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Using the sum invariance property of Benford random variables, we prove that an 𝑛-digit Benford variable converges to a Benford
variable as 𝑛 approaches infinity.

1. Introduction

Given a positive real number 𝑦, and a positive integer 𝑖, we
define 𝐷

𝑖
(𝑦) as the 𝑖th significant digit of 𝑦, where 𝐷

1
:

R+ → {1, . . . , 9} and 𝐷
𝑖
: R+ → {0, 1, . . . , 9} for 𝑖 > 1.

Thus, 𝐷
1
(2.718) = 2 and 𝐷

3
(2.718) = 1. We assume base 10

throughout this paper.
LetA be the smallest sigma algebra generated by𝐷

𝑖
.Then

𝐷
−1

𝑖
(𝑑) ∈ A for all 𝑖 and 𝑑. Within this framework, a random

variable 𝑌 is Benford [1–3] if, for all 𝑚 ∈ N, 𝑑
1
∈ {1, . . . , 9},

and 𝑑
𝑖
∈ {0, 1, . . . , 9} for 𝑖 > 1 the probability that the first 𝑚

digits of a real number are 𝑑
1
𝑑
2
⋅ ⋅ ⋅ 𝑑
𝑚
is given by

𝑃 (𝐷
1 (
𝑌) = 𝑑1

, . . . , 𝐷
𝑚 (
𝑌) = 𝑑𝑚

)

= log(1 + (
𝑚

∑

𝑗=1

10
𝑚−𝑗

𝑑
𝑗
)

−1

) .

(1)

While Benford variables have logarithmic distributions
in all of their digits, often times, in Benford literature the
focus has only been on the distribution of the first digit.
Such limitation may obscure the true nature of the quantity
investigated. There are datasets which exhibit a perfect
“Benford” distribution in the first digit but fail to do so
in the second. Nigrini [4] provided such an example and
consequently recommended the use of the first two-digit test
in order to improve the recognition of the Benford datasets

and thus to identify financial fraud. He also recommended
this approach for other accounting related analyses.

Such cases were generalized in [5], where a new class
of random variables, called 𝑛-digit Benford variables, was
introduced. These variables exhibit a logarithmic digit distri-
bution only in their first 𝑛 digits but are not guaranteed to
be logarithmically distributed beyond the 𝑛th digit. Unlike
Benford variables whose decimal logarithm is uniformly
distributed mod 1, the decimal logarithm of 𝑛-digit Benford
random variables has less stringent constraints; it must
only satisfy prescribed areas over a given partition of the
unit interval. This provides us with a collection of random
variables that contains the Benford variables as a subset.

It is intuitive to assume that when 𝑛 goes to infinity, an 𝑛-
digit Benford variable converges to Benford. The purpose of
this paper is to prove that this is indeed the case.

This paper is structured as follows: in the next section
we introduce 𝑛-digit Benford variables together with some
of their properties. In Section 3 we briefly discuss sum
invariance, which is fundamental for our main result. Finally,
using sum invariance, in Section 4 we show that 𝑛-digit
Benford variable converges to Benford, as 𝑛 → ∞.

2. 𝑛-Digit Benford

An 𝑛-digit Benford random variable behaves as a Benford
variable only in the first 𝑛-digits but may not have a logarith-
mic digit distribution beyond 𝑛th digit [5].
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Table 1: Sum invariance illustration for the first 50000 Fibonacci numbers.

𝑆
1

𝑆
2

𝑆
3

𝑆
4

𝑆
5

𝑆
6

𝑆
7

𝑆
8

𝑆
9

21714.0 21712.2 21717.8 21707.4 21713.2 21725.0 21702.7 21717.4 21715.5

Definition 1. Let 𝑛 ∈ N. A random variable 𝑌 is 𝑛-digit
Benford if for all 𝑑

1
∈ {1, . . . , 9} and all 𝑑

𝑖
∈ {0, 1, . . . , 9}, for

2 ≤ 𝑖 ≤ 𝑛,

𝑃 (𝐷
1 (
𝑌) = 𝑑1

, . . . , 𝐷
𝑛 (
𝑌) = 𝑑𝑛

)

= log(1 + (
𝑛

∑

𝑗=1

10
𝑛−𝑗
𝑑
𝑗
)

−1

) .

