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We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST,
and (anti-)co-BRST symmetry transformations for all the fields of the modified version of two (1 + 1)-dimensional (2D) Proca
theory by exploiting the “augmented” superfield formalism where the (dual-)horizontality conditions and (dual-)gauge invariant
restrictions are exploited together. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian density in the
language of superfield approach. We also express the nilpotency and absolute anticommutativity of the (anti-)BRST and (anti-)co-
BRST charges within the framework of augmented superfield formalism.This exercise leads to some novel observations which have,
hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of
completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry, and discrete symmetries of
the theory and show that the algebra of conserved charges provides a physical realization of the Hodge algebra (satisfied by the de
Rham cohomological operators of differential geometry).

1. Introduction

One of the earliest known gauge theories (with 𝑈(1) gauge
symmetry) is the Abelian 1-form (𝐴(1) = 𝑑𝑥

𝜇
𝐴𝜇, 𝜇 =

0, 1, 2, . . . , 𝐷 − 1) Maxwell theory which describes the mass-
less vector boson (𝐴𝜇) with (𝐷 − 2) degrees of freedom
in any arbitrary D-dimensions of spacetime. Thus, in the
physical four dimensions of spacetime, 𝐴𝜇 has two degrees
of freedom. Its massive generalization is a Proca theory that
describes a vector boson with three degrees of freedom in the
physical four (3 + 1)-dimensions of spacetime. The central
goal of our present investigation is to study the two (1 + 1)-
dimensional (2D) Stueckelberg-modified [1] version of the
Proca theory which also incorporates a pseudoscalar field on
physical and mathematical grounds [2, 3]. This model is very
special because it is endowed withmass together with various
kinds of internal symmetries which originate, primarily, from

the gauge symmetry and its “dual” version. The existence of
the above symmetries renders the model to become an
example for the Hodge theory [2, 3].

Recently, in a set of papers [4–6], we have demonstrated
that the𝑁 = 2 supersymmetric (SUSY) quantummechanical
models also provide a set of physical examples of Hodge the-
ory because of their specific continuous and discrete symme-
try transformations which provide the physical realizations
of the de Rham cohomological operators and Hodge duality
(∗) operation of differential geometry [7–12]. However, these
SUSY models are not gauge theories because they are not
endowed with first-class constraints in the terminology of
Dirac’s prescription for the classification scheme of con-
straints [13, 14]. One of the characteristic features of these
SUSYmodels is that they havemass but do not possess gauge
symmetries that are primarily generated by the first-class
constraints (see, e.g., [14–16]).
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We have also provided the physical realizations of the de
Rham cohomological operators of the differential geometry
in the context of Abelian 𝑝-form (𝑝 = 1, 2, 3) gauge theories
in 𝐷 = 2𝑝 dimensions of spacetime within the framework
of BRST formalism [17–20]. As a consequence, these theories
are also the field theoretic models for the Hodge theory. One
of the decisive features of these theories is the observation
that they have gauge symmetry (generated by the first-class
constraints) but they do not havemass. The modified version
of 2D Proca theory is, thus, a very special field theory which
possessesmass as well as various kinds of internal symmetries
and, as has turned out, it also presents a field theoretic model
for the Hodge theory within the framework of BRST formal-
ism [2, 3].

One of the most intuitive approaches to understand
the abstract mathematical properties associated with the
(anti-)BRST symmetries is the geometrical superfield formal-
ism (see, e.g., [21–24]), where the celebrated horizontality
condition (HC) plays a very important role as far as the
derivation of (anti-)BRST symmetry transformations for the
gauge fields and associated (anti-)ghost fields, for a given
gauge theory, is concerned. In the augmented version [25–
28] of the above superfield formalism, theHCblends together
with the gauge invariant restrictions (GIRs) in a beautiful
fashion enabling us to derive the (anti-)BRST symmetry
transformations for the gauge, (anti-)ghost, andmatter fields
of a given interacting gauge theory in a cohesive and consis-
tent manner. The central objective of our present paper is to
apply extensively the above augmented version of the geomet-
rical superfield formalism [25–28] to discuss various aspects
of the modified version of 2D Proca theory within the frame-
work of BRST formalism.

In our present investigation, we derive the off-shell
nilpotent and absolutely anticommuting (anti-)BRST and
(anti-)co-BRST symmetry transformations by exploiting the
theoretical power of augmented version of superfield formal-
ism. In fact, we exploit the celebrated (dual-)horizontality
conditions [(D)HCs] and (dual-)gauge invariant restrictions
[(D)GIRs] to obtain the proper (anti-)BRST and (anti-)co-
BRST symmetry transformations for all the fields of themod-
ified version of 2D Proca theory. We provide the geometrical
meaning to the above nilpotent symmetry transformations in
the language of translational generators along the Grassman-
nian directions of the (2, 2)-dimensional supermanifold on
which our ordinary modified version of 2D Proca theory is
generalized.

Some of the key observations of our present investiga-
tion are contained in Sections 3.3 and 4.4 where we have
expressed the (anti-)BRST and (anti-)co-BRST charges in
terms of the superfields (obtained after the applications of
(D)HCs and (D)GIRs), Grassmannian partial derivatives,
and Grassmannian differentials. The off-shell nilpotency and
absolute anticommutativity properties of the (anti-)BRST
and (anti-)co-BRST symmetries (and their corresponding
generators) emerge very naturally within the framework of
our augmented version of superfield formalism.We have also
captured the (anti-)BRST and (anti-)co-BRST invariances of
the Lagrangian density within the ambit of our augmented

version of superfield approach in a very simple and straight-
forward manner.

The main motivating factors behind our present investi-
gations are as follows. First, it is very important for us to put
the basic ideas of our augmented version of superfield formal-
ism on solid footing by applying it to various interesting phys-
ical systems which are BRST invariant. Second, it is essential
for us to establish the correctness of our earlier results [3]
where we have discussed the off-shell nilpotent (anti-)BRST
and (anti-)co-BRST symmetry transformations for the 2D
modified Proca theory. Finally, the present endeavor is our
modest step towards themain goal of applying our basic ideas
to findout the 4Dmassivemodels for theHodge theorywhich
might enforce the existence of fields that would turn out to be
the candidates for the dark matter [29, 30]. We have already
shown the emergence and existence of the latter (as a pseu-
doscalar field with a negative kinetic term) in our study of the
modified version of 2D Proca theory [2, 3].

The contents of our present paper are organized as
follows. In Section 2, we recapitulate the bare essentials of the
usual Proca theory and discuss the gauge symmetry trans-
formations of the Stueckelberg-modified version of it in any
arbitrary D-dimensions of spacetime. Section 3 is devoted to
the derivation of off-shell nilpotent (anti-)BRST symmetry
transformations within the framework of augmented super-
field formalism. In Section 4,we dealwith the (anti-)co-BRST
symmetry transformations for the 2D Stueckelberg-modified
Proca theory by exploiting the augmented version of super-
field approach. Section 5 describes, very briefly, a unique
bosonic symmetry, the ghost-scale symmetry, and discrete
symmetries of our present theory. In Section 6, we present the
algebraic structure of all the generators of the above contin-
uous symmetries and establish its connection with the coho-
mological operators of differential geometry. Finally, wemake
some concluding remarks in Section 7.

In our Appendices A and B, we perform some explicit
computations which have been used in the main body of our
present text.

Essential Definitions

(1) On a compact manifold without a boundary, a set of
three operators (𝑑, 𝛿, Δ) define the de Rham cohomo-
logical operators [7–12] of differential geometry. Here
𝑑 = 𝑑𝑥

𝜇
𝜕𝜇 (with 𝑑

2
= 0) is the exterior derivative and

𝛿 = ±∗𝑑∗ (with 𝛿
2
= 0) defines the coexterior deriva-

tive, where (∗) stands for theHodge duality operation.
TheLaplacian operatorΔ = (𝑑+𝛿)

2
= {𝑑, 𝛿} is defined

in terms of 𝑑 and 𝛿 (where {𝑑, 𝛿} = 𝑑𝛿 + 𝛿𝑑).

(2) We have christened the extended version of the usual
Bonora-Tonin superfield formalism [21, 22] as the
augmented superfield formalismwhere, in addition to
the HC, other physically relevant restrictions (consis-
tent with the HC) are also imposed on the superfields
defined on the appropriate supermanifold.
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2. Preliminaries: Local Gauge Symmetries in
the Modified Version of Proca Theory

Let us begin with the Lagrangian density (L0) of a Proca the-
ory (with amass parameter𝑚) in any arbitraryD-dimensions
of spacetime. This can be expressed in an explicit form as
follows:

L0 = −
1

4
𝐹𝜇]𝐹
𝜇]

+
𝑚
2

2
𝐴𝜇𝐴
𝜇
. (1)

Here 𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 is derived from the 2-form 𝐹(2) =

𝑑𝐴(1) = [(𝑑𝑥𝜇 ∧ 𝑑𝑥])/2!]𝐹𝜇], where 𝑑 = 𝑑𝑥𝜇𝜕𝜇 (with 𝑑2 = 0)
is the exterior derivative and the 1-form𝐴(1) = 𝑑𝑥𝜇𝐴𝜇 defines
the vector boson 𝐴𝜇. In physical four (3 + 1)-dimensions of
spacetime, the bosonic field 𝐴𝜇 has three degrees of freedom
and𝑚 has the dimension of mass in natural units (where ℏ =

𝑐 = 1). In the massless limit (i.e., 𝑚 = 0), we obtain the 4D
Maxwell Lagrangian density from (1) which respects the𝑈(1)

gauge invariance under the transformations:

𝐴𝜇 → 𝐴𝜇 ∓
1

𝑚
𝜕𝜇Λ, (2)

where Λ is the local gauge parameter. It is evident that, in
the Proca theory, the gauge symmetry transformations (2) are
lost because of the presence of mass term. In some sense, a
Proca theory is a generalization of Maxwell’s theory as the
latter is the massless (𝑚 = 0) limit of the former (where the
usual 𝑈(1) gauge symmetry invariance is respected).

By exploiting the Stueckelberg formalism, one can restore
the gauge symmetry (2) for the original Lagrangian density
(1), where the field 𝐴𝜇 is replaced by 𝐴𝜇 ∓ (1/𝑚)𝜕𝜇𝜙.
As a consequence, we obtain the following Stueckelberg’s
Lagrangian density:

L𝑠 = −
1

4
𝐹𝜇]𝐹
𝜇]

+
𝑚2

2
𝐴𝜇𝐴
𝜇
+

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙 ∓ 𝑚𝐴𝜇𝜕

𝜇
𝜙, (3)

which respects the following local, continuous, and infinites-
imal gauge symmetry transformations (𝛿𝑔):

𝛿𝑔𝐴𝜇 = 𝜕𝜇Λ,

𝛿𝑔𝜙 = ±𝑚Λ,
(4)

where 𝜙 is a real scalar field. The key points, at this stage,
are as follows. First, by incorporating the Stueckelberg field
𝜙, we have converted the second-class constraints of the
original Lagrangian density (1) into the first-class variety in
the terminology of Dirac’s prescription for the classification
scheme [13, 14]. Second, the Lagrangian density (3) describes,
in the physical four dimensions of spacetime, a theory where
the mass and gauge invariance coexist together in a beautiful
and meaningful manner.

We close this section with the following remarks. First,
the gauge symmetry transformations (4) are valid in any arbi-
trary dimension of spacetime for the Stueckelberg-modified
Lagrangian density (L𝑠) at the classical level. This symmetry,
therefore, could be exploited for the (anti-)BRST symmetry

transformations at the quantum level. Second, the quantity
𝐴𝜇 ∓ (1/𝑚)𝜕𝜇𝜙 is a gauge invariant quantity because 𝛿𝑔[𝐴𝜇 ∓
(1/𝑚)𝜕𝜇𝜙] = 0 (for 𝛿𝑔𝐴𝜇 = 𝜕𝜇Λ and 𝛿𝑔𝜙 = ±𝑚Λ).
These observations would play very important roles in our
further discussions on the derivation of proper (anti-)BRST
symmetries within the framework of augmented version of
superfield formalism.

3. Nilpotent (Anti-)BRST Symmetries:
Geometrical Superfield Formalism

In this section, we derive the full set of proper (anti-)BRST
symmetry transformations by exploiting the strength of HC
and GIR. Furthermore, we capture the (anti-)BRST invari-
ance of the Lagrangian density and the nilpotency as well
as absolute anticommutativity properties of the (anti-)BRST
charges within the framework of superfield formalism.

3.1. Derivation of the (Anti-)BRST Symmetries: HC and GIR.
According to the prescription, laid down by the superfield
approach to BRST formalism [21, 22], we have to generalize
the present D-dimensional Stueckelberg-modified theory
onto a (D, 2)-dimensional supermanifold which is parame-
terized by the superspace variable 𝑍

𝑀 = (𝑥𝜇, 𝜃, 𝜃), where
𝑥𝜇 (𝜇 = 0, 1, 2, . . . , 𝐷 − 1) are the ordinary D-dimensional
spacetime variables and (𝜃, 𝜃) are a pair of Grassmannian
variables (with 𝜃2 = 𝜃

2
= 0, 𝜃𝜃 + 𝜃𝜃 = 0).

The central role, in the superfield approach [21–24], is
played by the HC which requires that the gauge invariant
quantity 𝐹𝜇], owing its origin to the exterior derivative,
remain independent of the Grassmannian variables when it
is generalized onto a (D, 2)-dimensional supermanifold. In
other words, the ordinary curvature 2-form 𝐹(2) = 𝑑𝐴(1) =

(𝑑𝑥
𝜇
∧𝑑𝑥

]
/2!)𝐹𝜇] must be equal (i.e.,𝐹(2) = F̃(2)) to the super

curvature 2-form (F̃(2)):

F̃
(2)

= 𝑑𝐴
(1)

≡ (
𝑑𝑍𝑀 ∧ 𝑑𝑍𝑁

2!
) F̃𝑀𝑁 (𝑥, 𝜃, 𝜃) . (5)

In the above, the super exterior derivative 𝑑 (with 𝑑2 = 0)
and super 1-form connection 𝐴(1) are defined on the (D, 2)-
dimensional supermanifold as

𝑑 = 𝑑𝑍
𝑀
𝜕𝑀 ≡ 𝑑𝑥

𝜇
𝜕𝜇 + 𝑑𝜃𝜕𝜃 + 𝑑𝜃𝜕

𝜃
,

𝐴
(1)

= 𝑑𝑍
𝑀
𝐴𝑀

≡ 𝑑𝑥
𝜇
B𝜇 (𝑥, 𝜃, 𝜃) + 𝑑𝜃𝐹 (𝑥, 𝜃, 𝜃)

+ 𝑑𝜃𝐹 (𝑥, 𝜃, 𝜃) .

(6)

We have taken 𝜕𝑀 = (𝜕𝜇, 𝜕𝜃, 𝜕𝜃) as the superspace derivative
on the (D, 2)-dimensional supermanifold. Physically, the
equality 𝑑𝐴(1) = 𝑑𝐴(1) of the HC implies that the gauge
invariant electric and magnetic fields of the ordinary theory
should not be affected by the presence of the Grassmannian
variables 𝜃 and 𝜃 of the supermanifold on which the ordinary
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theory has been generalized within the ambit of superfield
formalism.

