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A general study of relations between the parameters of two centrally symmetric Lévy distributions, often used for one-dimensional
investigation of Bose–Einstein correlations, is given for the first time. These relations of the strength of correlations and of the
radius of the emission region take into account possible various finite ranges of the Lorentz invariant four-momentum difference
for two centrally symmetric Lévy distributions. In particular, special cases of the relations are investigated for Cauchy and normal
(Gaussian) distributions. The mathematical formalism is verified using the recent measurements given that a generalized centrally
symmetric Lévy distribution is used. The reasonable agreement is observed between estimations and experimental results for all
available types of strong interaction processes and collision energies.

1. Introduction

Correlations between two identical bosons, called Bose–Ein-
stein correlations (BEC), are a well-known phenomenon in
high-energy and nuclear physics. These correlations play an
important role in the studies of multiparticle production
and soft physics. Constructive interference affects the joint
probability for the emission of a pair of identical bosons
with four-momentum 𝑝1 and 𝑝2. Experimentally, the one-
dimensional BEC effect is observed as an enhancement at low
values of the Lorentz invariant quantity 𝑞 = √−(𝑝1 − 𝑝2)2 ≥
0 in the two-particle correlation function (CF):

C2 (𝑞) = 𝜌 (𝑞)
𝜌ref (𝑞) . (1)

Here 𝜌 is the two-particle density function and 𝜌ref is a
reference two-particle density function that by construction
is expected to include no BEC.The detailed shape analysis of
the peak of CF is an important topic on theoretical and exper-
imental points of view because this shape carries information
about the possible features of space-time structure of particle
source [1, 2]. For instance, the detail investigations have to

do for shape of correlation peak in modern experiments with
high statistics for verification of hypothesis of possible self-
affine fractal-like geometry of emission region [3, 4].TheBEC
effect in one dimension is usually described by a few-para-
meter function for which several different functional forms
have been proposed.The power-law parametrizationC2(𝑞) ∼
𝑞−𝛽 is the important signature for fractal-like source extend-
ing over a large volume [5, 6]. The quite reasonable fit is
achieved with this parametrization of two-pion CF in various
types of multiparticle production processes [1]. But unfortu-
nately power-law fits are absent for high-statistics modern
experimental data so far. On the other hand the stable (on
Lévy) distributions [7] are one of themost promising tools for
studies of fractal-like space-time extent of emission region.
These distributions are a rich class of probability distributions
that allow skewness and heavy tails and havemany important
physical applications. As shown in [3, 4] the subclass of non-
isotropic centrally symmetric Lévy distributions [8, 9] ismost
useful for studies of Bose–Einstein CF. Therefore this sub-
class of centrally symmetric Lévy distributions is considered
regarding of BEC measurements in the present paper.
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For low-dimensional (1D) analysis the centrally symmet-
ric Lévy distribution results in the most general parametriza-
tion of the experimental Bose–Einstein CF

C2 (𝑞) ∝ 1 + Ω (𝛼, 𝜆, 𝑧) ,
Ω (𝛼, 𝜆, 𝑧) ≡ 𝜆 exp (− |𝑧|𝛼) , 𝑧 ≡ 𝑞𝑅. (2)

Here 𝜆 is the strength of correlations called also chaoticity, 𝑅
is the 1D BEC radius, and 0 < 𝛼 ≤ 2 is the Lévy index called
also index of stability. As known for a static source with no
final state interactions [10, 11], there is the relation C2(𝑞) ∝
|𝑓̃(𝑞)|2, 𝑓̃(𝑞) = ∫ 𝑑𝑥 exp(𝑖𝑞𝑥)𝑓(𝑥); that is, Bose–Einstein CF
C2(𝑞) measures the absolute value squared Fourier transfor-
med source density in the coordinate space𝑓(𝑥), ∫𝑑𝑥𝑓(𝑥) =
1, called also coordinate-space distribution function of the
particle emission points. The various experiments use the
different forms of (2) which correspond to the various
hypotheses with regard of 𝑓(𝑥). For example, most of the
earliest experiments with particle beams used the specific
case of (2) at 𝛼 = 2; the Gaussian parametrization cor-
responded to the normal (Gaussian) distribution function
𝑓𝐺(𝑥) = (2𝜋𝑅2𝐺)−1/2 exp[−(𝑥−𝑥0)2/2𝑅2𝐺], where theGaussian
scale parameter is 𝑅2𝐺 = ⟨𝑥2⟩ − 𝑥20, the standard deviation;
then another specific case of (2) at 𝛼 = 1 is used widely,
especially, for particle (not nuclear) collisions. Equation (2) at
𝛼 = 1 is called exponential parametrization for Bose–Einstein
CF C2(𝑞) and it corresponds to the Cauchy (Lorentzian)
distribution function 𝑓𝐶(𝑥) = 𝜋−1𝑅𝐶/[𝑅2𝐶 + (𝑥 − 𝑥0)2] with
scale parameter 𝑅𝐶 [12, 13]. Furthermore the recent studies at
the LHC [14–17] demonstrate that general view of (2) allows
the reasonable description of experimental CF, particular for
proton-proton (𝑝 + 𝑝) collisions but for centrally symmetric
Lévy distribution with 𝛼 ∈ (0; 2), 𝛼 ̸= 1 the corresponding
source density in coordinate space 𝑓(𝑥) can be written ana-
lytically for 𝛼 = 3/2, 2/3, 1/2, 1/3 only [9]. It is often difficult
to compare results from different experiments because of
the many different data analysis methods [11], in particular
due to various parameterizations for 1D Bose–Einstein CF
C2(𝑞). Therefore the derivation of the relations between the
sets of BEC parameters for two centrally symmetric Lévy
distributions is the important task for correct comparison
of the results from different experiments, creation of the
global kinematic (energy, pair transverse momentum, etc.)
dependencies of BEC parameters, and so on. Such studies
are important for investigations of common features of soft-
stage dynamics in variousmultiparticle production processes
as well as for equation of state (EoS) of strongly interacting
matter, in particular, search for phase transition to the quark-
gluon deconfined matter. It would be noted the study of
energy dependence of pion BEC parameters in heavy ion
collisions [18] was one of the main causes and drivers for
hypothesis of cross-over transition from strongly coupled
quark-gluon phase to hadronic one at Relativistic Heavy Ion
Collider (RHIC) energies √𝑠𝑁𝑁 ∼ 100GeV. Furthermore
some results for deconfinement in small system [19, 20]
indicate remarkable similarity of both the bulk and the
thermodynamic properties of strongly interacting matter
created in high-energy 𝑝 + 𝑝/𝑝 + 𝑝 and 𝐴 + 𝐴 collisions.

The BEC can provide new knowledge about collectivity and
possible creation of droplets of quark-gluon matter in small
system collisions. For these studies the correct comparison
can be crucially important for BEC parameters in various
multiparticle processes for wide energy range. But as men-
tioned above Bose–Einstein CF C2(𝑞) is often described by
different view of (2) depending on type of reaction, collision
energy, and features of experimental analysis. Therefore the
study of centrally symmetric Lévy distributions and search
for relations between parameters for corresponding CF has
scientific interest for physics of strong interactions.

The paper is organized as follows. In Section 2, mathema-
tical formalism is described for case of two general view cen-
trally symmetric Lévy distributions. Dependencies of desired
1D BEC observables on 𝑞 and 𝛼 are studied for a priori
known parameters for second centrally symmetric Lévy
distributions. Section 3 is devoted to the detailed discussion
of specific case of these distributions, namely, Cauchy and
Gaussian ones most used in experimental investigations of
1D CF C2(𝑞). Database of experimental results for set of 1D
BEC parameters {𝜆, 𝑅} for charged pion source in strong
interaction processes is created within the framework of the
paper in order to verify the mathematical formalism. Sec-
tion 4 demonstrates the comparison between the estimations
calculated for 1D BEC parameters with help of mathemati-
cal formalism under discussion and available experimental
results for various reactions and in wide energy range (it
should be noted that in Sections 3 and 4 the 1D BEC parame-
ters are supplied with the subindexes according to the names
of corresponding source distribution function; namely, “𝐿” is
for the general view of centrally symmetric Lévy distribution,
“𝐶” is for the Cauchy source distribution function, and “𝐺”
is for Gaussian one. Otherwise the notations {𝜆𝐸, 𝑅𝐸} are
often used in papers for second case due to relation between
Cauchy distribution for 𝑓(𝑥) and exponential parametriza-
tion for Bose–Einstein CFC2(𝑞) discussed above. As a conse-
quence themathematically rigorous terminology is used over
full manuscript: the term “Cauchy distribution” corresponds
to the source function in coordinate space 𝑓𝐶(𝑥) and the
term “exponential function/parametrization” is used for the
related parametrization of correlation function C2,𝐸(𝑞); for
the case of arbitrary 0 < 𝛼 < 2, 𝛼 ̸= 1, the term “centrally
symmetric Lévy” is suitable for both the source function in
coordinate space𝑓𝐿(𝑥) and the parametrization of correlation
function C2,𝐿(𝑞); the similar situation is for 𝛼 = 2: the term
“Gaussian” is applicable for both the source function in coor-
dinate space 𝑓𝐺(𝑥) and the corresponding parametrization
of correlation function C2,𝐺(𝑞)). In Section 5 some final
remarks are presented. The experimental database is shown
in Appendix for 1D BEC parameters.

2. Relations between BEC Parameters in
General Case

Let some experimental CF C2(𝑞) be described by two
parameterizations (2) with Ω1 ≡ Ω(𝛼1, 𝜆1, 𝑧1) and Ω2 ≡
Ω(𝛼2, 𝜆2, 𝑧2). Then relations between parameters of Ω1 andΩ2 can be deduced on the basis that both parameterizations
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describe one experimental CF C2(𝑞), that is one sample of
experimental points (in general the approximations of C2(𝑞)
are characterized by different qualities for various parameter-
izations (2) withΩ1 andΩ2. The influence of this difference
is not studied in present work and can be considered as sepa-
rate task).Thus one can assume that the areas under fit curves
for two parameterizations (2) with Ω1 and Ω2 are approxi-
mately equal to each other as well as the first moments of the
corresponding centrally symmetric Lévy distributions.

