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Abstract Some traces of a specific Lorentz symmetry
breaking scenario in the ground state of the hydrogen atom
are investigated. We use standard Rayleigh—Schrodinger per-
turbation theory in order to obtain the corrections to the
ground state energy and the wave function. It is shown that
an induced four-pole moment arises, due to the Lorentz sym-
metry breaking. The model considered is the one studied in
Borges etal. (Eur PhysJ C 74:2937,2014), where the Lorentz
symmetry is broken in the electromagnetic sector.

1 Introduction

The Lorentz symmetry breaking is a subject which has been
considered in many contexts nowadays, mainly as regards
the topics related to the so called Standard Model Extended
(SME) [1,2]. Among them, it highlights the Lorentz symme-
try breaking signs in atomic and molecular physics. There are
two main features that motivate this kind of study, namely:
the search for physical situations where the Lorentz sym-
metry breaking could be evinced in our ordinary world and
the search for upper bounds imposed on the Lorentz symme-
try breaking parameters (a complete list of upper bounds for
these parameters can be found in Ref. [3]).

In this context we might address, for instance, the CPT
and Lorentz symmetry breaking signs on the hydrogen and/or
antihydrogen atoms due to modifications in Dirac equation
[5-14], the SME effects induced in hydrogen molecules [15],
the non-minimal coupling effects on the hydrogen spectrum
[16], the hydrogen spectrum in models with Lorentz sym-
metry breaking for five-dimensional models [17], atomic
physics in electromagnetic cavities [18] and maser physics
[19], the influence of a Chern—Simons-type term on the
hydrogen atom [20], and so on.
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Although we can find some literature considering the
hydrogen-like systems in Lorentz symmetry breaking sce-
narios [21], there are some subjects not yet well explored for
such kind of systems. We can cite, for instance, some effects
induced on the hydrogen-like atoms by Lorentz symmetry
breaking terms in the electromagnetic sector. These effects
may occur not only in the spectrum of the system, but we can
also obtain interesting results by turning our attention to the
probability distribution of the wave functions.

In this paper we study the effects of a Lorentz symmetry
breaking scenario on the ground state of the hydrogen atom.
The Lorentz symmetry breaking is taken on the gauge sector.
That is an important subject for two main reasons: the hydro-
gen atom properties can be measured in the laboratory with
high precision and the ground state of the hydrogen atom
is spherically symmetric in a Lorentz symmetric model. So
any anisotropy found in this state could be evidence of a
possible Lorentz symmetry breaking and it is important to
investigate if, nowadays, these effects could be measured by
spectroscopic methods.

In particular, we consider the model studied in Ref.
[4] where we have a Lorentz symmetry breaking scenario
parametrized by just one single background vector and where
the Lorentz symmetry is broken only in the electromagnetic
sector. We consider the interaction energy between two point-
like charges, taking the background vector as a small quan-
tity. In this sense, the interaction between two charges can
be written as the Coulomb one added to by a small correc-
tion. The effects of this correction induce modifications on
the ground state of the hydrogen atom, investigated in this
paper by using standard Rayleigh—Schrodinger perturbation
theory.

Our results suggest that the effects in the ground state
of the hydrogen atom are very small and completely out of
reach for any spectroscopic experiment nowadays. That is
an indication that this kind of study is not a profitable way
to search for upper bounds of Lorentz symmetry breaking
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parameters for models where this symmetry is broken only
in the gauge sector. In spite of this, from the theoretical point
of view, itis an interesting subject since it evinces the possible
effects on the matter of a Lorentz symmetry breaking on the
gauge sector.

Section 2 of this work is devoted to the presentation of
some general aspects of the model we study. Some care must
be taken in redefining the charge of a point particle. In Sect. 3
we obtain the corrections to the ground state of the hydrogen
atom in lowest order in the background vector. In Sect. 4 we
show that there is an induced four-pole electric moment on
the ground state of the hydrogen atom. This induced four-
pole leads to an interaction between two hydrogen atoms,
studied in Sect. 5. Section 6 is devoted to our conclusions
and final remarks.

