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ABSTRACT 1 

A general finite element procedure based on the proportional crack opening displacements 2 

for obtaining the stress intensity factors is presented. The procedure is applied to the 3 

nonsingular 3-node linear, 4-node linear, 8-node parabolic, 8-node axisymmetric elements 4 

and 8-node hexahedral solid elements for a test. It is found that the current method exhibits 5 

good element type adaptability and significantly less mesh dependency, and accurate results 6 

can be obtained effectively using rather coarse meshes. The accuracy of the current 7 

procedure is evaluated by applying it to two-dimensional interface cracks, three-dimensional 8 

penny-shaped cracks as well as circumferential surface cracks. Comparison with the 9 

published data from the literature shows that the current procedure gives accurate stress 10 

intensity factors. Furthermore, the current method is fairly efficient and less computational 11 

resource consuming and can be used as an effective tool in the reliability analysis of the 12 

bonded multi-layers. 13 

Keywords：Stress intensity factor; Crack opening displacement; Interfacial crack; Finite 14 

element method 15 

1. Introduction 16 

Bi-material interfaces are widely observed in the modern composite structures. The presence 17 

of an interface crack may eventually cause a through thickness crack which results in the 18 

final failure of a structure. The singular stress field around an interface crack was firstly 19 

discovered by Williams [1], then his work was followed and extended by Rice and Sih [2], 20 

Erdogan [3,4], England[5], Willis [6] and many others. Following their pioneering research, 21 

a variety of algorithms have been developed based on LEFM and in conjunction with the 22 
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analytical method or the numerical method. The analytical methods for solving the stress 23 

intensity factors (SIFs) for the interfacial crack problems are only limited to a few specific 24 

cases due to the inherent mathematical difficulties. Therefore, general numerical methods are 25 

necessary to be employed to treat the more general cracked bodies in the practical 26 

applications. In this paper, a brief summary regarding the numerical methods available for 27 

computing the SIFs of the interface cracks using FE analysis will be reviewed and discussed. 28 

Then, a finite element procedure using the proportional relative crack opening displacement 29 

(COD) for obtaining the SIFs of the interfacial cracks will be proposed. 30 

    Just mention a few of those procedures using FE analysis, Matos et. al. [7] proposed a 31 

numerical method using FE analysis to compute the SIFs of an interface crack. This method 32 

is based on the evaluation of the J-integral by the virtual crack extension method. Then, 33 

individual stress intensities were obtained from further calculations of J perturbed by small 34 

increments. Chow and Atluri [8] got the SIFs of the interfacial cracks using the virtual crack 35 

closure integral with relatively coarse finite element meshes. In their procedure, the strain 36 

energy release rates should be computed in advance using the method proposed by Rybicki 37 

and Kanninen [9] as well as Raju [10]. Sun and Qian [11] used finite elements in conjunction 38 

with the crack closure method to obtain strain energy release rates [12] from which the SIFs 39 

could then be derived. The aforementioned procedures resorted to the use of the strain 40 

energy release rate to produce the final SIFs. Yuuki and Cho [13] determined the SIFs of the 41 

interface cracks by means of the extrapolation of the crack surface displacement. In this 42 

method, it needs skills to select the effective data area to determine the slope of the 43 

extrapolated line. Oda et al. [14] obtained the SIFs of the interface cracks using the ratios of 44 
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the crack tip stresses. His concept was extended from the crack tip stress method proposed 45 

by Teranishi and Nisitani [15] for the homogeneous cracks. Noda and Lan [16] investigated 46 

the robustness of Oda's method and proposed a linear extrapolation technique to improve the 47 

accuracy. However, both the very refined meshes and the extrapolation technique add to the 48 

extra computational costs which lead to the lower efficiency.  49 

    As aforementioned, Oda's method [14] does not directly give accurate results for the 50 

deep crack case as well as the strong material mismatch situations. Furthermore, FE element 51 

type and the grid size also affect the accuracy to some extent. Therefore, in this research, the 52 

authors tend to use the ratio of the relative crack opening displacement (COD) behind the 53 

crack tip to improve the accuracy. The robustness of the current procedure is investigated by 54 

a convergence study on the element type adaptability and mesh size dependency. It is found 55 

that the oscillatory singularity is successfully avoided by investigating the CODs of the FE 56 

nodes behind the crack tip instead of using the crack tip stresses. Meanwhile, the procedure 57 

for treating the case where the reference and the given unknown problems have different 58 

crack lengths is also depicted to deduce the modeling time. Therefore, the current procedure 59 

can give reliable results with rather coarse meshes more effectively and rapidly. 60 

