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By using critical point theory and variational methods, we investigate the subharmonic solutions
with prescribed minimal period for a class of second-order impulsive functional differential
equations. The conditions for the existence of subharmonic solutions are established. In the end,
we provide an example to illustrate our main results.

1. Introduction

During the last 40 years, the theory and applications of impulsive differential equations have
been developed, see [1–28]. Recently, some researchers studied the minimal period problem
or homoclinic solution for some classes of Hamiltonian systems and classical pendulum
equations [29–35]. In [30, 31], using the variational methods and decomposition technique,
Yu got some sufficient conditions for the existence of periodic solutions with minimal period
pT for the following nonautonomous Hamiltonian systems:

x′′(t) + F ′
x(t, x) = 0, (1.1)

and a classical forced pendulum equation:

x′′(t) +A sinx = f(t), (1.2)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/186729251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Abstract and Applied Analysis

respectively. In [35], by using critical point theory and variational methods, Luo et al. con-
sidered the existence results of subharmonic solutions with prescribed minimal period for a
class of second-order impulsive differential equations:

u′′(t) + f(t, u(t)) = 0, a.e. t ∈ J ′,

Δu′(tk) = Ik(u(tk)), k ∈ Z0,
(1.3)

where f ∈ C(R2, R), Z0 = Z+ ∪Z−, J ′ = R \ {tk | k ∈ Z0}, Ik ∈ C(R,R+ ∪ {0}), Δu′(tk) = u′(t+k)−
u′(t−

k
), u′(t±

k
) = limt→ t±

k
u′(t), 0 < t1 < · · · < tm < T , Ik+m = Ik, T ∈ R+ and tk = tm+k − T if k ∈ Z+,

while tk = tm+k+1 − T if k ∈ Z−.
Motivated by [30, 31, 35], in this paper, we consider the existence results of sub-

harmonic solutions with prescribed minimal period for a class of second-order impulsive
functional differential equations:

u′′(t − r) + f(t, u(t), u(t − r), u(t − 2r)) = 0, a.e. t ∈ J ′,

Δu′(tk) = Ik(u(tk)), k ∈ Z0,
(1.4)

where r > 0, f ∈ C(R4, R), Z0 = Z+ ∪ Z−, J ′ = R \ {tkk ∈ Z0}, Ik ∈ C(R,R+ ∪ {0}), Δu′(tk) =
u′(t+

k
) − u′(t−

k
), u′(t±

k
) = limt→ t±

k
u′(t), 0 < t1 < · · · < tm < r, Ik+m = Ik, r ∈ R+ and tk = tm+k − r if

k ∈ Z+, while tk = tm+k+1 − r if k ∈ Z−.
We make the following assumptions.

(A1) f(t, u1, u2, u3) ∈ C(R4, R) is r-periodic in t for any ui ∈ C([0, pr], R), i = 1, 2, 3,
where p is a positive integer.

(A2)F(t, u1, u2) ∈ C(R3, R) is r-periodic in t and continuously differentiable for any
ui ∈ C([0, pr], R) such that lim sup|u1|,|u2|→+∞F(t, u1, u2)/(|u1|2+|u2|2) ≤ 1/2(pr)2 = γ
and F ′

u2
(t, u1, u2)+F ′

u2
(t, u2, u3) = f(t, u1, u2, u3), where F ′

u2
(t, u1, u2) and F ′

u2
(t, u2, u3)

are r-periodic functions in t.

(A3) There are constants α > 0, β > 0, dj ≥ 0, j = 1, 2, . . . , m such that

∣
∣Ij(u)

∣
∣ ≤ dj |u|, α2pr − pr

(
ω

p

)2

− 2mpD > 0, p2 <
p2sω

2

α
,

max
{

0, α
(

|u1|2 + |u2|2
)

− β
(

|u1|4 + |u2|4
)}

≤ F(t, u1, u2)

− F ′
u2
(t, 0, 0)u1 − F ′

u2
(t, 0, 0)u2 ≤ α

(

|u1|2 + |u2|2
)

,

(1.5)

where D = max{dj , j = 1, 2, . . . , m}.
(A4) Suppose q is rational. If u is a periodic function with minimal period qr, and
f(t, u1, u2, u3) is a periodic function with minimal period qr, then q is necessarily an
integer.