The superfieldsB𝜇(𝑥, 𝜃, 𝜃),𝐹(𝑥, 𝜃, 𝜃), and𝐹(𝑥, 𝜃, 𝜃) of (6)
are the generalizations of the gauge field (𝐴𝜇), ghost field
(𝐶), and anti-ghost field (𝐶), respectively, of the ordinary D-
dimensional BRST invariant theory because the above super-
fields can be expanded along the Grassmannian directions of
the (D, 2)-dimensional supermanifold as (see, e.g., [21])

B𝜇 (𝑥, 𝜃, 𝜃) = 𝐴𝜇 (𝑥) + 𝜃𝑅
(1)

𝜇 (𝑥) + 𝜃𝑅
(2)

𝜇 (𝑥)

+ 𝑖𝜃𝜃𝑆𝜇 (𝑥) ,

𝐹 (𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝑖𝜃𝐵1 (𝑥) + 𝑖𝜃𝐵2 (𝑥) + 𝑖𝜃𝜃𝑠 (𝑥) ,

𝐹 (𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝑖𝜃𝐵3 (𝑥) + 𝜃𝐵4 (𝑥) + 𝑖𝜃𝜃𝑠 (𝑥) ,

(7)

where (𝐴𝜇, 𝐶, 𝐶) are the basic fields of any arbitrary
D-dimensional (anti-)BRST invariant Abelian theory (an
Abelian BRST invariant theory, in any arbitrary dimension
of spacetime, contains the gauge-fixing and FP-ghost terms
in addition to the kinetic term for 𝐴𝜇) and rest of the fields,
on the r.h.s. of (7), are the secondary fields which can be
expressed in terms of the basic and auxiliary fields of the
ordinary D-dimensional theory by exploiting HC. It is clear
that (𝑅(1)𝜇 , 𝑅(2)𝜇 , 𝑠, 𝑠) and (𝑆𝜇, 𝐵1, 𝐵2, 𝐵3, 𝐵4) are the fermionic
and bosonic secondary fields, respectively, on the r.h.s. of (7).

One can expand the expression 𝑑𝐴(1) of (5) in the
following explicit form using (6). This expansion, in its full
blaze of glory, is as follows:

𝑑𝐴
(1)

= (
𝑑𝑥
𝜇
∧ 𝑑𝑥

]

2!
) (𝜕𝜇B] − 𝜕]B𝜇)

+ (𝑑𝑥
𝜇
∧ 𝑑𝜃) (𝜕𝜇𝐹 − 𝜕𝜃B𝜇)

+ (𝑑𝑥
𝜇
∧ 𝑑𝜃) (𝜕𝜇𝐹 − 𝜕

𝜃
B𝜇)

− (𝑑𝜃 ∧ 𝑑𝜃) (𝜕𝜃𝐹) − (𝑑𝜃 ∧ 𝑑𝜃) (𝜕
𝜃
𝐹)

− (𝑑𝜃 ∧ 𝑑𝜃) (𝜕𝜃𝐹 + 𝜕
𝜃
𝐹) .

(8)

In a similar fashion, one can also expand the r.h.s. of (5) as
follows:

(
𝑑𝑥
𝜇 ∧ 𝑑𝑥]

2!
) F̃𝜇] + (𝑑𝑥

𝜇
∧ 𝑑𝜃) F̃𝜇𝜃

+ (𝑑𝑥
𝜇
∧ 𝑑𝜃) F̃

𝜇𝜃
+ (

𝑑𝜃 ∧ 𝑑𝜃

2!
) F̃𝜃𝜃

+ (
𝑑𝜃 ∧ 𝑑𝜃

2!
) F̃
𝜃 𝜃

+ (𝑑𝜃 ∧ 𝑑𝜃) F̃
𝜃𝜃
.

(9)

The HC requires that 𝐹(2) = [𝑑𝑥𝜇 ∧ 𝑑𝑥]/2!]𝐹𝜇] be equal to
F̃(2) = [𝑑𝑍𝑀∧𝑑𝑍𝑁/2!]F𝑀𝑁.This implies that F̃𝜇𝜃 = F̃

𝜇𝜃
=

F̃𝜃𝜃 = F̃
𝜃𝜃

= F̃
𝜃 𝜃

= 0.

Written in an explicit form, we have the following rela-
tionships (from the comparison between (8) and (9)) due to
the celebrated HC; namely,

F̃𝜇𝜃 = 𝜕𝜇𝐹 − 𝜕𝜃B𝜇,

F̃
𝜇𝜃

= 𝜕𝜇𝐹 − 𝜕
𝜃
B𝜇,

1

2!
F̃𝜃𝜃 = −𝜕𝜃𝐹,

1

2!
F̃
𝜃 𝜃

= −𝜕
𝜃
𝐹,

F̃
𝜃𝜃

= − (𝜕𝜃𝐹 + 𝜕
𝜃
𝐹) ,

F̃𝜇] ≡ (𝜕𝜇B] − 𝜕]B𝜇) ⇒

𝐹𝜇] ≡ (𝜕𝜇𝐴] − 𝜕]𝐴𝜇) .

(10)

The substitution of the expansions (7) into the above equation
yields the following relationships amongst the secondary
fields and the basic as well as auxiliary fields of the ordinary
2D theory (our method of derivation is somewhat different
from the original work of Bonora-Tonin superfield formalism
[21, 22] even though our present work is motivated by the
latter works (i.e., [21, 22])); namely,

𝑅
(2)

𝜇 = 𝜕𝜇𝐶,

𝑅
(1)

𝜇 = 𝜕𝜇𝐶,

𝑆𝜇 = 𝜕𝜇𝐵4 ≡ −𝜕𝜇𝐵1,

𝐵2 = 𝐵3 = 0,

𝑠 = 𝑠 = 0,

𝐵4 + 𝐵1 = 0.

(11)

The last entry in the above is nothing but the celebratedCurci-
Ferrari condition [31] which turns out to be trivial in the case
of Abelian 1-form modified Proca gauge theory. Taking the
help of (11), we have the following expansions (if we choose
𝐵4 = 𝐵, 𝐵1 = −𝐵); namely,

B
(ℎ)

𝜇 (𝑥, 𝜃, 𝜃) = 𝐴𝜇 (𝑥) + 𝜃 (𝜕𝜇𝐶) + 𝜃 (𝜕𝜇𝐶)

+ 𝜃𝜃 (𝑖𝜕𝜇𝐵)

≡ 𝐴𝜇 (𝑥) + 𝜃 (𝑠𝑎𝑏𝐴𝜇) + 𝜃 (𝑠𝑏𝐴𝜇)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐴𝜇) ,

𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝜃 (−𝑖𝐵) + 𝜃 (0) + 𝜃𝜃 (0)

≡ 𝐶 + 𝜃 (𝑠𝑎𝑏𝐶) + 𝜃 (𝑠𝑏𝐶)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐶) ,
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𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝜃 (0) + 𝜃 (𝑖𝐵) + 𝜃𝜃 (0)

≡ 𝐶 + 𝜃 (𝑠𝑎𝑏𝐶) + 𝜃 (𝑠𝑏𝐶)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐶) ,

(12)

which yields the following off-shell nilpotent (anti-)BRST
symmetries for the gauge (𝐴𝜇) and Faddeev-Popov (FP)
(anti-)ghost fields (𝐶)𝐶 of the theory:

𝑠𝑏𝐴𝜇 = 𝜕𝜇𝐶,

𝑠𝑏𝐶 = 0,

𝑠𝑏𝐶 = 𝑖𝐵,

𝑠𝑏𝐵 = 0,

𝑠𝑎𝑏𝐴𝜇 = 𝜕𝜇𝐶,

𝑠𝑎𝑏𝐶 = 0,

𝑠𝑎𝑏𝐶 = −𝑖𝐵,

𝑠𝑎𝑏𝐵 = 0.

(13)

A few noteworthy points, at this stage, are as follows. First, the
superscript (ℎ) on the superfields in (12) denotes the expan-
sion of the superfields after the application ofHC. Second, the
transformations 𝑠(𝑎)𝑏𝐵 = 0 on the Nakanishi-Lautrup auxil-
iary fields𝐵 have been derived from the nilpotency condition.
Third, it can be checked that the last entry of (10) is satisfied:
F̃(ℎ)𝜇] = 𝜕𝜇B

(ℎ)
] − 𝜕]B

(ℎ)
𝜇 ≡ 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 = 𝐹𝜇], due to expan-

sions in (12). Finally, we have the following mappings (see,
e.g., [25–28] for details):

𝑠𝑏 ←→ lim
𝜃=0

𝜕

𝜕𝜃
,

𝑠𝑎𝑏 ←→ lim
𝜃=0

𝜕

𝜕𝜃
,

𝑠𝑏𝑠𝑎𝑏 ←→
𝜕

𝜕𝜃

𝜕

𝜕𝜃
.

(14)

Thus, we note that the Grassmannian translation generators
(𝜕𝜃, 𝜕𝜃) are connected with the off-shell nilpotent (𝑠2(𝑎)𝑏 = 0)
and absolutely anticommuting (𝑠𝑏𝑠𝑎𝑏 + 𝑠𝑎𝑏𝑠𝑏 = 0) fermionic
(anti-)BRST symmetry transformations 𝑠(𝑎)𝑏. These proper-
ties have their origin in the properties 𝜕2𝜃 = 0, 𝜕2𝜃 = 0, 𝜕𝜃𝜕𝜃 +
𝜕
𝜃
𝜕𝜃 = 0 of the Grassmannian translation generators (𝜕𝜃, 𝜕𝜃)

when the above relations are taken in their operator form.
Truly speaking, the exact relationship between the

(anti-)BRST symmetry transformations 𝑠(𝑎)𝑏 and Grass-
mannian translational generators (𝜕𝜃, 𝜕𝜃) is 𝑠𝑏𝑀(𝑥) =

[(𝜕/𝜕𝜃)�̃�(ℎ)(𝑥, 𝜃, 𝜃)]|𝜃=0 for the BRST transformations and
𝑠𝑎𝑏𝑀(𝑥) = [(𝜕/𝜕𝜃)�̃�(ℎ)(𝑥, 𝜃, 𝜃)]|

𝜃=0
for the anti-BRST sym-

metry transformations, where 𝑀(𝑥) is the D-dimensional
ordinary field and �̃�(ℎ)(𝑥, 𝜃, 𝜃) is the corresponding super-
field (obtained after the application of the HC). However,

we will continue with the mapping (14) but will keep in
mind that the precise connection between the (anti-)BRST
transformations 𝑠(𝑎)𝑏 and (𝜕𝜃, 𝜕𝜃) is 𝑠𝑏 ↔ 𝜕

𝜃
and 𝑠𝑎𝑏 ↔ 𝜕𝜃.

Now we exploit the strength of the augmented version of
superfield formalism [25–28] to derive the (anti-)BRST sym-
metry transformations for the real scalar field 𝜙. To this end
inmind, we recall that the quantity (𝐴𝜇∓(1/𝑚)𝜕𝜇𝜙) is a gauge
invariant quantity (cf. Section 2).Thus, this physical quantity
should remain unaffected by the presence of the Grassman-
nian variables (𝜃, 𝜃) when it is generalized onto a (D, 2)-
dimensional supermanifold. In other words, in the language
of differential geometry, the following is true:

𝑑𝐴
(1)

(ℎ)
(𝑥, 𝜃, 𝜃) ∓

1

𝑚
𝑑Φ(𝑥, 𝜃, 𝜃)

= 𝑑𝐴
(1)

(𝑥) ∓
1

𝑚
𝑑𝜙 (𝑥) .

(15)

Here𝐴(1)
(ℎ)

= 𝑑𝑥𝜇B(ℎ)𝜇 +𝑑𝜃𝐹
(ℎ)

+𝑑𝜃𝐹(ℎ) [cf. (12)] and the zero-
form superfield Φ(𝑥, 𝜃, 𝜃) has the following superexpansion
along the Grassmannian directions (𝜃, 𝜃) of the (D, 2)-
dimensional supermanifold; namely,

Φ(𝑥, 𝜃, 𝜃) = 𝜙 (𝑥) + 𝜃𝑓 (𝑥) + 𝜃𝑓 (𝑥) + 𝑖𝜃𝜃𝑏 (𝑥) . (16)

In the above, it is evident that the pair of secondary fields
(𝑓(𝑥), 𝑓(𝑥)) is fermionic and (𝜙(𝑥), 𝑏(𝑥)) are bosonic in
nature. In the limit (𝜃, 𝜃) = 0, we retrieve back our real
scalar Stueckelberg field 𝜙(𝑥) of the original D-dimensional
ordinary theory.

The gauge invariant restriction (GIR) in (15) leads to the
following relationships:

𝑓 = ±𝑚𝐶,

𝑓 = ±𝑚𝐶,

𝑏 = ±𝑚𝐵.

(17)

The substitution of (17) into (16) yields

Φ
(𝑔)

(𝑥, 𝜃, 𝜃) = 𝜙 (𝑥) + 𝜃 (±𝑚𝐶) + 𝜃 (±𝑚𝐶)

+ 𝜃𝜃 (±𝑖𝑚𝐵) ,

≡ 𝜙 (𝑥) + 𝜃 (𝑠𝑎𝑏𝜙) + 𝜃 (𝑠𝑏𝜙)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝜙) ,

(18)

where the superscript (𝑔) on the superfield Φ(𝑥, 𝜃, 𝜃) cor-
responds to the superexpansion of this superfield after the
application ofGIR. It is clear, from the above equation, thatwe
have the following:

𝑠𝑏𝜙 = ±𝑚𝐶,

𝑠𝑎𝑏𝜙 = ±𝑚𝐶,

𝑠𝑏𝑠𝑎𝑏𝜙 = ±𝑖𝑚𝐵.

(19)
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We note that, ultimately, it is the combination of HC and GIR
which leads to the derivation of full set of correct off-shell
nilpotent (𝑠2(𝑎)𝑏 = 0) and absolutely anticommuting (𝑠𝑏𝑠𝑎𝑏 +
𝑠𝑎𝑏𝑠𝑏 = 0) (anti-)BRST transformations for all the fields of
the D-dimensional modified version of Proca theory.

3.2. Lagrangian Densities: (Anti-)BRST Invariance. Exploit-
ing the full set of (anti-)BRST symmetry transformations,
we can derive the (anti-)BRST invariant Lagrangian densities
(which incorporate the gauge-fixing and Faddeev-Popov
ghost terms) by exploiting the standard techniques of BRST
approach; namely,

L𝐵 = L𝑠 + 𝑠𝑏𝑠𝑎𝑏 [
𝑖

2
𝐴𝜇𝐴
𝜇
−

𝑖

2
𝜙
2
+

1

2
𝐶𝐶]

= L𝑠 + 𝑠𝑏 [𝑖 (𝐴𝜇𝜕
𝜇
𝐶 ∓ 𝑚𝜙𝐶 −

1

2
𝐵𝐶)]

= L𝑠 + 𝑠𝑎𝑏 [−𝑖 (𝐴𝜇𝜕
𝜇
𝐶 ∓ 𝑚𝜙𝐶 −

1

2
𝐵𝐶)] .

(20)

In explicit form, the total (anti-)BRST invariant Lagrangian
densities (containing two signatures) look as the following
form:

L𝐵 = −
1

4
𝐹𝜇]𝐹
𝜇]

+
𝑚2

2
𝐴𝜇𝐴
𝜇
+

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙 ∓ 𝑚𝐴𝜇𝜕

𝜇
𝜙

+ 𝐵 (𝜕 ⋅ 𝐴 ± 𝑚𝜙) +
1

2
𝐵
2
− 𝑖𝜕𝜇𝐶𝜕

𝜇
𝐶 + 𝑖𝑚

2
𝐶𝐶.

(21)

Using the full set of (anti-)BRST symmetries (13) and (19), we
can check that the above Lagrangian densities transform to
the total spacetime derivatives as

𝑠𝑏L𝐵 = 𝜕𝜇 [𝐵𝜕
𝜇
𝐶] ,

𝑠𝑎𝑏L𝐵 = 𝜕𝜇 [𝐵𝜕
𝜇
𝐶] .

