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Abstract

The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with
many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large
scale, real-time ‘Oyster’ card database of individual person movements in the London subway to reveal the structure and
organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume,
but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a
limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is
not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding
can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense
structure of its centers and it provides an initial approach to modeling flows in an urban system.
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Introduction

The structure of a large city is probably one of the most

complex spatial system that we can encounter. It is made of a large

number of diverse components connected by different transpor-

tation and distribution networks. In this respect, the popular

conception of a city with one center and pendular movements

going in and out of the business center is likely to be an audacious

simplification of what actually happens. The most prominent and

visible effects of such spatial organization of economic activity in

large and densely populated urban areas are characterized by

severe traffic congestion, uncontrolled urban sprawl of such cities

and the strong possibilities of rapidly spreading viruses, biologial

and social, through the dense underlying networks [1–3]. The

mitigation of these undesirable effects depends intrinsically on our

understanding of urban structure [4], the spatial arrangement of

urban hubs and centers, and how the individuals interact with

these centers. The dominant model of the industrial city is based

on a monocentric structure [5,6], but contemporary cities are

more complex, displaying patterns of polycentricity that require a

clear typology for their understanding [7]. One of the most

important features of an urban landscape is the clustering of

economic activity in many centers [8]: the idea of the polycentric

city in such terms can be traced back over one hundred years

[9,10], but so far no clear quantitative definition has been

proposed, apart from various methods of density thresholding

based, for example, on employment [11]. In order to characterize

polycentricity, we must investigate movement data such as person

flow and mobile-phone usage [12] which offers the possibility of

analyzing quantitatively various features of the spatial organization

associated with individual traffic movements. More precisely, in

this study, we analyze data for the London underground rail

(‘tube’) system collected from the Oyster card (an electronic

ticketing system used to record public transport passenger

movements and fare tariffs within Greater London) which enables

us to infer the statistical properties of individual movement

patterns in a large urban setting.

Results

World cities [13] are among those with the most complex spatial

structure. The number, the diversity of components and their

localization warns us intuitively that these megapoles are far from

their original historical form which is invariably represented by a

simple, monocentric structure. In particular, the level of

commercial and industrial activity varies strongly from one area

to another. Thus flows of individuals can be thought as good

proxies for the activity of an area and to this end we first checked

that the flows at different stations correlate positively with other

activity indicators such as counts of employees and the employee

density. This shows that indicators of a different nature and on

different time scales, which are also widely regarded as measures of

polycentricity in large cities, are also consistent with movement

data recorded over much shorter time scales.

The main results that we will discuss in this section are that (i)

flows are generally of a local nature (ii) they are also organized/

aggregated around polycenters and (iii) the examination and

decomposition of these flows lead to the description of entangled

hierarchies, and (iv) hence one likely structure describing this large

metropolitan area is based on polycentrism. This perspective thus
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draws new insights from data that has become available from

electronic sources that have so far not been utilised in analyzing

the urban spatial structure and in this sense, are unprecedented in

the field.

To get a preliminary grasp on the data, we observe that the flow

distribution (normalized histogram of flows of individuals) is fitted

by a power law with exponent &1:3 which indicates that there is

strong heterogeneity of individuals’ movements in this city (for this

distribution, the ratio of the two first moments has a large value

Sw2T=SwT2^15:0, which confirms this strong heterogeneity)—

see Figure 1. Broad distribution of flows have already been

observed at the inter-urban level [14], but it is the first time that

we observe this empirically at an intra-urban level showing that, in

agreement with other studies (for Madrid [15] and for Portland,

Oregon [1]), the movement patterns in large cities exhibit an

heterogeneous organization of flows.

Spatial separation is another primary feature of movement and

we show in Figure 2a the raw distribution of rides occurring

between two stations at a given distance. This distribution can be

fitted by a negative binomial law rather than a broad law such as

the Levy flights suggested in [12,16].