Fig.1 

2. Analysis Method 61 

2.1 Formulation for the interface crack problems 62 

Consider two isotropic elastic materials joined along the x-axis as indicated in Fig.1 with 63 

material 1 above the interface and material 2 below. The stress distributions along the 64 

interface are defined as shown in Eq.(1) [17] . 65 
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here, y,y xσ τ  denote the normal and shear stress components near the crack tip respectively, 66 

r  is the radial distance behind the crack tip, a  is the half crack length and ε  is the 67 

bi-elastic constant given by: 68 
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where ( )1,2m mm =  and ( )1,2m mν =  are the shear moduli and Poisson's ratios of either 69 

respective materials. The associated crack flank displacements 70 

( ) ( )d , , , ( , )d du r u r d x yd θ π θ π= = − = − = for nodes ',i i at a distance r behind the crack tip 71 

shown in Fig. (1), are given by [18] 72 

( )

1/2
1 2

1 2

1 1
2(1 2 )cosh 2

i
I II

y x
K iK r ri
i l

εκ κδδ
ε επ µ µ π

 + + +    + = +     +     
 (4) 

where l  is an arbitrary reference length which scales with specimen size or crack length, 73 

for the definition of Eq.(1), we have 2l a=  without loss of generality. 74 

Considering ( ) ( ) ( )cos( ln ) sin( ln )ir l r l i r lε ε ε= + and rearranging Eq.(4), then the stress 75 

intensity factor components ,I IIK K can be separated as : 76 

( ) ( )2 cos ln 2 sin lnI y x x y
r rK S
l l

δ εδ ε δ εδ ε
       = − + +              

 (5) 

( ) ( )2 cos ln 2 sin lnII x y y x
r rK S
l l

δ εδ ε δ εδ ε
       = + − −                

(6) 

and 77 
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we can rewrite Eq.(5)and(6) as 78 

( ) ( )cos 2 sin sin 2 cos xI

y y
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δδ
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and 79 

( )lnQ r lε=  (10) 

From Eq.(8) and (9), when , , y xQ ε δδ   are kept the same for two different interface cracks, 80 

then we get a relationship as  81 

,I y II xK const K constδδ = =  (11) 

Considering two interface crack problems A and B (say, problems in Fig.2), by satisfying the 82 

preconditions as shown in Eq.(12) and (13), then the stress intensity factors ,I IIK K behave 83 

proportional relationship with ,y xδδ  as depicted in Eq.(14). Where, the relative crack 84 

opening displacement ,y xδδ  can be computed by FE analysis, assuming one of the two 85 

problems is analytically well solved in advance, say, ,I IIK K  of problem A are given in 86 

advance, then the SIFs of problem B can be easily obtained from Eq.(14). 87 

( ) ( )ln lnA B A B

A B A B

r l r lQ Q ε ε
ε ε ε ε

 =   =     →     = =   
 (12) 

y x y xA B
δδδδ      =   

 
(13) 

[ ] [ ]
A B

,I y I y II x II xA B
K K K Kδδδδ      = =     (14) 

and the strain energy release rate for the crack advance in the interface is  88 
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2.2 Application of the proportional COD method 89 

The problem that SIFs have been solved in advance can be treated as the reference. 90 

Therefore, a central cracked dissimilar bonded half-planes subjected to remotely uniform 91 

tensile and shear stresses as shown in Fig.2(a) is selected as the reference problem for 92 

generality. Its analytical solution was firstly derived by Rice and Sih [19], and takes the form 93 

( ) ( )* * 1 2I II y xyK iK i a iσ τ π ε∞ ∞+ = + +  (16) 

where an asterisk (*) is employed to denote the SIFs for the reference problem. ,y xyσ τ∞ ∞ are 94 

the remote uniform tension and shear applied to the bonded half-planes. a  is the half crack 95 

length of the center crack. Furthermore, the transversal tension 1 2,x xσ σ∞ ∞  in Fig.2(a) behave 96 

( ) ( )2 2
2 1 1 2 1

2 1 1

1 1 3 3
1x x y

µ µσ κ σ κ κ σ
κ µ µ

∞ ∞ ∞  
= + + − − −  +   

 (17) 

 As aforementioned, the preconditions in Eq.(12) and (13) should be firstly met to ensure 97 

the current method available. Eq.(12) can be easily satisfied by making the bi-elastic 98 

constant ε and the relative distance behind the crack tip r l  the same for the two problems. 99 

Here, some extra techniques should be employed to make Eq. (13) satisfied. We consider the 100 

reference problem shown in Fig.2(a), the relative COD ,y xδδ  can be solved in an indirect 101 

manner using the principle of linear superposition. As schematically shown in Fig.3, the 102 

reference problem (Problem A) can be solved in two steps (ProblemA1 and A2). Namely, 103 

they are Problem A1 in Fig.3 subjects to pure remote tension T  and Problem A2in Fig. 104 

Three subjects to pure remote shear S . Let * *
, ,,y A x Aδδ   denote the COD of Problem A 105 

Fig.2 
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subjected to combined ,T S , T 1* T 1*
, 1 , 1,y A x Aδδ = = denote those of Problem A1 subjected to pure unit 106 

tension 1T = , and 1* 1*
, 2 , 2,S S

y A x Aδδ = =  denote those of Problem A2 subjected to pure unit shear 107 

1S = , respectively. Using the theory of linear superposition, then the relative CODs 108 

