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Abstract: Two-demensional (2D) models of a flue organ pipe are studied with compressible fluid
simulation, specifically compressible Large Eddy Simulation, focusing on the influence of the
geometry of the flue and the foot on the jet motion and acoustic oscillation in the pipe. When the foot
geometry is fixed, the models having a flue with chamfers show good performances in stabilizing the
acoustic oscillation in the steady state. Furthermore, we find that the foot chamber works as a
Helmholtz resonator. If the frequency of the acoustic oscillation in the pipe is higher than the
resonance frequency of the Helmholtz resonator by almost the full-width at half-maximum, anti-phase
synchronization between the acoustic oscillation in the pipe and that in the foot chamber occurs. In this
case, the acoustic oscillation in the pipe grows rapidly in the attack transient and is stabilized in the
steady state.
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1. INTRODUCTION

The study of the sounding mechanism of flue instru-

ments, such as flute, recorder and flue organ pipe, is one of

the long standing problems in the field of musical acoustics

[1–3]. The relation between the frequency of acoustic

oscillation and the jet velocity was first explained by

Coltman using an equivalent circuit model based on

experimental observations [4]. This was followed by

Fletcher et al. where the relation was formulated in a clear

way [1]. The oscillation phenomenon of the jet, which

drives the resonance pipe, was studied by many authors

[3,5–8]. Many aspects of the sounding mechanism have

been clarified, such as the details of attack transient and the

behavior of the jet motion changing with the jet velocity

and the geometry of the mouth opening.

However, the sounding mechanism of flue instruments

is still not understood completely. The major difficulty

comes from the fact that the sound source of flue

instruments, the edge tone, is aerodynamic sound that is

caused by the unsteady motion of a fluid flow with non-

zero vorticities [1,9]. The aerodynamic sound, which was

first formulated by Lighthill, i.e., Lighthill’s acoustic

analogy, has attracted many authors’ attention, but the

generation mechanism of the aerodynamic sound has still

not been completely elucidated [9,10]. Howe introduced an

alternative method, Howe’s energy corollary, which allows

us to estimate the sound energy generation through the

interaction between the fluid field and the acoustic field

[9,11]. This is an indirect and approximate method, but is

well applicable to some situations. Actually, the method to

approximately calculate Howe’s energy corollary has been

recently developed in experiments of flue instruments by

several authors [12,13]. As a result, it has been suggested

that the aerodynamic sound is mainly generated from the

jet downstream just before the edge. However, this needs to

be confirmed by more rigorous methods, such as Lighthill’s

acoustic analogy.

On the other hand, in order to simultaneously calculate

the jet motion and acoustic oscillation in the pipe, a

numerical method with compressible fluid solvers has been

recently developed by several authors [14–17]. This

method well reproduces the detail behavior of the jet

motion and acoustic oscillation, such as the change of the

acoustic frequency with the jet velocity. Furthermore, it

can be used for the calculation of Howe’s energy corollary

and gives essentially the same result as that obtained

experimentally [18,19]. Therefore, numerical simulation�e-mail: takahasi@mse.kyutech.ac.jp
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based on a compressible fluid scheme is an important tool

to explore the detail behavior of flue instruments.

In this paper, we focus on the problem of how the

geometry of flue and foot chamber influences the jet

motion and acoustic oscillation of a flue organ pipe.

Ségoufin et al. experimentally studied the influence of the

geometry of the flue with or without chamfers on the jet

motion and acoustic oscillation for a flue organ pipe having

a geometry typical of a recorder [8]. Their result indicates

that shortening the flue allows better control of the

instrument and makes the sound spectrum richer in high

harmonics, while adding chamfers to the flue is effective in

stabilizing oscillation only for a long flue but not for a short

flue. In this paper, we numerically study a two-dimensional

(2D) flue organ pipe model similar to that studied by

Ségoufin et al. Furthermore, we investigate how the

geometry of the foot chamber influences the stability of

the jet motion and the acoustic oscillation in the pipe.

In this paper, we use a 2D flue organ pipe model

instead of a three-dimensional (3D) model, because it is

guaranteed that the basic properties of flue instruments,

e.g., the relation between the acoustic frequency and the jet

velocity, are well reproduced by using a 2D model [14,18].

The advantage of using the 2D model is that it can be

calculated with less computer power and less resources.