2 The model

In the work of Ref. [4] the model is considered described by
the Lagrangian density

1
L=—-

1 1 5
1 WF“”—g(aMA“) —EU“UVFM)\FU + JFA,,

(D

where A" is the vector field, F*' its corresponding field
strength, J* an external source, y is a gauge fixing param-
eter, and v* is a background dimensionless vector, taken to
be constant and uniform, which accounts for the Lorentz
symmetry breaking. The metric is (+, —, —, —) ina 3 + 1
spacetime.

The model (1) is a special case of the one proposed in
Ref. [2] where the electromagnetic field couples to a four-
rank background tensor kg. If this tensor is parameterized
by just a single background vector v¥, that is, (kr)ogor =
1/2(nﬂrvavc + NaogVVr — Nar VBV — nﬂavavr), we have
the model given in (1).

With the results of [4], one can show that the interaction
energy between two point-like steady opposite charges, o
and —o, is given by

2

T 4m 1402 1 —v2

2 2 2 1/2
1—v V-

where r is the distance vector from the positive charge to the
negative one. It is important to mention that v* must be a
small quantity.
From now on we shall consider only the quadratic correc-
tions in the background vector v/ (the lowest order ones).
Defining the electric charge

3)

e =

o
Var '

@ Springer

expanding the energy (2) in lowest order in v*, and taking
a coordinate system where v lies along the z-axis and the
positive charge is placed at the origin, we have

2 2w"2 —v2  e*vZcos?h

E~—— , 4
r+ 2r + 2r )

where 6 is the polar angle in spherical coordinates, which
is the angle between the vector r and v. The first term in
(4) is the Coulombian interaction and the second term is a
correction due to the presence of the background vector v*.
In fact, the second term in (4) is the lowest correction, in
powers of v#, to the Coulomb interaction.

On the quantum level, the interaction between two oppo-
site charges for the proposed model is governed by the Hamil-
tonian

H = Hy+ AH, + AH,, (©)
where
P2 &2
Ho= > —— ©)
M r

is the standard Hamiltonian of a hydrogen atom (with P
standing for the momentum operator and u, the mass of the
particle [22-24]) and

e2v? cos? 0 62[2(1)0)2 —v?

AH,=——— AHy=—— 7
a 2r b 2r ™

are small perturbative stationary corrections, of the same
order (VZ).

We are looking for the most relevant contributions intro-
duced by the Lorentz symmetry breaking term of the model
(1). So we shall use, as the unperturbed problem, the non-
relativistic hydrogen atom. This is justified because the rela-
tivistic contributions are small in comparison with the non-
relativistic ones, and taking them into account in this case
would lead to Lorentz symmetry breaking corrections to the
fine structure, hyperfine structure, and the Lamb shift.

In spite of this, it is important to highlight that the fine and
hyperfine structures and the Lamb shift are higher contribu-
tions in comparison with the ones imposed by the Lorentz
symmetry breaking terms.

3 Ground state corrections

The eigenvalues and the eigenstates of the unperturbed
Hamiltonian (6) are well known from the standard treatment
of the hydrogen atom [22-24]. Taking the quantum numbers
as n, [, m (principal, angular, and azimuthal, respectively)
and defining the Bohr radius ap = K2 / (uez) we have the
non-perturbed energy levels

0)
Ei

0
EQ = o

®)
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where we defined the ground energy

e2

(0)
E =——. 9
1 a0 )
‘We shall use standard bra-ket notation, and denote a non-
perturbed arbitrary state by |n, [, m) and their corresponding
components in the position basis |r) by

(rln, 1, m) = Ru(r)Y;" (0. ¢), (10)

with R, (r) standing for the radial function of the hydrogen
atom and Y;" (0, ¢) being the spherical harmonics [22].