* *
, ,,y A x Aδδ   of the reference problem (Problem A) take the following form 109 

* T 1* 1*
, , 1 , 2

S
y A y A y AT Sδδδ  = == × + ×  (18) 

* T 1* 1*
, , 1 , 2

S
x A x A x AT Sδδδ  = == × + ×  (19) 

Recall Eq.(13) and substitute ,y xδδ   with * *
, ,,y A x Aδδ   for problem A, then we have 110 

* T 1* 1*
, , 1 , 2 ,

* T 1* 1*
, , 1 , 2 ,

S
y A y A y A y B

S
x A x A x A x B BA A

T S
T S

δδδδ  
δδδδ  

= =

= =

     × + ×
= =     

× + ×          
 (20) 

Rearranging Eq.(20) gives the solution of S T , 111 

T 1* T 1*
, , 1 , , 1

1* 1*
, , 2 , , 2

x B y A y B x AS T S S
y B x A x B y A

δδδδ  

δδδδ  

= =⋅ − ⋅
=

= =⋅ − ⋅
 (21) 

Using ,T S  in Eq.(21) as the boundary condition for Problem A, then Eq.(13) is satisfied 112 

and eventually Eq.(14) sets up. Finally, the SIFs for the target unknown problem (problem 113 

B) can be yielded using the proportional relationship as given in Eq.(22). 114 

, ,
, , , ,

, ,

= ,y B x B
I B I A II B II A

y A x A

K K K K
δ δ
δδ

× = ×  (22) 

Fig.3 

2.3 Formulation for the problems with different crack lengths 115 

Recall Eq.(1) and (4), the aforementioned proportional COD method only sets up when the 116 

reference lengths ( 2l a= ) are set the same for the problems A and B. New FE models for the 117 

reference should be repeatedly created each time when the crack length of the given 118 

unknown problem changes. This means quite a lot computational costs in the practical 119 
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application. Consider the case where the reference problem A and the given unknown 120 

problem B have different crack lengths Aa  and Ba .Then the SIFs of Problem B should be 121 

computed according to the following process.  122 

1.The FE mesh patterns and the minimum element size around the crack tip are kept the 123 

same for the two problems A and B. Then, node pairs ',i i of problem A and B in Fig. 4 will 124 

be used for the computation. 125 

2. Calculating the SIFs ' '',I IIK K using the aforementioned proportional COD method by 126 

assuming the same reference length 12l a=  for the given unknown problem B. Here, 127 

' '',I IIK K  denote the SIFs of Problem B with a reference length 12l a= . 128 

3. Revising the computed SIFs by a constant phase factor which is introduced by the 129 

difference of the reference crack lengths. Let ,I IIK K  denote the SIFs of the given unknown 130 

problem with different reference lengths 22l a= , then ,I IIK K with the reference lengths 131 

22l a= can be expressed as 132 

2 2cos ln sin ln '
1 1

''
2 2sin ln cos ln
1 1

a a

a aK KI I
K a a KII II

a a

ε ε

ε ε

      
      −                    =                     

            

 (23) 

    In the practical application, the current method is fairly efficient since only one FE 133 

model of the reference problem is necessary for all the unknown problems with different 134 

crack lengths.  135 

Fig. 4 

3 Method robustness and convergence study 136 

   In this section, the efficiency and accuracy of the current procedure will be demonstrated 137 
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by pursuing a convergence study. The mesh-size dependency, the location of the nodes 138 

selected for computation and the mesh adaptability will also be investigated and depicted.  139 

3.1 Specifications and configurations of the FE models  140 

The MSC.MARC 2007 [20] finite element analysis package is used to compute the 141 

COD in this research. Fig.5(a) shows the FE model geometric configurations for the 142 

reference problem A. The crack length is set to 2 2a mm= . It should be noted that the 143 

relative COD values for the reference problem converge as the width of the model is larger 144 

than 1500 times the crack length a . Then a plate width of 1620 2 3240W a mm= × =  and a 145 

length of 2 6480L W mm= = are used to model the reference problem A 146 

( 2 , 1620L W W a= = ). Fig.5(b) shows the FE model geometric configuration for a 147 

single-edge cracked bonded strip (an example for the given unknown problem B). The crack 148 

length for the given unknown problem B is fixed to 1a mm= which is the half crack length 149 

of the reference problem A. The width of the bonded strip W varies from 0.1 ~ 0.9a W = , 150 

the length L  is assumed to be much greater than the width W ( 2L W= is assumed in the 151 

