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A B S T R A C T

Generation of germ cells from embryonic stem cells in vitro could have great application for treating infertility.
The temporal expression profile of several genes was expressed at different stages of germ cell development and
examined in differentiation the mouse embryonic stem cells. Cells were treated in three groups of control, with
10−8 M of all-trans retinoic acid and the combination of 10−9 M of 17β-Estradiol and retinoic acid for 7, 12, 17
or 22 days. Quantitative RT-PCR and Immunofluorescent were used to investigate the possible inductive effects
of estrogen on mouse embryonic stem cell-derived primordial germ cells. mRNA expression of Oct4 and Dazl
were downregulated in embryonic stem cells by the retinoic acid group, whereas Mvh transcription was reduced
by retinoic acid and estrogen group in these cells compared to the control group. But, retinoic acid with estrogen
group-treated cells exhibited increased mRNA expression of Stra8, Fragilis, Sycp3, GDF9, and Stella compared to
untreated controls. The expression of Stella and Mvh proteins were remarkably increased in cell colonies. This
study shows that estrogen affects the expression of specific markers of primordial germ cells. Also, estrogen and
retinoic acid speed up and increase the level of expression of specific markers.

1. Introduction

Infertility is a global public health issue and one percent of people
are not able to produce gametes [1]. About 10–15% of couples suffer
from subfertility or infertility due to an error at any stage of gameto-
genesis process [2,3].

Nowadays, gamete donation presents a solution to the couples with
low or no sperm and/or oocyte, to have a baby. However, the genetic
relationship will be changed so new methods for male infertility are
essential [4]. In recent years, many studies conducting to generate germ
cells from stem cells [5,6] have created new hope in the treatment of
infertile couples that cannot produce gamete [7]. It was demonstrated
that human and mouse embryonic stem cells (mESCs) are capable of
differentiating into cells very similar to oocytes and ovarian follicle-like
cells [8,9]. Also, it is reported that in vitro-differentiated embryonic
stem cells (ESCs) give rise to male gametes that can generate mice
offspring [10]. In vitro differentiation of several stem cells into pri-
mordial germ cells (PGC) has been studied for bone marrow [10], in-
duced pluripotent stem cells [2] and ESCs [11,12].

ESCs are pluripotent stem cells that are derived from inner cell mass
of the pre-implantation blastocyst and are able of maintaining

pluripotency [13]. ESCs can be induced to several features of early
embryonic development and can differentiate into all three germ cell
layers depending on the situation culture employed in vitro and in vivo
[14]. Previous results showed that ESCs are capable to change not only
to PGCs but also oocyte-like [15], sperm-like cells [16], blastocyst-like
structure [17] in vitro. However, yet there is a big challenge to differ-
entiate stem cells into germ cells and this technique requires further
studies [18,19]. Researchers using a variety of experimental approaches
demonstrated that some growth factors and steroidal hormones can
stimulate the differentiation of stem cells to germ cells in vitro [7].
Estrogen is a steroid hormone that plays an important role in the
menstrual cycle and involved in many processes related to reproduction
[20]. The estrogen class of hormones is included estradiol (E2), estriol
(E3), and estrone (E1) [21]. Many studies have indicated estrogen sig-
naling importance in the proliferation of PGC in vitro [20,22,23]. Var-
ious studies showed that 17β-Estradiol has an inducing role in the
differentiation of mESCs to motor neurons [24,25]. Retinoic acid (RA)
involved in the initiation of meiosis [26] and is identified as PGC dif-
ferentiation factor [2,27,28]. However according to these studies, yet
these methods are not able to generate efficient germ cells in the de-
sired range of quality and quantity [28]. A number of studies are
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looking for an efficient method to differentiate stem cells into germ
cells.

Real-time PCR (qPCR) analysis measured quantitative changes in
mRNA abundance of these germ cell genes while expression of selected
proteins was confirmed by Immunofluorescent. Thus, the main purpose
of the study was to examine the effects of a combination of estrogen and
RA on genes expression of mESCs into PGCs.

2. Material and methods

2.1. Ethics approval and consent to participate

All procedures performed in studies involving animal participants
were in accordance with the ethical standards of the institutional and
national research committee and with the 1964 Helsinki declaration
and its later amendments.