We shall consider the effects of the correction (7) pertur-
batively. The ground state is non-degenerate, so its lowest
order correction produced by the perturbing Hamiltonian is
given by

E{" =(1,0,0] (AH, + AHp)|1,0,0). (11)

Each contribution in (11) can be calculated by using Eq.
(10) and the definitions (7),

eZVZ 00

(1,0,0[AH, |1,0,0) = > dr r Rio(r)Rio(r)

0
2 T
x/ d¢/ d6 sin 6 cos> 0 [YO (6, )T YY @, ¢),
0 0

62[2(1)0)2 _ V2]

(1,0,0l AH} |1,0,0) = >

X /OO drr Rl()(V)Rl()(}")
0

2T T
x/ d¢/ d6 sin6 [YJ(0, 91 Y0, ¢). (12)
0 0

The above integrals can be performed by using the fact
that

Rio(r) = 2a;°"* exp(—r/ap),

1
Y00, ¢) = —
O T
/O dr " exp(-ar):a:—il. (13)

Collecting terms, we have the energy for the ground state,
n = 1, of the hydrogen atom in lowest order in the back-
ground field,

Ei=E" +EV
2
= £ (1 — g[v2 — 3(v0)2]> . (14)

It is important to mention that the result (14) is in perfect
agreement with the corresponding one of Ref. [21]. In this
reference, the parameter ko (defined just before Eq. (42)),
must be calculated with the parameterization that we pre-
sented in the paragraph before Eq. (2).

For any measurement, the Lorentz symmetry breaking
effects must be small and entirely contained in the exper-
imental error nowadays. The experimental value for the
ground state energy of the hydrogen atom is E f(()z,) =
—13.60569253 eV with an error given by §E{(exp) = 3 X
10~7 eV [25]. Overestimating the energy correction in (14),
we can say that it is of the same order of § E(exp), SO

4
— BV =3x 107V = v = 107 (15)

In spite of the value (15) to be an overestimation, one can
notice thatitis a very small quantity. In fact, recent results [3]
stipulate an upper bound smaller than 10~ for this kind of
Lorentz symmetry breaking parameter, which renders these
effects out of reach for any spectroscopic measurement nowa-
days.

The meaning of the result (14) is the same one interpreted
in the Lorentz invariant case, namely, it is the ionization
energy of the hydrogen atom.

The first correction to the lowest energy eigenstate is given
by [24]

11,0,0)!
(n,l,m| (AH, + AH)|1,0,0)
= Z 0 o In,1,m).
n#l,lLm El —E,
(16)

In the coordinate basis, we have
<n7 l’ m| AHa |15 07 0>

62V2 e’}
== /0 dr rRu(F)R10(r)

2 b4
X / dg [ dOsin6 cos® O[Y]" (0, $)I*Y (O, ¢)
0 0
(n,l,m| AHp|1,0,0)

2091 0N2 21 (00
_ 2w v / dr r R () Rio(r)
2 0
27 T
x/ dp [ dosinoly"@. HIY6. ¢). (A7)
0 0

The normalized spherical harmonics can be written as [26]

20 +1 [ — |
Yz’"(e,¢>=<—1)m\/( 4; )%

x P/" (cos 0) exp(im@), (18)

where le (cos ) are the associated Legendre functions [26].
Substituting (18) in (17) and using the fact that

2
/ d¢ exp(—ime) = 27 S0 (19)
0

@ Springer
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(where §,,,0 is the Kronecker delta), it is possible rewrite (17)
in the following form:

(n,l,m| (AH, + AHp) |1, 0, 0)
2 00
e
= Zé;m()\/Zl + 1/ dr r Ry (r)R1o(r)
0

T
x / d6 PP (cos 0) sin6(v? cos® 0 + [2(v°) — v?]).
0

(20)
Using the results [26]
T 26 !
/ d@Pf(cos@)Pf(cos@) sinf = P4 M
0 29+ 1 (g —m)!
2 2.0 1o 0
cos“ 6 = §P2 (cosf) + §Po (cosf), 1= Py(cosh),
(21)
we can show that
T
/ rmd6 P (cos ) sin 0 (v* cos® 0 + [2(v%)* — v?])
0
4 2
=v (E(S]z + 33,0) + 20%)?% = v*126850. (22)

With the aid of (22) and (20), we can rewrite Eq. (16) in the
form

11,0,0)! = —

2 00
x [J—g (/0 dr rR,,z(r)Rlo(r)) n.2,0)

+B3(%? — v ( / T VRno(V)Rlo(r)) In, 0, 0>]
0
(23)

