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We have developed an algorithm for nonparametric fitting and extraction of statistically significant peaks in the presence of
statistical and systematic uncertainties. Applications of this algorithm for analysis of high-energy collision data are discussed. In
particular, we illustrate how to use this algorithm in general searches for new physics in invariant-mass spectra using pp Monte

Carlo simulations.

1. Introduction

Searching for peaks in particle spectra is a task which is
becoming increasingly popular at the Large-Hadron col-
lider that focuses on new physics beyond TeV-scale. Bump
searches can be performed either in single-particle (such
as pp distributions) or invariant-mass spectra. For instance,
searches for new particles decaying into a two-body final
state (jet-jet, gamma-gamma, etc.) and multibody decays are
typically done by examining invariant masses of final-state
objects (jets, leptons, missing transverse momenta, etc.). For
example, assuming seven identified particles (jets, photons,
electrons, muons, taus, Z-bosons, and missing p;), a search
can be made for parent particles decaying into 2, 3, or 4
daughter particles. This leads to 322 unique daughter groups.
Thus, the task of analyzing such invariant-mass combinations
becomes rather tedious and difficult to handle. Considering
a “blind” analysis technique for scanning many channels
[1], any cut variation increases the number of channels that
need to be investigated. Finally, similar challenges exist for
automatic searches for new hadronic resonances combining
tracks [2].

The task of finding bumps is ultimately related to the task
of determining a correct background shape using theoretical
or known cross sections. However, a theory can be rather

uncertain in the regions of interest, difficult to use for back-
ground simulation, or entirely nonexistent. Even for a simple
jet-jet invariant mass, finding an analytical background func-
tion that fits the QCD-driven background spanning many
orders in magnitude and which can be used to extract pos-
sible excess of events due to new physics requires a careful
examination. Attempts to fit two-jet and three-jet invariant
masses have been discussed in CMS [3, 4] and ATLAS [5]
papers; while both experiments have reached the necessary
precision for such fits using initial low statistical data,
the used analytical functions are rather different and have
many free parameters. This task becomes even more difficult
considering multiple channels (invariant-mass distributions)
with various cuts or detector-selection criteria (like b-tag-
ging). Each such channel requires a careful selection of ana-
Iytical functions for background fit and adjustments of their
initial values for convergence of a nonlinear regression while
determining an expectantly smooth background shape. A
fully automated approach to searches for new physics has
been discussed elsewhere [6].

One technically attractive approach is to find a nonpara-
metric way to extract statistically significant peaks without
a priori assumptions on background shapes. Such approach
is popular in many areas, from image processing to studies
of financial market, where a typical peak-identification task
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is reduced to data smoothing in order to create a function
that attempts to approximate the background. The smoothing
can be achieved using the moving average [7], Lowess [8],
and Splines [9] algorithms. Statistically significant deviations
from smoothed distributions can be considered as peaks.
Such technique is certainly adequate for the peak extraction,
but it does not pursue the goal of peak identification with a
correct treatment of statistical (or systematic) uncertainties.
The later can be asymmetric.

The closest peak-search approach for high-energy-
physics applications has been developed for studies of y-ray
spectra where the usual features of interest are the energies
and intensities of photo-peaks. Several techniques have been
developed, such as those based on least squares [10], second
differences with least-squares fitting [11], the Fourier trans-
formation [12], Markov chain [13], and convolution [14], (just
naming a few). While such approaches are well suited for
counting-type observables, they typically focus on narrow
peaks on top of small and often flat-shaped background.

For example, the ROOT analysis framework [15] used in
high-energy physics contains the TSPECTRUM package based
on a smoothing method developed for y-ray spectra [14]. The
latter typically have narrow peaks on a smooth background.
This algorithm is efficient in finding sharp peaks, while
detection of wide peaks requires a visual examination of
data to adjust several free parameters of this tool. Thus this
approach is not well suited for a completely automatic peak
search. In addition, systematic uncertainties on data points
are not easy to incorporate in this approach.

In high-energy collisions, a typical standard-model back-
ground distribution has a falling shape spanning many orders
of magnitude in event counts. A typical example is jet-jet
invariant masses used for new particle searches [3, 5]. For
such spectra, the most interesting regions are the tails of the
exponentially suppressed distributions where a new high-p;-
physics may show up. This means that there should be rather
different thresholds to statistical noise, depending on the
phase-space region, and, as result, a correct treatment of
statistical and systematic uncertainties is obligatory. Unlike
the y-ray spectra where peaks are rather common and subject
of various classification techniques, peaks in high-energy
collisions are rather rare. As a consequence, relatively little
progress has been made to develop a nonparametric fitting
technique for high-energy physics applications where an
observation of peaks is typically a subject for searches for new
physics rather than for peak-classification purposes.