(22)

As a consequence, the action integral 𝑆 = ∫ 𝑑𝐷−1𝑥L𝐵
remains invariant for the physically well-defined fields of the
theory. The above infinitesimal and continuous symmetry
transformations, according to Noether’s theorem, lead to the
following expressions for the (anti-)BRST charges 𝑄(𝑎)𝑏:

𝑄𝑎𝑏 = ∫𝑑
𝐷−1

𝑥 [𝐵
̇

𝐶 − �̇�𝐶] ,

𝑄𝑏 = ∫𝑑
𝐷−1

𝑥 [𝐵�̇� − �̇�𝐶] ,

(23)

which are found to be conserved (�̇�(𝑎)𝑏 = 0) and nilpotent
(𝑄2(𝑎)𝑏 = 0) of order two. These charges are the generators of
transformations listed in (13) and (19) and they are derived
from the following Noether conserved currents:

𝐽
𝜇

𝑏
= −𝐹
𝜇]

(𝜕]𝐶) + 𝐵 (𝜕
𝜇
𝐶) + 𝑚𝐶 (𝜕

𝜇
𝜙 − 𝑚𝐴

𝜇
) ,

𝐽
𝜇

𝑎𝑏
= −𝐹
𝜇]

(𝜕]𝐶) + 𝐵 (𝜕
𝜇
𝐶) + 𝑚𝐶 (𝜕

𝜇
𝜙 − 𝑚𝐴

𝜇
) .

(24)

In the proof of the conservation laws (𝜕𝜇𝐽
𝜇

(𝑎)𝑏
= 0), we have to

use the following Euler-Lagrange (E-L) equations of motion:

(◻ + 𝑚
2
) 𝐶 = 0,

(◻ + 𝑚
2
)𝐴𝜇 − 𝜕𝜇 (𝜕 ⋅ 𝐴 ± 𝑚𝜙 + 𝐵) = 0,

(◻ + 𝑚
2
) 𝐶 = 0,

◻𝜙 − 𝑚 (𝜕 ⋅ 𝐴 + 𝐵) = 0,

𝐵 = − (𝜕 ⋅ 𝐴 ± 𝑚𝜙) ,

(25)

which emerge from the Lagrangian densities (21).
The (anti-)BRST invariance of the Lagrangian density (21)

can be also captured in the language of superfield formalism.
To this end in mind, first of all, we note that the Stueckelberg
Lagrangian densityL𝑠 [cf. (3)] can be written as

L𝑠 → L̃𝑠

= −
1

4
F̃
(ℎ)

𝜇] F̃
𝜇](ℎ)

+
𝑚2

2
B
(ℎ)

𝜇 B
𝜇(ℎ)

+
1

2
𝜕𝜇Φ
(𝑔)

𝜕
𝜇
Φ
(𝑔)

∓ 𝑚B
(ℎ)

𝜇 𝜕
𝜇
Φ
(𝑔)

,

(26)

within the framework of superfield formalism, where the
superfields are obtained after the applications of HC and
GIR [cf. (12) and (18)]. It is straightforward to check that the
following is true; namely,

lim
𝜃=0

𝜕

𝜕𝜃
L̃𝑠 = 0,

lim
𝜃=0

𝜕

𝜕𝜃
L̃𝑠 = 0,

𝜕

𝜕𝜃

𝜕

𝜕𝜃
L̃𝑠 = 0.

(27)

In view of the mappings (14), it is evident that the Stueck-
elberg Lagrangian densities are (anti-)BRST invariant (i.e.,
𝑠𝑏L𝑠 = 0, 𝑠𝑎𝑏L𝑠 = 0, and 𝑠𝑏𝑠𝑎𝑏L𝑠 = 0).

Exploiting the techniques of superfield formalism, the
full (anti-)BRST invariant Lagrangian densities (21) (which
incorporate the gauge-fixing and Faddev-Popov ghost terms)
can be expressed in three different ways (modulo a total
spacetime derivative); namely,

L̃𝐵 = L̃𝑠 +
𝜕

𝜕𝜃

𝜕

𝜕𝜃
[
𝑖

2
B
(ℎ)

𝜇 B
𝜇(ℎ)

−
𝑖

2
(Φ
(𝑔)

Φ
(𝑔)

)

+
1

2
(𝐹
(ℎ)

𝐹
(ℎ)

)] ,

≡ L̃𝑠 + lim
𝜃=0

𝜕

𝜕𝜃
[𝑖 {B

(ℎ)

𝜇 𝜕
𝜇
𝐹
(ℎ)

∓ 𝑚(Φ
(𝑔)

𝐹
(ℎ)

)

−
1

2
(𝐵 (𝑥) 𝐹

(ℎ)
)}] ,
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≡ L̃𝑠 + lim
𝜃=0

𝜕

𝜕𝜃
[−𝑖 {B

(ℎ)

𝜇 𝜕
𝜇
𝐹
(ℎ)

∓ 𝑚(Φ
(𝑔)

𝐹
(ℎ)

)

−
1

2
(𝐵 (𝑥) 𝐹

(ℎ)
)}] .

(28)

Taking into account the nilpotency (𝜕2𝜃 = 𝜕2
𝜃
= 0) and anti-

commutativity (𝜕𝜃𝜕𝜃+𝜕𝜃𝜕𝜃 = 0) property of the generator (𝜕𝜃,
𝜕
𝜃
), it is straightforward to prove that

lim
𝜃=0

𝜕

𝜕𝜃
L̃𝐵 = 0 ←→

𝑠𝑎𝑏L𝐵 = 0,

lim
𝜃=0

𝜕

𝜕𝜃
L̃𝐵 = 0 ←→

𝑠𝑏L𝐵 = 0,

𝜕

𝜕𝜃

𝜕

𝜕𝜃
L̃𝐵 = 0 ←→

𝑠𝑏𝑠𝑎𝑏L𝐵 = 0,

(29)

where the mappings (14) and results from (27) have been
taken into consideration. We would like to lay emphasis on
the fact that there is no contradiction amongst (20), (22), (28),
and (29). This is due to the observation that, in reality, we
have (1/2)𝑠𝑏𝑠𝑎𝑏[𝑖𝐴𝜇𝐴

𝜇 − 𝑖𝜙2 + 𝐶𝐶] = −𝜕𝜇(𝐴
𝜇𝐵) + 𝐵(𝜕 ⋅ 𝐴 ±

𝑚𝜙) + (𝐵2/2) − 𝑖𝜕𝜇𝐶𝜕𝜇𝐶+ 𝑖𝑚2𝐶𝐶. However, we have thrown
away the total spacetime derivative term from the Lagrangian
density (21). If we keep this term in (21), then we have
𝑠(𝑎)𝑏L𝐵 = 0 instead of the expressions in (22). Thus, there
is no inconsistency anywhere.

3.3. Conserved Charges: Superfield Approach. We can also
express the (anti-)BRST charges in terms of superfields
(obtained after the application of HC and GIR), the Grass-
mannian partial derivatives (𝜕𝜃, 𝜕𝜃), and differentials (𝑑𝜃, 𝑑𝜃).
For instance, we note that the following expression for the
BRST charge is true; namely,

𝑄𝑏 =
𝜕

𝜕𝜃

𝜕

𝜕𝜃
(∫𝑑
𝐷−1

𝑥 [𝑖𝐹
(ℎ)
B
(ℎ)

0 ])

= ∫𝑑
𝐷−1

𝑥∫𝑑𝜃∫𝑑𝜃 [𝑖𝐹
(ℎ)
B
(ℎ)

0 ] ,

(30)

in the language of superfields (after the application of HC).
It is clear, from the mappings (14), that the above expression
implies

𝑄𝑏 = ∫𝑑
𝐷−1

𝑥 [𝑠𝑏𝑠𝑎𝑏 (𝑖𝐶𝐴0)] , (31)

in the ordinary D-dimensions of spacetime where the
(anti-)BRST transformations 𝑠(𝑎)𝑏 and ordinary fields are
defined. The proof of the nilpotency of the BRST charge
becomes quite simple now due to the nilpotency (𝑠2𝑏 = 0) of 𝑠𝑏

and that of the translation generator 𝜕
𝜃
(because 𝜕2

𝜃
= 0). In

exactly similar fashion, we can express the anti-BRST charge
𝑄𝑎𝑏, within the framework of superfield formalism, as

𝑄𝑎𝑏 =
𝜕

𝜕𝜃

𝜕

𝜕𝜃
(∫𝑑
𝐷−1

𝑥 [−𝑖𝐹
(ℎ)
B
(ℎ)

0 ])

= ∫𝑑
𝐷−1

𝑥∫𝑑𝜃∫𝑑𝜃 [−𝑖𝐹
(ℎ)
B
(ℎ)

0 ] .

(32)

Once again, the proof of nilpotency of the anti-BRST charge
𝑄𝑎𝑏 becomes pretty simple because of the fact that, in the
ordinary D-dimensional spacetime, expression (32) can be
written in the following form by exploiting themappings (14);
namely,

𝑄𝑎𝑏 = ∫𝑑
𝐷−1

𝑥 [𝑠𝑎𝑏𝑠𝑏 (−𝑖𝐶𝐴0)] , (33)

where 𝑠2𝑎𝑏 = 0 implies that 𝑄2𝑎𝑏 = 0 (due to 𝑠𝑎𝑏𝑄𝑎𝑏 =

𝑖{𝑄𝑎𝑏, 𝑄𝑎𝑏} = 0). Within the framework of superfield
formalism, the nilpotency of𝑄𝑎𝑏 is encoded in the nilpotency
of 𝜕𝜃 (because 𝜕2𝜃 = 0). In other words, we can explicitly
verify the nilpotency of the conserved (anti-)BRST charges in
terms of the translational generators along the Grassmannian
directions (𝜃, 𝜃) of the (2, 2)-dimensional supermanifold as
lim𝜃=0(𝜕/𝜕𝜃)𝑄𝑏 = 0, lim

𝜃=0
(𝜕/𝜕𝜃)𝑄𝑎𝑏 = 0 because 𝜕2𝜃 = 𝜕2

𝜃
=

0.
There are other alternative forms of the conserved and

nilpotent (anti-)BRST charges, within the framework of the
superfield formalism, that are also interesting. For instance, it
can be checked that the anti-BRST charge can be expressed
as:

𝑄𝑎𝑏 = ∫𝑑
𝐷−1

𝑥∫𝑑𝜃 [𝐵 (𝑥)B
(ℎ)

0 (𝑥, 𝜃, 𝜃)

+ 𝑖𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) �̇�
(ℎ)

(𝑥, 𝜃, 𝜃)]

= lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑
𝐷−1

𝑥 [𝐵 (𝑥)B
(ℎ)

0 (𝑥, 𝜃, 𝜃)

+ 𝑖𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) �̇�
(ℎ)

(𝑥, 𝜃, 𝜃)]

≡ ∫𝑑
𝐷−1

𝑥 [𝑠𝑎𝑏 (𝐵𝐴0 + 𝑖𝐶�̇�)] .

(34)

In exactly similar fashion, we can express the conservedBRST
charge as

𝑄𝑏 = ∫𝑑
𝐷−1

𝑥∫𝑑𝜃 [𝐵 (𝑥)B
(ℎ)

0 (𝑥, 𝜃, 𝜃)

− 𝑖𝐹
(ℎ)

(𝑥, 𝜃, 𝜃)
̇

𝐹
(ℎ)

(𝑥, 𝜃, 𝜃)] ,

= lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑
𝐷−1

𝑥 [𝐵 (𝑥)B
(ℎ)

0 (𝑥, 𝜃, 𝜃)

− 𝑖𝐹
(ℎ)

(𝑥, 𝜃, 𝜃)
̇

𝐹
(ℎ)

(𝑥, 𝜃, 𝜃)]

≡ ∫𝑑
𝐷−1

𝑥 [𝑠𝑏 (𝐵𝐴0 − 𝑖𝐶
̇

𝐶)] .

(35)
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The nilpotency (𝑄2(𝑎)𝑏 = 0) of the (anti-)BRST charges 𝑄(𝑎)𝑏
is encoded in the observation that the following are true;
namely,

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑎𝑏 = 0,

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑏 = 0,

(36)

where the nilpotency (𝜕2𝜃 = 𝜕2
𝜃

= 0) of 𝜕𝜃 and 𝜕
𝜃
plays an

important role.
We close this subsection with the remark that the fol-

lowing observations in the context of expressions for the
(anti-)BRST charges:

𝑄𝑎𝑏 = ∫𝑑
𝐷−1

𝑥 [𝑠𝑏 (−𝑖𝐶
̇

𝐶)] ,

𝑄𝑏 = ∫𝑑
𝐷−1

𝑥 [𝑠𝑎𝑏 (𝑖𝐶�̇�)] ,

(37)

lead to the proof of absolute anticommutativity of the
(anti-)BRST charges because it can be readily checked that
the following are true; namely,

𝑠𝑏𝑄𝑎𝑏 = 𝑖 {𝑄𝑎𝑏, 𝑄𝑏} = ∫𝑑
𝐷−1

𝑥 [𝑠
2

𝑏 (−𝑖𝐶
̇

𝐶)] = 0,

(𝑠
2

𝑏 = 0) ,

𝑠𝑎𝑏𝑄𝑏 = 𝑖 {𝑄𝑏, 𝑄𝑎𝑏} = ∫𝑑
𝐷−1

𝑥 [𝑠
2

𝑎𝑏 (𝑖𝐶�̇�)] = 0,

(𝑠
2

𝑎𝑏 = 0) ,

(38)

because of the nilpotency of (anti-)BRST transformations
𝑠(𝑎)𝑏. These observations can also be captured in the language
of the superfield formalism; namely,

𝑄𝑎𝑏 = lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑
𝐷−1

𝑥 [−𝑖𝐹
(ℎ) ̇

𝐹
(ℎ)

] ,

𝑄𝑏 = lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑
𝐷−1

𝑥 [𝑖𝐹
(ℎ)

�̇�
(ℎ)

] .

(39)

The above expressions imply the following:

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑎𝑏 = 0,

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑏 = 0.

(40)

A close look at (38), (39), and (40) shows that the nilpotency
and anticommutativity property are interrelated. In other
words, the properties 𝜕2𝜃 = 𝜕2

𝜃
= 0 and 𝜕𝜃𝜕𝜃 + 𝜕

𝜃
𝜕𝜃 = 0

are interconnected. For instance, in the latter relation when
we set 𝜕𝜃 = 𝜕

𝜃
, we obtain the former relation 𝜕2𝜃 = 𝜕2

𝜃
= 0

which actually provides the connection between the proper-
ties of anticommutativity and nilpotency associated with the
(anti-)BRST symmetry transformations (𝑠(𝑎)𝑏).

We wish to make a final remark that it is the strength
of the superfield approach to BRST formalism that we have

obtained various expressions for the (anti-)BRST charges
in the language of (anti-)BRST symmetry transformations.
Some of the results are completely novel as, to the best of our
knowledge, these expressions have not been pointed out in
the literature. In fact, these new expressions are responsible,
with the help of mapping in (14), to establish the nilpotency
and absolute anticommutativity of the (anti-)BRST symme-
tries (and corresponding charges) within the framework of
superfield formalism. For instance, the relationships, given in
(38), demonstrate that the nilpotency property and absolute
anticommutativity property (of 𝑠(𝑎)𝑏 and 𝑄(𝑎)𝑏) are inter-
twined together.

4. (Anti-)co-BRST Symmetries:
Superfield Approach

In this section, first of all, we discuss the dual-gauge transfor-
mations for the gauge-fixed Lagrangian densities and show
that a particular kind of restriction must be imposed on
the dual-gauge parameter if we wish to maintain the dual-
gauge symmetry in the theory. Then, we derive the off-
shell nilpotent and absolutely anticommuting (anti-)co-BRST
symmetry transformations by exploiting the strength of dual-
HC (DHC) and dual-GIR (DGIR). After this, we prove the
(anti-)co-BRST invariance of the Lagrangian densities within
the framework of superfield formalism. Finally, we capture
the (anti-)co-BRST invariance of the conserved charges, their
nilpotency, and absolute anticommutativity within the ambit
of the augmented version of superfield approach to BRST
formalism.