2.1. Mathematical Formalism. The relations between two sets
of parameters {𝜆1, 𝑅1} and {𝜆2, 𝑅2} of the particle source can
be derived from the following system of equations:

𝑆1 = 𝑆2, ∀𝑖 = 1, 2 : 𝑆𝑖 ≡ ∫
𝐽𝑖

Ω(𝛼𝑖, 𝜆𝑖, 𝑧𝑖) 𝑑𝑞; (3a)

⟨𝑞⟩1 = ⟨𝑞⟩2 ,
∀𝑖 = 1, 2 : ⟨𝑞⟩𝑖 ≡ 𝑆−1𝑖 ∫

𝐽𝑖

𝑞Ω (𝛼𝑖, 𝜆𝑖, 𝑧𝑖) 𝑑𝑞.
(3b)

The first equation (3a) corresponds to the equality of the
areas under fit curves and the (3b) is the equality of the first
moments of theΩ(𝛼𝑖, 𝜆𝑖, 𝑧𝑖) distributions (as discussed above
the approximate equalities are expected for areas and first
moments in general case. This softer condition is enough for
applicability of the formalism suggested in the paper. But the
exactly equal signs are used in (3a) and (3b) as well as in the
text below in order to get the mathematically correct forms
for the systems of equations). System (3a) and (3b) contains
the equations allowing the estimation of unknown strength of
correlations and 1D BEC radius based on the available values
of these parameters but it supposes the Lévy indexes 𝛼𝑖 are
known a priori for both parameterizations Ω𝑖, 𝑖 = 1, 2. In
equations (3a) and (3b) the integrals are taken over full fit
ranges 𝐽𝑖, 𝑖 = 1, 2, for corresponding parameterizations with
Ω𝑖 of experimental CF. It should be noted that in general
case (i) the ranges of integration can be different for parame-
terizations withΩ1 andΩ2; (ii) the full fit range can be the set
of subranges due to possible exception of some intervals of the
relative 4-momentum (regions of resonance contributions,
etc.), that is,∀𝑖 = 1, 2 : 𝐽𝑖 = ⋃𝑁𝑖

𝑘=1
𝐽𝑘𝑖 ≡ ⋃𝑁𝑖

𝑘=1
[𝑞𝑘,min, 𝑞𝑘,max] and

consequently for all types of integrals and ∀𝑖 = 1, 2 in system
(3a) and (3b): ∫

𝐽𝑖
→ ∑𝑁𝑖
𝑘=1

∫
𝐽𝑘
𝑖

. But usually the fit ranges 𝐽𝑖 are
identical for both Ω𝑖, 𝑖 = 1, 2, in experimental studies (see,
e.g., [15]). In general case of the centrally symmetric Lévy
distributions and finite fit ranges the system equations under
consideration cannot be solved analytically. The numerical
procedure should be used in order to get the relations
between two sets of parameters {𝜆1, 𝑅1} and {𝜆2, 𝑅2} of the
particle source in this case. Without loss of generalityΩ1 and𝛼2 are considered as known and values of BEC parameters
{𝜆2, 𝑅2} are supposed as desired below.Then for specific case
of semi-infinite ranges for integration ∀𝑖 = 1, 2 : 𝐽𝑖 =
[0;∞) system (3a) and (3b) can be solved analytically and one
can derive the following ultimate relations between two sets

{𝜆1, 𝑅1} and {𝜆2, 𝑅2} of BEC parameters for corresponding
centrally symmetric Lévy parameterizations withΩ𝑖, 𝑖 = 1, 2

𝜆𝑢1 = 𝜆2 [𝛼1Γ (2𝛼−11 ) Γ2 (𝛼−12 )]
⋅ [𝛼2Γ2 (𝛼−11 ) Γ (2𝛼−12 )]−1 ;

(4a)

𝑅𝑢1 = 𝑅2 [Γ (2𝛼−11 ) Γ (𝛼−12 )] [Γ (𝛼−11 ) Γ (2𝛼−12 )]−1 (4b)

and vice versa. Here Γ(𝑥) = ∫∞
0
𝑡𝑥−1 exp(−𝑡)𝑑𝑡,Re𝑥 > 0 is

the gamma function.
In the point of view of data analysis the absence of the

general analytic relations between {𝜆1, 𝑅1} and {𝜆2, 𝑅2} leads
to the following approach for estimations of the errors of
the unknown parameters. Without the loss of generality let
us suppose that the values are known for set of parameters
{𝛼1, 𝜆1, 𝑅1} with its errors {Δ±𝛼1, Δ±𝜆1, Δ±𝑅1} for centrally
symmetric Lévy parametrization with Ω1 as well as for 𝛼2
withΔ±𝛼2 for parametrization withΩ2.The two sets of values
for unknown BEC parameters {𝜆2, 𝑅2} can be obtained with
the help of suitable system of equations: the input values {𝛼1+Δ+𝛼1, 𝜆1+Δ+𝜆1, 𝑅1+Δ+𝑅1} and 𝛼2+Δ+𝛼2 produce the output
set {𝜆+2 , 𝑅+2 } and {𝛼1−Δ−𝛼1, 𝜆1−Δ−𝜆1, 𝑅1−Δ−𝑅1, 𝛼2−Δ−𝛼2} →{𝜆−2 , 𝑅−2 }. Then the error estimations for set {𝜆2, 𝑅2} of BEC
parameters for parametrization with Ω2 can be calculated as
follows:

Δ±𝑌2 = 󵄨󵄨󵄨󵄨𝑌±2 − 𝑌2󵄨󵄨󵄨󵄨 , 𝑌2 ≡ 𝜆2, 𝑅2. (5)

One can use the errors (5) which are asymmetric in general
case or make the averaging of up and low uncertainties and
then to use the symmetric errors Δ𝑌2 = (Δ+𝑌2 + Δ−𝑌2)/2.

2.2. Dependencies on 𝑞 and 𝛼 Variables. Figure 1 shows
dependence of 1D BEC radius (a, b) and strength of correla-
tions (c, d) for centrally symmetric Lévy parametrizationΩ1
with known 𝛼1 = 1.5 on low 𝑞1 (a, c) and high 𝑞2 (b, d) limits
of integration in system (3a) and (3b) for set {𝛼2, 𝜆2, 𝑅2} =
{0.5, 0.5, 1.5 fm} for Ω2. The solid lines correspond to the
indicated values of 𝑞2 inGeV/c for 𝑞1-dependence (a, c) and
to shown values of the 𝑞1 inGeV/c for 𝑞2-dependence (b,
d). Values of BEC parameters 𝜆1 and 𝑅1 depend strongly
on the fixed second limit of integration (𝑞2(1)) for both the
𝑞1- (Figures 1(a) and 1(c)) and the 𝑞2-dependence (Figures
1(b) and 1(d)). The dashed lines correspond to the results
from system (3a) and (3b) with 𝑞2 → ∞ for 𝑞1-dependence
(Figures 1(a) and 1(c)) and with 𝑞1 = 0 for 𝑞2-dependence
(Figures 1(b) and 1(d)). As seen the curves for general case of
(3a) and (3b) coincide with dashed lines at 𝑞2 = 10GeV/c for
𝑞1-dependence (Figures 1(a) and 1(c)) and at 𝑞1 = 10−3 GeV/c
for 𝑞2-dependence (Figures 1(b) and 1(d)).These values for 𝑞1
and especially for 𝑞2 are far from the corresponding limit in
modern experimental CF. Therefore one should use system
(3a) and (3b) with finite limits in an integrations in the case of
experimentally available 𝑞-ranges for two parameterizations
with Ω1 and Ω2. The thin dotted lines demonstrate the
ultimate levels for 𝑅1 (Figures 1(a) and 1(b)) and 𝜆1 (Figures
1(c) and 1(d)) calculated with (4a) and (4b) for given values
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Figure 1: Dependence of 1D BEC radius (a, b) and strength of correlations (c, d) for centrally symmetric Lévy parametrization with 𝛼1 = 1.5
on low 𝑞1 (a, c) and high 𝑞2 (b, d) limits of integration in the system of (3a) and (3b) for fixed parameter values for second centrally symmetric
Lévy parametrization: 𝛼2 = 0.5, 𝜆2 = 0.5, and 𝑅2 = 1.5 fm. The solid lines correspond to the indicated values of the 𝑞2 for 𝑞1-dependence (a,
c) and to shown values of the 𝑞1 for 𝑞2-dependence (b, d). The dashed lines correspond to the calculations with 𝑞2 → ∞ for 𝑞1-dependence
(a, c) and with 𝑞1 = 0 for 𝑞2-dependence (b, d).The thin dotted lines are the ultimate levels for 𝑅1 (a, b) and 𝜆1 (c, d) calculated with (4a) and
(4b) for given values of 𝛼1 and the set of parameters {𝛼2, 𝜆2, 𝑅2} for second Lévy parametrization.

of 𝛼1 and the set of parameters {𝛼2, 𝜆2, 𝑅2} for second Lévy
parametrization Ω2. One can use the simple relations (4a)
and (4b) for calculation {𝜆1, 𝑅1} at 𝑞1 ≲ 10−2 GeV/c and
𝑞2 ≳ 10GeV/c (Figures 1(a) and 1(b)) but as expected the
values of BEC parameters {𝜆1, 𝑅1} are far from the ultimate
levels at any 𝑞1 for 𝑞2-dependence in the range 𝑞2 ≤ 2GeV/c
is considered in Figures 1(b) and 1(d).