From (A2), we have

F ′
u(t−r)(t, u(t − r), u(t − 2r)) + F ′

u(t−r)(t, u(t), u(t − r)) = f(t, u(t), u(t − r), u(t − 2r)). (1.6)
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Therefore, under the assumptions (A1)-(A4), the existence of subharmonic solutions with
minimal period for (1.4) has been changed into the existence of subharmonic solutions with
minimal period for

u′′(t − r) + F ′
u(t−r)(t, u(t − r), u(t − 2r)) + F ′

u(t−r)(t, u(t), u(t − r)) = 0, t ∈ (tk−1, tk),

Δu′(tk) = Ik(u(tk)), k ∈ Z0.
(1.4)′

The outline of the paper is as follows. In Section 2, some preliminaries and basic results
are established. In Section 3, by using critical point theory, we give sufficient conditions for
the existence of of subharmonic solutions with minimal period for the impulsive systems. In
Section 4, we give an example to illustrate the application of our main result

2. Preliminaries and Basic Results

In the following, we introduce some notations and some necessary definitions.
Let T = pr, p ≥ 2. The norm in H1([0, T], R) is denoted by ‖ · ‖0. Denote the Sobolov

space E by

E =
{

u ∈ H1([0, T], R) | u is absolutely continuous, u(0) = u(T)
}

(2.1)

with the inner product

(u, v) =
∫T

0

[

u(t)v(t) + u′(t)v′(t)
]

dt, u, v ∈ E, (2.2)

which induces the norm

‖u‖ = ‖u‖0 +
∥
∥u′∥∥

0, u ∈ E. (2.3)

It is easy to verify that E is a reflexive Banach space.
Consider the functional I defined on E by

I(u) =
∫T

0

[
1
2
∣
∣u′(t)

∣
∣
2 − F(t, u(t), u(t − r))

]

dt +
∑

k∈K

∫u(tk)

0
Ik(t)dt, (2.4)

where K = {k ∈ Z0 \ tk ∈ (0, T]} = {1, 2, . . . , pm}.
We should caution that the solutions minimal periods may not be pr. Defineω = 2π/r,

and ps as the smallest prime factor of p.
Define E = {u ∈ E | u(−t) = −u(t)}, a subspace of the Sobolev space E. For any u ∈ E, u

has a Fourier series expansion u(t) =
∑∞

n=0(an cosnωt/p + bn sinnωt/p). Moreover, u ∈ E if
and only if u(t) =

∑∞
n=0 bn sinnωt/p.

We will show that the classic T -solutions of (1.4) or (1.4)′ is equivalent to finding the
critical points of I.

Similar to the proof [13, 36, 37], we have two lemmas as following.
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Lemma 2.1. Suppose that Ik are continuous. Then, the following statements are equivalent:

(1) u ∈ E is a critical point of I;

(2) u is a classical solution of (1.4) or (1.4)′.

Lemma 2.2. If u is a critical point of I on E, then u is also a critical point of I onX. And the minimal
period of u is an integer multiple of r.

Now we state some results on nonlinear functional analysis and critical point theory.
Suppose that X is a Banach space and ϕ : X → R. Say that I is weakly lower semicontinuous
if uk⇀ u0 means lim infn→∞I(uk) ≥ I(u0) and I is coercive if lim‖u‖→∞ = +∞.

Lemma 2.3 (see [38]). Let E be a real reflexive Banach space and weak sequentially closed.
ϕ ∈ C1(E,R) is weakly lower semicontinuous and coercive. Then, ϕ has a critical point u∗ with
minu∈Eϕ(u) = ϕ(u∗).