FE model). Furthermore, the minimum finite element sizes mine  are kept the same for the 152 

reference and the given unknown problems.  153 

Fig.5(c) shows the FE mesh pattern around the singular region. The singular region 154 

around the crack tip are well refined in a self-similar manner by increasing the number of 155 

layers, and the element size for each inferior layer is one-third of the superior one. The 156 

meshes are made of 4-node/8-node quadrilateral elements in plane stress or plane strain 157 

conditions. Furthermore, the meshes of the reference problem A and the given unknown 158 

Fig.5 
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problem B are kept the same to make sure a high computational accuracy. It should be noted 159 

that although highly accurate ,y xδδ   near the crack tip cannot be obtained by FE analysis. 160 

The ratios y xδδ   are fairly accurate since the same FE meshes and model density are 161 

assumed in the computation. 162 

3.2 Determination of the location of the nodes used for computation 163 

Fig.6 

    The computational accuracy is investigated for an edge-cracked bonded strip shown in 164 

Fig.2(b) by varying the node position behind the crack tip. Fig. 6 shows a finite element 165 

idealization with linear quadrilateral elements. The SIFs are computed using different pairs 166 

of nodes (say, 
',i i and

',j j et al.) and for four cases of minimum element size 167 

(
3 4 5 6

min 2 / 3 , 2 / 3 , 2 / 3 , 2 / 3e a a a a= ). The material combinations are fixed to 168 

1 2 1 2100, 0.3E E νν = = = , and the relative crack length 0.1a W = . The SIFs are normalized 169 

by aσ π as depicted in Eq. (24) and are plotted against the node position behind the crack 170 

tip in Fig. 7(a) and (b), respectively.  171 

,I I II IIF K a F K aσ π σ π= =  (24) 

It can be seen that for all types of minimum element size, the SIFs behave linearity with the 172 

distance from the node pairs selected in the computation to the crack tip. The normalized 173 

SIFs IF and IIF approach the published data 1.251 and 0.424 obtained by Miyazaki et al. [21] 174 

and Matsumto et al.[22]. The closer the distance between the node pairs used in the 175 

computation and the crack tip, the more accurate the results are. The refined meshes also 176 

contribute to a better computational accuracy. However, it should be noted that the nodes 177 

within the oscillatory singularity zone are not recommended in the computation. Furthermore, 178 
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the current method is less sensitive to the FE mesh size. Therefore, unless otherwise 179 

specified in this paper, all the node pairs used in the computation are those who are closest to 180 

the crack tip but not located within the oscillatory singularity zone to improve the accuracy. 181 

Fig. 7 

3.3 Convergence studies for mesh-size dependency 182 

Fig. 8 

    It suggests that the discretization in the near-tip region has an important role in the 183 

accuracy of the FE method. The accuracy must be balanced with the computational 184 

efficiency by investigating the total number of elements required. Here, a convergence study 185 

is carried out to investigate the effects of the minimum element size mine  and the model 186 

density on the accuracy. Different FE models using the 4-node quadrilateral elements and the 187 

8-node parabolic quadrilateral elements as well as using 6 different minimum element sizes 188 

are tested. The mesh pattern, model density and minimum element size for each pair of 189 

models are fixed the same. Namely, the minimum element size for each pair of models is190 

3 4 5 6 7 83 , 3 , 3 , 3 , 3 , 3a a a a a a  which corresponding to the total number of mesh layers 191 

7,8,9,10,11,12NL = , respectively. Without loss of generality, a material combination 192 

1 2 1 2100, 0.3G G νν = = =  and plane stress condition are assumed for an edge interface 193 

crack 0.2a W = . Similar conclusions can also be found from other cases. The results IF  194 

and IIF
 are plotted in Fig. 8(a) and (b), respectively. It can be seen that the normalized SIFs 195 

converge with deceasing the minimum element size. IF
 converge when 

4
mine 3a< , and 196 

IIF  converge when 
5

mine 3a< . The relative higher error for IIF is believed to be purely 197 

numerical resulting from a small IIF value. It can be concluded that the current method does 198 
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not show particularly great sensitivity with the element size. Say, ,I IIF F  has 3-digit 199 

accuracy when 
4

mine 3a< , and 4-digit accuracy when 
5

mine 3a< . Furthermore, the 200 

convergence speed of the current procedure reaches the same level accuracy is faster than 201 

that of the crack tip stress method [14]. In this research, without special notification, a 202 

minimum element size of 
5

mine 3a=  is selected to obtain a better tradeoff between 203 

computational cost and accuracy. 204 

3.4Mesh adaptability and element type dependency 205 

    It is known that the higher order elements can better catch the stress singularity in the 206 

FE analysis. In order to investigate the effect of the element type dependency, the 207 

two-dimensional single-edge cracked bonded strip shown in Fig.2(b) is computed using 3 208 

different types of finite elements. The material combinations 1 2 1 24, 0.3E E νν = = = and 209 

plane stress condition are assumed in the computation, the minimum element size is fixed to 210 

