circumstance has to be contemplated regarding the fact that a
participant can protrude the layout zone at one of its concave vertices due to a tightening. But first,
row [a] in Figure 7.56 discriminates the possible cases of protrusion at a convex vertex as known from
rectangular layout zones. Each of these cases represents a subsidiary offshoot of case (d2) in Figure 7.23.
For a supposed pressing rate of $ = 0.5, neither ψx nor ψy violate the permitted protrusion extent in
image [a1] of Figure 7.56. Hence, both are said to be admissible, which makes the overall protrusion
Ψ admissible as well. In [a2], both ψx and ψy violate the permitted protrusion extent and are therefore
called excessive (in line with the blackened protrusion excess outlined in the image). In that case, the
overall protrusion is also excessive, i.e., the inherent contraction amount is too large and the tightening
would be more rigorous than desired. In [a3], ψx is excessive while ψy is admissible; in [a4], the situation
is vice versa. It goes without saying, that in those two cases again the overall protrusion is excessive.

If the protrusion occurs at a concave vertex (see row [b] in Figure 7.56, covering the different off-
shoots of case (d1) in Figure 7.23), the affair is the same as above if both ψx and ψy are admissible [b1]
or if both are excessive [b2]. However, things are different if the protrusion extent is only violated in

14Without going into a detailed elaboration, the considerations made in this Section 7.4.1.3 about the tightening of a rectilin-
ear layout zone can likewise be applied to its kickoff enlargement.

163

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

ψx

ψy

ψx

ψy

ψx

ψy

ψx

ψy

[a1] [a2] [a3] [a4]

[b1] [b2] [b3] [b4]

[c1] [c2] [c3] [c4]

ψx ψx

ψy

ψx ψx

ψy

ψy

ψy

ψx

ψy

ψx

ψy

ψx = 0

ψy = 0

ψx = 0

ψy = 0

Figure 7.56: Cases of protrusion after a tightening: [a] convex vertex, [b] concave vertex, [c] edge.

one direction. In [b3], ψx is excessive but the overall protrusion is admissible because ψy is admissible.
In [b4], the overall protrusion is admissible since ψx is admissible although ψy is excessive. These two
cases are justified by looking at row [c], which displays the offshoots of case (c2) from Figure 7.23,
where the protrusion does not occur at a vertex but at an edge of the layout zone. In [c1], the protrusion
is admissible because ψy is admissible. Although the participant protrudes the layout zone with its entire
width, the horizontal protrusion extent is ψx = 0 (according to equation 7.53). The anomaly with this
reckoning is, that in case [b3] –where ψy is the same and ψx is much greater– the protrusion area is
less than in [c1]. Yet, this conclusion logically justifies why the protrusion is admissible in [b3]. The
preceding considerations about [b3] and [c1] can be applied to [b4] and [c2] in the orthogonal direction
to reason that the protrusion in [b4] is admissible as well. For the sake of completeness, the remaining
two images in Figure 7.56 present cases of excessive edge protrusion through ψy in [c3] and through ψx
in [c4].

Table 7.11 lists the admissibility/excessiveness for the three superordinate cases of protrusion in
a matrix-like fashion, depending on the dimensionality of the protrusion excess (i.e., whether there is
excess neither through ψx nor through ψy, excess both by ψx and ψy, or excess in either ψx or ψy
exclusively). Following [334], protrusion at a convex vertex is denoted as ear protrusion while protrusion
at a concave vertex is referred to as mouth protrusion in the table.

Table 7.11: Cases of protrusion after a tightening. The signifiers in square brackets refer to the images
in Figure 7.56.

Protrusion Excess
none ψx and ψy ψx or ψy

Ear Protrusion admissible excessive excessive
(convex vertex) [a1] [a2] [a3],[a4]

Mouth Protrusion admissible excessive admissible
(concave vertex) [b1] [b2] [b3],[b4]

Edge Protrusion admissible not excessive
[c1],[c2] applicable [c3],[c4]

164

7.4 Interaction Control

The findings of Table 7.11 deliver an important insight: in the case of mouth protrusion, the greater
one of the two potential contraction amounts is to be favored over the lesser one. This is in contrast to
equation 7.107 (where the smallest value for ξi was sought) and further distinguishes it from the case of
ear protrusion, where the lesser contraction amount is to be taken instead of the greater one. To illuminate
this statement, Figure 7.57 (a1) shows a participant P next to an ear (convex vertex) of the layout zone
Zi. The two edges E1 and E2 of the ear offer two potential contraction amounts. For a $ = 0.5 pressing
rate, image (a2) illustrates the potential tightening into Z∗i+1 based on the ear’s horizontal edge E1. As
can be seen, the overall protrusion for this contraction amount ξP,E1

i is admissible. But based on the
ear’s vertical edge E2, the other potential tightening entails an overall excessive protrusion (a3). Hence,
the respective contraction amount ξP,E2

i is to be rejected in favor of the smaller ξP,E1
i . In (b1) however,

the participant lies next to a mouth (concave vertex) of Zi. As Table 7.11 tells right away, both potential
tightenings (b2) and (b3) definitely lead to an overall admissible protrusion – the protrusion cannot be
excessive in these cases because either ψx (b2) or ψy (b3) is congenitally admissible. For that reason,
the larger contraction amount (ξP,E2

i in this example) may overtrump the smaller one (ξP,E1
i here) in the

case of mouth protrusion.

ξP,E1

(a1) (a2) (a3)

(b1) (b2) (b3)

E1

E2

Zi

P

Z*Zi+1 Z*Zi+1

ψx

ψy

ψx

ψy

ξi

ξP,E2ξi

Zi

P

Z*Zi+1

ψx ψy

Z*Zi+1

ψx

ψy

ξP,E2ξi

ξP,E1ξi

E1

E2

Zi

E1

E2

Zi

E2

E1

Zi

E2

E1

Zi

E2

E1

P

P

P

P

Figure 7.57: Depending on the case of protrusion, the smaller or the greater contraction amount matters.

In a nutshell, four issues have been revealed in this Section 7.4.1.3: for the tightening of an arbitrarily
rectilinear layout zone (1) all possible participant/edge pairs have to be regarded, (2) it is necessary to
check whether the respective edge is afferent to the participant, (3) it must be determined if the prospec-
tive protrusion of the participant is admissible at all, and (4) in the case of mouth protrusion the larger
contraction amount is to be favored over the smaller one. Each of these issues can be found in Algo-
rithm 4, which provides a pseudocode description of the contraction amount calculation in the rectilinear
case. A couple of even further details need to be paid attention to, as the following explanation of
Algorithm 4 points out.

Explanation of Algorithm 4

First of all, a set Ξall is initialized in line 1 that will later be used to gather all potential contraction
amounts. Then, for each participant P among the set P of all participants, every node N of the layout
zone Zi is traversed. Every node N joins two edges: a horizontal edge denoted as Eh̄

N and a vertical
edge referred to as ENυ . If Eh̄

N is a northern edge15 of Zi whose vertical coordinate yEh̄N lies above the
center of Zi, then the potential contraction amount ξiP,Eh̄

N
is calculated as shown in line 6. If Eh̄

N is a
15To determine if a horizontal edge Eh̄ of a rectilinear polygon is a northern edge of that polygon, one can simply draw

a vertical line through Eh̄. If the line crosses an even number of other horizontal edges above Eh̄ (and thus an odd number

165

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

southern edge of Zi and lies below the center of Zi, then the potential contraction amount is calculated
as in line 8. If neither is true, then ξiP,Eh̄

N
is set to a null value (line 10) – no contraction amount is

calculated in this case because it would falsely lead to an enlargement of the layout zone instead of a
tightening, as illustrated in Figure 7.58 (a).16 The formulas in line 6 and line 8 correspond to the terms
found in equation 7.107 for a rectangular layout zone’s northern edge and southern edge. However,
there is one pivotal difference: in the rectilinear case, the contraction amount must be projected from
the considered edge onto the respective side of the layout zone’s bounding box. For that purpose, the
projection divisor χ is introduced. Figure 7.59 amplifies this on a rectilinear layout zone Zi with height
hZi . For any contraction amount ξi, the absolute edge displacement of the layout zone’s northernmost
and southernmost edge is ε = ξi · hZi . Since edge E is nearer to the center point of Zi, its edge
displacement εE is smaller by the projection divisor χ:

εE =
ε

χ
. (7.110)

Looking at the two plotted node trajectories and the horizontal line through the center point of Zi, all
three of which are intercepted by the pair of auxiliary parallels drawn into Figure 7.59, the projection
divisor can be deduced from the relations between the four line segments a, b, c, d via Thales’ theorem
(intercept theorem) as follows:

a

b
=
c

d
(7.111)

a

c
=
b

d
(7.112)

1− a

c
= 1− b

d
(7.113)

c− a
c

=
d− b
d

(7.114)

c− a
d− b

=
c

d
(7.115)

c− a
d− b

+ 1 =
c

d
+ 1 (7.116)

c− a+ d− b
d− b

=
c+ d

d
(7.117)

wherein the four terms of the fractions can be substituted to produce the following equation

ε

εE
=

1
2 hZi

yE − 1
2(⊥Zi +>Zi)

(7.118)

which represents the projection divisor χ. To calculate the projected contraction amount from a given
edge displacement εE , equation ε = ξi · hZi can now be rearranged into

ξi =
ε

hZi
=
εE · χ
hZi

=
εE
hZi
·

1
2 hZi

yE − 1
2(⊥Zi +>Zi)

=
1
2 εE

yE − 1
2(⊥Zi +>Zi)

(7.119)

=
εE

2 · yE −⊥Zi −>Zi
. (7.120)

of other horizontal edges below Eh̄), then Eh̄ is a northern edge. Otherwise, the line would cross an odd number of other
horizontal edges above Eh̄ (and an even number of other horizontal edges below Eh̄), indicating that Eh̄ is a southern edge.

16As desired, the potential contraction amount calculated from the (P1, E1) pair in Figure 7.58 (a) would result in a tightening
because E1 is a northern edge of Zi above its center point. In contrast, the (P2, E2) pair would lead to an enlargement because
E2 is a northern edge below the center point of Zi. For that reason, E2 is to be ignored in the calculation of the contraction
amount. One might say that E2 should not be completely ignored because the (P3, E2) pair would then be elided – yet, this is
legitimate because the (P3, E3) pair would define the correct contraction amount in that case.
Analogous to these considerations about northern edges below the center of the layout zone, southern edges above the center
of the layout zone also need to be ignored in the calculation of the contraction amount for the same reason.

166

7.4 Interaction Control

For a northern edge of Zi and a participant P , the absolute edge displacement is

εE = yEh̄ −>(P) +$ · >(P)−$ · ⊥(P) (7.121)

which explicates line 6 in Algorithm 4. Since yEh̄ corresponds to >Zi in the dividend of the northern-
edge term in equation 7.107, the formula in Algorithm 4 differs from that term by the factor

>Zi −⊥Zi
2 · yE −⊥Zi −>Zi

=
hZi

2 · yE −⊥Zi −>Zi
=

1
2 hZi

yE − 1
2(⊥Zi +>Zi)

(7.122)

which –as expected– is precisely the projection divisor χ deduced above (see equation 7.118). For a
southern edge of Zi, the projection divisor becomes

χ =
1
2 hZi

1
2(⊥Zi +>Zi)− yE

(7.123)

which is reflected in line 8 of Algorithm 4. Considering the vertical edge ENυ of the traversed node N ,
the formulas in line 14, line 16, and line 18 –which are analogous to those from the horizontal edge
Eh̄

N (line 6, line 8, and line 10 respectively)– provide the potential contraction amount ξiP,E
N
υ for the

(P,ENυ) pair. Equivalently, if ENυ is an eastern edge to the left of Zi’s center or if ENυ is a western
edge to the right of Zi’s center, then it is discarded because it would lead to an enlargement of the
layout zone (as visualized in Figure 7.58 (b)). It should be noted that the calculations in line 6, line 8,
line 14, and line 16 cannot run into a division by zero because the respective if-conditions guarantee that
yEh̄N 6=

1
2(⊥Zi +>Zi) and xENυ 6=

1
2(`Zi + aZi).

Next (line 21 in Algorithm 4), those contraction amounts among {ξiP,Eh̄
N
, ξi

P,ENυ } that have indeed
been calculated (i.e., are not null) will be stored in a set ΞP,N if the respective edge EN is afferent to
P and if the prospective protrusion Ψ new

P is admissible. If ΞP,N is not empty, the appropriate contraction
amount must be chosen from that set. In the case that node N is a mouth, then the larger value found in
ΞP,N is added to the set Ξall in line 24 (concordant with the ruminations made in Figure 7.57); otherwise,
N is an ear and the smaller value in ΞP,N

17 is taken (line 26). After all nodes have been traversed for
each participant, the smallest value from the set Ξall is chosen in line 31 as the final contraction amount
ξi for the subsequent tightening of the rectilinear layout zone.

P2

P1P1

E1

E2

P2

above
center

below
center

Tightening

Enlargement

E1

E2

Enlargement

Tightening

right of center

left of center

(a) Northern Edge Above/Below Center (b) Eastern Edge to the
 Right/Left of Center

E3

Zi

Zi

Figure 7.58: Certain edges of a rectilinear layout zone –such as (a) northern edges below the zone center
and (b) eastern edges to the left of the zone center– need to be discarded when calculating
the contraction amount.

7.4.2 Transient Tightening Policies

Although the successive tightening based on a single pressing rate $ is a quite dynamic ingredient of
a SWARM run, it can still be regarded as being a bit too coarse because the layout zone gets tightened

17If nodeN is an ear, then ΞP,N is in fact a singleton here. To understand the reason for this, two cases are to be distinguished:
if the node would lie aloof from participant P after the prospective tightening, one of the two potential contraction amounts has
been discarded in line 21 because the respective edge is not afferent to P ; otherwise (i.e., if the node would lie on P after the
tightening) one of the two potential contraction amounts has been discarded in line 21 because the prospective protrusion of P
would not be admissible.

167

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

ϵ = ξi·hZi
ϵE = ϵ/χ

hZi

½ hZi a
b

c

d

node trajectories

auxiliary
 parallels

center
line

Zi

E yE

Z*Zi+1

Figure 7.59: Exemplification of edge projection, as necessary in the case of a rectilinear layout zone.

Algorithm 4 Contraction amount for the tightening of a rectilinear layout zone

1: Ξall ← {}
2: for each participant P ∈ P do
3: for each node N of Zi do
4: . Horizontal edge of the node (Eh̄N):
5: if Eh̄N is a northern edge of Zi AND yEh̄N > 1

2(⊥Zi +>Zi) then

6: ξ
P,Eh̄

N

i ← (yEh̄N −>(P) +$>(P)−$⊥(P))/(2 · yEh̄N −⊥Zi −>Zi)
7: else if Eh̄N is a southern edge of Zi AND yEh̄N < 1

2(⊥Zi +>Zi) then

8: ξ
P,Eh̄

N

i ← (⊥(P) +$>(P)−$⊥(P)− yEh̄N)/(⊥Zi +>Zi − 2 · yEh̄N)
9: else

10: ξ
P,Eh̄

N

i ← null
11: end if
12: . Vertical edge of the node (ENυ):
13: if ENυ is an eastern edge of Zi AND xENυ > 1

2(`Zi + aZi) then

14: ξ
P,ENυ
i ← (xENυ − a(P) +$a(P)−$`(P))/(2 · xENυ − `Zi − aZi)

15: else if ENυ is a western edge of Zi AND xENυ < 1
2(`Zi + aZi) then

16: ξ
P,ENυ
i ← (`(P) +$a(P)−$`(P)− xENυ)/(`Zi + aZi − 2 · xENυ)

17: else
18: ξ

P,ENυ
i ← null

19: end if
20: . Memorizing the appropriate contraction amount
21: ΞP,N ←

{
ξ ∈ {ξP,Eh̄

N

i , ξ
P,ENυ
i } | ξ 6= null ∧ EN is afferent to P ∧Ψ new

P is admissible
}

22: if |ΞP,N | > 0 then
23: if N is a mouth then
24: Ξall ← Ξall max(ΞP,N)
25: else
26: Ξall ← Ξall min(ΞP,N)
27: end if
28: end if
29: end for
30: end for
31: ξi ← min(Ξall)

168

7.4 Interaction Control

only after each individual settlement. This manner of abrasive tightening can be visualized in form of
a staircase-shaped tightening profile, as exemplarily done in Figure 7.60: every tightening (henceforth
also denoted as a major tightening) can be recognized as an abrupt change in the size of the layout
zone. To obtain a more fine-grained tightening characteristic, the idea of transient tightening policies is
introduced. A transient tightening policy is a tightening policy where changes in the size of the layout
zone may occur during a tightening-settlement cycle. Basically, two kinds of transient tightening policies
can be conceived: a progressive tightening policy and a regressive tightening policy, both of which will
be discussed in Section 7.4.2.1 and Section 7.4.2.2 respectively.

Z0

Size
of Z

0

Rounds of
Interaction

Z1

Z2

Z3

Z4

Z5

Z6

Initialization Self-organization Finalization

Se
ttl

em
en

t #
1

Se
ttl

em
en

t #
2

Se
ttl

em
en

t #
3

Se
ttl

em
en

t #
4

Se
ttl

e-
m

en
t #

5

Se
ttl

e-
m

en
t #

6

 Enlarge-
ment

Tightenings

Setting the
Layout Zone

ξ0

ξ3

ξ4

ξ5

ξ2

ξ1

Figure 7.60: Exemplary tightening profile of an abrasive tightening policy.

7.4.2.1 Progressive Tightening

A progressive tightening policy is a transient tightening policy where each major tightening is in fact
chopped up into several minor tightenings. Thus, the tightening policy is not specified solely through
the pressing rate $, but may for example be defined via ($,u) wherein u ∈ N+ denotes the number of
minor tightenings. With this tightening policy, every contraction amount ξi that was calculated from the
desired pressing rate$ is simply divided into uminor contraction amounts ξi,1, ξi,2, . . . , ξi,u all of which
reduce the area of the layout zone by the same magnitude. These minor contraction amounts are then
successively applied to the layout zone –one after each round of interaction– until u minor tightenings
have been performed. In the remaining rounds of interaction, the layout zone is not tightened any further
before all participants have settled. The respective tightening profile of this linear progressive tightening
policy looks like the one displayed in Figure 7.61 for an exemplary value of u = 4 as the number of
minor tightenings.

Z0

Size
of Z

0

Rounds of
Interaction

Z1

Z2

Z3

Z4

Z5

Z6

Initialization Self-organization Finalization

Se
ttl

em
en

t #
1

Se
ttl

em
en

t #
2

Se
ttl

em
en

t #
3

Se
ttl

em
en

t #
4

Se
ttl

e-
m

en
t #

5

Se
ttl

e-
m

en
t #

6

 Enlarge-
ment

Minor
Tightenings

Setting the
Layout Zone

ξ0

ξ1,1

ξ1,u(Z1,0)

(Z2,0)

...

Figure 7.61: Exemplary tightening profile of a linear progressive tightening policy.

169

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

The first minor contraction amount ξi,1 can be calculated by setting the areic difference Zi+1 − Zi
based on ξi,1 equal to the desired fraction of the areic difference based on ξi:

w(1− 2ξi,1) · h(1− 2ξi,1)− w · h =
w(1− 2ξi) · h(1− 2ξi)− w · h

u
(7.124)

wh ·
(
(1− 2ξi,1)2 − 1

)
= wh ·

(
(1− 2ξi)

2 − 1
)
· 1

u
(7.125)

1− 4ξi,1 + 4ξ2
i,1 − 1 = (1− 4ξi + 4ξ2

i − 1) · 1

u
(7.126)

−ξi,1 + ξ2
i,1 = (−ξi + ξ2

i) · 1

u
(7.127)

ξ2
i,1 − ξi,1 +

1

u
(ξi − ξ2

i) = 0. (7.128)

This quadratic equation can be easily solved with the well-known quadratic formula, which produces

ξi,1 =
1±

√
1− 4

u(ξi − ξ2
i)

2
. (7.129)

It should be noted that ξi− ξ2
i ≤ 0.25 for any ξi (and that u ≥ 1 as already stated), which means that the

discriminant of the polynomial in equation 7.129 never becomes negative and the equation is therefore
always solvable (without consulting complex numbers). But, concerning the case where the square root
is added in the dividend of equation 7.129, the minor contraction amount is ξi,1 ≥ 0.5 for any u and
for any ξi, and thus lies out of the valid range (defined in Section 7.4.1.1). Hence, the minor contraction
amount is unequivocally given only by the case where the square root is subtracted in the dividend:

ξi,1 =
1−

√
1− 4

u(ξi − ξ2
i)

2
. (7.130)

To calculate the second minor contraction amount ξi,2 one may contemplate that the total edge displace-
ment of the western edge18 is destined to be εi = ξi · wi,0 where wi,0 denotes the width w of the layout
zone’s bounding box before the first minor tightening. After the first minor tightening, the edge dis-
placement obtained so far is εi,1 = ξi,1 · wi,0, which means that the remaining edge displacement is
εi− εi,1 = (ξi−ξi,1) ·wi,0. If this remaining edge displacement was to be achieved with one single tight-
ening, the residual contraction amount ξi,[2,u] could be determined via the following equation, where
wi,1 with wi,1 = wi,0 · (1 − 2ξi,1) denotes the width of the layout zone’s bounding box after the first
minor tightening:

ξi,[2,u] · wi,1 = (ξi − ξi,1) · wi,0 (7.131)

ξi,[2,u] = (ξi − ξi,1) · wi,0
wi,1

(7.132)

ξi,[2,u] = (ξi − ξi,1) · wi,0
wi,0 · (1− 2ξi,1)

(7.133)

ξi,[2,u] =
ξi − ξi,1
1− 2ξi,1

. (7.134)

With this value, equation 7.130 can be used to calculate the second minor contraction amount ξi,2,
wherein the number of minor tightenings now must be u − 1 since one minor tightening has already
been performed. On that account, equation 7.130 becomes

ξi,2 =
1−

√
1− 4

u−1(ξi,[2,u] − ξ2
i,[2,u])

2
. (7.135)

18Taking the western edge here is arbitrary. Any other edge (eastern, southern, northern) would ultimately lead to the same
result in equation 7.134.

170

7.4 Interaction Control

Based on this proceeding, equation 7.130 can be written for j = 1 . . . u in general form as

ξi,j =
1−

√
1− 4

u+1−j (ξi,[j,u] − ξ2
i,[j,u])

2
(7.136)

to calculate the minor contraction amounts from ξi,1 to ξi,u. To provide the residual contraction amounts
ξi,[j,u] that appear on the right-hand side of equation 7.136, equation 7.134 can be generalized into

ξi,[j,u] =
ξi∏j−1

k=1(1− 2ξi,k)
−

j−1∑
k=1

ξi,k∏j−1
n=k(1− 2ξi,n)

. (7.137)

As a plausibility check, evaluating equation 7.136 for j = u unfurls into

ξi,u =
1−

√
1− 4

u+1−u(ξi,[u,u] − ξ2
i,[u,u])

2
(7.138)

=
1−

√
1− 4ξi,[u,u] + 4ξ2

i,[u,u]

2
(7.139)

=
1−

√
(1− 2ξi,[u,u])2

2
(7.140)

=
1− 1 + 2ξi,[u,u]

2
(7.141)

= ξi,[u,u] (7.142)

which means, that the last minor contraction amount ξi,u is equal to the last residual contraction amount
ξi,[u,u] (as expected). Furthermore, a spot sample can be evaluated from equation 7.137 for j = 1:
comprehending that the empty product is by convention equal to the multiplicative identity 1 just as the
empty sum is by convention equal to the additive identy 0, the spot sample folds up into

ξi,[1,u] =
ξi∏1−1

k=1(1− 2ξi,k)
−

1−1∑
k=1

ξi,k∏1−1
n=k(1− 2ξi,n)

(7.143)

=
ξi
1
− 0 = ξi (7.144)

which explains the appearance of ξi instead of ξi,[j,u] in equation 7.130.

An even sleeker tightening characteristic than the one of the linear progressive tightening policy
above can be obtained with an exponential progressive tightening policy. Such a tightening policy is
defined through ($, q) where q in the open interval (0, 1) represents the so-called contraction quotient.
With this tightening policy, every contraction amount ξi that is calculated from the pressing rate $, is
spread over multiple minor contraction amounts all of which reduce the area of the layout zone by the
same factor. One by one, these minor contraction amounts are then applied to the layout zone after each
round of interaction until all participants have settled. For a contraction quotient of q = 0.5 the tightening
profile of this tightening policy is exemplarily depicted in Figure 7.62.

The first minor contraction amount ξi,1 can be calculated from equation 7.130 by setting u = 1
q ,

which leads to

ξi,1 =
1−

√
1− 4q · (ξi − ξ2

i)

2
. (7.145)

After the first minor tightening, the second minor contraction amount ξi,2 likewise is

ξi,2 =
1−

√
1− 4q · (ξi,[2,u] − ξ2

i,[2,u])

2
. (7.146)

171

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Z0

Size
of Z

0

Rounds of
Interaction

Z1

Z6

Initialization Self-organization Finalization

Se
ttl

em
en

t #
1

Se
ttl

em
en

t #
2

Se
ttl

em
en

t #
3

Se
ttl

em
en

t #
4

Se
ttl

e-
m

en
t #

5

Se
ttl

e-
m

en
t #

6

 Enlarge-
ment

Setting the
Layout Zone

Asymptotic
Approximation

ξ0

ξ1,1
ξ1,2

Z2

Z3

Z4

Z5

(Z1,0)

(Z2,0)

.....

Figure 7.62: Exemplary tightening profile of an exponential progressive tightening policy.

So, it becomes obvious that the generalized formula for calculating all minor contraction amounts is

ξi,j =
1−

√
1− 4q · (ξi,[j,u] − ξ2

i,[j,u])

2
(7.147)

for which the residual contraction amounts ξi,[j,u] can again be determined via equation 7.137 as before.
Alternatively, equation 7.137 can also be turned into a recursive formula as follows:

ξi,[j,u] =
ξi∏j−1

k=1(1− 2ξi,k)
−

j−1∑
k=1

ξi,k∏j−1
n=k(1− 2ξi,n)

(7.148)

=
ξi

(1− 2ξi,j−1) ·
∏j−2
k=1(1− 2ξi,k)

−
j−2∑
k=1

ξi,k

(1− 2ξi,j−1) ·
∏j−2
n=k(1− 2ξi,n)

− ξi,j−1

1− 2ξi,j−1

(7.149)

=
1

1− 2ξi,j−1
·

(
ξi∏j−2

k=1(1− 2ξi,k)
−

j−2∑
k=1

ξi,k∏j−2
n=k(1− 2ξi,n)︸ ︷︷ ︸

= ξi,[j−1,u]

−ξi,j−1

)
(7.150)

=
ξi,[j−1,u] − ξi,j−1

1− 2ξi,j−1
(7.151)

which is applicable for j > 1. With this case distinction, the formula for all j = 1 . . . u becomes

ξi,[j,u] =

{
ξi ⇔ j = 1
ξi,[j−1,u]−ξi,j−1

1−2ξi,j−1
⇔ j > 1.

(7.152)

With an exponential progressive tightening policy, the layout zone gets arbitrarily close to its designated
size during each tightening-settlement cycle. This can be proven as follows: for the jth minor tightening,
the change in the size of the layout zone is

Zi,j − Zi,j−1 = q · (Zi+1 − Zi,j−1). (7.153)

For j − 1 it can thus equally be said that

Zi,j−1 − Zi,j−2 = q · (Zi+1 − Zi,j−2) (7.154)

Zi,j−1 = q · (Zi+1 − Zi,j−2) + Zi,j−2 (7.155)

172

7.4 Interaction Control

which may be used to substitute Zi,j−1 on the right-hand side of equation 7.153 to produce

Zi,j − Zi,j−1 = q · (Zi+1 − Zi,j−1) (7.156)

= q · (Zi+1 − (q · (Zi+1 − Zi,j−2) + Zi,j−2)) (7.157)

= q · (Zi+1 − Zi,j−2 − q · (Zi+1 − Zi,j−2)) (7.158)

= q · (1− q) · (Zi+1 − Zi,j−2) (7.159)

= q · (1− q)2 · (Zi+1 − Zi,j−3) (7.160)
... (7.161)

= q · (1− q)j−1 · (Zi+1 − Zi,0). (7.162)

Now, the layout zone’s total change in size after j minor tightenings can be expressed as the sum

Zi,j − Zi,0 = Zi,j − Zi,j−1 + Zi,j−1︸ ︷︷ ︸
= 0

− Zi,j−2 + Zi,j−2︸ ︷︷ ︸
= 0

− . . .− Zi,1 + Zi,1︸ ︷︷ ︸
= 0

− Zi,0 (7.163)

=

j∑
k=1

Zi,k − Zi,k−1 (7.164)

=

j∑
k=1

q · (1− q)k−1 · (Zi+1 − Zi,0) (7.165)

= q · (Zi+1 − Zi,0) ·
j−1∑
k=0

(1− q)k (7.166)

and the value Zi,∞ that the zone size tends to, can be calculated through the mathematical limit

Zi,∞ = Zi,0 + q · (Zi+1 − Zi,0) · lim
j→∞

j−1∑
k=0

(1− q)k. (7.167)

In mathematics, the term qk for k ≥ 0 is denoted as a geometric sequence, while the sum
∑

qk represents
its geometric series. The mathematical limit of such a geometric series is known to be

∞∑
k=0

=
1

1− q
(7.168)

for |q| < 1. Since the contraction quotient q must be 0 < q < 1 by definition (as already stated), it is
sure that |1− q| < 1 which allows to resolve equation 7.167 into

Zi,∞ = Zi,0 + q · (Zi+1 − Zi,0) · lim
j→∞

j−1∑
k=0

(1− q)k (7.169)

= Zi,0 + q · (Zi+1 − Zi,0) ·
(

lim
j→∞

j∑
k=0

(1− q)k︸ ︷︷ ︸
= 1

1−(1−q) = 1
q

− lim
j→∞

(1− q)j︸ ︷︷ ︸
= 0

)
(7.170)

= Zi,0 + q · (Zi+1 − Zi,0) · 1

q
(7.171)

= Zi+1 . (7.172)

Thus (in contrast to a geometric series, where the limit depends on the base of the exponentiation), the
q and 1

q cancel each other out in equation 7.171 such that the layout zone asymptotically approaches
its designated size Zi+1 independent of the contraction quotient. So, compared to a linear progressive

173

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

tightening policy, an exponential progressive tightening policy has the advantage that it is more rigor-
ous in the beginning of a settlement and then lets the layout zone snuggle down towards the desired
dimensions quite smoothly, not abruptly.

With an exponential progressive tightening policy, one might come to believe that the participants
will never be able to conclude a settlement because the layout zone gets tightened unceasingly. However,
this is prevented by the minimal movement distance (see Section 7.3.3.1): eventually, there is a minor
tightening in each tightening-settlement cycle whose contraction amount is so small that no participant
performs an action because the length of the action’s movement vector is smaller than the minimal
movement distance.

7.4.2.2 Regressive Tightening

A regressive tightening policy is a transient tightening policy where a major tightening is indeed per-
formed after every settlement, but is then followed by several minor enlargements. In this way, every
tightening is at first as rigorous as with an abrasive tightening policy – however, the reins are loosened
afterwards, which can be helpful if the participants have trouble finding a viable constellation. Although
various kinds of regressive tightening policies can be conceived in theory (such as a linear or an expo-
nential one, in the style of those discussed in Section 7.4.2.1), three particular traits should be envisaged
here per tightening-settlement cycle: (1) immediately after the major tightening, the minor enlargements
should be rather slight so as not to depart from the designated zone size too quickly, (2) then, the minor
enlargements should become more and more lavish to oblige the rivaling participants, and (3) towards
the end of the tightening-settlement cycle, the layout zone should be prevented from ever attaining the
size that it had before the major tightening – otherwise, the flow of self-organization would not make any
headway towards the final layout zone size.

A transient tightening policy that exhibits these three traits can be deduced from a logistic function
and is therefore denoted as a logistic regressive tightening policy. A logistic function has a characteristic
sigmoid curve, as illustrated in Figure 7.63 (a). The tightening policy is specified by ($, z, z∗), where
z and z∗ are zone size quotients: z defines the maximal minor enlargement that is to occur during a
tightening-settlement cycle, and z∗ specifies the first minor enlargement after each major tightening.
Both z and z∗ relate the desired zone size change to the total difference in zone size that results from the
major tightening. In mathematics, a logistic function is in general defined by the formula

f(x) =
1

1 + e−x
(7.173)

and can now be carried over to SWARM in order to describe the desired layout zone size Zi,j for all
j > 1 (i.e., the zone size after every minor enlargement). As will now be explained in detail, carrying
over the formula involves three steps, displayed in Figure 7.63 (b)–(d).

0

f(x)

1

2

3-3 x

Zone Size

1 2 4-1-2 0 3-3 j1 2 4-1-2

Zone Size

0 3-3 j1 2 4-1-2

Zi,0

Zi,1

Zi,0

Zi,1

z

Zone Size

0 3-3 j1 2 4-1-2

Zi,0

Zi,1

z*

z

(a) (b) (c) (d)

logistic
function

Figure 7.63: Utilizing a logistic function’s sigmoid curve for a logistic regressive tightening policy.

First, the sigmoid curve has to be stretched and shifted in vertical direction as shown in Figure 7.63 (b),
such that the layout zone size regresses from Zi,1 (zone size after the major tightening) towards Zi,0
(zone size before the major tightening). Thus, the formula becomes

Zi,j =
Zi,0 − Zi,1

1 + e−j
+ Zi,1 (7.174)

174

7.4 Interaction Control

where the dividend Zi,0 − Zi,1 stretches the curve and the addend Zi,1 shifts the curve upwards.
Second, referring to Figure 7.63 (c), the sigmoid curve must be stretched horizontally to meet the

given zone size quotient z. For that purpose, the formula is rewritten with a different base β as

Zi,j =
Zi,0 − Zi,1

1 + β−j
+ Zi,1 (7.175)

where β can now be deduced from z to obtain the desired steepness. The derivate of the logistic function
f(x) above is largest at x = 0 (the abscissa of the function’s inflection point). Hence, the greatest
vertical difference ∆y between two points on f(x) that are horizontally apart by ∆x = 1 is found
between x = −1

2 and x = 1
2 and amounts to

∆y = f
(

1
2

)
− f

(
−1

2

)
. (7.176)

This equation can be expressed in a different way because f(x) possesses point symmetry around the
point (0, f(0)). The proof is given by checking if f(x)− f(0) = −f(−x) + f(0):

1

1 + e−x
− 1

1 + e0
= − 1

1 + ex
+

1

1 + e0
(7.177)

1

1 + 1
ex
− 1

2
= − 1

1 + ex
+

1

2
(7.178)

ex

ex + 1
− 1

2
= − 1

1 + ex
+

1

2
(7.179)

ex

ex + 1
+

1

1 + ex
=

1

2
+

1

2
(7.180)

ex + 1

ex + 1
= 1. (7.181)

Now, due to this point symmetry, the function slope expressed in equation 7.176 can be rewritten as

∆y = 2 ·
(
f
(

1
2

)
− f(0)

)
(7.182)

which represents the maximal minor enlargement, and here also constitutes the zone size quotient z
because the height of the f(x) curve is 1. Substituting base e with a variable β allows to attain a specific
z, for which β can be deduced as follows:

∆y = 2 ·
(
f
(

1
2

)
− f(0)

)
(7.183)

z = 2 ·

(
1

1 + β−
1
2

− 1

2

)
(7.184)

z + 1 =
2

1 + β−
1
2

(7.185)

1 + β−
1
2 =

2

z + 1
(7.186)

β =

(
2

z + 1
− 1

)−2

(7.187)

β =

(
1 + z

1− z

)2

. (7.188)

Inserting this term in equation 7.175 to replace the base variable β leads to the new formula

Zi,j =
Zi,0 − Zi,1

1 +
(

1+z
1−z

)−2j
+ Zi,1 . (7.189)

According to Figure 7.63 (d), the third step is to shift the sigmoid curve in horizontal direction such
that the first minor enlargement after the major tightening is achieved as was specified through z∗. A

175

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

look at Figure 7.63 (c) suggests that the curve must be shifted rightwards by the distance between the
vertical axis and the abscissa at which f(x) veers away from Zi,1 by the specified zone size difference.
This can be formally expressed as follows:

Zi,0 − Zi,1

1 +
(

1+z
1−z

)−2j
+ Zi,1 − Zi,1 = z∗ · (Zi,0 − Zi,1) (7.190)

Zi,0 − Zi,1
z∗ · (Zi,0 − Zi,1)

= 1 +

(
1 + z

1− z

)−2j

(7.191)

1

z∗
− 1 =

(
1 + z

1− z

)−2j

(7.192)

−2j = log 1+z
1−z

(
1

z∗
− 1

)
. (7.193)

As is the case with the contraction quotient q in an exponential progressive tightening policy, both z
and z∗ lie in the open interval (0, 1). This means, that computing the logarithm is indeed allowed here
because 1+z

1−z > 1 and 1
z∗ − 1 > 0 for all values that z and z∗ can assume. So, equation 7.193 can now be

solved with the aid of the logarithmic laws, leading to

−2j =
ln
(

1
z∗ − 1

)
ln
(

1+z
1−z

) (7.194)

j =
ln
(

1
z∗ − 1

)
−2 · ln

(
1+z
1−z

) . (7.195)

This value for j delivers the desired horizontal shift of the sigmoid curve.19 But it should be noted, that
in effect the curve must be shifted even further since the specified zone size difference is to be effectuated
by the first minor enlargement, which in turn occurs after the initial major tightening. To be consistent
with the indexing of the kickoff enlargement (where the index i is 0) and the major contraction amounts
(with i ≥ 1), the additional horizontal shift must be 2. Hence, equation 7.189 finally becomes

Zi,j =
Zi,0 − Zi,1

1 +
(

1+z
1−z

)−2

(
j+

ln(1
z∗ −1)

−2·ln(1+z
1−z)

−2

) + Zi,1 . (7.196)

which –by expanding the exponent in the divisor– can be simplified into

Zi,j =
Zi,0 − Zi,1

1 +
(

1+z
1−z

)−2j + ln(1
z∗−1)/ ln(1+z

1−z) + 4
+ Zi,1 . (7.197)

For example, let there be a logistic regressive tightening policy with z = 1
4 and z∗ = 1

40 , wherein a major
tightening occurs from Zi,0 = 23 to Zi,1 = 19. Table 7.12 shows the zone sizes that are (based on
equation 7.197) calculated for 1 < j ≤ 10 and the corresponding curve is depicted in Figure 7.64. As
can be seen, the first minor enlargement increases the size of the layout zone by 0.1 (which is precisely 1

40
of Zi,0 − Zi,1 = 4). The greatest minor enlargement in this example occurs between j = 5 and j = 6
and amounts to 0.9982 (which is near to 1

4 of Zi,0 − Zi,1). The reason why this minor enlargement
does not exactly match the given zone size quotient z here, is that the greatest minor enlargement may –
depending on Zi,0 , Zi,1 , and z∗– also occur between non-integral values for j (in this example between
j = 5.0859 and j = 6.0859, where the zone size changes from 20.5 to 21.5 understandably).

Now that the desired zone sizes can be expressed via equation 7.197, the respective contraction
amounts are to be calculated. In line with the determination in Section 7.4.1.2 that a major contraction

19A plausibility check is to set z∗ = 0.5 which correctly results in j = 0 as expected.

176

7.4 Interaction Control

Table 7.12: Calculation values of a tightening example with a logistic regressive tightening policy.

Round Zone Size Absolute Change Contraction Amount
j Zi,j Zi,j − Zi,j−1 ξi,j

0 23.0000 — 0.0456
1 19.0000 -4.0000 -0.0013
2 19.1000 0.1000 -0.0022
3 19.2660 0.1660 -0.0051
4 19.6607 0.3947 -0.0095
5 20.4186 0.7580 -0.0121
6 21.4168 0.9982 -0.0095
7 22.2367 0.8199 -0.0050
8 22.6870 0.4503 -0.0021
9 22.8814 0.1944 -0.0008

10 22.9565 0.0751 -0.0003

z*

z

Zone Size

0

19

1 2 3 4 5 6 7 8 9 10 11 12-4 -3 -2 -1

20

21

22

23

j

Zi,0

Zi,1

inflection
point

=0.1

≈1

ith Tightening-Settlement Cycle

Figure 7.64: Zone size curve of the logistic regressive tightening example from Table 7.12.

amount ξi tightens the layout zone from Zi into Zi+1, a minor contraction amount ξi,j here changes the
layout zone from Zi,j into Zi,j+1. Following the previous ruminations, such a contraction amount ξi,j
scales both the width and the height of the layout zone by a factor of (1− 2ξi,j) respectively. The com-
bined change of width and height must of course be equal to the relative change in zone size. Formally
articulated, this allows to calculate the sought contraction amount as follows:

(1− 2ξi,j)
2 =

Zi,j+1

Zi,j
(7.198)

1− 2ξi,j =

√
Zi,j+1

Zi,j
(7.199)

2ξi,j = 1−

√
Zi,j+1

Zi,j
(7.200)

ξi,j =
1

2
− 1

2

√
Zi,j+1

Zi,j
. (7.201)

Regarding the given example, the contraction amounts calculated with this formula are also listed in
Table 7.12. Naturally, ξi,0 is positive because the contraction is indeed a tightening, whereas the other
contraction amounts are negative since they correspond to the minor enlargements of the layout zone.

As it is the case in Figure 7.64, z∗ is supposed to be much smaller than z. This statement calls for
attention to one further subtlety: if z∗ is too large, then the tightening profile can look awkward because

177

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

the change from Zi,1 to Zi,2 is greater than the change from Zi,2 to Zi,3. Such a situation, referred
to as hyperregression, is depicted in Figure 7.65 (a). On the other hand, it may be possible to find a
certain value z∗iso for which there is a situation of isoregression, where the zone size differences in these
two minor enlargements are equal, as in image (b). If z∗ is smaller than that value, then the first minor
enlargement is lesser than the second one, which is denoted as hyporegression (c).

0

f(x)

0.02

0.08

3-3 x1 2 4-1-2

(a) Hyperregression

0.04

0.06

0.10

65 7 0

f(x)

0.02

0.08

3-3 x1 2 4-1-2

(b) Isoregression

0.04

0.06

0.10

65 7 0

f(x)

0.02

0.08

3-3 x1 2 4-1-2

(c) Hyporegression

0.04

0.06

0.10

65 7

Figure 7.65: Depending on the first minor enlargement, three types of regression can be discerned.

In principle, Figure 7.65 makes it obvious that finding z∗iso is possible by taking equation 7.173 and
determining the abscissa x at which the difference between f(x + 1) and f(x) is equal to f(x). Again,
the base may be a variable β, which formally produces:

1

1 + β−(x+1)
− 1

1 + β−x
=

1

1 + β−x
(7.202)

1

1 + β−x−1
− 2

1 + β−x
= 0 (7.203)

1 + β−x − 2 ·
(
1 + β−x−1

)
= 0 (7.204)

1 + β−x − 2− 2 · β−x · β−1 = 0 (7.205)

β−x ·
(

1− 2

β

)
= 1 (7.206)

β−x =
1
β−2
β

(7.207)

x = − logβ

(
β

β − 2

)
. (7.208)

Having β as the base is fine for the logarithm because β =
(

1+z
1−z

)2
and 1+z

1−z > 1 (as already mentioned

before), which means that β > 1. However, the argument β
β−2 is only positive for β > 2 (and for β < 0

but that is not relevant here since β > 1), as visualized by the graph in Figure 7.66. This means, that a
value for z∗iso can only be found if β > 2, which in turn implies that z must be20(

1 + z

1− z

)2

> 2 (7.209)

1 + z

1− z
>
√

2 (7.210)

1 + z >
√

2−
√

2z (7.211)

z · (1 +
√

2) >
√

2− 1 (7.212)

z >

√
2− 1√
2 + 1

(7.213)

z > 0.1716 (7.214)

20The multiplication with 1− z in condition 7.210 does not involve an inversion of the inequation because 1− z > 0.

178

7.4 Interaction Control

which can also be seen in Figure 7.66. For convenience, equation 7.208 can be simplified into

x = − logβ

(
β

β − 2

)
(7.215)

= −
ln
(

β
β−2

)
ln(β)

(7.216)

= − ln(β)− ln(β − 2)

ln(β)
(7.217)

=
ln(β − 2)

ln(β)
− 1. (7.218)

1

1 2 3 4 5 6 7 8-8 -7 -6 -5 -4 -3 -2 -1

2

3

4

5

z

-2

-1

β

β
β − 2

(1 + z
1 − z)

2

Pole

Pole

0.170.17

Figure 7.66: Relevant graphs for the calculation of isoregression, showing that β must be greater than 2
(to achieve that β

β−2 > 0) and that z must be greater than 0.17 (such that β = (1+z
1−z)2 > 2).

To illustrate the matter that isoregression requires β > 2, subtracting the left-hand side of equa-
tion 7.202 from its right-hand side produces the function ∆regression(x):

∆regression(x) =
2

1 + β−x
− 1

1 + β−x−1
. (7.219)

Now, the curve family in Figure 7.67 is obtained by plotting ∆regression(x) for various β values. As the
image illustrates, the curves for β ≤ 2 do not cross the x-axis, whereas each of the curves for β > 2 has
exactly one zero point, depicted as white circles on the x-axis (for β = 2.78, β = 4, and β = 9). The
abscissae of these zero points represent the x-values of isoregression (for the given curves, according to
equation 7.218, these are: x = −1.24, x = −0.5, and x = −0.11). To the right of such a zero point, the
figure shows that ∆regression > 0, which signifies hyperregression. To the left of such a zero point, there
is hyporegression since the respective curve runs below the x-axis.

The zero points from Figure 7.67 are confirmed by Figure 7.68, where equation 7.218 is plotted in the
lower-right quadrant as a function x(β). The upper-left quadrant displays the function x−1(β) = β(x)
which represents the inverse function of x(β). The white circles from Figure 7.67 can also be found in
Figure 7.68 to visualize that the vertical lines through these circles cross the β(x) function precisely at
β = 2.78, β = 4, and β = 9 (as expected).