Similar to the proof of [35, Lemma 2.3], we have the following lemma.

Lemma 2.4. Suppose that (A2)-(A3) hold. E is a weak sequentially closed and ϕ is coercive and
weakly lower semicontinuous on E.

3. Main Results

Theorem 3.1. Suppose that (A1) − (A4) hold. If

∥
∥
∥F ′

u∗(t)(t, 0, 0)
∥
∥
∥
0
+
∥
∥
∥F ′

u∗(t−r)(t, 0, 0)
∥
∥
∥
0
≤ qω

2p

(

αT − T
ω2

p2
− 2mpD

)√

2
(

1 − αp2/q2ω2)

3βT
, (3.1)

then (1.4) has at least one classical periodic solution with the minimal period T = pr.

Proof. It follows from Lemmas 2.3 and 2.4 that I has a critical point u∗ with minϕu∈E(u) =
ϕ(u∗). Next, we show the minimal period of u∗ is pr. For the sake of a contradiction, let the
minimal period of u∗ be pr/q for some integer q ≥ 2. By Lemma 2.2, we know that q is a factor
of p, and so q ≥ ps.

By the Wirtinger inequality and (A1), we have

I(u∗) =
∫T

0

[
1
2
∣
∣u′

∗(t)
∣
∣
2 − F(t, u∗(t), u∗(t − r))

]

dt +
∑

k∈K

∫u∗(tk)

0
Ik(t)dt

≥ 1
2
∥
∥u′

∗
∥
∥
2
0 −

∫T

0

[

F ′
u∗(t)(t, 0, 0)u∗(t) + F ′

u∗(t−r)(t, 0, 0)u∗(t − r)
]

dt

−
∫T

0

[

F(t, u∗(t), u∗(t − r)) − F ′
u∗(t)(t, 0, 0)u∗(t) − F ′

u∗(t−r)(t, 0, 0)u∗(t − r)
]

dt
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≥ 1
2
∥
∥u′

∗
∥
∥
2
0 −

(∥
∥
∥F ′

u∗(t) (t, 0, 0)
∥
∥
∥
0
+
∥
∥
∥F ′

u∗(t−r)(t, 0, 0)
∥
∥
∥
0

)

‖u∗‖0 −
α

2
‖u∗‖20

≥ 1
2

(

1 − α

(
p

qω

)2
)

∥
∥u′

∗
∥
∥
2
0 −

p

qω

(∥
∥
∥F ′

u∗(t)(t, 0, 0)
∥
∥
∥
0
+
∥
∥
∥F ′

u∗(t−r)(t, 0, 0)
∥
∥
∥
0

)∥
∥u′

∗
∥
∥
0.

(3.2)

On the other hand, let u(t) = √
ρ sin ωt/p. Then, u(t) is T -periodic with minimal periodic T .

Since F ′
u(t)(t, u(t), u(t − r)) and F ′

u(t−r)(t, u(t), u(t − r)) are r-periodic, we have

∫T

0
F ′
u(t)(t, u(t), u(t − r))u(t)dt = 0,

∫T

0
F ′
u(t−r)(t, u(t), u(t − r))u(t − r)dt = 0. (3.3)

By the Wirtinger inequality and (A3), we also have

I(u) =
∫T

0

[
1
2
∣
∣u′(t)

∣
∣
2 − F(t, u(t), u(t − r))

]

dt +
∑

k∈K

∫u(tk)

0
Ik(t)dt

≤ ρT

4

(
ω

p

)2

−
∫T

0

[

F ′
u(t)(t, 0, 0)u(t) + F ′

u(t−r)(t, 0, 0)u(t − r)
]

dt

−
∫T

0

[

F(t, u(t), u(t − r)) − F ′
u(t)(t, 0, 0)u(t) − F ′

u(t−r)(t, 0, 0)u(t − r)
]

dt +
mpDρ

2

≤ ρT

4

(
ω

p

)2

− α

2

∫T

0
|u(t)|2dt + β

2

∫T

0
|u(t)|4dt + mpDρ

2

≤ ρT

4

(
ω

p

)2

− αρT

4
+
3βTρ2

16
+
mpDρ

2

=
3βTρ2

16
− 1
4

(

αT − T

(
ω

p

)2

− 2mpD

)

ρ.