In order to calculate the radial integrals in (23), we must
use the expansions [26]

30, 7 _ 1/2
Rnl(r)z[a (n—1 1)!:|

2n(n +1)!
ar 21+1
X exp —5 (ar) L7 (ar), 24)
where « = 2/nap and Lﬁﬁ£1 (ar) are the associated

Laguerre functions [26], which can be written as a series
[26],

(g +k)! 5

LS (x) = wx ;o k> —1. (25

Z( 1’

Substituting Egs. (24) and (25) in the first radial integral
inside brackets in Eq. (23) and using the explicit form of
R10(r), shown in the first of Eq. (13), we obtain

@ Springer

16 [(n = 3)!(n +2)!]'/2
(n+ 14

/oo dr rRp(r)Rio(r) =
0

n—3
2!
X =D n >3,

SN -3 DT Ha+ T T

(26)

where we have used the integral in Eq. (13). Proceeding in a

similar way, we have
4 [n=Y2p
[( - 1)2}
n—1

(=1)"2° .
th;“(”—l—s)!(nﬂ)f’ nzl 27)

/ drr Ryo(r)Rio(r) =
0

Substituting Egs. (26) and (27) in (23) and using the fact
that 1/E\” — Ef;g] = 2agn®/e*(1—n?) we obtain the lowest
order correction to the ground state energy,

oo n—3
11,0,0)! [ > > Ci(n.n)n.2,0)
n=3r=0
oo n—1
+ B0 =V D Caln,9)In,0, m} :
n=2 s=0
(28)
where
_(=D2%[(n —3)(n+2)!]'/2
G = DA — D T 1y
1
T+t +Hn—3—nu!’
(—=1)525n32n)
Cy(n,s) =

(n+ D1 =n?)(n+ 1)
X ; (29)

(n—1—us)ls!

At this time, some points are in order. The series which
involve Cy (n,t) and C; (n, s) in (28) are convergent. The
non-perturbed ground state is spherically symmetric and
involves only the quantum numbersn = 1, [ =0, m = 0.
The perturbation in the ground state involves the values
n =2,3,4,5,...fortheprincipal quantum number,/ = 0, 2
for the angular-momentum quantum number, and only m = 0
for the azimuthal quantum number.

In summary, in first order, the ground state is given by

Iv) = [1,0,0) 4 [1,0,0)", (30)

with |1, 0, 0)! given by (28).
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4 Induced electric dipole and four-pole and magnetic
dipole

In order to investigate the anisotropies imposed by the
Lorentz symmetry breaking on the ground state of the hydro-
gen atom, let us check if there is an induced dipole or if there
are four-pole moments in this state.

The dipole moment operator is defined by [23] D = ¢R,
where we have the position operator, R = R X + Ry + R3Z
with Ry, Ry, and R3 standing for the Cartesian coordinates
operator for x, y, and z, respectively. Using Eqgs. (28) and
(30) we can write

(v[D|v) = (1,0, 0[eR]1, 0, 0)
+ %1,0,0[eR[1,0,0) + (1,0,0[eR|1,0,0) + O*.
31)

Using the fact that

YO= L y90,¢) =
AT

X = rsinf cos g,

5 2
16_71(3 cos“ 0 —1)

y=rsinfsing, z=rcosf (32)

we can show that, up to order v2, the right hand side of
Eq. (31) vanishes. So (1, 0, 0|D|1, 0, 0) = 0 and there is no
induced dipole moment on the ground state of the hydrogen
atom of order v2.

The four-pole operator is given by

Qij = e(3R;R; — R%8;)). (33)

For convenience, we define

oo n—3
|A20) = —VZZZQ (n,1)|n,2,0),
n=3 =0
8 oo n—1
|800) = 3B =V 1 > C2(n,9)[7,0,00,  (34)
n=2 s=0

in such a way as to write Eq. (28) in the form

11,0,0)" = [A20) + | Ag,0). (35)

The expected value of the four-pole components for the
corrected ground state (30) is given by