2.2. Derivation of mouse embryonic fibroblast (MEF) and feeder cell
preparation

Head and liver of mice embryos at 13.5 days postcoitum (dpc) were
excluded, the body was crushed into smaller pieces by passing through
needle (gauge 18) and transferred to a T75 flask with high glucose
DMEM/F12 (Invitrogen, San Diego, CA, USA), supplemented with 12%
fetal bovine serum (FBS) (Invitrogen, San Diego, CA, USA) and 1%
penicillin/streptomycin (Invitrogen, San Diego, CA, USA). Next day, the
medium was changed to remove cell derbies. The MEF of passage 3
were used as feeder cell. Inactivated MEF cells were incubated 3 h with
10 μg/ml mitomycin (Sigma-Aldrich, USA) in MEF medium. Cells were
washed 3 times with PBS and next day using as feeder cell.

2.3. Embryonic stem cells culture

In this experimental study, undifferentiated C57BL/6 mouse XY
ESCs (Royanb1) [29] were purchased from Royan Institute and cultured
on 0.1% gelatin-coated cell culture flask containing mitomycin C-
treated mouse embryonic fibroblast (MEF). To maintain the un-
differentiated status, mESCs were cultured and grown in ESCs culture
medium; knockout DMEM (Invitrogen, San Diego, CA, USA), supple-
mented with 15% ES qualified fetal bovine serum (FBS) (Invitrogen,
San Diego, CA, USA), 2mM L-glutamine (Invitrogen, San Diego, CA,
USA), 1x non-essential amino acid (Invitrogen, San Diego, CA, USA),
penicillin/streptomycin (Invitrogen, San Diego, CA, USA), 0.1mM β-
mercaptoethanol (Sigma-Aldrich, USA), and murine leukemia in-
hibitory factor (LIF) 1000 U/ml (Millipore, Billerica, MA, USA) [30].
When cells reached 70% confluency, they were harvested with col-
lagenase type IV solution (Gibco™ 17104019). The cell suspension was
diluted 3-fold and cultured in 0.1% gelatin-coated flask containing MEF
and ESCs medium with LIF. The culture medium was changed daily.

2.4. Spontaneous differentiation of mESCs by retinoic acid (RA) or estrogen
induction and embryoid body (EB) cultures

For embryoid bodies (EBs) formation, nearly 5×106 mESCs were
transferred to 10 cm bacterial plates (BD Biosciences) containing 10 cm
of mESCs culture media without LIF. EBs were retained in suspension
for 5 days and culture medium changes daily. After 5 days, adherent
cultures of EBs were fixed on gelatin-treated tissue culture plates
without MEFs and protected in ESCs medium without LIF. The adherent
cultures of EBs were exposed in triplicate to daily treatments with RA
(10−8 M all-trans retinoic acid), RA + E (10−8 M of RA and 10−9 M of
17β.-Estradiol) for 72 h in 7, 12, 17 or 22 days considering the first day
of adherent culture as day 0. During treatment (72 h), the medium was
changed with fresh medium containing the treatment agent every day.
After 72 h of treatment, the medium was changed and the cells were
cultured with EB culture medium for 22 days, but RA was added to all
the groups except control group. At the end of the treatment, cells were
washed with PBS and total RNA was isolated using TRIzol Reagent
(Invitrogen).

2.5. RNA extraction, cDNA synthesis, RT-PCR

Total RNA was extracted from the adherent cultures of EBs using
TRIzol Reagent(Invitrogen) and cDNA was synthesized using a kit
(Takara Bio, Japan) according to the manufacturer's instruction. RT-
PCR was performed using specific primers which designed by Primer 3
software for mouse Oct4 (OMIM: 164177), Fragilis (OMIM: 614757),
Stella (OMIM: 608408), Dazl (OMIM: 601486), Mvh (OMIM: 605281),
Stra8 (OMIM: 609987), Sycp3 (OMIM: 604759), GDF9 (OMIM: 601918)
and Prm1 (OMIM: 182880) (Table 1).

PCR was carried out in a total volume of 20 μl consisting of 10 μl of
2× Master-mix PCR, 0.35 μM each of the forward and reverse primers,
and 2 μl cDNA (all of PCR reagents were purchased from Bioneer Co.,
Korea). The PCR program was as follows: 35–40 cycles of 94 °C dena-
turation for 45 s; 55 °C–61 °C annealing for 30 s; 72 °C elongation for
60 s, with a final incubation at 72 °C for 10min.