Based on these considerations, the calculation of z∗iso can now be achieved by inserting the term from
equation 7.208 into the logistic function of equation 7.173 (again, with e substituted by β). This delivers

179

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

0.2

1 2 3 4 5 6 7 8-8 -7 -6 -5 -4 -3 -2 -1

0.4

0.6

0.8

1.0

x
-0.2

 β

 = 2.78 (z = 1/4)

β = 4 (z = 1/3)

β = 2 (z = 0.17)

β = 1.1 (z = 0.024)

β = 1.5 (z = 0.10)

β = 1.2 (z = 0.046)

 β

 =
 9

 (
z =

 1/
2)

Δregression(x)

Figure 7.67: Curve family to illustrate that isoregression can only be obtained if β is greater than 2.

1
1 2 3 4 5 6 7 8

-8 -7 -6 -5 -4 -3 -2 -1

2

3

4

5

x

-2

-1

β

6

x(β)

β(x)

β = 4

β = 2.78

7

8

9β = 9

inverse
functions

Figure 7.68: Plot of the isoregression equation 7.218 as a function x(β) and its inverse function β(x).

the abscissa’s ordinate, which simultaneously represents the sought value for z∗iso:

z∗iso =
1

1 + β
−
(
− logβ

(
β
β−2

)) (7.220)

=
1

1 + β
β−2

(7.221)

=
β − 2

2β − 2
. (7.222)

Figure 7.69 illustrates z∗iso as a function of β. Since β > 1 by definition, legal values for z∗iso (with
0 < z∗iso < 1) are only obtained for β > 2 (as already discussed before). With respect to z, the

180

7.4 Interaction Control

isoregression value z∗iso is given by the formula

z∗iso =

(
1+z
1−z

)2
− 2

2
(

1+z
1−z

)2
− 2

(7.223)

=

(
1+2z+z2

1−2z+z2

)
− 2

2
(

1+2z+z2

1−2z+z2

)
− 2

(7.224)

=

1+2z+z2−2(1−2z+z2)
1−2z+z2

2(1+2z+z2)−2(1−2z+z2)
1−2z+z2

(7.225)

=
−z2 + 6z − 1

8z
(7.226)

= −z
8

+
3

4
− 1

8z
(7.227)

which is also depicted in Figure 7.69. Here, the legal values for z∗iso are found between the first zero
crossing of the curve and z = 1. The zero crossings occur at

−z2 + 6z − 1 = 0 (7.228)

z =
−6±

√
62 − 4

−2
(7.229)

z = 3∓
√

8 (7.230)

and the first of these lies at 3−
√

8 = 0.1716 (which equals the value from equation 7.214 of course). The
fact, that the z∗iso(z) curve runs below the first median (i.e., the bisecting line of the Cartesian system’s
upper-right quadrant), indicates that z is always greater than its z∗iso value.

0.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

1.0

1.5

2.0

z

-1.0

-0.5

β

β − 2
2β − 2

Pole Pole

4.5 5.0

− − + − − −z
8

3
4

1
8z

Figure 7.69: The isoregression zone size quotient z∗iso as a function of β and as a function of z.

As an example for calculating z∗iso, let there be a logistic regressive tightening policy with z = 1
5 .

According to equation 7.227, isoregression is then effecuated for z∗ = − 1
5·8 + 3

4 −
5
8 = −1+30−25

40 = 1
10 .

Imagining a major tightening from Zi,0 = 20 to Zi,1 = 15, equation 7.197 produces Zi,2 = 15.5 and
Zi,3 = 16.0 (so, since Zi,2 − Zi,1 = Zi,3 − Zi,2 , isoregression has been achieved here).

With the formulas above, it is possible to give evidence of a statement that was made earlier about
Figure 7.65 without any proof: if z∗ is smaller than z∗iso, then the obtained regression is hyporegression
(otherwise hyperregression). This can be attested by looking at equation 7.220: a value for z∗ that is
smaller (greater) than z∗iso implies that − logβ

(β
β−2

)
must become smaller (greater).21 As known from

21For an in-depth analysis, a case distinction can be made:

181

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

equation 7.208, this term corresponds to the abscissae in Figure 7.67, for which it is obvious that a
smaller (greater) x value –to the left (right) of a zero point– leads to hyporegression (hyperregression),
as already pointed out before.

Altogether, the tightening profile of a logistic regressive tightening policy is illustrated in Figure 7.70.
This exemplary depiction reflects three characteristic episodes of a SWARM run’s self-organization
phase. In the beginning, when there is still a lot of free space available, the module interaction pro-
ceeds comparably quickly because the rivalry is low in this first episode. Later, the ongoing tightening
of the layout zone effectuates increasingly competitive situations, such that more and more rounds of
interaction are required to achieve a settlement wherein all participants are contented. Typically it is this
second episode where the main hurdles of the problem need to be overcome and which decides whether
the self-organization will be ultimately successful or not. If the participants manage to get through, then
the remaining tightening-settlement cycles involve less and less disruptive actions which affect the layout
arrangement only slightly. In this third episode, especially close to the end, it can usually be observed that
only Centering actions are performed, such that the relative locations of the participants are maintained
while their overall constellation is successively driven towards its final size.

Z0

Size
of Z

0

Rounds of
Interaction

Z1

Initialization Self-organization Finalization

Se
ttl

em
en

t #
1

Se
ttl

em
en

t #
2

Se
ttl

em
en

t #
3

Se
ttl

em
en

t #
4

Se
ttl

em
en

t #
5

 Enlarge-
ment

Setting the
Layout Zone

ξ0

ξ1,0

ξ1,1

(Z1,0)

.....
Z2

Z3

Z4

Z7 Z8 Z9

Z5 Z6

Logistic
Regression

Figure 7.70: Exemplary tightening profile of a logistic regressive tightening policy.

The characteristics of that third episode can be important for transient tightening policies. In the case
of a logistic regressive tightening policy, Figure 7.70 indicates that the last tightening must be abrasive,
not regressive; otherwise, the tightening policy might be unable to reach the final layout size. Thus, since
the interaction control organ does not loosen the layout zone during the last tightening-settlement cycle,
it is vital that only marginal actions are performed therein.

7.4.3 Comfort Padding

Another topic which can be discussed within the interaction control organ’s scope of activities, is the idea
of comfort padding. Simply put, comfort padding allows to preserve layout space around a participant
during the self-organization. SWARM distinguishes two forms of comfort padding that will be described
in Section 7.4.3.1 and Section 7.4.3.2: solid comfort padding and volatile comfort padding.

7.4.3.1 Solid Comfort Padding

Solid comfort padding preserves a fix amount of layout space around a participant, which means that the
amount of layout space that is to be preserved does not change throughout a SWARM run. Figuratively

• If − logβ
(

β
β−2

)
, subsequently referred to as x (from equation 7.208), is negative and becomes smaller (greater), then

its absolute value |x| becomes greater (smaller), β−x is β|x| and becomes greater (smaller) since β > 1, and so the
whole term of equation 7.220 becomes smaller.

• If− logβ
(

β
β−2

)
, again referred to as x, is positive and becomes smaller (greater), then β−x is 1

β|x| and becomes greater

(smaller) since β|x| becomes smaller (greater), and so the whole term of equation 7.220 becomes smaller.

182

7.4 Interaction Control

Physical
Bounding Box

(a) Solid
Comfort Padding

(b) Volatile
Comfort Padding

(c) Solid + Volatile
Comfort Padding

(d)

P P P P

cscN

cscS

cscEcscW

cscN

cscS

cscEcscW

wP

hP

(1 - 2 cξ(i,j)) · wP

(1
 - 2

 c ξ
(i

,j)
) ·

 h
P

wP
 cs

hP
 cs

(1 - 2 cξ(i,j)) · wP
 cs

(1
 - 2

 c ξ
(i

,j)
) ·

 h
P

 c

s

Figure 7.71: Depiction of the different forms of comfort padding around a participant.

speaking, the consideration of comfort padding is achieved by treating the participant as if it were big-
ger than it actually is. In a formal way, the expression of equation 7.23 (which takes the participant’s
physically relevant shapes into account) can be said to define only the physical bounding box pP of
a participant P , as emphasized in Figure 7.71 (a). Then, the consideration of solid comfort padding
can be achieved by specifying the bounding box operator P (for usage throughout all the formulas in
Chapter 7) to be

P ← P
p+s
. (7.231)

If the amount of solid comfort padding is identical on each side of the participant, this solid bounding
box operator P

p+s
can be defined as

P
p+s

= }cs(pP) (7.232)

whereby the physical bounding box of P is simply enlarged in all directions by the same solid comfort
padding amount cs. If different amounts of solid comfort padding are desired on each side of P (referred
to as cN

s , cE
s , cS

s , and cW
s for the northern, eastern, southern, and western side respectively), the operator

can be formally defined in rectangle notation via

P
p+s

=
((
`(pP)− cW

s ,⊥(pP)− cS
s
)
,
(
a(pP) + cE

s ,>(pP) + cN
s
))

(7.233)

which is illustrated in Figure 7.71 (b). The idea of solid comfort padding is useful when it is desired to
preserve a certain amount of layout space between the interacting participants for a subsequent routing
step that will then be performed in the finalization phase. This is also about to be demonstrated by the
examples of Section 8.3.

7.4.3.2 Volatile Comfort Padding

In contrast to solid comfort padding, the volatile comfort padding of a participant changes throughout
the self-organization phase of a SWARM run. The change depends on the size of the layout zone, so this
is how the idea of comfort padding is correlated with the activities of the interaction control organ. Like
solid comfort padding, volatile comfort padding preserves layout space around a participant during the
module interaction – however, this is not done for the sake of the layout space, but with the intention
to streamline the flow of self-organization. In fact, the amount of layout space preserved by the volatile
comfort padding approaches zero towards the end of the self-organization phase. As above, volatile
comfort padding can likewise be incorporated by specifying

P ← P
p+v

(7.234)

for the formulas of Chapter 7. Similar to equation 7.232, the already known contraction operator ~ can
be used to define the volatile bounding box operator P

p+v
as

P
p+v

= ~cξ(i,j)(pP) (7.235)

183

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

but in contrast to cs in equation 7.232, the volatile comfort padding factor cξ(i, j) here is not a constant
value but changes with each major zone tightening i (and every minor zone tightening j, if applicable).
The ~ operator satisfies the notion that volatile comfort padding is supposed to keep the aspect ratio
of the participant, as it is shown in Figure 7.71 (c). It may also be the case that both solid and volatile
comfort padding are requested. For that purpose, the bounding box operator can be specified as

P ← P
p+s+v

(7.236)

with
P

p+s+v
= ~cξ(i,j)

(
P

p+s

)
(7.237)

which signifies that the volatile comfort padding is clasped (as a kind of “outer” padding) around the par-
ticipant’s solid comfort padding (serving as its “inner” padding). This can also be seen in Figure 7.71 (d),
where the combination of solid and volatile comfort padding is depicted. The following ruminations also
concentrate on this case of combined (solid plus volatile) comfort padding since equation 7.237 can be
considered a generalized form of equation 7.235.22

To determine the padding factor cξ(i, j) for equation 7.237, the volatile comfort padding share cv
with cv ≥ 0 is introduced. It allows to specify how much of the vacant space inside the layout zone Zi,j
should be occupied by the volatile comfort padding, totaled over all participants P . In formal terms, this
can be expressed as ∑

P∈P
P

p+s+v
−
∑
P∈P

P
p+s

= cv ·

(
Zi,j −

∑
P∈P

P
p+s

)
. (7.238)

According to equation 7.94, the contraction operator ~ in equation 7.237 increases the size of a partici-
pant by a factor of

P
p+s+v

P
p+s

=
(
1− 2 · cξ(i, j)

)2 (7.239)

and it goes without saying, that this can likewise be said about the sum of the participants’ sizes:∑
P∈P P

p+s+v∑
P∈P P

p+s

=
(
1− 2 · cξ(i, j)

)2
. (7.240)

Now, inserting equation 7.240 into equation 7.238 and replacing
∑

P∈P P
p+s

with the more compact

notation P
p+s

produces

(
1− 2 · cξ(i, j)

)2 · P
p+s
− P

p+s
= cv ·

(
Zi,j − P

p+s

)
(7.241)((

1− 2 · cξ(i, j)
)2 − 1

)
· P

p+s
= cv ·

(
Zi,j − P

p+s

)
(7.242)(

− 4 · cξ(i, j) + 4 · cξ(i, j)2
)
· P

p+s
= cv ·

(
Zi,j − P

p+s

)
(7.243)

−4 · cξ(i, j) + 4 · cξ(i, j)2 =
cv ·
(
Zi,j − P

p+s

)
P

p+s

(7.244)

4 · cξ(i, j)2 − 4 · cξ(i, j) + cv ·
(

1− Zi,j
P

p+s

)
= 0 (7.245)

22If only volatile comfort padding (without solid comfort padding) is concerned, the subsequent formulas still hold true, with
P

p+s+v
effectively being P

p+v
and P

p+s
being P

p
.

184

7.4 Interaction Control

and this quadratic equation can be solved with the quadratic formula to calculate the padding factor as

cξ(i, j) =

4−
√

16− 16 · cv ·
(

1− Zi,j

P
p+s

)
8

(7.246)

which can be simplified to

cξ(i, j) =
1

2
−

√√√√1

4
− 1

4
· cv ·

(
1− Zi,j

P
p+s

)
(7.247)

=
1

2
− 1

2
·

√√√√1− cv ·
(

1− Zi,j
P

p+s

)
. (7.248)

As can be seen in equation 7.246, the other solution for cξ(i, j) –where the root is added in the dividend,
not subtracted– is discarded here, because the padding factor must be cξ(i, j) < 0 to obtain an enlarge-
ment (instead of a contraction). A closer look at equation 7.248 confirms, that –since the area of the
layout zone is always greater than the sum of the participants’ areas (without volatile comfort padding)–
the padding factor is definitely smaller than zero (unless cv = 0, in which case the padding factor also is
zero):

cξ(i, j) =
1

2
− 1

2
·

√√√√√√√√√
1− cv ·

(
1− Zi,j

P
p+s︸ ︷︷ ︸
>1

)
.

︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≥1︸ ︷︷ ︸
≤0

(7.249)

Since cξ(i, j) depends on Zi,j , the sum of the participants’ areas with their volatile comfort padding
changes by every zone tightening. Without volatile comfort padding, the sum of the participants’ areas
would remain constant throughout a SWARM run, irrespective of the layout zone which closes in towards
its final size as illustrated in Figure 7.72 (a). Remembering the considerations at the end of Section 7.4.2,
a characteristic drawback of such a tightening approach is that the fierceness in the competition of the in-
teracting participants usually peaks out in the middle (i.e., in the second episode) of the self-organization
phase.

This is where the idea of volatile comfort padding can help to equilibrate the evocation of emergent
behavior. Figure 7.72 (b) shows an exemplary graph for a volatile comfort padding share of cv = 1

2 .
In mathematical terms, one could say that without volatile comfort padding, the derivative of the par-
ticipants’ totaled areas with respect to the progression (regression) of the major and minor tightenings
(enlargements) –indexed with i and j– is zero, whereas with volatile comfort padding, the derivative is

d

d(i, j)
P

p+s+v
= cv ·

d

d(i, j)
Zi,j . (7.250)

The positive effect of such a correlation is, that –on the one hand– the occurrence of the more competitive
interaction situations is preponed and thus tackled sooner, while –on the other hand– the pressure on the
interacting participants not only increases with every zone tightening but simultaneously decreases due
to the diminution of the volatile comfort padding.

This statement is exemplified in Figure 7.73. For comparison, one may first consider a situation
without volatile comfort padding as in (a1). After the tightening of the layout zone (a2), the ten partic-
ipants pass a round of interaction. The primary intention of the participants is to get inside the layout
zone, which leads to a constellation teeming with interference (a3). In particular, interference on a cor-
ner of a participant is impedimental since it rules out a possible Budging action. Thus, the participants

185

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Size
of Z

0

Rounds of
Interaction

Initialization Self-organization Finalization

Total Size of
Participants

Size
of Z

0

Rounds of
Interaction

Initialization Self-organization Finalization

Total Size of
Participants

(intrinsic minimum)

(a) Without Volatile Comfort Padding

(b) With Volatile Comfort Padding (cv = ½)

Figure 7.72: Total size of the participants (a) without and (b) with volatile comfort padding.

(a) Without Volatile Comfort Padding
(a1) Initial Situation (a2) After Zone Tightening (a3) After a Round of Interaction (a4) Potential Solution

(b) With Volatile Comfort Padding
(b1) Initial Situation (b2) After Zone Tightening (b3) After a Round of Interaction (b4) Final Settlement

Figure 7.73: Two equivalent interaction situations showing the effect of volatile comfort padding.

in this example have immense difficulty to unravel the abundance of conflicts, even though the current
constellation is quite close to a potential solution (a4).

Now, Figure 7.73 (b) devises an analogous example with volatile comfort padding. For that purpose,
the ten participants are assumed to be identical to those of example (a), while the layout zone is initially
larger. To make a point, one may consider a situation such as the one in (b1) which is –due to the
volatile comfort padding of the participants– equivalent to (a1) from SWARM’s point of view, albeit
on a larger areal scale.23 In temporal regard, this means that situation (b1) is encountered sooner than
situation (a1) within the SWARM run. The zone tightening, shown in image (b2), is accompanied by a

23Figuratively speaking, image (b1) in Figure 7.73 portrays the initial situation of example (b) from a farther distance than
image (a1) portrays the initial situation of example (a).

186

7.5 Final Remarks About the Conception of SWARM

diminishment of the participants’ volatile comfort padding, and for that reason the subsequent struggle
is not as competitive as in example (a). Thus, after completing one round of interaction, the participants
attain the constellation of (b3) which exhibits only two occurrences of interference. With just four
Budging and Centering actions (see arrows), easily determined by the respective participants, the way
is paved to reach the final settlement (b4). This constellation is equivalent to the potential solution of
(a4), so the rest of the self-organization phase is trivial and demands only a couple of further Centering
actions.

7.5 Final Remarks About the Conception of SWARM

Now that the layout automation methodology of SWARM has been described in detail, the following
Section 7.5.1 throws a glance at a couple of methodological aspects in comparison to similar conceptions
found in classical optimization algorithms (as covered in Section 3.1.1). Then, Section 7.5.2 is about to
elucidate where SWARM shares common ground with existing models of decentralized systems (as
discussed in Section 6.5) and where it takes a different route.

7.5.1 Comparison with Optimization Algorithms

So far, this chapter may have left the impression that the SWARM methodology covertly borrows a
couple of already-known ideas from the existing crop of optimization-based automation approaches. Al-
though this is not entirely unfounded, a distinct line of demarcation can still be drawn between SWARM
and those classical optimization algorithms, as the following explanations –covering several aspects– are
about to show.

Nested Loops

In its basic form, as depicted in Figure 3.1, an optimization algorithm iteratively explores the solution
space to determine possible candidate solutions and evaluates these candidates to assess their quality.
Depending on the respective algorithm, this iterative strategy can involve multiple loops whereat such
a loop may also be nested inside another one. For example, the partitioning algorithms referred to as
Kernighan-Lin (KL) [335] and Fiduccia-Mattheyses (FM) [336] are both built upon a pair of nested
loops. This set-up bears a striking resemblance to SWARM, whose self-organization phase recursively
iterates over a loop that is nested inside another loop, as shown in Figure 7.3. But a detailed look on the
respective mechanisms reveals the distinction between these partitioning algorithms and SWARM.

The KL algorithm works by repeatedly swapping two cells from different partitions while FM con-
secutively moves cells from one partition to the other. This is fictitiously done in an inner loop until all
cells have been swapped/moved. After that, only some of these swaps/moves are effectively performed.
This represents a so-called pass, which is followed by further passes due to the outer loop. In SWARM,
the inner loop encompasses n rounds of interaction wherein each participant may act n times (whereas in
KL or FM each cell is only swapped/moved once –at most– within one pass). Another distinction is that
there are no fictitious actions in SWARM – an action is either performed or not. SWARM’s outer loop
comprises the tightening-settlement cycles. As the name implies, the layout zone gets tightened between
these cycles, i.e., the situation is changed prior to the outer loop’s next iteration. In contrast, the input
solution to a pass in KL and FM is always equal to the output solution of the previous pass.

Condition of a Participant

One elementary trademark of an optimization algorithm can be found in the formal metric used to rate
the quality of a candidate solution [337]. As already mentioned, this is typically done via a cost function
which incorporates several optimization goals and adds up to a numerical value enabling a relational com-
parison (as covered in [338], for example). This is reminiscent of a participant’s condition in SWARM
(see Section 7.3.1), a construct used to encapsulate several influencing factors. Two of these, interfer-
ence and turmoil, are –as with a cost function– even used for a numerical comparison (Section 7.3.4.1),
although other ones, such as wounds, affect the module interaction in a more elaborate way.

187

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

A decisive difference between SWARM and optimization algorithms in this regard is that in SWARM,
following the idea of decentralization, a participant’s condition (or, more precisely, the benefit of its
prospective condition in relation to its present condition) merely pertains to that specific participant and
affects nothing but that participant’s next action. So, at no point during a SWARM run is the fitness of
the overall layout solution quantified as a whole, since each participant only needs to care for its own
personal well-being (namely described by its condition).

Handling Overlaps

The matter behind SWARM’s influencing factor interference (Section 7.3.1.1) is also a common element
of optimization-based placement algorithms: an overlap of design components. Yet again, this apparent
similarity comes into play in a different way here. In a placement algorithm, the occurrence of overlaps
depends on the representation used to describe the positions of the components. In a topological rep-
resentation, where the component positions are described relative to each other (as in the slicing model
introduced by [339]), the components cannot overlap. In contrast, an absolute representation (intro-
duced in [340]) permits illegal overlaps during the optimization, taken into consideration by a (typically
quadratic) penalty cost term that is to be minimized. In that case, the overlaps may even subsist in the
final solution and need to be eliminated through a dedicated post-processing step [341].

SWARM differs from both of these practices as overlaps are –in contrast to placement algorithms
based on topological representations– indeed allowed during the module interaction, but are –in contrast
to placement algorithms based on absolute representations– definitely reduced until obliteration during
each tightening-settlement cycle. Furthermore, the overlaps are not incorporated in a simple linear or
quadratic fashion, but involve further expedients (such as aversion) shown to have a positive impact on
the overall flow of self-organization. And above all, the overlaps in SWARM are not just an undesired
nuisance, but also an essential driving force behind its module interaction.

Weight Versus Emphasis

The influencing factor turmoil (Section 7.3.1.2) includes a quantity named emphasis to specify the im-
portance of a connection between two participants in a SWARM run. This may bring a similar notion to
mind, generally known from optimization algorithms under the term weight or weighting factor [342].
Most prominently, each individual summand of an optimization algorithm’s cost function is usually
multiplied with a certain weighting factor. This way of controlling how the evaluated solution quality
depends on a certain criterion allows to prioritize the various optimization goals that the algorithm is
supposed to pursue. Since a cost function usually embraces the solution as a whole, the targets of these
optimization goals can be quite diverse in nature. For example, the three penalty addends of the cost
function in TimberWolf [343] –(1) total wirelength, (2) cell overlaps, and (3) inequality of row lenghts–
represent different quantities with different dimensions.

In SWARM however, the emphasis is –unlike a weight– not applied to diverse optimization goals
in general, but only with respect to a participant’s connections in order to determine the participant’s
overall turmoil. Furthermore, a look at equation 7.34 shows that the emphasis does not appear therein as
a numerator, but as a denominator (to calculate the so-called relaxation threshold) and can therefore not
be considered a weighting factor in that sense. In equation 7.48, the emphasis does indeed appear as a
numerator to compute the tension in a connection, but not to play different kinds of opposing optimiza-
tion goals off against each other in order to make a compromise on the global scale. Instead, suchlike
reciprocities are globally resolved by the locally incentivized actions of SWARM’s participants.

Tractive Forces

As discussed in Section 7.3.1.2, the concept of tension influences a participant’s actions like the trac-
tive force of a rubber strap. The same suggestion also lies behind Force-Directed Placement [45], an
optimization-based approach where –viewed from the physics of classical mechanics– the placement
problem is modeled as a spring-mass system. For each pair of connected components, this approach lets
the two components attract each other as if joined by an extension spring, which means that the tractive

188

7.5 Final Remarks About the Conception of SWARM

force is linearly proportional to the spring’s deflection (given by the distance between the components).24

Thus, the placement problem is solved by finding the mechanical equilibrium, i.e., by calculating a loca-
tion for each component such that the net force on it becomes zero (or at least minimal).

Despite the striking similarity, SWARM’s employment of a tractive force is quite different. Above
all, the concept of tension in SWARM only belongs to one of several influencing factors. Apart from this,
the magnitude of the force does not obey Hooke’s law [344], but follows a combined linear and quadratic
characteristic (Figure 7.20), also featuring a quantity called strength to consider a participant’s total
number of connections (thus streamlining the self-organization). Furthermore, the net force in SWARM
is not calculated vectorially but represents a scalar value and can therefore never be zero (unless all
participants lie centered on top of each other). Instead, SWARM defines the relaxation threshold which
is correlated with the size of the layout zone –to account for its repetitive tightening– and facilitates
overlap-free arrangements without the need to withdraw a component from an already occupied location
(as would be necessary in Force-Directed Placement).

Free Peripheral Space and Prime Rectangles

Presumably, SWARM’s conception of the so-called free peripheral space –as covered in Section 7.3.2–
looks kind of crude for the reason that it may not be really “free” due to pervasion (for example because
of its blind spots). Stating that this observation is not that much of a problem (see Section 7.3.2.2) may
also have a stale aftertaste to it, sounding as if this deficiency has to be conceded due to the lack of a
better conception. In contrast, other works such as [345] resort to the seemingly neater notion of prime
rectangles since such a prime rectangle has the valuable predicate that is is always surely vacant – by
definition [346].

Yet, the introduction of free peripheral space in SWARM is justified for two major motives. First, the
geometrical recipe for perceiving the free peripheral space (Section 7.3.2.1) is relatively simple and can
even be formulated as a closed functional expression. Hence, it does not necessitate any programming
constructs (such as iteration loops and conditional statements) and gets by with quite simple graphical
operations (e.g., determining the intersection of two rectangles). Second, there is –by definition– always
exactly one free peripheral space per participant at any given point during a SWARM run (whereas there
could be a multitude of prime rectangles). In that regard, a participant’s doing is well-determined and
straightforward. Altogether, both motives help to keep a participant’s efforts low on the local scale,
which is quite in line with SWARM’s philosophy of decentralization and its aim of provoking emergent
behavior on the global level. With this mindset, thinking of SWARM as a complex system, interference
due to blind spots might even be crucial to achieve self-organization because –as already stated before–
component overlaps represent a fundamental impetus for the overall flow of module interaction.

Actions Versus Perturbations

Some of SWARM’s native actions –described in Section 7.3.3.1– might be evocative of similar imple-
mentations found in classical optimization algorithms. In particular, a counterpart of the Swapping action
(whereby a participant trades places with another participant in SWARM) is commonly used by place-
ment approaches based on Simulated Annealing to generate a new placement state with every iteration.
For example, the TimberWolf tool referenced above can (apart from attempting a single-cell displace-
ment) employ such a modification –in the context of Simulated Annealing typically called a perturbation
[347]– to perform a pairwise interchange of cells [348]. That interchange may also include a change in
orientation (as done by SWARM’s rotation morphism). Thus, the idea of a cell interchange is nearly
identical to SWARM’s Swapping action – however, it differs in the way that it is utilized.

Simulated Annealing works stochastically, i.e., the decision whether to perform a single-cell dis-
placement or a pairwise interchange (or, in general, any other perturbation) is random [349]. Likewise,
the cell to displace or –accordingly– the pair of cells that are to be interchanged is selected randomly.
In contrast, the action exploration (including the choice of involved participants) in SWARM proceeds
pursuant to a completely deterministic agenda. Just as well, the action to perform in SWARM is picked

24In fact, the analogy with springs is not entirely correct because a spring’s ends already have a certain distance in the spring’s
resting state.

189

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

according to a well-defined and unambiguous comparison metric (see Section 7.3.4.1). Concerning the
single-cell displacement, it must be further recognized that SWARM does not feature only one suchlike
perturbation but a couple of actions where the number of acting participants amounts to 1 (e.g., Center-
ing, Budging, and Yielding). Choosing an action, every participant in SWARM follows clear preferences
in its decision-making because every participant is meant to embody a rational agent (see Section 6.5.3).
In Simulated Annealing however, the acceptance or rejection of a (worse) solution is again a question of
probability and therefore not “rational” nor deterministic at all.

Greediness

The willingness of temporarily accepting an interim solution that is worse than the current candidate,
represents a particular feature of Simulated Annealing and a couple of other optimization algorithms
(such as the partitioning algorithms KL and FM mentioned above). In contrast, many layout automation
algorithms are greedy: they only permit an improvement of the current layout solution by always taking
a better neighboring candidate with every iteration (and coming to a stop if no immediate improvement
can be found) [350]. Due to this attitude, such algorithms are not able to overcome local optima and
therefore they often fail to find the globally optimal solution [351]. Since the participants in a SWARM
run always strive for beneficial actions (to improve their condition), SWARM also seems to be greedy in
this algorithmic sense. However, this can not be definitely said for several reasons.

First, it should be understood that the idea of aversion (see Section 7.3.1.1) and the influencing
factor wounds (Section 7.3.1.4) have a kind of memory effect on their participants. Because of this,
an action that might have been rejected some rounds of interaction before may now become beneficial.
So, although that action is now –from the participant’s subjective point of view– better than before,
it is –objectively perceived– still the same as it was back then. Thus, whether to call the participant
greedy or not, becomes a rather moot question. Second, while a participant always chooses the best
action explored, it can be the case that no beneficial action has been found at all. Then, as mentioned
in Section 7.3.4.1, the participant deliberately executes a Yielding even if that is not beneficial. So,
the participant acts non-greedily regarding its worsened prospective condition, but –on the other hand–
yields on purpose (to revive the flow of self-organization). Third, it must be emphasized that all these
considerations always apply to the decisions of an individual participant, investigating its local options
within its current situation. For that reason alone, the term greedy (or non-greedy), which generally refers
to the solution as a whole, is inappropriate to describe a decentralized methodology such as SWARM.

Placement Templates

Section 7.3.4.1 states that the locations of the participants in a SWARM run, relative to each other, can
be predefined in advance via a placement template, thus enforcing a desired overall arrangement. This
idea has already been exploited by a couple of optimization-based layout automation works in the past.
For example, the “design by example” approach of [352] requires a sample layout –the template– to
automatically produce other layout variants by availing the expert knowledge embedded in that template
(such as the device placement, for example). The authors of [89] praise the good quality of the layouts
obtained with this technique, but also criticize that a new sample layout must be created manually for
each type of circuit. This is different in SWARM, where the relative placement of the participants is
specified via constraints (as will be discussed in Section 8.3.2). Apart from this, there are –despite the
common idea of using a template– a couple of further distinctions to be revealed on closer examination.

In [352], the placement topology of the sample layout is turned into a slicing floorplan description.
To also include those device arrangements that would be ruled out by confining the multitude of potential
solutions to a single slicing structure, the tool in fact considers an entire set of differing slicing structures.
Since there exists an exponential number of slicing structure alternatives for a given placement topology,
this in turn led to the introduction of so-called option slices (representing alternative binary slicing com-
positions) to cope with the significant increase in memory size and processing time. In contrast, the
constraint-based template description of SWARM not only bypasses the need for suchlike tricks but also
covers an even more exhaustive set of possible constellations because it allows for slicing and nonslicing
arrangements alike. The tool of [353] converts an existing layout into a symbolic template described

190

7.5 Final Remarks About the Conception of SWARM

via corner-stitching [354], providing a separate representation for each mask layer to describe that plane
in terms of rectangular tiles. While this representation also involves constraints, these are not used to
specify the relative positions of design components as in SWARM, but to enforce technological design
rules (such as a minimum spacing between two tiles on the same mask layer).

In general, SWARM sets itself apart from other template-based approaches due to the fact that the
placement template in SWARM does not apply to primitive devices (nor basic shapes) but compound
modules. The relative locations of these modules are explicitly enforced through constraints, while the
positioning of the individual devices –and thereby caring for detailed layout issues such as the spacing
between these devices– is implicitly managed by the respective module along with the module-internal
wiring. This is the power of delegating such low-level layout tasks down to the governing modules in
a decentralized fashion. Speaking of decentralization, the following Section 7.5.2 is about to compare
SWARM with other decentralized systems.

7.5.2 Comparison with Decentralized Systems

Comparing SWARM with cellular automata (Section 6.5.1), game theory (Section 6.5.2), multi-agent
systems (Section 6.5.3), and agent-based models of collective motion (Section 6.5.4), the major similar-
ities and the major differences can be summarized as in Table 7.13.

Table 7.13: Comparison of SWARM with existing models of decentralized systems.

Cellular Automata SWARM Methodology

Similarities: • Realizes an interaction of cells on a
usually planar two-dimensional grid.

• Realizes an interaction of modules in
the two-dimensional layout plane.

• Complex geometrical patterns
dynamically emerge from the
interaction of the cells.

• The overall layout solution is
expected to emerge from the
interaction of the modules.

• A cell’s state can change (e.g., from
“dead” to “alive”), which influences
its subsequent transitions.

• A module’s condition can change
(e.g., from “wounded” to “healed”),
which influences its further actions.

• A cell’s transition to the next state
involves the cell’s local
neighborhood (its adjacent cells).

• A module’s decision-making involves
the module’s local surrounding (its
free peripheral space).

Differences: ◦ All cells are arrayed in a strictly tiled,
space-discrete manner.

◦ The layout plane is continuous (down
to the marginally small design grid).

◦ The location, form, and size of a cell
is fix and does not change.

◦ The modules can move through the
layout plane and deform themselves.

◦ The evolvement of patterns can be
highly dependent on the initial
population (e.g., in Conway’s Game
of Life).

◦ The emergence of the final layout
solution is desired to be largely
independent of the initial
constellation.

Game Theory SWARM Methodology

Similarities: • Used to study the strategic interaction
among independent players.

• Can be regarded as an infinitely
repeated game played by the
modules.

to be continued on next page

191

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Table 7.13: Comparison of SWARM with existing models of decentralized systems (continued).

• Distinguishes between different
criteria by which various types of
games can be classified.

• Each round of interaction represents
a noncooperative, discrete,
asymmetric, non-constant-sum,
sequential, perfect-information stage
game.

• Is particularly targeted at situations
where the desires of the different
players conflict.

• The interaction of the participating
modules is built on competition, not
on cooperation.

• Each player is self-interested and
wants to maximize his or her own
payoff.

• Each module is self-interested and
wants to improve its own situation as
much as possible.

Differences: ◦ A player’s desires are expressed via a
utility function, mapping the player’s
preferences to a real number.

◦ A module’s desires are modeled
through its condition, which in turn
depends on five influencing factors.

◦ A player’s decision-making may
consider the potential actions of the
other players (referred to as a
complete-information game).

◦ A module’s decision-making ignores
the potential subsequent actions of
the other modules (denoted as an
incomplete-information game).

◦ Noncooperation often leads to an
outcome that is inferior for all players
(e.g., see the Nash equilibrium in the
Prisoner’s Dilemma).

◦ The noncooperative, competitive
setting is supposed to result in an
outcome that is optimal for all
modules.

Multi-Agent Systems SWARM Methodology

Similarities: • An agent is able to perform actions
upon its environment.

• A module can see its layout context
and react to environmental changes
(such as a zone tightening).

• An agent is autonomous in its
decisions about how to act.

• Each module chooses its own actions
by itself (possibly restricted by
design constraints).

• An agent has a particular degree of
intelligence (and often mobility).

• The modules are implemented as
computational entities and can move
through the layout plane.

• An agent has a limited viewpoint
with only incomplete information
about its environment.

• A module’s free peripheral space is
locally confined by the module’s
nearest obstacles.

• An agent is rational in that it adheres
to a goal-directed behavior following
clear preferences.

• Every module acts in a clear and
deterministic way, pursuing the goal
of becoming (or staying) contented.

Differences: ◦ The agents typically co-exist beside
the problem that they solve (e.g., an
object that they control).

◦ The modules do not only help in
solving the problem but also
represent a part of its solution.

to be continued on next page

192

7.5 Final Remarks About the Conception of SWARM

Table 7.13: Comparison of SWARM with existing models of decentralized systems (continued).

◦ Often involve control architectures
for coordinating the agents and
reaching consensus.

◦ The interacting modules do not
exchange information and do not rely
on mutual consent.

◦ Usually each agent is implemented as
a single and enclosed entity.

◦ Multiple modules can be organized
as a hierarchical module association.

Agent-Based Models SWARM Methodology

Similarities: • Used to animate a spatially explicit,
collective motion of an ensemble
through a geographical sphere.

• Used to evoke a spatially explicit,
collective motion of layout modules
through the layout plane.

• Inspired by the movement of large
animal groups such as a flock of
birds or a school of fish.

• Inspired by the movement of
livestock during roundup (for
example, a herd of sheep).

• The ensemble members are mainly
driven by biological emotions and
sensations (e.g., fear and hunger).

• The modules are influenced by
natural feelings and impacts
(including tension, aversion and
wounds).

• A member’s behavior can change
over time due to the inclusion of
memory into its behavioral model.

• Aversions and wounds abate only
slowly and thus have a memory effect
on a module’s decision-making.

• Interested in simulating how the
ensemble manages to avoid collision
with other moving environmental
obstacles.

• The modules constantly need to
adapt themselves to their
environment which changes with
every zone tightening.

Differences: ◦ All ensemble members are created
equal.

◦ The modules may have individual
looks, tasks, goals and abilities.

◦ The ensemble members are typically
modeled as dot-like incorporeal
entities.

◦ Each module has a “body” with a
nonzero width and height (and thus
an area).

◦ The overall motion of the ensemble
is a polarized coherent movement
with smooth shifts in direction.

◦ The overall motion of the modules is
a centripetal aggregation with
turbulences such as jumps and swaps.

As Table 7.13 shows, SWARM embeds a lot of ideas and concepts found in existing models of
decentralized systems. Apart from this, every principle of self-organization covered in Section 6.4 can
also be encountered in the SWARM methodology (see Figure 7.74):

The Basic Constituents of Self-organization: Above all, the three core concepts of SWARM embody
the basic constituents of self-organization introduced in Section 6.4.1: the responsive modules cor-
respond to the workers (and indeed perform the actual layout work), the module interaction follows
well-defined behavioral rules of action (in accordance with each module’s individual desires and
abilities), and the interaction control organ steers the overall flow towards the desired outcome by
exerting pressure (and imposing the goals as constraints).

Operational Closure and Structural Coupling: The notions of operational closure and structural cou-
pling (Section 6.4.2) can be identified in the limited authority of the interaction control organ which
is not able to manipulate the module interaction directly but can only spur the modules by chang-
ing their environment (i.e., decreasing the size of the layout zone). Thereby, the interaction control

193

7. The Methodology: Self-organized Wiring and Arrangement of Responsive Modules

Responsive Modules

Module Interaction

Interaction Control

Operational Closure and
Structural Coupling

(Section 6.4.2)

The Edge of Chaos
(Section 6.4.3)

Reducing Friction and
Promoting Synergy

(Section 6.4.6)

Recursivity and Feedback
(Section 6.4.4)

Stigmergic Interaction
(Section 6.4.5)

The Virtue of Selfishness
(Section 6.4.7)

Law of Requisite Variety
(Section 6.4.8)

Basic Constituents
of Self-organization

(Section 6.4.1)

(Section 7.4)

(Section 7.3)

(Section 7.2)

Three Core Concepts of SWARM

The Principles of Self-organization
and their incorporation into the

Figure 7.74: Incorporation of the principles of self-organization into the three core concepts of SWARM.

organ leaves it up to the cognitively open network of interacting modules to adapt itself to the new
situation by changing its internal structure (i.e., the layout arrangement) on its own behalf, using
innate operations (i.e., the modules’ catalog of actions).

The Edge of Chaos: Operating at the edge of chaos (Section 6.4.3) is a principle of self-organization
which affects both the interaction control organ and the module interaction. Concerning the inter-
action control organ, the edge of chaos corresponds to a moderate tightening policy that is neither
too lenient (which would risk to let the modules drift towards stagnation) nor too aggressive (which
could lead the interaction into an erratic mêlée). Regarding the module interaction, the edge of
chaos is found in the fine-tuned taring of aversions and wounds, whereby the self-organization
proceeds on the thin red line between overly static (i.e., firm but unfertile) behavior and overly
dynamic (i.e., fruitful but frantic) behavior.

Recursivity and Feedback: Recursivity (Section 6.4.4) can be ascribed to the way in which the inter-
action control organ drives the self-organization through successive tightenings of the layout zone.
Therein, the output of each tightening (i.e., the settlement) serves as the input for the next tighten-
ing. One might claim that this is no different from any iterative algorithm, but whenever a layout
constellation in SWARM is again encountered a second time, the subsequent actions will probably
deviate from those of the first time due to the memory effect of aversions and wounds (internal
quantities that make the system behavior history-dependent). The module interaction’s feedback
to the control organ is the difficulty (i.e., the number of necessary interaction rounds) to obtain
a settlement. Feedback can also be observed in the interaction itself, both positive and negative.
A module moving into a position of interference may be repulsed and driven back again (thus
withdrawing the move = negative feedback) or may cause the other modules to relent and back off
(thus endorsing the move = positive feedback).

Stigmergic Interaction: In contrast to request-and-response schemes commonly employed in multi-
agent systems, the module interaction in SWARM is not based on direct communication but on
stigmergy (Section 6.4.5). Just like the movement of an ant in an ant colony inevitably leads to
a deposition of pheromones which in turn attracts other ants (see Figure 6.4), a module’s actions
inevitably modify the environment of the others (e.g., the free peripheral space of the module’s
neighbors). Furthermore, the modules also coordinate themselves via the influencing factors that
they want to alleviate (such as overlaps and tension), equivalent to the stigmergic way in which the
traffic lights of Figure 6.10 co-control each other via the traffic that they regulate.

194

7.5 Final Remarks About the Conception of SWARM

Reducing Friction and Promoting Synergy: The idea to reduce friction and promote synergy (Sec-
tion 6.4.6) has been worked into SWARM’s comparison metric for evaluating explored actions
(and thus sits on the fence between a responsive module’s decision-making and its inherent effect
on the overall module interaction). Actions that involve multiple participants are rated by deter-
mining the collective interference, turmoil, or relaxation delta of all involved participants (not just
the leading participant). Hence, synergistic actions with mutual benefit for multiple participants
are automatically favored over frictional actions by which the leading participant only profits from
the sacrifices of others.

The Virtue of Selfishness: The virtue of selfishness (Section 6.4.7) is another self-organization princi-
ple that can be detected in the decision-making of the individual responsive modules and thereby
has an impact on the overall module interaction. The selfishness resides in the modules’ egoistic
pursuit of their personal contentment: an action is only performed by the respective module if it
improves that module’s situation. This is definitely true for actions that consists of a single trans-
formation and for Hustling actions. Only in rare cases where the module performes a Swapping or
a Pairing action it may happen that the module concedes certain losses for the greater benefit of
its counterpart.

Law of Requisite Variety: Last but not least, Ashby’s law of requisite variety (Section 6.4.8) is re-
flected in the layout variability of SWARM’s responsive modules. The greater the variety of a sys-
tem is, the better are its chances to cope with changes in its environmental conditions. In analog
layout design, these conditions are represented by the constraints that define each specific design
problem. So, following the law of requisite variety, encouraging a module to cover as many layout
variants as possible, and exploiting that variability during a module’s action exploration enlarges
the system’s room for maneuver and increases the probability of effectuating a layout arrangement
wherein all constraints are really satisfied.

As can be seen, paying respect to the principles of self-organization is an ambition that has been embraced
throughout all three core concepts of the developed SWARM methodology. From the perspective of
complex adaptive systems, these principles are meant to equip SWARM with the ability to “survive”
situations marked by unforeseen disturbances, i.e., to produce layout solutions in full-custom quality for
various design problems with settings of design constraints that have not been completely anticipated in
advance.

Beyond this aim, the conception of a layout methodology such as SWARM –implementing a system
of self-organizing layout modules– can be considered perfect if the success of the self-organization is
largely independent of the initial module constellation. In terms of chaos theory, this means that the
system is engineered in a way such that the desired solutions represent attractors, i.e., stable states
towards which the system tends to evolve for a wide range of starting conditions. Part III of this thesis is
about to show inhowfar the current implementation of SWARM can already be seen to hit that mark.

195

Part III

The Implementation

8. Implementation and Results

Chapter 8

Implementation and Results

Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke (British writer)

The SWARM methodology, as described in Chapter 7, has been implemented in the programming
language SKILL [109] to be used in the Cadence Virtuoso IC design environment. Although SWARM is
still in its infancy, its current implementation is already advanced enough to achieve various remarkable
results – as this chapter is about to show. First, Section 8.1 provides a couple of examples to illustrate
the evocation of emergent behavior in SWARM. Next, Section 8.2 demonstrates how SWARM can be
successfully employed for the practical purpose of floorplanning. Finally, Section 8.3 targets the main
application area of SWARM, displaying how it can be utilized to tackle analog place-and-route problems.
As will be seen, SWARM manages to coalesce the chief advantages of both top-down automation and
bottom-up automation: the versatility of an automatism and the quality of its resulting layouts.

8.1 Examples of Emergence in SWARM

As has been explained in Chapter 6, the intention of the SWARM methodology is to let an optimal
layout outcome emerge from the interaction of responsive layout modules, similar to the way capti-
vating patterns can evolve in a cellular automaton. To substantiate this idea, the following examples
illustrate inhowfar the phenomenon of emergence can really be observed in SWARM, distinguishing
between the emergence of a collective motion (Section 8.1.1), the emergence of an optimal layout out-
come (Section 8.1.2), and also the –unfortunate– emergence of interaction cycles that never terminate
(Section 8.1.3).