In Figure 2 dependence of 1D BEC radius (a, b) and
strength of correlations (c, d) is demonstrated for centrally

symmetric Lévy parametrizationwithΩ1 on𝛼1 at fixed values
of𝛼2 (a, c) and on𝛼2 at fixed values of𝛼1 (b, d) for given limits
of integration in the system of (3a) and (3b) 𝑞1 = 0.02GeV/c,
𝑞2 = 2.0GeV/c and for certain values of the BEC parameters
for second centrally symmetric Lévy parametrization with
Ω2: 𝜆2 = 0.5 and 𝑅2 = 1.5 fm. The solid lines correspond to
the indicated values of the 𝛼2 for 𝛼1-dependence (a, c) and to
shown values of the 𝛼1 for 𝛼2-dependence (b, d). The values
for limits of integration 𝑞1 and 𝑞2 in system (3a) and (3b)
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Figure 2: Dependence of 1D BEC radius (a, b) and strength of correlations (c, d) for centrally symmetric Lévy parametrization on 𝛼1 at
fixed values of 𝛼2 (a, c) and on 𝛼2 at fixed values of 𝛼1 (b, d) for given limits of integration in the system of (3a) and (3b) 𝑞1 = 0.02GeV/c,
𝑞2 = 2.0GeV/c and for fixed values of the BEC parameters for second centrally symmetric Lévy parametrization: 𝜆2 = 0.5 and 𝑅2 = 1.5 fm.
The solid lines correspond to the indicated values of the 𝛼2 for 𝛼1-dependence (a, c) and to shown values of the 𝛼1 for 𝛼2-dependence (b, d).
The dotted lines are the ultimate cases for 𝑅1 (a, b) and 𝜆1 (c, d) calculated with (4a) and (4b) for given values of 𝛼1 (a, c) or 𝛼2 (b, d) and the
set of BEC parameters {𝜆2, 𝑅2} for second Lévy parametrization.

are similar to those used in modern experiments. As seen
dependencies of both BEC parameters on 𝛼𝑖, 𝑖 = 1, 2, at fixed
another Lévy index 𝛼𝑗|𝑗 ̸=𝑖, 𝑗 = 1, 2, change very fast at small
value 𝛼𝑗 = 0.2 in narrow range 𝛼𝑖 ≃ 𝛼𝑗. Such behavior is
observed for both the results from system (3a) and (3b) and
the estimations for 𝑅1 (Figures 2(a) and 2(b)) and 𝜆1 (Figures
2(c) and 2(d)) calculated with (4a) and (4b) for semi-infinite
ranges for integration and shown by dotted lines. The depen-
dence 𝑅1(𝛼1) shown in Figure 2(a) closes to the analytic one

calculated with help of (4b) and presented by dotted line for
any 𝛼2 under studywith exception of the small value 𝛼2 = 0.2.
For last case the agreement is obtained in very narrow range
𝛼1 ≈ 0.2 between results from system (3a) and (3b) and (4b).
This feature maps clearly in corresponding dependencies
𝑅2(𝛼2) shown in Figure 2(b) for 𝛼1 = 0.2. For large 𝛼1 > 1.0
solid and dotted lines are close to each other in the range
𝛼2 > 0.5 but agreement is poor significantly between results
from system (3a) and (3b) and (4b) for 𝛼1 = 0.6 especially in
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domain 𝛼2 < 0.5 (Figure 2(b)) taking into account the sharp
behavior for corresponding dependence 𝑅1(𝛼2). In general
the behavior of dependencies of 𝜆1 on 𝛼1 (Figure 2(c)) and𝛼2 (Figure 2(d)) is similar to the corresponding dependencies
of 1D BEC radius 𝑅1. But the agreement is poor usually
between the results deduced from system (3a) and (3b) and
shown by the solid lines and the estimations calculated based
on (4a) and presented by the dotted lines. Therefore for
values of limits of integration 𝑞1,2 under consideration the
approximate relations (4a) and (4b) should be used carefully
for experimental analysis of dependencies on Lévy indexes
and last equations can produce the reasonable estimations for
BEC parameters for ranges ∀𝑖 = 1, 2 : 𝛼𝑖 ≳ 1 only.

As seen themathematical formalism described above and
the results in Figures 1 and 2 are quantitative basis for choice
of the applying of general equations (3a) and (3b) or ultimate
relations (4a) and (4b) in data analysis for given experiment.
Thus the method suggested in the paper is helpful for experi-
mental and phenomenological studies of BEC in various pro-
cesses at different parameterizations of CFC2(𝑞) correspond-
ing to the centrally symmetric Lévy source distributions.

3. Relations between BEC Parameters in
Specific Cases

As seen in Figure 2 both dependencies of the 1D BEC radius
𝑅1 (a, b) and the strength of correlations 𝜆1 (c, d) on Lévy
indexes 𝛼𝑖, 𝑖 = 1, 2, show the weaker changing in the domain
∀𝑖 = 1, 2 : 𝛼𝑖 ≳ 1 in comparisonwith the range of small values
of Lévy indexes. The region ∀𝑖 = 1, 2 : 𝛼𝑖 ≳ 1 includes in par-
ticular the specific cases of Cauchy and Gaussian distribu-
tions for which corresponding parameterizations of Bose–
Einstein CF C2(𝑞) with 𝛼 = 1 and 𝛼 = 2 are used mostly
for experimental studies. Therefore these certain views of Ω𝑖
are studied in detail below. Let Ω1 ≡ Ω𝐺 = Ω(2, 𝜆𝐺, 𝑅𝐺) for
Gaussian parametrization (2) and Ω2 ≡ Ω𝐶 = Ω(1, 𝜆𝐶, 𝑅𝐶)
for 1D approximation of experimental CF C2(𝑞) by exponen-
tial function.

3.1. Mathematical Formalism. Relations (4a) and (4b) are
valid at any values of indexes of stability 0 < 𝛼𝑖 ≤ 2 in two
centrally symmetric Lévy parameterizations withΩ𝑖, 𝑖 = 1, 2.
If without loss of generality {𝜆𝐶, 𝑅𝐶} are considered as a priori
known and values of Gaussian BEC parameters {𝜆𝐺, 𝑅𝐺} are
supposed as desired then as expected (4a) and (4b) result in
the ultimate relations:

𝜆𝑢𝐺 = 2𝜆𝐶
𝜋 ; (6a)

𝑅𝑢𝐺 = 𝑅𝐶
√𝜋 (6b)

and vice versa. Relation (6a) is derived in [21] for the first time
while formula (6b) for 1D BEC radii is well-known.

The following relations can be obtained from general
system (3a) and (3b) for finite ranges of integrations and
specific values 𝛼1 = 2 and 𝛼2 = 1:

𝜆𝐺√𝜋
2𝑅𝐺

𝑁𝐺

∑
𝑗=1

[erf (𝑧2,𝑗,𝐺) − erf (𝑧1,𝑗,𝐺)] = 𝜆𝐶
𝑅𝐶

⋅
𝑁𝐶

∑
𝑖=1

[exp (−𝑧1,𝑖,𝐶) − exp (−𝑧2,𝑖,𝐶)] ;
(7a)

1
𝑅𝐺√𝜋

∑𝑁𝐺𝑗=1 [exp (−𝑧21,𝑗,𝐺) − exp (−𝑧22,𝑗,𝐺)]
∑𝑁𝐺𝑗=1 [erf (𝑧2,𝑗,𝐺) − erf (𝑧1,𝑗,𝐺)]

= 1
𝑅𝐶

⋅ ∑
𝑁𝐶
𝑖=1 [exp (−𝑧1,𝑖,𝐶) (1 + 𝑧1,𝑖,𝐶) − exp (−𝑧2,𝑖,𝐶) (1 + 𝑧2,𝑖,𝐶)]

∑𝑁𝐶𝑖=1 [exp (−𝑧1,𝑖,𝐶) − exp (−𝑧2,𝑖,𝐶)]
.
(7b)

Here erf(𝑥) = (2/√𝜋) ∫𝑥
0
exp(−𝑡2)𝑑𝑡 is the error integral and

𝑧1(2),𝑖,𝐶(𝐺) ≡ 𝑞1(2),𝑖,𝐶(𝐺)𝑅𝐶(𝐺) are the limits for integration over
corresponding subranges for Cauchy (Gaussian) distribution.
The detailed study of all available experimental results in
strong interaction processes for 1D parametrization (2) with
𝛼1 = 2 and 𝛼2 = 1 for experimental CF C2(𝑞) shows the fol-
lowing: (i) the ranges of integration for both the exponential
and the Gaussian functions are equal; (ii) usually, the range
of integration is not divided into subranges; in any case, such
division is identical for both functions under consideration
and maximum value of 𝑁𝐶(𝐺) is equal 2 for experimental
analyses. Thus the general statement with regard of identity
of integration ranges for Ω1 and Ω2 is quite confirmed for
case of Cauchy and Gaussian distributions and𝑁𝐶(𝐺) ≡ 𝑁 in
system (7a) and (7b).