While this graph exhibits actual commuting patterns, it does not

tell us much about commuter behavior, all other things being

equal. Indeed, the geographical constraints are important and the

distance distribution between stations (shown superimposed in

Figure 2a) could be a major factor in the ride distribution. Also, the

particular flow distribution over the network is likely to bias the

ride distance distribution: rides corresponding to two stations,

which have respectively a large outflow and inflow, should be

more likely, hence the distance between these two stations is likely

to be overrepresented in the previous distribution. This bias relates

to how much agents prefer to use the underground to achieve rides

at a given distance. In order to estimate the part governed by the

individuals behavior, we use a null-model for randomizing rides in

such a way that total outflows and total inflows at each station are

conserved while actual ride extremities are reshuffled (see

Methods). Put differently, the random null-model corresponds to

a flow matrix that should normally occur given particular out- and

inflows at stations, irrespective of agent’s preferences. Dividing the

real-world values by the random flow matrix (averaged over 100
random simulations) gives the propensity (see Methods) which is

an estimate of how much the real data deviates from a random

setting. Results are described in Figure 2b. We observe that rides

covering a distance of around 1 to 3kms are twice as likely. The

propensity continuously falls to 0 for longer rides, and is

significantly less than one for rides of less than 1km. Above a

distance of 10kms, the propensity is less than one indicating that

individuals are less inclined to use the subway for longer distances.

Hence, all other things being equal, people are less inclined to take

the tube for rides not covering this sort of ‘typical’ distance.

In addition to being strongly heterogenous, rides are therefore

to some extent essentially local. At a more aggregated level, and in

order to infer the city structure at a larger scale, we can study the

distribution of incoming (or outgoing) flows for a given station. We

show in the Figure 3 the rank-ordered total flows (Zipf plots) for

the morning peak hours on a lin-log graph displaying an

exponential decay (Flows for evening peak hours (5pm–8pm)

reveal a roughly inverse pattern, i.e. the total outflow is

concentrated on a few centers, and similarly but less markedly,

the same occurs for total inflows).

The exponential decay of these plots demonstrate that most of

the total flows are concentrated on a few stations. Indeed, an

exponential decay of the form e{r=r0 , where r is the rank, is a

signature of the existence of a scale r0. In this case, the exponential

fit shows that the number of important inflow stations is of order

n*rin
0 *45 and larger for outflow stations. During the morning

peak hours, essentially, stations that generate a large inflow have a

smaller outflow, and vice-versa. Also, rides are statistically

balanced over the entire day, which suggests that rides are

essentially round trips. From this analysis, we can conclude that

the activity is concentrated in a small number of centers dispersed

over the city. Using the exponential distribution of flows, we can

then define multiple centers acting as sources or sinks depending

on the time of day.

Figure 1. Flow distribution. Loglog plot of the histogram of the number of trips between two stations of the tube system. The line is a power law
fit with exponent &1:3.
doi:10.1371/journal.pone.0015923.g001
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To examine further this polycentric structure, we will aggregate

different stations if their inflow is large and they are spatially close

to one another. Various clustering methods could be used and we

choose one of the simplest described in the section Methods. This

clustering yields a hierarchical, descending decomposition of

inflows with respect to an increasing share of the total inflow in the

network. We summarize the results of this process in the

dendrogram shown in Figure 4. This dendrogram highlights the

hierarchical organization of urban polycentricity. The number of

centers is not an absolute quantity, but depends on an observation

scale as measured here by the percentage of inflow. As we consider

higher percentages of the total inflow, more centers are taken into

account, which leads to centers as an aggregate of multiple sub-

centers with smaller inflows. In other words, this is equivalent to

saying that at large spatial scales, we observe one large center

corresponding to the whole city, and when we decrease the scale of

observation, multiple centers appear, which are themselves

composed of smaller centers. This hierarchical nature is crucial

and indicates that we cannot define a center by applying a

threshold rule (e.g., an area is a center if the population or

employment density is larger than some threshold [11]), but that it

can only be defined according to a given scale.

We represent the ten most important polycenters defined in the

dendrogram of Figure 4, and show the corresponding propensity

to anisotropy comparing actual flows with the null model defined

above (see Methods). This comparison shows that the actual flows

are in general very different from what is obtained using the

random null model. We study the relative orientation of the

incoming flow (normalized by its corresponding quantity given by

the null model) and picture it by eight-segment compasses, which

we show in Figure 5 on the central and inner London

underground map. The absence of any bias would give a fully

isotropic compass with all segments of radius equal to one

(propensity equal to 1). The anisotropy is essentially in opposite

directions from the center, thus showing a strong bias towards the

suburbs essentially for peripheral rather than for central centers.