2.6. Immunofluorescence

For immunofluorescent localization of Stella andMVH, adherent EBs
were prepared as previously described [30]. Similar to the experimental
design that was explained in before section; the adherent EBs were
exposed in triplicate to daily treatments of RA and estrogen.

In summary, cells were fixed in 4% paraformaldehyde (PFA) in PBS
for 15min at room temperature and washed twice with ice-cold PBS.
Cells were incubated for 10min with PBS containing 0.5% Tween-20
then blocked with 1% BSA and 0.5% Tween-20 for 60min at room
temperature. Cells were incubated with the primary antibodies against
Stella (1 μg/ml) and Mvh (1 μg/ml) (Abcam, USA) overnight at 4 °C,
then washed with PBS and incubated with the goat anti-rabbit sec-
ondary antibody Alexafluor 568 (Life technologies, USA) in the dark for

Table 1
Primers for RT-PCR analysis of germ cell markers.

Gene Forward Sequence 5'→3′ Reverse Sequence 5'→3′ Annealing Temp.

Oct3/4 CCTTGCAGCTCAGCCTTAAG GCGATGTGAGTGATCTGCTG 63.9
Fragilis ATGTGGTCTGGTCCCTGTTC TCAGGATGCTGAGGACCAAG 64.5
Stella GACCCAATGAAGGACCCTGA CAATGCGGTTCCGTAGACTG 63.8
Dazl AAATGGCCCGCAAAAGAAGT ACTGCCCGACTTCTTCTGAA 64.3
Mvh TCAGACGCTCAACAGGATGT ACTGGATTGGGAGCTTGTGA 64.3
Stra8 CCTGGTAGGGCTCTTCAACA CCCATCTTGCAGGTTGAAGG 64
Sycp3/Scp3 GGGGCCGGACTGTATTTACT GGCTTCCCAGATTTCCCAGA 64.5
GDF9 GTTCCCAAACCCAGCAGAAG GGAGGAAGAGGCAGAGTTGT 64.2
Prm1 ACAGCCCACAAAATTCCACC CTTATGGTGTATGAGCGGCG 63.7
HPRT CAGTCCCAGCGTCGTGATTA GGCCTCCCATCTCCTTCATG 64.8

N. Eskandari et al. Biologicals xxx (xxxx) xxx–xxx

2

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjCj9Os_srZAhWBLVAKHdo7CcYQFgg0MAE&url=https%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fproduct%2F15596026&usg=AOvVaw37zq7_24XKIyyatnvDPKXv
https://www.ncbi.nlm.nih.gov/omim/164177
http://omim.org/entry/614757
https://www.ncbi.nlm.nih.gov/omim/608408
https://www.ncbi.nlm.nih.gov/omim/601486
https://www.ncbi.nlm.nih.gov/omim/605281
https://www.ncbi.nlm.nih.gov/omim/609987
https://www.ncbi.nlm.nih.gov/omim/604759
https://www.ncbi.nlm.nih.gov/omim/601918
https://www.ncbi.nlm.nih.gov/omim/182880


60min. Also, negative control cells were incubated with only secondary
antibody. Nuclei were labeled by DAPI (Roche) staining and the images
were recorded by an invert fluorescent microscope (Ti-E eclips, Nikon,
Japan).

2.7. Statistical analysis

The results of three replicated experiments were presented as
mean ± SD. Statistical analysis was performed using the ANOVA and
Tukey posttest. The obtained data from RT-PCR were normalized with
HPRT (as housekeeping gene). The P value was presented respectively
as *P < 0.05, **P < 0.01 or ***P < 0.001 indicating as low, high or
very highly significantly different. All of the data were analyzed with
SPSS statics 19 version.

3. Results

Changes in cell morphology were monitored daily. Undifferentiated
mESCs colonies were dome-shaped with smooth margins (Fig. 1A).
Morphology of EBs was shown (Fig. 1B).