Further simplification for the system of (7a) and (7b)
depends on features of certain experiment; direction of cal-
culations Ω𝐶 󴀘󴀯 Ω𝐺, that is, what kind of a set of BEC
parameters of the two, {𝜆𝐶, 𝑅𝐶} and {𝜆𝐺, 𝑅𝐺}, it is regarded
as a priori known and which set is supposed as desired; and
requirement on the accuracy level. For available experimental
data for BEC of charged pion pairs produced in strong inter-
action processes (i) the accuracy for 1D BEC radius is better
usually than that for 𝜆 parameter and (ii) the accuracy for
1D BEC parameters inmodern experiments is not better than
∼10−3 so far. Thus one can assume the conservative accuracy
level 𝜀 = 5 × 10−4. At present the most complex case with
𝑁 = 2 is for analyses of proton-proton collisions at some LHC
energies only [15, 22]. For this case all contributions are
negligible from the subrange of 𝑞 values larger than the region
of the influence of meson resonances excluded from the
experimental fits; that is, all terms for 𝑖 = 𝑗 = 2 can be
omitted at given 𝜀 and direction of calculation from a priori
known Cauchy parameters to desired Gaussian parameters
{𝜆𝐶, 𝑅𝐶} → {𝜆𝐺, 𝑅𝐺}. But the statement is wrong for opposite
direction of calculation from a priori knownGaussian param-
eters to desired Cauchy parameters {𝜆𝐺, 𝑅𝐺} → {𝜆𝐶, 𝑅𝐶} at
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𝜀 = 5×10−4. Therefore the sum can be omitted in system (7a)
and (7b) and equations can be rewritten as follows:

𝜆𝐺
𝑅𝐺√𝜋 [erf (𝑧2,𝐺) − erf (𝑧1,𝐺)]

= 2𝜆𝐶
𝜋𝑅𝐶 [exp (−𝑧1,𝐶) − exp (−𝑧2,𝐶)] ;

(8a)

1
𝑅𝐺√𝜋

exp (−𝑧21,𝐺) − exp (−𝑧22,𝐺)
erf (𝑧2,𝐺) − erf (𝑧1,𝐺)

= 1
𝑅𝐶

exp (−𝑧1,𝐶) (1 + 𝑧1,𝐶) − exp (−𝑧2,𝐶) (1 + 𝑧2,𝐶)
exp (−𝑧1,𝐶) − exp (−𝑧2,𝐶)

(8b)

for all experiments in the case of estimation of unknown
BEC parameters for Gaussian function based on the a priori
known set of corresponding parameters for exponential
function and for all experiments with exception of 𝑝 + 𝑝
collisions at √𝑠𝑁𝑁 = 0.9, 2.36, and 7 TeV [15, 22] in the case
of inverse problem. Accounting the relation 𝑅𝐺 ≤ 𝑅𝐶/√𝜋
and properties of the functions exp(−𝑥2), erf(𝑥) allows us to
simplify (8a) and (8b) to system

𝜆𝐺
𝑅𝐺√𝜋 erfc (𝑧1,𝐺)

= 2𝜆𝐶
𝜋𝑅𝐶 [exp (−𝑧1,𝐶) − exp (−𝑧2,𝐶)] ;

(9a)

1
𝑅𝐺√𝜋

exp (−𝑧21,𝐺)
erfc (𝑧1,𝐺)

= 1
𝑅𝐶

exp (−𝑧1,𝐶) (1 + 𝑧1,𝐶) − exp (−𝑧2,𝐶) (1 + 𝑧2,𝐶)
exp (−𝑧1,𝐶) − exp (−𝑧2,𝐶) ,

(9b)

where erfc(𝑥) = 1 − erf(𝑥). The last system of equations is
valid for remain set of experimental results with exception
of the WA98 data [23] at given 𝜀. Also the transition from
system (8a) and (8b) to simpler equations (9a) and (9b) is
not valid for CPLEAR data [24] for direction of calculation
from a priori known Gaussian parameters to desired Cauchy
parameters {𝜆𝐺, 𝑅𝐺} → {𝜆𝐶, 𝑅𝐶} at 𝜀 = 5×10−4. The simplest
view of the system of (9a) and (9b)

𝜆𝐺
𝑅𝐺√𝜋 erfc (𝑧1,𝐺) = 2𝜆𝐶

𝜋𝑅𝐶 exp (−𝑧1,𝐶) ; (10a)

1
𝑅𝐺√𝜋

exp (−𝑧21,𝐺)
erfc (𝑧1,𝐺) = 1 + 𝑧1,𝐶

𝑅𝐶
(10b)

corresponds to the range of integration [𝑧1,𝐶(𝐺),∞) and can
be used for experimental results from ALICE [25], CMS
[14, 15, 17, 26] with exception of the collision energy √𝑠𝑁𝑁 =2.36TeV [15] in the case of proton-proton collisions, and
WA80 [27] for asymmetric nucleus-nucleus collisions O +
C, O + Cu. On the other hand, the using of the range of

integration [0.0, 𝑧2,𝐶(𝐺)] allows the derivation of the following
system from (9a) and (9b):

𝜆𝐺
𝑅𝐺√𝜋 erf (𝑧2,𝐺) = 2𝜆𝐶

𝜋𝑅𝐶 [1 − exp (−𝑧2,𝐶)] ; (11a)

1
𝑅𝐺√𝜋

1 − exp (−𝑧22,𝐺)
erf (𝑧2,𝐺)

= 1
𝑅𝐶

1 − exp (−𝑧2,𝐶) (1 + 𝑧2,𝐶)
1 − exp (−𝑧2,𝐶) .

(11b)

As expected one can get the ultimate relations (6a) and (6b)
from the any systems of ((10a) and (10b)) or ((11a) and (11b))
at 𝑞1 → 0 or 𝑞2 → ∞, respectively. Therefore system (10a)
and (10b) can be replaced by ultimate system of (6a) and (6b)
with some accuracy 𝜀󸀠 for finite range of 𝑞 if 𝑞1 ≤ 𝑞ℎ1 and𝑞2 value is large enough to consider this value as 𝑞2 → ∞.
Similarly, system (11a) and (11b) can be replaced by ultimate
system of (6a) and (6b) with some accuracy 𝜀󸀠 for finite range
of 𝑞 if 𝑞2 ≥ 𝑞𝑙2 and 𝑞1 is small enough to consider it as 𝑞1 → 0
for (11a) and (11b). The high/low boundary values 𝑞ℎ1/𝑞𝑙2 for
variables 𝑞1/𝑞2 are dominated by assigned value of accuracy.
For instance, at 𝜀󸀠 = 10−2 the ultimate system of (6a) and
(6b) is valid for 𝑞1 ≲ 2 × 10−3𝑅𝐶(𝐺) or 𝑞2 ≳ 1.3𝑅𝐶(𝐺), that
is, 𝑞1 ≲ 𝑞ℎ1 = 2–4MeV/c or 𝑞2 ≳ 𝑞𝑙2 = 1.3–2.6GeV/c for
proton-proton collisions.The derived estimations are close to
the values of 𝑞 variable used in present experimental analyses
of BEC correlations.

These qualitative estimations are confirmed by quantita-
tive analysis below for the 𝑞1- and 𝑞2-dependencies of the
Gaussian parameters 𝜆𝐺 and 𝑅𝐺 derived for some assigned
values of the corresponding BEC parameters for exponential
function 𝜆𝐶, 𝑅𝐶 and vice versa.

3.2. Dependence on 𝑞 for Desired Cauchy/Gaussian Param-
eters. For Figures 3 and 4 Ω𝐶 is considered as a priori
known and set of BEC parameters {𝜆𝐺, 𝑅𝐺} are studied for
Gaussian parametrization (2). Figure 3 shows the 𝑞1- and
𝑞2-dependence of 1D BEC radius (Figures 3(a) and 3(b))
and strength of correlations (Figures 3(c) and 3(d)) for
parametrization (2)withGaussian functionΩ𝐺 at fixed values𝜆𝐶 = 𝜋/2 and 𝑅𝐶 = √𝜋. As seen both Gaussian parameters
show the similar behavior with changing the integration
limits, namely, 𝜆𝐺 and 𝑅𝐺 growth with decreasing of the
𝑞1,2 at fixed another limit of integration. The curves 𝜆𝐺(𝑞1),𝑅𝐺(𝑞1) approach the asymptotic dashed lines calculated with
help of system (10a) and (10b) with increasing of 𝑞2. The
similar situation is observed in Figures 3(b) and 3(d) for
curves𝑅𝐺(𝑞2), 𝜆𝐺(𝑞2) and asymptotic dashed lines calculated
with help of system (11a) and (11b) with decreasing of 𝑞1.
As seen the asymptotic lines are achieved at 𝑞1 ≲ 1MeV/c
(Figures 3(b) and 3(d)) and 𝑞2 ≳ 0.8GeV/c (Figures 3(a)
and 3(c)). Furthermore the ultimate values of the Gaussian
BEC parameters 𝜆𝑢𝐺 and 𝑅 𝑢𝐺 are valid with good accuracy for
𝑞1 < 2.0MeV/c and 𝑞2 > 1.0GeV/c. The last ranges are in
the good agreement with qualitative estimations for proton-
proton collisions obtained above. It should be emphasized
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Figure 3: Dependence of 1D BEC radius (a, b) and strength of correlations (c, d) for Gaussian parametrization on low 𝑞1 (a, c) and high
𝑞2 (b, d) limits of integration in the system of (8a) and (8b) for fixed values of the parameters for exponential parametrization: 𝜆𝐶 = 𝜋/2
and 𝑅𝐶 = √𝜋 fm. The solid lines correspond to the indicated values of the 𝑞2 for 𝑞1-dependence (a, c) and to shown values of the 𝑞1 for 𝑞2-
dependence (b, d). The dashed lines correspond to the calculations based on system (10a) and (10b) for 𝑞1-dependence (a, c) and on system
(11a) and (11b) for 𝑞2-dependence (b, d). The thin dotted lines are the ultimate levels 𝑅𝐺 = 1.0 fm (a, b) and 𝜆𝐺 = 1.0 (c, d) calculated with
help of (6a) and (6b) for given values of the set of Cauchy parameters {𝜆𝐶, 𝑅𝐶}.