We now examine how the flows are distributed into and outside

centers, focusing on the morning peak hours. We first aggregate

the flows by centers by computing the total flow incoming to a

certain center C:

wiC~
X
j[C

wij ð1Þ

In this aggregated view, we thus represent movements by a

directed network where flows go from single stations (the sources)

to centers, which are groups of stations.

We then rank all flows wiC in a decreasing order, thereby

focusing on paths of decreasing importance as if we were detailing

a map starting with highways, then concentrating on roads, and

then on streets. We consider the N most important flows such that

the corresponding sum of flows is a given percentage W of the

total flow in the network. For example, if we consider the flows up

to W~20% of the total flow, we obtain the structure that we show

in Figure 6 (it should be noted that we kept the ‘station-to-center’

flows such that they represent 20% of the total flow, which is

different from keeping the most important station-to-station flows

such as it is done for the Figure 4 precisely in order to define those

‘centers’. We thus cannot directly compare these Figures 4 and 6).

At this scale, it is clear that we have three main centers and

sources (with various outdegree values), which mostly correspond

to intermodal rail-subway connections. Adding more links, we

Figure 2. Ride distance distribution and propensity. (a) Superimposition of the distance distribution of rides (circles) and of the distance
distribution between stations (squares). The distribution of the observed rides can be fitted by a negative binomial law of parameters r~2:61 and
p~0:0273, corresponding to a mean m~9:28kms and standard deviation s~5:83kms (solid line). This distribution is not a broad law (such as a Levy
flight for example), in contrast to previous findings using indirect measures of movement [12,16]. (b) Ride distance propensity. Propensity of
achieving a ride at a given distance with respect to a null-model of randomized rides.
doi:10.1371/journal.pone.0015923.g002

Figure 3. Total flow distributions. Zipf plot for the total inflows (red
circles, below) and total outflows (blue squares, above) for morning peak
hours (7am–10am). The inflow I (outflow O) of a station j (i) is defined
as I(j)~

P
i wij (O(i)~

P
j wij ). The straight lines are exponential fits of

the form e{r=r0 with 1=rin
0 ^2:27:10{2 for the inf low and

1=rout
0 ^1:40:10{2 for the outflow.

doi:10.1371/journal.pone.0015923.g003
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reach a fraction W~40% of the total flow and we then investigate

smaller flows at a finer scale. We see that we have new sources

appearing at this level and new connections from sources that were

present at W~20%.

We can summarize this result with the graph shown in Figure 7

where we divide the centers into three groups according to their

inflow (decreasing from first Group I to the last Group III). In

other words (see Figure 4), Group I gathers centers with the most

important total inflow namely the West End, City and Mid-town.

Group II gathers the next three centers Parliament, Government and

Docklands while Group III gathers the other centers such as the

Northern stations, West London, Museums and the Western stations. This

figure shows that for more than 80% of the sources, the most

important link (ie. the 1st link) connects to a center of Group I.

Conversely for more than 80% of the sources, the least important

link (ie. 10th link) goes to a center of Group III. The flow structure

thus follows an original yet simple pattern when we explore

smaller and smaller weights.

We can quantify in a more precise way how the structure of flows

evolves when we investigate smaller flows by exploring the list of

flows wiC in decreasing order and by introducing the transition

matrix T , which describes how the outdegree of a source varies with

increasing W (see Methods). When we explore smaller flows, the

analysis of the T-matrix shows that the pattern of connections from

sources to centers becomes richer and more complex, but can

nonetheless be described by the simple iterative process described

above: the most important link of a source goes to the most

important centers, the second most important link connects to the

second most important centers, and so on. It is interesting to note

that even if the organization of flows follows a simple iterative

scheme, it leads to a complex and rich structure, which is not strictly

hierarchical since it mixes different levels of flows consisting of

different orders of magnitude. In addition, the fact that the most

important flows always connect to the same center naturally leads to

the question of efficiency and congestion in such a system. In this

respect, London appears as a ‘natural’ city as opposed to an

‘artificial’ city for which flows would be constructed according to an

optimized, hierarchical schema [17,18].