3.1. Temporal expression of germ cell-specific genes related with
differentiation of EBs into PGC

The expressions of 9 genes were analyzed by RT-PCR. Oct4 is a
marker of ESC cells and PGCs [31,32], Fragilis is expressed in PGCs
migrate to the genital ridge, Stella is known as a specific germ cell
marker during early development, Dazl and Mvh are expressed in post
migratory PGCs [33], Stra8 (stimulated by retinoic acid gene 8) re-
presents meiosis in both sex [34], Sycp3 (Synaptonemal complex 3) is a
meiosis specific protein that is expressed in PGC for meiosis [28], GDF9
(Growth differentiation factor 9) and Prm1 (protamin1) are as oocyte
and sperm specific markers [35,36] respectively. Gene expression pat-
tern is summarized in Fig. 2.

We found that RA reduced the expression of Oct4, while there was
no significant change in the RA + E group (see Fig. 3). RA and RA + E
treatment accelerated and increased the expression of Fragilis. Notice-
ably, on seventeenth day in RA + E group, the expression of this gene
was dramatically increased compared to the other groups.

In RA + E group, the level of Stella expression was significantly
increased on 7 and 17 days compared to other groups, while on other
days the difference was not significant. On days 7 and 12, expression of
Dazl was not observed in any groups than days 17 and 22 and retinoic
acid reduced the expression of this gene. RA + E group was caused Dazl
expression on seventeenth day and expression this gene increased in
compared to RA group, but on 20-s day, the expression of this gene
decreased in compared to RA and control groups.

RA + E treatment decreased the level of Mvh expression in all days,
compared to other groups. In the control group, there was no expression
of the Stra8, while in RA + E group it was accelerated and increased
significantly. In the RA + E group, the level of Sycp3 expression was
increased on days 12 and 22 compared to the other groups. The ex-
pression of GDF9 was only in the RA + E group increased on day 22
compared to other groups.

3.2. Immunofluorescence detection of proteins marker Stella and Mvh

Immunofluorescence results confirmed the expression of Stella and
Mvh at the protein level in undifferentiated mESC genes in days 7, 12,
17 and 22 in RA and RA+ E groups observed by PCR. The expression of
Stella and Mvh were more intense in cell colonies edge than to the
center. However, the outside of cell colonies did not show any ex-
pression of these genes. Immunofluorescence study showed that Mvh
and Stella are expressed in all group (data not shown) but only on day
22, the RA + E group had a higher expression than other groups.

4. Discussion

During mESCs differentiation, the differential expression of specific
genes in some ways imitate mouse embryogenesis in vivo [37]. Al-
though many information is available about the process of embryonic
stem cells differentiation into male germ line but still lots of people
suffer from a lower quantity or quality of sperm [18]. In a precise ga-
metogenesis process, many factors are needed to synchronize germ cell
migration, proliferation, and meiosis initiation [26]. Spatial and tem-
poral regulation of genes is responsible for appropriate germ cell pro-
liferation and differentiation in vivo. These genes expression are regu-
lated by inherent, interactive and exogenous factors [38], and hence are
affected by a numerous of growth factors, differentiation factors, ex-
tracellular matrix proteins and signaling molecules. So, suitable culture
conditions of germ cell will help to provide a pure population of ga-
metes and necessary supporting somatic cell components from ESCs,
which elicit a gene expression profile. This study was designed to ex-
amine the combination of retinoic acid and estrogen on the differ-
entiation of mESCs into primordial germ cells [39].

We analyzed the expression of 9 genes by RT PCR and the results
showed that they have distinctive expression profile at various stages of
gametogenesis (i.e. mitotic, meiotic, and post-meiotic). In addition to,
mRNA levels for some of the genes were partly increased in un-
differentiated ES cells. The Expression profiles of these genes might be
affected by of microenvironment of in vitro compared to in vivo ex-
periment. Silva et al. (2009) showed that there is a group of founder
cells within undifferentiated ESCs populations dedicated to differ-
entiate into germ cell lineage [39]. Griswold et al. (2012) reported that
retinoic acid functions as a meiosis-inducing substance but another
study suggested that the germ cells do not need endogenous RA at the
beginning of meiotic process [26]. However, Mi et al. (2014) for the
first time showed the potential role of estrogen as a signaling molecule
in germ cells differentiation with RA [40].

Our study showed that the combination of estrogen and RA can
accelerate and increase the differentiation of mESCs into PGC. In this
study, Royan B1 cell line was used and for the first time and it was
shown that this cell line can be differentiation to PGC. In our study, we
could see the expression of all the examined genes except Prm1 that its
expression has been shown in other studies [2].