4.1. Dual-Gauge Transformations for the Gauge-Fixed Lagran-
gian Densities in Two-Dimensions of Spacetime. Analogous
to the infinitesimal, continuous, and local gauge symmetry
transformations (4), we wish to discuss, in this subsection,
the dual-gauge transformations which would be, finally,
generalized to the (anti-)co-BRST symmetry transformations
(in the two (1 + 1)-dimensions of spacetime, a particular
part of the Lagrangian density [i.e., −(1/4)𝐹𝜇]𝐹𝜇]] becomes
[(1/2)𝐸2] because there is only one nonvanishing component
of 𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 which is 𝐹01 = −𝜀

𝜇]
𝜕𝜇𝐴] = 𝐸;

this is a pseudoscalar field because it changes sign under
the operation of parity transformation and it has only one
existing component). In their most general form, the two (1+

1)-dimensional (2D) gauge-fixed Lagrangian densities for the
modified Proca theory (without the fermionic (anti-)ghost
fields) are as follows (for the 2D theory, we adopt the
convention and notations such that the background flat
Minkowskian spacetime manifold is endowed with a metric
𝜂𝜇] with signatures (+1, −1) so that 𝑃⋅𝑄 = 𝜂𝜇]𝑃

𝜇𝑄] = 𝑃0𝑄0−

𝑃1𝑄1 is the dot product between two nonnull 2D vectors 𝑃𝜇
and𝑄𝜇; we also choose the antisymmetric Levi-Civita tensor
𝜀𝜇] such that 𝜀01 = +1 = 𝜀10, 𝜀𝜇]𝜀

𝜇] = −2!, 𝜀𝜇]𝜀
]𝜆 = 𝛿𝜆𝜇 , etc.)

(see, e.g., [3]):

L(𝑏
1
) = B (𝐸 − 𝑚𝜙) −

1

2
B
2
+ 𝑚𝐸𝜙 −

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙

+
1

2
𝑚
2
𝐴𝜇𝐴
𝜇
− 𝑚𝐴𝜇𝜕

𝜇
𝜙 +

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙
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+ 𝐵 (𝜕 ⋅ 𝐴 + 𝑚𝜙) +
1

2
𝐵
2
,

L(𝑏
2
) = B (𝐸 + 𝑚𝜙) −

1

2
B
2
− 𝑚𝐸𝜙 −

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙

+
1

2
𝑚
2
𝐴𝜇𝐴
𝜇
+ 𝑚𝐴𝜇𝜕

𝜇
𝜙 +

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙

+ 𝐵 (𝜕 ⋅ 𝐴 − 𝑚𝜙) +
1

2
𝐵
2
,

(41)

where (𝐵, 𝐵,B,B) are the Nakanishi-Lautrup type auxiliary
fields and 𝜙 is a pseudoscalar field that has been incorporated
in the theory on mathematical as well as physical grounds [2,
3]. It will be noted that the (pseudo-)scalar fields (𝜙)𝜙 have
been added/subtracted in a symmetrical fashion to the kinetic
and gauge-fixing terms, respectively, so that we would have
appropriate discrete symmetry transformations in the theory
[cf. (89) below].

Let us discuss the dual-gauge transformations 𝛿(1,2)
𝑑𝑔

:

𝛿
(1,2)

𝑑𝑔
𝐴𝜇 = −𝜀𝜇]𝜕

]
Σ,

𝛿
(1,2)

𝑑𝑔
(𝜕 ⋅ 𝐴 ± 𝑚𝜙) = 0,

𝛿
(1,2)

𝑑𝑔
𝜙 = 0,

𝛿
(1,2)

𝑑𝑔
𝜙 = ∓𝑚Σ,

𝛿
(1,2)

𝑑𝑔
𝐸 = ◻Σ,

𝛿
(1,2)

𝑑𝑔
[𝐵, 𝐵,B,B] = 0,

(42)

where ◻ = 𝜕20 − 𝜕21 is the d’Alembertian operator, Σ(𝑥) is
the local and infinitesimal dual-gauge parameter, and the
superscripts (1, 2) denote the dual-gauge transformations for
the Lagrangian densities L(𝑏

1
) and L(𝑏

2
), respectively. We

note that the Lagrangian densities L(𝑏
1
,𝑏
2
) transform, under

the above dual-gauge transformations 𝛿(1,2)
𝑑𝑔

, as follows:

𝛿
(1)

𝑑𝑔
L(𝑏
1
) = 𝜕𝜇 [𝑚𝜀

𝜇]
(𝑚𝐴]Σ + 𝜙𝜕]Σ) + 𝑚𝜙𝜕

𝜇
Σ]

+B (◻ + 𝑚
2
) Σ,

𝛿
(2)

𝑑𝑔
L(𝑏
2
) = 𝜕𝜇 [𝑚𝜀

𝜇]
(𝑚𝐴]Σ − 𝜙𝜕]Σ) − 𝑚𝜙𝜕

𝜇
Σ]

+B (◻ + 𝑚
2
) Σ.

(43)

Thus, it is clear that, to maintain the dual-gauge symmetries
in the 2Dgauge-fixed theory, we have to impose the condition
(◻+𝑚2)Σ(𝑥) = 0, from outside, on the dual-gauge parameter
Σ(𝑥). We note that the operation of coexterior derivative 𝛿 =

−∗𝑑∗ on the connection 1-form (𝐴(1) = 𝑑𝑥𝜇𝐴𝜇) yields (𝜕 ⋅𝐴)

which is a zero form.We can add/subtract a scalar field 𝜙 to it
as is the case with the gauge-fixing terms (𝜕⋅𝐴±𝑚𝜙) that have
been incorporated inL(𝑏

1
,𝑏
2
).This scalar field 𝜙 is nothing but

the Stueckelberg field.

A few noteworthy points, at this juncture, are as follows.
First, we point out that the nomenclature of the dual-gauge
symmetry is appropriate becausewehave𝛿(1,2)

𝑑𝑔
(𝜕⋅𝐴±𝑚𝜙) = 0.

In otherwords, the total gauge-fixing terms (𝜕⋅𝐴±𝑚𝜙), owing
their fundamental origin to the dual-exterior derivative,
remain invariant. Second, the dual-gauge parameter has to
be restricted by (◻ + 𝑚2)Σ = 0 to maintain the dual-gauge
symmetry in the theory. One can take care of this restriction
by introducing the (anti-)ghost fields (𝐶)𝐶 within the frame-
work of BRST formalism as we will see in our Section 4.3.
Third, the dual-gauge symmetry transformations exist only
in the specific two (1 + 1)-dimensions of spacetime for the
Abelian 1-form gauge theory, whereas the local gauge and
(anti-)BRST symmetries exist in any arbitrary dimension of
spacetime. Fourth, the perfect analogue of the gauge sym-
metry [cf. (4)] does not exist for the dual-gauge symmetry
(becausewe have to impose the restriction (◻+𝑚

2)Σ = 0 from
outside). Finally, in the forthcoming sections, we will see that
one can have perfect (anti-)dual-BRST (or (anti-)co-BRST)
symmetries in the theory, where Σ will be replaced by the
(anti-)ghost fields (𝐶)𝐶 (without any ad hoc restrictions from
outside).

We claim that there would not be any restrictions on
anything (from outside) when we will discuss the full
(anti-)BRST and (anti-)co-BRST invariant Lagrangian den-
sities of our present theory.

4.2. Nilpotent (Anti-)co-BRST Symmetry Transformations:
Geometrical Superfield Technique. As prescribed by the
superfield formalism, first of all, we generalize the 2D theory
onto the (2, 2)-dimensional supermanifold and promote the
ordinary coexterior derivative 𝛿 = − ∗ 𝑑∗ onto the same
supermanifold, as

𝛿 = − ∗ 𝑑∗ ⇒

𝛿 = − ⋆ 𝑑⋆,
(44)

where the (⋆) operator is the Hodge duality operation,
defined on the (2, 2)-dimensional supermanifold. The work-
ing rule for the operation of (⋆) has been worked out in our
earlier paper [32] and we exploit these results in the following
dual-HC (DHC):

𝛿𝐴
(1)

= 𝛿𝐴
(1)

,

𝛿𝐴
(1)

= (𝜕 ⋅ 𝐴) ,

(45)

where the l.h.s. is (− ⋆ 𝑑 ⋆ 𝐴(1)) and r.h.s. is obviously equal
to the Lorentz condition for the gauge-fixing (𝜕 ⋅𝐴).The defi-
nition of 𝑑 and 𝐴(1) is quoted in (6) and the superexpansions
of the superfields are listed in (7).

The explicit expression for the computation of the l.h.s. of
the DHC, in (45), is as follows (we have performed explicit
computation of (−⋆𝑑⋆𝐴(1)) in our Appendix A and derived
clearly (46) which plays an important role in our further
discussions) (see, e.g., [32] for details):

𝜕 ⋅B − (𝜕𝜃𝐹 + 𝜕
𝜃
𝐹) − 𝑆

𝜃𝜃
(𝜕𝜃𝐹) − 𝑆

𝜃 𝜃
(𝜕
𝜃
𝐹) , (46)
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where (𝑆𝜃𝜃, 𝑆𝜃 𝜃) coefficients, in the above, have turned up
while taking theHodge duality (⋆) operation on the following
super 4-forms (defined on the (2, 2)-dimensional superman-
ifold), while the computations of 𝑑 ⋆ 𝐴

(1) are performed;
namely,

⋆ (𝑑𝑥
𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝜀

𝜇]
𝑆
𝜃𝜃
,

⋆ (𝑑𝑥
𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝜀

𝜇]
𝑆
𝜃 𝜃
.

(47)

It is to be noted that (𝑑⋆𝐴(1)) is a super 4-form on the (2, 2)-
dimensional supermanifold and when we perform another
(⋆) operation on it, the differentials of (47) appear. In the
above, 𝑆𝜃𝜃 and 𝑆𝜃 𝜃 are symmetric in 𝜃 and 𝜃 and all the other
coefficients of the l.h.s. of (45) have been worked out in our
earlier paper [32]. On the comparison of the l.h.s. and r.h.s. of
(45), we obtain

𝜕 ⋅ 𝑅
(1)

= 0,

𝜕 ⋅ 𝑅
(2)

= 0,

𝜕 ⋅ 𝑆 = 0,

𝑠 = 𝑠 = 0,

𝐵1 = 𝐵4 = 0,

𝐵2 + 𝐵3 = 0.

(48)

It is clear that, unlike the HC where all the secondary fields
of expansions (7) are exactly and uniquely determined, in
the case of DHC, the secondary fields are not uniquely
determined and there can be various (non-)local choices for
the solution of (48) (see, e.g., [33] for details). Thus, we have
the complete freedom to make the choices. Finally, we select
(by exploiting the augmented version of superfield formalism,
we have derived these exact expressions in our Appendix B;
thus, results of (49) are mathematically precise and exact) the
following local expressions for the solution of (48); namely,

𝑅
(1)

𝜇 = −𝜀𝜇]𝜕
]
𝐶,

𝑅
(2)

𝜇 = −𝜀𝜇]𝜕
]
𝐶,

𝑆𝜇 = 𝜀𝜇]𝜕
]
B,

𝐵3 = −B,

𝐵2 = B,

(49)

which, unambiguously, satisfy 𝜕 ⋅ 𝑅(1) = 𝜕 ⋅ 𝑅(2) = 𝜕 ⋅ 𝑆 = 0

and 𝐵2 + 𝐵3 = 0. From now on, we will focus only on
the Lagrangian density L(𝑏

1
) of (41) and its generalization

to the (anti-)co-BRST invariant Lagrangian density (57) (see
below). However, it is straightforward to make the local
choices for the Lagrangian density L(𝑏

2
), too. For instance,

we can choose 𝑅(1)𝜇 = −𝜀𝜇]𝜕
]𝐶, 𝑅(2)𝜇 = −𝜀𝜇]𝜕

]𝐶, 𝑆𝜇 = 𝜀𝜇]𝜕
]B,

𝐵3 = −B, and 𝐵2 = B for the (anti-)co-BRST invariant
version ofL(𝑏

2
).

Ultimately, we obtain the following expansions for the
superfields along the Grassmannian (𝜃, 𝜃)-directions of the
(2, 2)-dimensional supermanifold after the application of
DHC; namely,

B
(𝑑ℎ)

𝜇 (𝑥, 𝜃, 𝜃) = 𝐴𝜇 + 𝜃 (−𝜀𝜇]𝜕
]
𝐶) + 𝜃 (−𝜀𝜇]𝜕

]
𝐶)

+ 𝜃𝜃 (𝑖𝜀𝜇]𝜕
]
B)

≡ 𝐴𝜇 + 𝜃 (𝑠𝑎𝑑𝐴𝜇) + 𝜃 (𝑠𝑑𝐴𝜇)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝐴𝜇) ,

𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃) = 𝐶 + 𝜃 (0) + 𝜃 (−𝑖B) + 𝜃𝜃 (0)

≡ 𝐶 + 𝜃 (𝑠𝑎𝑑𝐶) + 𝜃 (𝑠𝑑𝐶)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝐶) ,

𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃) = 𝐶 + 𝜃 (𝑖B) + 𝜃 (0) + 𝜃𝜃 (0)

≡ 𝐶 + 𝜃 (𝑠𝑎𝑑𝐶) + 𝜃 (𝑠𝑑𝐶)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝐶) ,

(50)

where the superscript (𝑑ℎ) denotes the expansions of the
superfields after the application of DHC. A close look at the
above expansions demonstrates thatwe have already obtained
the (anti-)co-BRST symmetry transformations for the gauge
field (𝐴𝜇) and corresponding (anti-)ghost fields (𝐶)𝐶. Physi-
cally, the DHC states that the dual-gauge invariant quantity
[i.e., 𝛿(1,2)

𝑑𝑔
(𝜕 ⋅ 𝐴 = 0)], which is nothing but the Lorentz

condition (𝜕 ⋅𝐴) for the gauge-fixing, does not depend on the
Grassmannian variables 𝜃 and 𝜃 in any form.

To obtain the (anti-)co-BRST symmetry transforma-
tions for the 𝜙 field, we exploit the strength of augmented
superfield formalism where we demand that all the dual-
gauge (or (anti-)co-BRST) invariant quantities should remain
independent of the Grassmannian variables 𝜃 and 𝜃. In this
context, we observe that 𝛿(1)

𝑑𝑔
[𝐴𝜇(𝑥) − (1/𝑚)𝜀𝜇]𝜕

]𝜙(𝑥)] = 0

under the dual-gauge transformations (42).Thus, we demand
the following dual-GIR on the superfields of the (2, 2)-
dimensional supermanifold; namely,

B
(𝑑ℎ)

𝜇 (𝑥, 𝜃, 𝜃) −
1

𝑚
𝜀𝜇]𝜕

]
Φ̃ (𝑥, 𝜃, 𝜃)

= 𝐴𝜇 (𝑥) −
1

𝑚
𝜀𝜇]𝜕

]
𝜙 (𝑥) .

(51)

We note that the DGIR combines DHC and the dual-gauge
invariance together in a fruitful fashion. Taking the help from
(50) and using the following expansion for the superfield
Φ̃(𝑥, 𝜃, 𝜃) along the Grassmannian (𝜃, 𝜃)-directions of the
(2, 2)-dimensional supermanifold:

Φ̃ (𝑥, 𝜃, 𝜃) = 𝜙 (𝑥) + 𝜃𝑓1 (𝑥) + 𝜃𝑓2 (𝑥) + 𝑖𝜃𝜃𝑏1 (𝑥) , (52)
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we obtain the following results:

𝑓1 (𝑥) = (−𝑚𝐶) ,

𝑓2 (𝑥) = (−𝑚𝐶) ,

𝑏1 (𝑥) = (𝑚B) .