Discussion

World cities such as London have tended to defy understanding

hitherto because simple hierarchical subdivision has ignored the fact

that their polycentricity subsumes a pattern of nested urban

movements. Using the Oyster data we can identify multiple centers

in London, then describe the traffic flowing into these centers as a

simple hierarchic decomposition of multiple flows at various scales.

In other words, these movements define a series of subcenters at

different levels where the complex pattern of flows can be unpacked

using our simple iterative scheme based on the representation of

ever finer scales defined by smaller weights. Casual observation

suggests that this kind of complexity might apply to other world

cities such as Paris, New York or Tokyo where spatial structure

tends to reveal patterns of polycentricity considerably more intricate

than cities lower down the city size hierarchy. Our approach needs

to be extended of course to other modes of travel, which will

complement and enrich the analysis of polycentricity. The Oyster

card is already used on buses and has just expanded beyond the tube

system to cover other modes of travel such as surface rail in Greater

London. With GPS traffic systems monitoring, in time, all such

movements will be captured, extending our ability to understand

and plan for the complexity that defines the contemporary city.

Methods

Material
Our analysis of individual movements is based on a dataset

describing the entire underground service between 31 March 2008
and 6 April 2008 encompassing a total of 11:22 million trips from

Figure 4. Hierarchical organization of the activity: Polycenters. Breakdown of centers in terms of underlying stations and inflows. We gather
stations by descending order of total inflow and we aggregate the stations to centers when taking into account more and more stations. In this
process, all stations within 1,500 meters of an already-defined center are aggregated to this main center. This yields the dendrogram shown here
which highlights the hierarchical nature of the polycentric organization of this urban system. The bold names to the left of the aggregates — such as
‘‘West End’’ for the group of stations around Oxford Circus — are used throughout the paper as convenient labels to denote the polycenters.
doi:10.1371/journal.pone.0015923.g004
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2:03 million individual Oyster card IDs. For each trip, the data

includes the origin and destination for individual passengers as

well as the corresponding time of the trip. We stress that the data

we obtained from Transport for London (TfL) is completely

anonymized without any possibility of trace back to individuals.

Besides, we only have individual trajectories, but not the history of

the trajectories over a long period of time which then could

provide the capability of identifying individuals from the electoral

register and business directories. From this dataset, we build the

(origin/destination) flow matrix wij , which gathers the aggregated

number of rides leaving a station i to a station j over a given period

of time. The analysis of these flow matrices in several time intervals

for every single day in the dataset shows that the commuting

patterns during weekdays present a regular and distinctive pattern

in contrast to travel at weekends. As a result, we focus our study on

the commuting patterns during weekdays.

Figure 5. The London subway (tube) system: polycenters and basins of attraction. In the inset, we show the entire tube network while in
the main figure, we zoom in on the central part of London. We represent the ten most important polycenters defined in the dendrogram of Figure 3,
and show the corresponding propensity to anisotropy comparing actual flows with the null model defined in the text. A propensity of 1 means that
there is no deviation in a given direction with respect to the null model. Circles correspond to various levels of identical propensity values: the thicker
circle in the middle corresponds to 1, inner circles correspond to propensities of 0:2 and 0:5, and outer circles to 2 and 5. The anisotropy is essentially
in opposite directions from the center, thus showing a strong bias towards the suburbs for peripheral centers essentially, rather than for central
centers. Moreover, most stations control their own regions and seem to have their own distinctive basins of attraction.
doi:10.1371/journal.pone.0015923.g005
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The null model, propensity, and anisotropy
The null model. The subway infrastructure imposes a certain

number of physical constraints which can affect various

distributions. This is for example the case of the ride distribution

where rides between two stations with large outflow and inflow,

respectively, are likely to be over-represented. As such the ride

distribution could simply be a result of the peculiar subway spatial

structure. In order to eliminate this type of biases, we use for

comparison a null-model constructed in the following way. We

randomize rides in a such a way that the total outflow and total

inflow of each station is conserved while actual ride extremities are

reshuffled. This model is basically a configuration model [19,20]

which preserves the total number of incoming and outgoing links

for each station and where each link corresponds to a given ride.