(3.4)

If I(u) < I(u∗), then this is clearly in contradiction with the assumption for u∗. Now, we are
going to choose some positive number ρ such that

3βTρ2

16
− 1/4

(

αT − T

(
ω

p

)2

− 2mpD

)

ρ <
1
2

(

1 − α

(
p

qω

)2
)

‖u∗‖20.

− p

qω

(∥
∥
∥F ′

u∗(t) (t, 0, 0)
∥
∥
∥
0
+
∥
∥
∥F ′

u∗(t−r)(t, 0, 0)
∥
∥
∥
0

)∥
∥u′

∗
∥
∥
0.

(3.5)
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Actually, we can choose ρ = 4/3βT(αT − T(ω/p)2 − 2mpD). Then, we need to prove

−
(

1/4
(

αT − T
(

ω/p
)2 − 2mpD

))2

3βT/4
<

−
(

p/qω
(∥
∥
∥F ′

u∗(t)
(t, 0, 0)

∥
∥
∥
0
+
∥
∥
∥F ′

u∗(t−r)(t, 0, 0)
∥
∥
∥
0

))2

2
(

1 − α
(

p/qω
)2
) .

(3.6)

This is true under the assumption (3.1). Hence, the proof is complete.

4. Example

Suppose

F(t, u1, u2) =
1
20

(

u2
1 + u2

2

)

− 1
20

sin
2πt
r

(

u2
1 arctanu

2
2 + u2

2 arctanu2
1 + u1 + u2

)

. (4.1)

Then,

F ′
u(t−r)(t, u(t − r), u(t − 2r))

=
1
10

u(t − r) − 1
20

sin
2πt
r

(

2u(t − r) arctanu2(t − r) +
2u(t − r)u(t − 2r)

1 + u4(t − r)
+ 1

)

F ′
u(t−r)(t, u(t), u(t − r)) =

1
10

u(t − r) − 1
20

sin
2πt
r

(

2u(t − r) arctanu2(t) +
2u(t)u(t − r)
1 + u4(t − r)

+ 1
)

,

F ′
u1
(t, u1, u2)

∣
∣
u1=u2=0u1 + F ′

u2
(t, u1, u2)

∣
∣
u1=u2=0u2 = − 1

20
sin

2πt
r

(u1 + u2).

(4.2)

Let

f(t, u(t), u(t − r), u(t − 2r))

=
1
5
u(t − r) − 1

20
sin

2πt
r

(

2u(t − r) arctanu2(t − r) +
2u(t − r)u(t − 2r)

1 + u4(t − r)

+2u(t − r) arctanu2(t) +
2u(t)u(t − r)
1 + u4(t − r)

+ 2
)

.

(4.3)
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Consider the following impulsive system:

u′′(t − r) +
1
5
u(t − r) − 1

20
sin

2πt
r

[

2u(t − r) arctanu2(t − r) +
2u(t − r)u(t − 2r)

1 + u4(t − r)

+2u(t − r) arctanu2(t) +
2u(t)u(t − r)
1 + u4(t − r)

+ 2
]

= 0,

∀t ∈ (tk−1, tk),

Δu′(tk) = Ik(u(tk)) = 0.001|u(tk)|, k ∈ Z∗,

(4.4)

where tk = k − 1/2 if k ∈ Z+, while tk = k + 1/2 if k ∈ Z−.

Proof. Let r = 1, T = 1, γ = 1/20, α = 1/20, β = 1/20, m = 1, D = 0.001, ω = 2π , ps = 2. It
is easy to check all the assumptions of Theorem 3.1 are satisfied. Thus, (4.4) has a periodic
solution with the minimal period 30.
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