(53)

It is obvious, from the above, that 𝑓1(𝑥) and 𝑓2(𝑥) are
fermionic in nature and 𝑏1(𝑥) is bosonic. Plugging in the
above values into (52), we deduce the following:

Φ̃
(𝑑𝑔)

(𝑥, 𝜃, 𝜃) = 𝜙 (𝑥) + 𝜃 (−𝑚𝐶) + 𝜃 (−𝑚𝐶)

+ 𝜃𝜃 (𝑖𝑚B)

≡ 𝜙 + 𝜃 (𝑠𝑎𝑑𝜙) + 𝜃 (𝑠𝑑𝜙)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝜙) ,

(54)

where the superscript (𝑑𝑔) denotes the superexpansion after
the application of dual-GIR (DGIR) on the superfields of the
(2, 2)-dimensional supermanifold.

A careful observation of (50) and (54) leads to the deriva-
tion of the following fermionic (anti-)co-BRST symmetry
transformations for the whole theory; namely,

𝑠𝑎𝑑𝐴𝜇 = −𝜀𝜇]𝜕
]
𝐶,

𝑠𝑎𝑑𝐶 = 0,

𝑠𝑎𝑑𝐶 = 𝑖B,

𝑠𝑎𝑑B = 0,

𝑠𝑎𝑑 (𝜕 ⋅ 𝐴) = 0,

𝑠𝑎𝑑𝜙 = 0,

𝑠𝑎𝑑𝜙 = −𝑚𝐶,

𝑠𝑎𝑑𝐸 = ◻𝐶,

𝑠𝑑𝐴𝜇 = −𝜀𝜇]𝜕
]
𝐶,

𝑠𝑑𝐶 = 0,

𝑠𝑑𝐶 = −𝑖B,

𝑠𝑑B = 0,

𝑠𝑑 (𝜕 ⋅ 𝐴) = 0,

𝑠𝑑𝜙 = 0,

𝑠𝑑𝜙 = −𝑚𝐶,

𝑠𝑑𝐸 = ◻𝐶,

(55)

which would be the symmetry transformations for the appro-
priately modified [cf. (57) below] form of the Lagrangian
density (21). A careful observation at the transformations (55)
demonstrates that the (anti-)co-BRST symmetry transforma-
tions are off-shell nilpotent as we do not use any equation of

motion in the proof of 𝑠2(𝑎)𝑑 = 0. Further, these transforma-
tions are absolutely anticommuting in nature because it can
be checked that 𝑠𝑑𝑠𝑎𝑑 + 𝑠𝑎𝑑𝑠𝑑 = 0. Finally, we have christened
the transformations (55) as (anti-)dual-BRST (or (anti-)co-
BRST) transformations because the total gauge-fixing term
(𝜕 ⋅𝐴+𝑚𝜙), originating basically from the coexterior deriva-
tive, remains invariant under the nilpotent (𝑠2(𝑎)𝑑 = 0) and
absolutely anticommuting (𝑠𝑑𝑠𝑎𝑑+𝑠𝑎𝑑𝑠𝑑 = 0) transformations
𝑠(𝑎)𝑑.

It is clear that the 2D nilpotent (anti-)co-BRST symmetry
transformations (55) are derived from the superexpansions
(50) and (54) which are present on the (2, 2)-dimensional
supermanifold. Hence, there should be some connection
between the 2D nilpotent (anti-)co-BRST symmetries and
the superfield formalism on (2, 2)-dimensional superspace. A
careful observation at the superexpansions in (50) and (54)
leads to the following relationships:

lim
𝜃=0

𝜕

𝜕𝜃
�̃�
(𝑑ℎ,𝑑𝑔)

(𝑥, 𝜃, 𝜃) = 𝑠𝑎𝑑𝑁(𝑥) , 𝜕𝜃 ←→ 𝑠𝑎𝑑,

lim
𝜃=0

𝜕

𝜕𝜃
�̃�
(𝑑ℎ,𝑑𝑔)

(𝑥, 𝜃, 𝜃) = 𝑠𝑑𝑁(𝑥) , 𝜕
𝜃
←→ 𝑠𝑑,

𝜕

𝜕𝜃

𝜕

𝜕𝜃
�̃�
(𝑑ℎ,𝑑𝑔)

(𝑥, 𝜃, 𝜃) = 𝑠𝑑𝑠𝑎𝑑𝑁(𝑥) ,

𝜕
𝜃
𝜕𝜃 ←→ 𝑠𝑑𝑠𝑎𝑑,

(56)

where �̃�(𝑑ℎ,𝑑𝑔)(𝑥, 𝜃, 𝜃) is the generic superfield obtained after
the application of DHC and DGIR on the (2, 2)-dimensional
supermanifold and 𝑁(𝑥) is the ordinary 2D field of our
present (anti-)co-BRST invariant theory. It is evident that
the transformations (55) would be automatically off-shell
nilpotent and absolutely anticommuting because these are
identified with the translational operators (𝜕𝜃, 𝜕𝜃), along
the Grassmannian directions (𝜃, 𝜃) of the (2, 2)-dimensional
supermanifold, which satisfy 𝜕2𝜃 = 𝜕2

𝜃
= 0, 𝜕𝜃𝜕𝜃+𝜕

𝜃
𝜕𝜃 = 0 due

to their inherent properties. We end this subsection with the
remark that Φ(𝑥, 𝜃, 𝜃) = 𝜙(𝑥) because 𝜙(𝑥) is a dual-gauge
invariant quantity (i.e., 𝑠(𝑎)𝑑𝜙 = 0).

4.3. Lagrangian Densities: (Anti-)co-BRST Invariance. The
(anti-)co-BRST invariant version of the 2D Lagrangian den-
sity L(𝑏

1
) of (41) is the one that incorporates the FP-ghost

terms; namely,

LB = B (𝐸 − 𝑚𝜙) −
1

2
B
2
+ 𝑚𝐸𝜙 −

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙

+
1

2
𝑚
2
𝐴𝜇𝐴
𝜇
− 𝑚𝐴𝜇𝜕

𝜇
𝜙 +

1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙 +

1

2
𝐵
2

+ 𝐵 (𝜕 ⋅ 𝐴 + 𝑚𝜙) − 𝑖𝜕𝜇𝐶𝜕
𝜇
𝐶 + 𝑖𝑚

2
𝐶𝐶.

(57)

We note that the gauge-fixing and Faddeev-Popov ghost
terms of the above Lagrangian density are same as that of the
(anti-)BRST invariant Lagrangian density (21). Under the off-
shell nilpotent and absolutely anticommuting (anti-)co-BRST
symmetry transformations 𝑠(𝑎)𝑑 [cf. (55)], the above
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Lagrangian density transforms to the total spacetime deriva-
tives as illustrated in the following:

𝑠𝑑LB

= 𝜕𝜇 [B𝜕
𝜇
𝐶 + 𝑚𝜀

𝜇]
(𝑚𝐴]𝐶 + 𝜙𝜕]𝐶) + 𝑚𝜙𝜕

𝜇
𝐶] ,

𝑠𝑎𝑑LB

= 𝜕𝜇 [B𝜕
𝜇
𝐶 + 𝑚𝜀

𝜇]
(𝑚𝐴]𝐶 + 𝜙𝜕]𝐶) + 𝑚𝜙𝜕

𝜇
𝐶] .

(58)

Hence, the action integral 𝑆 = ∫ 𝑑𝑥LB of our theory remains
invariant.

We note that the gauge-fixing and FP-ghost terms of the
Lagrangian densities (21) have been derived by exploiting the
off-shell nilpotent (anti-)BRST symmetry transformations
[cf. (20)]. In exactly similar fashion, it is interesting to observe
that

𝑠𝑑𝑠𝑎𝑑 [
𝑖

2
𝐴𝜇𝐴
𝜇
+

𝑖

2
𝜙
2
+

1

2
𝐶𝐶]

= B (𝐸 − 𝑚𝜙) −
1

2
B
2
− 𝑖𝜕𝜇𝐶𝜕

𝜇
𝐶 + 𝑖𝑚

2
𝐶𝐶,

𝑠𝑑 [(−𝑖) {𝜀
𝜇]
𝐴𝜇𝜕]𝐶 + 𝑚𝜙𝐶 +

1

2
B𝐶}]

= B (𝐸 − 𝑚𝜙) −
1

2
B
2
− 𝑖𝜕𝜇𝐶𝜕

𝜇
𝐶 + 𝑖𝑚

2
𝐶𝐶,

𝑠𝑎𝑑 [(+𝑖) {𝜀
𝜇]
𝐴𝜇𝜕]𝐶 + 𝑚𝜙𝐶 +

1

2
B𝐶}]

= B (𝐸 − 𝑚𝜙) −
1

2
B
2
− 𝑖𝜕𝜇𝐶𝜕

𝜇
𝐶 + 𝑖𝑚

2
𝐶𝐶.

(59)

The above expressions show that there are three different
ways (modulo a total spacetime derivative term) to write
the kinetic term plus the FP-ghost terms in the language of
the off-shell nilpotent (𝑠2𝑎(𝑑) = 0) (anti-)co-BRST symmetry
transformations 𝑠𝑎(𝑑) which are also absolutely anticommute
(i.e., 𝑠𝑑𝑠𝑎𝑑+𝑠𝑎𝑑𝑠𝑑 = 0) with each other in their operator form.

We can express the above three relations in the language
of superfield formalism becausewe observe that the following
expressions:

𝜕

𝜕𝜃

𝜕

𝜕𝜃
[
𝑖

2
B
(𝑑ℎ)

𝜇 B
𝜇(𝑑ℎ)

+
𝑖

2
Φ̃
(𝑑𝑔)

Φ̃
(𝑑𝑔)

+
1

2
𝐹
(𝑑ℎ)

𝐹
(𝑑ℎ)

]

lim
𝜃=0

𝜕

𝜕𝜃
[(−𝑖) {𝜀

𝜇]
B
(𝑑ℎ)

𝜇 𝜕]𝐹
(𝑑ℎ)

+ 𝑚Φ̃
(𝑑𝑔)

𝐹
(𝑑ℎ)

+
1

2
B (𝑥) 𝐹

(𝑑ℎ)
}]

lim
𝜃=0

𝜕

𝜕𝜃
[(+𝑖) {𝜀

𝜇]
B
(𝑑ℎ)

𝜇 𝜕]𝐹
(𝑑ℎ)

+ 𝑚Φ̃
(𝑑𝑔)

𝐹
(𝑑ℎ)

+
1

2
B (𝑥) 𝐹

(𝑑ℎ)
}] ,

(60)

also lead to the derivation of the sum of a part of kinetic term
and FP-ghost terms. Ultimately, this exercise implies that the
sum of kinetic and FP-ghost terms,

B (𝐸 − 𝑚𝜙) −
1

2
B
2
− 𝑖𝜕𝜇𝐶𝜕

𝜇
𝐶 + 𝑖𝑚

2
𝐶𝐶, (61)

is always (anti-)dual-BRST invariant quantity (modulo a total
spacetime derivative) because this is trivially true when we
take into account the nilpotency and absolute anticommu-
tativity of the (anti-)co-BRST symmetry transformations. In
other words, we conclude that 𝑠(𝑎)𝑑[B(𝐸 − 𝑚𝜙) − (1/2)B2 −

𝑖𝜕𝜇𝐶𝜕𝜇𝐶 + 𝑖𝑚2𝐶𝐶] = 0 modulo a total spacetime derivative.
Thus, a part of Lagrangian density (57) is invariant under
𝑠(𝑎)𝑑.

We have already seen that a part of the kinetic term and
the total of FP-ghost terms can be expressed in terms of the
superfields obtained after the application of DHC and DGIR
[cf. (60)]. Furthermore, the kinetic term (1/2)𝜕𝜇𝜙𝜕

𝜇𝜙 for the
𝜙 field and the total gauge-fixing term [𝐵(𝜕⋅𝐴+𝑚𝜙)+1/2(𝐵2)]
would remain intact within the framework of superfield
formalism as they are the dual-gauge (or (anti-)co-BRST)
invariant quantities. We note that 𝐵(𝜕 ⋅ 𝐴 + 𝑚𝜙) →

𝐵(𝜕𝜇B
𝜇(𝑑ℎ)

+𝑚𝜙) in the superfield formalism and it is trivial
to check that 𝐵(𝜕 ⋅ B(𝑑ℎ)) = 𝐵(𝜕 ⋅ 𝐴) [cf. (50)] so that
𝐵(𝜕⋅𝐴+𝑚𝜙) → 𝐵(𝜕⋅𝐴+𝑚𝜙)without any changewhatsoever
when we generalize it onto the (2, 2)-dimensional super-
manifold. The rest of the terms can be generalized onto the
(2, 2)-dimensional supermanifold as

− 𝑚𝜀
𝜇]
𝜕𝜇B
(𝑑ℎ)

] Φ̃
(𝑑𝑔)

−
1

2
𝜕𝜇Φ̃
(𝑑𝑔)

𝜕
𝜇
Φ̃
(𝑑𝑔)

+
1

2
𝑚
2
B
(𝑑ℎ)

𝜇 B
𝜇(𝑑ℎ)

− 𝑚B
(𝑑ℎ)

𝜇 𝜕
𝜇
𝜙 (𝑥) ,

(62)

where the symbols have already been explained earlier and
they are nothing but the superexpansions after the application
of the DHC and DGIR [cf. (50) and (54)].

It is interesting to note that the last term of (62) is always
(anti-)co-BRST invariant quantity because we observe the
following:

− 𝑚B
(𝑑ℎ)

𝜇 𝜕
𝜇
𝜙 = −𝑚 [𝐴𝜇 + 𝜃 (−𝜀𝜇]𝜕

]
𝐶)

+ 𝜃 (−𝜀𝜇]𝜕
]
𝐶) + 𝜃𝜃 (𝑖𝜀𝜇]𝜕

]
B)] 𝜕

𝜇
𝜙,

(63)

where we have taken the expansions of B(𝑑ℎ)𝜇 (𝑥, 𝜃, 𝜃) from
(50). Taking the help of the mappings (56), we note the
following:

lim
𝜃=0

𝜕

𝜕𝜃
[−𝑚B

(𝑑ℎ)

𝜇 𝜕
𝜇
𝜙] = 𝜕𝜇 [𝑚𝜀

𝜇]
𝜙𝜕]𝐶]

≡ 𝑠𝑑 [−𝑚𝐴𝜇𝜕
𝜇
𝜙] ,

lim
𝜃=0

𝜕

𝜕𝜃
[−𝑚B

(𝑑ℎ)

𝜇 𝜕
𝜇
𝜙] = 𝜕𝜇 [𝑚𝜀

𝜇]
𝜙𝜕]𝐶]

≡ 𝑠𝑎𝑑 [−𝑚𝐴𝜇𝜕
𝜇
𝜙] ,
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𝜕

𝜕𝜃

𝜕

𝜕𝜃
[−𝑚B

(𝑑ℎ)

𝜇 𝜕
𝜇
𝜙] = 𝜕𝜇 [−𝑖𝑚𝜀

𝜇]
𝜙𝜕]B]

≡ 𝑠𝑑𝑠𝑎𝑑 [−𝑚𝐴𝜇𝜕
𝜇
𝜙] ,

(64)

which demonstrates that 𝑠(𝑎)𝑑[−𝑚𝐴𝜇𝜕
𝜇𝜙] is always a total

spacetime derivative. The rest of the terms in (62) are also
(anti-)co-BRST invariant quantity because we check that

lim
𝜃=0

𝜕

𝜕𝜃
[−𝑚𝜀

𝜇]
𝜕𝜇B
(𝑑ℎ)

] Φ̃
(𝑑𝑔)

−
1

2
𝜕𝜇Φ̃
(𝑑𝑔)

𝜕
𝜇
Φ̃
(𝑑𝑔)

+
1

2
𝑚
2
B
(𝑑ℎ)

𝜇 B
𝜇(𝑑ℎ)

] = 𝜕𝜇 [𝑚𝜙𝜕
𝜇
𝐶 + 𝑚

2
𝜀
𝜇]
𝐴]𝐶]

≡ 𝑠𝑑 [𝑚𝐸𝜙 −
1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙 +

1

2
𝑚
2
𝐴𝜇𝐴
𝜇
] ,

lim
𝜃=0

𝜕

𝜕𝜃
[−𝑚𝜀

𝜇]
𝜕𝜇B
(𝑑ℎ)

] Φ̃
(𝑑𝑔)

−
1

2
𝜕𝜇Φ̃
(𝑑𝑔)

𝜕
𝜇
Φ̃
(𝑑𝑔)

+
1

2
𝑚
2
B
(𝑑ℎ)

𝜇 B
𝜇(𝑑ℎ)

] = 𝜕𝜇 [𝑚𝜙𝜕
𝜇
𝐶 + 𝑚

2
𝜀
𝜇]
𝐴]𝐶]

≡ 𝑠𝑎𝑑 [𝑚𝐸𝜙 −
1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙 +

1

2
𝑚
2
𝐴𝜇𝐴
𝜇
] ,

𝜕

𝜕𝜃

𝜕

𝜕𝜃
[−𝑚𝜀

𝜇]
𝜕𝜇B
(𝑑ℎ)

] Φ̃
(𝑑𝑔)

−
1

2
𝜕𝜇Φ̃
(𝑑𝑔)

𝜕
𝜇
Φ̃
(𝑑𝑔)

+
1

2
𝑚
2
B
(𝑑ℎ)

𝜇 B
𝜇(𝑑ℎ)

] = 𝜕𝜇 [𝑚
2
(𝐶𝜕
𝜇
𝐶 − 𝐶𝜕

𝜇
𝐶)

− 𝑖𝑚 (𝜙𝜕
𝜇
B + 𝑚𝜀

𝜇]
𝐴]B)] ≡ 𝑠𝑑𝑠𝑎𝑑 [𝑚𝐸𝜙

−
1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙 +

1

2
𝑚
2
𝐴𝜇𝐴
𝜇
] .