8.1.1 Example of an Emerging Collective Motion

Figure 8.1 presents a simple SWARM example –also given in [355]– that shows the step-by-step inter-
action of two participants P1 and P2 inside a rectangular layout zone. For the sake of exemplification,
these participants are only symbolic modules, which is to say that they are not imposed on real layout
devices. Additionally, neither rotations nor deformations are taken into consideration during the action
exploration in this example, i.e., the participants can only perform translational moves.

The individual actions of the two participants can be traced throughout images (a) to (f) in the upper
portion of Figure 8.1. First, image (a) displays the initial constellation with the two participants lying
completely inside the layout zone. Next, the layout zone is tightened as in (b) whereby both participants
become prone and strive to take an action. Participant P1, with the desire to become safe again, executes
an Evasion move by going downwards and to the left, thus aligning itself with the north-western corner
of the layout zone (c). In that location, there is only little overlap with P2 compared to the interference
that would be sustained if P1 moved straightforwardly down. For the same reason, P2 then also performs

197

8. Implementation and Results

Figure 8.1: Example of how high-level behavior can emerge from SWARM’s low-level interactions.

and Evasion, wandering upwards and right into the layout zone’s south-eastern corner (d). Since both
participants have become safe and clear (and thus contented in this case), first P1 begins Centering itself
within its free peripheral space (e) just like P2 also performs a Centering until both of them reach a
stable settlement in their final locations (f).

Comparing the initial constellation (a) with the final constellation (f) makes it clear that P1 and P2

have been forced to re-organize themselves by turning from an above-below arrangement into a side-by-
side arrangement. As the six discussed images in Figure 8.1 put on record, the two participants actually
achieved this through a successive series of individual actions (utilizing two native types of actions:
Evasion and Centering). But, looking at this low-level interaction from a higher-level perspective (as
done in the lower part of Figure 8.1), the participants’ movements between the incipient situation (after
the zone tightening) and the resulting arrangement (the final constellation) give the impression as if the
modules had virtually performed a pirouette motion around their common center point, keeping their
orientations like the gondolas of a Ferris wheel.

This overall motion represents a fine example of how an apparently solidary, collective behavior can
be seen to emerge from the basic actions of the self-interested participants. Just like the cells in Conway’s
Game of Life (Section 6.5.1) do not have any knowledge of the patterns that evolve from their aggregate
state transitions, the emergence of the seemingly harmonic pirouette motion in Figure 8.1 is beyond the
grasp of the involved participants and can only be perceived by an outside observer – as is typical for
emergent phenomena.

8.1.2 Examples of an Emerging Optimal Layout Outcome

A complete placement exercise is depicted in Figure 8.2, with ten selected snapshots giving an account
of the entire SWARM run that is witnessed to solve the problem. As in the example of Figure 8.1, the

198

8.1 Examples of Emergence in SWARM

given layout zone is rectangular and again the seven participants are implemented as symbolic modules
that may solely perform translational movements. Each participant has volatile comfort padding –but no
solid comfort padding– (see Section 7.4.3), as visualized by the white rectangles that are drawn around
the modules.

The initial constellation is not viable because no participant is clear and two of them (P1 and P3) are
even prone. With several rounds of interaction, the participants manage to struggle themselves free from
each other and occupy locations where all of them are contented – this viable constellation represents the
1st settlement (b). After the subsequent tightening of the layout zone, the overall arrangement changes
only slightly, with participant P4 moving from its location below P1 to the right of P1 (c). The relative
placement in this 2nd settlement is maintained until the 5th settlement inclusively (d). Following another
zone tightening, the subsequent round of interaction leads to the intermediate, unviable constellation of
(e), where P4 now overlaps P1. This arrangement persists until the interference causes the jammed par-
ticipant P1 to perform a Swapping with P7 (f). After several more rounds of interaction, P4 has built up
much aversion against P7 (in addition to the aversion against P1), making it jump next to –and partially
on top of– P2 (g). A westwards Budging of P2 can diminish but not eliminate the interference, which
prompts P4 to trade places with P7 after some time (h). This results in an overlap between P4 and P6,
which induces a Swapping of P6 with P3, at last leading to a viable constellation that marks the 6th settle-
ment (i). Thus, watching the interaction throughout (e) to (i), it seems as if the problematic interference
gets passed around different pairs of participants until it is eventually resolved. The remaining interac-
tion comprises only Centering moves, so the overall arrangement does not change apart from becoming
more and more compact until the final constellation is reached with the 10th settlement (j).

As should be visible in the depiction, this outcome of the SWARM run represents the optimal solution
to the placement problem (from which the example was originally constructed). It should also be noted,
that this arrangement is completely nonslicing: it is not even possible to cut out any rectangular part of
the constellation unless at least one participant is torn in half. Therefore, the placement problem in this
example truly has just one globally optimal solution without any alternative permutations (except for a
horizontal and/or vertical flipping of the entire layout, to be sure).

In essence, this example demonstrates the basic ability of SWARM’s interacting participants to ob-
tain the best possible arrangement by themselves, even if there is only one single optimum available.
Since every participant is selfishly focused on its own personal well-being, none of them is aware of
the remarkable feat being accomplished at large. Again, only an outside observer recognizes that the
participants’ collective contentment in the end reflects their global achievement of solving the overall
design problem. Hence, the optimal outcome truly emerges from the aggregate interaction – quasi as a
“byproduct” of the participants’ egoistic pursuit of happiness.

Table 8.1: Number of settlements, rounds, and actions in the SWARM run of Figure 8.2.

Settle- Num. of Actions per Round of Interaction Num. of
ment Rounds 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th Actions

1st 5 7 5 1 1 0 - - - - - - - - 14
2nd 4 4 7 1 0 - - - - - - - - - 12
3rd 3 6 4 0 - - - - - - - - - - 10
4th 3 5 3 0 - - - - - - - - - - 8
5th 4 6 7 1 0 - - - - - - - - - 14
6th 13 6 7 7 7 7 7 7 7 7 7 7 4 0 80
7th 3 5 1 0 - - - - - - - - - - 6
8th 3 5 1 0 - - - - - - - - - - 6
9th 4 5 7 1 0 - - - - - - - - - 13
10th 4 5 7 1 0 - - - - - - - - - 13

To analyze the presented SWARM run more deeply, Table 8.1 provides a so-called interaction record,
i.e., a matrix listing the number of settlements, the number of interaction rounds per settlement, the

199

8. Implementation and Results

Figure 8.2: Example of a placement problem with the emergence of the globally optimal outcome.

200

8.1 Examples of Emergence in SWARM

number of actions per round of interaction, and the total number of actions per settlement. Peering at the
facts and figures in this interaction record, four particular observations can be made:

• It may be that during the first round of interaction in a tightening-settlement cycle less participants
take an action than in the second round. This is because participants that do not lie near an edge
of the layout zone do not become prone from the tightening and therefore do not need to act (until
coming in conflict with other participants when these move in to become safe again). From then
on, the number of acting participants in general abates until no participant at all performs an action.
• The interaction record exhibits the three characteristic episodes that can often be discerned in the

self-organization phase of a SWARM run (as mentioned in the context of Figure 7.70 on page 182).
Here, one can roughly say that the first episode encompasses the first four settlements (with a
maximum of 14 actions per settlement), while the second episode begins with the fifth settlement
(where the declining number of actions starts to rise again) and peaks out in the sixth settlement
(with a total of 80 actions), so the third episode spans the remaining four settlements (seeing the
number of actions drop again).
• Although the three characteristic episodes of a SWARM run’s self-organization phase can be iden-

tified in this example, the flow of self-organization is relatively fluent. This is reflected in the
number of interaction rounds per tightening-settlement cycle since the maximum value (13 rounds
for the sixth settlement) is less than thrice as large as the arithmetic average (which amounts to 4.6
rounds per settlement). This is a remarkably good achievement among the test cases put into effect
so far, as a comparison with the results of the subsequent example is about to show (see Table 8.3).
• The interaction adds up to a total of only 176 performed actions. Of course, the number of ex-

plored actions is much greater (with a total of 3368 actions) but still smaller –by several orders
of magnitude– than the number of iterations in a conventional optimization algorithm (which usu-
ally amounts to several millions). This reinforces the idea of decentralization and local decision-
making in SWARM, where the fund of available actions is considerably richer and each individual
choice of action is far more intelligent than the savage perturbations and probabilistic search tech-
niques found in existing top-down approaches. The computational effort per action may be larger
in SWARM, but nonetheless only 28 seconds of runtime were required to obtain the optimal solu-
tion in this case.

To underline SWARM’s emergent problem-solving abilities, another placement task is given in Fig-
ure 8.3, similar to the previous example but with ten instead of seven layout modules this time. As
before, the initial constellation is again unviable (a), yet the participants manage to eliminate all conflicts
once again and attain a viable constellation with the 1st settlement (b). The 2nd settlement involves only
a minor revision of the overall arrangement (c), which –from then on– remains basically the same until
reaching the 12th settlement (d). With the subsequent tightening, the situation gets difficult and asks for
relatively many rounds of interaction to settle. Traversing numerous intermediate, unviable constellations
–a couple of which being displayed throughout images (e) to (h)– the participants succeed in resolving
all overlaps, thus concluding the 13th settlement with the viable constellation depicted in (i). The last
tightening incites a further compaction of the arrangement and produces the final constellation, which
ends the SWARM run with the 14th settlement (j).

In this example, the participants’ interaction has again lead to the optimal outcome, which is once
more a nonslicing arrangement as in the previous example. However, there are multiple global optima in
this case since some modules can be permuted without increasing the overall area occupation (such as the
two participants in the north-eastern corner of the layout zone). A look at the interaction record for this
SWARM run –given in Table 8.2– substantiates that the self-organization did not proceed as smoothly
as in the previous example: the highest number of rounds amounts to 29 (for the 13th settlement) and is
more than five times as large as the arithmetic average (5.5 rounds per settlement).

Another insight from the interaction record here is that the first episode of this SWARM run lasts
extremely long, such that the second episode occurs quite late (in the penultimate settlement) and more
or less merges with the third episode (i.e., the last settlement). Paradoxically, this shift is rooted in the
participants’ achievement of obtaining a nearly optimal arrangement already with the 2nd settlement. For
that reason, the remainder of the problem-solving is entirely postponed to the very end. Yet, although

201

8. Implementation and Results

Figure 8.3: Second example of a placement problem with the emergence of an optimal outcome.

202

8.1 Examples of Emergence in SWARM

Table 8.2: Number of settlements, rounds, and actions in the SWARM run of Figure 8.3.

Settle- Num. of Actions per Round of Interaction Num. of
ment Rounds 1st 2nd 3rd 4th 5th 6th 7th 8th 9th ... 27th 28th 29th Actions

1st 3 10 10 0 - - - - - - ... - - - 20
2nd 6 5 10 10 3 1 0 - - - ... - - - 29
3rd 2 3 0 - - - - - - - ... - - - 3
4th 3 6 2 0 - - - - - - ... - - - 8
5th 3 6 3 0 - - - - - - ... - - - 9
6th 5 7 10 4 1 0 - - - - ... - - - 22
7th 3 7 3 0 - - - - - - ... - - - 10
8th 3 6 10 0 - - - - - - ... - - - 16
9th 3 6 10 0 - - - - - - ... - - - 16
10th 3 6 10 0 - - - - - - ... - - - 16
11th 3 7 10 0 - - - - - - ... - - - 17
12th 3 8 10 0 - - - - - - ... - - - 18
13th 29 9 10 10 10 10 10 10 10 10 ... 10 10 0 279
14th 8 10 9 10 7 8 4 3 0 - ... - - - 51

this imbalance is detrimental for the fluency of the self-organization, this example demonstrates that the
participants are still able to abandon such a local optimum –as good as it may be– in favor of an even
better (here: the best) solution. The total number of performed actions adds up to 514 (out of 15476
explored actions), demanding a runtime of 145 seconds for the entire SWARM run.

To fortify that the successful outcome in this example is not just a lucky strike, SWARM has been
put to the test with ten different initial constellations (six of which were handcrafted while four were
randomly created). For each SWARM run, the initial constellation and the final constellation, as well as
certain statistics are listed in Table 8.3, sorted by the totally required runtime (with the SWARM run of
Figure 8.3 appearing as #4). In six cases (covering runs with handcrafted and randomly created initial
constellations), the participants manage to achieve the optimal solution while in the remaining four runs
only a nearly optimal placement emerges from the interaction.

Table 8.3: Comparison of different SWARM runs for the same placement problem.

Run Initial Constellation Final Constellation SWARM Run Statistics

#1

(handcrafted) (nearly optimal)

Rounds per Settlement: (∅ = 54
15 = 3.6)

4, 4, 4, 2, 3, 3, 2, 3, 3, 4, 3, 5, 5, 3, 6
Number of Actions:
2089 (e) = 1549 (r) + 254 (p) + 286 (d)

Total Runtime:
49 seconds

#2

(handcrafted) (optimal)

Rounds per Settlement: (∅ = 77
14 = 5.5)

4, 3, 3, 3, 3, 3, 3, 3, 5, 27, 3, 3, 4, 10
Number of Actions:
10302 (e) = 9532 (r) + 531 (p) + 239 (d)

Total Runtime:
106 seconds

to be continued on next page

203

8. Implementation and Results

Table 8.3: Comparison of different SWARM runs for the same placement problem (continued).

#3

(handcrafted) (optimal)

Rounds per Settlement: (∅ = 79
13 = 6.1)

37, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9
Number of Actions:
15894 (e) = 15104 (r) + 598 (p) + 192 (d)

Total Runtime:
137 seconds

#4

(handcrafted) (optimal)

Rounds per Settlement: (∅ = 77
14 = 5.5)

3, 6, 2, 3, 3, 5, 3, 3, 3, 3, 3, 3, 29, 8
Number of Actions:
15476 (e) = 14706 (r) + 514 (p) + 256 (d)

Total Runtime:
145 seconds

#5

(handcrafted) (optimal)

Rounds per Settlement: (∅ = 95
13 = 7.3)

40, 3, 3, 3, 3, 3, 3, 4, 4, 10, 3, 4, 12
Number of Actions:
19529 (e) = 18579 (r) + 740 (p) + 210 (d)

Total Runtime:
172 seconds

#6

(randomized) (nearly optimal)

Rounds per Settlement: (∅ = 104
13 = 8.0)

4, 3, 3, 5, 3, 8, 4, 5, 7, 32, 3, 12, 15
Number of Actions:
21702 (e) = 20662 (r) + 779 (p) + 261 (d)

Total Runtime:
198 seconds

#7

(randomized) (nearly optimal)

Rounds per Settlement: (∅ = 100
14 = 7.1)

4, 3, 3, 3, 3, 3, 9, 9, 5, 24, 4, 3, 21, 6
Number of Actions:
23098 (e) = 22098 (r) + 719 (p) + 281 (d)

Total Runtime:
208 seconds

#8

(randomized) (optimal)

Rounds per Settlement: (∅ = 112
13 = 8.6)

11, 3, 4, 4, 4, 9, 3, 52, 4, 3, 3, 4, 8
Number of Actions:
26597 (e) = 25477 (r) + 879 (p) + 241 (d)

Total Runtime:
226 seconds

#9

(handcrafted) (nearly optimal)

Rounds per Settlement: (∅ = 145
13 = 11.2)

4, 5, 2, 4, 4, 4, 5, 5, 17, 81, 4, 4, 6
Number of Actions:
34528 (e) = 33078 (r) + 1177 (p) + 273 (d)

Total Runtime:
296 seconds

to be continued on next page

204

8.1 Examples of Emergence in SWARM

Table 8.3: Comparison of different SWARM runs for the same placement problem (continued).

#10

(randomized) (optimal)

Rounds per Settlement: (∅ = 267
16 = 16.7)

5, 3, 3, 4, 4, 28, 3, 177, 3, 3, 3, 4, 15, 3, 3, 6
Number of Actions:
83948 (e) = 81278 (r) + 2408 (p) + 262 (d)

Total Runtime:
648 seconds

As can be seen, the required runtime is closely correlated with the number of actions involved.
This primarily refers to the number of explored actions –marked (e)– although Table 8.3 also indicates
inhowfar these explored actions divide into

• rejected actions (r):
actions that are either deemed invalid or inferior to other actions,
• performed actions (p):

the actions which are indeed executed by the participant(s), and
• dismissed actions (d):

chosen actions that are not executed since they are trivial (primarily because they fall below the
minimal movement distance).

A correlation between the runtime and the fluency of the self-organization can also be recognized in
Table 8.3. The smoothest flow of self-organization is therefore found in example #1, where the number
of rounds per settlement only varies between 2 and 6 (conceding that the final constellation is not the
global optimum). A counterexample is given by the SWARM run of #10, climaxing in a total of 177
interaction rounds for the eigth settlement (not in vain since the best possible solution is finally obtained).

To survey the number of actions in greater detail, Table 8.4 presents a so-called action palette cov-
ering selected SWARM runs of Table 8.3. For each of these runs, the number of explored, rejected,
performed, and dismissed actions are listed – distinguishing between the different kinds of native ac-
tions.

An attentive reader will probably notice that in the listed SWARM runs, no explored Lingering or
Yielding action is ever rejected. Considering the former kind of action, this is generally always the
case (because the participant is definitely contented when the Lingering is being explored). In contrast,
a Yielding move can be rejected for the reason of being invalid. Furthermore, it can be seen that all
dismissed actions in the table are Centering actions. Although this is usually the case indeed, it does not
necessarily have to be like this because actions of other kinds can also be trivial.

More importantly, the following three basic insights can be gained from the given action palette:

• In each SWARM run, actions of almost every kind have been performed (in run #10 even all kinds
of actions). This finding fleshes out that the general spectrum and the concrete implementation of
SWARM’s catalog of native actions is quite feasible.
• By far, the largest exploration effort (and highest rejection rate) naturally pertains to Budging,

Swapping, and Pairing actions (to some extent rooted in the exhaustiveness of the respective explo-
ration plan). This awareness presumably provides a major starting point for potential performance
improvements in further developments of the SWARM methodology.
• The majority of performed actions usually represent Centering actions. To reduce runtime, it

might be worthwhile to investigate the impact of eliding a Centering move in case the participant
is contented anyway (especially in the early tightening-settlement cycles of a SWARM run, when
there is still much space available).

Notwithstanding these performance aspects, one has to acknowledge that –to a certain degree– the re-
quired runtime is deliberately condoned in favor of visualizing a SWARM run since it allows the user
to track the module interaction in real-time. This represents a valuable asset of SWARM that would be

205

8. Implementation and Results

Table 8.4: Detailed number of actions for selected SWARM runs of Table 8.3. The abbreviated kinds
of actions are: Re-entering (R), Centering (C), Lingering (L), Budging (B), Hustling (H),
Swapping (S), Pairing (P), Evasion (E), and Yielding (Y).

Number of Actions (Distinguished by Kind of Action)
Run Qualifier R C L B H S P E Y Total

#2

Explored: 106 770 1 3020 47 3224 3060 74 0 10302
Rejected: 99 102 0 2967 41 3212 3051 60 0 9532

Performed: 7 429 1 53 6 12 9 14 0 531
Dismissed: 0 239 0 0 0 0 0 0 0 239

#4

Explored: 106 770 0 4621 69 5435 4400 75 0 15476
Rejected: 106 137 0 4562 55 5413 4378 55 0 14706

Performed: 0 377 0 59 14 22 22 20 0 514
Dismissed: 0 256 0 0 0 0 0 0 0 256

#6

Explored: 100 1040 0 6637 89 7406 6322 107 1 21702
Rejected: 94 171 0 6545 77 7386 6303 86 0 20662

Performed: 6 608 0 92 12 20 19 21 1 779
Dismissed: 0 261 0 0 0 0 0 0 0 261

#8

Explored: 118 1120 5 8430 110 8901 7810 102 1 26597
Rejected: 118 208 0 8328 97 8869 7778 79 0 25477

Performed: 0 671 5 102 13 32 32 23 1 879
Dismissed: 0 241 0 0 0 0 0 0 0 241

#10

Explored: 148 2670 1 26757 364 29714 24150 143 1 83948
Rejected: 141 642 0 26492 331 29524 24042 106 0 81278

Performed: 7 1766 1 265 33 190 108 37 1 2408
Dismissed: 0 262 0 0 0 0 0 0 0 262

impossible and impractical to realize for a stochastic optimization algorithm which executes millions of
perturbations to find a solution. Another concession is that SKILL is just a scripting language, whereas
a potential implementation in a compilation-based programming language might reduce the runtime sig-
nificantly. Nevertheless, this of course does not belittle the merit of the overall methodology.

8.1.3 Examples of Nonterminating Interaction Cycles

While the previous examples illustrated positive effects of emergent behavior in SWARM, there can un-
fortunately also be futile occurrences of emergence. Most intriguing, under certain circumstances it can
happen that the interaction runs into a sequence of periodically recurring situations, which –unbeknownst
to the interacting participants– represents a fatal infinity loop that will never terminate without interven-
tion from outside.

An example for such a nonterminating interaction cycle is given in Figure 8.4, beginning with an
initial constellation of nine participants as depicted in image (a). All participants are centered within
their free peripheral space – except P1, which perceives its free peripheral space SP1 (limited by P3, P4,
P5 and P8) and determines the center of SP1 as its new location. After performing its Centering move
(b), P1 is still clear even though P2 had been in a blind spot of P1’s free peripheral space. But due to
that move, the free peripheral spaces of P2, P3 and P4 change (whereas the other participants remain
unaffected). Therefore, P2, P3 and P4 also perform Centering moves, leading to the new situation shown
in (c). By now, the free peripheral space of P1 has changed –in particular because its western corridor
is not limited by P8 anymore but by P2– and P1 once again centers itself (d), which in turn entails
small Centering movements of P2, P3, and P4 (e). Because of P1’s move, the obstacle limiting its free
peripheral space to the north is now P6 instead of P5, causing P1 to make a Centering leap downwards

206

8.1 Examples of Emergence in SWARM

and slightly to the right (f). While this does not alter the free peripheral space of P4, it provokes Centering
actions of P2 and P3 (g). By then, the westwards obstacle for P1’s free peripheral space is P8 once again,
making P1 walk to the left by performing yet another Centering (h). This is followed by Centering moves
of P3 and P4 (i), which results in a situation that is identical to the initial constellation (a). Since moving
from a clear location to another clear location –as was the case with all Centering actions above– does
not consider aversions and wounds (thus eluding a memory effect in examples like this), the participants
will definitely repeat the described succession of movements once again, and again and again without
ever coming to an end.

P1

P2

P4

P5P9 P5
P6

P7

P8

P9

P3P3

SP1 P1

P2

P3P3

P4

P1

P2

P4

P3P3

P1
P2

P3P3

P4

P2

P3P3

P4

P5P9 P5
P6

P7

P8

P9 P5P9 P5
P6

P7

P8

P9

P5P9 P5
P6

P7

P8

P9 P5P9 P5
P6

P7

P8

P9

P1

P2

P3P3

P4

P5P9 P5
P6

P7

P8

P9

P1

P1
P2

P3P3

P4

P5P9 P5
P6

P7

P8

P9

P1

P2

P3P3

P4

P5P9 P5
P6

P7

P8

P9

P1

P2

P5P9 P5
P6

P7

P8

P9

P4

P3P3

(a) Initial Constellation (b) After Centering of P1

new location of P1

new locations
of P2, P3, P4

SP4

SP3
SP2

(c) After Centering of P2, P3, P4

(d) After Centering of P1 (e) After Centering of P2, P3, P4

(g) After Centering of P2 and P3 (i) After Centering of P3 and P4

(f) After Centering of P1

(h) After Centering of P1

= (a) Initial Constellation

Figure 8.4: Example of a nonterminating interaction cycle: a rotatory circulation sequence.

207

8. Implementation and Results

Such an outcome of perpetual interaction (which is somehow reminiscent of a draw in chess due to
repetition of position) cannot be detected from the limited viewpoint of a single participant but only by an
outside observer who surveys the entire problem as a whole. The possibility to get lost in an infinity loop
like this represents a tragic but natural weakness of decentralized systems that can also be encountered
in reality. An enthralling example is given by a so-called ant mill as first reported in [356]. Although the
pheromone-guided trailing habit of social insects helps an ant colony in accessing food resources (see
Section 6.3.2), a self-intersection of the pheromone trail can delude the leading ants into tracing the tail
of the foraging party. This leads to the formation of a rotating circular column (illustrated in Figure 8.5
[357]) which may go on forever, i.e., until the ants die of exhaustion.

Figure 8.5: Circular column of an ant mill, as drawn according to a photograph (source: [357]).

Equivalent to an ant mill, the periodic interaction sequence of Figure 8.4 can be regarded as a cycle
of rotatory circulation (with participant P1 truly going round and round in endless circles). Another kind
of nonterminating interaction cycle that can also be observed to emerge in SWARM is an oscillation. The
simplest form is a two-period oscillation, where the movements in one round of interaction are entirely
reversed in the subsequent round.

To visualize such an oscillation sequence, Figure 8.6 provides a plain example with seven partic-
ipants. In the initial constellation (a), all participants except P1 are centered within their free periph-
eral space. Naturally, P1 also performs a Centering move leading to the situation shown in image (b).
Thereby, the free peripheral space of P2 gets trimmed, making the participant wander to the right via
another Centering (c). In this fashion, the free peripheral space of P3 is also cut, provoking a Centering
move downwards (d). The domino effect continues to propagate through P4 (e) and P5 (f) while par-
ticipants P6 and P7 are not bothered. So, the situation shown in (f) represents the initial constellation
for the next round of interaction (g). Since P5 moved out of P1’s southern corridor with its previous
move, the free peripheral space of P1 now stretches down to the zone outline and lets it step back into its
initial location (h). Thereby, the free peripheral space of P2 analogously gets reverted to its original size,
sucking P2 back into its previous location (i). The same thing happens to P3 (j) and this chain reaction

208

8.1 Examples of Emergence in SWARM

proceeds through P4 (k) as well as P5 (l). Like before, P6 and P7 stay where they are so in the end, the
participants’ final arrangement –as can be seen in (l)– is equal to the initial constellation (a).

SP1

(a) Initial Constellation

= (a) Initial Constellation

P1

P2

P3

P4P5

P6
P7

new
location

of P1

P1
P2

P3

P4P5

P6
P7

P1
P2

P3

P4P5

P6
P7

P1
P2

P3
P4P5

P6
P7

P1
P2

P3
P4P5

P6
P7

P1
P2

P3
P4P5

P6
P7

P1

P2

P3
P4P5

P6
P7 P1

P2

P3
P4P5

P6
P7

P1

P2

P3

P4P5

P6
P7 P1

P2

P3

P4P5

P6
P7 P1

P2

P3

P4P5

P6
P7

P1
P2

P3
P4P5

P6
P7

(b) After Centering of P1 (c) After Centering of P2

(d) After Centering of P3 (e) After Centering of P4 (f) After Centering of P5

(h) After Centering of P1 (i) After Centering of P2

(j) After Centering of P3 (k) After Centering of P4 (l) After Centering of P5

(g) Next Round of Interaction

Figure 8.6: Example of a nonterminating interaction cycle: a two-period oscillation sequence.

From then on, similar to the circulation example of Figure 8.4, the participants in Figure 8.6 will
repeat the illustrated sequence of actions without ever settling in a definite location. But in contrast to
the circular rotation in the former example, the interaction here rather represents an oscillation wave,
consisting of a round with “forward” movements followed by a round of countermanding “backward”
movements. Figuratively, the participants swing forth and back like electrical energy oscillates between
the inductor and the capacitor in an LC resonant circuit.

209

8. Implementation and Results

Another parallel can be drawn between SWARM and cellular automata once again, since Conway’s
Game of Life also knows oscillators, i.e., periodic patterns which repeat themselves on the spot ad
infinitum like the oscillation cycle in Figure 8.6 can be seen to do. Furthermore, moving patterns such as
gliders and spaceships can be understood as the automaton’s counterpart to the perpetual interaction in
Figure 8.4 (although the pattern’s trajectory is a straight line instead of a circular path). Completing the
picture, a settlement in SWARM corresponds to a still life in the cellular automaton. This whole analogy
fits snugly, but it also points to an important difference as follows.

A settlement in SWARM is stable in a static sense. A nonterminating interaction cycle is obviously
not stable in that sense, no more than it is chaotic by any means. Yet, it would also be wrong to call such
a cycle metastable in the sense of the edge of chaos (Section 6.4.3) since it is definitely not short-lived
– the opposite is the case. From that perspective, one can say that a steady circulation or oscillation
as exemplified above is also stable, not in a static sense but in a dynamic fashion. Of course, certain
interaction dynamics are required in SWARM to reach a state of static stability after each tightening: a
settlement which is tighter (i.e., of higher value) than the previous one. These dynamics ask for metasta-
bility – neither lazing in lower-level order, nor drifting into chaos and instability, nor (never-)ending in a
periodic sequence of dynamic stability.

Now, to explicate the mentioned difference in the established analogy, one can contend that in Con-
way’s Game of Life, the greatest fascination –at least concerning the visual spectacle– probably emanates
from dynamically stable structures (such as gliders and spaceships) as well as the so-called methuselahs
(i.e., highly chaotic patterns which require a large amount of transitions to reach a stable state or dis-
solve into nothing). In contrast, the success of SWARM depends on producing still lifes (above all: the
ultimate settlement) whereas dynamically stable infinity loops and completely instable devolutions into
utter chaos need to be avoided.

8.2 Practical Floorplanning Examples

Even though SWARM has not been primarily developed for targeting floorplanning problems, it can
be readily employed for that purpose. This is demonstrated by the following two examples, the first
one (Section 8.2.1) again featuring a rectangular outline like the examples before, the second one (Sec-
tion 8.2.2) showcasing SWARM’s ability to consider nonrectangular –i.e., rectilinear– outlines. An as-
sessment of SWARM with respect to floorplanning tasks will then be given in Section 8.2.3.

8.2.1 Floorplanning Example with Rectangular Outline

Figure 8.7 depicts a rectangular floorplanning problem with 15 circuit blocks of various sizes. As is
customary in floorplanning (see Table 2.2 on page 21), these blocks are treated as black boxes (here
displayed as plain rectangles) whose aspect ratios have yet to be determined. In line with the explication
of Section 7.3.1.2, the distance between two blocks is modeled as a straight connection between the
centerpoints of the blocks. In this example, all connections are equally emphasized (i.e., each connection
has an emphasis of e = 1). In the initial constellation, only 2 out of the 21 connections are relaxed
(drawn as solid lines) while 19 connections are unrelaxed (drawn as patterned lines), as illustrated in
image (a).

The distance between a block and an external component (e.g., a bondpad) is represented as a line
which ends on the outline of the layout zone. It is handled like a block-to-block connection except that
this endpoint automatically moves along the zone outline during the interaction, such that the distance
is always kept as short as possible. The blocks themselves are implemented as elastic participants,
exploiting the entire pool of elastic deformation behaviors covered in Section 7.3.3.3, to consider full
variability during their action exploration.

The final constellation (b) reveals which aspect ratios the 15 floorplan blocks have assumed at the
end of their self-organization. The resulting outcome is highly compact as the amount of dead space
only makes up 2.9% of the layout zone area. Furthermore, all connections are relaxed at last: as can be
seen in the final settlement, each pair of connected blocks is located in direct vicinity of each other and

210

8.2 Practical Floorplanning Examples

Figure 8.7: Example of applying SWARM to a floorplanning problem with a rectangular outline.

every block that has a connection to an external component lies next to the zone boundary. The figurative
icing on the cake in this example is that the self-organization has led to the emergence of an arrangement
wherein no connection lines cross one another.

Size
of Z

0

Rounds of
Interaction

Initialization Self-organization Finalization

Total Size of
Participants (intrinsic minimum)

Volatile Comfort Padding Share: cv = 0.4

0 10 20 30 40 50 60 70

2000

4000

6000

8000

Figure 8.8: Tightening profile for the SWARM run of the floorplanning example from Figure 8.7.

To obtain this solution, the participants required a total of 71 interaction rounds, spread across 9
tightening-settlement cycles (interaction rounds per cycle: 5, 3, 6, 9, 14, 11, 3, 4, 16). An abrasive
tightening policy and volatile comfort padding (with a volatile comfort padding share of cv = 0.4) were
used in this example. This can also be recognized in the tightening profile of the SWARM run, given in
Figure 8.8, which shows how the size of the layout zone as well as the total area of the padded participants
approach the intrinsic minimum (detailed numbers being listed in Table 8.5). Furthermore, the graph
exhibits the three characteristic episodes of a typical SWARM run, except that the last settlement peaks
out with a large number of interaction rounds (which is not unusual in SWARM runs where the layout
zone becomes extremely tight in the end, as it is the case in this example).

Table 8.5: Area decline in the SWARM run of the floorplanning example from Figure 8.7.

Area per Tightening-Settlement Cycle
1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Layout Zone: 7786.4 6674.3 5710.0 4939.6 4420.3 3749.8 3329.8 2945.3 2770.3
Participants: 4728.1 4284.0 3897.8 3589.5 3383.6 3114.0 2946.5 2791.8 2689.4

Dead Space: 39.3% 35.8% 31.7% 27.3% 23.5% 17.0% 11.5% 5.2% 2.9%

211

8. Implementation and Results

8.2.2 Floorplanning Example with Nonrectangular Outline

In Figure 8.9, SWARM is applied to a floorplanning problem where the layout zone has a nonrectangular
outline. Such a contour can be encountered in cases where the desired floorplan only represents a part of
the entire chip, using the notch to preserve layout space for other circuit components or IC sections. The
16 blocks feature 30 connections, and –in contrast to the previous example– the connections have been
assigned different emphasis values (between e = 0.4 and e = 1.0), in the images indicated via the widths
of the respective connection lines. As can be seen in image (a), 9 connections in the initial constellation
are relaxed and the remaining 21 connections are unrelaxed.

Figure 8.9: Example of applying SWARM to a floorplanning problem with a nonrectangular outline.

With a total of 95 interaction rounds throughout 8 tightening-settlement cycles, the participants are
able to obtain the final constellation shown in (b) where the floorplan blocks can again be seen to have
changed their aspect ratios. In this outcome, the dead space amounts to 5.7% of the layout zone and
–as in the example of Figure 8.7– all connections are finally relaxed. And again, also reminiscent of the
example before, tracking the number of interaction rounds per tightening-settlement cycle (5, 3, 10, 5,
9, 19, 12, 32) bares two maxima: an intermediate peak for the 6th settlement and a final peak for the
8th settlement. With an abrasive tightening policy and a volatile comfort padding share of cv = 0.4,
Table 8.6 displays the area decline observed during the SWARM run.

Table 8.6: Area decline in the SWARM run of the floorplanning example from Figure 8.9.

Area per Tightening-Settlement Cycle
1st 2nd 3rd 4th 5th 6th 7th 8th

Layout Zone: 8183.1 6509.5 5130.4 3892.4 3272.3 2823.3 2497.6 2387.7
Participants: 4624.0 3955.7 3403.4 2908.2 2659.5 2479.7 2351.0 2252.2

Dead Space: 43.5% 39.2% 33.7% 25.3% 18.7% 12.2% 5.9% 5.7%

8.2.3 Assessment

Although SWARM has not been conceived with the task of floorplanning in mind initially, the examples
of Section 8.2.1 and Section 8.2.2 demonstrate that the self-organization approach is quite adequate for
addressing this application. Moreover, a look at Table 3.1 on page 39 reveals that the SWARM method-
ology even surpasses existing floorplanners in terms of five decisive aspects, as SWARM apparently is
the first floorplanning approach that

(1) takes both area and block distances into account,
(2) pays respect to a rectilinear layout outline,
(3) considers fully variable block dimensions,

212

8.3 Practical Place-and-Route Examples

(4) supports nonslicing floorplan structures,
(5) and works completely deterministic.

The first three items are visibly evidenced by the examples above while the fifth issue is a logical con-
sequence of SWARM’s credo not to involve any kind of randomization. Regarding aspect (4), it is
interesting to see that both the outcome in Figure 8.7 (b) as well as the final constellation of Figure 8.9
(b) represent slicing floorplans. Yet, it is important to realize that this predicate has not been explic-
itly imposed as a design-methodical restriction, but that it simply emerged from the interaction as an
“energetically favorable state”, so to speak. In other words, such slicing structures seem to be natural
attractors of the system – but as the two examples published in [358] underline, it is generally possible
that nonslicing solutions can result from a SWARM run.

Some particular floorplanning issues are not yet handled by SWARM. For instance, SWARM does
not set pin positions on the floorplan blocks and is not intent on optimizing the power supply or the
current flow. Inhowfar it is possible to incorporate such aspects into SWARM, e.g., via dedicated design
constraints, may be subject to future works. Another common demand is to separate certain blocks from
each other such that sensitive circuitry is not disturbed by noisy IC sections. In further developments of
SWARM, this could be achieved by modeling compressive stress (instead of tension) into a connection,
thereby reversing its effect on the interaction.

8.3 Practical Place-and-Route Examples

To demonstrate SWARM being employed for practical place-and-route purposes, the following Sec-
tion 8.3.1 first elaborates on how the methodology has been integrated into the SDL design flow from the
perspective of usage. Then, SWARM is shown creating layouts of various aspect ratios for a Symmetric
P-Input OTA (Section 8.3.2) and a Folded Cascode P-Input OTA (Section 8.3.3). Finally, Section 8.3.4
assesses the SWARM methodology with regard to such place-and-route problems.

8.3.1 Usage of SWARM in the Design Flow

To facilitate the usage of SWARM in the design flow, it has been worked into the so-called Constraint-
Administered PCell-Applying Blocklevel Layout Engine (CAPABLE) presented in [359]. CAPABLE is a
designer-oriented framework that can be used to combine various automatisms into an executable layout
automation script. While this concept is not restricted to including either algorithmic or procedural
automatisms, CAPABLE is predominantly designated to realize a generator approach. In particular, the
engine aims at applying context aware PCells to the layout in a hierarchical fashion (as it is intended
for the governing modules in SWARM). Hence, a CAPABLE script represents a command sequence that
operates similar to a procedural generator, but on a higher level of abstraction.

CAPABLE is constraint-administered insofar as it provides a special constraint interpreter by which
certain parts of the layout automation script can be automatically created from formally expressed design
constraints that have been assigned to the input schematic by the designer. For example, a custom
CurrMirr constraint –assigned to a group of transistors that are meant to constitute a Current Mirror
circuit– is turned into a series of script commands that consecutively impose a Positioning module, a
Wiring module, and an Info module on the devices (thus establishing a Current Mirror module association
as depicted in Figure 7.8 on page 105). In this manner, high-level design requirements can be explicitly
formulated as constraints, while the respective low-level implications are implicitly taken into account
by the automatisms that implement these constraints.

Taking the point of critique to heart that analog layout automatisms often find only little acceptance
due to a lack of insight into their inner workings, CAPABLE comes with a convenient GUI that allows
to execute the developed layout scripts in a transparently traceable way. A graphical execution cockpit
provides the user with different pacing modes – from running the entire script all at once to performing
each command call in a fine-grained fashion, even separating different steps that the command may be
comprised of. For a governing module, each individual operation of the adoption process described in
Section 7.2.2.1 can be separately carried out as a single step. Utilizing this facility, the events occurring

213

8. Implementation and Results

in the self-organization of a SWARM run can be recorded as a script and later be replayed step by step
via CAPABLE.

The interface between a CAPABLE script and the design environment Virtuoso is made up by a
small set of API commands referred to as Constraint-Derived Procedural Commands (CDPC). It is writ-
ten in SKILL and can be considered as a domain-specific language for layout automation. Since CDPC
is primarily focused on the application of PCells, the central CDPC command is PCell and serves
the instantiation of a context aware PCell according to the adoption process mentioned above. Another
CDPC command is named Group and allows to store a set of layout components in a single internal
group (which may be helpful if multiple PCells are to be imposed on the same set of components, as in a
Current Mirror module association). To give an example for a non-PCell automatism, the Modgen com-
mand can be used to invoke the interdigitation feature of Virtuoso’s own ModGen tool [146]. Currently,
the following commands are supported:

Cellview
Opens the specified target layout (or creates an empty one if none yet exists).

Revert
Discards any modifications that have been made to the layout since its last save.

Clear
Removes all objects (instances, shapes, labels, markers, etc.) from the layout.

GenFromSource
Invokes the design environment’s native Generate from Source functionality.

SetVar
Stores a given value in a specified local variable.

GetVar
Retrieves the value of a specified local variable.

Group
Assigns a set of layout components to an internal group.

PCell
Instantiates a context aware PCell following the adoption process of Section 7.2.2.1.

Modgen
Executes the interdigitation function of Virtuoso’s proprietary ModGen tool.

Rotate
Rotates a layout component (plus its adopted children and associated modules).

Move
Moves a layout component (plus its adopted children and associated modules).

PlacePin
Puts a generated layout pin to a given location and optionally sets its layer.

Flatten
Flattens a layout component (as well as its adopted children) hierarchically.

Geo
Uses the PCell Designer’s geometry query language to determine layout geometries.

Replay
Performs an event that was recorded during the self-organization of a SWARM run.

Calling the PCell command, a dedicated Wiring PCell can be instantiated in the layout. Such a PCell
instance draws a single wire, comprised of different wire segments, between two component terminals.
Together with the Geo command for retrieving the location of a component terminal, this enables the
implementation of procedural routing scripts. Referring to the explanation in [360], a PCell parameter
allows to specify the wire as a sequence of points with the possibility to set the metal layer and wire
width for each individual segment. Although the points may be given in absolute coordinates, they are
rather meant to be defined in relation to the bounding boxes of existing components in the layout so the
wire can smoothly run along the edges of obstructive modules.

Such a routing approach can be quite appropriate if the overall module arrangement in the layout
is already known in advance. This will be the case in the subsequent two examples and thus motivates

214

8.3 Practical Place-and-Route Examples

the preconception of a procedural routing scheme for connecting the governing modules with each other
(while the connectivity inside each module is still taken care of by the respective PCells). Therein, the
need to preserve sufficient layout space between the modules is where the idea of solid comfort padding
comes into play. On that basis, going through the three phases of a SWARM run proceeds as follows:

(1) The initialization phase is carried out by a sequence of CDPC commands in the execution cockpit
of CAPABLE. The corpus of this command sequence can be automatically derived from the con-
straints assigned to the input schematic via Virtuoso’s constraint management system [24]. Custom
edits and extensions to the command sequence are possible through manual scripting in a plain text
editor.

(2) Switching to the SWARM tab of CAPABLE’s user-interface, the user gains control over the self-
organization phase. Similar to the different pacing modes in CAPABLE, the events may be driven
by (a) stimulating a single participant, (b) initiating an entire round of interaction, (c) conducting a
whole tightening-settlement cycle, or (d) making SWARM perform the complete self-organization
until reaching the desired layout zone size.

(3) For the finalization phase, the user’s focus returns to the execution cockpit of CAPABLE. Here, the
preconceived routing scheme can be applied to the module arrangement of the self-organization’s
final settlement as a CDPC script. This complements the already existing intra-module wiring
with the still missing inter-module wiring and finishes the layout.

8.3.2 Symmetric P-Input Operational Transconductance Amplifier

Figure 8.10 shows the schematic diagram of a Symmetric P-Input OTA circuit consisting of six functional
units: a Differential Pair (1), three Current Mirrors (2 to 4), a Symmetric Current Mirror Pair (5) which
in turn consists of two Current Mirrors (5a and 5b), as well as a Blocking Cap (6) to stabilize the supply
voltage. By explicitly imposing a custom “Module” constraint (i.e., a DiffPair constraint, a CurrMirr
constraint, etc.) on each of these functional units, SWARM is told to manage the corresponding layout
devices with a governing module, module association, or hierarchical module association. Thereat, a
user-definable interdigitation pattern can be provided for each Current Mirror (to be put into effect by
the respective modules) for the benefit of a good device matching.

VSS

VDD

Ibias

Vin+ Vin−

Iout

VSSVSS

VSSVSS VSSVSS

VDD

VDD VDD

VDD

VDD VDD

2 1

3

4

55a 5b

A B

A B

A B

A B

AB A B

6

Figure 8.10: Schematic diagram of the Symmetric P-Input OTA circuit addressed with SWARM.

Based on the interdigitation pattern, each module implicitly takes care of its inherent matching re-
quirements on device level. To achieve overall symmetry, the modules then are to be arranged accord-
ing to a predefined placement template as visualized in Figure 8.11 (a). For the module interaction in

215

8. Implementation and Results

SWARM, this sought-after arrangement is explicitly articulated via Relative Placement constraints (b).
A constraint of this type –also appearing in [63]– forces a component to lie north, east, south, or west
of another component. By implementing a verification function covering these four cases, the Relative
Placement constraint is checked during the self-organization phase to avoid noncompliance whenever
one of the involved modules explores its potential actions.

As an example for the circuit at hand, the input Current Mirror (2) is supposed to be located west of
the Differential Pair (1). In this case, the verification function v(P, P ′) –with the Current Mirror and the
Differential Pair being assigned to P and P ′ respectively– looks like this:

v(P, P ′) =

{
1 ⇔ 1

2

(
`(P) + a(P)

)
< 1

2

(
`(P ′) + a(P ′)

)
0 ⇔ otherwise.

(8.1)

The condition in this formula is less stringent than the one in [63] as it does not forbid an overlap of
P and P ′. This is deliberate: on the one hand, the condition is as lax as possible to temporarily permit
situations of interference (which can be vital after a zone tightening to let prone modules become safe
again); on the other hand, the condition is as strict as neccessary to effectively influence the modules in
their attempt to become overlap-free at the end of each settlement. In other words, it is the combined
power of two innate desires (formulated in Section 7.3.1.1 and Section 7.3.1.5 respectively) making sure
that the modules are finally clear and constraint-compliant.

5a 5b

Guardring

12 6

3
4

5

2 1west of
3 1north of
4 3north of
5 1south of
6 1east of

(a) (b)

Figure 8.11: (a) Placement template and (b) respective constraints for the Symmetric P-Input OTA.