The above discussion leads to the need for a nonpara-
metric way of background estimation together with the
peak extraction mechanism which can be suited for high-
energy collision distributions, such as invariant masses. The
algorithm should be able to take into account the discrete
nature of input distributions with their uncertainties. The
proposed algorithm is less ambiguous compared to the
smoothing methods (such as that used in ROOT [14, 15]),
since it uses only one free parameter. In addition, it can take
into account systematic uncertainties on data points (that can
be asymmetric) and thus can estimate statistical significance
of possible peaks in the presence of systematic uncertainties.
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2. Nonparametric Peak Finder Algorithm

Due to the reasons discussed above, the program called Non-
parametric Peak Finder (NPFinder) was developed using a
numerical, iterative approach to detect statistically significant
peaks in event-counting distributions. In short, NPFinder
iterates through bins of input histograms and, using only one
sensitivity parameter, determines the location and statistical
significance of possible peaks. Unlike the known smoothing
algorithms, the main focus of this method is not how to
smooth data and then extract peaks, but rather how to extract
peaks by comparing neighboring points and then calling what
is left over the “background” Below we discuss the major
elements of this algorithm and then we illustrate and discuss
its limitations and possible improvements.

For each point i in a histogram, the first-order derivative
«; is found taking into account possible (statistical or/and
systematic) uncertainties. This is done by calculating the
slope between two points including their experimental uncer-
tainties: if point i + 1 is lower than point 4, the upper error
is used, while if point i + 1 is higher than point i, the
lower error uncertainty is used. This is done in order to be
always on a conservative side while reducing statistical noise.
Mathematically, this can be written as

o = Vier T 01 — )’i,

i
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)
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where the uncertainty dy;,; is taken with negative sign for
¥ir1 > y; and with positive sign otherwise. The uncertainty
may not need to be symmetric, but for simplicity we assume
that they are symmetric as this is usually the case for statistical
nature of uncertainties. The derivatives are averaged calculat-
ing a running average for any given position N:
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The algorithm triggers the beginning of a peak if the local
derivatives satisfy

Sanyy = oy — Gy > A,
€)

Sy, = Gy — AN > A,

where A is a free positive parameter that reflects (unknown)
slope of the peak. This parameter should be found empirically
and we will discuss below a possible range for its value. When
the above conditions are true, NPFinder registers a possible
peak and begins classifying next points as a part of the peak.
The running average equation (2) is not accumulated for the
points which belong to a possible peak. A is the only free
parameter which specifies the sensitivity to the peak finding.
This parameter should decrease with increase of sensitivity
to the peaks (and likely will increase sensitivity to statistical
fluctuations).

NPFinder continues to walk over data points until day,
and day,, are both negative, which signifies that the max-
imum of the peak has been reached. The double condition
in (3) is used to reinforce the peak-search robustness. When
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FIGURE 1: A graphical illustration of the NPFinder algorithm. Each
data point is characterized by a coordinate (x;, y;), with (optional)
upper and lower uncertainties on the y; values. See (1) for the
definition of the slopes «;.

this condition is met, NPFinder exits the peak and adds an
equal number of points to the right side from the peak center.
The requirement of having the same number of points implies
that the peaks are expected to be symmetric, which is the
most common case. For steeply falling distributions, such as
transverse-momenta spectra or dijet mass distributions, this
assumption usually means that we somewhat underestimate
the peak significance. Figure 1 illustrates the NPFinder algo-
rithm for a falling invariant-mass distribution. Each point of
the distribution can have an upper and lower statistical (or
systematic) uncertainty.

After detecting all peak candidates, NPFinder iterates
through the list of possible peaks in order to form a back-
ground for each peak. This is achieved by performing a linear
regression of points between the first and last points in the
peak, that is, applying the function y; = mx; +b, where m and
b are the slope and intercept of the linear regression, which
in this case is rather trivial as it is performed via the two
points only. It should be noted that the linear regression is
also performed taking into account uncertainties:

"= (3, +6y2) = (0 +5)’1)) (4)
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where y, is the first point of the peak, y, is the final point of
the peak, and 8y, and 8y, are their statistical uncertainties,
respectively. Here the statistical uncertainties are added in
order to always be on the conservative side in estimation of
the background level under the peak. The intercept parameter
thenisb = y, + 8y, — mx,.