(65)

Ultimately, we conclude that 𝑠(𝑎)𝑑[𝑚𝐸𝜙 − (1/2)𝜕𝜇𝜙𝜕
𝜇𝜙 +

(1/2)𝑚2𝐴𝜇𝐴
𝜇] is always a total spacetime derivative. As a

consequence, this specific part of the Lagrangian density
(i.e.,𝑚𝐸𝜙 − (1/2)𝜕𝜇𝜙𝜕

𝜇𝜙 + (1/2)𝑚2𝐴𝜇𝐴
𝜇) is (anti-)co-BRST

invariant quantity.
Ultimately, we have the total expression for the 2D

Lagrangian density (57) in the superfield formalism, on the
(2, 2)-dimensional supermanifold, as

LB → L̃B =
𝜕

𝜕𝜃

𝜕

𝜕𝜃
[
𝑖

2
B
(𝑑ℎ)

𝜇 B
𝜇(𝑑ℎ)

+
𝑖

2
Φ̃
(𝑑𝑔)

Φ̃
(𝑑𝑔)

+
1

2
𝐹
(𝑑ℎ)

𝐹
(𝑑ℎ)

] +
1

2
𝜕𝜇𝜙𝜕
𝜇
𝜙 +

1

2

⋅ 𝐵
2
(𝑥) − 𝑚𝜀

𝜇]
𝜕𝜇B
(𝑑ℎ)

] Φ̃
(𝑑𝑔)

−
1

2
𝜕𝜇Φ̃
(𝑑𝑔)

𝜕
𝜇
Φ̃
(𝑑𝑔)

+
1

2
𝑚
2
B
(𝑑ℎ)

𝜇 B
𝜇(𝑑ℎ)

− 𝑚B
(𝑑ℎ)

𝜇 𝜕
𝜇
𝜙 + 𝐵 (𝑥)

⋅ (𝜕𝜇B
𝜇(𝑑ℎ)

+ 𝑚𝜙 (𝑥)) ,

(66)

where all the symbols have been explained earlier. The
(anti-)co-BRST invariance of the Lagrangian density, within
the framework of superfield formalism, is

lim
𝜃=0

𝜕

𝜕𝜃
L̃B = 𝜕𝜇 [B𝜕

𝜇
𝐶 + 𝑚𝜀

𝜇]
𝜙𝜕]𝐶 + 𝑚𝜙𝜕

𝜇
𝐶

+ 𝑚
2
𝜀
𝜇]
𝐴]𝐶] ≡ 𝑠𝑑LB,

lim
𝜃=0

𝜕

𝜕𝜃
L̃B = 𝜕𝜇 [B𝜕

𝜇
𝐶 + 𝑚𝜀

𝜇]
𝜙𝜕]𝐶 + 𝑚𝜙𝜕

𝜇
𝐶

+ 𝑚
2
𝜀
𝜇]
𝐴]𝐶] ≡ 𝑠𝑎𝑑LB,

𝜕

𝜕𝜃

𝜕

𝜕𝜃
L̃B = −𝜕𝜇 [𝑖B𝜕

𝜇
B + 𝑚

2
𝜕
𝜇
(𝐶𝐶)

+ 𝑖𝑚 {𝜙𝜕
𝜇
B + 𝜀

𝜇]
(𝑚𝐴]B + 𝜙𝜕]B)}]

≡ 𝑠𝑑𝑠𝑎𝑑LB.

(67)

Due to the above observations, it is clear that the action
integral would remain invariant under the nilpotent
(anti-)co-BRST symmetry transformations.

Finally, we would like to state that we have accomplished
our goal of capturing the (anti-)co-BRST invariance of the
action integral within the framework of superfield formalism
where we have used the superfields that have been obtained
after the application of DHC and DGIR. We further note
that the expressions in (58) and (67) match very nicely. The
appearance of the terms like B𝜕

𝜇𝐶, B𝜕𝜇𝐶, and 𝑖B𝜕𝜇B in
the parenthesis of above equation is due to the same kind
of arguments as offered at the end of (29) in the context of
(anti-)BRST symmetries and corresponding invariance of the
action integral under these continuous and nilpotent symme-
try transformations.

4.4. Nilpotency and Anticommutativity of the Conserved
(Anti-)co-BRST Charges: Superfield Formulation. Exploiting
the standard technique of the Noether theorem and using
the appropriate equations of motion, we obtain the following
expressions for the conserved (�̇�(𝑎)𝑑 = 0) and off-shell
nilpotent (�̇�2(𝑎)𝑑 = 0) (anti-)co-BRST (or (anti-)dual-BRST)
charges:

𝑄𝑎𝑑 = ∫𝑑𝑥 [B�̇� − Ḃ𝐶] ≡ ∫𝑑𝑥𝐽
0

(𝑎𝑑),

𝑄𝑑 = ∫𝑑𝑥 [B
̇

𝐶 − Ḃ𝐶] ≡ ∫𝑑𝑥𝐽
0

(𝑑),

(68)

which have been derived from the Lagrangian density (57)
that has led to the following conserved (i.e., 𝜕𝜇𝐽

𝜇

(𝑎)𝑑
= 0)

Noether currents:

𝐽
𝜇

𝑎𝑑
= B𝜕

𝜇
𝐶 − 𝜀
𝜇]
𝐵𝜕]𝐶 + 𝑚𝐶𝜕

𝜇
𝜙 − 𝑚𝜀

𝜇]
𝜙𝜕]𝐶,

𝐽
𝜇

𝑑
= B𝜕

𝜇
𝐶 − 𝜀
𝜇]
𝐵𝜕]𝐶 + 𝑚𝐶𝜕

𝜇
𝜙 − 𝑚𝜀

𝜇]
𝜙𝜕]𝐶.

(69)
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The conservation law (i.e., 𝜕𝜇𝐽
𝜇

(𝑎)𝑑
= 0) can be proven by

exploiting the following equations of motion emerging from
the Lagrangian density (57); namely,

𝐵 = − (𝜕 ⋅ 𝐴 + 𝑚𝜙) ,

◻𝜙 − 𝑚 (B − 𝐸) = 0,

(◻ + 𝑚
2
) 𝐶 = 0,

B = 𝐸 − 𝑚𝜙,

◻𝜙 − 𝑚 (𝜕 ⋅ 𝐴 + 𝐵) = 0,

(◻ + 𝑚
2
) 𝐶 = 0,

𝜖
𝜇]
𝜕𝜇 (B + 𝑚𝜙) − 𝜕

]
𝐵 + 𝑚

2
𝐴

]
− 𝑚𝜕

]
𝜙 = 0.

(70)

It is straightforward to check that the (anti-)co-BRST charges
can be expressed in terms of the (anti-)co-BRST symmetry
transformations as

𝑄𝑎𝑑 = ∫𝑑𝑥 [𝑠𝑎𝑑𝑠𝑑 (𝑖𝐴1𝐶)] ,

𝑄𝑑 = ∫𝑑𝑥 [𝑠𝑑𝑠𝑎𝑑 (−𝑖𝐴1𝐶)] .

(71)

Exploiting the mapping (56), it can be seen that the above
expressions could be recast in the language of the superfields,
obtained after the application of DHC and DGIR, as

𝑄𝑎𝑑 =
𝜕

𝜕𝜃

𝜕

𝜕𝜃
∫𝑑𝑥 [𝑖B

(𝑑ℎ)

1 𝐹
(𝑑ℎ)

]

≡ ∫𝑑𝑥∫𝑑𝜃∫𝑑𝜃 [𝑖B
(𝑑ℎ)

1 𝐹
(𝑑ℎ)

] ,

𝑄𝑑 =
𝜕

𝜕𝜃

𝜕

𝜕𝜃
∫𝑑𝑥 [−𝑖B

(𝑑ℎ)

1 𝐹
(𝑑ℎ)

]

≡ ∫𝑑𝑥∫𝑑𝜃∫𝑑𝜃 [−𝑖B
(𝑑ℎ)

1 𝐹
(𝑑ℎ)

] .

(72)

From the above expressions, too, one can prove the off-shell
nilpotency (𝑄2(𝑎)𝑑 = 0) of the charges 𝑄(𝑎)𝑑 by observing that
the following are true; namely,

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑎𝑑 = 0 ⇐⇒

𝑠𝑎𝑑𝑄𝑎𝑑 = 0 ≡ 𝑖 {𝑄𝑎𝑑, 𝑄𝑎𝑑} ,

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑑 = 0 ⇐⇒

𝑠𝑑𝑄𝑑 = 0 ≡ 𝑖 {𝑄𝑑, 𝑄𝑑} .

(73)

The above observation of the nilpotency of𝑄(𝑎)𝑑 is intimately
connected with the nilpotency 𝜕2𝜃 = 𝜕2

𝜃
= 0 of translational

generators (𝜕𝜃, 𝜕𝜃) along the Grassmannian directions of the
supermanifold.

The nilpotency of 𝑄(𝑎)𝑑 can also be proven by the
following expressions of𝑄(𝑎)𝑑 in terms of the (anti-)co-BRST
symmetry transformations 𝑠(𝑎)𝑑; namely,

𝑄𝑎𝑑 = ∫𝑑𝑥𝑠𝑎𝑑 [B (𝑥) 𝐴1 (𝑥) + 𝑖
̇

𝐶𝐶] ,

𝑄𝑑 = ∫𝑑𝑥𝑠𝑑 [B (𝑥) 𝐴1 (𝑥) + 𝑖𝐶�̇�] .

(74)

Thus, it is clear that the following will be true; namely,

𝑠𝑑𝑄𝑑 = 𝑖 {𝑄𝑑, 𝑄𝑑} = ∫𝑑𝑥𝑠
2

𝑑 [B (𝑥) 𝐴1 (𝑥) + 𝑖
̇

𝐶𝐶]

= 0, (𝑠
2

𝑑 = 0) ,

𝑠𝑎𝑑𝑄𝑎𝑑 = 𝑖 {𝑄𝑎𝑑, 𝑄𝑎𝑑}

= ∫𝑑𝑥𝑠
2

𝑎𝑑 [B (𝑥) 𝐴1 (𝑥) + 𝑖𝐶�̇�] = 0,

(𝑠
2

𝑎𝑑 = 0) ,

(75)

due to the nilpotency of 𝑠(𝑎)𝑑 (i.e., 𝑠
2
(𝑎)𝑑 = 0 ⇔ 𝑄2(𝑎)𝑑 = 0). In

the language of superfield formalism, expressions (74) can be
written as

𝑄𝑑 = lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑𝑥 [B (𝑥)B

(𝑑ℎ)

1 (𝑥, 𝜃, 𝜃)

+ 𝑖𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃) �̇�
(𝑑ℎ)

(𝑥, 𝜃, 𝜃)] ,

𝑄𝑎𝑑 = lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑𝑥 [B (𝑥)B

(𝑑ℎ)

1 (𝑥, 𝜃, 𝜃)

+ 𝑖
̇

𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃) 𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃)] ,

(76)

which demonstrate trivially the following:

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑑 = 0 ⇐⇒

𝑠𝑑𝑄𝑑 = 0,

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑎𝑑 = 0 ⇐⇒

𝑠𝑎𝑑𝑄𝑎𝑑 = 0,

(77)

where the nilpotency of 𝜕𝜃 and 𝜕
𝜃
(i.e., 𝜕2𝜃 = 𝜕2

𝜃
= 0) plays a

decisive role.
To prove the absolute anticommutativity of 𝑄(𝑎)𝑑, we

note the following interesting expressions for the conserved
(anti-)co-BRST charges:

𝑄𝑑 = ∫𝑑𝑥 [𝑠𝑎𝑑 (−𝑖𝐶
̇

𝐶)] ,

𝑄𝑎𝑑 = ∫𝑑𝑥 [𝑠𝑑 (𝑖𝐶�̇�)] .

(78)
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The above expressions automatically imply the following
beautiful relationships:

𝑠𝑎𝑑𝑄𝑑 = 𝑖 {𝑄𝑑, 𝑄𝑎𝑑} = ∫𝑑𝑥 [𝑠
2

𝑎𝑑 (−𝑖𝐶
̇

𝐶)] = 0,

(𝑠
2

𝑎𝑑 = 0) ,

𝑠𝑑𝑄𝑎𝑑 = 𝑖 {𝑄𝑎𝑑, 𝑄𝑑} = ∫𝑑𝑥 [𝑠
2

𝑑 (𝑖𝐶�̇�)] = 0,

(𝑠
2

𝑑 = 0) .

(79)

Thus, we point out a very interesting observation that the
absolute anticommutativity property of the (anti-)co-BRST
charges is deeply and clearly connected with the nilpotency
of the (anti-)co-BRST symmetry transformations (i.e., 𝑠2(𝑎)𝑑 =
0). These expressions (78) could be also written in terms of
superfields, translational generators (𝜕𝜃, 𝜕𝜃), and differentials
(𝑑𝜃, 𝑑𝜃) defined on the (2, 2)-dimensional supermanifold, as

𝑄𝑑 = lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑𝑥 [−𝑖𝐹

(𝑑ℎ) ̇
𝐹
(𝑑ℎ)

]

≡ ∫𝑑𝑥∫𝑑𝜃 [−𝑖𝐹
(𝑑ℎ) ̇

𝐹
(𝑑ℎ)

] ,

𝑄𝑎𝑑 = lim
𝜃=0

𝜕

𝜕𝜃
∫𝑑𝑥 [𝑖𝐹

(𝑑ℎ)
�̇�
(𝑑ℎ)

]

≡ ∫𝑑𝑥∫𝑑𝜃 [𝑖𝐹
(𝑑ℎ)

�̇�
(𝑑ℎ)

] .