6
min 3e a= . Four different cases of nodes and element types as tabulated in Table 1 are 211 

investigated and compared in the analysis. Namely, they are Nodes i  and 'i  of the3-node 212 

triangle element in Fig. 9(a), nodes i  and 'i of the 4-node linear quadrilateral element in 213 

Fig. 9(b), the corner nodes j  and 'j of the 8-node parabolic quadrilateral element in Fig. 214 

9(c) and mid-side nodes i  and 'i  of the 8-node parabolic element in Fig. 9(c). 215 

Furthermore, it is known that SIFs vary greatly and decrease with the reducing of the relative 216 

crack length a W under the same loading conditions. Oda [14] pointed out that the relative 217 

crack length has an effect on the accuracy of the extended crack tip stress method, and the 218 

absolute error is believed to be considerable large for the deep crack case. Therefore, we 219 

used the same a W  to be able to compare our results with those predicted by other 220 
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researchers to investigate the crack size effect. In this research, all the relative crack lengths 221 

a W  of different crack problems vary from 0.1 to 0.9 with an increasing step of 0.1, then 222 

we can investigate the robustness and accuracy from the shallow crack case to the very deep 223 

crack case.  224 

    The intermediate relative COD results for each case are presented in Table 2, and their 225 

final ,I IIF F results are listed in Table 3. It can be seen from these tables that ,I IIF F  are in 226 

good agreement for different types of FE element, though their FE intermediate values 227 

,I IIδδ   exhibit significant differences, and ,I IIF F  of the current method agree well with 228 

those published data by Miyazaki [21] for 0.1 ~ 0.8a W = . Furthermore, the current 229 

procedure gives reliable results independent of the relative crack length. This leads us to a 230 

conclusion that though the intermediate relative CODs obtained from FEA may be different 231 

for various element types, the final results agree quite well. The current method resorts to the 232 

selection of the CODs instead of the crack-tip stresses to avoid the strong singularity, and 233 

consequently aids to reduce the numerical error and produce the optimal ,I IIK K results. 234 

Therefore the proposed proportional COD method can determine ,I IIK K with extremely 235 

high accuracy. It should also be noticed that the current procedure can give reliable 236 

computational accuracy without using too much refined meshes. Moreover, it also exhibits 237 

good FE mesh type adaptability and higher computing efficiency.  238 

Fig. 9 

Table 1 

Table 2 

Table 3 
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4 Numerical results  239 

4.1Homogeneous crack subjected to tensile and bending loadings 240 

    In the aforementioned discussion, when 0ε = , it is analogous to that of a crack in a 241 

homogeneous material. In this case, the oscillatory singularity vanishes and the stress field 242 

becomes square-root singular. Therefore, the current procedure should also be applicable to 243 

the homogeneous crack. The first example considered here is an edge cracked panel 244 

subjected to tensile and bending loads as shown in Fig. 10(a). Fig. 10(b) and (c) show the 245 

tension applied at the top and bottom boundaries to counter the tensile load and the bending 246 

moment applied to the homogeneous plate, respectively. The crack length is set to a 1mm=  247 

and the size of the panel varies for a range of a 0.1 ~ 0.9W = . The mesh pattern, model 248 

density and minimum element size are fixed the same as discussed above, 8-node 249 

quadrilateral element is employed in the computation. The normalized SIFs computed by the 250 

present method are tabulated and compared to those predicted by Kaya and Erdogan[23] and 251 

Noda et al.[24] in Table 4. It can be seen that the results and those of Kaya and Erdogan[23] 252 

as well as Noda et al. [24] are in very good agreement for the two loading conditions. 253 

Specifically, the errors are within 0.1% for both the two loading conditions.  254 

Fig. 10 

Table 4  

4.2Interfacial cracks subjected to tension 255 

    The second example is the two-dimensional plane-stress problems of a central interface 256 

crack and an edge interface crack. The FE models are built in a similar manner as depicted in 257 

Section 3.1. The crack length is set to 1a mm=  and the width of the bonded strip varies 258 
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from a 0.1 ~ 0.9W = . The length is set to 2 times the width of the bonded strip. The same 259 

elastic parameters 1 2 1 22, 4,10,100, 0.3E E νν = = = and the plane stress condition which 260 

were adopted by other researchers [13,21,22] are assumed in the computation. Their 261 

Dundurs' parameters ,α β  are plotted in the half α β−  space in Fig. 11 together with 262 

those of some typical engineering materials complied by Suga et al. [25]. As can be seen 263 

from Fig. 11, the elastic parameters used in the computation are representative since their 264 

,α β  are widely distributed along the densely distributed area for the typical engineering 265 

materials. The computed SIFs are also normalized by aσ π , and they are tabulated in 266 

Table 5 together with those predicted by Matsumto et al.[22], for the central and edge 267 

interface crack problems respectively. As shown in this table, the results of the current 268 

procedure coincide with those predicted by Matsumto et al.[22]. Specifically, the largest 269 

errors of the strong material mismatch and the relative deep crack cases are within 0.2% for 270 

the center interface crack case, and those of the edge interface crack are less than 0.5%. It 271 

can be found that the deep crack length and the strong material mismatch do not affect the 272 

computational accuracy. Therefore, the current procedure is generic, and it can get accurate 273 