Table 8.7 gives an overview of the circuit’s devices according to the module by which they are
managed. Also listed are the respective interdigitation patterns and the ductility (number of possible
deformation variants, as introduced in Section 7.2.4.4) of the module. As can be seen, the Blocking
Cap (6) is handled with full variability (managed by a variator module as mentioned in Section 7.2.4.3).
This is done to achieve that the Differential Pair is neatly placed in the middle. Paying heed to an
Imitation constraint to enforce the action of the same name (see Section 7.3.3.2), the capacitor imitates
the transformations of the input Current Mirror (2) on the other side of the Differential Pair (1), thereby
permanently fitting its aspect ratio to that of the Current Mirror.

To protect the Differential Pair from signal disturbances, it is to be enwrapped by a guardring (also
indicated in Figure 8.11). This is accomplished with a Guardring constraint, telling SWARM to place a
dedicated Guardring PCell aroung the Differential Pair module. Whenever the Differential Pair deforms
itself during the module interaction, the Guardring automatically re-absorbs the Differential Pair and
adapts itself to the new dimensions. Remember that absorption and adaptation represent the first two
operations of SWARM’s adoption process (Section 7.2.2.1).

Now, the initialization phase starts with a Generate from Source (called via the GenFromSource
command), in this case leading to the picture of Figure 8.12 (a) by producing a total of 43 primitive
devices. Next, (based on the PCell command) the governing modules –implemented with Cadence
PCell Designer [126]– are imposed on the respective groups of devices and then (using the Modgen
command) put into the initial constellation shown in image (b). This arrangement, which already follows

216

8.3 Practical Place-and-Route Examples

Table 8.7: Overview of the functional units constituting the Symmetric P-Input OTA circuit.

In- Governing Module / Device Num. of Interdigitation Ductility
dex Module Association Type Devices Pattern (Variants)

1 Differential Pair PMOS 4 A B / B A (fix) 40
2 Current Mirror NMOS 4 A B B A 56
3 Current Mirror PMOS 6 B A B B A B 56
4 Current Mirror PMOS 12 A B A B A B B A B A B A 56
5 Symm. Current Mirror Pair - - - 112
x5a Current Mirror NMOS 8 A B A B B A B A -
x5b Current Mirror NMOS 8 A B A B B A B A -

6 Variator Module Capacitor 1 - full variability

the template of Figure 8.11, ends the initialization phase (in line with the depiction of Figure 7.3 on
page 99) and represents the starting point for the self-organization – irrespective of the layout zone’s
aspect ratio of which various ones are covered in the subsequent examples of this Section 8.3.2.

Figure 8.12: OTA layout (a) after device generation and (b) at the end of the initialization phase.

For a width-to-height aspect ratio of 2:3, the layout obtained by SWARM after going through the
self-organization and the finalization phase is displayed in Figure 8.13. As can be seen, every module
except the Differential Pair has deformed itself into a layout variant different from the one in the initial
constellation of Figure 8.12 (b). A very fortunate advantage of a template-based arrangement as pursued
here is that the locations of the modules in relation to each other do not change throughout the entire
interaction. This allows to omit the exploration of Swapping and Pairing actions, which reduces the
runtime tremendously (since these kinds of actions are computationally the most expensive ones, as
mentioned in the context of Table 8.4).

For that reason, the SWARM run in this case just required a total of 22 interaction rounds throughout
5 tightening-settlement cycles. All in all, only 77 out of 1389 explored actions had to be performed to
obtain the illustrated outcome, taking a runtime of 60 seconds for the mere self-organization phase. The
observation that the quotient between this runtime and the number of performed or explored actions is
larger than in the SWARM runs of Table 8.3 is simply rooted in the fact that –in contrast to the symbolic
modules in those examples– a module transformation here is more elaborate because it has to include
the corresponding co-transformations of all adopted children and associated modules (as explained in
Section 7.2.2.2 and Section 7.2.3.3).

To demonstrate the immense layout flexibility achievable with SWARM, it been applied to the Sym-
metric P-Input OTA circuit of Figure 8.10 for a total of seven different aspect ratios. Table 8.8 displays
the cardinal statistics for the respective SWARM runs, including the rounds of interaction per settlement,
the number of explored, rejected, performed, and dismissed actions, as well as the number of performed

217

8. Implementation and Results

Figure 8.13: Finalized layout of the Symmetric OTA, obtained by SWARM for a 2:3 aspect ratio.

218

8.3 Practical Place-and-Route Examples

actions distinguished by the kind of action, and the runtime required for the entire run (covering all three
phases, i.e., initialization, self-organization, and finalization).

Table 8.8: Statistics of the different SWARM runs applied to the Symmetric OTA. The abbreviated kinds
of actions are: Re-entering (R), Centering (C), Lingering (L), Budging (B), Hustling (H),
Evasion (E), Yielding (Y), and Imitation (I).

Asp. Rounds per Total Number of Actions Perf. Actions (By Kind) Total
Ratio Settlement Rounds expl. reje. perf. dism. R C L B H E Y I Runtime

1:1 4, 5, 3, 8 20 1392 1272 71 49 1 47 0 7 1 1 1 13 108 sec.
1:2 4, 4, 3, 4, 10 25 364 214 97 53 0 77 1 0 0 1 0 18 113 sec.
1:3 5, 4, 4, 4, 5, 7 29 791 617 109 65 0 83 1 2 0 1 0 22 93 sec.
2:1 4, 16, 4, 10 34 1803 1599 109 95 2 62 0 6 10 1 1 27 233 sec.
2:3 4, 3, 4, 5, 6 22 1389 1257 77 55 1 55 0 5 0 0 0 16 113 sec.
3:2 4, 4, 6 14 935 851 46 38 1 32 0 3 0 2 0 8 95 sec.
5:2 4, 4, 5, 20 33 2158 1960 140 58 1 82 0 17 1 1 11 27 177 sec.

Taking a look at the rounds of interaction per settlement in Table 8.8 reveals that the self-organization
in these runs proceeded quite smoothly on the whole. Even in the least fluent case (the SWARM run with
a 5:2 aspect ratio, peaking out with 20 interaction rounds for the final settlement), only 140 actions out
of 2158 explored ones had to be performed to obtain a compact and constraint-compliant layout solution
in less than three minutes. Apart from this, it is again interesting to examine the number of performed
actions per kind of action (understandably, Swapping and Pairing have been omitted here while Imitation
was added to the action palette). As in the examples of Table 8.4, the most popular kind of action is
Centering. But more importantly, it can be seen that every kind of action has been performed in at least
two of the seven listed SWARM runs. This finding once more affirms the feasibility of the action catalog
implemented by SWARM.

The finalized layouts for the 1:1 aspect ratio and the 5:2 aspect ratio are shown in Figure 8.14 and
Figure 8.15 respectively (while the outcomes for the remaining aspect ratios have been moved to the
appendix). As becomes evident from these images, the basic arrangement is the same in every case,
exploiting the cumulative variability of each module to make the overall arrangement fit inside the outline
of the layout zone.

Considering this template-based approach, one might argue that the problem at hand could have been
easier solved by modeling it as a slicing tree and tackling it with a so-called “floorplan sizing” algorithm
(such as [29]) based on shape functions.1 However, this would not just have simplified but trivialized the
problem. Instead, translating the template (Figure 8.11) into a set of Relative Placement constraints –as
explained above– leaves more degrees of freedom: the final constellation may look like Figure 8.16 (a)
–i.e., precisely as in the depiction of Figure 8.11– or could alternatively be structured as in any of the
other arrangements from (b) to (j).2

On the one hand, this is fine since it does not impair the desired overall symmetry. Moreover, on
the other hand it is even serviceable because it keeps up a greater solution space. And rightly so, as
certain solutions that would have been unattainable otherwise do indeed emerge in SWARM: the layouts
of Figure 8.13 and Figure 8.14 correspond to that of Figure 8.16 (b) while the outcome of Figure 8.15
reflects the placement of Figure 8.16 (c).

So, although the overall module arrangement is comparably strictly predefined by the given place-
ment template, SWARM concedes quite some flexibility here. Apart from this, the solution space is
above all opened up by the combined variability of the governing modules. Concentrating only on these
deformations, the number of mathematically possible layout solutions based on the multiplied module

1A shape function describes the dependency between the width and the height of a layout component.
2The amount of potential layout arrangements here is given by the number of modules encountered when traversing the

template in vertical direction through its center. Then, the amount of potential arrangements is 1
2
·n · (n+1): the Gaussian sum

formula, which defines the sequence of triangular numbers. In this case, there are 1
2
· 4 · (4 + 1) = 10 arrangement alternatives.

219

8. Implementation and Results

Figure 8.14: Finalized layout of the Symmetric OTA, obtained by SWARM for a 1:1 aspect ratio.

Figure 8.15: Finalized layout of the Symmetric OTA, obtained by SWARM for a 5:2 aspect ratio.

220

8.3 Practical Place-and-Route Examples

(a)

5

12

3
4

6

5
1

2
3
4

6

(b)

5
1

2 3
4

6

(c)

5
1

2
3
4

6

(i)

5
1

2
3

4
6

(d)

5

1
2

3
4

6

(g)

5

12

3
4

6

(h) (j)

5
1

2

3

4 6

(e)

5
1

2 3

4

6

(f)

5

1

2

3
4

6

Figure 8.16: Potential layout arrangement alternatives for the Symmetric P-Input OTA circuit.

ductiliy alone amounts to a total of

40 · 56 · 56 · 56 · 112 = 786 759 680

variants in this example, thus drawing near to a billion potential combinations. Yet (in contrast to a
conventional optimization algorithm, for which a larger solution space metaphorically corresponds to a
bigger haystack making it more difficult to look for the proverbial needle), the many degrees of freedom
are downright helpful for a decentralized approach as pursued here. A valuable conclusion for the topic of
this thesis is that formalized design constraints are not necessitated by SWARM to diminish the solution
space, but are specifically taken into consideration for their actual purpose: to guarantee the functionality
of the layout.

8.3.3 Folded Cascode P-Input Operational Transconductance Amplifier

Applying SWARM to another place-and-route problem, Figure 8.17 presents the schematic diagram of
a Folded Cascode P-Input OTA. The six functional units constituting this circuit are: a Differential Pair
(1), two simple Current Mirrors (2 and 3, with two and three stages respectively), a Wide-swing Current
Mirror (4) consisting of a Bank (4a) and a Cascode (4b), then a three-stage Cascode Current Mirror
(5) with a Bank (5a) and a Cascode (5b), and finally also a Blocking Cap (6). As in the example of
Section 8.3.2, customizable patterns can by given by the user to control the device interdigitation in the
respective governing modules.

Once again, a placement template –see Figure 8.18 (a)– is turned into a set of Relative Placement con-
straints (b) to achieve overall symmetry, and (also like in the previous example) an Imitation constraint
forces the Blocking Cap (6) to mimic the input Current Mirror (2). Just as well, a Guardring constraint
is assigned to the Differential Pair (1) here to make SWARM employ a corresponding Guardring PCell.
An overview of the circuit’s devices and modules is provided in Table 8.9.

The initialization phase is depicted in Figure 8.19: image (a) displays the 61 primitive devices instan-
tiated by calling Generate from Source while image (b) shows the situation after imposing appropriate
governing modules on these devices and using the Modgen command to obtain an arrangement which
reflects the given placement template. As in the example of Figure 8.12, this initial constellation serves
as the starting point for the self-organization in seven different SWARM runs covering seven different
layout zone aspect ratios.

SWARM’s layout for an aspect ratio of 2:3 can be seen in Figure 8.20. Altogether, a total of 26
interaction rounds spanning 6 tightening-settlement cycles were required for the emergence of this out-
come. Although the number of rounds per settlement (4, 3, 3, 3, 4, 9) could have been distributed even

221

8. Implementation and Results

VSS

VDD

Ibias Vin+ Vin− Iout

VSSVSS

VDD

VDD VDD

VDD

2

1

3

A B

A B

A B

6

VSSVSSVSS

VSSVSSVSS

VDD4
A

VDD

B
VDD

VDD VDD

A

A

A B

B

B

C

C

C

5

5b

5a

4b

4a

Figure 8.17: Schematic diagram of the Folded Cascode P-Input OTA circuit addressed with SWARM.

4b

4a

Guardring

12 6

3

5
5b

5a

4
2 1west of
3 4north of
4 1north of
5 1south of
6 1east of

(a) (b)

Figure 8.18: (a) Placement template and (b) respective constraints for the Folded Cascode P-Input OTA.

Table 8.9: Overview of the functional units constituting the Folded Cascode P-Input OTA circuit.

In- Governing Module / Device Num. of Interdigitation Ductility
dex Module Association Type Devices Pattern (Variants)

1 Differential Pair PMOS 4 A B / B A (fix) 40
2 Current Mirror NMOS 6 B A B B A B 64
3 Current Mirror PMOS 10 B C A C B B C A C B 64
4 Wide-swing Current Mirror - - - 32
x4a Bank PMOS 8 A B B A A B B A -
x4b Cascode PMOS 8 A B B A A B B A -
5 Cascode Current Mirror - - - 32
x5a Bank NMOS 12 B A C B A C C A B C A B -
x5b Cascode NMOS 12 B A C B A C C A B C A B -
6 Variator Module Capacitor 1 - full variability

222

8.3 Practical Place-and-Route Examples

Figure 8.19: OTA layout (a) after device generation and (b) at the end of the initialization phase.

smoother, the module interaction was exceptionally efficient with respect to the observation that only
388 actions had to be explored for the 105 actions that were eventually performed (the best rate among
all SWARM runs carried out for either the Symmetric OTA or the Folded Cascode OTA). Thus, no more
than 28 seconds of runtime were measured for the self-organization phase in this example, which is less
than the time needed for the initialization plus the finalization (adding up to 41 seconds, which accounts
for 69 seconds in total).

The cardinal statistics of this SWARM run, as well as those obtained for the other six runs, are listed
in Table 8.10. At large, the self-organization was again quite fluent as the rounds per settlement indicate.
And like in the examples of Table 8.8, every kind of action has played its part here in one run or another.
Regarding performance, the total runtimes of the listed SWARM runs (including the initialization, self-
organization, and finalization phase) are actually shorter than those of Section 8.3.2: even in the worst
case (encountered for an aspect ratio of 3:2), SWARM does not take much more than two minutes to
produce a compact, constraint-compliant, completely placed and routed layout solution.

Table 8.10: Statistics of the different SWARM runs applied to the Folded Cascode OTA. The abbreviated
kinds of actions are: Re-entering (R), Centering (C), Lingering (L), Budging (B), Hustling
(H), Evasion (E), Yielding (Y), and Imitation (I).

Asp. Rounds per Total Number of Actions Perf. Actions (By Kind) Total
Rat. Settlement Rounds expl. reje. perf. dism. R C L B H E Y I Runtime

1:1 3, 3, 4, 4, 6 20 1283 1163 75 45 1 51 0 7 0 2 0 14 79 sec.
1:2 4, 3, 4, 3, 2, 5, 4, 10 35 1307 1097 135 75 2 102 0 4 0 2 0 25 91 sec.
1:3 6, 3, 3, 3, 3, 3, 3, 4, 4, 8 40 2742 2502 133 107 0 92 0 6 4 5 0 26 117 sec.
2:1 3, 3, 3, 4, 4 17 534 432 49 53 2 30 0 3 0 3 0 11 74 sec.
2:3 4, 3, 3, 3, 4, 9 26 388 232 105 51 1 81 1 1 0 2 0 19 69 sec.
3:2 3, 2, 2, 3, 3, 10, 4 27 2246 2084 97 65 3 58 0 12 1 3 2 18 129 sec.
5:2 3, 3, 3, 4 13 982 904 40 38 1 22 0 7 0 2 0 8 81 sec.

As illustrated in Figure 8.20, SWARM’s outcome for a 2:3 aspect ratio precisely realizes the overall
module arrangement specified by the placement template (Figure 8.18). The same is true for the 1:1
layout depicted in Figure 8.21, again relying on the cumulative variability of the modules to satisfy the
contour of the square layout zone. In the result of Figure 8.22, achieved by SWARM for a 5:2 aspect
ratio, the final module constellation represents a slightly different alternate arrangement (corresponding
to that of Figure 8.16 (g) with modules 3 and 4 permuted) which is alright because it still attains the
overall symmetry enforced by the set of Relative Placement constraints. This is also the case with the
SWARM solutions for the other four aspect ratios (as confirmed by the respective screenshots that can
be found in the appendix).

223

8. Implementation and Results

Figure 8.20: Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 2:3 aspect ratio.

224

8.3 Practical Place-and-Route Examples

Figure 8.21: Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 1:1 aspect ratio.

Figure 8.22: Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 5:2 aspect ratio.

225

8. Implementation and Results

8.3.4 Assessment

As discussed in Chapter 4, assessing the practical worth of the SWARM methodology for real place-
and-route problems should distinguish between its impact on design productivity (Section 4.2.1) and
the degree of achievable layout quality (Section 4.2.2). The latter is investigated in the following Sec-
tion 8.3.4.1 while the former will be subject to Section 8.3.4.2.

8.3.4.1 Assessment Regarding Layout Quality

Above all, a fundamental asset of SWARM is its ability to produce layout results which are completely
placed and routed – a merit that already sets the methodology apart from placement-only approaches
(Table 3.2 on page 41) and mere routing algorithms (Table 3.3 on page 42). Thereto, SWARM closely
follows the common procedure of manual layout design, tackling the positioning of a module’s devices
and its intra-module wiring simultaneously to create the inter-module connectivity after the modules
have been placed in the desired arrangement. Based on this modular approach, the layouts achieved
by SWARM are qualitatively reminiscent of handcrafted solutions, both in terms of functionality and
consistency.

Concerning functionality (see Section 4.2.2.1), the decisive strength of SWARM is to satisfy all rel-
evant design constraints that would have been taken into account if the layout was created by a human
expert. This involves an explicit and implicit constraint consideration, thus coming up to the techni-
cal aim of this thesis to include both formalized and nonformalized expert knowledge. Regarding the
two exemplified OTA circuits, the following constraints have been taken into consideration by SWARM
explicitly:3

• “Module” constraints imposed on each functional unit (e.g., a DiffPair constraint or a CurrMirr
constraint) tell SWARM to manage the respective devices with the designated governing modules
and module associations.
• If a governing module provides a dedicated parameter for specifying a custom device interdigita-

tion pattern, then the desired pattern can by formally entered by the user as a string to be explicitly
put into effect by the module.
• A Guardring constraint assigned to the Differential Pair effectuates the instantiation of a Guardring

PCell around the four transistors, able to incessantly re-adapt itself during the module interaction.
• Using Relative Placement constraints derived from the predefined placement template, the inter-

acting modules are confined in their action exploration via noncompliance – one of SWARM’s five
influencing factors.
• An Imitation constraint forces the Blocking Cap to mimic the transformations of the input Current

Mirror, thus supporting the Relative Placement constraints in their aim to achieve overall symme-
try.
• With the influencing factor protrusion, all modules are obliged to get into (and stay within) the

contour of the user-defined layout zone. This represents the consideration of a Fixed Outline*
constraint.
• Based on SWARM’s general idea of a successively tightened layout zone, the modules are ex-

plicitly driven towards an increasingly compact arrangement (which effectively implements the
optimization goal of area minimization).

If the modules were not bound to a template-based arrangement, some additional constraints can be
added to the picture:

• The influencing factor turmoil may be used to pursue the optimization goal of wirelength mini-
mization, and –by replacing a connection’s tension with compressive stress– to separate certain
modules from each other.
• Prompting a module to locate itself near the zone border can be achieved with a connection be-

tween the module and a (hypothetical) external component, as described in Section 8.2.1). This
corresponds to a Boundary* constraint.

3Constraints marked with an asterisk (*) belong to those addressed in literature (see Section 3.1.1.2).

226

8.3 Practical Place-and-Route Examples

• To realize a Distance* constraint, a connection’s relaxation threshold may be overridden with a
maximum or minimum value acting as a hard restriction on the proximity or separation between
two modules.

Turning to the internal layout of the governing modules, it goes without saying that their introversive be-
havior in general can, should, and in practice usually does indeed profit from emulating the best practice
design procedures cultivated throughout a design team’s history (and informally available as their legacy
know-how). In the presented examples, constraints implicitly taken into consideration by the governing
modules are:3

• If a module does not allow for custom device interdigitation, then the module is inherently bound
to a specific interdigitation pattern. For example, the Differential Pair module always sticks to a
crosswise AB/BA layout (thus implicitly satisfying a Common Centroid* constraint).
• The devices of a module are cohesively positioned according to a single-row or dual-row Align-

ment*, also taking care of consistent Orientation* (across or upright). This fulfills the demands of
a Symmetry Island* constraint.
• Whenever a module deforms itself into a different layout variant by changing the number of fingers

in its devices, this is uniformly done for all of these devices to secure that they still have Equal
Parameters*.
• In each module, the respective devices are positioned in a highly compact fashion without lacking

sufficient space for the wiring. The modules automatically see to an Abutment* that makes use of
diffusion sharing.
• By means of the PCell Designer’s geometry query language, the modules are able to geometrically

determine whether and where their adopted devices feature bulk contacts. These are then automat-
ically connected by the modules (which may even foster the application of bulk contacts and thus
reduce substrate debiasing).
• No wires are routed on top of the devices but exclusively between them. This fundamental maxim

reflects an implicit consideration of the constraint type introduced as Blockage*.
• Answering the Layer Limitation* constraint, only metal1 and metal2 wires are employed for every

intra-module wiring. Apart from a few exceptions which additionally ask for metal3, this is also
true for the inter-module wiring.
• In regard to current-carrying capacity, dedicated module parameters allow to make each trunk (lat-

eral wire to connect a row of devices) wider than the perpendicular wires coming from the devices
(also known as pin-to-trunk routes). This possibility pertains to the Wire Width* constraint.
• Without exemption, only double-cut vias (in remembrance of the Double-Cut Vias* constraint) are

used throughout the entire layouts, not just for the connections inside each governing module but
also by the Wiring PCells that create the connections between the modules.
• The connections between the modules are not tied to any layer preferences. For that reason, un-

necessary layer changes between horizontal and vertical wire segments are avoided, which in turn
minimizes the number of required vias.
• To avoid the antenna effect, all Current Mirror modules draw a metal1-only wire to connect their

transistor gates with the drain of the reference transistor. On the same account, the Differential
Pair module connects its transistor gates as depicted in Figure 3.14 (b), also using merely metal1.
• The modules generate their internal connections in a well-balanced fashion, evenly distributing the

wires around (and –if appropriate– in between) the respective devices. This attains a high degree
of symmetry, as well as homogeneity in the wire density.

Comparing this itemization with the state of the art (as surveyed in Chapter 3) underlines that the over-
all amount of constraints taken into consideration in SWARM by far exceeds the constraint coverage
achieved with purely optimization-based or purely generator-based automation approaches. Living up
to the technical aim of the thesis (as articulated in Chapter 5), this accomplishment –of considering
constraints both explicitly and implicitly– plays to the facet of circuit functionality. Beyond that, the
SWARM methodology also goes strong in terms of consistency (see Section 4.2.2.2):

227

8. Implementation and Results

• Since SWARM relies on well-established module PCells to automate the analog basic circuits
that constitute the design as functional units, it effectuates an intuitive approach of functional
modularization that the design team is supposed to be familiar with.
• The modularization eases a visual inspection of the layout as it allows to pick a single PCell

(e.g., a certain Wiring module) and examine it in isolation. Furthermore, signing off the layout is
disburdened by inspiring trust on the designer’s side, rooted in the confidence and experience that
many design constraints are implicitly satisfied by the PCells.
• SWARM works completely deterministic, which means that any of its layout solutions can be ex-

actly reproduced if necessary. In conjunction with the observation that a SWARM run typically
comprises only a modest number of actions (rather than millions of incomprehensible perturba-
tions), this offers the great opportunity that the run itself can be surveyed by the user and thus
visually inspected in real-time.
• The final layouts are neither entirely flat nor utterly secluded. Instead, the procedural powers of

the modules are still available such that parametrical adjustments can be made at module level.
Even if these adjustments affect the inter-module connections, the Wiring modules can be deleted
in order to repeat the finalization phase of the SWARM run.
• A pivotal advantage about context awareness is that even though the given schematic may be flat

(i.e., built from primitive devices), modular facilities can be utilized in the layout via governing
modules – without sacrificing SDL-conformity, because a distinct one-to-one device correspon-
dence is maintained.4

• SWARM has been seamlessly integrated into the design environment (using native Virtuoso fea-
tures such as Generate from Source, the ModGen tool, and –of course– PCells). This implementa-
tion merely enhances the design flow instead of replacing it, so it does not introduce any artifacts
incompatible with the existing tool chain. If the layout produced by a SWARM run is indistin-
guishable from a genuine manual solution, further processibility is definitely guaranteed.
• Design iterations due to a re-sizing of the circuit or a PDK update (that involves a revision of the

governing modules’ master PCells) should be no problem as long as the circuit topology and the
design constraints don’t change. A new SWARM run, based on the same arguments as before, is
supposed to spawn an adequate layout once again. To that end, the arguments of a SWARM run
can be stored in a separate file and reloaded the next time.
• As already stated in Section 3.1.2.2, employing PCells to automate simple modules facilitates

re-use of expert knowledge in a way much smarter than through rough-and-ready copy-pasting.
Naturally, the same inventory of governing modules can be utilized in different SWARM runs of
the same project and in other projects of the same semiconductor technology.
• To address projects in different technologies, the governing modules have been implemented in a

way by which technology-specific data (e.g., layer names) is separated from the actual PCell code
and instead passed to the PCell via parameters. In the best case, migrating a PCell to another tech-
nology is achieved solely by adjusting the technology-specific parameter values without having to
touch the PCell’s command sequence.

8.3.4.2 Assessment Regarding Design Productivity

Due to the large amount of assessment criteria (see Figure 4.1 on page 69), calculations on design pro-
ductivity are no exact science, but certain statements can be made when distinguishing between different
orders of magnitude. For giving estimations on the involved design effort, Table 8.11 defines a vocab-
ulary of temporal quantities from 1’ (one minute) to 1Y (one year). For each of these quantities, the
table lists the respective time span in minutes since the subsequent calculations also utilize minutes as
the basic unit of time. Every quantity represents the labor costs ascribed to one human expert (i.e., a
month –1M– in fact denotes a person-month, for example). Where it is appropriate, intermediate values
such as 5’ (five minutes), 2D (two days), or 2W (two weeks) can be found.

4Difficulties can arise concerning net correspondence because symbolic LVS checkers may be unable to descend into a
Wiring PCell and discern its internal connectivity. However, modern SDL flows are beginning to offer suchlike hierarchical
support to some degree.

228

8.3 Practical Place-and-Route Examples

Table 8.11: Temporal quantities used to estimate the design effort. Please note that a day is understood
as a working day, a week is understood as a working week, and so on.

Quantity Meaning Calculated As In Minutes

1’ 1 minute - 1
1h 1 hour 60 minutes 60
1D 1 day 8 hours 480
1W 1 week 5 days 2400
1M 1 month 4 weeks 9600
1Q 1 quarter 3 months 28800
1H 1 half-year 2 quarters 57600
1Y 1 year 2 half-years 115200

The subsequent assessment provides a general comparison of the four fundamental layout strategies
discussed in this thesis: manual layout design (without any kind of automation), generator-based automa-
tion, optimization-based automation, and SWARM. The intention of this comparison is to gauge every
strategy’s suitability with respect to the component magnitude (reflecting the functional complexity of
the component being layouted), let it be a primitive device, a simple module, an advanced module, or
a high-level block (as introduced in Table 2.1 on page 20). For each of these component magnitudes,
the respective number of occurrences nC per chip is reckoned in decades from 1000 instances down to 1
instance.

For every layout strategy and component magnitude, regarding one type of component (which may
cover an entire circuit class if it does not represent a primitive device), Table 8.12 makes a best-case and
a worst-case educated guess on the respective layout design effort. In both cases, the estimation covers
the fixed preliminary effort EffP (which incurs prior to the actual design work) and the effort EffO per
occurrence (i.e., the labor required to layout each individual instance of the component in the design
project). Based on these estimations, the total average effort EffC per chip in each case is calculated via

EffC =
EffP + EffO · nC · nT

nT
=

EffP
nT

+ EffO · nC (8.2)

where nT represents the total number of chips under consideration for a particular semiconductor tech-
nology. Concerning the estimation at hand, a value of nT = 1 is assumed first. To give further insight
into the figures of Table 8.12, a couple of remarks should be made:

• Financial expenses whatsoever are omitted from this assessment – only effort in the sense of labor
costs is taken into account.
• For simple modules, advanced modules and blocks, it is assumed that the primitive devices are

readily given as procedural generators.
• As discussed in the context of Figure 3.16 (page 55), automating advanced modules –or even

blocks– as genuinely procedural generators is virtually impossible since their variability covers a
continuous and infinitely huge parameter space. For the sake of comparison, Table 8.12 supposes
that it is possible – but only if a correspondingly large amount of preliminary effort is spent on
their development.
• By the same token, Table 8.12 hypothesizes the availability of optimization algorithms that are

able to perform both placement and routing, that can explicitly consider all kinds of placement
and routing constraints, and that indeed find constraint-compliant solutions in expert quality. The
difficulty with (or nonexistence of) such algorithms is reflected by the exorbitant amount of con-
straining effort necessary to express all design constraints in a formal fashion.
• It goes without saying that optimization algorithms are deemed to be not applicable (n/a) for au-

tomating primitive devices, and the same is of course also true for the SWARM methodology. Just
as well, SWARM is not applicable to produce layouts of simple modules because such modules
already represent the interacting entities in a SWARM run.

229

8. Implementation and Results

• When employing the SWARM methodology to target an advanced module, the preliminary effort
for implementing the simple modules that are to be impelled into the interaction may seem quite
low. However, much substance can be obtained from the module exemplifications of this thesis
(and –much more– from generators that might already be in use within the design team). Further-
more, a lot of effort can be saved if the module implementations are cleverly derived from generic
modules for the positioning and the wiring – as done in this thesis (see Table 7.5 on page 114).
• Regardless of whether SWARM is used for an advanced module or an entire block, the preliminary

effort is expected to be roughly the same because the cadre of simple modules is basically always
the same. In the latter case, although not realized in the scope of this thesis, the –discretely
variable– simple modules are meant to interact with each other and thus form advanced modules
(as in the examples of Section 8.3.2 and Section 8.3.3) while these –fully variable– advanced
modules interact with each other on the next-higher hierarchy level (like the floorplan blocks in
the examples of Section 8.2). To that end, only the utilization effort during design is expected to
become greater (as indicated in Table 8.12).

Table 8.12: Estimated layout design effort for different layout strategies and component magnitudes.

Primitive Device Simple Module Advanced Module Block

Occurrences per Chip 1000 100 10 1

Best Case or Best Worst Best Worst Best Worst Best Worst
Worst Case? Case: Case: Case: Case: Case: Case: Case: Case:

Effort with Manual Layout Design
Preliminary Effort 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’
Effort per Occurrence 10’ 1h 1h 1D 1D 1W 1W 1M
Total Effort per Chip 10000’ 60000’ 6000’ 48000’ 4800’ 24000’ 2400’ 9600’

Effort with Generator-based Automation
Preliminary Effort 1h 1W 1W 1M 2M 1H 1Q 1Y
Effort per Occurrence 1’ 5’ 5’ 20’ 1h 1D 1D 1W
Total Effort per Chip 1060’ 7400’ 2900’ 11600’ 19800’ 62400’ 29280’ 117600’

Effort with Optimization-based Automation
Preliminary Effort n/a n/a 1h 1D 1h 1D 1h 1D
Effort per Occurrence n/a n/a 1D 1W 2D 1M 2W 1Q
Total Effort per Chip n/a n/a 48060’ 240480’ 9660’ 96480’ 4860’ 29280’

Effort with SWARM Methodology
Preliminary Effort n/a n/a n/a n/a 2W 2M 2W 2M
Effort per Occurrence n/a n/a n/a n/a 1h 1D 1h 1W
Total Effort per Chip n/a n/a n/a n/a 5400’ 24000’ 4860’ 21600’

Grouped by the respective component magnitude, the total layout design effort per chip (covering both
the best-case and the worst-case estimation) for every layout strategy is displayed in the chart of Fig-
ure 8.23 on a logarithmic scale. From this depiction, the following conclusions can be drawn:

• Considering a primitive device, it is generally advisable to implement it as a procedural generator.
In regard to the estimation made here, even the worst-case effort on the generator’s side is lower
than the best-case effort in manual design. This reckoning underlines why it is common practice
to utilize PCells at device level. Only in cases where a primitive device is assumed to be used quite
rarely, it may be favorable to put up with manual polygon pushing.
• For a simple module, generator-based automation can basically be expected to outrival manual

layout design. However, the situation is not as palpable as with primitive devices. Whether au-
tomating a simple module as a procedural generator will presumably pay off in the end, needs to
be predetermined on a case-by-case basis within the respective design team.

230

8.3 Practical Place-and-Route Examples

• Optimization-based automation is the least appealing layout strategy on the level of simple mod-
ules where satisfying the relevant design constraints is a duty that expert layout engineers have off
pat. This suggests to pass over the huge constraining effort for an optimization algorithm in favor
of manual layout design or –maybe even better– a procedural generator.
• When the component magnitude reaches that of an advanced module, the effort for generator-based

optimization already escalates into uneconomical regions. In contrast, optimization algorithms
become more rewarding, but still they can beat manual layout design only in singular cases. That
is why advanced modules are mostly done in a manual fashion – so far.
• Advanced modules are where the SWARM methodology may achieve substantial benefit for design

productivity. If only one circuit class is targeted, the effort is –according to the experiences from
this thesis– at least comparable to manual layout design. The true benefit unfolds when more than
one circuit class is automated via SWARM because the set of governing modules –and thus the
preliminary effort– is basically the same. Figure 8.23 illustrates the best-case estimation supposing
that five circuit classes are covered: the preliminary effort of two weeks (ten working days) is
virtually cut down to two days per circuit class, resulting in a total effort of EffP + EffO · nC =
2 · 480′ + 60′ · 10 which amounts to 1560 minutes.
• Regarding a high-level layout block, optimization-based automation is thought to overtrump proce-

dural generators as these become increasingly inappropriate when ascending towards larger com-
ponent magnitudes. However, manual layout design is still unrivaled here (again except certain
isolated cases, if at all). Inhowfar SWARM can compete for design productivity here, is to be
investigated in future works. Following the projected numbers of Table 8.12, Figure 8.23 shows
that SWARM is probably on a par with optimization-based automation if only one circuit class is
concerned. As in the case of advanced modules, SWARM’s benefit rises with the number of circuit
classes being covered and may thereby noticeably outplay all of the other layout strategies. The
illustrated best-case estimation for five circuit classes is 2 · 480′ + 60′ · 1 (= 1020 minutes).

While the estimations of Table 8.12 contemplated only one single chip, it is also interesting to analyze
how the layout design effort does change when multiple chips in the same semiconductor technology
can profit from a certain layout strategy. For values of nT > 1, a look at equation 8.2 easily reveals what
happens to the total average effort per chip: the greater the preliminary effort EffP is in relation to the
effort EffO per occurrence, the larger the benefit is for design productivity when more than one chip is
taken into account. This fundamental law is reflected by the differently oriented arrows in Figure 8.23,
indicating the respective change in effort per chip.

With respect to manual layout design, there is no change in effort per chip for nT > 1 since there is
no preliminary effort involved. Concerning generator-based automation, EffP is much greater than EffO,
which redounds to a significant decrease in design effort when the procedural generators are utilized
throughout multiple chips. By contrast, the decrease in design effort is only marginal in the case of
optimization-based automation due to the large constraining effort during design, which towers over the
preliminary installation effort. With SWARM, the labor again incurs much more on the predevelopment
side rather than during an IC project, so the design effort per chip significantly decreases with every chip
that is being targeted.

Regarding the degree of achievable layout quality (discussed in Section 8.3.4.1) as well as the good
performance in terms of design productivity (examined in this Section 8.3.4.2), it is fair to say that the
accomplished work on SWARM so far pressed the right buttons to successfully master the practical
ambition of this thesis (as formulated in Chapter 5). To illuminate the scientific achievement of the
presented work, the subsequent Chapter 9 puts the SWARM methodology in the greater context of a
“higher-level” design flow addressing both schematic design and layout design.

231

8. Implementation and Results

1H
100000

10000

1000

100

10

1

1000 100 10 1

Effort per Chip / minutes

Occurrences

Primitive Device Simple Module Advanced Module Block

1D

1W

1M

1Q

10'

1h

M G O S

Component
Magnitude

M G O S M G O S M G O S

no
t a

pp
lic

ab
le

no
t a

pp
lic

ab
le

no
t a

pp
lic

ab
le

M
G
O
S

Manual Layout Design
Generator-based Automation
Optimization-based Automation
SWARM Methodology

Best Case Effort
Worst Case Effort

1Y

Best Case Effort
when covering 5
Circuit Classes

(only relevant for SWARM)

Change in Effort per Chip
regarding multiple Chips:

No Change
Marginal Decrease
Significant Decrease

Benefit of SWARM for
Design Productivity

 projectedac
hi

ev
ed

Figure 8.23: Depiction of the various layout design efforts estimated in Table 8.12.

232

9. Towards a Holistic Design Flow on Module Level

Chapter 9

Towards a Holistic Design Flow on Module
Level

From time to time you should step back from
yourself like a painter from his painting.

Christian Morgenstern (German poet)

This chapter takes a step back from the developed SWARM methodology and frames its role inside
the bigger picture of an improved design flow which seamlessly covers both of the two major design steps
in IC design: schematic design and layout design. For this purpose, Section 9.1 touches on a couple of
cognate topics accompanying SWARM in the pursuit of that holistic long-term vision. Then, Section 9.2
throws a glance at the scientific value of SWARM, considering the sketched-out EDA roadmap towards
a novel bottom-up meets top-down automation paradigm.

9.1 Cognate Topics Across the Three Different Design Domains

Referring to the well-known Y diagram [361], the IC design flow can be said to traverse three different
design domains denoted as the behavioral domain (which deals with the general function of the circuit),
the structural domain (that the schematic representation of the circuit pertains to), and the physical
domain (wherein the detailed layout geometries of the circuit are to be described). As illustrated in
Figure 9.1, the step of schematic design is thus set between the behavioral domain and the structural
domain while the step of layout design accounts for the transition from the structural domain to the
physical domain.

In former times, when procedural generators did not reach beyond the level of primitive devices,
the design flow exhibited a hierarchical break between the behavioral and the structural domain because
creating flat schematics and flat layouts does not match the designers’ way of thinking in functional
units (i.e., modules) when the behavior of a circuit part is concerned. This inconsistency involves a loss
of information about the purpose of a module and its respective design requirements. To prevent such
discontinuities, this thesis has been conceived as part of an envisioned design flow on module level that
holistically proceeds throughout all of the three design domains. Tackling both of the two intermediary
design steps, Figure 9.1 displays related works that have been (or are being) developed within (or beyond)
the scope of this thesis.

For historical reasons, these works are now described in backwards order (i.e., converse to the design
flow), from the physical domain (Section 9.1.1) through the structural domain (Section 9.1.2) to the
behavioral domain (Section 9.1.3).

233

9. Towards a Holistic Design Flow on Module Level

CAPABLE
SWARM

(Behavioral Domain)

Schematic
Diagram

Functional
Specification

Layout
GeometriesSchematic Design

Function

FRP

Layout
PCells

EDPL PCDS

graphical
PCDS

HIPE GQL

Development
Framework

Circuit
PCells

worked
into

used to
create

worke d into

User
View

used to
create

used to
create

Semi-Automatic
Design Assistant

Cadence
PCell DesignerEDA Tools:

Automatisms:

User Tools:

Design
Flow:

EDA
View

worked
into

invoked
by

put into
effect via

put into
effect via

impr oves

(Structural Domain)
Schematic

(Physical Domain)
Layout

Layout Design

impr oves

Design
Plans

Developed within the Scope of this Thesis

Developed within the Scope of this Thesis
in Collaboration with Cadence

Developed beyond the Scope of this Thesis

Currently in Development beyond the Scope
of this Thesis

Basic Concepts:Basic Concepts:

Figure 9.1: SWARM and its partner subjects in pursuit of a holistic design flow on module level.

9.1.1 Works Concerning the Physical Domain

The SWARM methodology (and its host tool CAPABLE) were initiated upon the success story of layout
PCells by which generator-based automation began to pioneer in the physical domain. Especially with
the advent of the Cadence PCell Designer tool, the potential of procedural generators –and likewise the
need for further concepts to keep up with the new possibilities and challenges– became increasingly
obvious. One fundamental pillar that the PCell Designer has been built upon from the beginning is the
already-mentioned geometry query language (GQL).

Along with a couple of other enhancements, the idea of FR PCells (FRP) –which served as the con-
ceptual trailblazer for SWARM (see Section 7.2.1)– was invented in collaboration with Cadence during
the work on this thesis. Another basic concept added to PCell Designer is Hierarchical Instance Pa-
rameter Editing (HIPE) [362], which enables a parametrical customization of module PCells throughout
arbitrary levels of subhierarchy (as demonstrated in [363]). The scientific earning of HIPE is that the
PCell parameters need not be entirely predefined by the master PCell, but are dynamically determined
depending on the contents of the specific PCell instance.

9.1.2 Works Concerning the Structural Domain

To accommodate the ascent of layout PCells in the physical domain, attention has come to the develop-
ment of corresponding circuit PCells in the structural domain. As already explained in Section 3.1.2.5,
a circuit PCell in fact consists of two PCells: a schematic PCell and a symbol PCell. With the intention
of facilitating the implementation of such PCells, a domain-specific language named Parameterized Cir-
cuit Description Scheme (PCDS) has been worked out in the scope of this thesis. Apart from providing
high-level shape commands and a relative placement notation, PCDS realizes a dual interpretation tech-
nique by which both the schematic PCell and the symbol PCell can be compiled from one single PCDS

234

9.2 The Scientific Value of SWARM: Meeting Bottom-up With Top-down

description. As outlined in [364], PCDS reduces the amount of necessary code lines by a factor of 50 on
average.

Despite all these merits, PCDS still relies on a textual implementation of circuit PCells which is
far from the mentality of circuit design experts accustomed to visually drawing schematic diagrams.
Hence, the winning pitch here is to offer a graphical PCell programming approach in the fashion of PCell
Designer. This has been prototypically achieved through graphical PCDS (gPCDS) [365], a circuit PCell
development tool realized in a contemporaneous research project. Meanwhile, that approach has aroused
so much interest that the basic concepts of PCDS are being integrated into PCell Designer to deliver a
professionalized version of gPCDS. A first glimpse on these new features has been caught in [366].

9.1.3 Works Concerning the Behavioral Domain

To complete the route towards a holistic design flow on module level, the next logical measure is to
transfer the idea of procedural automation over to the behavioral domain and thus address the step of
schematic design. This step is about taking a functional circuit specification (mainly expressed via per-
formance parameters) and producing a sized schematic (that meets the functional specification). For this
purpose, procedural automation can be employed to handle the inherent tasks (finding an appropriate
circuit topology, choosing the device types, and setting the device dimensions) through a so-called “ex-
pert design plan”, which is a sequence of instructions mimicking a human expert’s recipe-like design
proceeding. In [367], the feasibility of doing so has been exemplarily demonstrated on the OTA circuit
class.

As in the physical domain and the structural domain, the grand bargain for EDA is not to develop such
design plans but rather to devise adequate tools for their development. In this spirit, an Expert Design
Plan Language (EDPL) is currently being elaborated [368] as a companion concept of PCDS, so to speak.
Based on EDPL, it is furthermore scheduled to realize a sophisticated development framework (serving
as the logical counterpart to gPCDS and PCell Designer) for the creation of expert design plans. This
approach becomes well-rounded if an expert design plan is enabled to invoke a corresponding circuit
PCell (covering all topologies of the respective circuit class) that generates the schematics needed for
simulation. On the user’s side, a GUI-based tool is meant to bring an expert design plan to life (similar to
a cassette deck playing a tape). Since such a tool relies on close interaction with the user, it is presently
labeled as a Semi-Automatic Design Assistant (SADA).

9.2 The Scientific Value of SWARM: Meeting Bottom-up With Top-down

Beside the practical merits of SWARM, strategically more valuable is the academic achievement of
illustrating how the two converse automation paradigms denoted as bottom-up and top-down can be
made to work together. Interestingly, SWARM’s journey towards this vision of a novel bottom-up meets
top-down philosophy followed the five successive steps articulated in Section 3.2.3:

(1a) The research project behind SWARM was encouraged by the development (and positive recep-
tion) of the PCell Designer tool, for which a lot of technical input –stemming from the work on
SWARM– has been conveyed to Cadence.

(1b) The PCell Designer facilitated a swift implementation of the procedural generators for the simple
modules (analog basic circuits) as layout PCells, utilizing parameters to cover the module-specific
degrees of freedom.

(1c) Building on the idea of context awareness, the CAPABLE framework has been realized to incor-
prate the implemented layout PCells into the design flow as governing modules that are applied to
primitive devices in the layout.

(2) The algorithmic way of optimizing a layout has been worked into the conception of a control organ
which exerts pressure by repeatedly tightening the available layout space to enforce increasingly
compact layouts indirectly.

(3) Devising a decentralized system, where constraint-compliant layout outcomes emerge from the
self-organization of interacting modules (allowing the modules to consider their innate design re-

235

9. Towards a Holistic Design Flow on Module Level

quirements bottom-up and simultaneously satisfying the top-down demands of the control organ),
represent the glue for uniting the two automation paradigms and let bottom-up meet top-down.

As already indicated, SWARM’s ability to take both formalized and nonformalized expert knowledge into
account –via explicit and implicit constraint consideration– is reflected in joining the cardinal strengths
of optimization-based automation and generator-based automation: the versatility of the approach (i.e.,
not having to preconceive the entire solution space in advance) and the resulting layout quality (i.e., not
having to specify every single detail through formal constraints). To provide a final overview, Table 9.1
summarizes the major characteristics of SWARM, as opposed to optimization algorithms and procedural
generators.