(v Qij lv) = (1,0,0[ Q;; |1, 0,0)
+(1,0,0] Qij |Az0) + (1,0,0] Qij | Ag,0)
+{A20] Qij11,0,0) +(Ag,0| Qij 11,0,0), (36)

where we neglected terms of order v*.
Using Eqgs. (32)—(35) we can show that

(1,0,0] Q;; 11,0,0) = (1,0,0] Qij | Ao,0)
= (Ao,0| Qij11,0,0) =0, (37)

(1,0,0] Qij | Az0) = (A20] Qij11,0,0) = 0; i # j,
(38)
and
64
(1,0,0] 033 |Az0) = ECIV
oo n—3
x DD Cin 1) (/ dr r* Rio (r) Ru2 (r)) .
n=3 =0 0
(39)

The above integral can be computed following similar
steps to the ones we have taken to obtain (26),

/ dr r* Ry (r) Rpa (r) = 16ap[(n — 3)!(n + 2)!11'/?
0

(—DP2(w+6)
(n+ 1)7 Z < wl(n —3—w)!n+ v’

> 3. (40)

For convenience, we define

(=D¥2%(w + 6)n’[(n — 3)!(n + 2)1]'/?

C3 (n, =
3 (n,w) i+ D (1 — 3 — w)lw!
41
Substituting (40) in (39) and using (41), we obtain
1024a0>
(1,0,0] Q33 |Az0) = v
15
n—3
x Z(Z C (n, z))(z C3 (n, w)). (42)
n=3 w=0

It is worth mentioning that the sum involving C3 (n, w)
in (42) is convergent, and Eq. (42) can be calculated numer-
ically. The result is

(1,0,0] Q33 | Az0) = 2.83 x 10 %ev?a]. (43)
In the same manner, we can show that
(1,0,0] Q11 |A2,0) = (1,0,0] 022 | Az)

1
=-3 (1,0, 0] Q33 | As0) (44)
and

(A20| 03311,0,0) =
(A20] Q1111,0,0) =
(A20] 02211,0,0) =

(1,0,0] Q33| Az,0);
(1,0,0] Q11 |Az0);
(1,0,0] 02 |Az0). (45)

Substituting (37), (38), (44), and (45) in (36) we find that
the matrix which gives the components of the expected value
of the quadrupole moment operator is given by

@ Springer
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100
(vIQIv) = —(1,0,01 Q33 [Az0) [ O 1 0
00 -2
100

=-2,83x102%ev’ai (0 1 0 |, (46)
00 —2

where (1,0, 0] 033 |A2,0) is given by (42) or, numerically,
by (43).

So, due to the Lorentz symmetry breaking, the ground
state of the hydrogen atom has it spherical symmetry broken
and exhibits an electric four-pole moment.

The four-pole tensor (46) was calculated in a reference
frame where the background vector is constant and uniform.
This statement is valid only for a given inertial frame, which
is not the case of a laboratory on Earth. To put these results in
an experimental context, one would calculate this four-pole
tensor in the laboratory frame, taking into account the fact
that the background vector rotates with respect to the lab-
oratory frame as a function of time [8]. It would produce a
rotation of the induced four-pole calculated above. This rota-
tion does not modify the magnitude of the four-pole tensor
whose effects are very small.

The magnetic dipole operator is given

M=_-—L 47
2m,
where L is the orbital angular momentum and m, is the mass
of the electron.
Following the same arguments, we can show that the
induced magnetic dipole on the atom is given by

1
(VIM|¥) = =~ ((1,0, 0[L|1, 0, 0)
2m,
+11,0,0[L|1,0,0) + (1,0, 0|L|1, 0, 0)1) + O*).
(48)
Using Eq. (28) and the fact that
(1,0,0[L|n, 0,0) = (1,0,0|L|n, 2,0) =0, (49)

we can show that the induced magnetic dipole (48) vanishes
up to order V4, that is,

(VIM]v) 0. (50)

5 Atomic interaction

We have seen that the background vector induces an elec-
tric four-pole moment on the hydrogen atom in the ground
state. As an immediate consequence, we have an interaction
between two hydrogen atoms when they are in the ground
state.