SIFs more effectively without using high model density or any post-processing techniques. 274 

Furthermore, it is known that the SIFs do not behave simple uniform varying relationship 275 

with ,α β  and a W [26]. However, the SIFs in Table 5 increase monotonically with the 276 

increment of 1 2E E , since 1 2,νν   are kept the same and the plane stress condition is 277 

assumed in the analysis. This leads us to a conclusion that the SIFs grows with the stronger 278 

material mismatch for this specific condition. 279 

Table 5 
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Table 6 

4.3Axisymmetrical crack problems in a cylindrical bar 280 

    To thoroughly assess the mesh dependence and the applicable possibility on treating the 281 

case where the reference problem and the given unknown problem have different FE models, 282 

anaxisymmetrical3-D crack, a penny-shaped crack and a circumferential surface crack are 283 

analyzed in this section. The calculated SIFs are compared with those from the literature. 284 

Requirements of the mesh patterns are further investigated and discussed. Similarly, the 285 

8-node quadrilateral element in plane strain condition is used in building the reference 286 

problem, and two different mesh types as the 8-node axisymmetric solid element and 8-node 287 

hexahedral solid element are used to mesh the penny-shaped and circumferential surface 288 

crack problems as shown in Fig.12(a) and (b), respectively. The 2-D axisymmetric model is 289 

refined in a similar way as shown in Fig.5(c), and the 3-D FE model idealizations and its 290 

boundary conditions are demonstrated in Fig.12(c). The normalized SIFs for the 291 

penny-shaped and circumferential cracks as well as those predicted by Benthemand Koiter 292 

[27] and Nisitani and Noda[28] are tabulated and compared in Table 6, respectively. It can be 293 

seen from this table that the normalized SIFs computed by the axisymmetric models coincide 294 

with those predicted by 3-D solid models. Furthermore, the SIF values of the penny-shaped 295 

crack predicted by the current method are in good agreement with those by Benthem and 296 

Koiter [27], and the largest error is around 0.7% for the deep crack case. For the 297 

circumferential surface crack, the values of the current procedure coincide with those 298 

predicted by Nisitani and Noda [28] with the largest error within 0.1%. This means the 299 

current method is also useful for the axisymmetrical crack problems, and the computational 300 



18/ 31 
 

accuracy of the current method is independent of the FE element types for the reference and 301 

target unknown problems. 302 

Fig.11 

Table 7  

5. Conclusions 303 

    In this paper, the proportional relative crack opening displacement (COD) behind the 304 

crack tip was employed based on the crack tip stress method to compute the stress intensity 305 

factors. The robustness of the current procedure was investigated by a convergence study. It 306 

was found that the current procedure gave reliable results with rather coarse meshes more 307 

effectively and rapidly, and it exhibited good element type adaptability and less mesh 308 

dependency. Furthermore, the accuracy was also tested via several numerical examples. It 309 

was confirmed that resorting to the selection of the COD values behind the crack tip instead 310 

of the direct crack tip stresses could avoid the strong singularity, and aid to produce a better 311 

accuracy. Comparing with that of the crack tip stress method, the accuracy was not affected 312 

by the relative deep crack and the strong material mismatch. Meanwhile, a procedure on 313 

treating the case where the reference problem and the given unknown problem have different 314 

crack lengths was also depicted to reduce the modeling time. Therefore, the current method 315 

is fairly efficient and can be used as an effective tool in the reliability analysis of the bonded 316 

multi-layers. 317 

 318 
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Fig.1. Stress distribution and relative crack displacement of an interface crack 385 
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 407 

(a)  408 

(b)  409 

Fig. 7. Normalized SIFs (a) IF  and (b) IIF  computed using nodes of various positions 410 

behind the crack tip 411 
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Fig. 8. (a) Convergence study for (a) IF  and (b) IIF  with varying the minimum element 416 

size 417 
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Fig. 9. Non-singular elements around the crack tip (a) 3-node linear triangular element (b) 420 

4-node linear quadrilateral element and (c) 8-node parabolic quadrilateral element 421 
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Fig. 10. (a) A single-edge-cracked homogenous strip subjected to tensile and bending 423 

loading conditions, tensions at the boundaries to counter the (b) tensile loads and (c) the 424 
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Fig. 11. Dundurs' material combinations used in the computation together with those of some 428 

typical engineering materials compiled by Suga et al.[25] 429 
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Fig.12. (a) A penny-shaped crack and (b) a circumferential surface crack in a cylindrical bar 434 

under tension (c) 3-D FE mesh geometry of the circumferential crack 435 
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Table 1 The finite element nodes and element types used in the computation 438 