Table 9.1: Major characteristics of optimization algorithms, procedural generators, and SWARM.

Automation Optimization Procedural SWARM
Strategy Algorithm Generator Methodology

Circum- Problem-Solving Layout-Creation Multi-Agent
scription Routine Script System

Working Loop of Exploration Straight Sequence Self-Organization of
Principle and Evaluation of Design Commands Interacting Modules

Expert
Formalized Nonformalized

Formalized and
Knowledge Nonformalized

Constraint
Explicit Implicit

Explicit and
Consideration Implicit

Designated Layout Layout Layout
Output Solution Result Outcome

Solution Solution Found by Solution Preconceived Solution Emerges
Policy Optimization Loop by Human Expert from the Interaction

Behavioral Unpredictable, Deterministic and Deterministic but
Determinacy often Randomized even Predictable not Predictable

Cardinal Versatility of Quality of the Autom. Versatility
Strength the Automatism Resulting Layout and Layout Quality

Automation
Top-Down Bottom-Up

Bottom-Up
Paradigm meets Top-Down

From today’s perspective, SWARM pioneers an entirely new field for EDA expected to blossom with
many more innovative approaches that will further contribute to bottom-up meets top-down automation.
Many questions –like whether upcoming works will also facilitate an interplay of bottom-up procedures
with genuine top-down algorithms in their traditional form– are subject to future research and shall
therefore be delegated to upcoming generations of EDA enthusiasts. Nevertheless, some embryos of
big ideas –such as an interaction of context-aware, “smart” Wire PCells that perform a self-intelligent
algorithmic pathfinding– have already come to mind.

236

10. Summary and Outlook

Chapter 10

Summary and Outlook

“Begin at the beginning,” the King said very gravely,
“and go on till you come to the end: then stop.”

Lewis Carroll: Alice in Wonderland

This thesis presents a new methodology for layout automation in the design of analog integrated
circuits, referred to as Self-organized Wiring and Arrangement of Responsive Modules (SWARM).

While digital IC design has already been following highly automated flows for layout synthesis since
the 1980s, many analog layout automation approaches do not find evident industrial acceptance so far,
even though a couple of commercial tools –primarily focused on placement and routing– have arisen
from the past three decades of EDA. The basic reason for this circumstance is that –in contrast to the
quantitative complexity (More Moore) in the digital domain– the functional diversification of analog
circuits and the continuous nature of its signals makes the analog design problem a matter of qualitative
complexity (More than Moore). This involves many diverse and concurrent functional constraints (design
restrictions and optimization goals) that need to be considered simultaneously.

Until today, thorough constraint consideration can only be satisfyingly achieved through a laborious
and largely manual design flow, drawing heavily upon the expert knowledge of human layout engineers.
For that reason, the presented methodology particularly concentrates on a comprehensive incorpora-
tion of expert knowledge into the automation. In real design flows, expert knowledge is communicated
in formalized and nonformalized ways, which corresponds to an explicit and implicit consideration of
constraints, respectively. Since both is required to solve the analog layout problem in its entirety, the
technical aim of the SWARM methodology is to devise a new automation approach that supports both an
explicit and implicit consideration of constraints.

For that purpose, this thesis attempts to combine two basic automation strategies: optimization al-
gorithms (which can consider constraints only explicitly) and procedural generators (able to consider
constraints only implicitly). As a scientific look reveals, these two automation strategies follow two fun-
damentally different automation paradigms denoted as top-down automation and bottom-up automation.
The asset herein is that their respective strengths and weaknesses complement each other, which sug-
gests that a coalescence of bottom-up meets top-down has much more potential than optimization-based
or generator-based approaches alone. However, the scientific challenge is posed by the question if and
how the two different automation paradigms can be brought together.

To address this challenge, SWARM pursues a very interdisciplinary approach building upon the
idea of decentralization and touching various fields related to multi-agent systems. Simple analog basic
circuits are realized as autonomous, mobile, self-interested, parameterized layout modules that interact
with each other as agents inside an increasingly tightened layout zone. By provoking a flow of self-
organization, a compact and constraint-compliant layout outcome is meant to emerge from the module
interaction, reflecting the phenomenon of emergence as can be found in nature. SWARM pays respect to
several principles of self-organization such as operating near the edge of chaos and promoting synergy,

237

10. Summary and Outlook

and draws parallels to several other types of decentralized systems subsumed under the term artificial
life (e.g., cellular automata and agent-based models of collective motion). The SWARM methodology
consists of three core concepts that are correlated with each other:

Responsive modules realize the simple analog basic circuits in the layout (e.g., Current Mirrors and
Differential Pairs). They are implemented as procedural generators whose natural introversive
behavior is enhanced with an extroversive behavior. In short, the major traits are:

• The responsivity is achieved through an interface fabric that equips the modules with the
ability to read and modify their design context.
• Based on this context awareness, a responsive module can manage other components in the

layout as a governing module (e.g., positioning the components and wiring them).
• Governing modules can be joined and/or imposed onto each other to build hierarchical mod-

ule associations.
• Each module covers a certain amount of intrinsic variability (spanning the module layout’s

degrees of freedom) which –in the case of a hierarchical module association– evaluates into
a cumulative variability. This variability is then exploited during the module interaction.

Module interaction refers to the concept behind the decision-making by which the responsive modules
interact with each other as participants during the self-organization phase of a SWARM run. Every
participant adheres to a common action scheme consisting of four measures:

• Assessing the participant’s condition, which depends on five influencing factors (interference,
turmoil, protrusion, wounds, and noncompliance).
• Perceiving its free peripheral space (i.e., the –presumably– vacant, rectangular area around

the participant).
• Exploring and evaluating possible actions, which involves nine native actions (such as Budg-

ing and Swapping) but may also revert to custom actions (e.g., Imitation).
• Executing the preferred action (or staying idle) according to a distinct comparison metric. By

executing an action, the participant can move, rotate, and deform itself (i.e., assume another
layout variant as featured by its cumulative variability).

Interaction control is exerted by a control organ responsible for carefully steering the module interac-
tion towards the desired outcome. This is done in an indirect way, by successively modifying the
size of the layout zone’s outline:

• Beginning with an initial constellation of primitive devices (upon which the governing mod-
ules are instantiated), the user-defined layout zone is set and enlarged to a significantly
greater size (that easily accommodates all modules).
• Then, several rounds of interaction are performed until all participants have settled (i.e., no

participant has executed an action within the same round).
• If all participants are in a valid location, the interaction control organ tightens the layout zone

according to a certain tightening policy (in order to induce another settlement).
• Multiple tightening-settlement cycles are performed until the layout zone reaches the user-

defined size (or the participants fail to settle in a viable constellation).
• Throughout the interaction, solid and volatile comfort padding can be wrapped around a

participant. The latter changes with the zone size in favor of a fluent self-organization. The
former preserves a fix amount of layout space that can be used by an inter-module routing
step to complete the layout in a subsequent finalization phase.

In view of the current implementation, applying the SWARM methodology to a plain placement
problem has shown that even globally optimal outcomes can emerge from the module interaction. Con-
templating that the responsive modules do not cooperate (but compete) with each other, and that the
modules do not survey the problem as a whole (but only have a limited viewpoint and selfishly pursue –
above all– their personal desires), this observation is quite remarkable and substantiates the decentralized
self-organization approach taken by SWARM.

238

10. Summary and Outlook

With the power to support full variability (whereby the aspect ratio of a layout module –representing
a black box– can change within a continuous range) as well as nonrectangular (but rectilinear) outlines
of the layout zone, SWARM is also suitable for the task of floorplanning. Therein, SWARM not only
minimizes the total layout area but also the distances of floorplan blocks connected with each other or to
the periphery. Two floorplanning examples have been given.

The primary purpose of SWARM –i.e., tackling practical place-and-route problems– has been demon-
strated on a Symmetric P-Input OTA and a Folded Cascode P-Input OTA circuit. The outline of the
available layout space as well as the basic module arrangement (predefined via a placement template)
are considered explicitly during the interaction while each module simultaneously takes care of its in-
nate design requirements implicitly. Another mentionable attribute of SWARM is that it refrains from
randomization and works completely deterministic.

Producing various OTA layouts with different aspect ratios depicts that SWARM combines the ver-
satility of optimization algorithms with the layout quality of procedural generators. For circuits of such
magnitude (denoted as advanced modules), it is of practical interest that SWARM not only goes strong
with regard to layout quality but also surpasses generator-based and optimization-based automation in
terms of design productivity. In particular, SWARM’s benefit increases when targeting multiple differ-
ent circuit classes, because the basic set of governing modules is largely the same and thus profits from
re-use.

By teaming the bottom-up capabilities of procedural generators with the top-down perspective of
algorithmic optimization, SWARM’s multi-agent approach represents one veritable way of merging the
two automation paradigms towards a bottom-up meets top-down design flow. With this philosophy in
mind, the presented SWARM methodology paves the way to a novel branch of automation, inspiriting
entirely new opportunities for future works in EDA research and development.

Research work on SWARM continues as it is meant to become part of a holistic IC design flow on
module level, from the functional circuit specification across the generation of a sized schematic diagram
to the creation of the physical layout (thus covering the three different design domains of the well-known
Y diagram). Convinced by the results already obtained so far, SWARM itself is about to be integrated
into an industrial design flow for ASICs in automotive applications. Further conceptual enhancements
of SWARM that have been envisaged are:

• adaptive tightening policies (correlated with the fluency of the self-organization),
• multiple concurrent interaction control organs (handling different circuit parts),
• hierarchically nested interaction flows (for tackling higher-level layout blocks),
• governing modules with learning aptitude (to train expedient interaction maneuvers),
• improving performance and convergence (runtime reduction and independence of start conditions),
• parallelization of module activity via multi-threading (quite obvious for a multi-agent approach),
• user intervention to facilitate real-time human-machine collaboration (as pursued in Industry 4.0).

This continuation of the work on SWARM is strategically motivated by the belief that –in the long
run– bottom-up meets top-down approaches may turn out to be one essential key for finally closing the
persistent automation gap in analog layout design.

239

Vocabulary – Abbreviations

Vocabulary

One should use common words
to say uncommon things.

Arthur Schopenhauer (German philosopher)

Abbreviations

ADC Analog-Digital Converter (p. 54)

A-Life Artificial Life (p. 81)

AMPLE Advanced Multi-Purpose LanguagE (p. 50)

API Application Programming Interface (p. 46)

BAG Berkeley Analog Generator (p. 52)

CAPABLE Constraint-Administered PCell-Applying Blocklevel Layout Engine (p. 213)

CDPC Constraint-Derived Procedural Commands (p. 214)

DAC Digital-Analog Converter (p. 52)

DRC Design Rule Check (p. 26)

EDA Electronic Design Automation (p. 12)

EDPL Expert Design Plan Language (p. 235)

ESD ElectroStatic Discharge (p. 73)

FIPA Foundation for Intelligent Physical Agents (p. 95)

FM Fiduccia-Mattheyses (p. 187)

FRP FR PCells (p. 234)

GEM Generic Engineering Model (p. 51)

GOLF Geometric Object Layout Formula (p. 52)

gPCDS graphical PCDS (p. 235)

GQL Geometry Query Language (p. 234)

GUI Graphical User-Interface (p. 51)

HIPE Hierarchical Instance Parameter Editing (p. 234)

IC Integrated Circuit (p. 12)

IDE Integrated Development Environment (p. 52)

240

Vocabulary – Abbreviations

IP Intellectual Property (p. 51)

JADE Java Agent DEvelopment Framework (p. 95)

KL Kernighan-Lin (p. 187)

LVS Layout Versus Schematic (p. 26)

MCNC Microelectronics Center of North Carolina (p. 66)

MOGLAN MOdule Generator LANguage (p. 51)

MOS Metal-Oxide-Semiconductor (p. 20)

OTA Operational Transconductance Amplifier (p. 71)

PCDS Parameterized Circuit Description Scheme (p. 234)

PCell Parameterized Cell (p. 48)

PDK Process Design Kit (p. 20)

PyCell Python-based Parameterized Cell (p. 50)

SADA Semi-Automatic Design Assistant (p. 235)

SDL Schematic-Driven Layout (p. 26)

SKILL –is not an acronym but a name– (p. 50)

SWARM Self-organized Wiring and Arrangement of Responsive Modules (p. 96)

TCL Tool Command Language (p. 52)

UDD User-Defined Device (p. 51)

via vertical interconnect access (p. 21)

241

Vocabulary – Mathematical Operators

Mathematical Operators

Calculation∑
sum∏
product

| . . . | absolute value of a scalar
b. . . c floor (rounding down a scalar)
d. . . e ceiling (rounding up a scalar)
min smallest of the given values
max greatest of the given values

Set Theory

{. . . } set brackets
∅ empty set
∈ membership
/∈ non-membership
⊆ subset
⊂ proper subset
⊇ superset
⊃ proper superset
∩ set intersection
∪ set union
\ set complement
M symmetric difference
× Cartesian product
| . . . | cardinality of a set

Logic

∀ universal quantification
∃ existential quantification
@ non-existential quantification
∃! uniqueness quantification
∧ logical conjunction (AND)
∨ logical disjunction (OR)
⊕ exclusive disjunction (XOR)
⇔ if and only if

quod erat demonstrandum (end of proof)

Thesis-specific

� commutative order of two morphisms
. noncommutative order of two morphisms
� succession of two morphisms
⇐ mapping from parameter domain to layout variability

set plus single element
set minus single element

242

Vocabulary – Geometrical Operators

Geometrical Operators

Domain

U entire layout plane (geometrical universe)
∅ geometrical void (∅ = U)

Membership

G1 v G2 G1 is enclosed by G2 (geometrical inclusion)
G1 @ G2 G1 is properly enclosed by G2 (strict geometrical inclusion)
G1 w G2 G1 encloses G2 (geometrical containment)
G1 A G2 G1 properly encloses G2 (strict geometrical containment)

Construction

G = ((x̌, y̌), (x̂, ŷ)) rectangle from south-western vertex (x̌, y̌) to north-eastern vertex (x̂, ŷ)

G = (N1, N2, . . .) polygonal shape, given as a polygonal chain with sequential nodes N1, N2, . . .

G1 uG2 intersection of G1 and G2 (geometrical AND)
G1 tG2 union of G1 and G2 (geometrical OR)
G1 G2 relative complement of G2 in G1 (geometrical difference)
G absolute complement of G (G = U G)

Outline Functions

`G horizontal coordinate of the leftmost point in G
aG horizontal coordinate of the rightmost point in G
>G vertical coordinate of the uppermost point in G
⊥G vertical coordinate of the lowermost point in G
G rectangular bounding box of geometrical shape G
G rectangular bounding boxes of geometrical shapes G

}εG enlargement ofG’s contour in the four cardinal directions by ε (grow operator)
~ξG relative shrinking of G’s contour by a factor of ξ (contraction operator)

Measurement

↔G width of G
lG height of G
G area of G
|G| number of vertices of G
L1L2 Euclidean distance between two points L1 and L2

243

Vocabulary – Symbols

Symbols

α angle in the orientation of a design component (counterclockwise) (p. 108)
a general index (p. 106)
A adoption process of a governing module (p. 101)
Ab absorption operation of a module’s adoption process (p. 101)
Ad adaptation operation of a module’s adoption process (p. 101)
Am amendment operation of a module’s adoption process (p. 101)
As assimilation operation of a module’s adoption process (p. 101)
β exponentiation base in a logistic regressive tightening policy (p. 175)
b general index (p. 106)
B bounding box around the part of a participant inside the layout zone (p. 129)
B Boolean domain {0, 1} (p. 128)
γ number of clashes between two participants (p. 119)
cs solid comfort padding amount (p. 183)
cξ volatile comfort padding factor (p. 184)
cv volatile comfort padding share (p. 184)
C connection between two participants (p. 119)
C set of connections of a participant (p. 121)
d ductility of a design component (p. 114)
∆ uppercase delta (absolute difference) (p. 132)
δ lowercase delta (relative change) (p. 148)
D deformation morphism of a module transformation (p. 106)
DP,I parameter domain of an input parameter I for a module P (p. 111)
ε arbitrarily small positive number (p. 130)
ε absolute edge displacement due to a tightening or enlargement of the layout zone (p. 157)
e emphasis of a connection between two participants (p. 119)
E edge of a rectangle or polygon (p. 129)
f number of fingers parameter of a procedural generator for a MOS transistor (p. 111)
f number of fingers value of a procedural generator instance for a MOS transistor (p. 111)
F constellation frame around all participants (p. 157)
g (introversive) behavior of a procedural generator (p. 48)
G geometrical shape in the layout design (p. 118)
G set of geometrical shapes (p. 118)
η number of connections of a participant (p. 120)
h̄ horizontal flipping in the orientation of a design component (p. 108)
h height of an object (p. 135)
H hard constraint (strict confinement) imposed on a set of constraint members (p. 128)
H set of hard constraints imposed on a set of constraint members (p. 128)
ϑ aversion between two participants (p. 117)
θ tension contributing to the turmoil of a participant (p. 122)
Θ turmoil of a participant (p. 122)
i general counter (p. 114)
I input parameter of a procedural generator (p. 48)
I set of input parameters of a procedural generator (p. 48)
j general counter (p. 114)
κ kickoff enlargement multiplier (desired zone size divided by intrinsic minimum) (p. 158)
k general counter (p. 114)
K corridor for a participant’s perception of its free peripheral space (p. 129)
K set of corridors for a participant’s perception of its free peripheral space (p. 129)
λ leeway coefficient for the calculation of a connection’s relaxation threshold (p. 120)
` layout layer in a semiconductor technology (p. 118)

244

Vocabulary – Symbols

Λ set of layout layers in a semiconductor technology (p. 118)
l length (Euclidean distance between two points) (p. 121)
L location (x, y) of a design component / point in the layout plane (p. 108)
L set of locations (p. 135)
L the universe of layout designs (p. 48)
m minimal movement distance to prevent infinitesimal actions (p. 136)
M movement morphism of a module transformation (p. 106)
M constraint members (set of components on which a certain constraint is imposed) (p. 128)
n general counter (p. 114)
N node (vertex) of a geometrical shape (p. 154)
N0 set of natural numbers (including zero) (p. 125)
N+ set of positive natural numbers (excluding zero) (p. 111)
ξ contraction amount for a relative tightening or enlargement of the layout zone (p. 157)
Ξ set of contraction amounts (p. 165)
o orientation parameter of a procedural generator (p. 112)
O orientation of a design component (p. 108)
Oh̄ orientation of a design component in horizontal notation (p. 109)
Oυ orientation of a design component in vertical notation (p. 109)
O set of orientations (p. 151)
$ pressing rate (to define the rigorousness of the layout zone tightening policy) (p. 161)
p positioning parameter of a procedural generator (p. 112)
P parameterized design component / procedural generator / participant (p. 112)
P set of parameterized design components / procedural generators / participants (p. 114)
Pι participants that are involved in an action (p. 132)
q contraction quotient in an exponential progressive tightening policy (p. 171)
Q square geometrical shape (regular quadrilateral) (p. 120)
% relaxation threshold of a connection between two participants (p. 120)
ρ region of a wound on a participant (p. 125)
r radius of a circle (p. 120)
R rotation morphism of a module transformation (p. 106)
R set of real numbers (p. 119)
ς severity of a wound on a participant (p. 125)
s strength of a connection between two participants (p. 119)
S free peripheral space of a participant (p. 129)
S the universe of schematic circuits (p. 48)
τ trouble contributing to the interference of a participant (p. 117)
tH constraint type of a hard design constraint H (p. 128)
T transformation of a participant (p. 132)
T set of transformations (i.e., an action involving multiple participants) (p. 150)
T set of actions (where each action is given as a set of transformations) (p. 151)
υ vertical flipping in the orientation of a design component (p. 109)
Υ interference of a participant (p. 117)
u number of minor tightenings in a linear progressive tightening policy (p. 169)
U set of obstacles (p. 129)
ϕ conciliation quota for the decrease of the aversion between two participants (p. 119)
Φ morphism (movement, rotation, or deformation) of a module transformation (p. 106)
vt(M) verification function for a constraint of type t imposed on constraint membersM (p. 128)
V layout variant of a design component (p. 132)
V variability of a design component (p. 111)
V́ intrinsic variability of a design component (p. 111)
Ṽ cumulative variability of a design component (p. 112)
wch total channel width of a MOS transistor (p. 113)

245

Vocabulary – Symbols

wmin minimum channel width of a MOS transistor (p. 113)
w width of an object (p. 135)
W wound of a participant (p. 125)
W set of wounds of a participant (p. 127)
χ projection divisor for tightening or enlarging a nonrectangular layout zone (p. 166)
x horizontal coordinate of a component’s location or of a point in the layout plane (p. 108)
X exploration scenario in a participant’s action exploration plan (p. 154)
X exploration plan for a participant’s action exploration (p. 154)
ψ protrusion extent of a participant’s protrusion (p. 124)
Ψ protrusion of a participant (p. 123)
ω overlap between two participants (p. 117)
y vertical coordinate of a component’s location or of a point in the layout plane (p. 108)
Y yielding region around a participant, used to determine a Yielding action (p. 141)
ζ number of a participant’s unrelaxed connections (p. 122)
z, z∗ zone size quotients in a logistic regressive tightening policy (p. 174)
Z outline of the user-defined layout zone (p. 98)

246

Vocabulary – Index

Index

#
1Stone Developer∗ . 51

A
Abrasive tightening‡ (of the layout zone) . 169
Absolute representation∗ (of a floorplan) . 188
Absorption‡ (operation of the adoption process) . 101
Abstraction† (of an optimization problem) . 33
Acceptable‡ (action) . 133
Action‡ (with one transformation per participant) . 98
Action correction‡ (to remedy protrusion extent) . 125
Action palette‡ (of a SWARM run) . 205
Action profile∗∗ (in game theory) . 92
Action scheme‡ (comprised of four measures) . 116
Adaptation‡ (operation of the adoption process) . 101
Adjuvant‡ (action) . 147
Admissible‡ (protrusion) . 163
Adoption process‡ (of a governing module) . 101
Advanced modules† . 19
Afferent‡ (edge of the layout zone) . 163
Agent-based models∗∗ . 94
Agents∗∗ . 93
Aggravation‡ (of a wound) . 125
Aggressive‡ (tightening policy) . 160
Allopoietic∗∗ (system) . 86
Amelioration‡ (of a wound) . 126
Amendment‡ (operation of the adoption process) . 101
Analog basic circuits† . 19
Angle‡ (in a component’s orientation) . 108
Ant Colony Optimization∗∗∗ . 59
Ant mill∗∗ . 208
Antenna effect∗ . 38
Artificial intelligence∗∗∗ . 59
Artificial life∗∗ . 90
Assimilation‡ (operation of the adoption process) . 101
Asymmetric game∗∗ . 92
Attractor∗∗ (of a complex system) . 87
Automation approach† . 66
Automation gap† . 24
Automation paradigms† . 60
Autopoietic∗∗ (system) . 86
Aversion‡ (between two participants) . 117

B
Behavior† (of a procedural generator) .48
Behavioral domain∗ (of the IC design flow) . 233
Benchmark circuits∗ . 66
Beneficial‡ (action) . 147
Berkeley Analog Generator∗ . 52
Blind spots‡ (in the free peripheral space) . 131

247

Vocabulary – Index

Boid∗∗ . 94
Bottom-up automation† . 62
Bottom-up meets top-down† . 63
Butterfly effect∗∗ . 84

C
Cells∗ (in a design hierarchy) . 19
Cellular automata∗∗ . 90
Centipede∗∗ (game) . 92
Chaos theory∗∗ . 84
Circuit generators∗ . 51
Circuit PCell† . 57
Circulation‡ (in SWARM’s module interaction) .208
Clashes‡ (between two participants) . 119
Clear‡ (participant) . 119
Coalitional∗∗ (behavior in game theory) .92
Codomain† (of a procedural generator) . 48
Cognitive openness∗∗ . 87
Comfort padding‡ (around a participant) . 182
Command sequence† (of a procedural generator) . 47
Command window∗ (of PCell Designer) . 52
Competitive∗∗ (behavior in game theory) .92
Complete-information game∗∗ . 192
Complex adaptive system∗∗ . 87
Complex system∗∗ . 80
Complexity∗∗ (of a system) . 80
Complexity theory∗∗ . 80
Compliant‡ (participant) . 128
Component magnitude† (reflecting functional complexity) . 229
Conciliation quota‡ (to reduce aversion) . 119
Condition‡ (of a participant) . 117
Connection‡ (between two participants) . 119
Consistency† (of a design) . 71
Constant-sum game∗∗ . 92
Constellation‡ (of participants) .98
Constellation frame‡ (around all participants) . 157
Constraining∗ . 30
Constraint engineering∗ . 46
Constraint generation∗ . 46
Constraint management∗ . 46
Constraint members∗ . 128
Constraint propagation∗ . 46
Constraint resolution∗ . 46
Constraint transformation∗ . 46
Constraint unification∗ . 46
Constraint-Administered PCell-Applying Blocklevel Layout Engine† (CAPABLE).213
Constraint-Derived Procedural Commands† (CDPC) . 214
Constraint-driven design∗ . 26
Constraints∗ . 25
Constructive∗ (optimization algorithm) . 32
Contented‡ (participant) .129
Context awareness† (of a procedural generator) . 100

248

Vocabulary – Index

Continuous game∗∗ . 92
Contraction amount‡ (of a scaling operation) . 157
Contraction operator‡ (for shrinking polygons) . 157
Contraction quotient‡ (in an exponential progressive tightening policy) . 171
Conway’s Game of Life∗∗ . 90
Cooperative game∗∗ . 92
Corner-stitching∗ (data structure) . 191
Corridor‡ (from a participant’s viewpoint) . 129
Co-transformations‡ (of a participant’s transformation) . 103
Critical severity‡ (of a wound) . 127
Cumulative variability‡ (of a participant) . 112
Customization† (of a procedural generator) .70
Cybernetics∗∗ . 81

D
Decentralization∗∗ . 80
Decentralized systems∗∗ . 90
Deformation‡ (morphism) . 106
Degrees of freedom∗∗∗ (of an optimization problem) . 24
Design by example∗ . 51
Design constraints∗ . 25
Design domains∗ (of the IC design flow) . 233
Design flow∗ . 23
Design objectives∗ . 18
Design productivity† . 68
Design restrictions∗ . 18
Design rule check∗ (DRC) .26
Design rules∗ . 18
Design style∗ . 23
Desire‡ (per influencing factor) . 117
Deterministic chaos∗∗ . 84
Device folding∗ . 20
Device generation∗ . 20
Diffusion sharing∗ . 41
Discontented‡ (participant) . 129
Discrete game∗∗ . 92
Discrete variability‡ (of a participant) . 111
Dismissed actions‡ (not executed for being trivial) . 205
Distributed behavioral model∗∗ . 94
Distributed control∗∗ . 81
Division by zero∗∗∗ . 149
Domain† (of a procedural generator) .48
Domain-specific languages∗∗∗ . 50
Domino effect∗∗∗ . 208
Double-cut vias∗ . 22
Drawing window∗ (of PCell Designer) . 52
Ductility‡ (of a participant) . 114

E
Ear protrusion‡ (at a convex vertex) . 164
Edge displacement‡ (in a contraction operation) . 157
Edge of chaos∗∗ . 87

249

Vocabulary – Index

Edit-in-place∗ . 57
Efficiency gain† (of a design methodology) . 68
Effort† (for employing a design methodology) . 68
Elastic‡ (participant) . 145
Electronic design automation∗ (EDA) . 12
Emergence∗∗ . 81
Emphasis‡ (of a connection) . 119
Empty product∗∗∗ . 171
Empty sum∗∗∗ . 171
Episodes‡ (of a SWARM run’s self-organization phase) . 182
Epistemological∗∗ (aspect of emergence) . 81
Equally relaxing‡ (actions) . 148
Equilibrium strategies∗∗ (in game theory) . 92
Evaluation∗ (in an optimization loop) . 32
Excessive‡ (protrusion) . 163
Execution cockpit† (of CAPABLE). .213
Expense† (for employing a design methodology) . 68
Expert Design Plan Language† (EDPL) . 235
Expert knowledge∗ (in IC design) . 26
Explicit∗ (constraint consideration) . 27
Exploration∗ (in an optimization loop) . 32
Exploration plan‡ (for a participant’s action exploration) . 154
Exploration scenario‡ (in an exploration plan) . 154
Explored actions‡ (taken into consideration by a participant) . 205
Exponential progressive tightening policy‡ . 171
Extensive form∗∗ (of a game) . 92
Extroversive behavior‡ (of a participant) . 116

F
Feedback∗∗ (in a system) . 88
Fiduccia-Mattheyses∗ (algorithm) . 187
Finalization phase‡ (of a SWARM run) . 99
Finite state machine∗∗ .87
Finitely-repeated game∗∗ . 92
Flatten∗ (a design component) . 57
Floorplanning∗ . 20
Fluid shapes∗ . 56
Force-Directed Placement∗ . 40
Formalized∗ (constraint representation) . 26
Fractals∗∗ . 85
Free peripheral space‡ (of a participant) . 129
Friction∗∗ (in a complex system) . 89
Full variability‡ (of a participant) . 111
Full-custom∗ (design) . 24
FR PCells† . 100
Functionality† (of a design) . 71

G
Galaxy Design Platform∗ . 50
Game theory∗∗ . 92
Generalization† (through generator parameters) . 49
General-purpose languages∗∗∗ . 50

250

Vocabulary – Index

Generate from Source∗ . 21
Geometric Object Layout Formula∗ (GOLF) . 52
Geometric sequence∗∗∗ . 173
Geometric series∗∗∗ . 173
Geometry query language∗ (GQL) . 52
Governing module‡ . 101
Greedy∗ (optimization algorithm) . 190
Grow operator‡ (for enlarging polygons) . 157

H
Hard constraints∗∗∗ . 25
Healing‡ (of a wound) . 126
Healthy‡ (location of a participant) . 127
Hierarchical Instance Parameter Editing† (HIPE) . 234
HiPer DevGen∗ . 51
Hooke’s law∗∗∗ . 189
Horizontal flipping‡ (in a component’s orientation) . 108
Horizontal notation‡ (of a component’s orientation) . 109
Hyperregression‡ (in regressive tightening) . 178
Hyporegression‡ (in regressive tightening) . 178

I
Identity element∗∗∗ . 154
IIP Framework∗ . 52
Image† (of a procedural generator) . 48
Imperfect-information game∗∗ . 92
Implicit∗ (constraint consideration) . 27
Incomplete-information game∗∗ .192
Infinitely-repeated game∗∗ . 92
Influencing factors‡ (concerning a participant’s condition) . 117
Initialization phase‡ (of a SWARM run) . 98
Instances∗ (in a design) . 48
Instantiated∗ (design component) . 19
Integer linear programming∗∗∗ . 43
Integrated circuits∗ (ICs) . 12
Intensity‡ (of an overlap) . 118
Intentional emergence∗∗ . 81
Interaction control‡ . 97
Interaction record‡ (of a SWARM run) . 199
Interface fabric‡ (for indirect context awareness) . 101
Interference‡ (of multiple participants) . 117
Intrinsic minimum‡ (of the layout zone) . 158
Intrinsic variability‡ (of a participant) . 111
Introversive behavior‡ (of a participant) .116
Invalid‡ (action) . 133
Invisible hand∗∗ . 90
Involved‡ (participants of an action) . 132
Isoregression‡ (in regressive tightening) . 178
Iterative∗ (optimization algorithm) . 32

J
Java∗∗∗ (programming language) . 95

251

Vocabulary – Index

K
Kernighan-Lin∗ (algorithm) . 187
Kickoff enlargement multiplier‡ (for the first tightening-settlement cycle) . 158

L
Laker Custom Layout Automation System∗ . 51
Langton’s Ant∗∗ . 91
Law of requisite variety∗∗ . 90
Layout design∗ . 12
Layout methodology† . 66
Layout quality† .71
Layout versus schematic∗ (LVS) . 26
Leading participant‡ (of an action) . 133
Leeway coefficient‡ (for relaxation threshold calculation) .120
Lenient‡ (tightening policy) . 160
Linear progressive tightening policy‡ . 169
Location‡ (of a participant) . 108
Logistic function∗∗∗ . 174
Logistic regressive tightening policy‡ . 174
Lost‡ (participant) . 124

M
Major tightening‡ (of the layout zone) . 169
Mandatory‡ (action) . 133
Manhattan distance∗ . 38
Master∗ (in a design library) . 48
Matching∗ . 18
Measures‡ (of the common action scheme) . 116
Mechanical equilibrium∗∗∗ (of a physical system) . 189
Meta-module‡ (without physically relevant layout shapes) . 103
Metastable∗∗ (state of a system) . 87
Metric distance model∗∗ .94
Min-Cut∗ (algorithm) . 40
Minimal movement distance‡ (to prevent infinitesimal actions) . 136
Minor enlargements‡ (of the layout zone) . 174
Minor tightenings‡ (of the layout zone) . 169
Mixed-signal design problem∗ . 22
Moderate‡ (tightening policy) . 161
Module association‡ (of multiple governing modules) . 103
Module interaction‡ . 97
More Moore∗ . 24
More than Moore∗ . 24
Morphisms‡ (of a transformation) . 106
Mouth protrusion‡ (at a concave vertex) . 164
Movement‡ (morphism) . 106
Multi-agent systems∗∗ . 93

N
Nash equilibrium∗∗ . 92
Negative feedback∗∗ (in a system) . 88
Net force∗∗∗ (on a physical body) . 189

252

Vocabulary – Index

Neutral element∗∗∗ . 154
Node‡ (of a geometrical shape) . 154
Nominal emergence∗∗ .81
Noncompliance‡ (of a participant violating a constraint) . 127
Non-constant-sum game∗∗ .92
Noncooperative game∗∗ . 92
Nonformalized∗ (constraint representation) . 26
Nonslicing floorplan∗ . 40
Nonterminating interaction cycle‡ (in SWARM’s module interaction) . 206
Nontrivial machine∗∗ . 87
Normal form∗∗ (of a game) . 92
Number of connections‡ (from one participant to others) . 120
Number of fingers∗ . 20

O
Onset of chaos∗∗ . 87
Ontological∗∗ (aspect of emergence) .81
Operational closure∗∗ . 86
Optimization algorithms∗∗∗ . 32
Optimization goals∗∗∗ . 18
Optimization loop† (of an optimization algorithm) . 32
Optimization problem∗∗∗ . 18
Orientation‡ (of a component) . 108
Oscillation‡ (in SWARM’s module interaction) . 208
Outcome‡ (of a SWARM run) . 97
Overconstraining∗ . 36
Overlap‡ (between two participants) . 117
Overstrain‡ (in a connection) . 121

P
Package∗ . 21
Panfunctional‡ (governing module) . 103
Parameterized Caltech intermediate form∗ . 56
Parameterized cells∗ . 48
Parameterized Circuit Description Scheme† (PCDS) . 234
Participants‡ (of a SWARM run) . 97
Particle Swarm Optimization∗∗∗ .59
Particles∗∗ (in population-based optimization) . 93
Pass∗ (of an optimization algorithm) . 187
Payoff∗∗ (in game theory) . 92
PCell Compiler∗ .51
PCell Designer∗ . 52
Perfect-information game∗∗ . 92
Performed actions‡ (indeed executed by a participant) . 205
Perturbation∗ (of a placement) . 189
Pervasion‡ (in the free peripheral space) . 131
Physical bounding box‡ (of a participant) . 183
Physical domain∗ (of the IC design flow) . 233
Pirouette motion‡ (of two interacting participants) . 198
Place-and-route∗ . 45
Placement∗ . 20
Placement template∗ . 147

253

Vocabulary – Index

Players∗∗ (in game theory) . 92
Population-based∗∗∗ (optimization algorithm) . 59
Positioning‡ (by a governing module) . 102
Positive feedback∗∗ (in a system). .88
Pressing rate‡ (of a tightening policy) . 161
Prime rectangles∗∗∗ . 189
Primitive devices∗ . 19
Prisoner’s Dilemma∗∗ (game) . 92
Procedural generators∗ . 47
Process design kit∗ (PDK) . 20
Progressive tightening policy‡ . 169
Projection divisor‡ (for edge displacement calculation) . 166
Prone‡ (participant) . 124
Protrusion‡ (of a participant) . 123
Protrusion excess‡ (beyond the admissible protrusion extent) . 163
Protrusion extent‡ (beyond the layout zone) . 124
PyCell Studio∗ . 52
Pyxis Custom IC Design Platform∗ . 50

Q
Qualitative complexity† . 24
Quality gap† . 24
Quantitative complexity† . 24

R
Rectangle notation‡ (defined by two vertices) . 118
Recuperation‡ (strategy of a participant) . 127
Recursivity∗∗ (in a system) . 87
Reflex agent∗∗ . 100
Region‡ (of a wound) . 125
Regressive tightening policy‡ . 174
Rejected actions‡ (deemed invalid or inferior to others) .205
Relative change‡ (of interference or turmoil) . 148
Relaxation delta‡ (of an action) . 148
Relaxation threshold‡ (of a connection) . 120
Relaxed‡ (connection / participant) . 121
Relaxing action‡ (with negative relaxation delta) . 148
Rendering window∗ (of PCell Designer) . 52
Repetition of position∗∗∗ (in chess) . 208
Residual contraction amount‡ (after a zone tightening) . 170
Resonance disaster∗∗ . 88
Responsive modules‡ . 97
Result† (from a procedural generator) .47
Re-use∗ . 48
Reynolds’ Boids∗∗ . 94
Rotation‡ (morphism) .106
Round‡ (of interaction). .98
Routing∗ . 20
Run‡ (comprised of tightening-settlement cycles) . 98

S
Safe‡ (participant) . 124

254

Vocabulary – Index

Schematic PCell∗ . 57
Schematic-driven layout∗ (SDL) . 26
Self-interested∗∗ (player in game theory) . 89
Selfish herd theory∗∗ . 89
Self-organization∗∗ . 85
Self-organization phase‡ (of a SWARM run) . 98
Self-organized Wiring and Arrangement of Responsive Modules‡ (SWARM) . 96
Self-propelled particles∗∗ .95
Semi-Automatic Design Assistant† (SADA). 235
Semi-custom∗ (design) . 24
Sequential game∗∗ . 92
Settlement‡ (in a tightening-settlement cycle) . 98
Severity‡ (of a wound) . 125
Shape‡ (in the layout plane) . 118
Shape functions∗ . 219
Simple modules† . 19
Simulated Annealing∗ . 40
Simultaneous game∗∗ . 92
Singleton∗∗∗ . 167
SKILL∗ . 50
Slicing floorplan∗ .40
Slicing model∗ . 188
Slicing tree∗ . 219
Soft constraints∗∗∗ . 25
Solid bounding box‡ (operator) . 183
Solid comfort padding‡ (around a participant) . 182
Solid comfort padding amount‡ (per direction) . 183
Solution† (from an optimization algorithm) . 32
Solution concepts∗∗ (in game theory) . 92
Solution space∗∗∗ (of an optimization problem) . 18
Spatially explicit∗∗ (agent-based model) . 94
Spontaneous order∗∗ (of a complex system) . 84
Stage game∗∗ . 92
Standardized∗ (design) . 24
Steering rules∗∗ (in Reynolds’ Boids) . 94
Stick diagram∗ . 51
Stigmergy∗∗ . 88
Strength‡ (of a connection) . 119
Strict confinements† (of a solution space) . 18
Strong emergence∗∗ . 82
Structural coupling∗∗ . 86
Structural domain∗ (of the IC design flow) . 233
Structural drift∗∗ . 87
Suprasummativity∗∗ . 80
Supreme commander‡ (in a module association) . 103
Swarm behavior∗∗ . 82
Swarm intelligence∗∗∗ . 59
Symbol PCell∗ . 57
Symmetric game∗∗ . 92
Synergetics∗∗ . 88
Synergy∗∗ (in a complex system) . 88
Systems theory∗∗ . 87

255

Vocabulary – Index

T
Template-based∗ (design methodologies) . 58
Temporary context duplication‡ (in a governing module) . 101
Tenacity‡ (of an overlap) . 118
Tension‡ (in a connection) .122
Tight‡ (layout zone) . 98
Tightening policy‡ (for layout zone tightening) . 160
Tightening profile‡ (of a tightening policy) . 169
TimberWolf∗ (tool) . 188
Tolerable‡ (action) .133
Top-down automation† . 60
Topological distance model∗∗ . 94
Topological representation∗ (of a floorplan) . 188
Transformation‡ (of a participant) . 132
Transient tightening policies‡ . 169
Transition function∗∗ . 90
Trivial‡ (action) . 155
Trivial machine∗∗ .87
Trouble‡ (between two participants) . 117
Turing complete∗∗ . 91
Turmites∗∗ . 91
Turmoil‡ (of a participant with multiple connections) . 122

U
Unhealthy‡ (location of a participant) .127
Unintentional emergence∗∗ . 81
Universe† (of a procedural generator) . 48
Unrelaxed‡ (connection / participant) . 121
Utility function∗∗ (in game theory) . 92

V
Valid‡ (action) . 133
Variability‡ (of a participant) . 111
Variator module‡ (to manage a single primitive device) . 113
Variety∗∗ (of a system) . 90
Verification function‡ (to check the satisfaction of a hard constraint) . 128
Vertical flipping‡ (in a component’s orientation) . 109
Vertical notation‡ (of a component’s orientation) . 109
Via∗ . 21
Viable‡ (constellation) . 98
Virtuoso∗ . 50
Volatile bounding box‡ (operator) . 183
Volatile comfort padding‡ (around a participant) . 182
Volatile comfort padding factor‡ (preserving the participant’s aspect ratio) . 184
Volatile comfort padding share‡ (to determine the volatile comfort padding factor) 184

W
Weak emergence∗∗ . 82
Weight∗ . 188
Weighting factor∗ . 188
Wireworld∗∗ . 91

256

Vocabulary – Index

Wiring‡ (by a governing module) . 102
Wounds‡ (inflicted on a participant) . 125

X

Y
Y diagram∗ (by Gajski and Kuhn) . 233
Yielding region‡ (around a participant) . 141

Z
Zone‡ (demarcating the layout territory for the module interaction) . 98
Zone size quotients‡ (in a logistic regressive tightening policy) . 174

Meaning of the superscript signs:

∗ indicates a term already established in electronic design automation
∗∗ indicates a term already established in the field of complex systems
∗∗∗ indicates a term already established in physics, math, or computer science
† indicates a term coined in publications accompanying the work of this thesis
‡ indicates a term specific to the SWARM methodology as covered in this thesis.

257

References – Bibliography

References

A reader lives a thousand lives before he dies.
The man who never reads lives only one.

George R. R. Martin (US-American writer)

Bibliography

[1] Alan Hastings, “The Art of Analog Layout”, Second Edition, Pearson Prentice Hall, New Jersey,
2006, ISBN: 978-0-13-146410-0.

[2] Jef Rijmenants / James B. Litsios / Thomas R. Schwarz / Marc G. R. Degrauwe, “ILAC: An Au-
tomated Layout Tool for Analog CMOS Circuits”, IEEE Journal of Solid-State Circuits, vol. 24,
no. 2, pp. 417–425, Apr. 1989, DOI: 10.1109/4.18603.

[3] Masato Mogaki / Naoki Kato / Youko Chikami / Naoyuki Yamada / Yasuhiro Kobayashi,
“LADIES: An Automatic Layout System for Analog LSI’s”, Proc. of IEEE International Con-
ference on Computer-Aided Design, pp. 450–453, Nov. 1989, DOI: 10.1109/ICCAD.1989.76989.

[4] Volker Meyer zu Bexten / Claudio Moraga / Roland Klinke / Werner Brockherde / Klaus-Gunther
Hess, “ALSYN: Flexible Rule-Based Layout Synthesis for Analog IC’s”, IEEE Journal of Solid-
State Circuits, vol. 28, no. 3, pp. 261–268, Mar. 1993, DOI: 10.1109/4.209992.

[5] Alberto Luigi Sangiovanni-Vincentelli, “The Tides of EDA”, IEEE Design and Test of Computers,
vol. 20, no. 6, pp. 59–75, Nov./Dec. 2003, DOI: 10.1109/MDT.2003.1246165.

[6] R. Colin Johnson, “Analog EDA Finally Automated”, online, Apr. 2015, quotation from Rob A.
Rutenbar at the International Symposium on Physical Design, URL: http://www.eetimes.
com/document.asp?doc_id=1326192.

[7] Jürgen Scheible, “Constraint-Driven Design – Eine Wegskizze zum Designflow der nächsten Gen-
eration”, Proc. of ANALOG 2008, pp. 153–158, VDE Verlag, Berlin, Offenbach, Apr. 2008, ISBN:
978-3800730834.

[8] Jürgen Scheible, “Layoutentwurf integrierter Schaltkreise”, Skriptum zur Vorlesung, Sep. 2015,
Chapter 7.

[9] Franco Maloberti, “Layout of Analog CMOS Integrated Circuit”, online, Part 2: Transis-
tors and Basic Cells Layout, URL: http://ims.unipv.it/Courses/download/AIC/
Layout02.pdf.

[10] Jens Lienig, “Layoutsynthese elektronischer Schaltungen – Grundlegende Algorithmen für die
Entwurfsautomatisierung”, Springer, Berlin Heidelberg New York, 2006, ISBN: 978-3-540-
29627-0, DOI: 10.1007/3-540-29942-4.

258

https://dx.doi.org/10.1109/4.18603
https://dx.doi.org/10.1109/ICCAD.1989.76989
https://dx.doi.org/10.1109/4.209992
https://dx.doi.org/10.1109/MDT.2003.1246165
http://www.eetimes.com/document.asp?doc_id=1326192
http://www.eetimes.com/document.asp?doc_id=1326192
http://ims.unipv.it/Courses/download/AIC/Layout02.pdf
http://ims.unipv.it/Courses/download/AIC/Layout02.pdf
https://dx.doi.org/10.1007/3-540-29942-4

References – Bibliography

[11] “Analog Layout Synthesis – A Survey of Topological Approaches” (edited by Helmut E. Gräb),
Springer, New York Dordrecht Heidelberg London, 2011, ISBN: 978-1-4419-6931-6, DOI:
10.1007/978-1-4419-6932-3.