Oct4 gene is expressed in all cell types along the differentiation path
from PSCs to SSCs. Also, Oct4 protein is known as a marker of PGC and
ESC [41]; RA treatment reduced the expression of Oct4 but the com-
bination of RA and E (in RA + E group) was able to increase its

Fig. 1. Colony morphology of mESCs (Royan
B1) in undifferentiated state and at the begin-
ning of differentiation. A) Dome-shaped colony
of undifferentiated mESCs (*) with smooth
margin on iMEF (→). B) Morphology embryoid
body formation of the mESCs. Scale
bar= 100 μm.
A) Dome-shaped colony of undifferentiated
mESCs (*) with smooth margin on iMEF ( ).
B) Morphology embryoid body formation of the
mESCs. Scale bar = 100 μm.
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expression. It seems that the RA + E help maintains ESCs pluripotency.
Fragilis, as a putative interferon-inducible gene encodes a transmem-
brane protein, is apparently related to the acquisition of germ cell
competence by epiblast cells [42]. In spontaneous differentiation, Fra-
gilis expression is time-dependent by a cascade of molecular while the
use of inducer factor (RA or RA + E) accelerated and increased ex-
pression. In our study, Dazl expression was entirely time-dependent and
any of the treatment did not change the expression. In contrast to the
Silva and et al. [28] study, RA treatment could increase Dazl expression.

In another study, co-culture of ESCs with granulosa cells decreased the
level of Mvh expression [30] similar to RA + E treatment in our study
that reduced the level of Mvh expression. These results show that this
gene is not a reliable PGC differentiation factor.

Stella (DPPA3) is a novel gene specifically expressed in primordial
germ cells, oocytes, preimplantation embryos, and pluripotent cells
[43]. In our study, the Stella expression was increased by RA + E
treatment. Wongtrakoongate et al. (2013) that worked on Stella facil-
itates differentiation of germ cell and endodermal lineages of human

Fig. 2. The expression profiles of primordial germ cell-associated genes in mESCs treated with RA and combination of RA + estrogen (RA + E) in vitro. RT-PCR was
carry out using the cDNA of mESCs in the presence or absence of RA and combination of RA + E groups. The normalized expression of each gene relative to that of
HPRT as follows; Black bars: control, the group that was not treated with RA or RA+ E. White bars: the group that was treated with RA. Gray bars: the group that was
treated with RA + E. *P < 0.05, **P < 0.01 and ***P < 0.001.
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embryonic stem cells (hESCs), resulted Stella was expressed in hESCs
and embryonic carcinoma (EC) cells, as well as in normal testis and
ovary. These researchers found that the strongest expression was found
in a testicular germ cell tumor, which shows characteristics of plur-
ipotency [44]. Stella expression was detected in human oocyte and in
EC cells, in which it was down-regulated after retinoic acid-induced
differentiation. These findings strengthen the hypothesis that Stella
might have a similar role in humans as in mice [45].

Our results showed that Sycp3 and GDF9 expression was increased
with RA + E treatment. Stra8 was not expressed in the spontaneous
differentiation and probably expression this gene needs to inducer
factor that these findings are the same as Silva et al. [28] and contrary
to studies Li et al. [2].

Although several studies reported the expression of Prm1 [28,46]
we did not detect any expression in our study. No expression this gene
(Prm1) may be probably due to differences in culture and differentia-
tion. The combination treatment of RA + E increased the expression of
Oct4, Fragilis, Stella, Dazl, Sycp3, Stra8 and GDF9. According to the most
of increased gene expression levels and expression of oocyte-specific
marker with not expression sperm-specific marker, it seems that the
condition of this study was caused to create female PGC.

There are some limitations in this which should be mentioned.
Firstly, we did not use Real time PCR for evaluation of gene expression.
In addition, we used limited gene markers in the current study and
further studies should consider more genetic markers.

5. Conclusions

In summary, our observations demonstrate the capacity of mESCs to

express the genes characteristic of germ cells in vitro. This study shows
that estrogen induces the expression of specific markers of primordial
germ cells. Estrogen and retinoic acid increased the level of expression
of specific markers that were investigated. Thus, these data represent an
important first step in designing a plausible directed differentiation
protocol for germ cells such that further investigation may yield culture
conditions that increase the level of germ cell gene expression in a
pattern consistent with the developmental program of spermatogenesis.
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