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Compressive strength and splitting tensile strength are both important parameters that are utilized for characterization concrete
mechanical properties. This paper aims to show a possible applicability of support vector machine (SVM) to predict the splitting
tensile strength of concrete from compressive strength of concrete, a SVM model was built, trained, and tested using the available
experimental data gathered from the literature. All of the results predicted by the SVM model are compared with results obtained
from experimental data, and we found that the predicted splitting tensile strength of concrete is in good agreement with the
experimental data. The splitting tensile strength results predicted by SVM are also compared to those obtained by using empirical
results of the building codes and various models. These comparisons show that SVM has strong potential as a feasible tool for
predicting splitting tensile strength from compressive strength.

1. Introduction

Compressive strength (𝑓
𝑐
) and splitting tensile strength (𝑓spt)

are two significant indexes in the design of concrete structure.
Tensile strength is important for plain concrete structures
such as dam under earthquake excitations. Other structures
for example pavement slabs and airfield runways, which are
designed based on bending strength, are subjected to tensile
stresses. Therefore, in the design of these structures, tensile
strength is more important than compressive strength [1, 2].
Ideally, the splitting tensile strength is measured directly on
concrete samples under uniform stresses. However, this is not
always easy from an experimental point of view. To avoid
the demanding and time-consuming direct measurements
of the splitting tensile strength, engineers and researchers
have tried to predict the splitting tensile using theoretical
and empirical approaches based on compressive strength.
Generally, tensile strength of concrete was often assumed
proportional to the square root of its compressive strength
[3]. However, there have been very few published works
dealing with experimental and analytical researches of the
relation of 𝑓spt and 𝑓

𝑐
of concretes [4].

Generally, the splitting tensile strength can be established
from compressive strength. National building codes propose

various formulas for the splitting tensile strength 𝑓spt and
compressive strength 𝑓

𝑐
. Various relationships for concrete

were given as follows:

CEB-FIP (1991)

𝑓spt = 0.3(𝑓
𝑐
)2/3,

(1)

ACI363R-92 (1992)

𝑓spt = 0.59(𝑓
𝑐
)1/2,

(2)

ACI318-99 (1999)

𝑓spt = 0.56(𝑓
𝑐
)1/2,

(3)

where 𝑓spt and 𝑓
𝑐
are expressed in MPa.

Larrad and Malier [5] found that the calculated 𝑓spt
obtained from the French regulations were in good agree-
ment with experimental data. Kim et al. [6, 7] found
that the ACI model overestimates the value for concrete
with compressive strength less than 20MPa and underesti-
mates the value for concrete with compressive strength over
30MPa. Zain et al. [2] determined relationships between
tensile strength with compressive strength, concrete age and
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water/binder (W/B). Shaaban and Gesund [8] investigated
the splitting tensile strength and compressive strength of steel
fiber reinforced concrete but, unfortunately, did not analyze
the relationship between the tensile strength and compressive
strength. Choi and Yuan [4] investigated the relationship
between the tensile strength and compression strength of
glass fiber reinforced concrete and polypropylene fiber rein-
forced concrete. Xu and Shi [1] developed the formulation
between the 𝑓spt and 𝑓

𝑐
of steel fiber reinforced con-

crete. Mathematical regression models are usually imperfect
description of complex physical phenomena. The accuracy
of the estimated result depends on the size of available data.
Saridemir [9] proposed for 𝑓spt prediction from cylinder
𝑓
𝑐
of concrete or age of specimen (AS) and cylinder 𝑓

𝑐

of concrete by gene expression programming (GEP). The
support vector machine (SVM) is a new, efficient, and novel
approach to improve generalization performance, and it can
attain a global minimum. SVM achieves good generalization
ability by adopting a structural risk minimization induction
principle that aims at minimizing a bound on generalization
error of a model rather than minimizing the error on the
training data only. It has the ability to avoid overtraining
and has better generalization capability than artificial neural
networks (ANN) model. Moreover, the SVM can always
be updated to get better results by presenting new training
examples as new data become available.

In this paper, support vectormachine is applied to predict
the splitting tensile strength of concrete using the datum
collected by Saridemir [9]. Compressive strength used to
predict the splitting tensile strength is considered as input
in SVM model that is compared with experimental data and
other methods. The mean absolute parentage error (MAPE),
root-mean-squared error (RMSE), and 𝑅-square (𝑅2) are
used as the criteria to compare the performance of SVM
models and other models.

2. Support Vector Machine

SVM is a machine-learning algorithm based on statistical
learning theory. The main idea of the SVM is to transform
the input space into a high-dimensional space by a nonlinear
transformation defined by an inner product function. SVM
calculation takes the form of a problem in convex quadratic
optimization, ensuring that the solution is optimal. It is better
than the traditional artificial neural networks, which is based
on the traditional minimization principle of experience risk
[10]. The SVM has a good ability to generalize and resolve
some practical problems such as small samples, nonlinearity,
and high-dimensional input space.

In this section, a brief description of the process of
constructing a SVM for a regression problem is presented.
There are three distinct characteristics to consider when an
SVM is used to solve a regression problem [11]. First, the
SVM estimates the regression by a set of linear functions that
are defined in a high-dimensional space. Second, the SVM
carries out the regression estimation by risk minimization,
where the risk is measured using Vapnik’s 𝜀-insensitive loss
function. Third, the SVM uses a risk function consisting

Table 1: Parameters of SVM-I and SVM-II.

Kernel

SVM-I SVM-II
Radial
basis

function
Polynomial

Radial
basis

function
Polynomial

𝐶 500000 160000 820000 870000
𝜀 0.10 0.10 0.04 0.05
Parameter 𝛾 = 0.01 𝑑 = 2 𝛾 = 0.10 𝑑 = 3

of the empirical error and a regularization term, which
is derived from the structural risk minimization (SRM)
principle.

Consider a set of training samples {𝑥
𝑖
, 𝑦
𝑖
}, 𝑖 = 1, 2,

. . . 𝑛, 𝑥
𝑖
∈ 𝑅𝑑, 𝑦

𝑖
∈ 𝑅, where 𝑥

𝑖
is an input vector, 𝑦

𝑖
is the

corresponding output value, and 𝑛 is the number of training
samples. The regression problem is to select a function that
predicts the actual value of 𝑦 as closely as possible, with a
precision of 𝜀. Therefore, the purpose of the SVM is to seek
the optimum regression function:

𝑓 (𝑥) = 𝜔 ⋅ 𝑥 + 𝑏, (4)

where, 𝜔 ∈ 𝑅𝑛 and 𝑏 ∈ 𝑅, 𝜔 is an adjustable weight
vector, 𝑏 is the scalar threshold; 𝑅𝑛 is 𝑛-dimensional vector
space, and 𝑥 is one-dimensional vector space.