The simulation of 3D models with a compressible fluid

scheme, that is a compressible Large Eddy Simulation

(LES), is a very heavy task [14,20] and to study the

functions of the flue and the foot chamber we have to

execute many simulations of many models with different

shapes.

2. SOUNDING MECHANISM
OF ORGAN PIPE

2.1. Sound Source: Edge Tone

As shown in Fig. 1, a jet injected from a flue collides

with an edge (labium) and causes vortices. The reaction of

vortices influences the jet to oscillate in the vertical

direction. The aerodynamic sound, known as edge tone, is

created by the oscillating jet together with the vortices [9].

The relation between the oscillation frequency f of the

edge tone and the jet velocity V is given by Brown’s

equation [21],

f ¼ 0:466jkð100V � 40Þð1=100l� 0:07Þ; ð1Þ

where l denotes the distance between the flue exit and

the edge. The variables f , V and l are in SI units so that

the units of the constants are 40 m/s and 0.07 m�1. The unit

of frequency f is the hertz (Hz). The parameter jk changes

with the oscillation mode of the jet and has values j1 ¼ 1:0,

j2 ¼ 2:3, j3 ¼ 3:8 and j4 ¼ 5:4. For flue instruments, the

first hydrodynamic mode with j1 ¼ 1:0 is usually observed

and the frequency f increases linearly with the jet velocity

V .

2.2. Sounding Mechanism of Flue Organ Pipe

The edge tone generated by the jet oscillation drives

the resonance pipe, and cooperative behavior of the jet

motion and the acoustic modes of the pipe makes the sound

of the organ pipe [1,14]. According to Coltman, the relation

between the dominant sound frequency and the jet velocity

for a closed end pipe is as shown by the thick lines in Fig. 2

[4]. First, the sound frequency increases linearly with the

jet velocity just as the frequency of the edge tone does.

Then, just before the sound frequency reaches the first

resonance frequency of the pipe, the increase rate decreases

and the sound frequency converges to the pipe resonance

frequency with increasing jet velocity. Here, the jet motion

becomes synchronized with the first acoustic mode, which

makes a sound with a clear pitch. As the jet velocity

increases further, the edge tone frequency increases, the

synchronization becomes incomplete, and the sound is a

blended composite of the dominant pipe tone and the edge

tone. At higher values of jet velocity, where the edge tone

frequency of Eq. (1) approaches the second pipe resonance

frequency, the jet motion changes and starts to be

synchronized with the second pipe mode. Here, the second

mode dominates the fundamental mode and the dominant

frequency of the acoustic wave jumps to the second pipe

resonance frequency.
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Fig. 1 Generation of edge tone.
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Fig. 2 Oscillation frequency vs. jet velocity for a closed
end pipe.
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3. MODEL AND NUMERICAL METHOD

3.1. Model

In this paper, we analyze a 2D model of a flue organ

pipe with a closed end, which is a 2D analog of the organ

pipe studied by Ségoufin et al. [8]. As shown in Fig. 3, the

model consists of an inlet tube, a foot chamber, a flue and a

resonance pipe. The volume above the flue and edge

models the outside space with the external atmosphere.

The pipe is 141.5 mm in length and the frequency of the

fundamental resonance mode is estimated as 583 Hz taking

into account the 2D end correction at the mouth opening

[14]. The pipe length of our model is half as long as that

studied by Ségoufin et al. [8]. We adopt the closed pipe,

while Ségoufin et al. studied the open pipe, so the

fundamental frequencies are almost the same in the two

models. Note that the pipe is 20 mm in height.

The distance between the flue exit and the top of the

edge is set as l ¼ 4 mm and the flue is 1 mm in height (see

Fig. 4). The intersection of Brown’s equation given by

Eq. (1) at j1 ¼ 1 with the fundamental resonance frequen-

cy gives the jet velocity of V � 5:6 m/s. According to the

Coltman-Fletcher theory [1,4], the optimal oscillation is at

the jet velocity slightly above the intersection point, and so

we set the desired average jet velocity to be V ¼ 6 m/s.

The height of the inlet tube is 3 mm, which is three times as

large as the height of the flue, and the flow velocity at the

inlet should be set as one third of the desired jet velocity.

Note that the length of the inlet tube is 50 mm.