(80)

The above expressions capture the anticommutativity prop-
erty of the (anti-)co-BRST charges in the language of super-
field formalism, as

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑑 = 0,

lim
𝜃=0

𝜕

𝜕𝜃
𝑄𝑎𝑑 = 0,

(81)

where the properties 𝜕2𝜃 = 0, 𝜕2
𝜃
= 0 play important roleswhen

we use the expressions for 𝑄(𝑎)𝑑 from (80). The anticommu-
tativity property is hidden in (81) in view of the mapping
(56) which implies that (81) can be written as 𝑠𝑑𝑄𝑎𝑑 =

𝑖{𝑄𝑎𝑑, 𝑄𝑑} = 0 and 𝑠𝑎𝑑𝑄𝑑 = 𝑖{𝑄𝑑, 𝑄𝑎𝑑} = 0 primarily due
to 𝜕2𝜃 = 0, 𝜕2

𝜃
= 0.

We end this subsection with the remark that the nilpo-
tency and absolute anticommutativity properties of the
(anti-)co-BRST symmetry transformations (and their corre-
sponding conserved charges) are related to the properties
𝜕2𝜃 = 0, 𝜕2

𝜃
= 0 and 𝜕𝜃𝜕𝜃 + 𝜕

𝜃
𝜕𝜃 = 0. These relations are,

in turn, interconnected with each other because the limiting
case of the latter (i.e., 𝜕𝜃𝜕𝜃 + 𝜕

𝜃
𝜕𝜃 = 0) leads to the derivation

of the former (𝜕2𝜃 = 0, 𝜕2
𝜃
= 0) whenwe set 𝜕𝜃 = 𝜕

𝜃
in the latter

relationship of anticommutativity between 𝜕𝜃 and 𝜕
𝜃
.

5. On a Unique Bosonic Symmetry,
the Ghost-Scale Symmetry, and
the Discrete Symmetries

From the four nilpotent (𝑠2(𝑎)𝑏 = 𝑠2(𝑎)𝑑 = 0) symmetries
of the theory, we can construct a unique bosonic symmetry
𝑠𝜔 = {𝑠𝑏, 𝑠𝑑} ≡ −{𝑠𝑎𝑏, 𝑠𝑎𝑑}, under which, the relevant fields of
our present theory (described by the Lagrangian density (57))
transform as

𝑠𝜔𝐴𝜇 = 𝜀𝜇]𝜕
]
𝐵 + 𝜕𝜇B,

𝑠𝜔𝜙 = 𝑚𝐵,

𝑠𝜔𝜙 = 𝑚B,

𝑠𝜔 (𝜕 ⋅ 𝐴) = ◻B,

𝑠𝜔𝐸 = −◻𝐵,

𝑠𝜔 (𝐵,B, 𝐶, 𝐶) = 0,

(82)

modulo an overall factor of (−𝑖). We note that {𝑠𝑑, 𝑠𝑎𝑑} = 0,
{𝑠𝑑, 𝑠𝑎𝑏} = 0, {𝑠𝑏, 𝑠𝑎𝑑} = 0, and {𝑠𝑏, 𝑠𝑎𝑏} = 0. We point out that
the fundamental symmetries of the theory are 𝑠(𝑎)𝑏 and 𝑠(𝑎)𝑑
which have been derived from the augmented superfield for-
malism. The bosonic symmetry transformation 𝑠𝜔 is derived
from the above basic off-shell nilpotent (𝑠2(𝑎)𝑏 = 𝑠2(𝑎)𝑑 = 0)
symmetries 𝑠(𝑎)𝑏 and 𝑠(𝑎)𝑑. One of the decisive features of the
above bosonic symmetry is the observation that the ghost
part of the Lagrangian density remains invariant.

Under the above transformations (82), the Lagrangian
density (57) transforms as

𝑠𝜔L𝐵 = 𝜕𝜇 [𝐵𝜕
𝜇
B −B𝜕

𝜇
𝐵 − 𝑚𝜙𝜕

𝜇
𝐵

− 𝑚𝜀
𝜇]

(𝜙𝜕]𝐵 + 𝑚𝐴]𝐵)] .

(83)

As a consequence, the action integral 𝑆 = ∫ 𝑑𝑥LB remains
invariant. The above symmetry transformation, according to
Noether’s theorem, leads to the derivation of the following
conserved charge (as the analogue of the Laplacian operator):

𝑄𝜔 = ∫𝑑𝑥𝐽
0

𝜔 = ∫𝑑𝑥 [𝐵Ḃ − �̇�B] , (84)

which emerges from the Noether conserved (𝜕𝜇𝐽
𝜇
𝜔 = 0)

current

𝐽
𝜇

𝜔 = 𝜀
𝜇]

(𝐵𝜕]𝐵 −B𝜕]B − 𝑚𝜙𝜕]B + 𝑚𝜙𝜕]𝐵

+ 𝑚
2
𝐴]𝐵) + 𝑚B𝜕

𝜇
𝜙 − 𝑚𝐵𝜕

𝜇
𝜙 − 𝑚

2
𝐴
𝜇
B.

(85)

The conserved charge (84) is the generator of the continuous
and infinitesimal bosonic symmetry transformations (82)
which can be checked by using the standard formula between
the continuous symmetry and its generator.
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Our theory, described by the Lagrangian density (57),
is endowed with the following ghost-scale symmetry trans-
formations (with a global (i.e., spacetime independent) scale
parameterΩ); namely,

𝐶 → 𝑒
(+1)⋅Ω

𝐶,

𝐶 → 𝑒
(−1)⋅Ω

𝐶,

Ψ → 𝑒
(0)⋅Ω

Ψ, (Ψ = 𝐴𝜇, 𝜙, 𝜙, 𝐵,B) ,

(86)

where the numerals in the exponentials denote the ghost
numbers of the fields. The infinitesimal version of the above
scale transformations (𝑠𝑔) is

𝑠𝑔𝐶 = +𝐶,

𝑠𝑔𝐶 = −𝐶,

𝑠𝑔Ψ = 0, (Ψ = 𝐴𝜇, 𝜙, 𝜙, 𝐵,B) ,

(87)

modulo a factor ofΩ that can be set equal to one for the sake
of brevity. The above transformations are generated by the
following ghost charge 𝑄𝑔 [2, 3]:

𝑄𝑔 = 𝑖 ∫ 𝑑𝑥 [𝐶�̇� −
̇

𝐶𝐶] ≡ ∫𝑑𝑥𝐽
0

𝑔. (88)

This charge has been derived from the conserved current 𝐽𝜇𝑔 =
𝑖(𝐶𝜕𝜇𝐶−𝜕𝜇𝐶𝐶).The conservation law 𝜕𝜇𝐽

𝜇
𝑔 = 0 can be proven

by using the Euler-Lagrange equations ofmotion (◻+𝑚2)𝐶 =

0 and (◻ + 𝑚
2
)𝐶 = 0 which emerge from (57).

In addition to the above continuous symmetries, we have
a set of suitable discrete symmetries in the theory. These
symmetries are as follows:

𝐴𝜇 → ±𝑖𝜀𝜇]𝐴
]
,

𝐸 → ∓𝑖 (𝜕 ⋅ 𝐴) ,

(𝜕 ⋅ 𝐴) → ∓𝑖𝐸,

𝐵 → ±𝑖B,

B → ±𝑖𝐵,

𝐶 → ∓𝑖𝐶,

𝐶 → ∓𝑖𝐶.

(89)

It is straightforward to check that the Lagrangian density
(57) remains invariant under the above discrete symmetry
transformations. Further, it can be readily verified that the
following is true; namely,

∗𝑄𝑏 = +𝑄𝑑,

∗𝑄𝑑 = +𝑄𝑏,

∗𝑄𝜔 = +𝑄𝜔,

∗𝑄𝑎𝑏 = +𝑄𝑎𝑑,

∗𝑄𝑎𝑑 = +𝑄𝑎𝑏,

∗𝑄𝑔 = −𝑄𝑔,

∗ (∗𝑄𝑟) = +𝑄𝑟, (𝑟 = 𝑏, 𝑎𝑏, 𝑑, 𝑎𝑑, 𝜔) ,

(90)

where the operator (∗) is nothing but the operation of the
above discrete symmetry transformations on the conserved
charges of the theory. We note that two successive operations
of the discrete symmetry transformations leave the conserved
charges intact. On the other hand, a single operation of the
discrete symmetry transformations interchanges each of the
pairs (𝑄𝑏, 𝑄𝑑) and (𝑄𝑎𝑏, 𝑄𝑎𝑑) such that (𝑄𝑏 ↔ 𝑄𝑑, 𝑄𝑎𝑏 ↔

𝑄𝑎𝑑) and the ghost charge transforms as 𝑄𝑔 → −𝑄𝑔.

6. Algebraic Structures and
Cohomological Aspects

It can be checked that the six conserved (i.e., �̇�𝑟 = 0) charges
(i.e.,𝑄𝑟, 𝑟 = 𝑏, 𝑎𝑏, 𝑑, 𝑎𝑑, 𝜔, 𝑔) of the theory obey the following
extended BRST algebra:

𝑄
2

(𝑎)𝑏 = 0,

𝑄
2

(𝑎)𝑑 = 0,

{𝑄𝑏, 𝑄𝑎𝑏} = 0,

{𝑄𝑏, 𝑄𝑎𝑑} = 0,

{𝑄𝑑, 𝑄𝑎𝑑} = 0,

{𝑄𝑑, 𝑄𝑎𝑏} = 0,

𝑖 [𝑄𝑔, 𝑄𝑑] = −𝑄𝑑,

𝑖 [𝑄𝑔, 𝑄𝑏] = +𝑄𝑏,

𝑖 [𝑄𝑔, 𝑄𝑎𝑏] = −𝑄𝑎𝑏,

𝑖 [𝑄𝑔, 𝑄𝑎𝑑] = +𝑄𝑎𝑑,

{𝑄𝑏, 𝑄𝑑} = 𝑄𝜔 ≡ − {𝑄𝑎𝑑, 𝑄𝑎𝑏} ,

[𝑄𝜔, 𝑄𝑟] = 0, (𝑟 = 𝑏, 𝑎𝑏, 𝑑, 𝑎𝑑, 𝑔, 𝜔) .

(91)

The above algebra is exactly like the algebra satisfied by the de
Rham cohomological operators of differential geometry [7–
12]; namely,

𝑑
2
= 0,

𝛿
2
= 0,

{𝑑, 𝛿} = Δ ≡ (𝑑 + 𝛿)
2
,

[Δ, 𝑑] = 0,

[Δ, 𝛿] = 0,

(92)

where 𝛿 = − ∗ 𝑑∗ (with 𝛿2 = 0) and 𝑑 = 𝑑𝑥𝜇𝜕𝜇 (with
𝑑2 = 0) are the (co-)exterior derivatives and Δ = {𝑑, 𝛿} is
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the Laplacian operator of differential geometry. In the above,
the symbol (∗) stands for the Hodge duality operation on
a given spacetime manifold. For the even dimensional mani-
fold, the relation 𝛿 = − ∗ 𝑑∗ is always true.

There is a simpler way to check the sanctity of the
extended BRST algebra listed in (91) where we use the
well-known relationship between the continuous symmetry
transformations and their generators. For instance, the above
algebra can be obtained from the following transformations
on the conserved charges; namely,

𝑠𝑟𝑄𝑟 = 𝑖 {𝑄𝑟, 𝑄𝑟} = 0 ⇒

𝑄
2

𝑟 = 0,

(𝑟 = 𝑏, 𝑎𝑏, 𝑑, 𝑎𝑑) ,

𝑠𝑟𝑄𝑎𝑟 = 𝑖 {𝑄𝑎𝑟, 𝑄𝑟} = 0 ⇒

{𝑄𝑎𝑟, 𝑄𝑟} = 0,

(𝑟 = 𝑏, 𝑑) ,

𝑠𝜔𝑄𝑟 = −𝑖 [𝑄𝑟, 𝑄𝜔] = 0 ⇒

[𝑄𝜔, 𝑄𝑟] = 0,

(𝑟 = 𝑏, 𝑎𝑏, 𝑑, 𝑎𝑑, 𝑔, 𝜔) ,

𝑠𝑔𝑄𝑟 = −𝑖 [𝑄𝑟, 𝑄𝑔] = +𝑄𝑟 ⇒

𝑖 [𝑄𝑔, 𝑄𝑟] = +𝑄𝑟,

(𝑟 = 𝑏, 𝑎𝑑) ,

𝑠𝑏𝑄𝑎𝑑 = +𝑖 {𝑄𝑎𝑑, 𝑄𝑏} = 0 ⇒

{𝑄𝑏, 𝑄𝑎𝑑} = 0,

𝑠𝑑𝑄𝑎𝑏 = +𝑖 {𝑄𝑎𝑏, 𝑄𝑑} = 0 ⇒

{𝑄𝑑, 𝑄𝑎𝑏} = 0,

𝑠𝑔𝑄𝑟 = −𝑖 [𝑄𝑟, 𝑄𝑔] = −𝑄𝑟 ⇒

𝑖 [𝑄𝑔, 𝑄𝑟] = −𝑄𝑟,

(𝑟 = 𝑑, 𝑎𝑏) ,

(93)

where the l.h.s. can be calculated in a straightforwardmanner
by exploiting the expressions for the six conserved charges
and the corresponding continuous symmetry transforma-
tions that have been mentioned in the main body of our text.

A comparison between (91) and (92) demonstrates that
𝑄𝜔 andΔ are theCasimir operators (the algebras (91) and (92)
are not the Lie algebras; hence, the charge𝑄𝜔 and operator Δ
are not the Casimir operators in the sense of such objects in
the case of Lie algebra) for the above algebras in the sense
that they absolutely commute with the rest of the operators.

A close look at these algebras leads to the following clear-cut
two-to-one mappings:

(𝑄𝑏, 𝑄𝑎𝑑) → 𝑑,

(𝑄𝑑, 𝑄𝑎𝑏) → 𝛿,

{𝑄𝑏, 𝑄𝑑} = − {𝑄𝑎𝑏, 𝑄𝑎𝑑} → Δ,

(94)

between the conserved charges and the cohomological oper-
ators. Furthermore, we note that we have the following
beautiful relationship [2, 3]:

𝑠(𝑎)𝑑Ψ = − ∗ 𝑠(𝑎)𝑏 ∗ Ψ, (Ψ = 𝐴𝜇, 𝜙, 𝜙, 𝐶, 𝐶, 𝐵,B) , (95)

which provides the physical realization of the relationship
(i.e., 𝛿 = − ∗ 𝑑∗) between the (co-)exterior derivatives (𝛿)𝑑
defined on an even dimensional spacetime manifold. In (95),
we observe that it is the interplay between the continuous
symmetries (i.e., 𝑠(𝑎)𝑏, 𝑠(𝑎)𝑑) and the discrete symmetries (89)
that provide the analogue of relationship 𝛿 = − ∗ 𝑑∗. In
fact, the latter (i.e., (89)) leads to the physical realization of
the Hodge duality (∗) operation of the differential geometry.
Thus, we note that the (∗) in (95) is nothing but the discrete
symmetry transformations (89). The minus sign on the r.h.s
of (95) is governed by two successive operations of the
discrete symmetry transformations (89) on the generic field
Ψ; namely, ∗(∗Ψ) = −Ψ (see, e.g., [34] for details).

One of the distinguishing features of the cohomological
operators (𝑑, 𝛿, Δ) is the observation that when they operate
on a differential form of a specific degree, the consequences
turn out to be completely different. For instance, when the
(co-)exterior derivatives operate on a form (𝑓𝑛) of degree 𝑛,
they (lower) raise the degree of the form by one (i.e., 𝛿𝑓𝑛 ∼

𝑓𝑛−1, 𝑑𝑓𝑛 ∼ 𝑓𝑛+1). On the contrary, when Δ acts on a form
of degree 𝑛, it does not change the degree at all (i.e., Δ𝑓𝑛 ∼

𝑓𝑛). We have to capture these properties in the language
of the symmetry properties and conserved charges of our
present modified version of 2DProca theory so that we could
establish precise analogy.