that for specific case of exponential (Ω𝐶) and Gaussian
(Ω𝐺) functions the asymptotic 𝑞1-dependence is achieved for
both the 1D BEC radius (Figure 3(a)) and the strength of cor-
relations (Figure 3(c)) at 𝑞2 which is much smaller than that
for case of two some other centrally symmetric Lévy parame-
terizations (Figures 3(a) and 3(c)).This 𝑞2 value for case ofΩ𝐶
andΩ𝐺 is similar to those used in analyses of experimental CF
C2(𝑞). In Figure 4 the dependencies of relative BEC param-
eters, namely, 𝑅𝐶/𝑅𝐺 (a, b) and 𝜆𝐶/𝜆𝐺 (c, d), on 𝑞1 (a, c)

and 𝑞2 (b, d) are presented for various assigned values of
parameters for Cauchy distribution.The curves are calculated
with the simpler system of (10a) and (10b) for 𝑞1-dependence
(Figures 4(a) and 4(c)) and system (11a) and (11b) for 𝑞2-
dependence (Figures 4(b) and 4(d)), respectively. As seen the
larger values of Cauchy parameters lead to the larger values of
relative BEC parameters. The 𝑞1-dependence of relative BEC
parameters grows faster with increasing of the input values of
Cauchy parameters (Figures 4(a) and 4(c)). On the contrary
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Figure 4: Dependence of relative 1D BEC radius (a, b) and strength of correlations (c, d) on 𝑞1 (a, c) and 𝑞2 (b, d) for various fixed values of
the parameters for exponential parametrization. The calculations are made for simpler range of integration [𝑧1,𝐶(𝐺),∞) with help of system
(10a) and (10b) for 𝑞1-dependence (a, c) and for [0.0, 𝑧2,𝐶(𝐺)] with system (11a) and (11b) for 𝑞2-dependence (b, d), respectively. The dashed
lines correspond to 𝜆𝐶 = 0.6𝜋, 𝑅𝐶 = 1.2√𝜋 fm, solid lines 𝜆𝐶 = 0.5𝜋, 𝑅𝐶 = √𝜋 fm, and dotted lines 𝜆𝐶 = 0.4𝜋, 𝑅𝐶 = 0.8√𝜋 fm. The thin
dotted lines are the ultimate levels 𝑅𝐶/𝑅𝐺 = √𝜋 (a, b) and 𝜆𝐶/𝜆𝐺 = 𝜋/2 (c, d) corresponding to system (6a) and (6b).

the decrease of the 𝑞2-dependence of the𝑅𝐶/𝑅𝐺 (Figure 4(b))
and 𝜆𝐶/𝜆𝐺 (Figure 4(d)) is slower with increasing of the
input values of the {𝜆𝐶, 𝑅𝐶}. As expected the ultimate levels
𝑅𝐶/𝑅𝐺 = √𝜋 (Figures 4(a) and 4(b)) and 𝜆𝐶/𝜆𝐺 = 𝜋/2
(Figures 4(c) and 4(d)) shown by thin dotted lines are valid
for the same ranges of 𝑞1 and 𝑞2 as estimated above for
Figure 3.

Figures 5 and 6 show results for opposite direction of
calculations; that is,Ω𝐺 is supposed to be a priori known and
BEC parameters {𝜆𝐶, 𝑅𝐶} for exponential parametrization

of CF C2(𝑞) are derived. Figure 5 shows the 𝑞1- and 𝑞2-
dependence of 1D BEC radius (Figures 5(a) and 5(b)) and
strength of correlations (Figures 5(c) and 5(d)) for exponen-
tial function Ω𝐶 at fixed values 𝜆𝐺 = 2/𝜋 and 𝑅𝐺 = 1/√𝜋.
The ∀𝑖 = 1, 2 : 𝑞𝑖-dependencies show the opposite behavior
for desired parameters of Cauchy source function𝑅𝐶 (Figures
5(a) and 5(b)) and 𝜆𝐶 (Figures 5(c) and 5(d)) with respect to
the corresponding dependencies presented in Figure 3 above
for another direction of calculation {𝜆𝐶, 𝑅𝐶} → {𝜆𝐺, 𝑅𝐺}.
These differences are seen in domain of relatively large
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Figure 5: Dependence of 1D BEC radius (a, b) and strength of correlations (c, d) for Cauchy distribution on low 𝑞1 (a, c) and high 𝑞2
(b, d) limits of integration in the system of (8a) and (8b) for fixed values of the parameters for Gaussian parametrization: 𝜆𝐺 = 2/𝜋 and
𝑅𝐺 = 1/√𝜋 fm. The solid lines correspond to the indicated values of the 𝑞2 for 𝑞1-dependence (a, c) and to shown values of the 𝑞1 for 𝑞2-
dependence (b, d). The dashed lines correspond to the calculations based on system (10a) and (10b) for 𝑞1-dependence (a, c) and on system
(11a) and (11b) for 𝑞2-dependence (b, d). The thin dotted lines are the ultimate levels 𝑅𝐶 = 1.0 fm (a, b) and 𝜆𝐺 = 1.0 (c, d) calculated with
help of (6a) and (6b) for given values of the set of Gaussian parameters {𝜆𝐺, 𝑅𝐺}.

𝑞1 ≳ 10−2 GeV/c for 𝑞1-dependence and at relatively small
𝑞2 ≲ 0.7GeV/c for 𝑞2-dependence of BEC parameters.
Furthermore the 𝑞1-dependence for parameters from set
for Ω𝐶 (Figures 5(a) and 5(c)) approaches the constant at
𝑞1 → 0 faster noticeably than that for 𝑅𝐺 (Figure 3(a))
and 𝜆𝐺 (Figure 3(c)). The opposite situation is observed for
achievement of constants by 𝑞2-dependence at 𝑞2 → ∞.
It should be noted that dependencies 𝑅𝐶(𝑞1) and 𝜆𝐶(𝑞1)
approach their asymptotic curves calculated with help of

system (10a) and (10b) and shown by dashed lines in Figures
5(a) and 5(c) slower than corresponding dependencies for
desired Gaussian parameters in Figures 3(a) and 3(c). As a
consequence 𝑅𝐶(𝑞1) and 𝜆𝐶(𝑞1) will achieve the asymptotic
curves at higher 𝑞2 than that for Figures 3(a) and 3(c). The
asymptotic value of 𝑞1 ≃ 10−3 GeV/c is the same for 𝑞2-
dependence for both directions of calculations {𝜆𝐶, 𝑅𝐶} 󴀘󴀯
{𝜆𝐺, 𝑅𝐺}. Figure 6 demonstrates the dependence of relative
BEC parameters, namely, 𝑅𝐶/𝑅𝐺 (a, b) and 𝜆𝐶/𝜆𝐺 (c, d),
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Figure 6: Dependence of relative 1D BEC radius (a, b) and strength of correlations (c, d) on 𝑞1 (a, c) and 𝑞2 (b, d) for various fixed values
of the parameters for Gaussian parametrization. The calculations are made for simpler range of integration [𝑧1,𝐶(𝐺),∞) with help of system
(10a) and (10b) for 𝑞1-dependence (a, c) and for [0.0, 𝑧2,𝐶(𝐺)] with system (11a) and (11b) for 𝑞2-dependence (b, d), respectively. The dashed
lines correspond to 𝜆𝐺 = 1.2, 𝑅𝐺 = 1.2 fm, solid lines 𝜆𝐺 = 1.0, 𝑅𝐺 = 1.0 fm, and dotted lines 𝜆𝐺 = 0.8, 𝑅𝐺 = 0.8 fm.The thin dotted lines are
the ultimate levels 𝑅𝐶/𝑅𝐺 = √𝜋 (a, b) and 𝜆𝐶/𝜆𝐺 = 𝜋/2 (c, d) corresponding to system (6a) and (6b).

on 𝑞1 (a, c) and 𝑞2 (b, d) for various assigned values of
parameters forGaussian parametrization.The simpler system
of (10a) and (10b) is used for calculation of 𝑞1-dependencies
in Figures 6(a) and 6(c) and curves on 𝑞2 (Figures 6(b) and
6(d)) are derived with help of system (11a) and (11b). In
general ∀𝑖 = 1, 2 : 𝑞𝑖-dependencies show similar behavior
for corresponding relative 1D BEC parameters in both cases,
Figure 4 and Figure 6, with some faster changing of 𝑞𝑖-
dependencies in the second case than that for the first one in
domain of relatively large 𝑞1 ≳ 10−2 GeV/c for 𝑞1-dependence

and at relatively small 𝑞2 ≲ 0.7GeV/c for 𝑞2-dependence of𝑅𝐶/𝑅𝐺 and 𝜆𝐶/𝜆𝐺.
Simultaneous consideration of available 1D BEC data

analyses for strong interaction processes and Figures 3 and
5 allow the assertion that ultimate relations (6a) and (6b) are
not acceptable with reasonable accuracy for most of exper-
imental results with exponential/Gaussian parametrization
(2) of 1D CF C2(𝑞). As seen from Figures 4 and 6 even the
asymptotic values of relative 1D BEC parameters {𝜆𝐶/𝜆𝐺,𝑅𝐶/𝑅𝐺} can differ up to several times from ultimate values
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calculated with help of the system of (6a) and (6b) in some
domains of 𝑞1 and 𝑞2 variables.Therefore Figures 3–6 confirm
the conclusion formulated above for case of two general
view centrally symmetric Lévy parameterizations; namely,
for desired 1D BEC parameters the finite values for limits
of integrations can lead to the significant difference between
values of BEC observables calculated on exact equations and
asymptotic/ultimate values calculated on simpler relations.

It should be emphasized that the results of the present
paper shown in Figures 3–6 are useful for experimental data
analysis as well as for phenomenological studies because it
allow, in particular, the quantitative choice between systems
of ((6a)–(11b)) for estimations of 1D BEC parameters for
specific cases of centrally symmetric Lévy parametrization
(2) at 𝛼 = 1, 2 depending on some features in given experi-
ment.