As in Ségoufin et al. [8], we investigate the changes of

the jet motion and acoustic oscillation with the geometry of

the flue. To do this, we adopt four types of flues, with short

or long channel, i.e., 3 mm or 15 mm in length, and with or

without chamfers at the flue exit. The dimensions of the

flue and chamfers are given in Fig. 4. As shown in Table 1

we call the short flue models with and without chamfers the

SC and SE models, respectively, and call the long flue

models with and without chamfers the LC and LE models,

respectively.

We also investigate the role of the foot chamber,

considering how the geometry and volume of the foot

chamber influences the jet motion and acoustic oscillation.

The models used for this investigation are different to each

other in the foot geometry but have the same short flue with

chamfers, because, as shown later, the SC model shows the

best performance in making the attack transient short and

stabilizing the acoustic oscillation in the steady state.

Figure 5 shows the geometry of the foot models and

Table 2 shows their abbreviations. As shown in Figs. 4 and

5, the foot chamber consists of the left rectangular part and

the right channel part, which gradually narrows toward the

flue channel and is smoothly connected to it. The lower

channel block below the channel is a quarter circle.

The foot chamber shown in Fig. 5(a) is the same as that

of the model in Fig. 3. As shown in Table 2, the foot

chamber in Fig. 5(a) is called the Reference model or the

Reference foot. The rectangular part of the Reference

model is 60 mm in length and 20.8 mm in height. We

also investigate three different-shaped foot models, the

Short, Long and Isovolume models. For the Short and

Long models in Figs. 5(b) and (c), the rectangular parts are

30 mm and 120 mm in length, respectively. For the

Isovolume model in Fig. 5(d), the rectangular part is

30 mm in length and 41.6 mm in height and it has the same

2D volume as the Reference model. Furthermore, we also

investigate a model without the foot chamber and inlet

tube, which is called the Non-foot model.

3.2. Numerical Method

For the numerical calculation, we adopt a compressible

LES (Large Eddy Simulation) solver in the open source

software, OpenFOAM ver.2.2.2 [14,18]. Specifically, we

Fig. 3 Geometry of the 2D flue organ pipe model with
an inlet tube, a foot chamber, a flue and a resonance
pipe with a closed end. The particular case of the
Reference foot and the short flue with chamfers is
shown.

l f

R
hcb

h f

w cf

l 

θ

chamfer 
hp

he 

Fig. 4 Dimensions of the edge, flue with chamfers and
foot channel: hp ¼ 20 mm, l ¼ 4 mm, he ¼ 1:2 mm,
� ¼ 20�, wcf ¼ 0:71 mm, hf ¼ 1 mm, lf ¼ 3 or 15 mm,
hcb ¼ 20:8 mm, R ¼ 19:8 mm.

Table 1 Abbreviations of the flue models.

flue length with chamfers without chamfers

short: 3 mm SC SE
long: 15 mm LC LE
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use the scheme called ‘rhoPisoFoam’ with the one-equation

sub-grid-scale (SGS) model, which is suitable for fluid at

subsonic speeds. The pressure and temperature in the

atmosphere at rest are take as p0 ¼ 100 kPa and T0 ¼
300 K, respectively. To guarantee numerical accuracy, the

size of the mesh around the mouth opening is �x ¼ 0:1

mm and the time step of the numerical integration is

�t ¼ 5:0� 10�8 s. In the case of the model in Fig. 3, for

example, with the Reference foot and the short flue with

chamfers, the number of mesh cells is 120165.

The outlet boundary condition is taken for the right, left

and top walls of the volume above the instrument. The inlet

boundary condition is taken for the left end of the inlet

tube. The other walls are solid walls. The flow velocity at

the inlet is initially increased gradually to reach the desired

value at t ¼ 2 ms. The time evolution up to 50 ms is

calculated. Note that in OpenFOAM the inlet boundary

behaves as a diode, that is, it becomes a transparent wall

for an incoming flow, but a solid wall for an outgoing flow.

Thus, the foot chamber and the inlet tube behave as a

cavity.

The pressure oscillations in the pipe and in the foot

chamber are observed at the center of the right end of the

pipe and at the upper-left point of the rectangular part of

the foot, respectively. The jet velocity is observed at the

center of the flue exit.