The above algebraic features could be also captured in the
language of conserved charges. To this end in mind, let us
define a state |𝜓⟩𝑛 in the quantum Hilbert space of states as

𝑖𝑄𝑔
𝜓⟩𝑛 = 𝑛

𝜓⟩𝑛 , (96)

where the eigenvalue 𝑛 is the ghost number because 𝑄𝑔 is
the ghost charge [cf. (88)]. Due to the algebra (91), respected
by the various charges, it can be readily checked that the
following relationships are true; namely,

𝑖𝑄𝑔𝑄𝑏
𝜓⟩𝑛 = (𝑛 + 1)𝑄𝑏

𝜓⟩𝑛 ,

𝑖𝑄𝑔𝑄𝑎𝑑
𝜓⟩𝑛 = (𝑛 + 1)𝑄𝑎𝑑

𝜓⟩𝑛 ,

𝑖𝑄𝑔𝑄𝑑
𝜓⟩𝑛 = (𝑛 − 1)𝑄𝑑

𝜓⟩𝑛 ,

𝑖𝑄𝑔𝑄𝑎𝑏
𝜓⟩𝑛 = (𝑛 − 1)𝑄𝑎𝑏

𝜓⟩𝑛 ,

𝑖𝑄𝑔𝑄𝜔
𝜓⟩𝑛 = 𝑛𝑄𝜔

𝜓⟩𝑛 .

(97)
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Thus, we note that the ghost numbers for the states 𝑄𝑏|𝜓⟩𝑛,
𝑄𝑑|𝜓⟩𝑛 and 𝑄𝜔|𝜓⟩𝑛 are (𝑛 + 1), (𝑛 − 1) and 𝑛, respectively.
In exactly similar fashion, the states 𝑄𝑎𝑑|𝜓⟩𝑛, 𝑄𝑎𝑏|𝜓⟩𝑛 and
𝑄𝜔|𝜓⟩𝑛 also carry the ghost numbers (𝑛 + 1), (𝑛 − 1) and
𝑛, respectively. These properties are exactly like the conse-
quences that ensue from the operations of the cohomological
operators (𝑑, 𝛿, Δ) on a differential form of degree 𝑛 defined
on a given manifold.

We conclude that, if the degree of a form is identified with
the ghost number, then the operation of (𝑑, 𝛿, Δ) on this given
form is exactly like the operations of the set (𝑄𝑏, 𝑄𝑑, 𝑄𝜔)
and/or (𝑄𝑎𝑑, 𝑄𝑎𝑏, 𝑄𝜔) on the state with ghost number equal
to the degree of the form. Thus, the mappings (94) are
correct as far as the algebraic structures of (91) and (92) are
concerned and we have two-to-one mapping from the con-
served charges of the theory to the de Rham cohomological
operators (𝑑, 𝛿, Δ) of differential geometry. A careful look at
(90) and (91) leads to the conclusion that the algebra (91)
remains invariant under any number of operations of discrete
(duality) symmetry transformations (89). This establishes
that our present 2D theory is a perfect model for the Hodge
theorywhere the continuous symmetry transformations (and
corresponding generators) provide the physical realizations
of the cohomological operators. On the other hand, it is the
discrete symmetry transformations of the theory that are the
physical analogue of the Hodge duality (∗) operation of dif-
ferential geometry. Finally, we observe that the ghost number
of a specific state in the quantum Hilbert space provides
the physical analogue of the degree of a form of differential
geometry as far as its cohomological aspects are concerned.

7. Conclusions

In our present endeavor, we have applied the augmented ver-
sion of superfield formalism to derive the off-shell nilpotent
(anti-)BRST and (anti-)co-BRST symmetry transformations
for the modified version of 2D Proca theory. We have
exploited the theoretical strength of horizontality condition
(HC) and gauge invariant restriction (GIR) to derive the
(anti-)BRST symmetries for all the fields of our present
2D theory. In addition, we have made use of the dual-HC
(DHC) and dual-GIR (DGIR) to obtain the complete set of
(anti-)co-BRST symmetry transformations for all the fields
of our present theory. The local gauge symmetry transfor-
mations [cf. (4)] are the perfect “classical” version of the
(anti-)BRST symmetries which exist in any arbitrary dimen-
sion of spacetime. However, there is no such perfect “classi-
cal” analogue (see, e.g., Section 4.1) for the (anti-)co-BRST
symmetries of our present theory.The latter symmetries exist
only in specific dimensions of spacetime and they are always
“quantum” in nature. For instance, for the Abelian 1-form
gauge theory, these “quantum” symmetries exist only in two
dimensions of spacetime.

In Sections 3.3 and 4.4, we have expressed the
(anti-)BRST and (anti-)co-BRST charges in various forms
due to our knowledge of the augmented superfield approach
to BRST formalism. In these subsections, we have been able
to provide the meaning of their nilpotency and absolute
anticommutativity in the language of superfield formalism.

We have been also able to establish connections between the
properties of nilpotency and absolute anticommutativity. In
fact, it is the strength of the augmented superfield formalism
that we have expressed the (anti-)BRST and (anti-)co-BRST
charges in a completely novel fashions (which have, hitherto,
not been pointed out in literature).Thus, there are completely
novel results in Sections 3.3 and 4.4 as far as our present
investigation on the superfield approach to BRST formalism
is concerned.

In addition to the above results, there are applications of
DHC and DGIR in deducing the full set of (anti-)co-BRST
symmetry transformations for all the fields of our present the-
ory.These derivations are also novel results. In particular, the
application of DGIR, in the derivation of the (anti-)co-BRST
symmetry transformations for the pseudoscalar field (𝜙), is a
completely new result which has not been discussed in the
literature. The symmetries of the theory enforce the pseu-
doscalar field to have a negative kinetic term. Since this field
is massive [i.e., (◻ +𝑚

2)𝜙 = 0], it is a very good candidate for
the dark matter [29, 30]. We lay emphasis on the fact that the
Stueckelberg scalar field (𝜙) has always a positive kinetic term
and, hence, it is an ordinarymatter (due to (◻ + 𝑚2) 𝜙 = 0).

In our investigation, we have provided physical realiza-
tions of the deRhamcohomological operators in the language
of the continuous symmetry transformations (and their
corresponding charges). Further, we have shown that a set of
discrete symmetry transformations provide the physical ana-
logue of theHodge duality (∗) operation of differential geom-
etry. Ultimately, we have shown that, at the algebraic level, the
set of six conserved charges of our theory obey exactly the
same algebra as that of the de Rham cohomological operators
of differential geometry. This algebra remains invariant [cf.
(90)] under the discrete symmetry transformations (89)
which are the analogue of Hodge theory (∗) operation. The
degree of a form finds its physical analogue as the ghost num-
ber of a state (in the quantum Hilbert space of states). Thus,
our present 2Dmodified version of Proca theory turns out to
be a perfect model for the Hodge theory. The unique feature
of our present theory is the coexistence of mass and various
kinds of internal symmetries together in a physically and
mathematically meaningful manner.

It would be nice future endeavor to study the above kind
of possibilities in the cases of 3D and 4Dmassive gauge theo-
ries [35, 36]where the gauge invariance andmasswould coex-
ist together. In other words, we would like to study whether
Stueckelberg’s type of technique would be able to modify the
above theories in such away that they could also becomemas-
sive field theoreticmodels for theHodge theory.We speculate
that such kind of situation will exist and these models will
provide candidates for the dark matter in more physical 3D
and 4D of spacetime (analogous to the massive pseudoscalar
𝜙 of our present 2D theory). Our speculation is based on the
fact that we have already shown that the 4D free Abelian 2-
form gauge theory is a model for the Hodge theory where a
massless pseudoscalar field does exist with a negative kinetic
term (see, e.g., [18, 19] for details). We are currently inten-
sively involvedwith such kind of problems andwewill be able
to report about our progress in our future publications.
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Appendices

A. On the Verification of (46)

Here we compute (46) step by step which is nothing but the
expression for (− ⋆ 𝑑 ⋆ 𝐴(1)). Taking the expression for 𝐴(1)
(from (6)) and applying a single (⋆) on it, we obtain the
following on a (2, 2)-dimensional supermanifold (see, e.g.,
[32] for details):

⋆ 𝐴
(1)

= 𝜀
𝜇]

(𝑑𝑥] ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝐵𝜇 (𝑥, 𝜃, 𝜃)

+
1

2!
𝜀𝜇] (𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝐹 (𝑥, 𝜃, 𝜃)

+
1

2!
𝜀𝜇] (𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝐹 (𝑥, 𝜃, 𝜃) ,

(A.1)

which is nothing but a super 3-form on the above superman-
ifold. In the above computation, we have used the following
relationship on the given (2, 2)-dimensional supermanifold
(see, e.g., [32] for details):

⋆ (𝑑𝑥
𝜇
) = 𝜀
𝜇]

(𝑑𝑥] ∧ 𝑑𝜃 ∧ 𝑑𝜃) ,

⋆ (𝑑𝜃) =
1

2!
𝜀𝜇] (𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) ,

⋆ (𝑑𝜃) =
1

2!
𝜀𝜇] (𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) .

(A.2)

Now we obtain a super 4-form on the (2, 2)-dimensional
supermanifold by applying a 𝑑 on (A.1). This is given by the
following expression:

𝑑 ⋆ 𝐴
(1)

= 𝜀
𝜇]

(𝑑𝑥𝜆 ∧ 𝑑𝑥] ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕
𝜆
𝐵𝜇 (𝑥, 𝜃, 𝜃)

+
1

2!
𝜀𝜇] (𝑑𝑥

𝜆
∧ 𝑑𝑥
𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕𝜆𝐹 (𝑥, 𝜃, 𝜃)

+
1

2!
𝜀𝜇] (𝑑𝑥

𝜆
∧ 𝑑𝑥
𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕𝜆𝐹 (𝑥, 𝜃, 𝜃)

+ 𝜀
𝜇]

(𝑑𝜃 ∧ 𝑑𝑥] ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕𝜃𝐵𝜇 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝜃 ∧ 𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕𝜃𝐹 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝜃 ∧ 𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕𝜃𝐹 (𝑥, 𝜃, 𝜃)

+ 𝜀
𝜇]

(𝑑𝜃 ∧ 𝑑𝑥] ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕
𝜃
𝐵𝜇 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝜃 ∧ 𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕

𝜃
𝐹 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝜃 ∧ 𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕

𝜃
𝐹 (𝑥, 𝜃, 𝜃) .

(A.3)

It is clear, from the above, that the second and third terms
would be zero because there are wedge-products which
contain three spacetime differentials (which is not allowed on

a (2, 2)-dimensional supermanifold). Furthermore, fourth
and seventh terms would be zero because the wedge product
with three Grassmannian differentials is not allowed on a
(2, 2)-dimensional supermanifold. Hence, we have the exist-
ing super 4-form as

𝑑 ⋆ 𝐴
(1)

= 𝜀
𝜇]

(𝑑𝑥𝜆 ∧ 𝑑𝑥] ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕
𝜆
𝐵𝜇 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝜃 ∧ 𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕𝜃𝐹 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕𝜃𝐹 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝜃 ∧ 𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕

𝜃
𝐹 (𝑥, 𝜃, 𝜃)

−
1

2!
𝜀𝜇] (𝑑𝜃 ∧ 𝑑𝑥

𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃) 𝜕

𝜃
𝐹 (𝑥, 𝜃, 𝜃) ,

(A.4)

where we have taken into account the following rules:

(𝑑𝑥
𝜇
∧ 𝑑𝜃) = − (𝑑𝜃 ∧ 𝑑𝑥

𝜇
) ,

(𝑑𝜃 ∧ 𝑑𝜃) = (𝑑𝜃 ∧ 𝑑𝜃) .
(A.5)

Taking a [−(⋆)] on (A.4), we obtain

− ⋆ 𝑑 ⋆ 𝐴
(1)

= −𝜀
𝜇]
𝜀𝜆]𝜕
𝜆
𝐵𝜇 − 𝜕𝜃F − 𝑆

𝜃 𝜃
𝜕
𝜃
F

− 𝑆
𝜃𝜃
𝜕𝜃F − 𝜕

𝜃
F,

(A.6)

where we have used the following inputs (see, e.g., [32]):

⋆ (𝑑𝑥𝜆 ∧ 𝑑𝑥] ∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝜀𝜆],

⋆ (𝑑𝑥
𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝜀

𝜇]
,

⋆ (𝑑𝑥
𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝜀

𝜇]
𝑆
𝜃𝜃
,

⋆ (𝑑𝑥
𝜇
∧ 𝑑𝑥

]
∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝜀

𝜇]
𝑆
𝜃 𝜃
.

(A.7)

Thus, we finally obtain the explicit expression for (−⋆𝑑⋆𝐴(1))
as follows:

− ⋆ 𝑑 ⋆ 𝐴
(1)

= (𝜕 ⋅B) − (𝜕𝜃𝐹 + 𝜕
𝜃
F) − 𝑆

𝜃𝜃
(𝜕𝜃𝐹)

− 𝑆
𝜃 𝜃

(𝜕
𝜃
𝐹) ,

(A.8)

which has been mentioned in (46).

B. On the Verification of (49)

By exploiting the basic ideas behind the augmented superfield
formulation, we demonstrate here that the choices made in
(49) are exact. Towards this goal in mind, we note that the
following (anti-)co-BRST invariant quantity:

𝑠(𝑎)𝑑 [𝜀
𝜇]

(𝜕𝜇B)𝐴] − 𝑖𝜕𝜇𝐶𝜕
𝜇
𝐶] = 0, (B.1)
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should remain independent of the “soul” coordinates 𝜃

and 𝜃 when it is generalized onto the (1, 1)-dimensional
(anti-)chiral super-submanifolds. This is physically allowed
and it can be readily utilized within the framework of the
augmented superfield formalism. In other words, the follow-
ing equality:

𝜀
𝜇]

(𝜕𝜇B (𝑥))B] (𝑥, 𝜃, 𝜃)

− 𝑖𝜕𝜇𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃) 𝜕
𝜇
𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃)

= 𝜀
𝜇]

(𝜕𝜇B (𝑥))𝐴] (𝑥) − 𝑖𝜕𝜇𝐶 (𝑥) 𝜕
𝜇
𝐶 (𝑥) ,

(B.2)

should hold good as far as the (super)fields of our present
theory are concerned. Plugging in the superexpansions from
(7) and (50) for B𝜇(𝑥, 𝜃, 𝜃), 𝐹

(𝑑ℎ)(𝑥, 𝜃, 𝜃), and 𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃),
we obtain the following relationships:

𝜀
𝜇]

(𝜕𝜇B (𝑥)) 𝑅] (𝑥) + 𝜕𝜇𝐶 (𝑥) 𝜕
𝜇
B (𝑥) = 0,

𝜀
𝜇]

(𝜕𝜇B (𝑥)) 𝑅] (𝑥) + 𝜕𝜇𝐶 (𝑥) 𝜕
𝜇
B (𝑥) = 0,

𝜀
𝜇]

(𝜕𝜇B (𝑥)) 𝑆] (𝑥) + 𝜕𝜇B (𝑥) 𝜕
𝜇
B (𝑥) = 0,

(B.3)

which are obtained when we set equal to zero the coefficients
of 𝜃 and 𝜃 and 𝜃𝜃 in the equality (B.2). From (B.3), it is clear
that we obtain

𝑅𝜇 = −𝜀𝜇]𝜕
]
𝐶,

𝑅𝜇 = −𝜀𝜇]𝜕
]
𝐶,

𝑆𝜇 = 𝜀𝜇]𝜕
]
B.

(B.4)

The substitution of these values into (7) leads to the derivation
of the expansionsB(𝑑ℎ)𝜇 (𝑥, 𝜃, 𝜃). It is worth pointing out that

the expansions for 𝐹(𝑑ℎ)(𝑥, 𝜃, 𝜃) and 𝐹
(𝑑ℎ)

(𝑥, 𝜃, 𝜃) have been
obtained due to the dual-HC (given in (45)). This demon-
strates that, for our 2D theory, the choices made in (49) can
be computed exactly in a precise manner.
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