[12] Rob A. Rutenbar, “Analog Layout Synthesis: What’s Missing?”, Proc. of 19th Interna-
tional Symposium on Physical Design, p. 43, Mar. 2010, ISBN: 978-1-60558-920-6, DOI:
10.1145/1735023.1735037.

[13] Harald Bauer / Felix Grawert / Nadine Kammerlander / Ulrich Naeher / Florian Weig, “Get-
ting Mo(o)re out of Semiconductor R&D”, McKinsey on Semiconductors, vol. 1, no. 1, pp. 59–
65, Sep. 2011, URL: http://www.mckinsey.com/~/media/mckinsey/dotcom/
client_service/semiconductors/pdfs/mosc1rd.ashx.

[14] Andrew B. Kahng / Jens Lienig / Igor L. Markov / Jin Hu, “VLSI Physical Design: From Graph
Partitioning to Timing Closure”, Springer Netherlands, 2011, ISBN: 978-90-481-9590-9, DOI:
10.1007/978-90-481-9591-6.

[15] Gordon E. Moore, “Cramming More Components onto Integrated Circuits”, Proc. of Proceedings
of the IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998, reprinted from Electronics, pp. 114–117, April
19, 1965, DOI: 10.1109/JPROC.1998.658762.

[16] Wolfgang Arden / Michel Brillouët / Patrick Cogez / Mart Graef / Bert Huizing / Reinhard
Mahnkopf, “‘More-than-Moore’ White Paper”, Proc. of International Technical Roadmap for
Semiconductors, pp. 1–31, 2010, URL: http://www.itrs2.net/uploads/4/9/7/7/
49775221/irc-itrs-mtm-v2_3.pdf.

[17] “The Electronic Design Automation Handbook” (edited by Dirk Jansen et al.), Springer, New
York, Feb. 2010, ISBN: 978-1-4419-5369-8, DOI: 10.1007/978-0-387-73543-6.

[18] Erich Barke / Markus Olbrich / Lars Hedrich et al., “Electronic Design Automation (EDA)”,
online, Section 3.1.5, URL: http://edascript.ims.uni-hannover.de/de/index.
html.

[19] Dan Clein, “What is Full Custom Layout Design”, online, Jun. 2001, URL: http://www.
eetimes.com/document.asp?doc_id=1277368.

[20] Thomas Schiex, “Possibilistic Constraint Satisfaction Problems or ‘How to Handle Soft Con-
straints?’”, Proc. of 8th International Conference on Uncertainty in Artificial Intelligence,
pp. 268–275, 1992, URL: https://arxiv.org/ftp/arxiv/papers/1303/1303.
5427.pdf, ISBN: 1-55860-258-5.

[21] C. Domshlak / S. Prestwich / F. Rossi / K. B. Venable / T. Walsh, “Hard and Soft Constraints for
Reasoning About Qualitative Conditional Preferences”, Journal of Heuristics, vol. 12, no. 4–5,
pp. 263–285, 2006, DOI: 10.1007/s10732-006-7071-x.

[22] B. J. Hicks / A. J. Medland / G. Mullineux, “The Representation and Handling of Constraints
for the Design, Analysis and Optimization of High Speed Machinery”, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, vol. 20, no. 4, pp. 313–328, Nov. 2006, DOI:
10.1017/S0890060406060239.

[23] Göran Jerke / Jens Lienig, “Constraint-Driven Design: The Next Step Towards Analog Design
Automation”, Proc. of 18th International Symposium on Physical Design, pp. 75–82, Mar. 2009,
ISBN: 978-1-60558-449-2, DOI: 10.1145/1514932.1514952.

[24] Cadence Design Systems, Inc., “Virtuoso Unified Custom Constraints User Guide, Chapter 1: The
Constraint Manager Assistant”, Virtuoso Layout Suite, Aug. 2015, Product Version 6.1.6.

259

https://dx.doi.org/10.1007/978-1-4419-6932-3
https://dx.doi.org/10.1145/1735023.1735037
http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/semiconductors/pdfs/mosc1rd.ashx
http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/semiconductors/pdfs/mosc1rd.ashx
https://dx.doi.org/10.1007/978-90-481-9591-6
https://dx.doi.org/10.1109/JPROC.1998.658762
http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf
http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf
https://dx.doi.org/10.1007/978-0-387-73543-6
http://edascript.ims.uni-hannover.de/de/index.html
http://edascript.ims.uni-hannover.de/de/index.html
http://www.eetimes.com/document.asp?doc_id=1277368
http://www.eetimes.com/document.asp?doc_id=1277368
https://arxiv.org/ftp/arxiv/papers/1303/1303.5427.pdf
https://arxiv.org/ftp/arxiv/papers/1303/1303.5427.pdf
https://dx.doi.org/10.1007/s10732-006-7071-x
https://dx.doi.org/10.1017/S0890060406060239
https://dx.doi.org/10.1145/1514932.1514952

References – Bibliography

[25] Rob A. Rutenbar, “Design Automation for Analog: The Next Generation of Tool Chal-
lenges”, 1st IBM Academy Conference on Analog Design, Technology, Modeling and Tools,
Sep. 2006, Slide 13, URL: http://rutenbar.cs.illinois.edu/wp-content/
uploads/2012/10/rutenbar-ibm06.pdf.

[26] Rob A. Rutenbar, “Design Automation for Analog: The Next Generation of Tool Challenges”,
Proc. of IEEE International Conference on Computer-Aided Design, pp. 458–460, Nov. 2006,
DOI: 10.1109/ICCAD.2006.320157.

[27] Rob A. Rutenbar, “Analog CAD: Not Done Yet”, National Science Foundation (NSF) Workshop:
Electronic Design Automation – Past, Present, and Future, Jul. 2009, Slide 6, URL: http://
cadlab.cs.ucla.edu/nsf09/slides/Session3/rutenbar.pdf.

[28] Jürgen Scheible / Daniel Marolt, “Der analoge Entwurfsfluss mit parametrisierten Schaltungsmod-
ulen”, Fachgruppe Layoutentwurf, Sep. 2012, Fachgruppentreffen Dortmund.

[29] Larry Stockmeyer, “Optimal Orientations of Cells in Slicing Floorplan Designs”, Information and
Control, vol. 57, no. 2–3, pp. 91–101, May 1983, DOI: 10.1016/S0019-9958(83)80038-2.

[30] C. K. Kim / E. Berkcan / B. Currin / M. d’Abreu, “A New Floorplanning Algorithm for Ana-
log Circuits”, Proc. of Custom Integrated Circuits Conference, pp. 3.2.1–3.2.4, May 1989, DOI:
10.1109/CICC.1989.56679.

[31] L. Paris / G. Berbel / T. Osés, “Floorplanning Strategy for Mixed Analog-Digital VLSI Integrated
Circuits”, Proc. of European Conference on Design Automation, pp. 346–350, Feb. 1991, DOI:
10.1109/EDAC.1991.206422.

[32] Nasir-ud-Din Gohar / Peter Y. K. Cheung, “A New Schematic-Driven Floorplanning Algorithm
for Analog Cell Layout”, Proc. of IEEE International Symposium on Circuits and Systems, vol. 3,
pp. 1770–1773, May 1993, DOI: 10.1109/ISCAS.1993.394087.

[33] Saurabh N. Adya / Igor L. Markov, “Fixed-Outline Floorplanning: Enabling Hierarchical Design”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 1120–1135,
Dec. 2003, DOI: 10.1109/TVLSI.2003.817546.

[34] Saurabh N. Adya / Shubhyant Chaturvedi / Jarrod A. Roy / David A. Papa / Igor L. Markov, “Uni-
fication of Partitioning, Placement and Floorplanning”, Proc. of IEEE International Conference
on Computer-Aided Design, pp. 550–557, Nov. 2004, DOI: 10.1109/ICCAD.2004.1382639.

[35] Yan Feng / Dinesh P. Mehta / Hannah Yang, “Constrained Floorplanning Using Network Flows”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 4,
pp. 572–580, Apr. 2004, DOI: 10.1109/TCAD.2004.825877.

[36] Tung-Chieh Chen / Yao-Wen Chang, “Modern Floorplanning Based on B*-Tree and Fast Simu-
lated Annealing”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 25, no. 4, pp. 637–650, Apr. 2006, DOI: 10.1109/TCAD.2006.870076.

[37] Peter G. Sassone / Sung Kyu Lim, “Traffic: A Novel Geometric Algorithm for Fast Wire-
Optimized Floorplanning”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 6, pp. 1075–1086, Jun. 2006, DOI: 10.1109/TCAD.2005.855921.

[38] Maolin Tang / Raymond Y. K. Lau, “A Parallel Genetic Algorithm for Floorplan Area Opti-
mization”, Proc. of 7th International Conference on Intelligent Systems Design and Applications,
pp. 801–806, Oct. 2007, DOI: 10.1109/ISDA.2007.47.

[39] Jianli Chen / Wenxing Zhu / M. M. Ali, “A Hybrid Simulated Annealing Algorithm for Nonslic-
ing VLSI Floorplanning”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 41, no. 4,
pp. 544–554, Jul. 2011, DOI: 10.1109/TSMCC.2010.2066560.

260

http://rutenbar.cs.illinois.edu/wp-content/uploads/2012/10/rutenbar-ibm06.pdf
http://rutenbar.cs.illinois.edu/wp-content/uploads/2012/10/rutenbar-ibm06.pdf
https://dx.doi.org/10.1109/ICCAD.2006.320157
http://cadlab.cs.ucla.edu/nsf09/slides/Session3/rutenbar.pdf
http://cadlab.cs.ucla.edu/nsf09/slides/Session3/rutenbar.pdf
https://dx.doi.org/10.1016/S0019-9958(83)80038-2
https://dx.doi.org/10.1109/CICC.1989.56679
https://dx.doi.org/10.1109/EDAC.1991.206422
https://dx.doi.org/10.1109/ISCAS.1993.394087
https://dx.doi.org/10.1109/TVLSI.2003.817546
https://dx.doi.org/10.1109/ICCAD.2004.1382639
https://dx.doi.org/10.1109/TCAD.2004.825877
https://dx.doi.org/10.1109/TCAD.2006.870076
https://dx.doi.org/10.1109/TCAD.2005.855921
https://dx.doi.org/10.1109/ISDA.2007.47
https://dx.doi.org/10.1109/TSMCC.2010.2066560

References – Bibliography

[40] Prabhjit Kaur, “An Enhanced Algorithm for Floorplan Design Using Hybrid Ant Colony and Parti-
cle Swarm Optimization”, International Journal for Research in Applied Science and Engineering
Technology, vol. 2, no. 9, pp. 473–477, Sep. 2014, ISSN: 2321-9653.

[41] Hongxia Zhou / Chiu-Wing Sham / Hailong Yao, “Slicing Floorplans with Handling Symme-
try and General Placement Constraints”, Proc. of IEEE Computer Society Annual Symposium on
VLSI, pp. 112–117, Jul. 2014, DOI: 10.1109/ISVLSI.2014.62.

[42] Jai-Ming Lin / Chih-Yao Hu / Kai-Chung Chan, “Routability-Driven Floorplanning Algorithm for
Mixed-Size Modules with Fixed-Outline Constraint”, Proc. of International Symposium on VLSI
Design, Automation and Test, pp. 1–4, Apr. 2015, DOI: 10.1109/VLSI-DAT.2015.7114531.

[43] Ralph H. J. M. Otten, “Automatic Floorplan Design”, Proc. of 19th Design Automation Confer-
ence, pp. 261–267, Jun. 1982, DOI: 10.1109/DAC.1982.1585510.

[44] S. Kirkpatrick / C. D. Gelatt Jr. / M. P. Vecchi, “Optimization by Simulated Annealing”, Science,
vol. 220, no. 4598, pp. 671–680, May 1983, DOI: 10.1126/science.220.4598.671.

[45] Neil R. Quinn Jr., “The Placement Problem as Viewed from the Physics of Classical Mechanics”,
Proc. of 12th Design Automation Conference, pp. 173–178, 1975.

[46] Melvin A. Breuer, “A Class of Min-Cut Placement Algorithms”, Proc. of 14th Design Automation
Conference, pp. 284–290, 1977.

[47] Sheqin Dong / Zhe Zhou / Xianlong Hong, “A New Constraint-Driven Placement Approach for
Analog Circuits”, Proc. of 8th International Conference on Solid-State and Integrated Circuit
Technology, pp. 1763–1765, Oct. 2006, DOI: 10.1109/ICSICT.2006.306419.

[48] Yiu-Cheong Tam / Evangeline F. Y. Young / Chris Chu, “Analog Placement with Symmetry and
Other Placement Constraints”, Proc. of IEEE International Conference on Computer-Aided De-
sign, pp. 349–354, Nov. 2006, DOI: 10.1109/ICCAD.2006.320057.

[49] Shinichi Koda / Chikaaki Kodama / Kunihiro Fujiyoshi, “Linear Programming-Based Cell Place-
ment with Symmetry Constraints for Analog IC Layout”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 26, no. 4, pp. 659–668, Apr. 2007, DOI:
10.1109/TCAD.2007.891365.

[50] Po-Hung Lin / Shyh-Chang Lin, “Analog Placement Based on Novel Symmetry-Island Formula-
tion”, Proc. of 44th Design Automation Conference, pp. 465–470, Jun. 2007, ISBN: 978-1-59593-
627-1.

[51] Po-Hung Lin / Shyh-Chang Lin, “Analog Placement Based on Hierarchical Module Clustering”,
Proc. of 45th Design Automation Conference, pp. 50–55, Jun. 2008, ISBN: 978-1-60558-115-6.

[52] Martin Strasser / Michael Eick / Helmut Gräb / Ulf Schlichtmann / Frank M. Johannes, “Determin-
istic Analog Circuit Placement Using Hierarchically Bounded Enumeration and Enhanced Shape
Functions”, Proc. of IEEE International Conference on Computer-Aided Design, pp. 306–313,
Nov. 2008, DOI: 10.1109/ICCAD.2008.4681591.

[53] Rui He / Lihong Zhang, “Analog Placement Design with Constraints of Multiple Symmetry
Groups”, Proc. of Canadian Conference on Electrical and Computer Engineering, pp. 1204–1207,
May 2009, DOI: 10.1109/CCECE.2009.5090316.

[54] Po-Hung Lin / Yao-Wen Chang / Shyh-Chang Lin, “Analog Placement Based on Symmetry-Island
Formulation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 28, no. 6, pp. 791–804, Jun. 2009, DOI: 10.1109/TCAD.2009.2017433.

261

https://dx.doi.org/10.1109/ISVLSI.2014.62
https://dx.doi.org/10.1109/VLSI-DAT.2015.7114531
https://dx.doi.org/10.1109/DAC.1982.1585510
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1109/ICSICT.2006.306419
https://dx.doi.org/10.1109/ICCAD.2006.320057
https://dx.doi.org/10.1109/TCAD.2007.891365
https://dx.doi.org/10.1109/ICCAD.2008.4681591
https://dx.doi.org/10.1109/CCECE.2009.5090316
https://dx.doi.org/10.1109/TCAD.2009.2017433

References – Bibliography

[55] Linfu Xiao / Evangeline F. Y. Young, “Analog Placement with Common Centroid and 1-D Sym-
metry Constraints”, Proc. of 14th Asia and South Pacific Design Automation Conference, pp. 353–
360, Jan. 2009, DOI: 10.1109/ASPDAC.2009.4796506.

[56] Cheng-Wu Lin / Jai-Ming Lin / Chun-Po Huang / Soon-Jyh Chang, “Performance-Driven Ana-
log Placement Considering Boundary Constraint”, Proc. of 47th Design Automation Conference,
pp. 292–297, Jun. 2010, ISBN: 978-1-4503-0002-5.

[57] Lingyi Zhang / Sheqin Dong / Yuchun Ma / Xianlong Hong, “Multi-Stage Analog Placement
with Various Constraints”, Proc. of International Conference on Communications, Circuits and
Systems, pp. 881–885, Jul. 2010, DOI: 10.1109/ICCCAS.2010.5581851.

[58] Cheng-Wu Lin / Cheng-Chung Lu / Chun-Po Huang / Soon-Jyh Chang / Jai-Ming Lin, “Routing-
Aware Placement Algorithms for Modern Analog Integrated Circuits”, Proc. of 54th IEEE Inter-
national Midwest Symposium on Circuits and Systems, pp. 1–4, Aug. 2011, DOI: 10.1109/MWS-
CAS.2011.6026537.

[59] Qiang Ma / Linfu Xiao / Yiu-Cheong Tam / Evangeline F. Y. Young, “Simultaneous Handling
of Symmetry, Common Centroid, and General Placement Constraints”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp. 85–95, Jan. 2011,
DOI: 10.1109/TCAD.2010.2064490.

[60] Cheng-Wu Lin / Cheng-Chung Lu / Jai-Ming Lin / Soon-Jyh Chang, “Routability-Driven Place-
ment Algorithm for Analog Integrated Circuits”, Proc. of International Symposium on Physical
Design, pp. 71–78, Mar. 2012, DOI: 10.1145/2160916.2160934.

[61] Hongxia Zhou / Chiu-Wing Sham / Hailong Yao, “Congestion-Oriented Approach in Placement
for Analog and Mixed-Signal Circuits”, Proc. of 5th Asia Symposium on Quality Electronic De-
sign, pp. 97–102, Aug. 2013, DOI: 10.1109/ASQED.2013.6643571.

[62] Ricardo Martins / Nuno Lourenço / Nuno Horta, “Analog IC Placement Using Absolute Co-
ordinates and a Hierarchical Combination of Pareto Optimal Fronts”, Proc. of 11th Confer-
ence on Ph.D. Research in Microelectronics and Electronics, pp. 61–64, Jun./Jul. 2015, DOI:
10.1109/PRIME.2015.7251334.

[63] Sherif M. Saif / Mohamed Dessouky / M. Watheq El-Kharashi / Hazem Abbas / Salwa Nassar,
“Pareto Front Analog Layout Placement Using Satisfiability Modulo Theories”, Proc. of Design,
Automation and Test in Europe Conference, pp. 1411–1416, Mar. 2016, ISBN: 978-3-9815370-7-
9.

[64] Po-Hung Lin / Ho-Che Yu / Tian-Hau Tsai / Shyh-Chang Lin, “A Matching-Based Placement
and Routing System for Analog Design”, Proc. of International Symposium on VLSI Design,
Automation and Test, pp. 1–4, Apr. 2007, DOI: 10.1109/VDAT.2007.373200.

[65] Ender Yilmaz / Günhan Dündar, “Analog Layout Generator for CMOS Circuits”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, pp. 32–45,
Jan. 2009, DOI: 10.1109/TCAD.2008.2009137.

[66] Suchismita Pattanaik / Subhendu Prakash Bhoi / Rakesh Mohanty, “Simulated Annealing Based
Placement Algorithms and Research Challenges: A Survey”, Journal of Global Research in Com-
puter Science, vol. 3, no. 6, pp. 33–37, Jun. 2012, ISSN: 2229-371X.

[67] C. Y. Lee, “An Algorithm for Path Connections and Its Applications”, IRE Transactions on Elec-
tronic Computers, vol. EC–10, no. 3, pp. 346–365, Sep. 1961, DOI: 10.1109/TEC.1961.5219222.

[68] David W. Hightower, “A Solution to Line-Routing Problems on the Continuous Plane”, Proc. of
6th Design Automation Conference, pp. 1–24, 1969, DOI: 10.1145/800260.809014.

262

https://dx.doi.org/10.1109/ASPDAC.2009.4796506
https://dx.doi.org/10.1109/ICCCAS.2010.5581851
https://dx.doi.org/10.1109/MWSCAS.2011.6026537
https://dx.doi.org/10.1109/MWSCAS.2011.6026537
https://dx.doi.org/10.1109/TCAD.2010.2064490
https://dx.doi.org/10.1145/2160916.2160934
https://dx.doi.org/10.1109/ASQED.2013.6643571
https://dx.doi.org/10.1109/PRIME.2015.7251334
https://dx.doi.org/10.1109/VDAT.2007.373200
https://dx.doi.org/10.1109/TCAD.2008.2009137
https://dx.doi.org/10.1109/TEC.1961.5219222
https://dx.doi.org/10.1145/800260.809014

References – Bibliography

[69] Jens Lienig / Göran Jerke / Thorsten Adler, “AnalogRouter: A New Approach of Current-Driven
Routing for Analog Circuits”, Proc. of Design, Automation and Test in Europe Conference, p. 819,
Mar. 2001, DOI: 10.1109/DATE.2001.915167.

[70] Changxu Du / Yici Cai / Xianlong Hong, “A Novel Analog Routing Algorithm with Constraints
of Variable Wire Widths”, Proc. of International Conference on Communications, Circuits and
Systems, pp. 2459–2463, Jun. 2006, DOI: 10.1109/ICCCAS.2006.285173.

[71] Muhammet Mustafa Ozdal / Renato Fernandes Hentschke, “Exact Route Matching Algorithms
for Analog and Mixed Signal Integrated Circuits”, Proc. of IEEE International Conference on
Computer-Aided Design, pp. 231–238, Nov. 2009, DOI: 10.1145/1687399.1687442.

[72] Qiang Gao / Yin Shen / Yici Cai / Hailong Yao, “Analog Circuit Shielding Routing Algorithm
Based on Net Classification”, Proc. of IEEE International Symposium on Low-Power Electronics
and Design, pp. 123–128, Aug. 2010, DOI: 10.1145/1840845.1840872.

[73] Qiang Gao / Hailong Yao / Qiang Zhou / Yici Cai, “A Novel Detailed Routing Algorithm with Ex-
act Matching Constraint for Analog and Mixed Signal Circuits”, Proc. of 12th International Sym-
posium on Quality Electronic Design, pp. 1–6, Mar. 2011, DOI: 10.1109/ISQED.2011.5770700.

[74] Ricardo Martins / Nuno Lourenço / Nuno Horta, “Multi-Objective Multi-Constraint Routing of
Analog ICs Using a Modified NSGA-II Approach”, Proc. of International Conference on Synthe-
sis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, pp. 65–68,
Sep. 2012, DOI: 10.1109/SMACD.2012.6339418.

[75] Hailong Yao / Yici Cai / Qiang Gao, “LEMAR: A Novel Length Matching Routing Algorithm
for Analog and Mixed Signal Circuits”, Proc. of 17th Asia and South Pacific Design Automation
Conference, pp. 157–162, Jan./Feb. 2012, DOI: 10.1109/ASPDAC.2012.6164937.

[76] Hung-Chih Ou / Hsing-Chih Chang Chien / Yao-Wen Chang, “Nonuniform Multilevel Ana-
log Routing with Matching Constraints”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 33, no. 12, pp. 1942–1954, Dec. 2014, DOI:
10.1109/TCAD.2014.2363394.

[77] Muhammet Mustafa Ozdal / Renato Fernandes Hentschke, “Algorithms for Maze Routing with
Exact Matching Constraints”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 33, no. 1, pp. 101–112, Jan. 2014, DOI: 10.1109/TCAD.2013.2279516.

[78] Chia-Yu Wu / Helmut Gräb / Jiang Hu, “A Pre-Search Assisted ILP Approach to Analog Integrated
Circuit Routing”, Proc. of 33rd IEEE International Conference on Computer Design, pp. 244–250,
Oct. 2015, DOI: 10.1109/ICCD.2015.7357110.

[79] Michael Burstein / Richard Pelavin, “Hierarchical Wire Routing”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 2, no. 4, pp. 223–234, Oct. 1983,
DOI: 10.1109/TCAD.1983.1270040.

[80] William A. Dees Jr. / Patrick G. Karger, “Automated Rip-up and Reroute Techniques”, Proc. of
19th Design Automation Conference, pp. 432–439, Jun. 1982, DOI: 10.1109/DAC.1982.1585535.

[81] Pedram Khademsameni / Marek Syrzycki, “A Tool for Automated Analog CMOS Layout Module
Generation and Placement”, Proc. of Canadian Conference on Electrical and Computer Engineer-
ing, vol. 1, pp. 416–421, May 2002, DOI: 10.1109/CCECE.2002.1015261.

[82] Yen-Tai Lai / Yung-Chuan Jiang / Chi-Chou Kao, “DTA: Layout Design Tool for CMOS Analog
Circuit”, Proc. of IEEE Asia-Pacific Conference on Circuits and Systems, vol. 1, pp. 537–540,
Dec. 2004, DOI: 10.1109/APCCAS.2004.1412817.

263

https://dx.doi.org/10.1109/DATE.2001.915167
https://dx.doi.org/10.1109/ICCCAS.2006.285173
https://dx.doi.org/10.1145/1687399.1687442
https://dx.doi.org/10.1145/1840845.1840872
https://dx.doi.org/10.1109/ISQED.2011.5770700
https://dx.doi.org/10.1109/SMACD.2012.6339418
https://dx.doi.org/10.1109/ASPDAC.2012.6164937
https://dx.doi.org/10.1109/TCAD.2014.2363394
https://dx.doi.org/10.1109/TCAD.2013.2279516
https://dx.doi.org/10.1109/ICCD.2015.7357110
https://dx.doi.org/10.1109/TCAD.1983.1270040
https://dx.doi.org/10.1109/DAC.1982.1585535
https://dx.doi.org/10.1109/CCECE.2002.1015261
https://dx.doi.org/10.1109/APCCAS.2004.1412817

References – Bibliography

[83] Di Long / Yijie Zeng / Changxu Du / Xianlong Hong / Sheqin Dong, “A Novel Performance-
Driven Automatic Layout Tool for Analog Circuit”, Proc. of International Conference on Com-
munications, Circuits and Systems, vol. 2, pp. 1344–1348, Jun. 2004, DOI: 10.1109/ICC-
CAS.2004.1346420.

[84] Nuno Lourenço / Nuno Horta, “LAYGEN – An Evolutionary Approach to Automatic Analog IC
Layout Generation”, Proc. of 12th IEEE International Conference on Electronics, Circuits and
Systems, pp. 1–4, Dec. 2005, DOI: 10.1109/ICECS.2005.4633414.

[85] Ricardo Martins / Nuno Lourenço / Nuno Horta, “LAYGEN II: Automatic Analog ICs Layout
Generator Based on a Template Approach”, Proc. of 14th Conference on Genetic and Evolutionary
Computation, pp. 1127–1134, Jul. 2012, DOI: 10.1145/2330163.2330319.

[86] Nuno Lourenço / Nuno Horta, “GENOM-POF: Multi-Objective Evolutionary Synthesis of Analog
ICs with Corners Validation”, Proc. of 14th Conference on Genetic and Evolutionary Computation,
pp. 1119–1126, Jul. 2012, DOI: 10.1145/2330163.2330318.

[87] R. Martins / N. Lourenço / S. Rodrigues / J. Guilherme / N. Horta, “AIDA: Automated Analog
IC Design Flow from Circuit Level to Layout”, Proc. of International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design, pp. 29–32, Sep.
2012, DOI: 10.1109/SMACD.2012.6339409.

[88] Lihong Zhang / Ulrich Kleine, “A Novel Analog Layout Synthesis Tool”, Proc. of IEEE Inter-
national Symposium on Circuits and Systems, vol. 5, pp. 101–104, May 2004, DOI: 10.1109/IS-
CAS.2004.1329468.

[89] Lihong Zhang / Ulrich Kleine / Yingtao Jiang, “An Automated Design Tool for Analog Layouts”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 8, pp. 881–894,
Aug. 2006, DOI: 10.1109/TVLSI.2006.878475.

[90] Linfu Xiao / Evangeline F. Y. Young / Xiaoyong He / K. P. Pun, “Practical Placement and Routing
Techniques for Analog Circuit Designs”, Proc. of IEEE International Conference on Computer-
Aided Design, pp. 675–679, Nov. 2010, DOI: 10.1109/ICCAD.2010.5654239.

[91] Yu-Ming Yang / Iris Hui-Ru Jiang, “Analog Placement and Global Routing Considering Wiring
Symmetry”, Proc. of 11th International Symposium on Quality Electronic Design, pp. 618–623,
Mar. 2010, DOI: 10.1109/ISQED.2010.5450510.

[92] Jackey Z. Yan / Chris Chu, “DeFer: Deferred Decision Making Enabled Fixed-Outline
Floorplanner”, Proc. of 45th Design Automation Conference, pp. 161–166, Jun. 2008, DOI:
10.1145/1391469.1391512.

[93] Hung-Chih Ou / Hsing-Chih Chang Chien / Yao-Wen Chang, “Simultaneous Analog Placement
and Routing with Current Flow and Current Density Considerations”, Proc. of 50th Design Au-
tomation Conference, pp. 1–6, May/Jun. 2013, ISBN: 978-1-4503-2071-9.

[94] Mark Po-Hung Lin / Po-Hsun Chang / Shuenn-Yuh Lee / Helmut E. Gräb, “DeMixGen: De-
terministic Mixed-Signal Layout Generation with Separated Analog and Digital Signal Paths”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 8,
pp. 1229–1242, Aug. 2016, DOI: 10.1109/TCAD.2015.2501295.

[95] Sambuddha Bhattacharya / Nuttorn Jangkrajarng / C.-J. Richard Shi, “Multilevel Symmetry-
Constraint Generation for Retargeting Large Analog Layouts”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 945–960, Jun. 2006, DOI:
10.1109/TCAD.2005.855982.

264

https://dx.doi.org/10.1109/ICCCAS.2004.1346420
https://dx.doi.org/10.1109/ICCCAS.2004.1346420
https://dx.doi.org/10.1109/ICECS.2005.4633414
https://dx.doi.org/10.1145/2330163.2330319
https://dx.doi.org/10.1145/2330163.2330318
https://dx.doi.org/10.1109/SMACD.2012.6339409
https://dx.doi.org/10.1109/ISCAS.2004.1329468
https://dx.doi.org/10.1109/ISCAS.2004.1329468
https://dx.doi.org/10.1109/TVLSI.2006.878475
https://dx.doi.org/10.1109/ICCAD.2010.5654239
https://dx.doi.org/10.1109/ISQED.2010.5450510
https://dx.doi.org/10.1145/1391469.1391512
https://dx.doi.org/10.1109/TCAD.2015.2501295
https://dx.doi.org/10.1109/TCAD.2005.855982

References – Bibliography

[96] Michael Eick / Martin Strasser / Kun Lu / Ulf Schlichtmann / Helmut E. Gräb, “Comprehensive
Generation of Hierarchical Placement Rules for Analog Integrated Circuits”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 2, pp. 180–193, Feb.
2011, DOI: 10.1109/TCAD.2010.2097172.

[97] Po-Cheng Pan / Hung-Ming Chen / Yi-Kan Cheng / Jill Liu / Wei-Yi Hu, “Configurable Analog
Routing Methodology via Technology and Design Constraint Unification”, Proc. of IEEE Interna-
tional Conference on Computer-Aided Design, pp. 620–626, Nov. 2012, ISBN: 978-1-4503-1573-
9.

[98] OpenAccess Coalition, “OpenAccess”, online, URL: https://projects.si2.org/oac_
index.php.

[99] Enrico Malavasi / Edoardo Charbon, “Constraint Transformation for IC Physical Design”, IEEE
Transactions on Semiconductor Manufacturing, vol. 12, no. 4, pp. 386–395, Nov. 1999, DOI:
10.1109/66.806115.

[100] Bogdan Arsintescu, “Constraint Management and Transformations”, Ph.D. Thesis, Delft Univer-
sity of Technology, 1998, ISBN: 90-5326-028-5.

[101] Andreas Krinke / Maximilian Mittag / Göran Jerke / Jens Lienig, “Extended Constraint Manage-
ment for Analog and Mixed-Signal IC Design”, Proc. of European Conference on Circuit Theory
and Design, pp. 1–4, Sep. 2013, DOI: 10.1109/ECCTD.2013.6662319.

[102] Maximilian Mittag / Andreas Krinke / Göran Jerke / Wolfgang Rosenstiel, “Hierarchi-
cal Propagation of Geometric Constraints for Full-Custom Physical Design of ICs”, Proc.
of Design, Automation and Test in Europe Conference, pp. 1471–1474, Mar. 2012, DOI:
10.1109/DATE.2012.6176599.

[103] Andreas Krinke / Göran Jerke / Jens Lienig, “Constraint Propagation Methods for Robust IC
Design”, Proc. of 8th GMM/ITG/GI-Symposium Reliability by Design (ZuE), pp. 7–14, Sep. 2015,
ISBN: 978-3-8007-4071-0.

[104] Jan Freuer / Göran Jerke / Joachim Gerlach / Wolfgang Nebel, “On the Verification of High-
Order Constraint Compliance in IC Design”, Proc. of Design, Automation and Test in Europe
Conference, pp. 26–31, Mar. 2008, DOI: 10.1109/DATE.2008.4484655.

[105] Jacques Cohen, “Constraint Logic Programming Languages”, Communications of the ACM,
vol. 33, no. 7, pp. 52–68, Jul. 1990, DOI: 10.1145/79204.79209.

[106] Enrico Malavasi / Edoardo Charbon / Bogdan Arsintescu / William Kao, “A Constraint Manage-
ment System for IC Physical Design”, Proc. of 11th Brazilian Symposium on Integrated Circuit
Design, pp. 240–243, Oct. 1998, DOI: 10.1109/SBCCI.1998.715450.

[107] Ammar Nassaj, “A New Methodology for Constraint-Driven Layout Design of Analog Circuits”,
Ph.D. Thesis, Technische Universität Dresden, 2012, ISBN: 978-3-18-342420-7.

[108] Martin Fowler, “Domain-Specific Languages”, Addison-Wesley Signature Series, First Edition,
Addison-Wesley Professional, New Jersey, Oct. 2010, ISBN: 978-0-321-71294-3.

[109] Timothy J. Barnes, “SKILL: A CAD System Extension Language”, Proc. of 27th Design Automa-
tion Conference, pp. 266–271, Jun. 1990, DOI: 10.1109/DAC.1990.114865.

[110] “Sk2Py”, online, URL: http://sk2py.sourceforge.net/.

[111] Andreas Müller / Jürgen Schattke, “Adapting C++ Based PCells to OpenAccess”, Proc. of
CDNLive! Silicon Valley, 6 pages, Sep. 2005.

265

https://dx.doi.org/10.1109/TCAD.2010.2097172
https://projects.si2.org/oac_index.php
https://projects.si2.org/oac_index.php
https://dx.doi.org/10.1109/66.806115
https://dx.doi.org/10.1109/ECCTD.2013.6662319
https://dx.doi.org/10.1109/DATE.2012.6176599
https://dx.doi.org/10.1109/DATE.2008.4484655
https://dx.doi.org/10.1145/79204.79209
https://dx.doi.org/10.1109/SBCCI.1998.715450
https://dx.doi.org/10.1109/DAC.1990.114865
http://sk2py.sourceforge.net/

References – Bibliography

[112] John D. Williams, “STICKS – A Graphical Compiler for High Level LSI Design”, Proc. of Na-
tional Computer Conference, pp. 289–295, Jun. 1978, DOI: 10.1109/AFIPS.1978.187.

[113] Warren E. Cory, “Layla: A VLSI Layout Language”, Proc. of 22nd Design Automation Conference,
pp. 245–251, Jun. 1985, DOI: 10.1109/DAC.1985.1585948.

[114] Didier Lacroix / Sarah Menkis, “An Interactive Graphical Approach to Module Generator Devel-
opment”, Proc. of Custom Integrated Circuits Conference, pp. 30.1.1–30.1.5, May 1990, DOI:
10.1109/CICC.1990.124833.

[115] Cadence Design Systems, Inc., “Virtuoso Parameterized Cell Reference Manual”, Virtuoso Layout
Suite, Sep. 1992.

[116] M. Wolf / U. Kleine / J. Schulze, “New Description Language and Graphical User Interface for
Module Generation in Analog Layouts”, Proc. of IEEE International Symposium on Circuits and
Systems, vol. 6, pp. 290–293, May/Jun. 1998, DOI: 10.1109/ISCAS.1998.705268.

[117] Markus Wolf, “Konstruktive Layoutgenerierung mit automatischer Neugenerierung unter geän-
derten Randbedingungen”, Ph.D. Thesis, Otto-von-Guericke-Universität, Magdeburg, 1999,
ISBN: 3-8265-6413-8.

[118] Julia Perez / Leo Kasel, “Method and Apparatus for Compiling a Parameterized Cell”, Patent,
Nov. 2007, Patent Number: US 7296248 B2.

[119] D. Friebel, “Automatic Analog IP Generation with 1Stone”, MunEDA User-Group-
Meeting Europe, Nov. 2009, URL: https://www.muneda.com/pdf/mugm/
MUGM-Europe-2009-11-12_13.30.pdf.

[120] SpringSoft, Inc., “Laker User Guide and Tutorial”, Laker Custom Layout Automation System, Jul.
2009, Laker 3.2v4p3.

[121] Tanner EDA, “High Performance Device Generation”, White Paper, Apr. 2010.

[122] AnaGlobe Technology, Inc., “GOLF PCell Designer”, Brochure, 2010, URL: http://www.
anaglobe.com/products/golf/.

[123] Ciranova, Inc., “Ciranova PyCell Studio Tutorial”, May 2010, now available from Synopsys.

[124] J. Crossley / A. Puggelli / H.-P. Le / B. Yang / R. Nancollas / K. Jung / L. Kong / N. Narevsky
/ Y. Lu / N. Sutardja / E. J. An / A. L. Sangiovanni-Vincentelli / E. Alon, “BAG: A Designer-
Oriented Integrated Framework for the Development of AMS Circuit Generators”, Proc. of IEEE
International Conference on Computer-Aided Design, pp. 74–81, Nov. 2013, DOI: 10.1109/IC-
CAD.2013.6691100.

[125] Benjamin Prautsch / Uwe Eichler / Sunil Rao / Björn Zeugmann / Ajith Puppala / Torsten Reich
/ Jens Lienig, “IIP Framework: A Tool for Reuse-Centric Analog Circuit Design”, Proc. of 13th

International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applica-
tions to Circuit Design, pp. 1–4, Jun. 2016, DOI: 10.1109/SMACD.2016.7520725.

[126] Göran Jerke / Vinko Marolt / Christel Bürzele / Peter Herth / Thomas Burdick, “Visual PCell
Programming with Cadence PCell Designer”, CDNLive! EMEA, May 2013, Session CUS04,
URL: https://www.cadence.com/content/dam/cadence-www/global/en_
US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2013/
CUS04.pdf.

[127] Vinko Marolt / Jürgen Scheible / Ulrich Mauroschat / Matthias Bröckel, “Verfahren zur Gener-
ierung von elektronischen Schaltungen”, Patent Application, Oct. 2008, Patent Number: DE
102006062563 A1.

266

https://dx.doi.org/10.1109/AFIPS.1978.187
https://dx.doi.org/10.1109/DAC.1985.1585948
https://dx.doi.org/10.1109/CICC.1990.124833
https://dx.doi.org/10.1109/ISCAS.1998.705268
https://www.muneda.com/pdf/mugm/MUGM-Europe-2009-11-12_13.30.pdf
https://www.muneda.com/pdf/mugm/MUGM-Europe-2009-11-12_13.30.pdf
http://www.anaglobe.com/products/golf/
http://www.anaglobe.com/products/golf/
https://dx.doi.org/10.1109/ICCAD.2013.6691100
https://dx.doi.org/10.1109/ICCAD.2013.6691100
https://dx.doi.org/10.1109/SMACD.2016.7520725
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2013/CUS04.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2013/CUS04.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2013/CUS04.pdf

References – Bibliography

[128] Achim Graupner / Roland Jancke / Reimund Wittmann, “Generator Based Approach for Analog
Circuit and Layout Design and Optimization”, Proc. of Design, Automation and Test in Europe
Conference, pp. 1–6, Mar. 2011, DOI: 10.1109/DATE.2011.5763267.

[129] Torsten Reich / Uwe Eichler / Karl-Heinz Rooch / René Buhl, “Design of a 12-bit Cyclic RSD
ADC Sensor Interface IC Using the Intelligent Analog IP Library”, Proc. of ANALOG 2013,
pp. 30–35, Mar. 2013, ISBN: 978-3-8007-3467-2.

[130] Mohannad Elshawy / Mohamed Dessouky / Sherif Saif / Sherif Mansour / Ed Petrus, “Multi-
Device Layout Templates for Nanometer Analog Design”, Proc. of 9th International Design and
Test Symposium, pp. 83–88, Dec. 2014, DOI: 10.1109/IDT.2014.7038592.

[131] Simon Gohm / Daniel Marolt / Jürgen Scheible, “Parametrisierte Layout-Module im analogen
IC-Entwurf”, Proc. of MPC-Workshop, vol. 48, pp. 57–63, Jul. 2012, ISSN: 1868-9221.

[132] Daniel Marolt / Jürgen Scheible / Göran Jerke, “A Practical Layout Module PCell Concept
for Analog IC Design”, CDNLive! EMEA, May 2013, Session CUS01, URL: https://
www.cadence.com/content/dam/cadence-www/global/en_US/documents/
company/Events/CDNLive/Secured/Proceedings/EU/2013/CUS01.pdf.

[133] Zhi-Wen Wang / I-Lun Tseng / Adam Postula, “Procedural Module Generation for Parame-
terized Layouts”, Proc. of IEEE TENCON Spring Conference, pp. 548–551, Apr. 2013, DOI:
10.1109/TENCONSpring.2013.6584505.

[134] Zhi-Wen Wang / I-Lun Tseng / Adam Postula, “Design and Representation of Parameterized Lay-
outs for Octagonal Spiral Inductors”, Proc. of IEEE International Symposium on Next-Generation
Electronics, pp. 333–336, Feb. 2013, DOI: 10.1109/ISNE.2013.6512359.

[135] Thorsten Adler / Jürgen Scheible, “An Interactive Router for Analog IC Design”, Proc.
of Design, Automation and Test in Europe Conference, pp. 414–420, Feb. 1998, DOI:
10.1109/DATE.1998.655890.

[136] Mircea R. Stan / Fatih Hamzaoglu / David Garrett, “Non-Manhattan Maze Routing”, Proc.
of 17th Brazilian Symposium on Integrated Circuit Design, pp. 260–265, Sep. 2004, DOI:
10.1109/SBCCI.2004.240979.

[137] Benjamin Prautsch / Uwe Eichler / Torsten Reich / Ajith Puppala / Jens Lienig, “Abstract Technol-
ogy Handling for Generator-Based Analog Circuit Design”, Proc. of 8th GMM/ITG/GI-Symposium
Reliability by Design (ZuE), pp. 56–61, Sep. 2015, ISBN: 978-3-8007-4071-0.

[138] Benjamin Prautsch / Uwe Eichler / Torsten Reich / Jens Lienig, “Explicit Feature and Edge Inser-
tion for Improved Analog Layout Generators in Advanced Semiconductor Technologies”, Proc.
of ANALOG 2016, pp. 22–27, Sep. 2016, ISBN: 978-3-8007-4265-3.

[139] Vinko Marolt, “AE PCell-Based Layout Generators”, Robert Bosch GmbH, Jun. 2007, unpub-
lished presentation, image recreated for reasons of confidentiality.

[140] Göran Jerke / Vinko Marolt / Christel Bürzele / Daniel Marolt / Peter Herth / Thomas
Burdick, “Advanced Application of Cadence PCell Designer”, CDNLive! EMEA,
May 2014, Session CUS06, URL: https://www.cadence.com/content/dam/
cadence-www/global/en_US/documents/company/Events/CDNLive/
Secured/Proceedings/EU/2014/CUS06.pdf.

[141] Karl Sperl, “Ein neuartiger Automatisierungsansatz zur Kombination von Modulgeneratoren mit
parametrisierten Verdrahtungs-Zellen im analogen Layoutentwurf”, M.Sc. Thesis, Reutlingen
University, Mar. 2014.

267

https://dx.doi.org/10.1109/DATE.2011.5763267
https://dx.doi.org/10.1109/IDT.2014.7038592
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2013/CUS01.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2013/CUS01.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2013/CUS01.pdf
https://dx.doi.org/10.1109/TENCONSpring.2013.6584505
https://dx.doi.org/10.1109/ISNE.2013.6512359
https://dx.doi.org/10.1109/DATE.1998.655890
https://dx.doi.org/10.1109/SBCCI.2004.240979
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2014/CUS06.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2014/CUS06.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2014/CUS06.pdf

References – Bibliography

[142] Matthias Greif / Daniel Marolt / Jürgen Scheible, “Konzeptstudie eines durchgängig auf
parametrisierten Modulgeneratoren basierenden Entwurfsflusses für Analogdesign”, Proc. of
MPC-Workshop, vol. 53, pp. 23–30, Feb. 2015, ISSN: 1868-9221.

[143] Pranav Bhushan / Raja Mitra, “Schematic PCell Implementation in Virtuoso Platform”, Proc.
of International Cadence Users Group Conference, 12 pages, Sep. 2004, URL: http://www.
geocities.ws/pranav_bs/docs/33_paper.pdf.

[144] Pranav Bhushan / Raj Arumugam, “Schematic PCells, Future of Deep Submicron Custom
IC Design”, Proc. of CDNLive! Silicon Valley, 12 pages, Sep. 2005, URL: http://www.
geocities.ws/pranav_bs/docs/1288_paper.pdf.

[145] Daniel Marolt / Jürgen Scheible, “Parameterized Cells in Analog IC Design – Example of a
Schematic/Symbol Current Mirror PCell”, Design, Automation and Test in Europe Conference,
Mar. 2012, demo and poster presentation at University Booth.

[146] Eduard Raines, “Rapid Analog Prototyping (RAP): Circuit Prospector and Generic Modgen”,
CDNLive! Boston, Sep. 2015, Session CUS102, URL: https://www.cadence.com/
content/dam/cadence-www/global/en_US/documents/company/Events/
CDNLive/Secured/Proceedings/MA/2015/CUS102.pdf.

[147] Ender Yilmaz / Günhan Dündar, “New Layout Generator for Analog CMOS Circuits”, Proc.
of 18th European Conference on Circuit Theory and Design, pp. 36–39, Aug. 2007, DOI:
10.1109/ECCTD.2007.4529530.