4. NUMERICAL RESULTS

4.1. Velocity and Pressure Distribution of the SC

Model with the Reference Foot

Figure 6 shows the snapshots of spatial distributions of

velocity and pressure in the steady state for the SC model

with the Reference foot, which provides the most stable

oscillation among the SC, SE, LC and LE models. As

shown in Fig. 6(a), the jet spontaneously oscillates,

colliding with the edge and emitting the edge tone, which

drives the resonance pipe. As shown in Fig. 6(b), the

acoustic pressure oscillation with the frequency 482 Hz is

well sustained in the resonance pipe. Note that, as shown

to be normal in Fig. 2, the oscillation frequency in the

steady state is smaller than the resonance frequency of the

pipe obtained theoretically: 482 Hz (observation) < 583 Hz

(theory). Furthermore, the pressure in the foot chamber

oscillates in anti-phase with that in the pipe. As will be

shown in the following subsections, this anti-phase

synchronization is the key for understanding the role of

the foot chamber.

4.2. Results of the SC, SE, LC and LE Models with the

Reference Foot

In this subsection we consider the pressure oscillation

Table 2 Abbreviations of the foot models.

abbreviation foot geometry

Reference Fig. 5(a)
Short Fig. 5(b)
Long Fig. 5(c)

Isovolume Fig. 5(d)
Non-Foot without the foot and inlet tube

(a)

(b)

Fig. 6 Snapshots of spatial distributions of velocity
and pressure for the SC model with the Reference foot.
(a) Velocity distribution. (b) Pressure distribution.

(a)

(b)

(c)

(d)

Fig. 5 Geometry of the foot chamber. (a) Reference
model. (b) Short model. (c) Long model. (d) Isovolume
model.
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observed at the center of the right end of the pipe. In

particular, we focus on the following features:

1) Attack: Brevity of attack transient;

2) Steady-state: Stability and size of oscillation ampli-

tude.

Our subjective evaluations (‘‘good,’’ ‘‘fair,’’ or ‘‘poor’’) for

the four models are shown in Table 3.

Let us describe details. Figure 7(a) shows the pressure

oscillations in the pipe for the SC and LC models and

Fig. 7(b) shows those for the SE and LE models. The

maximum amplitude of the pressure oscillation reaches

around 100 Pa for all the models. However, the behavior of

the models with chamfers, the SC and LC models, is

different from that of the models without chamfers, the SE

and LE models.

For the SC and LC models, the oscillations are

dominated by the fundamental mode and their wave forms

are similar to a sinusoidal wave in the steady state. The

attack transient of the SC model is short and the oscillation

amplitude reaches around 50 Pa at t ¼ 5 ms. On the other

hand, for the LC model, the oscillation amplitude mono-

tonically increases until 25 ms and it does not have a

definite attack transient.

For the SE and LE models, the oscillations have small

amplitude until 20 ms and gradually grow after that. In the

initial stage until 20 ms, the oscillations are rather unstable

and seem to be modulated by high frequency components.

In this stage, oscillation amplitude for the LE model is

smaller and more unstable than that for the SE model. In

the later stage, the wave forms are still different from

sinusoidal waves due to higher harmonic components. The

LE model takes a longer time to reach the maximum

oscillation than the SE model.

The above results show that the models with chamfers

are more stable than the models without chamfers. Figure 8

shows the time evolution of horizontal velocity at the flue

exit for the SC and SE models. The velocity of the SC

model periodically oscillates in the steady state at the same

frequency as the acoustic oscillation. On the other hand, the

velocity of the SE model is rather unstable and has small

amplitude until 20 ms. Even in the later stage, it has smaller

amplitude than the SC model. The oscillation of the

horizontal velocity of the jet probably helps to stabilize the

acoustic oscillation.

Our numerical results show that the models having the

flue with chamfers, i.e., the SC and LC models, show good

performance in obtaining stable and large-amplitude

oscillation in the steady state. Furthermore, the SC model

is shorter in the attack transient than the LC model. Thus,

our numerical results partially agree with the experimental

results by Ségoufin et al. [8]. Indeed, they indicated that

adding chamfers to a long flue is effective in stabilizing the

system and makes the attack transient less abrupt. The

result for the LC and LE models is similar to their result,

except for the ambiguous attack transient of the LE model.

However, they indicated that adding chamfers to a short

Table 3 Evaluation of the models.