It should be mentioned that the technique of the peak
finding considered above is somewhat similar to that dis-
cussed for y-ray applications [11]. But there are several impor-
tant differences of NPFinder compared to this algorithm:
NPFinder can detect peaks of arbitrary shapes (not only
Gaussian-shaped peaks as in [11]), no fitting or smoothing
procedure is used, and statistical and systematic uncertainties
for data points are included during the peak-finding proce-
dure. The algorithm [11] was not tested since its source code
is not publicly available.
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FIGURE 2: Invariant mass of two jets generated with the PYTHIA
Monte Carlo model. Several peaks seen in this figure were added
using the Gaussian distributions with different widths and peak
values (see the text). The peaks are found using the NPFinder
algorithm which also estimates their statistical significance values
as discussed in the text.

Finally, NPFinder uses the background points to calculate
the statistical significance of each peak in a given histogram.
This is done by summing up the differences r; of the original
points in a peak with respect to the calculated background
points and then dividing this value by its own square root.
For a given peak, it can be approximated by

_ 2N

where the sum runs over all points in the peaks. The
algorithm runs over an input histogram or graph, builds a list
of peaks, and estimates their statistical significance. A typical
statistically significant peak in this approach has ¢ > 5-7. A
first peak is usually ignored as it corresponds to the kinematic
peak of background distributions.

Below we illustrate the above approach by generating fully
inclusive pp collision events using the PYTHIA generator
[16]. The required integrated luminosity was 200 pb". Jets are
reconstructed with the anti-k; algorithm [17] with a distance
parameter of 0.6 using the cut p; > 100 GeV. Then, the dijet
invariant-mass distribution is calculated and the NPFinder
finder is applied using the parameter A = 1. As expected, no
peaks with o > 5 were found.

Next, a few fake peaks were generated using the Gaussian
distributions with different peak positions and widths. The
peaks were added to the original background histogram.
Figure 2 shows an example with 3 peaks generated at
1000 GeV (20 GeV widths, 200000 events), 1500 GeV (50 GeV
widths, 30000 events), and at 2800 GeV (40 GeV widths,
1200 events). The algorithm found all three peaks and gave
correct estimates of their positions, widths, and approximate
statistical significance using the input parameter A = 1.

For a comparison, the same distribution was used to test
the TSPECTRUM package of the ROOT program discussed
in the introduction. It was found that TSPECTRUM can
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also detect such peaks, but several iterations with a visual
examination of the data have been required to adjust the
free parameters of this algorithm, o (an effective sigma of
searched peaks), and the amplitude of the expected peaks.
After the first TSPECTRUM pass, an additional analytic fit was
required to determine the statistical significance of each peak.
This approach was found to be difficult to implement in a fully
automatic peak search.

It should be noted that the peak statistical significance
of the proposed nonparametric method might be smaller
than that calculated using more conventional approaches,
such as those based on a x* minimisation with appropriate
background and signal functions. This can be due to the
assumption on the symmetric form of the extracted peaks,
the linear approximation for the background under the peaks,
and the way in which the uncertainty is incorporated in the
peak-significance calculation. An influence of experimen-
tal resolution can also be an issue [18], which can only be
addressed via correctly identified signal and background
functions. Such drawbacks are especially well seen for the
highest mass peak shown in Figure 2 where a statistical fluc-
tuation to the right of the peak pulls the background level
up compared to the expected falling shape. Given the approx-
imate nature of the statistical significance calculations which
only serve to trigger attention of analyzers who need to
study the found peaks in more detail, the performance of the
algorithm was found to be reasonable.

It should be noted that there is a correlation between the
peak width and the input parameter A: a detection of broader
peaks typically requires a smaller value of A (which can be as
low as 0.2).

In conclusion, a peak-detection algorithm has been devel-
oped which can be used for extraction of statistically sig-
nificant peaks in event-counting distributions taking into
account statistical (and potentially systematic) uncertainties.
The method can be used for new physics searches in high-
energy particle experiments where a correct treatment of
such uncertainties is one of the most important issues. The
nonparametric peak finder has only one free parameter which
is fairly independent of input background distributions. The
algorithm was tested and found to perform well. The code
is implemented in the Python programming language with
the graphical output using either ROOT (C++) [15] or SCaVis
(Java) [19]. The code example is available for download [20].
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