4. Comparison with Experimental Results

Database is created for 1D BEC results for identical charged
pions produced in strong interaction processes in order to
verify the mathematical formalisms suggested above. This
database is shown in Appendix 5 and it is used as input for
calculations below. Experimental results for strength of corre-
lations and 1D source radius are considered for all types of the
processes and centrally symmetric Lévy parameterizations
(2) and for total available energy range in the paper. The
results for most central nucleus-nucleus collisions are usually
included in the database because these collisions are used
for studying of new features of final state matter [28]. The
dependence of 1D BEC parameters on the outgoing charged
particle multiplicity, 𝑁ch, is widely studied for 𝑝 + 𝑝 and
𝑝+𝑝 collisions at least.Therefore the additional separation is
made on experimental 1D BEC values deduced for minimum
bias and for high multiplicity event classes sometimes (this
separation will be stipulated additionally if experimental
1D BEC results are available for various multiplicity event
classes in 𝑝 + 𝑝, 𝑝 + 𝑝 collisions.). This consideration seems
important for both the additional verification ofmathematics
above and themore careful comparisonwith nucleus-nucleus
results. As seen the additional information is required about
experimental 𝑞 ranges for systems ((3a) and (3b)) and ((7a)
and (7b)) in comparison with the ultimate relations ((4a)
and (4b)) and ((6a) and (6b)). Therefore experimental 𝑞
ranges are estimated based on the available published data. In
Tables 1–4 the statistical errors are shown first and available
systematic uncertainties second, unless otherwise specifically
indicated; the types of uncertainties (statistical/total, sym-
metric/asymmetric) are chosen just the same as well as input
parameters for the sake of simplicity.

4.1. Relations between Parameters for Cauchy/Gaussian Dis-
tribution and Lévy One. The general system of (3a) and (3b)
allow us to estimate the 1D BEC parameters for exponen-
tial/Gaussian function Ω𝐶(𝐺) based on the a priori known
parameter values for Ω𝐿 ≡ Ω(𝛼𝐿, 𝜆𝐿, 𝑅𝐿) corresponding to
general view of centrally symmetric Lévy distribution and
vice versa.

4.1.1. Direction of CalculationsΩ𝐿 → Ω𝐶/𝐺. The sets {𝜆𝐶, 𝑅𝐶}
and {𝜆𝐺, 𝑅𝐺} are estimated for experimentally known Ω𝐿
[14–16] and finite 𝑞-ranges with help of (3a) and (3b). The
estimations are shown in Table 1 together with the available
experimental results and the data for Cauchy distribution
are shown on the first line, for Gaussian parametrization, on
the second line for certain experiment at given energy. As
seen estimations for strength of correlations and 1D radius
calculated with help of (3a) and (3b) agree with experimental
values within errors for both the Cauchy and the Gaussian
distributions for particle emission points at all energies under
study. One can note that estimation for 𝜆𝐺 coincides with
experimental values within total errors only at√𝑠𝑁𝑁 = 7TeV.
Nevertheless the general system of (3a) and (3b) provides
rather well estimations of 1D BEC parameters for both the
Cauchy and theGaussian distributions.The possibility is con-
sidered for application of ultimate relations (4a) and (4b) for
the experimental data under study. All estimations from (4a)
and (4b) coincide with results from general system (3a) and
(3b) within errors with exception of 𝜆𝐺 for CMS at √𝑠𝑁𝑁 =
7TeV. For the last case the estimations from ((3a) and (3b))
and ((4a) and (4b)) coincide with each other within 2𝜎.
Thus the ultimate relations (4a) and (4b) provide reasonable
estimations for 1D BEC parameters in both cases of the
Cauchy and the Gaussian distributions within features of
modern experiments under consideration, that is, at 𝑞1 ∼
10−2 GeV/c, 𝑞2 ∼ 2GeV/c, and 𝛼𝐿 ∼ 0.8 which is close to
the region of Lévy index values with weaker changing of 1D
BEC parameters (Figure 2).

4.1.2. Direction of Calculations Ω𝐶/𝐺 → Ω𝐿. Here the set
of 1D BEC parameters {𝜆𝐿, 𝑅𝐿} is estimated at a priori given
𝛼𝐿 with help of the system of (3a) and (3b) for experimentally
knownΩ𝐶 [14, 16],Ω𝐺 [15, 16] and finite 𝑞-ranges.The estima-
tions for parameters ofΩ𝐿 are shown in Table 2 together with
the available experimental results and the values of 𝜆𝐿, 𝑅𝐿
derived from experimental analysis with Cauchy distribution
are shown on the first line; the second one corresponds to the
calculations with data for Gaussian distribution for certain
experiment at given energy. The relatively large systematic
uncertainties for ATLAS are driven by corresponding error
for Lévy index [16].There is a remarkable agreement between
results of calculations and experimental analyses (Table 2):
estimations for all 1D BEC parameters coincide with corre-
sponding experimental values within statistical errors with
exception of the 𝜆𝐿 at √𝑠𝑁𝑁 = 7TeV for ATLAS data. For
the last case the coincidence between estimations from (3a)
and (3b) experiment is achieved within total errors. This
conclusion is for both Ω𝐶 → Ω𝐿 and Ω𝐺 → Ω𝐿 schemes
of calculations.Thus the system of general equations (3a) and
(3b) provides the high-quality estimations of 1D BEC param-
eters for general view centrally symmetric Lévy parametriza-
tion Ω𝐿 based on the a priori known 𝛼𝐿 and results for
exponential/Gaussian function. One can note the ultimate
relations (4a) and (4b) for semi-infinite range of Lorentz
invariant quantity 𝑞 result in reasonable estimations for the
set of 1D BEC parameters {𝜆𝐿, 𝑅𝐿} with help of results for
exponential function Ω𝐶 as well as for Gaussian one Ω𝐺.



Advances in High Energy Physics 13

Table 1: Parameter values for exponential and Gaussian parameterizationsΩ𝐶(𝐺).

Collision √𝑠𝑁𝑁, Experiment Estimation based on (3a), (3b) Experimental values Ref.
GeV 𝜆 𝑅, fm 𝜆 𝑅, fm

𝑝 + 𝑝

900 CMS 0.62 ± 0.08 1.47 ± 0.24 0.616 ± 0.011 ± 0.029 1.56 ± 0.02 ± 0.15 [14]
0.35 ± 0.06 0.81 ± 0.22 0.32 ± 0.01 0.98 ± 0.03 [15]

7000
ATLAS 0.73 ± 0.03 ± 0.54 2.02 ± 0.11 ± 1.79 0.701 ± 0.006 ± 0.067 2.021 ± 0.012 ± 0.281 [16]0.39 ± 0.01 ± 0.20 1.07 ± 0.04 ± 0.82 0.302 ± 0.002 ± 0.019 1.046 ± 0.005 ± 0.114
CMS 0.62 ± 0.06 1.81 ± 0.23 0.618 ± 0.009 ± 0.042 1.89 ± 0.02 ± 0.21 [14]

0.35 ± 0.03 0.96 ± 0.12 — — —

Table 2: Parameter values for general Lévy parametrization Ω𝐿 at given 𝛼𝐿.

Collision √𝑠𝑁𝑁, Experiment Estimation based on (3a), (3b) Experimental values Ref.
GeV 𝜆 𝑅, fm 𝜆 𝑅, fm

𝑝 + 𝑝
900 CMS 0.85 ± 0.04 ± 0.05 2.33 ± 0.18 ± 0.23 0.85 ± 0.06 2.20 ± 0.17 [14]

0.89 ± 0.10 3.2 ± 0.5 0.93 ± 0.11 2.5 ± 0.4 [15]

7000
ATLAS 0.973 ± 0.012 ± 0.332 2.97 ± 0.06 ± 1.27 1.02 ± 0.03 ± 0.41 2.96 ± 0.09 ± 1.31 [16]0.774 ± 0.010 ± 0.250 2.86 ± 0.06 ± 1.21
CMS 0.89 ± 0.04 ± 0.07 2.96 ± 0.17 ± 0.34 0.90 ± 0.05 2.83 ± 0.18 [14]

Nevertheless the general system (3a) and (3b) allows the
noticeable improvement of the results with respect to (4a)
and (4b) for chaoticity 𝜆𝐿 derived from results for Gaussian
distribution. This feature can be expected from Figure 2(d)
because curve calculated with (3a) and (3b) differs from the
corresponding ultimate 𝛼2-dependence at values 𝛼1 ≲ 0.8
which are close to the experimental data (Table 6).

4.2. Relations between Parameters for Cauchy and Gaussian
Distributions. The system of (7a) and (7b) derived above
is used for estimation of the 1D BEC parameter values
for Gaussian parametrization based on the a priori known
values for set {𝜆𝐶, 𝑅𝐶} of BEC parameters for exponential
parametrization and experimental ranges on 𝑞 and vice versa.
In the subsection the separation is used on various multiplic-
ity event classes in 𝑝+𝑝, 𝑝+𝑝 collisions for 1D BEC results in
some experiments. The results for minimum bias events are
shown on the first line and for high multiplicity events they
are shown on the second line for certain experiment at given
energy in Tables 3 and 4.

4.2.1. Direction of Calculations Ω𝐶 → Ω𝐺. Parameters for
Gaussian function are calculated with help of system (7a) and
(7b) and a priori known set {𝜆𝐶, 𝑅𝐶}. The results are shown
in Table 3 together with available published experimental
results for the Gaussian set {𝜆𝐺, 𝑅𝐺}. As seen from Table 3
the estimations for the set of the Gaussian parameters are
equal for published results within (total) errors for proton-
proton collisions with exception of the value of strength of
correlations 𝜆𝐺 in ATLAS minimum bias events at √𝑠𝑁𝑁 =
7TeV and CMS result at collision energy √𝑠𝑁𝑁 = 2.36TeV.
In the two last cases the agreement is observed within 2𝜎.The
similar situation is for symmetric nucleus-nucleus collisions;

that is, the estimations within the present paper for set of
Gaussian parameters {𝜆𝐺, 𝑅𝐺} agree with the results of the
WA98 experiment [23] within 2𝜎. But there is qualitative
agreement only between results of calculations with help of
(8a) and (8b) and experimental data for 𝑝 + 𝑝 collisions
[24]. Perhaps, this discrepancy is dominated by some features
of experiment provided unusually large values of chaoticity
for both the exponential and the Gaussian parameterizations
of 1D CF C2(𝑞). For asymmetric nuclear interactions the
agreement between results of calculations in the present
paper and available experimental data is achieved mostly
within errors for both 𝜆𝐺 and the 1D BEC radius. Only
estimations for Gaussian 1D radius 𝑅𝐺 in O + Ag and for
𝜆𝐺 in O + Au coincide with corresponding results of the
WA80 experiment [27] within 2𝜎. It should be emphasized
that approximate calculations demonstrate the same results
as in Table 3 within errors for all consecutive simplifications
((8a)–(11b)) which are valid and can be applied for certain
experiment. One can note in particular that as expected the
ultimate relations (6a) and (6b) work rather well for the
CMS results at √𝑠𝑁𝑁 = 2.76TeV with low enough 𝑞1 ≈
0.6MeV/c and high enough 𝑞2 ≈ 2.0GeV/c. Thus detailed
calculations for case Ω𝐶 → Ω𝐺 confirm both the correctness
of suggestions made above for certain experiments and the
validity of corresponding systems of ((6a)–(11b)).