SC SE LC LE

Attack Good Fair Fair Poor
Steady state Good Fair Good Fair
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Fig. 7 Time evolution of the pressure in the pipe. (a) SC
and LC models. (b) SE and LE models.
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Fig. 8 Time evolution of the horizontal velocity at the
flue exit for the SC and SE models.
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flue does not help to stabilize the system, while our result

shows that the SC model is more stable than the SE model.

This disagreement is attributed to the difference in the

shape of the foot chambers. To make the flue short,

Ségoufin et al. replaced the lower channel block with a

different-shaped one, a triangle-shaped block. On the other

hand, our models have the same channel block, i.e., the

quarter circle block. As shown in Appendix, the numerical

simulation for the 2D models of the short flue organ pipe

with and without chamfers studied by Ségoufin et al. is

qualitatively in agreement with their experimental result.

Therefore, it is considered that the replacement of the

lower channel block not only changes the geometry and

volume of the foot chamber but also affects the formation

of the jet and the interaction between the foot chamber and

resonance pipe through the flue. In the following, we

explore the role of the foot chamber.

4.3. Interaction between the Resonance Pipe and the

Foot Chamber

In this subsection, we consider the interaction between

the resonance pipe and the foot chamber. We use the

Reference model and the short flue with chamfers, i.e., the

SC model, which shows the best performance as described

in Sect. 4.2.

Figure 9 shows the time evolution of the acoustic

pressure in the pipe compared with that in the foot

chamber. In the steady state, anti-phase synchronization

between the pressure oscillation in the pipe and that in the

foot chamber is observed. Indeed, one lags behind or leads

the other in phase by nearly �, because of the interaction

between the resonance pipe and the foot chamber through

the flue. Comparing with Fig. 8, we find that the oscillation

of the horizontal velocity of the jet leads the pressure

oscillation in the pipe by nearly �=2 and lags behind the

pressure oscillation in the foot chamber by nearly �=2. It

seems that the anti-phase synchronization adds a small

periodical oscillation on the jet velocity, which stabilizes

the motion of the coupled system of the pipe and the foot

chamber.

4.4. Comparison between the Reference Model and

the Non-foot Model

To explore the role of the foot chamber, we compare

the model with the Reference foot, i.e., the Reference foot

model, with the model without the foot chamber and inlet

tube, i.e., the Non-foot model, for which the air flow is

directly injected from the left end of the flue. Note that

both models have the same short flue with chamfers, i.e. the

SC flue model. Figures 10(a) and (b) show the time

evolution of the acoustic pressure in the pipe and that of

the horizontal velocity at the flue exit for these two models,

respectively. The pressure oscillation for the Non-foot

model is unstable until t ¼ 20 ms and gradually increases

until t ¼ 50 ms. In this sense, it has a long attack transient.

Even at t ¼ 50 ms, its amplitude is still smaller than that

of the Reference model. The oscillation of the velocity at

the flue exit for the Non-foot model gradually grows, but its

amplitude is much smaller than that of the Reference model

even at t ¼ 50 ms. Thus, there is an interaction between the

pipe and foot chamber for the Reference model and the
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Fig. 9 Time evolution of the pressure in the pipe and
that of the pressure in the foot chamber for the
Reference foot model (with the SC flue model).
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Fig. 10 Comparison between the Reference model and
the Non-foot model. (a) Pressure in the pipe. (b) Jet
velocity at the flue exit.
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existence of the foot chamber assists the acoustic oscil-

lation to grow rapidly.

4.5. The Role of the Foot Chamber

To clarify the role of the foot chamber, we study the

four models whose foot chambers are different in geometry

to each other: the Reference, Short, Long and Isovolume

models in Fig. 5. Note that the four models have the same

short flue with chamfers, i.e., the SC model.

Figure 11(a) shows the result of the Short model. The

attack transient of the acoustic pressure in the pipe is as

short as that of the Reference model in Fig. 9. In the steady

state, the oscillation amplitude is smaller than that of the

Reference model and gradually fluctuates as a beat sound

wave. The pressure oscillation in the foot chamber also

behaves as a beat sound wave but with a slightly different

frequency from that of the acoustic oscillation in the pipe.

The pressure oscillations in the foot chamber and the pipe

are not in synchronization or anti-phase synchronization.