(2)

Note that a Benford variable is 𝑛-digit Benford variable, for
any 𝑛.

Lemma 2. If𝑌 is 𝑛-digit Benford, then it is 𝑘-digit Benford, for
all 1 ≤ 𝑘 < 𝑛.

Proof. Let 𝑘 = 𝑛 − 1. Then, by (2)

𝑃 (𝐷
1 (
𝑌) = 𝑑1

, . . . , 𝐷
𝑛−1 (

𝑌) = 𝑑𝑛−1
) =

9

∑

𝑑
𝑛
=0

𝑃 (𝐷
1 (
𝑌)

= 𝑑
1
, . . . , 𝐷

𝑛−1 (
𝑌) = 𝑑𝑛−1

, 𝐷
𝑛 (
𝑌) = 𝑑𝑛

)

=

9

∑

𝑑
𝑛
=0

log(1 + (
𝑛

∑

𝑗=1

10
𝑛−𝑗
𝑑
𝑗
)

−1

)

= log(
10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 10𝑑

𝑛−1
+ 1

10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 10𝑑

𝑛−1

× ⋅ ⋅ ⋅

×

10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 10𝑑

𝑛−1
+ 10

10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 10𝑑

𝑛−1
+ 9

)

= log(
10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 10𝑑

𝑛−1
+ 10

10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 10𝑑

𝑛−1

) = log(1

+ (

𝑛−1

∑

𝑗=1

10
𝑛−𝑗
𝑑
𝑗
)

−1

) .

(3)

As an example, let us consider the 2-digit Benford variable
𝑌 with the probability density function given by

𝑓 (𝑦)

=

{

{

{

𝜋

2𝑦 ln 10
sin (𝜋𝛽

𝑑
1
𝑑
2

(𝑦)) , 𝑑
1
+

𝑑
2

10

≤ 𝑦 < 𝑑
1
+

𝑑
2
+ 1

10

0, otherwise,

(4)

where 𝛽
𝑑
1
𝑑
2

(𝑦) = (log(10𝑦/(10𝑑
1
+ 𝑑
2
)))/(log((10𝑑

1
+ 𝑑
2
+

1)/(10𝑑
1
+ 𝑑
2
))). Its graph is illustrated in Figure 1. We can

check that 𝑃(𝐷
1
(𝑌) = 𝑑

1
, 𝐷
2
(𝑌) = 𝑑

2
) = log(1 + (10𝑑

1
+

𝑑
2
)
−1
). From Lemma 2 this is a 1-digit Benford variable as

well. However, 𝑌 is not a 3-digit Benford variable, since, for
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Figure 1: The pdf of a 2-digit Benford variable.

example, 𝑃(𝐷
1
(𝑌) = 1,𝐷

2
(𝑌) = 1,𝐷

3
(𝑌) = 1) = 2.86 × 10

−3

instead of 3.89 × 10−3 as required by (2).

3. Sum Invariance

To define sum invariance, we first define the significand
function, also known as the mantissa function.

Definition 3. The significand function 𝑆 : R+ → [1, 10) is
defined as

𝑆 (𝑥) = 10
log𝑥−⌊log 𝑥⌋

, (5)

where ⌊𝑥⌋ denotes the floor of 𝑥.

Let us consider a finite collection of positive real numbers
𝐾 and define 𝑆

𝑑
1
⋅⋅⋅𝑑
𝑛

to be the sum of the significands of
the numbers starting with the sequence of digits 𝑑

1
⋅ ⋅ ⋅ 𝑑
𝑛
.