Put differently, the random setting corresponds to a flow matrix

(obtained here by an average over 100 random simulations) that

should normally occur given particular out- and in-flow heteroge-

neity at stations, irrespective of agent preferences.

The ride propensity. We can then divide the real values of

flows wij by the random flow matrix which yields an estimate of

how much the real data deviates from a random setting (at fixed

inflow-outflow constraints). For the ride distribution we then

obtain the ride propensity R shown in Figure 2b

R(d)~
1

N(d)

X
ij=d(i,j)~d

wij

wnm
ij

ð2Þ

where wnm
ij is the number of individuals going from i to j in the null

model, d(i, j) represents the distance on the network between i and

j, and where N(d) is the number of pairs of nodes at distance d.

This propensity gives an estimate of how much the real data

deviates from a random flow assignment with the same

geographical and flow constraints. In other words, when the

propensity is equal to one the observed flows are entirely due to

the geographical and flow structure of the network. Conversely

when the propensity is smaller or larger than 1, the flows reflect

non-uniform preferences for rides of certain distance.

The anisotropy propensity. We used the null model in order

to extract the part due to the behavior of the commuters in their ride

distribution. We can also study the relative orientation of the incoming

flow normalized by its corresponding quantity given by the null model

which gives the anisotropy A due to the commuters behavior

A(h)~
1

N(h)

X
ij= biOjiOj~h

wij

wnm
ij

ð3Þ

where h is a particular direction (we binned the angle in eight equal

intervals so to represent an eight-segment compass) and where the sum

Figure 6. Structure of flows at 20% and 40% of the total flow. When considering the most important flows from stations to centers such their
sum represents 20% of the total flow in the network, we observe sources (represented as squares) with outdegree kout~3 such as London Bridge,
Stratford, or Waterloo connecting to three different centers (represented as circles), as well as sources with kout~2 (eg. Victoria) and kout~1 (eg.
Elephant and Castle). We also show how the pattern of flows is constructed iteratively when we go to larger fraction of the total flow (from 20%
shown in black to 40% shown in red). We represent in red the new sources, centers and connections. The new sources connect to the older centers
(eg. West End, City, etc) and the existing sources (eg. Victoria) connect to new centers (eg. Northern stations, Museums, and Parliament).
doi:10.1371/journal.pone.0015923.g006

Figure 7. Most important links. Proportion of links going from
sources to centers of a certain group (I, II, III), considering links of
decreasing importance for each given source, when raising W (from the
first link appearing, at left, to the last link, at right).
doi:10.1371/journal.pone.0015923.g007
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is over the N(h) nodes i and j such that the angle of i{j is given by h.

The absence of any bias would give a fully isotropic compass with all

segments of radius equal to one (anisotropy propensity equal to 1).

Identifying the polycenters
Clustering methods for point in spaces has been the subject of

many studies and are used in many different fields. In particular, in

computational biology and bioinformatics, clustering is used to build

group of genes with related expression patterns. Many different

methods were developed and the most common ones are hierarchical

clustering methods (such as those based on K-means and their

derivatives, see for example [21]). Here, we are in a slightly different

position. The stations are clearly located in space and thus Euclidean

distance appears as the natural distance measure (a necessary

ingredient for clustering methods). Yet these stations are also

characterized by their inflow. For this reason, the usual methods

are not directly applicable and we thus adopted the simplest

clustering method which we describe as follows. We first gather

stations by descending order of total inflow, thereby defining centers

of decreasing importance. In order to account for geographical

proximity of groups of stations, indicating subsets of distinct stations

belonging to a single geographical center, we aggregate all stations

within a distance rc of an already-defined center. In this way we

systematically increase the total flow associated with these centers and

we continue this process until we capture a large percentage of the

total flow. We thus chose to stop at 60 percent of the total flow in

order to avoid to include too many details and too much noise.

We varied the value of rc from 1 to 2 kms and observed that our

results were stable. This stability probably comes from the fact that

the inter-distance station is of order 1:2kms for London

in 2008 and corresponds to some psychological threshold above

which individuals prefer to take the subway if they can choose.