Following statistical theory, SVM determines the regres-
sion function by minimizing an objective function. The
parameters 𝜔 and 𝑏 of the regression function are estimated
by minimizing the regularized risk function as follows:

Minimize

1

2
‖𝜔‖
2 + 𝐶

𝑛

∑
𝑖=1

(𝜉
𝑖
+ 𝜉∗
𝑖
) . (5)

Subject to

𝑦
𝑖
− [(𝜔 ⋅ 𝑥

𝑖
) + 𝑏] ≤ 𝜀 + 𝜉

𝑖
, (6)

[(𝜔 ⋅ 𝑥
𝑖
) + 𝑏] − 𝑦

𝑖
≤ 𝜀 + 𝜉∗

𝑖
, (7)

𝜉
𝑖
≥ 0, 𝜉∗

𝑖
≥ 0, 𝑖 = 1, 2, . . . 𝑛, (8)

where 𝐶 > 0 is a penalty factor, 𝜉 and 𝜉∗ are slack variables.
𝜀 is the insensitive loss function and can be described in the
following way:

𝐿
𝜀
(𝑦) = {

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦
󵄨󵄨󵄨󵄨 − 𝜀

󵄨󵄨󵄨󵄨𝑦 − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≥ 𝜀

0 otherwise.
(9)

By introducing Lagrangian multipliers and maximizing
(3), the dual optimization problem can be expressed as

Maximize
𝑛

∑
𝑖=1

𝑦
𝑖
(𝛼∗
𝑖
− 𝛼
𝑖
) − 𝜀
𝑛

∑
𝑖=1

(𝛼∗
𝑖
+ 𝛼
𝑖
)

−
1

2

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

(𝛼∗
𝑖
− 𝛼
𝑖
) (𝛼∗
𝑗
− 𝛼
𝑗
) (𝑥
𝑖
, 𝑥
𝑗
) .

(10)
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Table 2: Comparison of experimental results to training results of RBF Polynomial of SVM-I, and other models.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-I [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial

26.33 3.07 −0.72 −0.04 −0.20 −0.41 −0.52 −0.30 −0.29

35.82 3.12 −0.18 0.41 0.23 0.14 −0.02 0.34 0.01

30.93 3.21 −0.57 0.07 −0.10 −0.25 −0.39 −0.33 −0.30

37.42 2.07 0.97 1.54 1.36 1.29 1.12 0.00 1.14

29.10 3.01 −0.49 0.17 0.01 −0.17 −0.29 0.01 −0.17

28.03 3.41 −0.95 −0.29 −0.45 −0.64 −0.76 −0.79 −0.53

36.98 3.25 −0.24 0.34 0.16 0.08 −0.09 0.37 −0.12

31.65 3.39 −0.71 −0.07 −0.24 −0.39 −0.53 −1.07 −0.40

38.58 3.16 −0.05 0.50 0.32 0.27 0.09 0.37 0.16

81.00 6.60 −1.10 −1.29 −1.56 −0.98 −1.40 −0.06 −1.19

68.00 5.90 −1.11 −1.03 −1.28 −0.90 −1.24 −1.76 −0.99

60.00 5.00 −0.65 −0.43 −0.66 −0.40 −0.70 −0.22 −0.60

54.00 4.70 −0.69 −0.36 −0.58 −0.41 −0.68 −0.15 −0.68

39.08 3.11 0.04 0.58 0.39 0.34 0.17 0.76 0.13

22.33 2.29 −0.20 0.50 0.36 0.09 0.01 0.25 0.39

23.23 2.19 −0.04 0.65 0.51 0.25 0.16 0.32 0.49

22.89 2.38 −0.25 0.44 0.30 0.04 −0.05 0.36 0.34

22.16 2.17 −0.09 0.61 0.47 0.20 0.11 0.34 0.50

20.48 2.15 −0.18 0.52 0.38 0.10 0.02 0.07 0.48

20.82 1.99 0.00 0.70 0.57 0.28 0.21 0.02 0.65

22.83 2.41 −0.28 0.41 0.27 0.00 −0.08 0.10 0.25

25.14 2.62 −0.34 0.34 0.19 −0.05 −0.14 0.12 0.12

25.60 2.69 −0.38 0.30 0.14 −0.08 −0.19 −0.15 0.09

35.20 3.20 −0.29 0.30 0.12 0.02 −0.13 0.39 −0.10

44.40 2.90 0.57 1.03 0.83 0.86 0.65 0.76 0.62

37.60 2.40 0.66 1.22 1.03 0.97 0.80 0.00 0.84

41.80 3.60 −0.29 0.21 0.02 0.01 −0.18 0.12 −0.20

42.00 3.50 −0.17 0.32 0.13 0.12 −0.07 0.47 −0.10

38.30 2.70 0.40 0.95 0.77 0.71 0.53 0.41 0.51

55.40 3.40 0.71 0.99 0.77 0.96 0.69 0.00 0.78

54.00 2.80 1.23 1.54 1.32 1.49 1.22 0.00 1.22

48.60 2.80 0.91 1.31 1.10 1.20 0.96 0.00 0.94

56.50 4.10 0.07 0.33 0.11 0.32 0.04 −0.06 0.09

47.00 3.90 −0.28 0.14 −0.06 0.01 −0.22 0.19 −0.22

45.69 4.19 −0.65 −0.20 −0.40 −0.36 −0.57 −0.37 −0.59

41.71 3.09 0.22 0.72 0.53 0.52 0.32 0.32 0.33

42.49 3.74 −0.38 0.11 −0.09 −0.09 −0.29 −0.53 −0.27

33.69 2.93 −0.11 0.49 0.32 0.20 0.05 0.40 0.16

37.30 3.14 −0.10 0.46 0.28 0.21 0.04 0.49 0.07

24.75 2.62 −0.37 0.32 0.17 −0.07 −0.17 −0.21 0.11

26.96 2.68 −0.28 0.38 0.23 0.02 −0.09 0.36 0.07

22.14 2.35 −0.27 0.43 0.28 0.02 −0.07 0.16 0.32

23.91 2.24 −0.04 0.64 0.50 0.25 0.16 0.03 0.44

41.00 3.90 −0.63 −0.12 −0.31 −0.33 −0.52 −0.94 −0.49

42.00 4.00 −0.67 −0.18 −0.37 −0.38 −0.57 −0.03 −0.60

57.68 4.26 −0.04 0.22 −0.01 0.22 −0.07 0.57 −0.02

45.75 4.10 −0.57 −0.11 −0.31 −0.26 −0.48 −0.28 −0.45

38.10 3.62 −0.54 0.02 −0.16 −0.22 −0.40 −0.19 −0.37

31.95 3.31 −0.61 0.02 −0.14 −0.29 −0.43 −0.27 −0.40
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Table 2: Continued.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-I [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial

18.20 1.90 −0.10 0.62 0.49 0.18 0.12 −0.24 0.68

28.70 2.70 −0.20 0.46 0.30 0.11 −0.01 −0.20 0.23

23.90 2.30 −0.11 0.58 0.44 0.19 0.10 −0.03 0.38

43.70 3.30 0.11 0.60 0.40 0.42 0.22 0.44 0.21

24.60 2.30 −0.07 0.63 0.48 0.24 0.14 −0.01 0.45

43.00 3.50 −0.13 0.37 0.17 0.18 −0.02 0.00 0.00

14.20 1.80 −0.28 0.42 0.31 −0.04 −0.08 −0.29 0.63

36.70 3.20 −0.21 0.37 0.19 0.11 −0.05 −0.48 0.01

22.70 1.70 0.41 1.11 0.97 0.71 0.62 0.35 0.95

35.30 2.40 0.51 1.11 0.93 0.83 0.67 0.00 0.74

13.60 1.30 0.18 0.88 0.77 0.41 0.38 0.79 1.12

28.60 1.70 0.79 1.46 1.29 1.11 0.99 1.40 1.14

26.60 2.40 −0.04 0.64 0.49 0.27 0.17 −0.01 0.42

43.50 2.90 0.50 0.99 0.79 0.81 0.61 0.52 0.57

30.90 2.40 0.24 0.88 0.71 0.55 0.42 0.48 0.51

49.90 3.80 −0.03 0.37 0.16 0.27 0.03 0.39 0.04

32.20 3.00 −0.28 0.35 0.18 0.04 −0.10 −0.09 0.01

57.80 3.50 0.72 0.99 0.76 0.98 0.70 0.33 0.81

26.80 2.40 −0.02 0.65 0.50 0.29 0.18 0.47 0.44

36.50 2.90 0.08 0.66 0.48 0.40 0.24 0.27 0.26

65.60 4.40 0.26 0.38 0.14 0.48 0.15 0.14 0.36

30.30 2.40 0.20 0.85 0.68 0.52 0.39 1.37 0.54

52.80 3.80 0.14 0.49 0.27 0.42 0.17 −0.39 0.23

40.60 3.50 −0.27 0.26 0.07 0.04 −0.14 0.15 −0.13

52.30 4.20 −0.29 0.07 −0.15 0.00 −0.26 0.10 −0.24

41.20 3.20 0.06 0.59 0.39 0.38 0.19 0.65 0.22

72.80 5.10 −0.05 −0.07 −0.32 0.13 −0.24 0.03 −0.05

41.20 3.20 0.06 0.59 0.39 0.38 0.19 0.65 0.22

72.80 5.10 −0.05 −0.07 −0.32 0.13 −0.24 0.03 −0.05

72.80 5.10 −0.05 −0.07 −0.32 0.13 −0.24 0.03 −0.05

41.80 3.30 0.00 0.51 0.32 0.31 0.12 0.42 0.10

68.40 4.10 0.71 0.78 0.53 0.92 0.57 0.38 0.76

42.30 2.90 0.43 0.94 0.74 0.74 0.54 0.00 0.57

59.10 3.80 0.50 0.74 0.51 0.75 0.46 0.25 0.60

41.30 3.70 −0.43 0.09 −0.10 −0.12 −0.31 −0.19 −0.27

59.70 4.10 0.23 0.46 0.23 0.48 0.19 0.14 0.30

42.30 3.20 0.13 0.64 0.44 0.44 0.24 0.71 0.27

75.10 5.10 0.08 0.01 −0.25 0.24 −0.14 0.67 −0.05

48.50 3.70 −0.01 0.41 0.20 0.29 0.06 0.08 0.09

81.90 4.80 0.75 0.54 0.27 0.86 0.44 0.94 0.53

41.30 3.30 −0.03 0.49 0.30 0.28 0.09 0.21 0.13

67.10 4.40 0.34 0.43 0.19 0.55 0.22 0.68 0.36

42.00 3.20 0.11 0.62 0.43 0.42 0.23 0.77 0.20

70.10 4.30 0.61 0.64 0.39 0.80 0.45 0.65 0.58

44.80 3.40 0.08 0.55 0.35 0.38 0.17 0.36 0.21

65.40 4.00 0.65 0.77 0.53 0.87 0.54 0.67 0.70

38.70 3.50 −0.39 0.17 −0.02 −0.07 −0.24 0.40 −0.21

56.40 4.30 −0.16 0.13 −0.09 0.11 −0.16 −0.25 −0.14

42.40 3.20 0.13 0.64 0.45 0.45 0.25 0.41 0.25
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Table 2: Continued.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-I [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial

67.70 4.80 −0.03 0.05 −0.19 0.18 −0.16 0.27 −0.03

50.70 3.60 0.22 0.60 0.39 0.51 0.26 0.48 0.26

81.10 4.80 0.70 0.51 0.24 0.82 0.41 0.62 0.52

42.00 3.20 0.11 0.62 0.43 0.42 0.23 0.77 0.20

48.90 3.60 0.11 0.53 0.32 0.41 0.18 0.61 0.21

85.30 5.80 −0.07 −0.35 −0.63 0.01 −0.42 0.32 −0.37

52.30 4.20 −0.29 0.07 −0.15 0.00 −0.26 0.10 −0.24

85.10 5.80 −0.08 −0.36 −0.63 0.00 −0.43 −0.34 −0.42

49.70 4.20 −0.44 −0.04 −0.25 −0.14 −0.38 −0.49 −0.36

71.20 5.30 −0.33 −0.32 −0.57 −0.15 −0.50 −0.52 −0.33

51.90 3.80 0.09 0.45 0.23 0.37 0.12 0.36 0.17

87.70 6.10 −0.24 −0.57 −0.86 −0.18 −0.63 −0.05 −0.66

51.90 3.80 0.09 0.45 0.23 0.37 0.12 0.36 0.17

87.70 6.10 −0.24 −0.57 −0.86 −0.18 −0.63 −0.05 −0.66

51.90 3.80 0.09 0.45 0.23 0.37 0.12 0.36 0.17

87.70 6.10 −0.24 −0.57 −0.86 −0.18 −0.63 −0.05 −0.66

53.80 4.10 −0.10 0.23 0.01 0.18 −0.09 −0.10 −0.06

85.30 5.10 0.63 0.35 0.07 0.71 0.28 1.02 0.33

58.70 4.40 −0.13 0.12 −0.11 0.13 −0.16 −0.26 −0.09

87.10 5.60 0.22 −0.09 −0.37 0.29 −0.15 −0.09 −0.20

49.30 4.50 −0.76 −0.36 −0.57 −0.47 −0.70 −1.35 −0.69

66.20 5.10 −0.41 −0.30 −0.54 −0.19 −0.52 −0.23 −0.40

53.10 3.80 0.16 0.50 0.28 0.44 0.18 0.50 0.33

84.30 5.60 0.07 −0.18 −0.46 0.17 −0.26 0.10 −0.15

86.70 6.03 0.03 −0.54 −0.80 −0.16 −0.60 0.02 −0.54

56.10 4.30 −0.17 0.12 −0.11 0.10 −0.18 −0.58 −0.17

52.10 3.80 0.10 0.46 0.24 0.38 0.13 0.11 0.16

78.50 5.00 0.36 0.23 −0.04 0.50 0.10 0.87 0.29

49.90 4.10 −0.33 0.07 −0.14 −0.03 −0.27 0.09 −0.26

87.50 5.10 0.75 0.42 0.14 0.81 0.37 0.48 0.29

55.10 4.40 −0.33 −0.02 −0.24 −0.06 −0.33 −0.11 −0.23

75.40 4.00 1.22 1.12 0.86 1.35 0.97 0.00 1.05

24.67 2.74 −0.50 0.19 0.04 −0.20 −0.29 −0.33 0.02

23.01 2.79 −0.66 0.04 −0.10 −0.36 −0.45 0.00 −0.09

32.03 3.03 −0.32 0.31 0.14 0.00 −0.14 −0.64 −0.03

28.78 2.93 −0.43 0.24 0.07 −0.11 −0.23 −0.43 0.00

33.60 2.03 0.77 1.39 1.22 1.09 0.95 1.30 1.06

23.30 3.04 −0.89 −0.19 −0.34 −0.59 −0.68 −1.25 −0.31

GEP-I model is developed by Saridemir [9] based on gene expression programming. Regression is regression-based formulation results by Saridemir [9].

Subject to
𝑛

∑
𝑖=1

𝛼
𝑖
=
𝑛

∑
𝑖=1

𝛼∗
𝑖
, 0 ≤ 𝛼∗

𝑖
≤ 𝑐, 0 ≤ 𝛼

𝑖
≤ 𝑐, (11)

where the 𝛼
𝑖
, 𝛼∗
𝑖
are called Lagrangian multipliers. When

the Lagrangian multipliers (𝛼
𝑖
, 𝛼∗
𝑖
) are equal to zero, shows

that the training object is irrelevant to the final solution;
otherwise, the training samples with nonzero Lagrangian
multipliers are called support vectors.

When linear regression is not appropriate, then the input
data have to bemapped into a high-dimensional feature space

through some nonlinear mapping. A nonlinear transforma-
tion 𝜙(𝑥) replaces the input 𝑥 in (7), and the regression
function can be written as

𝑓 (𝑥) =
nsv
∑
𝑖=1

(𝛼
𝑖
− 𝛼∗
𝑖
) 𝑘 (𝑥
𝑖
, 𝑥
𝑗
) + 𝑏, (12)

where nsv is the number of support vectors and 𝑘(𝑥
𝑖
, 𝑥
𝑗
) =

𝜙(𝑥
𝑖
) ⋅ 𝜙(𝑥

𝑗
), 𝑘(𝑥

𝑖
, 𝑥
𝑗
) is a kernel function. Any function sat-

isfying Merce’s condition can be used as the kernel function
[12, 13]. Some popular kernel functions are
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Table 3: Comparison of experimental results to testing results of RBF, polynomial of SVM-I, and other models.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-I [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial

44.80 3.80 −0.31 0.15 −0.05 −0.02 −0.23 −0.01 −0.33

56.20 4.40 −0.25 0.02 −0.20 0.00 −0.27 −0.41 −0.20

53.40 3.60 0.39 0.71 0.49 0.65 0.39 0.33 0.39

56.70 4.60 −0.42 −0.16 −0.38 −0.17 −0.45 −0.09 −0.36

64.50 4.80 −0.18 −0.06 −0.30 0.02 −0.30 −0.18 −0.12

66.50 4.70 0.03 0.11 −0.13 0.22 −0.11 0.10 0.01

65.40 4.30 0.37 0.47 0.23 0.57 0.24 0.21 0.43

73.80 4.90 0.23 0.17 −0.09 0.38 0.01 0.22 0.14

74.00 5.30 −0.16 −0.22 −0.48 −0.01 −0.39 −0.26 −0.15

72.50 5.00 0.06 0.02 −0.23 0.22 −0.15 0.24 −0.06

74.60 4.90 0.28 0.20 −0.06 0.42 0.04 0.06 0.15

77.90 5.50 −0.14 −0.29 −0.56 −0.03 −0.42 −0.36 −0.19

79.10 5.20 0.22 0.05 −0.22 0.33 −0.07 0.01 0.15

84.20 5.70 0.00 −0.29 −0.56 0.06 −0.37 −0.34 −0.28

83.30 5.90 −0.25 −0.52 −0.79 −0.18 −0.60 −0.60 −0.39

80.10 5.30 0.15 −0.02 −0.29 0.27 −0.13 −0.22 0.10

86.50 5.50 0.32 −0.01 −0.29 0.37 −0.07 −0.27 0.12

102.00 5.50 1.15 0.46 0.16 1.05 0.53 0.37 0.34

101.00 6.50 0.09 −0.57 −0.87 0.01 −0.51 −0.45 −0.60

111.00 6.20 0.92 0.02 −0.30 0.73 0.16 0.40 −0.17

94.50 5.80 0.45 −0.06 −0.36 0.42 −0.06 0.08 −0.01

118.00 6.20 1.28 0.21 −0.12 1.02 0.41 0.64 −0.14

19.00 2.30 −0.43 0.27 0.14 −0.16 −0.23 −0.04 −1.00

20.00 2.40 −0.46 0.24 0.10 −0.19 −0.26 −0.13 −0.96

28.60 2.90 −0.40 0.26 0.09 −0.09 −0.21 0.11 −0.67

28.90 3.00 −0.48 0.17 0.01 −0.17 −0.30 0.08 −0.82

36.10 3.30 −0.33 0.24 0.06 −0.02 −0.19 −0.11 −0.48

44.50 3.70 −0.23 0.24 0.04 0.07 −0.14 0.07 −0.26

23.00 2.50 −0.36 0.33 0.19 −0.07 −0.16 −0.37 −0.82

33.00 3.50 −0.72 −0.11 −0.28 −0.41 −0.56 −0.43 −1.02

58.00 4.20 0.05 0.29 0.06 0.30 0.01 −0.25 0.20

69.00 4.50 0.37 0.40 0.15 0.55 0.20 0.12 0.44

36.00 3.30 −0.34 0.24 0.06 −0.03 −0.19 −0.04 −0.45

42.80 3.90 −0.53 −0.04 −0.24 −0.23 −0.43 −0.19 −0.63

59.30 4.00 0.33 0.54 0.31 0.56 0.27 0.29 0.40

63.30 4.50 0.05 0.19 −0.04 0.26 −0.05 −0.18 0.20

67.70 4.70 0.10 0.15 −0.09 0.28 −0.06 0.26 0.07

77.00 5.10 0.21 0.08 −0.19 0.33 −0.06 −0.05 0.01

49.90 4.30 −0.51 −0.13 −0.34 −0.23 −0.47 −0.32 −0.45

96.70 5.70 0.63 0.10 −0.19 0.62 0.12 0.05 0.01

61.70 4.60 −0.14 0.03 −0.20 0.08 −0.22 −0.36 −0.08

73.20 5.10 0.00 −0.05 −0.31 0.15 −0.22 0.17 −0.03

86.50 5.50 0.32 −0.01 −0.29 0.37 −0.07 −0.27 0.12

92.30 5.90 0.23 −0.23 −0.52 0.23 −0.25 0.10 −0.19

(1) polynomial kernel function

𝐾(𝑥, 𝑦) = [(𝑥 + 𝑦) + 1]
𝑑

, 𝑑 = 1, 2, . . . , 𝑛, (13)

(2) radial basis function (RBF)

𝐾(𝑥, 𝑦) = exp {−𝛾󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

} 𝛾 ≥ 0, (14)

(3) sigmoid kernel function

𝐾(𝑥, 𝑦) = tan [𝜑 (𝑥 ⋅ 𝑦) + 𝜃] , (15)

where 𝛼
𝑖
, 𝛼∗
𝑖
satisfy 𝛼

𝑖
𝛼∗
𝑖
= 0, 𝛼

𝑖
≥ 0, and 𝛼∗

𝑖
≥ 0.
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Table 4: Comparison of experimental results to training results of RBF, polynomial of SVM-II, and other models.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-III [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial

77.90 5.45 −0.08 −0.24 −0.51 0.02 −0.33 0.48 0.32

57.10 3.13 1.03 1.33 1.10 1.32 1.15 1.74 1.45

71.60 4.90 0.11 0.09 −0.16 0.27 −0.02 0.81 0.51

44.10 3.91 −0.52 0.01 −0.19 −0.17 −0.23 0.28 −0.17

64.80 4.57 0.04 0.18 −0.06 0.27 0.03 0.73 0.42

42.60 3.66 −0.36 0.19 0.00 0.00 −0.05 0.47 −0.04

30.40 2.79 −0.26 0.46 0.30 0.13 0.17 0.46 0.00

46.80 3.89 −0.34 0.15 −0.06 0.01 −0.08 0.49 0.04

89.50 5.91 0.11 −0.33 −0.61 0.09 −0.36 0.73 0.41

66.90 4.55 0.19 0.28 0.03 0.39 0.14 0.96 0.59

76.10 5.47 −0.21 −0.32 −0.58 −0.08 −0.42 0.41 0.22

53.60 4.37 −0.41 −0.05 −0.27 −0.11 −0.25 0.47 −0.02

64.80 5.07 −0.46 −0.32 −0.56 −0.23 −0.47 0.23 −0.08

45.80 4.02 −0.53 −0.03 −0.23 −0.18 −0.26 0.40 −0.16

37.60 3.16 −0.17 0.46 0.27 0.21 0.19 0.63 0.14

53.10 4.08 −0.15 0.22 0.00 0.16 0.02 0.78 0.24

34.90 3.50 −0.68 −0.01 −0.19 −0.30 −0.29 0.12 −0.40

53.90 5.40 −1.42 −1.07 −1.29 −1.12 −1.27 −0.62 −1.00

46.50 3.80 −0.27 0.22 0.02 0.08 −0.01 0.60 0.07

13.80 1.70 −0.29 0.49 0.38 0.03 0.17 −0.42 −0.17

67.10 4.80 −0.05 0.03 −0.21 0.15 −0.10 0.64 0.35

20.30 3.40 −1.53 −0.74 −0.88 −1.17 −1.06 −1.26 −1.36

22.40 2.10 −0.09 0.69 0.55 0.28 0.38 0.38 0.10

61.40 4.30 0.12 0.32 0.09 0.37 0.16 0.79 0.51

33.10 3.00 −0.29 0.39 0.22 0.09 0.11 0.53 −0.03

79.00 5.60 −0.17 −0.36 −0.62 −0.08 −0.44 0.46 0.21

43.60 3.60 −0.24 0.30 0.10 0.12 0.06 0.59 0.10

25.60 2.42 −0.20 0.57 0.41 0.19 0.26 0.31 0.02

26.20 2.62 −0.36 0.40 0.25 0.03 0.10 0.23 −0.15

16.90 1.88 −0.25 0.55 0.42 0.10 0.23 −0.13 −0.10

14.90 1.71 −0.22 0.57 0.45 0.11 0.25 −0.38 −0.08

27.30 2.81 −0.48 0.27 0.12 −0.09 −0.03 0.19 −0.26

28.40 2.87 −0.47 0.27 0.11 −0.08 −0.02 0.22 −0.23

16.90 1.91 −0.28 0.52 0.39 0.07 0.20 −0.16 −0.13

16.90 2.11 −0.48 0.32 0.19 −0.13 0.00 −0.36 −0.33

30.90 2.92 −0.35 0.36 0.19 0.03 0.07 0.31 −0.10

32.30 3.08 −0.43 0.27 0.10 −0.04 −0.01 0.36 −0.17

19.60 2.22 −0.40 0.39 0.26 −0.04 0.08 −0.10 −0.22

19.10 2.08 −0.30 0.50 0.37 0.06 0.18 −0.11 −0.10

35.30 3.24 −0.40 0.27 0.09 −0.01 −0.01 0.38 −0.11

38.40 3.36 −0.32 0.30 0.11 0.05 0.04 0.57 −0.03

22.50 2.47 −0.45 0.33 0.19 −0.08 0.02 −0.05 −0.27

23.40 2.57 −0.49 0.28 0.14 −0.12 −0.02 −0.08 −0.29

31.00 2.90 −0.33 0.38 0.22 0.06 0.10 0.35 −0.06

17.00 2.30 −0.66 0.13 0.01 −0.32 −0.18 −0.60 −0.51

47.00 4.00 −0.44 0.04 −0.16 −0.09 −0.18 0.44 −0.09

37.00 3.60 −0.65 −0.01 −0.19 −0.27 −0.28 0.21 −0.35

42.00 4.00 −0.74 −0.18 −0.37 −0.38 −0.42 0.16 −0.39

54.00 4.60 −0.62 −0.26 −0.48 −0.31 −0.46 0.21 −0.24
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Table 4: Continued.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-III [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial

42.00 4.40 −1.14 −0.58 −0.77 −0.78 −0.82 −0.24 −0.79

62.00 5.20 −0.75 −0.55 −0.79 −0.50 −0.72 0.03 −0.35

67.00 4.25 0.49 0.58 0.33 0.70 0.44 1.15 0.91

72.50 5.10 −0.04 −0.08 −0.33 0.12 −0.19 0.56 0.38

74.50 5.20 −0.03 −0.11 −0.37 0.11 −0.21 0.59 0.38

79.50 5.75 −0.29 −0.49 −0.76 −0.20 −0.57 0.30 0.11

78.00 5.15 0.22 0.06 −0.20 0.33 −0.03 0.83 0.60

85.00 5.75 0.02 −0.31 −0.59 0.05 −0.36 0.69 0.44

86.00 4.80 1.03 0.67 0.39 1.05 0.62 1.67 1.40

90.50 4.40 1.68 1.21 0.93 1.65 1.19 2.32 2.04

54.80 3.34 0.69 1.03 0.81 0.99 0.83 1.61 1.06

32.90 2.85 −0.16 0.53 0.36 0.23 0.25 0.68 0.11

34.50 2.92 −0.13 0.55 0.37 0.26 0.27 0.66 0.13

53.60 3.48 0.48 0.84 0.62 0.78 0.64 1.36 0.87

74.10 5.26 −0.11 −0.18 −0.44 0.03 −0.29 0.58 0.30

67.70 4.81 −0.03 0.04 −0.20 0.17 −0.09 0.68 0.37

84.20 6.57 −0.85 −1.16 −1.43 −0.81 −1.21 −0.25 −0.46

75.30 5.35 −0.13 −0.23 −0.49 0.00 −0.33 0.48 0.28

102.30 7.29 −0.55 −1.32 −1.63 −0.73 −1.29 0.52 −0.31

40.10 3.30 −0.16 0.44 0.25 0.21 0.18 0.70 0.15

40.50 3.40 −0.23 0.35 0.16 0.14 0.10 0.57 0.07

95.50 5.70 0.66 0.07 −0.23 0.57 0.06 1.53 0.96

35.20 3.17 −0.33 0.33 0.15 0.05 0.06 0.48 −0.05

57.50 3.69 0.51 0.78 0.56 0.78 0.60 1.29 0.86

38.60 3.38 −0.33 0.29 0.10 0.05 0.03 0.52 −0.04

61.50 4.48 −0.05 0.15 −0.09 0.19 −0.02 0.70 0.32

47.40 3.76 −0.17 0.30 0.10 0.17 0.08 0.67 0.18

47.10 3.68 −0.11 0.37 0.16 0.23 0.14 0.86 0.23

44.70 3.26 0.17 0.68 0.48 0.52 0.45 1.09 0.46

52.40 3.99 −0.10 0.28 0.06 0.21 0.08 0.79 0.27

57.90 4.49 −0.27 0.00 −0.23 0.00 −0.18 0.61 0.12

39.50 4.04 −0.93 −0.33 −0.52 −0.56 −0.59 0.00 −0.65

36.70 4.03 −1.09 −0.46 −0.64 −0.72 −0.72 −0.29 −0.82

38.00 3.65 −0.63 −0.01 −0.20 −0.26 −0.28 0.20 −0.35

24.20 2.20 −0.07 0.70 0.55 0.31 0.40 0.38 0.14

17.40 1.80 −0.13 0.66 0.54 0.21 0.34 −0.06 0.02

29.30 2.80 −0.33 0.39 0.23 0.05 0.10 0.27 −0.09

27.00 2.55 −0.23 0.52 0.36 0.15 0.22 0.33 −0.02

32.60 3.21 −0.53 0.16 −0.01 −0.15 −0.12 0.26 −0.26

46.30 5.20 −1.67 −1.19 −1.39 −1.33 −1.41 −0.76 −1.37

35.80 4.30 −1.42 −0.77 −0.95 −1.04 −1.04 −0.57 −1.11

43.10 4.18 −0.85 −0.31 −0.50 −0.49 −0.55 −0.04 −0.51

35.20 3.17 −0.33 0.33 0.15 0.05 0.06 0.48 −0.05

57.50 3.69 0.51 0.78 0.56 0.78 0.60 1.29 0.86

42.80 4.90 −1.59 −1.04 −1.24 −1.23 −1.28 −0.76 −1.26

61.50 4.48 −0.05 0.15 −0.09 0.19 −0.02 0.70 0.32

47.40 3.76 −0.17 0.30 0.10 0.17 0.08 0.67 0.18

47.13 3.68 −0.10 0.37 0.16 0.23 0.14 0.86 0.23

44.73 3.26 0.17 0.69 0.49 0.52 0.45 1.04 0.50
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Table 4: Continued.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-III [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial

34.60 4.10 −1.30 −0.63 −0.81 −0.91 −0.90 −0.51 −1.02

59.70 5.40 −1.08 −0.84 −1.07 −0.82 −1.01 −0.30 −0.69

51.90 4.00 −0.14 0.25 0.03 0.17 0.04 0.76 0.21

50.00 3.90 −0.15 0.27 0.06 0.17 0.06 0.77 0.22

48.50 4.10 −0.44 0.01 −0.20 −0.11 −0.21 0.49 −0.08

48.80 3.70 −0.02 0.42 0.21 0.31 0.20 0.80 0.32

46.50 3.80 −0.26 0.22 0.02 0.08 −0.01 0.60 0.07

45.20 4.00 −0.54 −0.03 −0.24 −0.19 −0.27 0.30 −0.21

45.20 3.30 0.16 0.67 0.46 0.51 0.43 1.00 0.49

42.60 2.98 0.32 0.87 0.68 0.68 0.63 1.15 0.64

81.60 4.40 1.19 0.93 0.66 1.24 0.86 1.80 1.58

42.70 3.00 0.31 0.86 0.66 0.66 0.61 1.21 0.64

41.90 3.50 −0.24 0.32 0.12 0.12 0.07 0.60 0.09

41.20 3.80 −0.59 −0.01 −0.21 −0.22 −0.26 0.31 −0.26

39.70 2.70 0.42 1.02 0.83 0.79 0.76 1.24 0.73

65.50 5.50 −0.84 −0.73 −0.97 −0.63 −0.87 −0.21 −0.47

39.50 3.70 −0.59 0.01 −0.18 −0.22 −0.25 0.34 −0.31

17.10 1.90 −0.25 0.54 0.42 0.09 0.22 −0.11 −0.10

12.10 1.10 0.18 0.95 0.85 0.48 0.64 0.00 0.31

12.90 1.60 −0.26 0.52 0.41 0.05 0.20 −0.48 −0.13

16.90 1.50 0.13 0.93 0.80 0.48 0.61 0.25 0.28

24.50 2.50 −0.35 0.42 0.27 0.03 0.12 0.16 −0.16

3. SVM for Predicting 𝑓spt of Concrete

As mentioned previously, many methods have been pro-
posed for the prediction of 𝑓spt from compressive strength
of concrete; This study attempts to utilize SVM for the
prediction of concrete of 𝑓spt. SVM-I model is devel-
oped for 150 × 300mm cylinder 𝑓spt prediction from 150 ×
300mm cylinder 𝑓