Most of the time, the pressure oscillation in the foot

chamber lags behind that in the pipe by nearly �=2.

Figure 11(b) shows the result of the Long model. The

acoustic pressure in the pipe has a long attack transient

and gradually grows until it reaches the maximum

amplitude. Even in the steady state, the acoustic oscillation

is rather unstable compared with that of the Reference

model. In the first stage of time evolution, the pressure

oscillation in the foot chamber fluctuates irregularly and

there is not clear synchronization or anti-phase synchroni-

zation between the pressure oscillation in the foot chamber

and that in the pipe, but they seem to fall into anti-phase

synchronization after a long time.

Figure 11(c) shows the result of the Isovolume model.

The time evolution of the acoustic pressure in the pipe

almost coincides with that of the Reference model.

Furthermore, anti-phase synchronization between the

acoustic oscillation in the pipe and that in the foot chamber

is observed in the steady state. This means that the function

of the foot chamber of the Isovolume model is the same as

that of the Reference model.

These results show that the function of the foot

chamber depends only on its volume and not on its shape.

From this observation, it is expected that the foot chamber

works as a Helmholtz resonator. In the following, we

consider how the foot chamber works as a Helmholtz

resonator, the origin of the phase difference between the

oscillations in the foot chamber and the pipe, and its

relation to the amplitude and stability of the acoustic

oscillations.

The oscillation frequency of a Helmholtz resonator fH
is given by [1]

fH ¼
c

2�

ffiffiffiffiffiffiffiffiffi
S

VHL

s
; ð2Þ

where c is the speed of sound in air, S is the cross section of

the neck, L is the length of the neck and VH is the volume

of air in the resonator’s body. Note that, for the 2D model,

S and VH are the height of the neck and the 2D area of the

foot chamber, respectively. To consider the relation to the

3D model we can add a uniform width w perpendicular to

the 2D model geometry. Thus the cross section of the neck

and the volume of the air in the resonator’s body for the 3D

model are S�w and VH �w, respectively. From Eq. (2),

the 2D and 3D models have the same resonance frequency.
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Fig. 11 Pressure in the foot chamber and that in the
pipe. (a) Short model. (b) Long model. (c) Isovolume
model.
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Roughly speaking, the foot chamber and flue play the

role of the resonator’s body and that of the neck,

respectively. However, we do not have a method to

determine the boundary between the resonator’s body and

neck for such a complex-shaped resonator. As an alter-

native method, we numerically obtain the resonance

frequency of the foot chamber separated from the pipe.

Here, we use the compressible LES solver for the

calculation.

Figure 12(a) shows the Helmholtz resonator of the

Reference model, which is formed by the flue and foot

chamber connected to the inlet tube. The area of the outside

section on the right is 500� 500 mm2. To consider the

frequency response of the Helmholtz resonator, the flow

velocity at the inlet Uin is changed periodically as

UinðtÞ ¼ U0 sinð!tÞ; ð3Þ

where the amplitude U0 is set as U0 ¼ 1 m/s.

Figure 12(a) shows a snapshot of the pressure distri-

bution at f ¼ 380 Hz and Fig. 12(b) shows the time

evolution of the pressure at the upper-left point of the

rectangular part of the foot at f ¼ 380 and 480 Hz. Stable

oscillations are observed in the stationary states at f ¼ 380

and 480 Hz. The amplitude of the pressure oscillation at

f ¼ 380 Hz is more than twice as large as that at f ¼
480 Hz, which is almost the frequency of the acoustic

oscillation of the pipe fa ¼ 482 Hz. Figure 13 shows the

frequency response of the amplitude of acoustic pressure

pap in the foot chamber. A resonance peak exists at f ¼
380� 5 Hz and the peak height is 575 Pa. The amplitude

pap takes the value of 1=
ffiffiffi
2
p

times the maximum, i.e., half

the maximum of the acoustic intensity, at f � 327 Hz and

f � 428 Hz. Thus, the full-width at half maximum

(FWHM) is approximately 100 Hz, and the frequency of

the acoustic oscillation fa ¼ 482 Hz is higher than the

Helmholtz resonance frequency fH � 380 Hz by nearly the

FWHM value.