The results discussed above are obtained with rc~1500 meters.

The T matrix
We face here a difficult problem: we have a complete weighted

directed network featuring flows from stations to centers, and the

goal is to extract some meaningful information. We started with the

analysis of the dominant flows and we would like to understand how

the flows are structured when we explore smaller values. In order to

do this, we introduce a ‘transition’ matrix T which characterizes

quantitatively the changes in the flow structure when we explore the

list of flows wiC going from a station i to a center C in decreasing

order of importance. In what follows, when we talk of ‘total flow at

W ’, we mean that we consider only the most important flows wiC so

that we reach a total fraction W of the total flow on the whole

network of station-to-center flows. When the total flow goes from W
to WzdW , the elements tij of T represent the number of sources

with outdegree i at W and with outdegree j at WzdW . Note that i
starts at i~0 while j starts at j~1 (i.e. T only denotes sources that

have a strictly positive outdegree at WzdW ).

As an example, when we go from W~20% to WzDW~40%,

the T matrix is

T~

37 12 1 0 0

4 9 4 1 0

0 4 2 1 2

0 0 0 2 1

0 0 0 0 0

0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

ð4Þ

The matrix T is composed of three parts (see Figure 8). The first

part, A, consists of new sources appearing when we increase the

total flow, and corresponds to the first line of tij where i~0. The

second part, S, consists of sources where the outdegree stays

invariant when we change from W to WzdW (i.e., the diagonal

tii). The third part, M, consists of sources that were already

present at the W level and the outdegree changes during the

process from W to WzdW (i.e., the upper triangle tij where

jwi). We can compute the number of sources in each of these

types and plot them. A proper T matrix is a (Nz1)|N matrix (in

Eq. 4, N~5), as the T matrix is made of a row vector (A) and an

upper triangular matrix (S, M and the zeros) because a source that

feeds n centers cannot become a source feeding n’vn centers

when transitioning to a larger inflow-cut WzdW . The row vector

A indicates sources that were not feeding centers before, and now

feed some centers, i.e., sources that were non-existent for a lower

inflow-cut, hence the extra initial row represented by vector A.

Thus, ‘37’ means that after the transition (at the new inflow-cut),

there are 37 new sources feeding one center, 12 new sources

feeding two, 1 new source feeding three. The ‘9’ on the second row

means that 9 sources that used to feed one center, now feed two,

and so on. The row A is thus given by

A~ 37 12 1 0 0ð Þ ð5Þ

and the diagonal is

S~ 4 4 0 0 0ð Þ ð6Þ

The upper triangular matrix M is given by

M~

9 4 1 0

0 2 1 2

0 0 2 1

0 0 0 0

0
BBB@

1
CCCA ð7Þ

Figure 8. Transition matrix. Typical form of the outdegree transition
matrix tij , consisting essentially of a row vector (A, inexistent sources
before the transition) and an upper triangular matrix (made of a
diagonal S of sources having the same out-degree after the transition,
and a submatrix M of sources whose out-degree increases after the
transition).
doi:10.1371/journal.pone.0015923.g008
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In the case of the transition 20%?40%, the major phenomenon

is the appearance of new sources (37 in this case) followed by

sources feeding new centers.

Figure 9a shows the number of new sources (A in the matrix T )

and the sources that change type (S). We observe that there is a

continuous addition of new sources along with connections to new

and old centers. Besides, for a total flow less than 50%, there is a

relatively stable proportion of sources (about 20%) whose

outdegree varies when W increases. When we zoom into finer

scales (i.e., larger values of the total flow W ), new sources appear

and connect preferentially to the existing largest centers, while the

existing sources connect to the new centers through secondary

connections. This yields two types of connection only. The first

type goes from new sources to old centers, and the second type

from old sources to new centers.

Acknowledgments

The Oyster card data was collected by Transport for London (TfL), and we

are grateful for their permission to use it in this paper. We also thank

Cecilia Mascolo for access to TfL and the Oyster card data, and Andrew

Hudson-Smith for providing the London underground map.

Author Contributions

Analyzed the data: CR SMK M. Batty M. Barthélemy. Wrote the paper:
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