The interaction between two hydrogen atoms in the
ground state is not a novel phenomenon. It is well known
that they can interact via van der Waals forces, but in our

@ Springer

case, this interaction is different by two main reasons: it is a
four-pole interaction and is induced by the background vec-
tor, an external agent. The van der Waals interaction is a
dipole-type interaction induced by the atoms one another.

In this section we study the interaction between two hydro-
gen atoms, when they are in the ground state, induced by
the Lorentz symmetry breaking in lowest order in the back-
ground field.

From the expression for the interaction energy between
two electric four-poles, we would obtain an energy of the
order v*, which is of higher order in the background vec-
tor. So we must investigate how the energy of each atom is
modified by the electric field produced by the other atom.

Letus consider two atomic nuclei placed a distance r apart,
in a coordinate system with the first nucleus placed at the
origin and the second one placed at position r. For the second
atom, the position of the electron is taken as r 4+ R, so it is
placed a distance R apart from its nucleus. We shall restrict
ourselves to the case where the distance between the atoms is
much higher than the atomic nuclei. This condition is attained
by the restriction R? < r?.

We shall calculate the energy shift of the second atom
due to the electric four-pole induced in the first atom AE (%)'
By symmetry, it is equal to the energy shift induced in the
first atom by the electric four-pole induced in the second
atom. So, the total shift in the energy of the whole system is
AEQ =2AE§.

The Hamiltonian of the electron in the second atom is
composed by the non-perturbed hydrogen one (6), a correc-
tion like the one in (7) and a four-pole term produced by the
first atom, all of them written as functions of R. We have also
the terms which account for the interaction between the elec-
tron and the nucleus of the first atom with the electron and
the nucleus of the second atom. These last terms lead to the
van der Waals interactions, which are well known in the liter-
ature. In this paper we shall focus only in the corrections due
to the Lorentz symmetry breaking. The contributions which
come from (6) and the correction (7) were taken into account
in the previous sections.

So, let us consider the four-pole contribution [27]

3
o __ ¢ 4 0.

e 3
R, E rr:0;;
2|I‘|5 ‘ i ]Qz]

i,j=1
e 3
= e 2 Kt (R ) 2

e
T
2Ir] i,j=1

3
> rirj Qi) (51)
J
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In the last line of Eq. (51) we have the interaction between
the four-pole induced in the first atom and the nucleus of
the second atom. In the third line, we have the interaction
between the four-pole of the first atom and the electron of
the second atom.

Using Eq. (46), defining

0 =(1,0,0] Q33 |A20). (52)
and keeping only the terms up to second order i in 1Bl l (because
|‘l:|| <« 1), we can write Eq. (51) in the form
15Qe 1
0 ~ 2 212 2
AHg) = W[—g[ll‘l —5(r - 2)7IIR]
A\2
T(r-z
+2(r-R)] + [1 - %} (r-R)?
2 7(r-R)?
+ =2+ R?>+2@-R) — (—2)
5 |r|
x[2(r-2)(R-2) + (R~ 2)2]]. (53)

Now we use Rayleigh—Schrodinger perturbation theory in
first order to write the correction to the energy of the second
atom due to the four-pole Hamiltonian (51)

AES = 11,0,0),  (54)

2 — (2)
where, in the second line, we used Eq. (30) and discarded
the contributions which come from |1, 0O, 0)1, once they are
of higher order in the background vector.

Substituting Eq. (53) in (54), using the fact that

(VIAHG Iv) = (1,0,0| AHS

(1,0,0/r-R1,0,0) = (1,0,0] (R-2)|1,0,0) = 0
(1,0,0/ (r - R)?|1,0,0) = |r|*a]

(1,0,0[[R]*[1,0,0) =3(1,0,0] (R-2)?[1,0,0) = 3a3
(

1,0,0[(R-2)(r-R)[1,0,0) = (r-%)a]

15
(1,0,0/ IRI*(R-2)? 11,0, 0) = 7a3

(1,0,0/ |RI*(R-2)[1,0,0) =0
(1,0, 0] (R-E)(r-R)2 [1,0,0) =0
(1,0,0] (R-2)*(r-R)[1,0,0) =0

. 3ag .
(1,0,0] (R -2)%(r -R)21,0,0) = 7°[|1r|2 +2(r - 23],

(55)