Sum invariance means that 𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

is digit independent. For
instance, consider the Fibonacci sequence which is known to
be Benford [6]. Then for the first 50000 Fibonacci numbers
we obtain Table 1, where 𝑆

1
denotes the sumof all significands

starting with 1, and so forth.
Nigrini was the first to notice sum invariance in some

large collections of data [7]. Allaart [8] refined this con-
cept, by defining it in connection with continuous random
variables. Specifically, a distribution is sum invariant if the
expected value of the significands of all entries starting with a
fixed 𝑛-tuple of leading significant digits is the same as for any
other 𝑛-tuple: E[𝑆

𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌] = E[𝑆
𝑑


1
⋅⋅⋅𝑑


𝑛

𝑌]. Allaart showed that
a random variable is sum invariant if and only if it is Benford.
Berger [3] proved that for sum invariant random variables

E [𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌] =

10
1−𝑛

ln 10
. (6)

For example, for a Benford sequence with 50000 elements,
formula (6) yields 𝑆

1
= ⋅ ⋅ ⋅ = 𝑆

9
= 21714.7 rounded to

the tenths, which is very close to the actual values for the
Fibonacci numbers illustrated in Table 1. Naturally, the more
the numbers are taken from the sequence, the closer the one
gets to the theoretical sum.
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4. Main Result

A random variable is sum invariant if and only if it is
Benford [3, 8]. Using this result, we will prove that an 𝑛-
digit Benford variable converges to Benford as 𝑛 approaches
infinity by calculating the bounds for the expected value of its
significand.

Given a function 𝑔 : R → R, we define 𝑔† : R → [0, 1)

as

𝑔
†
(𝑥) =

{

{

{

∑

𝑘∈Z

𝑔 (𝑥 + 𝑘) , ∀𝑥 ∈ [0, 1) ,

0, otherwise.
(7)

Lemma 4. Let𝑌 and𝑋 = log𝑌 be two random variables with
the probability density functions 𝑓 and 𝑔, respectively. Then

E [𝑆
𝑑
1
⋅⋅⋅𝑑
𝑚

𝑌] = ∫

log(𝑑
1
+⋅⋅⋅+(𝑑

𝑚
+1)/10

𝑚−1

)

log(𝑑
1
+⋅⋅⋅+𝑑

𝑚
/10
𝑚−1
)

10
𝑥
𝑔
†
(𝑥) 𝑑𝑥. (8)

Proof. Using 𝑓(𝑦) = 𝑔(log𝑦)/(𝑦 ln 10), we get

E [𝑆
𝑑
1
⋅⋅⋅𝑑
𝑚

𝑌] = ∫

∞

−∞

𝑆
𝑑
1
⋅⋅⋅𝑑
𝑚

(𝑦) 𝑓 (𝑦) 𝑑𝑦

= ∑

𝑘∈Z

∫

10
𝑘

(𝑑
1
+⋅⋅⋅+(𝑑

𝑚
+1)/10

𝑚−1

)

10
𝑘
(𝑑
1
+⋅⋅⋅+𝑑

𝑚
/10
𝑚−1
)

𝑦10
−𝑘
𝑔 (log𝑦)
𝑦 ln 10

𝑑𝑦

= ∫

log(𝑑
1
+⋅⋅⋅+(𝑑

𝑚
+1)/10

𝑚−1

)

log(𝑑
1
+⋅⋅⋅+𝑑

𝑚
/10
𝑚−1
)

10
𝑥
∑

𝑘∈Z

𝑔 (𝑥 + 𝑘) 𝑑𝑥.

(9)

It is known that a necessary and sufficient condition for
a random variable to be Benford is that 𝑔† = 1 [3, 9].
Consequently, (6) follows immediately from Lemma 4.