𝑐
of concrete, and SVM-IImodel is devel-

oped for 100 × 200mm and 150 × 200mm cylinder 𝑓spt
prediction from 100 × 200mm cylinder 𝑓

𝑐
of concrete. The

experimental data which are taken from studies [9, 14, 15] are
used in this study. Among 184 experimental data, 138 data
were randomly selected as the training set for SVM-I model
and among 168 cases, 126 cases were randomly selected as
the training set for SVM-II model, the rest are considered as
testing data set.The data are normalized before being used in
the model as follows:

𝑋 =
(𝑋
𝑖
− 𝑋min)

(𝑋max − 𝑋min)
, (16)

where 𝑋max and 𝑋min are the maximum and minimum
input values data, respectively.

In case of SVM training, two types of kernel func-
tions were used, namely, radical basis function (RBF) and
polynomial function, in training process, 𝐶 and 𝜀 and other
kernel-specific parameters have been chosen by a trial-
and-error approach. The best simulation performances of
SVM are summarized in Table 1; in order to evaluate the
abilities of SVM models and other models, mean absolute
percentage error (MAPE), roof-mean-squared error (RMES),

and R-square (𝑅2) were used as the criteria between the
experimental and predicted values, which are, according to
the equations,as follow:

MAPE =
1

𝑛
[
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑡𝑖 − 𝑜𝑖
󵄨󵄨󵄨󵄨

∑
𝑛

𝑖=1
𝑡
𝑖

× 100%] ,

RMSE = √
1

𝑛

𝑛

∑
𝑖=1

(𝑡
𝑖
− 𝑜
𝑖
),

𝑅2 =
(𝑛∑ 𝑡

𝑖
𝑜
𝑖
− ∑ 𝑡
𝑖
∑𝑜
𝑖
)
2

(𝑛∑ 𝑡2
𝑖
− (∑ 𝑡2

𝑖
)) (𝑛∑ 𝑜2

𝑖
− (∑ 𝑜

𝑖
)
2

)
,

(17)

where 𝑡
𝑖
is the experimental value, 𝑜

𝑖
is the predicted value

and 𝑛 is total number of data.

4. Results and Discussion

There is no doubt that the splitting tensile strength 𝑓spt with
an increase in the compression strength of concrete, but
there is no agreement on the precise form of the relationship.
Codes propose different formulas for prediction cylinder 𝑓spt
of concrete from compressive strength. In this paper, 𝑓spt
results are investigated for 150 × 300mm cylinder concrete
and 100 × 200mm cylinder concrete separately. The errors
(predicted values subtract measured values) computed by
SVM model, other models, and measured values of split-
ting tensile strengths are shown in Tables 2 and 3 for 150
× 300mm cylinder concrete and in Tables 4 and 5 for
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Table 5: Comparison of experimental results to testing results of RBF, polynomial of SVM-II, and other models.

𝑓
𝑐
(MPa) 𝑓spt (MPa) GEP-III [9] ACI 363R ACI 318 CEB-FIP Regression RBF [9] Polynomial

36.00 3.49 −0.60 0.05 −0.13 −0.22 −0.22 −0.17 −0.04

30.40 3.08 −0.54 0.17 0.01 −0.16 −0.12 −0.10 −0.01

21.60 2.00 −0.04 0.74 0.60 0.33 0.43 0.17 0.34

21.20 2.70 −0.77 0.02 −0.12 −0.40 −0.30 −0.44 −0.39

25.10 2.60 −0.41 0.36 0.21 −0.03 0.05 −0.09 0.06

31.90 3.30 −0.67 0.03 −0.14 −0.28 −0.25 −0.26 −0.12

37.80 3.10 −0.10 0.53 0.34 0.28 0.26 0.48 0.45

29.20 2.50 −0.04 0.69 0.53 0.34 0.40 0.41 0.49

35.40 3.10 −0.25 0.41 0.23 0.13 0.14 0.19 0.32

28.60 3.40 −0.98 −0.24 −0.41 −0.59 −0.54 −0.51 −0.46

29.50 3.10 −0.62 0.10 −0.06 −0.24 −0.19 −0.23 −0.08

34.90 3.50 −0.68 −0.01 −0.19 −0.30 −0.29 −0.23 −0.11

38.60 3.38 −0.33 0.29 0.10 0.05 0.03 0.15 0.23

52.35 3.99 −0.10 0.28 0.06 0.21 0.08 0.42 0.36

38.40 3.80 −0.76 −0.14 −0.33 −0.39 −0.40 −0.23 −0.20

51.50 4.20 −0.36 0.03 −0.18 −0.05 −0.17 0.16 0.11

48.60 4.00 −0.34 0.11 −0.10 0.00 −0.11 0.11 0.16

39.50 3.90 −0.79 −0.19 −0.38 −0.42 −0.45 −0.22 −0.22

30.40 2.85 −0.31 0.40 0.24 0.07 0.11 0.13 0.22

29.50 2.56 −0.08 0.64 0.48 0.30 0.35 0.31 0.46

42.80 4.30 −0.99 −0.44 −0.64 −0.63 −0.68 −0.52 −0.46

51.90 4.30 −0.44 −0.05 −0.27 −0.13 −0.26 0.09 0.03

49.30 4.20 −0.49 −0.06 −0.27 −0.17 −0.27 0.03 0.00

43.30 3.60 −0.26 0.28 0.08 0.10 0.04 0.22 0.28

43.60 3.38 −0.02 0.52 0.32 0.34 0.28 0.46 0.52

49.90 4.57 −0.83 −0.40 −0.61 −0.50 −0.62 −0.34 −0.33

57.40 4.20 −0.01 0.27 0.04 0.26 0.09 0.54 0.39

58.50 4.90 −0.65 −0.39 −0.62 −0.38 −0.56 −0.15 −0.24

31.40 2.79 −0.19 0.52 0.35 0.20 0.23 0.26 0.36

34.90 3.04 −0.22 0.45 0.27 0.16 0.17 0.23 0.35

41.60 3.84 −0.60 −0.03 −0.23 −0.24 −0.28 −0.11 −0.05

46.80 4.00 −0.44 0.04 −0.17 −0.10 −0.19 0.01 0.09

51.70 4.20 −0.35 0.04 −0.17 −0.04 −0.16 0.18 0.12

43.30 3.90 −0.56 −0.02 −0.22 −0.20 −0.26 −0.08 −0.02

60.80 4.10 0.29 0.50 0.27 0.54 0.33 0.76 0.68

60.00 4.30 0.04 0.27 0.04 0.30 0.10 0.60 0.44

71.90 5.40 −0.37 −0.40 −0.65 −0.21 −0.51 0.16 0.00

75.10 5.40 −0.18 −0.29 −0.55 −0.06 −0.39 0.30 0.20

57.87 4.49 −0.27 0.00 −0.23 0.00 −0.18 0.27 0.15

39.50 3.40 −0.29 0.31 0.12 0.08 0.05 0.28 0.28

Table 6: Error measurement for 𝑓spt from 150 × 300mm cylinder 𝑓
𝑐
.