AEQ = ZAE(%, and ¥ = Z in the coordinates system we
have chosen, we can write the energy shift of the two atoms
system due to the electric four-pole interaction,

45Qea w2
AEC = Ofef>+7(r-
2|r|® (™ +7 (- )71
45Qeal
_ B0 1 g cos20). (56)
2]

From the energy (56) we obtain an interaction force
between the atoms

FC = _v (AEQ)

315Qead 9 (r-9) o
= 2|r|90{|:1_ FE r—2(r-0)0

4
= 31;%{[1 —9cos(9)]F — 2 cos(9) D}, (57)

and a torque on the two atom system

IAEC  315Qea;
0  2r/

T —— sin(26). (58)

The force (57) falls with %. It exhibits a radial component
as well as a component along the background vector. It is
interesting to notice that, depending on the angle 6, the force
(57) can be repulsive or attractive. This fact can be seen if one
considers the components of (57) in cylindrical coordinates
(o = Ir|sin6),

315 5
, = 2|Q|§a° f,@), F.= 2|Q|§a° O, 59
where we defined the functions
fp@) =1[1— 90052(9)] sin(6),
f:00) =—[1+ 9 cos? (0)] cos(9), (60)

which control the dependence of the signals of F,, and F,
with 6.

In Figs. 1 and 2 we have, respectively, plots for f,
and f;. In the intervals 8 = [0, arccos(1/3)] and 6 =
[ — arccos(1/3), 7] the function f,, is negative. For 6 =
[arccos(1/3), m — arccos(1/3)], f, is positive and the force
pushes the particle away from the z axis. In the interval

= [0, /2], f,(0) is negative. For 6 = [n/2, 7], f,(0)
is positive and the force pushes the particle away from the
xy plane. When 6 = [n/2, m — arccos(1/3)], f,(0), and
f-(0) are positive and we have a repulsive force between the
atoms.

It is interesting to compare the interaction energy (56)
with the van der Waals energy between two hydrogen atoms
in the ground state. The non-dispersive van der Waals force
is approximately [23]

aS
Fyw = —36¢>—LF. 61)
Ir|”

From (43) and (52), the force (57) can be written as
ZagVZ
Ir(8

For distances much higher than the Bohr radius, ag, where
the results (62) and (61) are valid, and using the overestimated

FQ = 4.45° {[1 — 9cos2(9)]F — 2cos(@)d}.  (62)
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value (15) for |v|, one can see that the force (57) is negligible
in comparison with the van der Waals force (61).

The torque (58) vanishes when the vector distance
between the atoms, r, is parallel, anti-parallel or perpendicu-
lar to the background vector v, namely, when 6 = 0, &, /2.

6 Final remarks

In this paper we considered the physical effects induced on
the ground state of a hydrogen atom by the presence of a
background field in a Lorentz symmetry breaking scenario.

We considered the model studied in Ref. [4] in lowest
order in the background field. The model exhibits a Lorentz
symmetry breaking in the gauge sector controlled by a sin-
gle background vector. We calculated the energy shift and
correction to the wave function for the ground state of the
hydrogen atom. We used standard non-relativistic perturba-
tion theory. We showed that there are no induced electric and

@ Springer

magnetic dipole moments on the ground state of the hydro-
gen atom, but there is an induced four-pole moment, which
produces an interaction energy between two hydrogen atoms
(both in the ground state) placed at a distance r apart. This
interaction energy leads to an anisotropic force between the
atoms, as well as a torque on the distance vector between the
atoms, r, with respect to the background vector v. We com-
pared this force with the (the non-dispersive) van der Waals
one and concluded that this last one is always dominating in
the regions where they both are not negligible.

The model we considered is restricted. In a more general
situation one should take into account other contributions for
the kr tensor as well as contributions of the k4 tensor, as
defined in Ref. [2]. To put these results in an experimental
context, one would take into account the rotation of the back-
ground vector with respect to the laboratory frame [5,8]. The
effects of this rotation shall not modify the order of magni-
tude of the results, which are completely out of reach for any
spectroscopic experiment nowadays.
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