[148] Mark Po-Hung Lin / Yao-Wen Chang / Chih-Ming Hung, “Recent Research Development and
New Challenges in Analog Layout Synthesis”, Proc. of 21st Asia and South Pacific Design Au-
tomation Conference, pp. 617–622, Jan. 2016, DOI: 10.1109/ASPDAC.2016.7428080.

[149] Sherif Hammouda / Hazem Said / Mohamed Dessouky / Mohamed Tawfik / Quang Nguyen / Wael
Badawy / Hazem Abbas / Hussein Shahein, “Chameleon ART: A Non-Optimization Based Analog
Design Migration Framework”, Proc. of 43rd Design Automation Conference, pp. 885–888, Jul.
2006, DOI: 10.1145/1146909.1147134.

[150] Zheng Liu / Lihong Zhang, “A Performance-Constrained Template-Based Layout Retargeting Al-
gorithm for Analog Integrated Circuits”, Proc. of 15th Asia and South Pacific Design Automation
Conference, pp. 293–298, Jan. 2010, DOI: 10.1109/ASPDAC.2010.5419880.

[151] Zheng Liu / Lihong Zhang, “Performance-Constrained Template-Driven Retargeting for Analog
and RF Layouts”, Proc. of 20th Great Lakes Symposium on VLSI, pp. 429–434, May 2010, DOI:
10.1145/1785481.1785581.

[152] Ching-Yu Chin / Po-Cheng Pan / Hung-Ming Chen / Tung-Chieh Chen / Jou-Chun Lin, “Effi-
cient Analog Layout Prototyping by Layout Reuse with Routing Preservation”, Proc. of IEEE
International Conference on Computer-Aided Design, pp. 40–47, Nov. 2013, DOI: 10.1109/IC-
CAD.2013.6691095.

[153] Yi-Peng Weng / Hung-Ming Chen / Tung-Chieh Chen / Po-Cheng Pan / Chien-Hung Chen / Wei-
Zen Chen, “Fast Analog Layout Prototyping for Nanometer Design Migration”, Proc. of IEEE
International Conference on Computer-Aided Design, pp. 517–522, Nov. 2011, DOI: 10.1109/IC-
CAD.2011.6105379.

[154] Po-Hsun Wu / Mark Po-Hung Lin / Tsung-Yi Ho, “Analog Layout Synthesis with Knowledge
Mining”, Proc. of European Conference on Circuit Theory and Design, pp. 1–4, Aug. 2015, DOI:
10.1109/ECCTD.2015.7300111.

268

http://www.geocities.ws/pranav_bs/docs/33_paper.pdf
http://www.geocities.ws/pranav_bs/docs/33_paper.pdf
http://www.geocities.ws/pranav_bs/docs/1288_paper.pdf
http://www.geocities.ws/pranav_bs/docs/1288_paper.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/MA/2015/CUS102.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/MA/2015/CUS102.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/MA/2015/CUS102.pdf
https://dx.doi.org/10.1109/ECCTD.2007.4529530
https://dx.doi.org/10.1109/ASPDAC.2016.7428080
https://dx.doi.org/10.1145/1146909.1147134
https://dx.doi.org/10.1109/ASPDAC.2010.5419880
https://dx.doi.org/10.1145/1785481.1785581
https://dx.doi.org/10.1109/ICCAD.2013.6691095
https://dx.doi.org/10.1109/ICCAD.2013.6691095
https://dx.doi.org/10.1109/ICCAD.2011.6105379
https://dx.doi.org/10.1109/ICCAD.2011.6105379
https://dx.doi.org/10.1109/ECCTD.2015.7300111

References – Bibliography

[155] Po-Hsun Wu / Mark Po-Hung Lin / Tung-Chieh Chen / Ching-Feng Yeh / Xin Li / Tsung-Yi
Ho, “A Novel Analog Physical Synthesis Methodology Integrating Existent Design Expertise”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 2,
pp. 199–212, Feb. 2015, DOI: 10.1109/TCAD.2014.2379630.

[156] A. E. Eiben / J. E. Smith, “Introduction to Evolutionary Computing”, Natural Computing Series,
First Edition, Springer, Berlin Heidelberg, 2003, ISBN: 978-3-642-07285-7.

[157] Lihong Zhang / Changsheng Xie / Xiandeng Pei / Ulrich Kleine, “Analog Module Placement
Design Using Genetic Algorithm”, Tsingshua Science and Technology, vol. 8, no. 2, pp. 161–168,
Apr. 2003, ISSN: 1007-0214.

[158] Lihong Zhang / Ulrich Kleine, “A Genetic Approach to Analog Module Placement with Simulated
Annealing”, Proc. of IEEE International Symposium on Circuits and Systems, vol. 1, pp. 345–348,
May 2002, DOI: 10.1109/ISCAS.2002.1009848.

[159] James Kennedy / Russell C. Eberhart / Yuhui Shi, “Swarm Intelligence”, Morgan Kaufmann Se-
ries in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, USA, 2001, ISBN: 978-1-
55860-595-4.

[160] Alberto Colorni / Marco Dorigo / Vittorio Maniezzo, “Distributed Optimization by Ant Colonies”,
Proc. of European Conference on Artificial Life, pp. 134–142, Dec. 1991, URL: http://www.
academia.edu/download/4418203/ic.06-ecal92.pdf.

[161] James Kennedy / Russell C. Eberhart, “Particle Swarm Optimization”, Proc. of IEEE In-
ternational Conference on Neural Networks, vol. 4, pp. 1942–1948, Nov./Dec. 1995, DOI:
10.1109/ICNN.1995.488968.

[162] Smrity Ratan / Debalina Mondal / R. Anima / Chandan Kumar / Amit Kumar / Rajib Kar, “Area
Optimization of Two-Stage Amplifier Using Modified Particle Swarm Optimization Algorithm”,
Proc. of International Conference on Advances in Computing, Communications and Informatics,
pp. 230–235, Sep. 2016, DOI: 10.1109/ICACCI.2016.7732052.

[163] Meng-Lin Yu, “A Study of the Applicability of Hopfield Decision Neural Nets to VLSI
CAD”, Proc. of 26th Design Automation Conference, pp. 412–417, Jun. 1989, DOI:
10.1109/DAC.1989.203433.

[164] Chen-Xiong Zhang / Andreas Vogt / Dieter A. Mlynski, “Floorplan Design Using a Hierarchical
Neural Learning Algorithm”, Proc. of IEEE International Symposium on Circuits and Systems,
vol. 4, pp. 2060–2063, Jun. 1991, DOI: 10.1109/ISCAS.1991.176809.

[165] Rung-Bin Lin / Eugene Shragowitz, “Fuzzy Logic Approach to Placement Problem”, Proc. of 29th

Design Automation Conference, pp. 153–158, Jun. 1992, DOI: 10.1109/DAC.1992.227844.

[166] Frederico Rocha / Ricardo Martins / Nuno Lourenço / Nuno Horta, “Electronic Design Automa-
tion of Analog ICs Combining Gradient Models with Multi-Objective Evolutionary Algorithms”,
Series: SpringerBriefs in Computational Intelligence, First Edition, Springer International Pub-
lishing, 2014, ISBN: 978-3-319-02188-1.

[167] Himanshu Gupta / Bahniman Ghosh, “Analog Circuits Design Using Ant Colony Optimization”,
International Journal of Electronics, Computer and Communications Technologies, vol. 2, no. 3,
pp. 9–21, Apr. 2012, ISSN: 2180-3536.

[168] P. Prem Kumar / K. Duraiswamy, “An Optimized Device Sizing of Analog Circuits Using Particle
Swarm Optimization”, Journal of Computer Science, vol. 8, no. 6, pp. 930–935, 2012, DOI:
10.3844/jcssp.2012.930.935.

269

https://dx.doi.org/10.1109/TCAD.2014.2379630
https://dx.doi.org/10.1109/ISCAS.2002.1009848
http://www.academia.edu/download/4418203/ic.06-ecal92.pdf
http://www.academia.edu/download/4418203/ic.06-ecal92.pdf
https://dx.doi.org/10.1109/ICNN.1995.488968
https://dx.doi.org/10.1109/ICACCI.2016.7732052
https://dx.doi.org/10.1109/DAC.1989.203433
https://dx.doi.org/10.1109/ISCAS.1991.176809
https://dx.doi.org/10.1109/DAC.1992.227844
https://dx.doi.org/10.3844/jcssp.2012.930.935

References – Bibliography

[169] Keven Brown / Eberhard von Kitzing, “Evolution and Bahá’í Belief”, Series: Studies in the Bábi
and Bahá’í Religions, vol. 12, Kalimát Press, Los Angeles, CA, 2001, ISBN: 978-1-890688-08-0.

[170] Jürgen Scheible / Jens Lienig, “Automation of Analog IC Layout – Challenges and Solu-
tions”, Proc. of International Symposium on Physical Design, pp. 33–40, Mar./Apr. 2015, DOI:
10.1145/2717764.2717781.

[171] Ricardo Martins / Nuno Lourenço / Nuno Horta, “Analog Integrated Circuit Design Automation:
Placement, Routing and Parasitic Extraction Techniques”, Springer, Jul. 2016, ISBN: 978-3-319-
34059-3.

[172] Ted Manikas, “MCNC Benchmark Netlists for Floorplanning and Placement”, online, Jul.
2012, URL: http://lyle.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_
Netlists.html.

[173] “Analog Benchmarks Reloaded”, International Workshop on Design Automation for Analog
and Mixed-Signal Circuits, Nov. 2014, Session IV, URL: https://users.ece.cmu.edu/
~xinli/2014_ams/index.html.

[174] Kazuhiro Oda / Louis A. Prado / Anthony J. Gadient, “A New Methodology for Analog/Mixed-
Signal (AMS) SoC Design that Enables AMS Design Reuse and Achieves Full-Custom Per-
formance”, Proc. of 9th IEEE Electronic Design Processes Workshop, 6 pages, Apr. 2002,
URL: http://edpsieee.ieeesiliconvalley.org/edp02/PAPERS/edp02-s6_
1.pdf.

[175] Göran Jerke, “PCell Verification”, Fachgruppe Layoutentwurf, Feb. 2016, Fachgruppentreffen
Böblingen.

[176] Kerstin Langner / Jürgen Scheible, “Formal Verification of a Transistor PCell”, Proc. of 13th Con-
ference on Ph.D. Research in Microelectronics and Electronics, pp. 205–208, Jun. 2017, DOI:
10.1109/PRIME.2017.7974143.

[177] Robert Brayton / Jason Cong, “NSF Workshop on EDA: Past, Present, and Future (Part
2)”, IEEE Design and Test of Computers, vol. 27, no. 3, pp. 62–74, May/Jun. 2010, DOI:
10.1109/MDT.2010.70.

[178] Andreas Gerlach / Jürgen Scheible / Thoralf Rosahl / Frank-Thomas Eitrich, “A Generic Topol-
ogy Selection Method for Analog Circuits Demonstrated on the OTA Example”, Proc. of 11th

Conference on Ph.D. Research in Microelectronics and Electronics, pp. 77–80, Jun./Jul. 2015,
DOI: 10.1109/PRIME.2015.7251338.

[179] Yervant Zorian / Dimitris Gizopoulos, “Guest Editor’s Introduction: Design for Yield and Relia-
bility”, IEEE Design and Test of Computers, vol. 21, no. 3, pp. 177–182, May/Jun. 2004, DOI:
10.1109/MDT.2004.12.

[180] Francis Heylighen / Carlos Gershenson, “The Meaning of Self-Organization in Computing”,
IEEE Intelligent Systems, pp. 72–75, May 2003, URL: http://pcp.vub.ac.be/Papers/
IEEE.Self-organization.pdf.

[181] John Horgan, “From Complexity to Perplexity”, Scientific American, vol. 272, no. 6, Jun. 1995.

[182] Werner Ebeling / Jan Freund / Frank Schweitzer, “Komplexe Strukturen: Entropie und Informa-
tion”, B. G. Teubner Stuttgart, Leipzig, 1998, ISBN: 978-3-322-85167-3.

[183] Carlos Gershenson / Francis Heylighen, “How Can We Think the Complex?”, Managing Organi-
zational Complexity: Philosophy, Theory and Application (edited by Kurt Richardson), ch. 3,
pp. 47–61, Information Age Publishing, 2005, URL: https://arxiv.org/abs/nlin/
0402023.

270

https://dx.doi.org/10.1145/2717764.2717781
http://lyle.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html
http://lyle.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html
https://users.ece.cmu.edu/~xinli/2014_ams/index.html
https://users.ece.cmu.edu/~xinli/2014_ams/index.html
http://edpsieee.ieeesiliconvalley.org/edp02/PAPERS/edp02-s6_1.pdf
http://edpsieee.ieeesiliconvalley.org/edp02/PAPERS/edp02-s6_1.pdf
https://dx.doi.org/10.1109/PRIME.2017.7974143
https://dx.doi.org/10.1109/MDT.2010.70
https://dx.doi.org/10.1109/PRIME.2015.7251338
https://dx.doi.org/10.1109/MDT.2004.12
http://pcp.vub.ac.be/Papers/IEEE.Self-organization.pdf
http://pcp.vub.ac.be/Papers/IEEE.Self-organization.pdf
https://arxiv.org/abs/nlin/0402023
https://arxiv.org/abs/nlin/0402023

References – Bibliography

[184] John T. Emlen Jr., “Flocking Behavior in Birds”, The Auk, vol. 69, no. 2, pp. 160–170, Apr. 1952,
DOI: 10.2307/4081266.

[185] C. C. Trowbridge / H. K. Job, “On the Origin of the Flocking Habit of Migratory Birds”, The Pop-
ular Science Monthly, vol. 84, pp. 209–217, Mar. 1914, Public Domain content, URL: http://
www.archive.org/stream/popularsciencemo84newy#page/214/mode/1up.

[186] Randal S. Olson / Arend Hintze / Fred C. Dyer / David B. Knoester / Christoph Adami, “Predator
Confusion is Sufficient to Evolve Swarming Behaviour”, Journal of the Royal Society Interface,
vol. 10, no. 85, pp. 1–8, Aug. 2013, DOI: 10.1098/rsif.2013.0305.

[187] Steven J. Portugal / Tatjana Y. Hubel / Johannes Fritz / Stefanie Heese / Daniela Trobe / Bernhard
Voelkl / Stephen Hailes / Alan M. Wilson / James R. Usherwood, “Upwash Exploitation and
Downwash Avoidance by Flap Phasing in Ibis Formation Flight”, Nature, vol. 505, pp. 399–402,
Jan. 2014, DOI: 10.1038/nature12939.

[188] Simeon Andrew Ning, “Aircraft Drag Reduction Through Extended Formation Flight”, Ph.D.
Thesis, Stanford University, Department of Aeronautics and Astronautics, Aug. 2011, URL:
https://purl.stanford.edu/dp147ff0571.

[189] Mitchell G. Ash, “Gestalt Psychology in German Culture, 1890–1967: Holism and the Quest
for Objectivity”, Cambridge University Press, Cambridge, United Kingdom, 1995, ISBN: 0-521-
47540-6.

[190] Russ Dewey, “Psychology: An Introduction – Chapter Four: Senses (The Whole is Other than the
Sum of the Parts)”, cites F. Heider (1977), 2007, URL: http://www.intropsych.com/
ch04_senses/whole_is_other_than_the_sum_of_the_parts.html.

[191] Harold J. Morowitz, “The Emergence of Everything: How the World Became Complex”, Oxford
University Press, USA, 2002, ISBN: 978-0-19-513513-8.

[192] “Self-Organizing Systems: The Emergence of Order” (edited by F. Eugene Yates / Alan Garfinkel
/ Donald O. Walter / Gregory B. Yates), Series: Life Science Monographs, First Edition, Plenum
Press, New York and London, 1987, ISBN: 978-1-4612-8227-3, DOI: 10.1007/978-1-4613-0883-
6.

[193] Carl Anderson, “Self-Organization in Relation to Several Similar Concepts: Are the Boundaries
to Self-Organization Indistinct?”, Biological Bulletin, vol. 202, no. 3, pp. 247–255, Jun. 2002.

[194] “Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering”
(edited by Giovanna Di Marzo Serugendo / Anthony Karageorgos / Omer F. Rana / Franco Zam-
bonelli), Series: Lecture Notes in Computer Science, vol. 2977, Springer, Berlin Heidelberg, 2004,
ISBN: 978-3-540-21201-0, DOI: 10.1007/b95863.

[195] P. Massioni / M. Verhaegen, “Distributed Control for Identical Dynamically Coupled Systems: A
Decomposition Approach”, IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 124–135,
Jan. 2009, DOI: 10.1109/TAC.2008.2009574.

[196] Mikhail Prokopenko, “Guided Self-Organization”, Human Frontier Science Program Journal,
vol. 3, no. 5, pp. 287–289, Oct. 2009, DOI: 10.2976/1.3233933.

[197] Mitchel Resnick, “Decentralized Modeling and Decentralized Thinking”, Modeling and Simula-
tion in Precollege Science and Mathematics (edited by W. Feurzeig / N. Roberts), pp. 114–137,
Springer, New York, 1999.

[198] Yaneer Bar-Yam, “A Mathematical Theory of Strong Emergence Using Multiscale Variety”, Com-
plexity, vol. 9, no. 6, pp. 15–24, Aug. 2004, DOI: 10.1002/cplx.20029.

271

https://dx.doi.org/10.2307/4081266
http://www.archive.org/stream/popularsciencemo84newy#page/214/mode/1up
http://www.archive.org/stream/popularsciencemo84newy#page/214/mode/1up
https://dx.doi.org/10.1098/rsif.2013.0305
https://dx.doi.org/10.1038/nature12939
https://purl.stanford.edu/dp147ff0571
http://www.intropsych.com/ch04_senses/whole_is_other_than_the_sum_of_the_parts.html
http://www.intropsych.com/ch04_senses/whole_is_other_than_the_sum_of_the_parts.html
https://dx.doi.org/10.1007/978-1-4613-0883-6
https://dx.doi.org/10.1007/978-1-4613-0883-6
https://dx.doi.org/10.1007/b95863
https://dx.doi.org/10.1109/TAC.2008.2009574
https://dx.doi.org/10.2976/1.3233933
https://dx.doi.org/10.1002/cplx.20029

References – Bibliography

[199] Mark A. Bedau, “Artificial Life: Organization, Adaptation and Complexity From the Bot-
tom Up”, Trends in Cognitive Sciences, vol. 7, no. 11, pp. 505–512, Nov. 2003, DOI:
10.1016/j.tics.2003.09.012.

[200] “The MIT Encyclopedia of the Cognitive Sciences” (edited by Frank C. Keil / Robert Andrew
Wilson), MIT Press, Massachusetts, 2001, ISBN: 978-0-262-73144-7.

[201] Aristotle, “Metaphysics, Book H 1045a 8–10”.

[202] George Henry Lewes, “Problems of Life and Mind”, First Series, vol. 2, Trübner, London, 1875,
ISBN: 1-4255-5578-0.

[203] Stuart A. Kauffman, “Reinventing the Sacred”, Basic Books, New York, NY, USA, 2008, ISBN:
978-0-465-00300-6.

[204] Francis Heylighen, “Self-Organization, Emergence and the Architecture of Complexity”, Proc. of
1st European Conference on System Science, pp. 23–32, Paris, 1989.

[205] Philip W. Anderson, “More and Different: Notes from a Thoughtful Curmudgeon”, World Scien-
tific, London, 2011, ISBN: 978-981-4350-12-9.

[206] James P. Crutchfield, “Is Anything Ever New? Considering Emergence”, Santa Fe Institute Studies
in the Sciences of Complexity (edited by G. Cowan / D. Pines / D. Melzner), Series: Integrative
Themes, vol. XIX, Addison-Wesley, Reading, MA, 1994.

[207] Steven B. Johnson, “Only Connect”, online, Oct. 2001, URL: http://www.theguardian.
com/books/2001/oct/15/society.

[208] Mark A. Bedau, “Downward Causation and the Autonomy of Weak Emergence”, Principia, vol. 6,
no. 1, pp. 5–50, 2002, published by NEL – Epistemology and Logic Research Group, Federal
University of Santa Catarina, Brazil.

[209] Jochen Fromm, “Types and Forms of Emergence”, online, Jun. 2005, URL: http://arxiv.
org/abs/nlin/0506028.

[210] Robert B. Laughlin, “A Different Universe: Reinventing Physics from the Bottom Down”, Basic
Books, New York, NY, USA, Mar. 2005, ISBN: 978-0-465-03828-2.

[211] Mark A. Bedau, “Weak Emergence”, Philosophical Perspectives: Mind, Causation, and World
(edited by James Tomberlin), vol. 11, pp. 375–399, Blackwell Publishers, Oxford, 1997.

[212] William Edward Seager, “Emergence and Supervenience”, online, URL: http://www.utsc.
utoronto.ca/~seager/emsup.pdf.

[213] Gerald E. Marsh, “The Demystification of Emergent Behavior”, online, 2009, URL: http://
arxiv.org/ftp/arxiv/papers/0907/0907.1117.pdf.

[214] Ernst Mayr, “The Growth of Biological Thought: Diversity, Evolution, and Inheritance”, Harvard
University Press, 1982, ISBN: 0-674-36446-5.

[215] Anil K. Seth, “Measuring Autonomy and Emergence via Granger Causality”, Artificial Life,
vol. 16, no. 2, pp. 179–196, 2010, DOI: 10.1162/artl.2010.16.2.16204.

[216] Paul C. W. Davies, “Emergent Biological Principles and the Computational Properties of the Uni-
verse”, Complexity, vol. 10, no. 2, pp. 11–15, Nov. 2004, DOI: 10.1002/cplx.20059.

[217] David J. Chalmers, “Strong and Weak Emergence”, The Re-Emergence of Emergence: The Emer-
gent Hypothesis from Science to Religion (edited by Philip Clayton / Paul Davies), Oxford Uni-
versity Press, Oxford, 2006, ISBN: 978-0199287147.

272

https://dx.doi.org/10.1016/j.tics.2003.09.012
http://www.theguardian.com/books/2001/oct/15/society
http://www.theguardian.com/books/2001/oct/15/society
http://arxiv.org/abs/nlin/0506028
http://arxiv.org/abs/nlin/0506028
http://www.utsc.utoronto.ca/~seager/emsup.pdf
http://www.utsc.utoronto.ca/~seager/emsup.pdf
http://arxiv.org/ftp/arxiv/papers/0907/0907.1117.pdf
http://arxiv.org/ftp/arxiv/papers/0907/0907.1117.pdf
https://dx.doi.org/10.1162/artl.2010.16.2.16204
https://dx.doi.org/10.1002/cplx.20059

References – Bibliography

[218] Noam Miller / Robert Gerlai, “From Schooling to Shoaling: Patterns of Collective Motion in
Zebrafish (Danio Rerio)”, PLoS ONE, vol. 7, no. 11, pp. 1–6, Nov. 2012, DOI: 10.1371/jour-
nal.pone.0048865.

[219] Frank Fraser Darling, “A Herd of Red Deer: A Study in Animal Behaviour (Wild Lives)” (edited
by Walter Stephen), Luath Press Limited, Edinburgh, Jun. 2008, ISBN: 978-1-906307-42-4.

[220] Chad M. Topaz / Maria R. D’Orsogna / Leah Edelstein-Keshet / Andrew J. Bernoff, “Locust
Dynamics: Behavioral Phase Change and Swarming”, PLoS Computational Biology, vol. 8, no. 8,
pp. 1–11, Aug. 2012, DOI: 10.1371/journal.pcbi.1002642.

[221] Bolei Zhou / Xiaogang Wang / Xiaoou Tang, “Understanding Collective Crowd Behaviors: Learn-
ing a Mixture Model of Dynamic Pedestrian-Agents”, Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2871–2878, Jun. 2012, DOI: 10.1109/CVPR.2012.6248013.

[222] Gordon Firestein (Seacology USA), “School of Jacks”, online, Jan. 2005, licensed under
CC BY-SA 3.0, URL: https://commons.wikimedia.org/w/index.php?curid=
22766988.

[223] Shyamvs78 (own work), “Spotted Deer Group in Jim Corbett National Park (India)”, online, Feb.
2008, licensed under CC BY 3.0, URL: https://commons.wikimedia.org/w/index.
php?curid=3521093.

[224] Waugsberg (own work), “Swarm of Bees in the Air Shortly Before Landing on a Tree”, online,
May 2007, licensed under CC BY-SA 3.0, URL: https://commons.wikimedia.org/w/
index.php?curid=2133292.

[225] Matt Morgen, “Crowd Driven from Tompkins Square by the Mounted Police in the Tompkins
Square Riot of 1874”, Frank Leslie’s Illustrated Newspaper, Jan. 1874, Public Domain content,
URL: https://commons.wikimedia.org/w/index.php?curid=2186990.

[226] L. David Mech, “Alpha Status, Dominance, and Division of Labor in Wolf Packs”, Canadian
Journal of Zoology, vol. 77, no. 8, pp. 1196–1203, 1999, DOI: 10.1139/z99-099.

[227] Manuele Brambilla / Eliseo Ferrante / Mauro Birattari / Marco Dorigo, “Swarm Robotics: A
Review from the Swarm Engineering Perspective”, Swarm Intelligence, vol. 7, no. 1, pp. 1–41,
Mar. 2013, DOI: 10.1007/s11721-012-0075-2.

[228] Mehmet Karatay (own work), “Safari Ants on the Chogoria Route of Mount Kenya”, online,
May 2007, licensed under CC BY-SA 3.0, URL: https://commons.wikimedia.org/w/
index.php?curid=2179109.

[229] S. Goss / S. Aron / J.-L. Deneubourg / J. M. Pasteels, “Self-Organized Shortcuts in the Argentine
Ant”, Naturwissenschaften, vol. 76, no. 12, pp. 579–581, 1989, DOI: 10.1007/BF00462870.

[230] Claire Detrain / Jean-Louis Deneubourg, “Self-Organized Structures in a Superorganism: Do Ants
‘Behave’ Like Molecules?”, Physics of Life Reviews, vol. 3, no. 3, pp. 162–187, Sep. 2006, DOI:
10.1016/j.plrev.2006.07.001.

[231] Jon Nelson, “Origin of Diversity in Falling Snow”, Atmospheric Chemistry and Physics, vol. 8,
pp. 5669–5682, Sep. 2008.

[232] Kenneth G. Libbrecht, “The Physics of Snow Crystals”, Reports on Progress in Physics, vol. 68,
pp. 855–895, Mar. 2005, DOI: 10.1088/0034-4885/68/4/R03.

[233] Charles Schmitt (own work), “Stellate Snowflake”, online, Mar. 2014, licensed under CC BY-SA
4.0, URL: https://commons.wikimedia.org/w/index.php?curid=44338386.

273

https://dx.doi.org/10.1371/journal.pone.0048865
https://dx.doi.org/10.1371/journal.pone.0048865
https://dx.doi.org/10.1371/journal.pcbi.1002642
https://dx.doi.org/10.1109/CVPR.2012.6248013
https://commons.wikimedia.org/w/index.php?curid=22766988
https://commons.wikimedia.org/w/index.php?curid=22766988
https://commons.wikimedia.org/w/index.php?curid=3521093
https://commons.wikimedia.org/w/index.php?curid=3521093
https://commons.wikimedia.org/w/index.php?curid=2133292
https://commons.wikimedia.org/w/index.php?curid=2133292
https://commons.wikimedia.org/w/index.php?curid=2186990
https://dx.doi.org/10.1139/z99-099
https://dx.doi.org/10.1007/s11721-012-0075-2
https://commons.wikimedia.org/w/index.php?curid=2179109
https://commons.wikimedia.org/w/index.php?curid=2179109
https://dx.doi.org/10.1007/BF00462870
https://dx.doi.org/10.1016/j.plrev.2006.07.001
https://dx.doi.org/10.1088/0034-4885/68/4/R03
https://commons.wikimedia.org/w/index.php?curid=44338386

References – Bibliography

[234] A. V. Getling, “Rayleigh-Bénard Convection: Structures and Dynamics”, Advanced Series in Non-
linear Dynamics, vol. 11, World Scientific Publishing, Mar. 1998, ISBN: 978-981-02-2657-2.

[235] A. V. Getling / O. Brausch, “Cellular Flow Patterns and Their Evolutionary Scenarios in Three-
Dimensional Rayleigh-Bénard Convection”, Physical Review E, vol. 67, no. 4, pp. 1–4, Apr. 2003,
DOI: 10.1103/PhysRevE.67.046313.

[236] Heinz Georg Schuster / Wolfram Just, “Deterministic Chaos: An Introduction”, Fourth, Revised
and Enlarged Edition, John Wiley & Sons, Weinheim, Jan. 2005, ISBN: 978-3-527-40415-5.

[237] R. B. Levien / S. M. Tan, “Double Pendulum: An Experiment in Chaos”, American Journal of
Physics, vol. 61, no. 11, pp. 1038–1044, Nov. 1993, DOI: 10.1119/1.17335.

[238] Andy Martin / Kristian Helmerson, “Emergence: The Remarkable Simplicity of
Complexity”, online, Oct. 2014, URL: http://theconversation.com/
emergence-the-remarkable-simplicity-of-complexity-30973.

[239] “The Science of Fractal Images” (edited by Heinz-Otto Peitgen / Dietmar Saupe), Springer Verlag,
1988, ISBN: 978-1-4612-8349-2.

[240] Solkoll (own work), “Koch Snowflake”, online, Feb. 2005, Public Domain content, URL: https:
//commons.wikimedia.org/w/index.php?curid=59048.

[241] Douglas H. Werner / Suman Ganguly, “An Overview of Fractal Antenna Engineering Research”,
IEEE Antennas and Propagation Magazine, vol. 45, no. 1, pp. 38–57, Feb. 2003.

[242] Tom Addiscott, “Emergence or Self-organization? Look to the Soil Population”, Communicative
and Integrative Biology, vol. 4, no. 4, pp. 469–470, Jul. 2011, DOI: 10.4161/cib.4.4.15547.

[243] Tom De Wolf / Tom Holvoet, “Emergence Versus Self-Organisation: Different Concepts But
Promising When Combined”, Engineering Self-Organising Systems: Methodologies and Appli-
cations (edited by S. Brückner et al.), Series: Lecture Notes in Computer Science, vol. 3464,
pp. 1–15, Springer, Berlin Heidelberg, 2005.

[244] Jürgen Appelo, “Self-Organization vs. Emergence”, online, Oct. 2009, URL: http://noop.
nl/2009/10/self-organization-vs-emergence.html.

[245] Andy Brandt, “The Triangle of Self-Organization”, online, Jul.
2013, URL: http://pragmaticleader.net/blog/2013/7/3/
the-triangle-of-self-organization.

[246] Deborah M. Gordon, “From Division of Labor to the Collective Behavior of Social Insects”, Be-
havioral Ecology and Sociobiology, pp. 1–8, Dec. 2015, DOI: 10.1007/s00265-015-2045-3.

[247] Steven Berlin Johnson, “Emergence: The Connected Lives of Ants, Brains, Cities, and Software”,
Scribner, New York, NY, USA, 2001, ISBN: 978-0-684-86876-9.

[248] Humberto R. Maturana / Francisco J. Varela, “Autopoiesis and Cognition: The Realization of the
Living”, Series: Boston Studies in the Philsosophy and History of Science, vol. 42, D. Reidel
Publishing, Dordrecht, Holland, 1980, ISBN: 978-9-027-71016-1.

[249] Niklas Luhmann, “Die Gesellschaft der Gesellschaft”, Suhrkamp, Frankfurt am Main, 1997,
ISBN: 3-518-58240-2.

[250] Niklas Luhmann, “Operational Closure and Structural Coupling: The Differentiation of the Legal
System”, Cardoso Law Review, vol. 13, pp. 1419–1441, 1992.

[251] “Luhmann Observed: Radical Theoretical Encounters” (edited by Anders la Cour / Andreas
Philippopoulos-Mihalopoulos), Palgrave Macmillan, Jun. 2013, ISBN: 978-1-137-01528-0.

274

https://dx.doi.org/10.1103/PhysRevE.67.046313
https://dx.doi.org/10.1119/1.17335
http://theconversation.com/emergence-the-remarkable-simplicity-of-complexity-30973
http://theconversation.com/emergence-the-remarkable-simplicity-of-complexity-30973
https://commons.wikimedia.org/w/index.php?curid=59048
https://commons.wikimedia.org/w/index.php?curid=59048
https://dx.doi.org/10.4161/cib.4.4.15547
http://noop.nl/2009/10/self-organization-vs-emergence.html
http://noop.nl/2009/10/self-organization-vs-emergence.html
http://pragmaticleader.net/blog/2013/7/3/the-triangle-of-self-organization
http://pragmaticleader.net/blog/2013/7/3/the-triangle-of-self-organization
https://dx.doi.org/10.1007/s00265-015-2045-3

References – Bibliography

[252] Christopher G. Langton, “Computation at the Edge of Chaos: Phase Transitions and Emergent
Computation”, Physica D: Nonlinear Phenomena, vol. 42, no. 1–3, pp. 12–37, Jun. 1990, DOI:
10.1016/0167-2789(90)90064-V.

[253] James P. Crutchfield / Karl Young, “Computation at the Onset of Chaos”, Entropy, Complexity,
and the Physics of Information (edited by W. Zurek), Series: SFI Studies in the Sciences of Com-
plexity, vol. 8, pp. 223–269, Addison-Wesley, Reading, Massachusetts, 1990.

[254] Jochen Fromm, “Edge of Chaos”, online, May 2009, URL: http://www.wiki.
cas-group.net/index.php?title=File:Edge_of_Chaos.png.

[255] Roger Lewin, “Complexity: Life at the Edge of Chaos”, Second Edition, University of Chicago
Press, London, UK, 1999, ISBN: 0-226-47654-5.

[256] Katrina Schwartz, “On the Edge of Chaos: Where Creativity Flourishes”, on-
line, May 2014, URL: http://ww2.kqed.org/mindshift/2014/05/06/
on-the-edge-of-chaos-where-creativity-flourishes/.

[257] Robert M. Bilder / Kendra S. Knudsen, “Creative Cognition and Systems Biology on the Edge of
Chaos”, Frontiers in Psychology, vol. 5, no. 1104, Sep. 2014, DOI: 10.3389/fpsyg.2014.01104.

[258] Gary William Flake, “The Computational Beauty of Nature: Computer Explorations of Fractals,
Chaos, Complex Systems, and Adaptation”, MIT Press, Cambridge, Massachusetts, 1998, ISBN:
978-0-262-56127-3.

[259] Elisabeth Göbel, “Theorie und Gestaltung der Selbstorganisation”, Series: Betriebswirtschaftliche
Forschunsergebnisse, vol. 111, Duncker & Humblot, Berlin, 1998, ISBN: 978-3-428-49434-7.

[260] Heinz von Foerster, “Principles of Self-Organization – In a Socio-Managerial Context”, Self-
Organization and Management of Social Systems: Insights, Promises, Doubts, and Questions
(edited by Hans Ulrich / Gilbert J. B. Probst), Springer Series in Synergetics, vol. 26, pp. 2–24,
Springer-Verlag, Berlin Heidelberg, 1984, ISBN: 978-3-642-69764-7.

[261] F. G. Varela / H. R. Maturana / R. Uribe, “Autopoiesis: The Organization of Living Systems,
Its Characterization and a Model”, Biosystems, vol. 5, no. 4, pp. 187–196, May 1974, DOI:
10.1016/0303-2647(74)90031-8.

[262] Scott Camazine / Jean-Louis Deneubourg / Nigel R. Franks / James Sneyd / Guy Theraulaz / Eric
Bonabeau, “Self-Organization in Biological Systems”, Series: Princeton Studies in Complexity,
Princeton University Press, 2003, ISBN: 978-0-691-11624-2.

[263] Francis Heylighen, “The Science of Self-Organization and Adaptivity”, Knowledge Management,
Organizational Intelligence and Learning, and Complexity (edited by L. Douglas Kiel), Series:
The Encyclopedia of Life Support Systems, pp. 1–26, EOLSS Publishers Company Limited,
United Kingdom, Jan. 2009, ISBN: 978-1-848-26913-2.

[264] Pierre Paul Grassé, “La reconstruction du nid et les coordinations interindividuelles chez Bel-
licositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du
comportement des termites constructeurs”, Insectes Sociaux, vol. 6, no. 1, pp. 41–83, Mar. 1959.

[265] Leslie Marsh / Christian Onof, “Stigmergic Epistemology, Stigmergic Cognition”, Cognitive Sys-
tems Research, vol. 9, no. 1–2, pp. 136–149, Mar. 2008, DOI: 10.1016/j.cogsys.2007.06.009.

[266] Marco Dorigo / Mauro Birattari / Thomas Stützle, “Ant Colony Optimization: Artificial Ants as a
Computational Intelligence Technique”, IEEE Computational Intelligence Magazine, vol. 1, no. 4,
pp. 28–39, Nov. 2006.

275

https://dx.doi.org/10.1016/0167-2789(90)90064-V
http://www.wiki.cas-group.net/index.php?title=File:Edge_of_Chaos.png
http://www.wiki.cas-group.net/index.php?title=File:Edge_of_Chaos.png
http://ww2.kqed.org/mindshift/2014/05/06/on-the-edge-of-chaos-where-creativity-flourishes/
http://ww2.kqed.org/mindshift/2014/05/06/on-the-edge-of-chaos-where-creativity-flourishes/
https://dx.doi.org/10.3389/fpsyg.2014.01104
https://dx.doi.org/10.1016/0303-2647(74)90031-8
https://dx.doi.org/10.1016/j.cogsys.2007.06.009

References – Bibliography

[267] Carlos Gershenson, “Self-Organizing Traffic Lights”, Complex Systems, vol. 16, no. 1, pp. 29–53,
2005.

[268] H. van Dyke Parunak, “Making Swarming Happen”, Proc. of Conference on Swarming and Net-
work Enabled Command, Control, Communications, Computers, Intelligence, Surveillance and
Reconnaissance, pp. 26–40, Jan. 2003.

[269] Ralph Beckers / Owen E. Holland / Jean-Louis Deneubourg, “From Local Actions to Global
Tasks: Stigmergy and Collective Robotics”, Prerational Intelligence: Adaptive Behavior and In-
telligent Systems Without Symbols and Logic (edited by Holk Cruse / Jeffrey Dean / Helge Ritter),
Series: Studies in Cognitive Systems, vol. 26, pp. 1008–1022, Springer Netherlands, 2000, DOI:
10.1007/978-94-010-0870-9_63.

[270] Peter A. Corning, “Synergy and Self-Organization in the Evolution of Complex Systems”, Systems
Research, vol. 12, no. 2, pp. 89–121, 1995, DOI: 10.1002/sres.3850120204.

[271] Hermann Haken, “Synergetics: Introduction and Advanced Topics”, Springer-Verlag, Berlin Hei-
delberg, 2004, ISBN: 978-3-540-40824-6.

[272] “International Encyclopedia of Ergonomics and Human Factors” (edited by Waldemar Kar-
wowski), Second Edition, vol. 3, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2006,
ISBN: 978-0-415-30430-6.

[273] Peter A. Corning, “What is Life? Among Other Things, It’s a Synergistic Effect!”, Cosmos and
History: The Journal of Natural and Social Philosophy, vol. 4, no. 1–2, pp. 233–243, 2008, ISSN:
1832-9101.

[274] Angus Stevenson, “Oxford Dictionary of English”, Third Edition, Oxford University Press, Aug.
2010, ISBN: 978-0199571123.

[275] Robley Dunglison, “Medical Lexicon: A Dictionary of Medical Science”, Ninth Edition, Blan-
chard and Lea, Philadelphia, 1853.

[276] Carlos Gershenson, “A General Methodology for Designing Self-Organizing Systems”, ECCO
Working Paper, May 2005, URL: http://arxiv.org/abs/nlin/0505009v3.

[277] Peter A. Corning, “Nature’s Magic: Synergy in Evolution and the Fate of Humankind”, Cambridge
University Press, May 2003, ISBN: 978-0-521-82547-4.

[278] “Innovations and Advanced Techniques in Computer and Information Sciences and Engineering”
(edited by Tarek Sobh), Springer, Dordrecht, 2007, ISBN: 978-1-4020-6268-1.

[279] W. D. Hamilton, “Geometry for the Selfish Herd”, Journal of Theoretical Biology, vol. 31, no. 2,
pp. 295–311, May 1971, DOI: 10.1016/0022-5193(71)90189-5.

[280] Friedrich Böhringer (own work), “Schafherde in Schoren”, online, Oct. 2009, licensed under
CC BY-SA 2.5, URL: https://commons.wikimedia.org/w/index.php?curid=
8694470.

[281] Yoav Shoham / Kevin Leyton-Brown, “Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations”, Cambridge University Press, 2009, ISBN: 978-0-521-89943-7.

[282] Adam Smith, “The Wealth of Nations”, Series: Oxford World’s Classics, Oxford University Press,
May 2008, ISBN: 978-0-19-953592-7.

[283] William Ross Ashby, “An Introduction to Cybernetics”, Fourth Impression, Chapman & Hall Ltd,
London, 1961, ISBN: 978-0-416-68300-4.

276

https://dx.doi.org/10.1007/978-94-010-0870-9_63
https://dx.doi.org/10.1002/sres.3850120204
http://arxiv.org/abs/nlin/0505009v3
https://dx.doi.org/10.1016/0022-5193(71)90189-5
https://commons.wikimedia.org/w/index.php?curid=8694470
https://commons.wikimedia.org/w/index.php?curid=8694470

References – Bibliography

[284] Wordpress, “The First Law of Cybernetics”, online, Oct. 2011, URL: https://firstlaw.
wordpress.com/2011/10/18/ashbys-law/.

[285] William Ross Ashby, “Principles of the Self-Organizing System”, Principles of Self-Organization:
Transactions of the University of Illinois Symposium (edited by H. von Foerster / G. W. Zopf Jr.),
pp. 255–278, Pergamon Press, London, UK, 1962.

[286] William Ross Ashby, “Requisite Variety and Its Implications for the Control of Complex Sys-
tems”, Cybernetica, vol. 1, no. 2, pp. 83–99, 1958.

[287] Stafford Beer, “The Heart of Enterprise”, Series: Managerial Cybernetics of Organization, vol. 2,
Wiley, 1979, ISBN: 978-0-471-27599-2.

[288] “Artificial Life: An Overview” (edited by Christopher G. Langton), Series: A Bradford Book
– Complex Adaptive Systems, MIT Press, Cambridge, Massachusetts, 1997, ISBN: 978-0-262-
62112-0.

[289] John von Neumann, “The General and Logical Theory of Automata”, Cerebral Mechanisms in
Behavior – The Hixon Symposium (edited by L. A. Jeffress), pp. 1–31, John Wiley & Sons, New
York, NY, USA, 1951, presented September 20, 1948, in Pasadena.

[290] John von Neumann / Arthur W. Burks, “Theory of Self-Reproducing Automata”, University of
Illinois Press, Urbana and London, 1966.

[291] Martin Gardner, “Mathematical Games – The Fantastic Combinations of John Conway’s New
Solitaire Game ‘Life’”, Scientific American, vol. 223, pp. 120–123, Oct. 1970, ISBN: 0-89454-
001-7.

[292] Elwyn R. Berlekamp / John H. Conway / Richard K. Guy, “Winning Ways for Your Mathematical
Plays”, Second Edition, vol. 4, Taylor & Francis, 2004, ISBN: 978-1-568-81144-4.

[293] Christopher G. Langton, “Studying Artificial Life with Cellular Automata”, Physica D: Nonlinear
Phenomena, vol. 22, no. 1–3, pp. 120–149, Oct. 1986, DOI: 10.1016/0167-2789(86)90237-X.

[294] A. Gajardo / A. Moreira / E. Goles, “Complexity of Langton’s Ant”, Discrete Applied Mathemat-
ics, vol. 117, no. 1–3, pp. 41–50, Mar. 2002, DOI: 10.1016/S0166-218X(00)00334-6.

[295] A. K. Dewdney, “Computer Recreations – The Cellular Automata Programs That Create Wire-
world, Rugworld and Other Diversions”, Scientific American, vol. 262, pp. 146–149, 1990.

[296] “Cellular Automata: 10th International Conference on Cellular Automata for Research and Indus-
try” (edited by Georgios C. Sirakoulis / Stefania Bandini), Series: Lecture Notes in Computer
Science, vol. 7495, Springer, Berlin, Heidelberg, 2012, ISBN: 978-3-642-33349-1.

[297] Konrad Zuse, “Rechnender Raum”, Series: Schriften zur Datenverarbeitung, Springer Fachme-
dien, Wiesbaden, 1969, ISBN: 978-3-663-00810-1, DOI: 10.1007/978-3-663-02723-2.

[298] Stephen Wolfram, “A New Kind of Science”, Wolfram Media, Jun. 2002, ISBN: 978-1-57955-
008-0.

[299] Steve Tadelis, “Game Theory: An Introduction”, Princeton University Press, Princeton, New Jer-
sey, Jan. 2013, ISBN: 978-0-691-12908-2.

[300] John Nash, “Non-Cooperative Games”, Annals of Mathematics, vol. 54, no. 2, pp. 286–295, Sep.
1951, DOI: 10.2307/1969529.

[301] Roman L. Weil Jr., “The N-Person Prisoner’s Dilemma: Some Theory and a Computer-Oriented
Approach”, Systems Research and Behavioral Science, vol. 11, no. 3, pp. 227–234, May 1966,
DOI: 10.1002/bs.3830110310.

277

https://firstlaw.wordpress.com/2011/10/18/ashbys-law/
https://firstlaw.wordpress.com/2011/10/18/ashbys-law/
https://dx.doi.org/10.1016/0167-2789(86)90237-X
https://dx.doi.org/10.1016/S0166-218X(00)00334-6
https://dx.doi.org/10.1007/978-3-663-02723-2
https://dx.doi.org/10.2307/1969529
https://dx.doi.org/10.1002/bs.3830110310

References – Bibliography

[302] Robert W. Rosenthal, “Games of Perfect Information, Predatory Pricing and the Chain-Store Para-
dox”, Journal of Economic Theory, vol. 25, no. 1, pp. 92–100, Aug. 1981, DOI: 10.1016/0022-
0531(81)90018-1.