GEP-I [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial
RMSE of training set 0.4603 0.5995 0.5228 0.5027 0.4512 0.4978 0.4819
RMSE of testing set 0.4271 0.2735 0.3152 0.3754 0.2874 0.2748 0.4176
MAPE of training set 9.7554 13.647 11.4913 10.6213 9.5596 10.2434 10.5454
MAPE of testing set 7.3022 4.6139 5.5434 6.2059 5.286 4.987 6.9517
𝑅2 of training set 0.8282 0.8225 0.8224 0.8267 0.826 0.8115 0.8227
𝑅2 of testing set 0.9416 0.9486 0.9486 0.9471 0.9476 0.9422 0.9327
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Table 7: Error measurement for 𝑓spt from 100 × 200mm cylinder 𝑓
𝑐
.

GEP-III [9] ACI 363R ACI 318 CEB-FIP Regression [9] RBF Polynomial
RMSE of training set 0.5886 0.539 0.5244 0.4987 0.4911 0.7287 0.562
RMSE of testing set 0.483 0.3348 0.3393 0.2803 0.3155 0.3082 0.2917
MAPE of training set 11.8729 11.6879 10.9223 9.2976 9.472 15.5902 10.6658
MAPE of testing set 10.8701 7.1383 7.604 6.2261 7.234 6.9713 6.2835
𝑅2 of training set 0.8198 0.8354 0.8353 0.83 0.8337 0.837 0.8253
𝑅2 of testing set 0.8778 0.8802 0.8793 0.88 0.8801 0.8815 0.8823
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Figure 1: Comparison of experimental results to training results of
SVM-I.

100 × 200mm cylinder concrete. As seen from these results,
SVM model is sufficiently close to the experimental data
and is able to predict the 𝑓spt from the 𝑓

𝑐
of concrete.

For convenient comparison purpose, the experimental and
predicted results are plotted in Figures 1, 2, 3 and 4. It can
be seen that the results from SVM method are in good
agreement with the experimental results.

The 𝑅-square errors in the trained SVM are 0.8115 and
0.8227 for RBF and polynomial function of SVM-I, 0.8370
and 0.8253 for those of SVM-II, respectively. 𝑅-square errors
in the tested SVM are 0.9422 and 0.9327 for RBF and polyno-
mial function of SVM-I, 0.8815 and 0.8823 for those of SVM-
II, respectively. The whole results obtained from the SVM
models show a successful performance of the SVM models
of predicting 150 × 300mm cylinder𝑓spt of concrete from the
corresponding 150 × 300mm cylinder compressive strength
𝑓
𝑐
and 100 × 200mm cylinder 𝑓spt from the corresponding

100 × 200mm cylinder compressive strength 𝑓
𝑐
of concrete

for each of the training and testing sets. It is also clear that
there are no major difference on performance between the
radical basis function and the polynomial function kernels
that used in this paper. However, in generally, the radical basis
function kernel exhibits slightly better performance than the
polynomial kernel.

The performance of the trained and tested sets is analyzed
by computing MAPE, RMSE and 𝑅2 of experimental 𝑓spt
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Figure 2: Comparison of experimental results to testing results of
SVM-I.

between the SVM model and other methods. The MAPE,
RMSE, and 𝑅2 are calculated for these methods. Statistical
parameters of the training and testing sets of all methods are
presented in Tables 6 and 7. The model having the smallest
MAPE or RMSE and the highest 𝑅2 can be regarded to be
the best model with the assumption of analysis. Generally,
𝑅2 of the SVM models are higher than other methods,
and the MAPE and RMSE of SVM are smaller than other
models. The analysis shows that the SVM model is better
than other models and can predict the splitting tensile
strength of concrete well. Furthermore, SVMmodel has good
generalization capacity to avoid over training, and can always
be updated to get better results by presenting new training
examples as new data become available. Thus, SVM model
can be regarded as a very effective method to predict splitting
tensile strength of concrete from their compressive strength.

5. Conclusion

The splitting tensile strength of concrete estimations from
compression strength has been obtained so far in the litera-
ture either through regression or other methods.This present
study reports a new and influential approach for predicting
the splitting tensile strength using SVM for the first time
in the literature. The study conducted in this paper shows
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Figure 3: Comparison of experimental results to training results of
SVM-II.
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Figure 4: Comparison of experimental results to testing results of
SVM-II.

the feasibility of using a simple SVM to estimate the splitting
tensile strength of concrete. After learning from a set of
selected training data, involving compressive strengths of
concrete collected from the previous literature, the SVM can
be utilized to predict the splitting tensile strengths of the test
data.

In this paper, radical basis function and polynomial are
adopted for predicting splitting tensile strength from 150 ×
300mm cylinder and 100×200mm cylinder 𝑓

𝑐
of concrete.

It is found that the splitting tensile strength obtained from
the SVM is more accurate than those obtained from design
codes and several researches’ empirical equation when a
comparison is made on the basis of the experimental data.
Since the SVM is largely characterized by the type of its kernel

function, it is necessary to choose the appropriate kernel for
each particular application problem in order to guarantee
satisfactory results. The results of radial basis function and
polynomial indicate that RBF and polynomial kernel have the
ability to predict the splitting tensile strength of concrete from
compression strength with an acceptable degree of accuracy.

The statistical parameters of MAPE, RMSE, and 𝑅2 show
that the proposed SVM model results have the best accu-
racy and can predict splitting tensile strength very close to
experiment results. The use of SVM is very advantageous
for the prediction of the splitting tensile strength of concrete
from compression strength because it can perform nonlinear
regression efficiently for high-dimensional data sets. Further-
more, its solution is global.The satisfactory predictions of the
splitting tensile strength of concrete by the model indicate
that SVM is a useful modeling tool for engineers and research
scientists at concrete construction fields.
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