No. Name Nodes and element types used in the computation 
1 Case 1 Nodes i and i' of the 3-node linear triangular element shown in Fig.8a 
2 Case 2 Nodes i and i' of the 4-node linear quadrilateral element shown in Fig.8b 
3 Case 3 Corner nodes j and j' of the 8-node parabolic quadrilateral element shown in Fig.8c 
4 Case 4 Mid-side nodes i and i' of the 8-node parabolic quadrilateral element shown in Fig.8c 

 439 

Table 2The COD ,y xδδ  for the reference and unknown problems, 1 2 1 24, 0.3E E νν = = = , Plane 440 

stress 441 

FE 
Models 

Relative CODδy Relative CODδx 
Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

RefT 0.9526 1.0132 1.0430 0.6499 -0.4401 -0.4972 -0.5822 -0.3395 
RefS 0.4856 0.5716 0.5958 0.4284 0.7422 0.9004 1.0606 0.5898 
a/W =0.1 1.1972 1.2770 1.3153 0.8232 -0.4817 -0.5395 -0.6316 -0.3704 
a/W =0.2 1.3421 1.4305 1.4738 0.9213 -0.5583 -0.6268 -0.7341 -0.4299 
a/W =0.3 1.6138 1.7194 1.7715 1.1066 -0.6848 -0.7697 -0.9015 -0.5274 
a/W =0.4 2.0450 2.1785 2.2446 1.4016 -0.8743 -0.9832 -1.1517 -0.6736 
a/W =0.5 2.7342 2.9130 3.0024 1.8748 -1.1652 -1.3101 -1.5349 -0.8977 
a/W =0.6 3.9132 4.1705 4.3007 2.6863 -1.6434 -1.8463 -2.1634 -1.2659 
a/W =0.7 6.2018 6.614 6.8230 4.2648 -2.5286 -2.8358 -3.3238 -1.9467 
a/W =0.8 11.7801 12.5783 12.9901 8.1284 -4.5551 -5.0913 -5.9705 -3.5033 
a/W =0.9 34.7330 37.1709 38.4847 24.1098 -12.0352 -13.3628 -15.6921 -9.2413 

RefT: The reference problem (Problem A1) in Fig.3 subjected to pure uniform tension. 442 
RefS: The reference problem (Problem A2) in Fig.3 subjected to pure uniform shear. 443 
a/W=0.1~0.9: The givenunknown problem in Fig.2(b) subjected to pure uniform tension. 444 

 445 

Table 3The normalized SIFs ,I IIF F  computed usingdifferent types of finite element 446 

a/W 
FI FII 

Case 1 Case 2 Case 3 Case 4 
Miyazaki et 

al.  [21] 
Case 1 Case 2 Case 3 Case 4 

Miyazakiet 

al. [21] 

0.1 1.209 1.209 1.209 1.208 1.209 -0.239 -0.239 -0.239 -0.239 -0.239 
0.2 1.368 1.367 1.368 1.367 1.368 -0.251 -0.250 -0.250 -0.250 -0.250 
0.3 1.653 1.653 1.654 1.653 1.654 -0.288 -0.288 -0.288 -0.288 -0.288 
0.4 2.100 2.099 2.101 2.099 2.101 -0.359 -0.359 -0.359 -0.358 -0.359 
0.5 2.805 2.804 2.807 2.805 2.807 -0.483 -0.483 -0.484 -0.483 -0.483 
0.6 3.998 3.998 4.003 3.999 4.006 -0.716 -0.715 -0.717 -0.715 -0.716 
0.7 6.286 6.285 6.296 6.287 6.304 -1.207 -1.206 -1.209 -1.205 -1.208 
0.8 11.774 11.775 11.805 11.781 11.820 -2.532 -2.530 -2.538 -2.529 -2.538 

 447 
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Table 4 Normalized SIFs =I IF K aσ π  for Fig.10. (a) 448 

a/W 
Uniform tension In-plane bending 

Present Kaya and Erdogan [23] Noda et al. [24] Present Kaya and Erdogan [23] Noda et al. [24] 

0.1 1.189 1.1892 1.189 1.045 1.0472 1.046 
0.2 1.367 1.3673 1.367 1.054 1.0553 1.054 
0.3 1.659 1.6599 1.659 1.124 1.1241 1.123 
0.4 2.111 2.1114 2.111 1.260 1.2606 1.259 
0.5 2.824 2.8246 2.823 1.497 1.4972 1.495 
0.6 4.031 4.0332 4.032 1.913 1.9140 1.913 
0.7 6.352 6.3549 6.355 2.724 2.7252 2.725 
0.8 11.95 11.955 11.95 4.673 4.6764 4.675 
0.9 34.60 34.633 34.62 12.45 12.462 12.46 

 449 

  450 
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Table 5 Normalized SIFs = =I I II IIF K a F K aσ π σ π， for the central and edge interface crack problems 451 