Table 4 shows the Helmholtz resonance frequency fH
compared with the frequency of the acoustic oscillation fa
for the representative models. For the Isovolume model,

fH ¼ 385� 5 Hz, which is close to that for the Reference

model. This means that the functions of the foot chamber

for the Reference and Isovolume models are almost the

same. For the Short model, fH ¼ 495� 5 Hz, which is

slightly higher than the oscillation frequency at fa ¼ 481

Hz. In this case, unstable oscillations with relatively small

amplitude arise in the pipe and foot chamber (see Fig. 11).

For the Long model and the LC model, i.e., the Reference

model with the long flue with chamfers, the Helmholtz
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bution at f ¼ 380 Hz. (b) Pressure at the upper-left
point of the rectangular part of the foot at f ¼ 380 and
480 Hz.
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Table 4 Helmholtz frequency fH compared with the
frequency of the acoustic oscillation fa for the
representative models.

Reference Short Long Isovolume LC

fH [Hz] 380� 5 495� 5 265� 5 385� 5 270� 5

fa [Hz] 482 481 479 482 473
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frequencies are 265� 5 Hz and 270� 5 Hz, which are

much less than those of acoustic oscillations at fa ¼ 479

and 482 Hz, respectively. In this case, pressure fluctuation

in the foot chamber does not become larger and the

acoustic oscillation in the pipe does not grow rapidly (see

Fig. 11).

In the steady state, the phase difference between the

pressure oscillation in the pipe and that in the foot chamber

can be explained by the theory of forced harmonic

oscillators (TFHO). This means that the acoustic oscillation

in the pipe drives the Helmholtz resonator, i.e., the foot

chamber.

According to TFHO, if the frequency of the acoustic

oscillation is higher than the Helmholtz resonator frequen-

cy by almost the FWHM value, the phase of the Helmholtz

resonance oscillation should lag behind that of the acoustic

oscillation by almost �, because the foot chamber, i.e., the

Helmholtz resonator, is driven in the mass dominated

region. This is consistent with the observation of anti-phase

synchronization in the simulation. However, TFHO can not

explain the fact that the acoustic oscillation in the pipe

rapidly grows in the attack transient and is stabilized in the

steady state. Explaining this would require a more detailed

analysis of the mechanism of the jet motion coupled with

oscillations in the pipe and the boot chamber.

When the frequency of the acoustic oscillation is much

higher than the Helmholtz resonance frequency as in the

Long model and LC model, i.e., the mass dominated

region, the pressure oscillation in the foot chamber has a

very small amplitude, even though anti-phase synchroni-

zation occurs. In this case, the system rather behaves like

the Non-foot model, namely the rapid growth of the

acoustic oscillation is not observed (compare Fig. 7(a) and

Fig. 11(b) with Fig. 10(a)). This behavior is consistent

with the TFHO for when the frequency of the driving

oscillation is far from the resonance frequency of the

driven oscillator.

If the frequency of the pipe is close to the Helmholtz

resonance frequency, the phase of the Helmholtz oscilla-

tion lags behind that of the acoustic oscillation in the pipe

by almost �=2. This is also consistent with the resonant

response predicted by the TFHO applied to the resistance

dominated region. However, the pressure oscillations

observed in the foot chamber and the pipe are unstable

and have relatively small amplitude. This cannot be

explained by the TFHO. We conjecture that energy transfer

between the pipe and foot chamber enhanced by resonant

interaction may destabilize the system, and that hydro-

dynamic interaction should play a role, i.e., the oscillating

jet and aerodynamic sound generated by it. To clarify this

we need to do further investigation of the interaction

among the oscillation in the foot chamber, the jet motion

and the oscillation in the pipe.

5. DISCUSSION

In this paper, we numerically studied the 2D flue organ

pipe model with a foot chamber, focusing on the problem

of how the geometries of the flue and the foot chamber

influence the acoustic oscillation in the pipe.

First, we investigated the changes of the jet motion and

acoustic oscillation with the geometry of the flue, when the

geometry of the foot is fixed. Specifically, we studied four

flue models, i.e., the SC, SE, LC and LE models, with

either a short or a long flue, and with or without chamfers.

As a result, it was found that the models having a flue with

chamfers, i.e., the SC and LC models, show good perform-

ance in stabilizing the acoustic oscillation in the steady

state. Furthermore it was found that the SC model with the

short flue has shorter attack transient than the LC model

with the long flue.