[303] John von Neumann / Oskar Morgenstern, “Theory of Games and Economic Behavior”, Sixtieth
Anniversary Edition, Princeton University Press, Princeton, New Jersey, 2007, ISBN: 978-0-691-
13061-3.

[304] Michael Wooldridge, “An Introduction to Multiagent Systems”, Second Edition, John Wiley &
Sons, Jun. 2009, ISBN: 978-0-470-51946-2.

[305] Stan Franklin / Art Graesser, “Is it an Agent, or Just a Program? A Taxonomy for Autonomous
Agents”, Proc. of Workshop on Intelligent Agents, Agent Theories, Architectures, and Languages,
pp. 21–35, Springer, 1996, ISBN: 3-540-62507-0.

[306] Stuart Russell / Peter Norvig, “Artificial Intelligence: A Modern Approach”, Third Edition, Pear-
son Education Limited, Aug. 2013, ISBN: 978-1-292-02420-2.

[307] Jochen Fromm, “The Emergence of Complexity”, Kassel University Press, Kassel, 2004, ISBN:
978-3-89958-069-3.

[308] Jacques Ferber, “Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence”,
Addison-Wesley Longman Publishing, Boston, MA, USA, Feb. 1999, ISBN: 978-0-201-36048-6.

[309] Riccardo Poli, “Analysis of the Publications on the Applications of Particle Swarm Optimisa-
tion”, Journal of Artificial Evolution and Application, vol. 2008, no. 4, pp. 1–10, Jan. 2008, DOI:
10.1155/2008/685175.

[310] Shiyong Wang / Jiafu Wan / Daqiang Zhang / Di Li / Chunhua Zhang, “Towards Smart Factory
for Industry 4.0: A Self-Organized Multi-Agent System with Big Data Based Feedback and Coor-
dination”, Computer Networks: The International Journal of Computer and Telecommunications
Networking, vol. 101, no. C, pp. 158–168, Jun. 2016, DOI: 10.1016/j.comnet.2015.12.017.

[311] Onn Shehory / Katia Sycara / Gita Sukthankar / Vick Mukherjee, “Agent Aided Aircraft Main-
tenance”, Proc. of 3rd Annual Conference on Autonomous Agents, pp. 306–312, 1999, DOI:
10.1145/301136.301216.

[312] Vivek Kumar / S. Srinivasan, “A Review of Supply Chain Management Using Multi-Agent Sys-
tem”, International Journal of Computer Science Issues, vol. 7, no. 5, pp. 198–205, Sep. 2010,
ISSN: 1694-0814.

[313] T. Logenthiran / Dipti Srinivasan / Ashwin M. Khambadkone, “Multi-Agent System for Energy
Resource Scheduling of Integrated Microgrids in a Distributed System”, Electric Power Systems
Research, vol. 81, no. 1, pp. 138–148, Jan. 2011, DOI: 10.1016/j.epsr.2010.07.019.

[314] Muaz A. Niazi / Amir Hussain, “Agent-Based Computing from Multi-Agent Systems to Agent-
Based Models: A Visual Survey”, Scientometrics, vol. 89, no. 2, pp. 479–499, Nov. 2011, DOI:
10.1007/s11192-011-0468-9.

[315] Nigel Gilbert, “Agent-Based Models”, Series: Quantitative Applications in the Social Sciences,
vol. 153, Sage Publications, 2008, ISBN: 978-1-4129-4964-4.

[316] Craig W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model”, Proc. of 14th

Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34, Jul. 1987, DOI:
10.1145/37401.37406.

[317] Craig W. Reynolds, “Boids – Background and Update”, online, Jul. 2007, URL: http://www.
red3d.com/cwr/boids/.

278

https://dx.doi.org/10.1016/0022-0531(81)90018-1
https://dx.doi.org/10.1016/0022-0531(81)90018-1
https://dx.doi.org/10.1155/2008/685175
https://dx.doi.org/10.1016/j.comnet.2015.12.017
https://dx.doi.org/10.1145/301136.301216
https://dx.doi.org/10.1016/j.epsr.2010.07.019
https://dx.doi.org/10.1007/s11192-011-0468-9
https://dx.doi.org/10.1145/37401.37406
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/

References – Bibliography

[318] András Czirók / Mária Vicsek / Tamás Vicsek, “Collective Motion of Organisms in Three Dimen-
sions”, Physica A: Statistical Mechanics and its Applications, vol. 264, no. 1–2, pp. 299–304, Feb.
1999, DOI: 10.1016/S0378-4371(98)00468-3.

[319] M. Ballerini / N. Cabibbo / R. Candelier / A. Cavagna / E. Cisbani / I. Giardina / V. Lecomte
/ A. Orlandi / G. Parisi / A. Procaccini / M. Viale / V. Zdravkovic, “Interaction Ruling Animal
Collective Behavior Depends on Topological Rather than Metric Distance: Evidence from a Field
Study”, Proceedings of the National Academy of Sciences, vol. 105, no. 4, pp. 1232–1237, Jan.
2008, DOI: 10.1073/pnas.0711437105.

[320] Yuki Sakamoto / Tatsuji Takahashi, “Metric and Topological Neighborhoods in Flocking Models”,
Proc. of 8th International Conference on Bioinspired Information and Communications Technolo-
gies, pp. 118–121, 2014, DOI: 10.4108/icst.bict.2014.258036.

[321] Christopher Hartman / Bedřich Beneš, “Autonomous Boids”, Computer Animation and Virtual
Worlds, vol. 17, no. 3–4, pp. 199–206, Jul. 2006, DOI: 10.1002/cav.123.

[322] Carlos Delgado-Mata / Jesus Ibanez Martinez / Simon Bee / Rocio Ruiz-Rodarte / Ruth Aylett,
“On the Use of Virtual Animals with Artificial Fear in Virtual Environments”, New Generation
Computing, vol. 25, no. 2, pp. 145–169, Feb. 2007, DOI: 10.1007/s00354-007-0009-5.

[323] Xiaoyuan Tu / Demetri Terzopoulos, “Artificial Fishes: Physics, Locomotion, Perception, Behav-
ior”, Proc. of 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–
50, Jul. 1994, DOI: 10.1145/192161.192170.

[324] Iain D. Couzin / Jens Krause / Richard James / Graeme D. Ruxton / Nigel R. Franks, “Collective
Memory and Spatial Sorting in Animal Groups”, Journal of Theoretical Biology, vol. 218, pp. 1–
11, 2002, DOI: 10.1006/yjtbi.3065.

[325] Kai Nagel / Michael Schreckenberg, “A Cellular Automaton Model for Freeway Traffic”, Journal
de Physique I, vol. 2, no. 12, pp. 2221–2229, Dec. 1992, DOI: 10.1051/jp1:1992277.

[326] Tamás Vicsek / András Czirók / Eshel Ben-Jacob / Inon Cohen / Ofer Shochet, “Novel Type of
Phase Transition in a System of Self-Driven Particles”, Physical Review Letters, vol. 75, no. 6,
pp. 1226–1229, Aug. 1995, DOI: 10.1103/PhysRevLett.75.1226.

[327] Yue-Xian Li / Ryan Lukeman / Leah Edelstein-Keshet, “Minimal Mechanisms for School Forma-
tion in Self-Propelled Particles”, Physica D: Nonlinear Phenomena, vol. 237, no. 5, pp. 699–720,
May 2008, DOI: 10.1016/j.physd.2007.10.009.

[328] Cynthia Nikolai / Gregory Madey, “Tools of the Trade: A Survey of Various Agent Based Model-
ing Platforms”, Journal of Artificial Societies and Social Simulation, vol. 12, no. 2, pp. 1–37, Mar.
2009, ISSN: 1460-7425.

[329] Fabio Luigi Bellifemine / Giovanni Caire / Dominic Greenwood, “Developing Multi-Agent Sys-
tems with JADE”, Wiley Series in Agent Technology, vol. 7, John Wiley & Sons, West Sussex,
England, Mar. 2007, ISBN: 978-0-470-05840-4.

[330] Daniel Marolt / Jürgen Scheible / Göran Jerke / Vinko Marolt, “SWARM: A Multi-Agent System
for Layout Automation in Analog Integrated Circuit Design”, Agent and Multi-Agent Systems:
Technology and Applications (10th KES International Conference, KES-AMSTA 2016) (edited
by Gordan Jezic / Yun-Heh Jessica Chen-Burger / Robert J. Howlett / Lakhmi C. Jain), Series:
Smart Innovation, Systems and Technologies, vol. 58, ch. 2, pp. 15–31, Springer, Jun. 2016, DOI:
10.1007/978-3-319-39883-9_2.

[331] Thomas Burdick / Peter Herth / Göran Jerke / Christel Bürzele / Daniel Marolt / Vinko Marolt,
“FR PCells”, Patent Application, Dec. 2015, title obscured for reasons of confidentiality.

279

https://dx.doi.org/10.1016/S0378-4371(98)00468-3
https://dx.doi.org/10.1073/pnas.0711437105
https://dx.doi.org/10.4108/icst.bict.2014.258036
https://dx.doi.org/10.1002/cav.123
https://dx.doi.org/10.1007/s00354-007-0009-5
https://dx.doi.org/10.1145/192161.192170
https://dx.doi.org/10.1006/yjtbi.3065
https://dx.doi.org/10.1051/jp1:1992277
https://dx.doi.org/10.1103/PhysRevLett.75.1226
https://dx.doi.org/10.1016/j.physd.2007.10.009
https://dx.doi.org/10.1007/978-3-319-39883-9_2

References – Bibliography

[332] Daniel Marolt / Jürgen Scheible / Göran Jerke, “The Application of Layout Module Generators
upon Circuit Structure Recognition”, Proc. of CDNLive! EMEA, 6 pages, May 2011, Session
AC13.

[333] Kevin Kelly, “The Bottom Is Not Enough”, online, Feb. 2008, URL: http://kk.org/
thetechnium/the-bottom-is-n/.

[334] G. H. Meisters, “Polygons Have Ears”, The American Mathematical Monthly, vol. 82, no. 6,
pp. 648–651, Jun./Jul. 1975, DOI: 10.2307/2319703.

[335] Brian W. Kernighan / Shen Lin, “An Efficient Heuristic Procedure for Partitioning Graphs”, The
Bell System Technical Journal, vol. 49, no. 2, pp. 291–307, Feb. 1970, DOI: 10.1002/j.1538-
7305.1970.tb01770.x.

[336] C. M. Fiduccia / R. M. Mattheyses, “A Linear-Time Heuristic for Improving Network
Partitions”, Proc. of 19th Design Automation Conference, pp. 175–181, Jun. 1982, DOI:
10.1109/DAC.1982.1585498.

[337] A. H. Farrahi / D. J. Hathaway / M. Wang / M. Sarrafzadeh, “Quality of EDA CAD Tools: Defini-
tions, Metrics and Directions”, Proc. of 1st International Symposium on Quality Electronic Design,
pp. 395–405, Mar. 2000, DOI: 10.1109/ISQED.2000.838903.

[338] Mohammad Tehranipoor, “CAD Algorithms – Placement”, online, Nov. 2008, URL: www.engr.
uconn.edu/~tehrani/teaching/cad/15_placement.pdf.

[339] Ralph Otten, “Complexity and Diversity in IC Layout Design”, Proc. of IEEE International Sym-
posium on Circuits and Computers, pp. 764–767, Oct. 1980, URL: https://slideplayer.
com/slide/13156322/.

[340] D. W. Jepsen / C. D. Gelatt Jr., “Macro Placement by Monte Carlo Annealing”, Proc. of IEEE
International Conference on Computer Design, pp. 495–498, Nov. 1983.

[341] Florin Balasa, “Device-Level Topological Placement with Symmetry Constraints”, Analog Lay-
out Synthesis – A Survey of Topological Approaches (edited by Helmut E. Gräb), ch. 1, pp. 3–
60, Springer, New York Dordrecht Heidelberg London, 2011, ISBN: 978-1-4419-6931-6, DOI:
10.1007/978-1-4419-6932-3.

[342] Maqsood Yaqub / Ronald Boellaard / Marc A. Kropholler / Adriaan A. Lammertsma, “Opti-
mization Algorithms and Weighting Factors for Analysis of Dynamic PET Studies”, Physics
in Medicine and Biology, vol. 51, no. 17, pp. 4217–4232, Aug. 2006, DOI: 10.1088/0031-
9155/51/17/007.

[343] Carl Sechen / Alberto Luigi Sangiovanni-Vincentelli, “TimberWolf3.2: A New Standard Cell
Placement and Global Routing Package”, Proc. of 23rd Design Automation Conference, pp. 432–
439, Jun./Jul. 1986, DOI: 10.1109/DAC.1986.1586125.

[344] Robert Hooke, “Lectures De Potentia Restitutiva, or of Spring Explaining the Power of Springing
Bodies to which are added some Collections”, John Martyn, Royal Society London, 1678, URL:
http://name.umdl.umich.edu/A44322.0001.001.

[345] Jürgen Scheible, “Ein Softwarepaket zur vollautomatischen Plazierung von Bauteilen auf Leit-
erplatten für den industriellen Einsatz”, Ph.D. Thesis, Universität Karlsruhe, 1992, ISBN: 3-18-
145920-8.

[346] Elena Lodi / Fabrizio Luccio / Cristina Mugnai / Linda Pagli, “On Two-Dimensional Data Or-
ganization I”, Annales Societatis Mathematicae Polonae, Series IV: Fundamenta Informaticae II,
pp. 211–226, 1979.

280

http://kk.org/thetechnium/the-bottom-is-n/
http://kk.org/thetechnium/the-bottom-is-n/
https://dx.doi.org/10.2307/2319703
https://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://dx.doi.org/10.1109/DAC.1982.1585498
https://dx.doi.org/10.1109/ISQED.2000.838903
www.engr.uconn.edu/~tehrani/teaching/cad/15_placement.pdf
www.engr.uconn.edu/~tehrani/teaching/cad/15_placement.pdf
https://slideplayer.com/slide/13156322/
https://slideplayer.com/slide/13156322/
https://dx.doi.org/10.1007/978-1-4419-6932-3
https://dx.doi.org/10.1088/0031-9155/51/17/007
https://dx.doi.org/10.1088/0031-9155/51/17/007
https://dx.doi.org/10.1109/DAC.1986.1586125
http://name.umdl.umich.edu/A44322.0001.001

References – Bibliography

[347] C. V. Deutsch / X. H. Wen, “An Improved Perturbation Mechanism for Simulated An-
nealing Simulation”, Mathematical Geology, vol. 30, no. 7, pp. 801–816, Oct. 1998, DOI:
10.1023/A:1021722508504.

[348] Carl Sechen, “Chip-Planning, Placement, and Global Routing of Macro/Custom Cell Integrated
Circuits Using Simulated Annealing”, Proc. of 25th Design Automation Conference, pp. 73–80,
Jun. 1988, DOI: 10.1109/DAC.1988.14737.

[349] D. F. Wong / H. W. Leong / C. L. Liu, “Simulated Annealing for VLSI Design”, Kluwer Academic
Publishers, Boston, Lancaster, Dordrecht, 1988, ISBN: 978-1-4612-8947-0.

[350] Thomas H. Cormen / Charles E. Leiserson / Ronald L. Rivest / Clifford Stein, “Introduction To
Algorithms”, Second Edition, MIT Press, Cambridge, Massachusetts, 2001, ISBN: 0-262-03293-
7.

[351] Jørgen Bang-Jensen / Gregory Gutin / Anders Yeo, “When the Greedy Algorithm Fails”, Discrete
Optimization, vol. 1, no. 2, pp. 121–127, Nov. 2004, DOI: 10.1016/j.disopt.2004.03.007.

[352] J. D. Conway / G. G. Schrooten, “An Automatic Layout Generator for Analog Circuits”,
Proc. of European Conference on Design Automation, pp. 513–519, Mar. 1992, DOI:
10.1109/EDAC.1992.205989.

[353] Nuttorn Jangkrajarng / Sambuddha Bhattacharya / Roy Hartono / C.-J. Richard Shi, “IPRAIL –
Intellectual Property Reuse-Based Analog IC Layout Automation”, Integration, vol. 36, no. 4,
pp. 237–262, Nov. 2003, DOI: 10.1016/j.vlsi.2003.08.004.

[354] John K. Ousterhout, “Corner Stitching: A Data-Structuring Technique for VLSI Layout Tools”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 3, no. 1,
pp. 87–100, Jan. 1984, DOI: 10.1109/TCAD.1984.1270061.

[355] Daniel Marolt / Jürgen Scheible / Göran Jerke / Vinko Marolt, “SWARM: A Self-Organization
Approach for Layout Automation in Analog IC Design”, International Journal of Electronics and
Electrical Engineering, vol. 4, no. 5, pp. 374–385, Oct. 2016, DOI: 10.18178/ijeee.4.5.374-385.

[356] William Beebe, “Edge of the Jungle”, The Star Series, Henry Holt and Com-
pany, New York, 1921, URL: http://ia600203.us.archive.org/25/items/
edgejungle00beebgoog/edgejungle00beebgoog.pdf.

[357] Theodore Christian Schneirla, “A Unique Case of Circular Milling in Ants, Considered in Rela-
tion to Trail Following and the General Problem of Orientation”, American Museum Novitates,
no. 1253, pp. 1–26, Apr. 1944, URL: http://digitallibrary.amnh.org/handle/
2246/3733.

[358] Daniel Marolt / Jürgen Scheible / Göran Jerke / Vinko Marolt, “A Self-Organization Ap-
proach for Layout Floorplanning Problems in Analog IC Design”, Proc. of 12th Confer-
ence on Ph.D. Research in Microelectronics and Electronics, pp. 1–4, Jun. 2016, DOI:
10.1109/PRIME.2016.7519454.

[359] Daniel Marolt / Jürgen Scheible / Göran Jerke / Vinko Marolt, “CAPABLE: A Layout Automation
Framework for Analog IC Design”, Proc. of MPC-Workshop, vol. 54, pp. 49–59, Jul. 2015, ISSN:
1868-9221.

[360] Daniel Marolt / Jürgen Scheible / Göran Jerke / Vinko Marolt, “Analog Layout Automation via
Self-Organization: Enhancing the Novel SWARM Approach”, Proc. of 7th IEEE Latin Amer-
ican Symposium on Circuits and Systems, pp. 55–58, Feb./Mar. 2016, DOI: 10.1109/LAS-
CAS.2016.7451008.

281

https://dx.doi.org/10.1023/A:1021722508504
https://dx.doi.org/10.1109/DAC.1988.14737
https://dx.doi.org/10.1016/j.disopt.2004.03.007
https://dx.doi.org/10.1109/EDAC.1992.205989
https://dx.doi.org/10.1016/j.vlsi.2003.08.004
https://dx.doi.org/10.1109/TCAD.1984.1270061
https://dx.doi.org/10.18178/ijeee.4.5.374-385
http://ia600203.us.archive.org/25/items/edgejungle00beebgoog/edgejungle00beebgoog.pdf
http://ia600203.us.archive.org/25/items/edgejungle00beebgoog/edgejungle00beebgoog.pdf
http://digitallibrary.amnh.org/handle/2246/3733
http://digitallibrary.amnh.org/handle/2246/3733
https://dx.doi.org/10.1109/PRIME.2016.7519454
https://dx.doi.org/10.1109/LASCAS.2016.7451008
https://dx.doi.org/10.1109/LASCAS.2016.7451008

References – Further Sources

[361] Daniel D. Gajski / Robert H. Kuhn, “Guest Editors’ Introduction: New VLSI Tools”, IEEE Com-
puter, vol. 16, no. 12, pp. 11–14, Dec. 1983, DOI: 10.1109/MC.1983.1654264.

[362] Daniel Marolt / Thomas Burdick / Göran Jerke / Peter Herth / Vinko Marolt / Jürgen Scheible,
“HIPE: Hierarchical Instance Parameter Editing of Parameterized Modules in Analog IC Design”,
Proc. of edaWorkshop 2016, pp. 18–23, May 2016, ISBN: 978-3-86460-453-9.

[363] Göran Jerke / Vinko Marolt / Christel Bürzele / Daniel Marolt / Andreas Krinke / Peter Herth
/ Thomas Burdick, “Hierarchical Module Design with Cadence PCell Designer”, CDNLive!
EMEA, Apr. 2015, Session CUS02, URL: https://www.cadence.com/content/
dam/cadence-www/global/en_US/documents/company/Events/CDNLive/
Secured/Proceedings/EU/2015/CUS02.pdf.

[364] Daniel Marolt / Matthias Greif / Jürgen Scheible / Göran Jerke, “PCDS: A New Approach for the
Development of Circuit Generators in Analog IC Design”, Proc. of 22nd Austrian Workshop on
Microelectronics (Austrochip), pp. 1–6, Oct. 2014, DOI: 10.1109/Austrochip.2014.6946310.

[365] Matthias Greif / Daniel Marolt / Jürgen Scheible, “gPCDS: An Interactive Tool for Creating
Schematic Module Generators in Analog IC Design”, Proc. of 12th Conference on Ph.D. Research
in Microelectronics and Electronics, pp. 1–4, Jun. 2016, DOI: 10.1109/PRIME.2016.7519539.

[366] Göran Jerke / Vinko Marolt / Christel Bürzele / Peter Herth / Thomas Burdick, “Schematic
and Symbol PCell Development with Cadence PCell Designer”, CDNLive! EMEA,
May 2017, Session CUS10, URL: https://www.cadence.com/content/dam/
cadence-www/global/en_US/documents/company/Events/CDNLive/
Secured/Proceedings/EU/2017/CUS10.pdf.

[367] Andreas Gerlach / Thoralf Rosahl / Frank-Thomas Eitrich / Jürgen Scheible, “A Generic Topology
Selection Method for Analog Circuits with Embedded Circuit Sizing Demonstrated on the OTA
Example”, Proc. of Design, Automation and Test in Europe Conference, pp. 898–901, Mar. 2017,
DOI: 10.23919/DATE.2017.7927115.

[368] Florian Leber / Jürgen Scheible, “Eine domänenspezifische Sprache für die prozedurale Dimen-
sionierung im analogen IC Entwurf”, Proc. of Informatics Inside 2017 (edited by Uwe Kloos /
Natividad Martínez / Gabriela Tullius), pp. 119–120, May 2017, ISBN: 978-3-00-056455-0.

Further Sources

The bald head in Figure 3.1, Figure 3.2, Figure 3.13, and Figure 7.2 is a derivative of https://www.
iconfinder.com/icons/628287/anonym_avatar_default_head_person_unknown_
user_icon (created by Anna Litviniuk and licensed as free for commercial use).

The schematic and layout images were generated with the Virtuoso Custom IC Design Environment from
Cadence Design Systems, using the Generic Process Design Kit (GPDK).

This thesis was typeset with TeXworks 0.6.2 (implemented by Jonathan Kew), using the document prepa-
ration software LATEX (originally developed by Leslie Lamport), based on the typesetting system TEX
(designed by Donald E. Knuth). The source text was written in Notepad++ 7.5.6 (devised by Don Ho).
Drawings were created by the author using GIMP 2.6.8 (started by Spencer Kimball and Peter Mattis)
and Inkscape 0.48.0 r9654 (initially forked from Sodipodi by Ted Gould, Bryce Harrington, Nathan
Hurst, and “MenTaLguY”). The final PDF file was produced via pdfTeX-1.40.19 on December 7, 2018.

282

https://dx.doi.org/10.1109/MC.1983.1654264
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2015/CUS02.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2015/CUS02.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2015/CUS02.pdf
https://dx.doi.org/10.1109/Austrochip.2014.6946310
https://dx.doi.org/10.1109/PRIME.2016.7519539
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2017/CUS10.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2017/CUS10.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/CDNLive/Secured/Proceedings/EU/2017/CUS10.pdf
https://dx.doi.org/10.23919/DATE.2017.7927115
https://www.iconfinder.com/icons/628287/anonym_avatar_default_head_person_unknown_user_icon
https://www.iconfinder.com/icons/628287/anonym_avatar_default_head_person_unknown_user_icon
https://www.iconfinder.com/icons/628287/anonym_avatar_default_head_person_unknown_user_icon

List of Figures

List of Figures

1.1 Simplified illustration of the integrated circuit design flow. 13
1.2 The “tides of EDA” with the bloom of analog layout automation systems around 1990. . 13

2.1 Different layout variants of a MOS transistor with the same total channel width and length. 20
2.2 The mixed-signal design problem. 22
2.3 In the digital domain, the design flow determines the design style. In the analog domain,

the design style determines the design flow. 23
2.4 The layout design problem of turning an electronic circuit into a physical representation. 25
2.5 Examples of largely formalized constraints, as entered into a constraint management

system. 27
2.6 Examples of largely nonformalized constraints, stored as prosaic labels in circuit schemat-

ics. 27
2.7 Focus on optimization-based layout automation with explicit constraint consideration. . . 28
2.8 Focus on generator-based layout automation with implicit constraint consideration. . . . 30
2.9 Novel automation strategy with explicit and implicit constraint consideration. 31

3.1 Working principle of an optimization algorithm. 33
3.2 The requisites of formalizing and explicitly considering a design constraint. 34
3.3 Illustration of common placement constraints in optimization-based layout automation. . 35
3.4 Resistor array requiring an awkwardly large number of placement constraints. 36
3.5 Transistor arrangement with (a) satisfied and (b) violated Alignment constraint. 36
3.6 Illustration of common routing constraints in optimization-based layout automation. . . . 37
3.7 Inability of satisfying a Length Matching constraint and staying on the routing grid. . . . 38
3.8 Violating either a Layer Limitation constraint (a)(b) or the routing layer preference (c). . 39
3.9 Example showing the interdependency between a component’s layout and the placement. 42
3.10 An auto-router’s inability to connect four interdigitated devices in a crosswise manner. . 43
3.11 Example showing the interdependency between a component’s layout and the routing. . . 44
3.12 Example illustrating the importance of performing placement and routing in unison. . . . 44
3.13 Working principle of a procedural generator. 48
3.14 Instances of a procedural generator, creating a cross-coupled Differential Pair layout. . . 50
3.15 The three windows of the PCell Designer tool. 53
3.16 Example showing the major degrees of freedom in the variability of an advanced module. 55
3.17 “Pad-over-Active”-aware PCell which processes geometric input. 56
3.18 Quality characteristics of top-down automation. 61
3.19 Quality characteristics of bottom-up automation. 63
3.20 Path towards the envisioned bottom-up meets top-down design flow. 64

4.1 Assessment criteria for a layout methodology’s impact on design productivity. 69
4.2 Assessment criteria for a layout methodology’s aptitude regarding layout quality. 72

6.1 Flock of blue geese in V-formation, photographed at the Mississippi Delta. 80
6.2 Overview of the different forms of emergence as commonly classified in literature. . . . 82
6.3 Emergent cohesive motions of animate beings. 83

283

List of Figures

6.4 Safari ants foraging for food on the Chogoria route of Mount Kenya. 83
6.5 Stellate snowflake with dihedral symmetry – an example of emergence in physics. 84
6.6 Samples of spontaneous order in liquids, emerging via Rayleigh-Bénard convection. . . . 84
6.7 Fractal shapes like this Koch snowflake can be regarded as examples of emergence. . . . 85
6.8 The basic constituents of self-organization: (1) workers, (2) rules, (3) pressure, (4) goals. 86
6.9 Operating at the edge of chaos is considered as one principle of self-organization. 87
6.10 Stigmergy: the traffic lights do not communicate directly, but via the regulated traffic. . . 88
6.11 According to the selfish herd theory, animals aggregate out of selfishness. 89
6.12 Examples of patterns in Conway’s Game of Life, a two-dimensional cellular automaton. 91
6.13 The Prisoner’s Dilemma – a noncooperative, discrete, symmetric game in normal form. . 93
6.14 Depiction of the three simple steering rules in Reynolds’ Boids. 94

7.1 The constituents of emergent self-organization and the corresponding SWARM concepts. 97
7.2 Working principle of the SWARM system, as opposed to Figure 3.1 and Figure 3.13. . . 98
7.3 Flow of control in a SWARM run (initialization, self-organization, and finalization phase). 99
7.4 Exemplary depiction of a SWARM run, visualizing the analogy to the roundup of livestock. 99
7.5 Via context awareness, procedural generators can react to environmental changes as agents.100
7.6 Adoption process of a governing module, exemplified for a Differential Pair (Quad layout).102
7.7 Exemplary deformation of a governing module, involving a set of co-transformations. . . 104
7.8 Example of a Current Mirror module association consisting of three governing modules. 105
7.9 Exemplary deformation of a module association via (a) device rotation and (b) re-adoption.106
7.10 Example of a hierarchical module association. 107
7.11 Eight orientations of a design component, depending on angle α and horizontal flipping h̄. 109
7.12 Angle change of a rotated component in (a) regular orientation and (b) flipped orientation. 111
7.13 Cascode Current Mirror deformation from (a) single-row variant into (b) dual-row variant. 115
7.14 Wide-swing Current Mirror deformation from (a) 2-finger variant into (b) 3-finger variant. 116
7.15 A participant’s actions follow a common action scheme consisting of four measures. . . 117
7.16 Illustration of interference for a participant P . 118
7.17 Illustration of turmoil for a participant P . 120
7.18 Effect of the strength sC of a connection C on a participant’s action. 120
7.19 Personal relaxation thresholds and overstrain between two connected participants. 121
7.20 Tension in a connection between two participants, depending on the connection’s length. 123
7.21 Illustration of protrusion for a participant P . 123
7.22 The three grades of protrusion: a participant can be either lost, prone, or safe. 124
7.23 The different cases of protrusion for a prone participant and a rectilinear layout zone. . . 124
7.24 Illustration of wounds for a participant P . 126
7.25 Exemplary depiction of how a participant P gets wounded by another participant P ′. . . 126
7.26 Illustration of noncompliance for a participant P . 128
7.27 The free peripheral space of a participant P is the vacant area around it. 129
7.28 A participant’s geometrical recipe for perceiving its free peripheral space. 130
7.29 Pervasion of a participant’s free peripheral space due to its bad condition. 132
7.30 Pervasion of a participant’s free peripheral space due to blind spots. 132
7.31 Successive decline of free peripheral space pervasion caused by blind spots. 133
7.32 Exemplary visualization of a Re-entering move. 134
7.33 Exemplary visualization of a Evasion move. 135
7.34 Exemplary visualization of a Centering move. 136
7.35 Exemplary visualization of a Lingering move. 136
7.36 Exemplary visualization of a Budging move. 137
7.37 Exemplary visualization of a Swapping move. 138
7.38 Exemplary visualization of a Pairing move. 140
7.39 Exemplary visualization of a Hustling move. 141
7.40 Exemplary visualization of a Yielding move. 142

284

List of Figures

7.41 The new location of a participant can be (a) dependent or (b) independent of its aspect
ratio. 142

7.42 Action correction example: P ’s move is corrected downwards, the move of P ′ rightwards. 143
7.43 Exemplary visualization of a Imitation move. 145
7.44 Illustration of the five deformation behaviors explored by an elastic participant. 146
7.45 A relaxing action decreases a participant’s number of unrelaxed connections. 148
7.46 In contrast to disjunct troubles (a), mutual trouble (b) must be counted only once. 150
7.47 Setting and enlarging the user-defined layout zone in the beginning of the self-organization.156
7.48 Relative enlargement of a given rectangle via negative contraction. 157
7.49 Relative enlargement of a given polygon via negative contraction. 158
7.50 Exemplary illustration of a layout zone’s kickoff enlargement. 159
7.51 Safe contraction amount, corresponding to the horizontally minimal kickoff enlargement. 160
7.52 If the tightening policy is too lenient, the desired zone size cannot be reached. 161
7.53 Visualization of a tightening policy’s rigorousness, depending on the pressing rate. . . . 161
7.54 Exemplary illustration of a zone tightening, calculated from the pressing rate. 162
7.55 Exemplary illustration of a zone tightening for a rectilinear layout zone. 163
7.56 Cases of protrusion after a tightening: [a] convex vertex, [b] concave vertex, [c] edge. . . 164
7.57 Depending on the case of protrusion, the smaller or the greater contraction amount matters.165
7.58 Certain edges of a rectilinear layout zone need to be discarded when calculating the

contraction amount. 167
7.59 Exemplification of edge projection, as necessary in the case of a rectilinear layout zone. . 168
7.60 Exemplary tightening profile of an abrasive tightening policy. 169
7.61 Exemplary tightening profile of a linear progressive tightening policy. 169
7.62 Exemplary tightening profile of an exponential progressive tightening policy. 172
7.63 Utilizing a logistic function’s sigmoid curve for a logistic regressive tightening policy. . . 174
7.64 Zone size curve of the logistic regressive tightening example from Table 7.12. 177
7.65 Depending on the first minor enlargement, three types of regression can be discerned. . . 178
7.66 Relevant graphs for the calculation of isoregression, showing that β must be greater than 2.179
7.67 Curve family to illustrate that isoregression can only be obtained if β is greater than 2. . 180
7.68 Plot of the isoregression equation 7.218 as a function x(β) and its inverse function β(x). 180
7.69 The isoregression zone size quotient z∗iso as a function of β and as a function of z. 181
7.70 Exemplary tightening profile of a logistic regressive tightening policy. 182
7.71 Depiction of the different forms of comfort padding around a participant. 183
7.72 Total size of the participants (a) without and (b) with volatile comfort padding. 186
7.73 Two equivalent interaction situations showing the effect of volatile comfort padding. . . 186
7.74 Incorporation of the principles of self-organization into the three core concepts of SWARM.194

8.1 Example of how high-level behavior can emerge from SWARM’s low-level interactions. 198
8.2 Example of a placement problem with the emergence of the globally optimal outcome. . 200
8.3 Second example of a placement problem with the emergence of an optimal outcome. . . 202
8.4 Example of a nonterminating interaction cycle: a rotatory circulation sequence. 207
8.5 Circular column of an ant mill, as drawn according to a photograph. 208
8.6 Example of a nonterminating interaction cycle: a two-period oscillation sequence. 209
8.7 Example of applying SWARM to a floorplanning problem with a rectangular outline. . . 211
8.8 Tightening profile for the SWARM run of the floorplanning example from Figure 8.7. . . 211
8.9 Example of applying SWARM to a floorplanning problem with a nonrectangular outline. 212
8.10 Schematic diagram of the Symmetric P-Input OTA circuit addressed with SWARM. . . . 215
8.11 (a) Placement template and (b) respective constraints for the Symmetric P-Input OTA. . . 216
8.12 OTA layout (a) after device generation and (b) at the end of the initialization phase. . . . 217
8.13 Finalized layout of the Symmetric OTA, obtained by SWARM for a 2:3 aspect ratio. . . . 218
8.14 Finalized layout of the Symmetric OTA, obtained by SWARM for a 1:1 aspect ratio. . . . 220
8.15 Finalized layout of the Symmetric OTA, obtained by SWARM for a 5:2 aspect ratio. . . . 220
8.16 Potential layout arrangement alternatives for the Symmetric P-Input OTA circuit. 221

285

List of Figures

8.17 Schematic diagram of the Folded Cascode P-Input OTA circuit addressed with SWARM. 222
8.18 (a) Placement template and (b) respective constraints for the Folded Cascode P-Input OTA.222
8.19 OTA layout (a) after device generation and (b) at the end of the initialization phase. . . . 223
8.20 Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 2:3 aspect ratio. 224
8.21 Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 1:1 aspect ratio. 225
8.22 Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 5:2 aspect ratio. 225
8.23 Depiction of the various layout design efforts estimated in Table 8.12. 232

9.1 SWARM and its partner subjects in pursuit of a holistic design flow on module level. . . 234

A.1 Finalized layout of the Symmetric OTA, obtained by SWARM for a 2:1 aspect ratio. . . . 288
A.2 Finalized layout of the Symmetric OTA, obtained by SWARM for a 3:2 aspect ratio. . . . 289
A.3 Finalized layout of the Symmetric OTA, obtained by SWARM for a 1:2 aspect ratio. . . . 290
A.4 Finalized layout of the Symmetric OTA, obtained by SWARM for a 1:3 aspect ratio. . . . 291

B.1 Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 2:1 aspect ratio. 292
B.2 Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 3:2 aspect ratio. 293
B.3 Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 1:2 aspect ratio. 294
B.4 Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 1:3 aspect ratio. 295

286

List of Tables

List of Tables

2.1 Classification of hierarchical cells in analog/mixed-signal design. 20
2.2 The main tasks in analog layout design: (a) floorplanning, (b) placement, (c) routing. . . 21

3.1 Comparison of selected floorplanning approaches for analog layout design. 39
3.2 Comparison of selected placement approaches for analog layout design. 41
3.3 Comparison of selected routing approaches for analog layout design. 42

4.1 Overview of the five most referenced MCNC benchmark circuits. 67

7.1 Denomination of interacting entities in selected examples of decentralized systems. . . . 98
7.2 Possible transformations of a module association with corresponding co-transformations. 107
7.3 Equivalence between horizontal notation and vertical notation for a component’s orien-

tation. 109
7.4 Reversed orientation of a component that is to be absorbed by a rotated governing module.110
7.5 Generic governing modules and their topological offshoots, as implemented in SWARM. 114
7.6 Analog basic circuits covered by SWARM, based on its implemented governing modules. 114
7.7 Overview of SWARM’s catalog of native actions. 143
7.8 Listing of the five deformation behaviors explored by an elastic participant. 146
7.9 Coordinates of the octagon nodes from the negative contraction example of Figure 7.49. . 158
7.10 Bounding box coordinates of the objects in the tightening example of Figure 7.54. 162
7.11 Cases of protrusion after a tightening. 164
7.12 Calculation values of a tightening example with a logistic regressive tightening policy. . 177
7.13 Comparison of SWARM with existing models of decentralized systems. 191

8.1 Number of settlements, rounds, and actions in the SWARM run of Figure 8.2. 199
8.2 Number of settlements, rounds, and actions in the SWARM run of Figure 8.3. 203
8.3 Comparison of different SWARM runs for the same placement problem. 203
8.4 Detailed number of actions for selected SWARM runs of Table 8.3. 206
8.5 Area decline in the SWARM run of the floorplanning example from Figure 8.7. 211
8.6 Area decline in the SWARM run of the floorplanning example from Figure 8.9. 212
8.7 Overview of the functional units constituting the Symmetric P-Input OTA circuit. 217
8.8 Statistics of the different SWARM runs applied to the Symmetric OTA. 219
8.9 Overview of the functional units constituting the Folded Cascode P-Input OTA circuit. . 222
8.10 Statistics of the different SWARM runs applied to the Folded Cascode OTA. 223
8.11 Temporal quantities used to estimate the design effort. 229
8.12 Estimated layout design effort for different layout strategies and component magnitudes. 230

9.1 Major characteristics of optimization algorithms, procedural generators, and SWARM. . 236

287

A. SWARM Outcomes for the Symmetric OTA Example

Appendix A

SWARM Outcomes for the Symmetric
OTA Example

Figure A.1: Finalized layout of the Symmetric OTA, obtained by SWARM for a 2:1 aspect ratio.

288

A. SWARM Outcomes for the Symmetric OTA Example

Figure A.2: Finalized layout of the Symmetric OTA, obtained by SWARM for a 3:2 aspect ratio.

289

A. SWARM Outcomes for the Symmetric OTA Example

Figure A.3: Finalized layout of the Symmetric OTA, obtained by SWARM for a 1:2 aspect ratio.

290

A. SWARM Outcomes for the Symmetric OTA Example

Figure A.4: Finalized layout of the Symmetric OTA, obtained by SWARM for a 1:3 aspect ratio.

291

B. SWARM Outcomes for the Folded Cascode OTA Example

Appendix B

SWARM Outcomes for the Folded
Cascode OTA Example

Figure B.1: Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 2:1 aspect ratio.

292

B. SWARM Outcomes for the Folded Cascode OTA Example

Figure B.2: Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 3:2 aspect ratio.

293

B. SWARM Outcomes for the Folded Cascode OTA Example

Figure B.3: Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 1:2 aspect ratio.

294

B. SWARM Outcomes for the Folded Cascode OTA Example

Figure B.4: Finalized layout of the Folded Cascode OTA, obtained by SWARM for a 1:3 aspect ratio.

295

	Introduction
	Motivation for this Thesis
	Contribution of this Thesis
	Outline

	 Part I: The Problem
	The Aim of this Thesis
	The Problem of Analog Layout Design
	Design Restrictions and Design Objectives
	Matching
	Levels of Design Hierarchy
	Main Design Tasks: Device Generation, Floorplanning, Placement, Routing

	Analog Layout Design: A Bottleneck in the Design Flow
	The Design Style and the Design Flow – Digital vs. Analog
	The Digital Design Style: Standardized
	The Analog Design Style: Full-custom

	Constraints: Formalized and Nonformalized Expert Knowledge
	Necessity for a New Layout Automation Methodology
	Optimization-based Layout Automation with Explicit Constraint Consideration
	Generator-based Layout Automation with Implicit Constraint Consideration
	New Methodology with Explicit and Implicit Constraint Consideration

	State of the Art - Two Views on Existing Approaches
	A Concrete View on Existing Approaches: Optimization Algorithms and Procedural Generators
	Optimization Algorithms
	Constraint Handling
	Types of Constraints
	Comparison of Existing Approaches
	Further Topics
	Optimization Algorithms – Conclusion

	Procedural Generators
	Discerning Masters and Instances
	Constraint Handling
	Generator Programming Languages
	Generator Development Tools
	Implemented Generator Examples
	Procedural Generators – Conclusion

	Other Approaches
	Combining Optimization and Generation – Conclusions for the New Approach

	An Abstract View on Existing Approaches: Two Fundamentally Different Automation Paradigms
	Optimization Algorithms: Top-down Automation
	Procedural Generators: Bottom-up Automation
	Envisioning a New Automation Philosophy: Bottom-up Meets Top-down

	Assessment Criteria for a Layout Methodology in the Analog Domain
	Traditional Assessment Criteria
	Criteria Originating from the Digital Domain
	Criteria Regarding the Supported Constraint Types

	Relevant Assessment Criteria
	Design Productivity
	Effort and Expense
	Efficiency Gain

	Layout Quality
	Functionality
	Consistency

	Summary

	 Part II: The Methodology
	Clarification of the Task
	Technical Aim
	Scientific Challenge
	Practical Ambition

	An Interdisciplinary Approach – Preliminary Considerations
	Divide and Conquer – Distribute and Conquer
	Decentralization, Self-organization, Emergence
	Emergence: A Natural Phenomenon
	Forms of Emergence
	Emergence in Biology
	Emergence in Physics
	Emergence in Mathematics

	Principles of Self-organization
	The Basic Constituents of Self-organization
	Operational Closure and Structural Coupling
	The Edge of Chaos
	Recursivity and Feedback
	Stigmergic Interaction
	Reducing Friction and Promoting Synergy
	The Virtue of Selfishness
	Law of Requisite Variety

	Models of Decentralized Systems: A Form of Artificial Life
	Cellular Automata
	Game Theory
	Multi-Agent Systems
	Agent-based Models of Collective Motion

	Adaptation to the Problem of Analog Layout Design

	The Methodology: Self-organized Wiring and Arrangement of Responsive Modules
	Overview of the SWARM Methodology
	The Three Core Concepts of SWARM
	Depiction of SWARM's Self-organization Flow

	Responsive Modules
	Context Awareness
	Governing Modules
	Temporary Context Duplication
	Co-transformations in a Governing Module

	Module Associations
	Supreme Commanders
	Hierarchical Module Associations
	Co-transformations in a Module Association
	Coordinate System Issues

	Layout Variability
	Intrinsic Variability
	Cumulative Variability
	Variability of Primitive Devices
	Variability of Simple Modules

	Module Interaction
	Assessment of the Participant's Condition
	Interference
	Turmoil
	Protrusion
	Wounds
	Noncompliance

	Perception of the Free Peripheral Space
	Geometrical Recipe for Perceiving the Free Peripheral Space
	Pervasion (Obstacles in the Free Peripheral Space)

	Exploration and Evaluation of Possible Actions
	Native Actions
	Custom Actions
	Full Variability

	Execution of the Preferred Action
	Action Preference
	Action Execution

	Interaction Control
	Scaling the Layout Zone
	Setting and Enlarging the Layout Zone
	Tightening the Layout Zone
	Considering Rectilinear Layout Zones

	Transient Tightening Policies
	Progressive Tightening
	Regressive Tightening

	Comfort Padding
	Solid Comfort Padding
	Volatile Comfort Padding

	Final Remarks About the Conception of SWARM
	Comparison with Optimization Algorithms
	Comparison with Decentralized Systems

	 Part III: The Implementation
	Implementation and Results
	Examples of Emergence in SWARM
	Example of an Emerging Collective Motion
	Examples of an Emerging Optimal Layout Outcome
	Examples of Nonterminating Interaction Cycles

	Practical Floorplanning Examples
	Floorplanning Example with Rectangular Outline
	Floorplanning Example with Nonrectangular Outline
	Assessment

	Practical Place-and-Route Examples
	Usage of SWARM in the Design Flow
	Symmetric P-Input Operational Transconductance Amplifier
	Folded Cascode P-Input Operational Transconductance Amplifier
	Assessment
	Assessment Regarding Layout Quality
	Assessment Regarding Design Productivity

	Towards a Holistic Design Flow on Module Level
	Cognate Topics Across the Three Different Design Domains
	Works Concerning the Physical Domain
	Works Concerning the Structural Domain
	Works Concerning the Behavioral Domain

	The Scientific Value of SWARM: Meeting Bottom-up With Top-down

	Summary and Outlook

	 Listings
	Vocabulary
	Abbreviations
	Mathematical Operators
	Geometrical Operators
	Symbols
	Index

	References
	Bibliography
	Further Sources

	List of Figures
	List of Tables

	 Appendix
	SWARM Outcomes for the Symmetric OTA Example
	SWARM Outcomes for the Folded Cascode OTA Example