( .= =1 2 0 3v v , plane stress) 452 

E1/E2 a/W 

Central interface crack Edge interface crack 
FI FII FI FII 

Present Matsumto 
et al. [22] Present Matsumto 

et al. [22] Present Matsumto 
et al. [22] Present Matsumto 

et al. [22] 
2 0.1 1.001 1.019 -0.072 -0.072 1.195 1.190 -0.129 -0.127 
 0.2 1.019 1.053 -0.071 -0.070 1.367 1.367 -0.137 -0.137 
 0.3 1.052 1.104 -0.071 --0.072 1.658 1.657 -0.158 -0.156 
 0.4 1.103 1.180 -0.073 -0.073 2.108 2.109 -0.198 -0.195 
 0.5 1.179 1.296 -0.078 -0.077 2.818 2.819 -0.267 -0.268 
 0.6 1.294 1.477 -0.086 -0.084 4.021 4.024 -0.396 -0.398 
 0.7 1.475 1.799 -0.101 -0.101 6.331 6.348 -0.670 -0.668 
 0.8 1.796 - -0.132 -0.131 11.892 11.930 -1.406 -1.401 
 0.9 2.542 0.981 -0.215 - 34.330 - -4.891 - 

4 0.1 0.987 1.006 -0.129 -0.128 1.209 1.199 -0.239 -0.237 
 0.2 1.006 1.037 -0.127 -0.126 1.368 1.368 -0.251 -0.251 
 0.3 1.038 1.086 -0.127 -0.126 1.653 1.655 -0.288 -0.288 
 0.4 1.088 1.163 -0.130 -0.131 2.100 2.102 -0.359 -0.358 
 0.5 1.161 1.273 -0.138 -0.136 2.805 2.806 -0.484 -0.483 
 0.6 1.271 1.446 -0.151 -0.148 3.998 4.001 -0.716 -0.714 
 0.7 1.445 1.752 -0.177 -0.175 6.284 6.298 -1.208 -1.204 
 0.8 1.750 - -0.229 -0.226 11.768 11.780 -2.532 -2.515 
 0.9 2.457 0.962 -0.370 - 33.735 - -8.797 - 

10 0.1 0.968 0.987 -0.175 -0.172 1.229 1.222 -0.340 -0.336 
 0.2 0.986 1.017 -0.172 -0.168 1.369 1.366 -0.349 -0.348 
 0.3 1.018 1.065 -0.171 -0.171 1.648 1.648 -0.399 -0.394 
 0.4 1.065 1.135 -0.174 -0.172 2.089 2.090 -0.495 -0.491 
 0.5 1.135 1.239 -0.183 -0.181 2.787 2.789 -0.664 -0.661 
 0.6 1.238 1.400 -0.199 -0.196 3.967 3.968 -0.979 -0.973 
 0.7 1.400 1.685 -0.231 -0.226 6.224 6.227 -1.648 -1.634 
 0.8 1.684 - -0.295 -0.292 11.611 11.590 -3.450 -3.414 
 0.9 2.338 0.943 -0.470 - 32.984 - -11.968 - 

100 0.1 0.946 0.964 -0.206 -0.207 1.252 1.251 -0.425 -0.424 
 0.2 0.964 0.994 -0.202 -0.201 1.370 1.376 -0.429 -0.429 
 0.3 0.995 1.039 -0.201 -0.198 1.642 1.647 -0.485 -0.470 
 0.4 1.039 1.104 -0.203 -0.200 2.078 2.083 -0.598 -0.569 
 0.5 1.105 1.202 -0.212 -0.208 2.770 2.772 -0.799 -0.793 
 0.6 1.200 1.350 -0.229 -0.226 3.937 3.906 -1.173 -1.171 
 0.7 1.350 1.611 -0.262 -0.257 6.165 6.157 -1.972 -1.957 
 0.8 1.610 - -0.329 -0.325 11.459 11.43 -4.121 -4.075 
 0.9 2.210  -0.517 - 32.267 - -14.277 - 
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Table 6 Normalized stress intensity factors σ πIK a  of a single circumferential crack in a round bar 455 

a/R 
Penny-shaped crack Circumferential surface crack 

Axisy model 3-D model Benthern and 
Koiter [25] Axisy model 3-D model Nisitani and 

Noda [26] 
0.1 0.6369 0.6369 0.6369 1.181 1.183 1.180 
0.2 0.6393 0.6394 0.6396 1.262 1.262 1.261 
0.3 0.6462 0.6462 0.6468 1.393 1.393 1.393 
0.4 0.6600 0.6600 0.6616 1.602 1.602 1.602 
0.5 0.6855 0.6856 0.6881 1.939 1.939 1.940 
0.6 0.7294 0.7294 0.7335 2.514 2.514 2.516 
0.7 0.8067 0.8067 0.8123 3.615 3.615 3.618 
0.8 0.9551 0.9552 0.9613 6.238 6.238 6.243 
0.9 1.3218 1.3217 1.3251 16.66 16.66 16.67 
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