There are arbitrary many ways in which we can build an
𝑛-digit Benford variable. Let B

𝑛
be the infinite collection of

all 𝑛-digit Benford variables. We use E[𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

B
𝑛
] to denote

the collection of the expected values of the significands of the
elements of B

𝑛
. The next theorem leads to the main result

of our paper. It provides the bounds for the expected value
E[𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌] for 𝑌 ∈ B
𝑛
.

Theorem 5. Let 𝑌 ∈ B
𝑛
. Then

10
1−𝑛 log(1 + 1

𝑥
𝑛

)

𝑥
𝑛

≤ E [𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌]

≤ 10
1−𝑛 log(1 + 1

𝑥
𝑛

)

𝑥
𝑛
+1

,

(10)

where 𝑥
𝑛
= 10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 𝑑

𝑛
.

Proof. We will calculate the lower and upper bounds of
E[𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌] using the fact that ∫𝑠
0
𝑔
†
(𝑥)𝑑𝑥 is monotonically

increasing with 𝑠, where 𝑔 is the probability density function
of log𝑌. From Lemma 4, we obtain

E [𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌]

= (𝑑
1
+ ⋅ ⋅ ⋅ +

𝑑
𝑛
+ 1

10
𝑛−1

) log(𝑑
1
+ ⋅ ⋅ ⋅ +

𝑑
𝑛
+ 1

10
𝑛−1

)

− (𝑑
1
+ ⋅ ⋅ ⋅ +

𝑑
𝑛

10
𝑛−1

) log(𝑑
1
+ ⋅ ⋅ ⋅ +

𝑑
𝑛

10
𝑛−1

)

− ∫

log(𝑑
1
+⋅⋅⋅+(𝑑

𝑛
+1)/10

𝑛−1

)

log(𝑑
1
+⋅⋅⋅+𝑑

𝑛
/10
𝑛−1
)

10
𝑠 ln 10∫

𝑠

0

𝑔
†
(𝑥) 𝑑𝑥 𝑑𝑠.

(11)

Since 𝑌 ∈ B
𝑛
, we get

∫

𝑠

0

𝑔
†
(𝑥) 𝑑𝑥 = log(𝑑

1
+ ⋅ ⋅ ⋅ +

𝑑
𝑛

10
𝑛−1

)

+ ∫

𝑠

log(𝑑
1
+⋅⋅⋅+𝑑

𝑛
/10
𝑛−1
)

𝑔
†
(𝑥) 𝑑𝑥.

(12)

The second term in (12) can take any value between 0 and
log(1+1/(10𝑛−1𝑑

1
+ ⋅ ⋅ ⋅+𝑑

𝑛
)), since 𝑔†(𝑥) is only constrained

by its total area over the interval

[log(𝑑
1
+ ⋅ ⋅ ⋅ +

𝑑
𝑛

10
𝑛−1

) , log(𝑑
1
+ ⋅ ⋅ ⋅ +

𝑑
𝑛
+ 1

10
𝑛−1

)] . (13)

It follows that

10
1−𝑛 log(1 + 1

𝑥
𝑛

)

𝑥
𝑛

≤ E [𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌] , ∀𝑌 ∈ B
𝑛
, (14)

where 𝑥
𝑛
= 10
𝑛−1

𝑑
1
+ ⋅ ⋅ ⋅ + 𝑑

𝑛
. Similarly we obtain

E [𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

𝑌] ≤ 10
1−𝑛 log(1 + 1

𝑥
𝑛

)

𝑥
𝑛

+ 10
1−𝑛 log(1 + 1

𝑥
𝑛

) , ∀𝑌 ∈ B
𝑛
,

(15)

which completes the proof.

As 𝑛 → ∞, both lower and upper bounds of
E[𝑆
𝑑
1
⋅⋅⋅𝑑
𝑛

B
𝑛
] approach 101−𝑛/ ln 10, proving the sum invari-

ance [3]. Consequently, 𝑛-digit Benford variable converges to
Benford.
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