4.2.2. Direction of Calculations Ω𝐺 → Ω𝐶. Values of 1D
BEC parameters for exponential function are estimated with
help of system (7a) and (7b) and a priori known values for
Gaussian BEC quantities {𝜆𝐺, 𝑅𝐺}. The results are presented
in Table 4 together with available published experimental
results for the set of BEC parameters {𝜆𝐶, 𝑅𝐶} corresponding
to the Cauchy distribution function in coordinate space for
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Table 3: Parameter values for Gaussian functionΩ𝐺 in (2).

Collision √𝑠𝑁𝑁, Experiment Estimation based on (7a), (7b) Experimental values Ref.
GeV 𝜆𝐺 𝑅𝐺, fm 𝜆𝐺 𝑅𝐺, fm

𝑝 + 𝑝

63.0 AFS 0.47 ± 0.04 0.73 ± 0.07 0.40 ± 0.03 0.82 ± 0.05 [29]

900
ALICE 0.305 ± 0.024 1.00 ± 0.09+0.06−0.18 0.35 ± 0.03 1.00 ± 0.06+0.10−0.20 [25]0.357 ± 0.025 0.89 ± 0.06+0.08−0.18 0.310 ± 0.026 1.18 ± 0.09+0.07−0.17
ATLAS 0.41 ± 0.01 ± 0.03 1.00 ± 0.03 ± 0.08 0.34 ± 0.01 ± 0.03 1.00 ± 0.03 ± 0.08 [30]

CMS
0.351 ± 0.006 ± 0.013 0.83 ± 0.01 ± 0.08 0.32 ± 0.01 0.98 ± 0.03 [15]

2360 0.348 ± 0.030 ± 0.013 1.04 ± 0.08 ± 0.10 0.32 ± 0.01 0.98 ± 0.03
2760 0.366 ± 0.005 ± 0.025 0.915 ± 0.007 ± 0.116 — — —

7000

ALICE 0.719 ± 0.002 ± 0.047 1.148 ± 0.007+0.04−0.02 0.645 ± 0.003 ± 0.047 1.430 ± 0.005+0.16−0.30 [31]

ATLAS 0.381 ± 0.003 ± 0.022 1.092 ± 0.005 ± 0.074 0.327 ± 0.002 ± 0.020 1.130 ± 0.005 ± 0.086
[30]0.266 ± 0.009 ± 0.015 1.25 ± 0.03 ± 0.09 0.251 ± 0.010 ± 0.018 1.38 ± 0.04 ± 0.12

CMS 0.344 ± 0.005 ± 0.018 1.00 ± 0.01 ± 0.10 — — —
𝑝 + 𝑝 1.89 CPLEAR 2.332 ± 0.025 0.972 ± 0.014 1.96 ± 0.03 1.04 ± 0.01 [24]
𝑝 + Pb 5020 CMS 0.358 ± 0.007 ± 0.021 1.70 ± 0.02 ± 0.12 — — —
Pb + Pb 17.3 WA98 0.327 ± 0.008 6.51 ± 0.10 0.307 ± 0.008 6.83 ± 0.10 [23]
O + C

19.4 WA80

0.44 ± 0.05 2.8 ± 0.3 0.40 ± 0.03 2.90 ± 0.21
[27]O + Cu 0.24 ± 0.07 2.53 ± 0.11 0.17 ± 0.03 2.35 ± 0.11

O + Ag 0.28 ± 0.10 2.71 ± 0.11 0.17 ± 0.04 2.44 ± 0.11
O + Au 0.110 ± 0.015 1.63 ± 0.05 0.085 ± 0.007 1.68 ± 0.06

Table 4: Parameter values for exponential function Ω𝐶 in (2).

Collision √𝑠𝑁𝑁, Experiment Estimation based on (7a), (7b) Experimental values Ref.
GeV 𝜆𝐶 𝑅𝐶, fm 𝜆𝐶 𝑅𝐶, fm

𝑝 + 𝑝

7.21 E766 1.63 ± 0.10 2.29 ± 0.08 — — —
26.0 NA23 1.4 ± 0.7 2.6 ± 0.7 — — —
63.0 AFS 0.67 ± 0.05 1.50 ± 0.10 0.77 ± 0.07 1.32 ± 0.13 [29]
200 STAR 0.588 ± 0.010 2.43 ± 0.04 ± 0.26 — — —

900
ALICE 0.63 ± 0.06 1.89 ± 0.12+0.20−0.40 0.63 ± 0.05 1.67 ± 0.12+0.16−0.35 [25]0.57 ± 0.06 2.26 ± 0.19+0.14−0.34 0.55 ± 0.05 1.90 ± 0.18+0.11−0.36
ATLAS 0.62 ± 0.03 ± 0.08 1.84 ± 0.07 ± 0.20 0.74 ± 0.03 ± 0.09 1.83 ± 0.07 ± 0.20 [30]

CMS 0.57 ± 0.02 1.85 ± 0.06 0.616 ± 0.011 ± 0.029 1.56 ± 0.02 ± 0.15 [14, 15]
2360 0.60 ± 0.03 1.86 ± 0.07 0.66 ± 0.07 ± 0.05 1.99 ± 0.18 ± 0.24 [15]

7000
ALICE 1.104 ± 0.006 ± 0.112 2.627 ± 0.010+0.320−0.626 1.180 ± 0.005 ± 0.084 2.038 ± 0.014+0.083−0.046 [31]

ATLAS 0.627 ± 0.005 ± 0.058 2.163 ± 0.012 ± 0.209 0.718 ± 0.006 ± 0.062 2.067 ± 0.012 ± 0.182 [30]0.521 ± 0.027 ± 0.055 2.76 ± 0.10 ± 0.29 0.531 ± 0.024 ± 0.046 2.46 ± 0.08 ± 0.22
𝑝 + 𝑝 1.89 CPLEAR 4.21 ± 0.09 2.079 ± 0.028 4.79 ± 0.10 1.89 ± 0.04 [24]
Au + Au 4.86 E802 0.86 ± 0.08 12.4 ± 0.6 — — —

Pb + Pb 17.3 NA44 1.06 ± 0.10 15.1 ± 0.9 — — —
WA98 0.69 ± 0.02 14.1 ± 0.3 0.718 ± 0.023 13.34 ± 0.26 [23]

Au + Au 130 STAR 0.99 ± 0.03 ± 0.08 13.0 ± 0.3 ± 0.9 — — —
Si + Al 5.41 E802 1.23 ± 0.08 8.4 ± 0.3 — — —
Si + Au 0.95 ± 0.05 9.4 ± 0.3 — — —
S + Pb 17.3 NA44 0.81 ± 0.05 7.8 ± 0.6 — — —
O + C

19.4 WA80

0.85 ± 0.08 5.9 ± 0.5 0.92 ± 0.13 5.7 ± 0.7
[27]O + Cu 0.34 ± 0.06 4.7 ± 0.2 0.49 ± 0.14 5.05 ± 0.25

O + Ag 0.34 ± 0.09 4.9 ± 0.2 0.59 ± 0.21 5.46 ± 0.24
O + Au 0.156 ± 0.014 3.19 ± 0.13 0.20 ± 0.03 3.07 ± 0.12
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particle emission points. For 𝑝 + 𝑝 collisions there is agree-
ment between estimations for parameters for exponential
parametrization ofCFC2(𝑞) calculatedwith (7a) and (7b) and
experimental results within (total) errors with exception of
the 1D BEC radius 𝑅𝐶 in CMS at √𝑠𝑁𝑁 = 0.9TeV. In the last
case results from calculation and experiment coincide within
2𝜎. The similar situation is observed for nucleus-nucleus
collisions: estimations for parameters of exponential function
Ω𝐶 derived with (7a) and (7b) agree with corresponding
experimental results mostly within 1𝜎, but the coincidence is
achieved within 2𝜎 for 𝑅𝐶 in both the Pb + Pb collisions at
√𝑠𝑁𝑁 = 17.3GeV [23] and the O + Ag reactions at √𝑠𝑁𝑁 =
19.4GeV [27]. The estimations of 1D BEC parameters 𝜆𝐶,𝑅𝐶 obtained for 𝑝 + 𝑝 with help of (8a) and (8b) are
in qualitative agreement with corresponding experimental
results [24] even for the case of unusually large chaoticity.
Thus the system of (7a) and (7b) provides quite reasonable
estimations for parameters for exponential function based
on the a priori known values of 1D BEC observables for
Gaussian function in various strong interaction processes at
all available experimental energies.

In summary of the section, the systems of ((3a) and (3b))
and ((7a) and (7b)) provide correct estimations for both
desired BEC parameters, namely, the strength of correlations
and the 1D radius in the case of centrally symmetric Lévy dis-
tributionΩ𝐿 as well as for specific Cauchy andGaussian ones.
In general the estimations show remarkable agreement with
available experimental data. Thus the systems of equations
suggested in Sections 2 and 3 can be useful in experimental
data analysis as well as in phenomenological study for
estimation of unknown values of BEC parameters for some
parametrization (2) of 1D CF C2(𝑞) based on the available
values of 𝜆 and 𝑅 for another centrally symmetric Lévy
distribution. As seen from Tables 1–4 the new estimations are
obtained for 1D BEC parameters in Ω𝐶, Ω𝐺 in many cases
for which the corresponding experimental results are absent.
Thus the systems of equations derived within the framework
of this paper allow the expansion of the available ensemble of
values for 1D BEC parameters 𝜆 and 𝑅 which it is useful for
future investigations.