Next, we explored the function of the foot chamber

comparing the Reference foot model, with the SC flue

model, with three models which have a different shaped

foot chamber. As a result, it was found that the function of

the foot chamber depends on its volume and it acts as a

Helmholtz resonator. Frequency and phase relations in-

dicate that the acoustic oscillation in the pipe drives the

oscillation in the Helmholtz resonator. When the frequency

of the acoustic oscillation is higher than that of the

Helmholtz resonator by almost the resonator’s FWHM,

anti-phase synchronization between the acoustic oscillation

in the pipe and that in the foot chamber occurs. In this case,

the acoustic oscillation grows rapidly in the attack transient

and is stabilized in the steady state. However, if the

frequency of the acoustic oscillation is nearly equal to that

of the Helmholtz resonator, the acoustic oscillation in the

pipe and that in the foot chamber become small and

unstable, even though a resonance is expected from the

theory of forced harmonic oscillators. On the other hand,

when the frequency of the acoustic oscillation is much

higher than that of the Helmholtz resonator, namely the

frequency of the driving oscillation is far from the

resonance peak, anti-phase synchronization occurs but the

pressure oscillation in the foot chamber has a very small

amplitude and rapid growth of the acoustic oscillation is

not observed.

We have shown how the detuning of the pipe acoustic

oscillation frequency from the Helmholtz resonance fre-

quency affects the phase difference between the acoustic

oscillations in the pipe and the pressure oscillation in the

foot chamber, and the amplitude and stability of the

acoustic oscillations. To understand the mechanisms of

growth and stabilization we need to further investigate the

nonlinear interactions among the oscillation in the foot

chamber, the jet motion and the oscillation in the pipe. Our

result shows that optimally the frequency of the acoustic
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oscillation in the pipe should be higher than the Helmholtz

resonance frequency of the foot chamber by almost the

full-width at half-maximum. This point should be taken

into account for the design of the flue organ pipe. To clarify

this point, we have to investigate the function of the foot

chamber in more detail with calculations of 3D models.

This task is left for future work. It should also be checked

by experiments.
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APPENDIX: Numerical Simulation for the Short
Flue Organ Pipe Studied by Ségoufin et al.

In this appendix, we shows numerical results for 2D

models of the short flue organ pipe with and without

chamfers studied by Ségoufin et al., namely, the Short SgC

model and the Short SgE model [8]. Figure A·1 shows the

geometry of the foot chamber of the Short SgC model,

which is almost the same as the 2D projection of the short

flue organ pipe studied by Ségoufin et al. Figures A·2(a)

and (b) show the pressure in the foot chamber compared

with that in the pipe for the Short SgC model and the Short

SgE model, respectively.

Comparing with the results in Fig. 7, it can be seen that

the attack transients of these models are shorter than those

of the LC and LE models and are almost the same time

length as that of the SC model. The Short SgC model and

the Short SgE model have the Helmholtz resonance

frequencies 445� 5 Hz and 435� 5 Hz, which are slightly

less than the oscillation frequencies 491 Hz and 508 Hz,

respectively.

As shown in Fig. A·2(a) the oscillation amplitude for

the Short SgC model is smaller than that of the Reference

model and gradually fluctuates as a beat sound wave. The

pressure oscillation in the foot chamber has almost the

same frequency as that in the pipe, but they are not in

Fig. A·1 Geometry of the foot chamber of the Short Sg
model with chamfers.
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synchronization or anti-phase synchronization because the

phase shift is not 0 or �.

As shown in Fig. A·2(b) the oscillation amplitude for

the Short SgE model is slightly smaller than that of the SC

model, but is larger than that of the Short SgC model. The

pressure oscillation in the foot chamber has almost the

same frequency as that in the pipe and they are nearly in

anti-phase synchronization in the steady state. Thus, the

oscillation of the model with chamfers is more unstable

than that of the model without chamfers.

The wave forms observed for the Short SgC model and

the Short SgE model are considerably deformed due to the

effect of higher harmonics compared with that of the SC

model. Therefore, our numerical calculation is qualitatively

in agreement with the experimental result for the short flue

organ pipe studied by Ségoufin et al.
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Fig. A·2 Pressure in the foot chamber and that in the
pipe. (a) The Short Sg model with chamfers, i.e., Short
SgC. (b) The Short Sg model without chamfers, i.e.,
Short SgE.
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