5. Summary

The case is investigated for smooth approximation of the one
experimental 1D Bose–Einstein correlation function by two
various centrally symmetric Lévy parameterizations. It is
suggested that lowest moments of corresponding distribu-
tions are equal approximately. Then the relations are derived
between sets of 1D BEC observables, namely, strength of
correlations and source radius, for two general view centrally
symmetric Lévy parameterizations under consideration for
the first time. The relations obtained in the paper take into
account the finiteness of range of Lorentz invariant four-
momentumdifference in experimental studies.Detailed anal-
ysis results in the systems of transcendental equations for var-
ious finite ranges of the Lorentz invariant four-momentum
difference in the specific case of the exponential andGaussian
parameterizations for correlation function. It is shown that

finite range of 𝑞 should be taken into account and correspon-
ding systems of equations should be used for derivation of
set {𝜆, 𝑅} based on the a priori known values of corre-
sponding parameters for both cases of the two general view
centrally symmetric Lévy parameterizations and the two
specific functions (exponential and Gaussian) most used in
experimental studies.The ultimate relations derived for semi-
infinite range of 𝑞 can be utilized carefully for experimental
analysis and these equations can produce the reasonable
estimations for 1DBECparameters for ranges of Lévy indexes
∀𝑖 = 1, 2 : 𝛼𝑖 ≳ 1 only. Furthermore it is demonstrated that
the corresponding ultimate relations for specific case of
Cauchy and Gaussian distributions for source in coordinate
space produce the reasonable estimations of 1D BEC param-
eters for few modern experimental analyses only. The math-
ematical formalism suggested within the framework of the
preset paper is verified with help of experimental results
obtained for wide set of strong interaction processes in all
available energy range.The two pairs of distributions are con-
sidered: general view centrally symmetric Lévy one with spe-
cific case (Cauchy/Gaussian); two specific Cauchy and Gaus-
sian distributions. For both cases verifications are made for
both directions of calculations. Namely, the calculations have
beenmade for estimation of 1D BEC observables for Cauchy/
Gaussian function based on the a priori known values of
parameters of general Lévy parametrization and vice versa,
for estimations of Gaussian parameters based on the a priori
known values of observables for Cauchy distribution and
vice versa. Comparison shows the quantitative agreement
between estimations derived with help of mathematical for-
malism developed in the paper and most of available exper-
imental results for both pairs consisting of the general view
centrally symmetric Lévy parametrization and specific (exp-
onential/Gaussian) function and the two specific source dis-
tributions (Cauchy and Gaussian) most used in experimental
studies for any direction of calculations.

Appendix

Data for 1D BEC Parameters in
Strong Interactions

In this Appendix experimental database is shown in Tables 5
and 6 for 1D BEC parameters for identical charged pions pro-
duced in𝑝+𝑝,𝑝+𝑝, and𝐴1+𝐴2 interactions (in Table 5 total
uncertainties are shown for exponential parametrization in
CPLEAR [24] and for NA44 experiment [42]). Some of the
numerical values are used in Section 4. The pion pairs with
low average transverse momentum, ⟨𝑘𝑇⟩, are considered for
all types of strong interaction processes. The results for most
central nucleus-nucleus collisions are used and as a conse-
quence additional separation is made for 𝑝 + 𝑝 collisions on
minimum bias and high multiplicity events if corresponding
experimental 1D BEC values are available. In the last case the
results for minimum bias events are shown on the first line,
for high multiplicity events, and on the second line, for
certain experiment at given energy.
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Table 5: Experimental results for special cases of parametrization (2).

Collision √𝑠𝑁𝑁, Experiment Exponential function Ω𝐶 Gaussian function Ω𝐺 Ref.
GeV 𝜆𝐶 𝑅𝐶, fm 𝜆𝐺 𝑅𝐺, fm

𝑝 + 𝑝

7.21 E766 — — 0.466 ± 0.015 0.95 ± 0.03 [32]
26.0 NA23 — — 0.32 ± 0.08 1.02 ± 0.20 [33]
27.4 NA27 — — – 1.20 ± 0.03 [34]
31.0

ABCDHW
— — 0.35 ± 0.04 1.01 ± 0.08

[35]44.0 — — 0.42 ± 0.04 1.13 ± 0.07
62.0 — — 0.42 ± 0.08 1.69 ± 0.25
63.0 AFS 0.77 ± 0.07 1.32 ± 0.13 0.40 ± 0.03 0.82 ± 0.05 [29]
200 STAR — — 0.345 ± 0.005 1.32 ± 0.02 ± 0.13 [36]

900
ALICE 0.63 ± 0.05 1.87 ± 0.12+0.16−0.35 0.35 ± 0.03 1.00 ± 0.06+0.10−0.20 [25]0.55 ± 0.05 1.90 ± 0.18+0.11−0.36 0.310 ± 0.026 1.184 ± 0.092+0.067−0.168
ATLAS 0.74 ± 0.03 ± 0.09 1.83 ± 0.07 ± 0.20 0.34 ± 0.01 ± 0.03 1.00 ± 0.03 ± 0.08 [30]

CMS
0.616 ± 0.011 ± 0.029 1.56 ± 0.02 ± 0.15 0.32 ± 0.01 0.98 ± 0.03 [14, 15]

2360 0.66 ± 0.07 ± 0.05 1.99 ± 0.18 ± 0.24 0.32 ± 0.01 0.98 ± 0.03 [15]
2760 0.808 ± 0.017 ± 0.062 2.35 ± 0.07 ± 0.31 — — [17]

7000

ALICE 1.180 ± 0.005 ± 0.084 2.038 ± 0.014+0.083−0.046 0.645 ± 0.003 ± 0.047 1.430 ± 0.005+0.158−0.300 [31]

ATLAS 0.718 ± 0.006 ± 0.062 2.067 ± 0.012 ± 0.182 0.327 ± 0.002 ± 0.020 1.130 ± 0.005 ± 0.086 [30]0.531 ± 0.024 ± 0.046 2.46 ± 0.08 ± 0.22 0.251 ± 0.010 ± 0.018 1.38 ± 0.04 ± 0.12
CMS 0.618 ± 0.009 ± 0.042 1.89 ± 0.02 ± 0.21 — — [14]

𝑝 + 𝑝
1.89 CPLEAR 4.79 ± 10 1.89 ± 0.04 1.96 ± 0.03 1.04 ± 0.01 [24]
1800 E735 — — 0.24 ± 0.02 1.46 ± 0.10 ± 0.23 [37]
1960 CDF 0.89 ± 0.03 1.67 ± 0.05 0.50 ± 0.04 1.79 ± 0.08 [38]

𝑝 + Pb 5020
ALICE 1.230 ± 0.016+0.088−0.141 4.82 ± 0.05+0.25−0.72 0.603 ± 0.006 ± 0.056 2.780 ± 0.018+0.418−0.668 [31]
ATLAS — 5.32 ± 0.06+0.50−0.14 — — [39]
CMS 0.81 ± 0.02 ± 0.07 3.55 ± 0.05 ± 0.30 — — [26]

Au + Au 4.86 E802 — — 0.44 ± 0.03 6.32 ± 0.29 [40]
Au + Pb

17.3
NA49 — — 0.560 ± 0.023 — [41]

Pb + Pb NA44 — — 0.52 ± 0.04 7.6 ± 0.4 [42]
WA98 0.718 ± 0.023 13.34 ± 0.26 0.307 ± 0.008 6.83 ± 0.10 [23]

Au + Au 130 PHENIX — — — 6.0 ± 0.3 [43]
STAR — — 0.450 ± 0.009 ± 0.027 6.30 ± 0.12 ± 0.38 [18]

Pb + Pb 2760 ALICE 1.830 ± 0.003 ± 0.156 19.85 ± 0.02 ± 0.28 0.689 ± 0.001 ± 0.096 9.70 ± 0.06 ± 1.17 [31]
Si + Al 5.41 E802 — — 0.68 ± 0.04 4.42 ± 0.16 [40]
Si + Au — — 0.511 ± 0.026 4.91 ± 0.15
S + Pb 17.3 NA44 — — 0.42 ± 0.02 4.00 ± 0.27 [42]
O + C

19.4
WA80

0.92 ± 0.13 5.7 ± 0.7 0.40 ± 0.03 2.90 ± 0.21
[27]O + Cu 0.49 ± 0.14 5.05 ± 0.25 0.17 ± 0.03 2.35 ± 0.11

O + Ag 0.59 ± 0.21 5.46 ± 0.24 0.17 ± 0.04 2.44 ± 0.11
O + Au 0.20 ± 0.03 3.07 ± 0.12 0.085 ± 0.007 1.68 ± 0.06

NA35 — — 0.29 ± 0.03 4.00 ± 0.20 [44]

Table 6: Experimental results for general centrally symmetric Lévy parametrization (2).

Collision √𝑠𝑁𝑁, GeV Experiment General view functionΩ𝐿 Ref.𝜆𝐿 𝑅𝐿, fm 𝛼𝐿

𝑝 + 𝑝
900 CMS 0.93 ± 0.11 2.5 ± 0.4 0.76 ± 0.06 [15]

0.85 ± 0.06 2.20 ± 0.17 0.81 ± 0.03 [14]

7000 ATLAS 1.02 ± 0.03 ± 0.41 2.96 ± 0.09 ± 1.31 0.81 ± 0.01 ± 0.18 [16]
CMS 0.90 ± 0.05 2.83 ± 0.18 0.792 ± 0.024 [14]
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