

ALU FOR MBEDTLS DIFFIE-HELLMAN PARAMETERS GENERATOR

ON FPGA EMBEDED PROCESSOR SYSTEM

An Undergraduate Research Scholars Thesis

by

CHANGNING CHEN and BRIAN DEMPSEY

Submitted to the Undergraduate Research Scholars program

Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Research Advisor: Dr. Samuel Palermo

May 2016

Major: Electrical Engineering

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M University

https://core.ac.uk/display/186719780?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT .. 1

DEDICATION .. 3

ACKNOWLEDGEMENTS .. 4

NOMENCLATURE ... 5

CHAPTER

 I INTRODUCTION .. 6

 Key, key exchange, and the prime number ... 7

 Computing the ultra large safe prime modulus ... 8

Organization .. 10

 II METHODS ... 11

 Software analysis platform ... 12

 Design implementation platform .. 13

 III ANALYSIS ... 15

 Diffie-Hellman safe prime generator profiler results .. 15

 Montgomery multiplication algorithm and the helper function 19

 Graphical representation of parallelized A←(A+Xi∙Y+Ui∙M)/b......................... 22

 IV IMPLEMENTATION ... 25

 Component operation frequency extraction .. 25

 Pipeline development .. 27

 Simulation-based verification ... 29

 V CONCLUSION ... 31

REFERENCES ... 33

APPENDIX A ... 34

1

ABSTRACT

ALU for mbedTLS Diffie-Hellman Parameters Generator on FPGA Embedded Processor System

Changning Chen and Brian Dempsey

Department of Electrical & Computer Engineering

Texas A&M University

Research Advisor: Dr. Samuel Palermo

Department of Electrical & Computer Engineering

Safe prime is a unique subset of the general prime number where both p and
p−1

2
 are primes.

Commonly used Public Key encryption scheme Diffie-Hellman key exchange algorithm utilizes

ultra large safe primes as the private key. In practice, crypto software libraries implement a specific

Diffie-Hellman parameters generator that searches for safe primes with Rabin-Miller probabilistic

primality test algorithm. Without any proven theory to predict their occurrences among natural

numbers, generator programs generally start at a randomly seeded odd positive integer of a

predetermined size; and perform primality tests in iterations over incrementing candidates until

success. The staggeringly low density of safe primes causes a prohibitive amount of computing

resources to be dedicated in the generation process. As the result, power conscious mobile and

embedded devices can no longer compute the standard 2048-bit safe primes without causing

prolonged disruption to the overall system performance. Based on the hot path analysis of the

generator program, a parallelized and pipelined ALU is proposed and implemented on the FPGA

embedded processor system. Utilizing merely 3% of LUT (584/17600) and 20% of DSP (16/80)

available from the Xilinx Zynq 7010 All Programmable SoC, the suggested design is theoretically

capable of offsetting more than 90% of CPU utilizations needed for the entire safe prime

generation process. Such results demonstrate the deficiency of today's general purpose CPU in

2

handling certain complex and resource intensive computations. Such scenarios greatly incentivize

the integration of programmable hardware with fixed design CPU. Additional research is

suggested to focus in the area of automating the processes of locating the specific CPU intensive

task, translating such task onto programmable hardware, and providing software accessible

interface to enable fast development and deployment of the hot function based programmable

hardware design. From there, programmable hardware assisted computing platforms can be further

enhanced to dynamically program hardware modules based on real-time utilizations to achieve

even greater overall system performance. A new system design paradigm can potentially be

introduced as the result.

3

DEDICATION

We dedicate this thesis to our family, friends, and mentors who dedicated their time and patience

to ensure we succeeded. A special gratitude goes to Mrs. Xi Li, wife of Changning Chen and Mrs.

Bridget Dempsey, wife of Brian Dempsey, whose kindness and devotion has endured the extent

of this research. The time and effort put into this thesis would not have been possible without their

continuous love and support.

To Ms. Xixian Tong, mother of Changning Chen, for those lessons in resilience and perseverance

that empowered the unrelenting driving forward. They shall be remembered and cherished forever.

To Lynn and Keith Dempsey, parents of Brian Dempsey, whose words of encouragement and

reassurance have allowed him to succeed as an individual, and as a student. He is forever indebted

to them for the drive and determination they instilled to follow my dreams.

Finally, to our children, who have suffered countless time away from their fathers in the name of

research. Cohen Dempsey, Harper Dempsey, Scarlett Dempsey, and Yuntao Chen, we love you

and hope one day you will recognize the value of education and teamwork as we have.

4

ACKNOWLEDGMENTS

We would like to give our most sincerely thank to the project faculty advisor Dr. Sam Palermo of

the Electrical and Computer Engineering Department at the Texas A&M University for being more

than generous with the firm support of his knowledge, expertise, patience and time. Additionally,

we want to thank Dr. Paul Gratz, also a professor at the TAMU ECEN Department for providing

some invaluable directional advices and expert opinions. Finally, we would like to acknowledge

and thank Dr. Jean-Francois Chamberland-Tremblay of the TAMU ECEN Department and Dr.

Peter Stiller of the TAMU Math Department for their constructive inputs. Finally, we would like

to thank the entire Texas A&M Undergraduate Research Scholar program staff for this precious

research opportunity and all the generous assistance they have provided.

5

NOMENCLATURE

ALU Arithmetic Logic Unit

CPU Central Processing Unit

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IP Intellectual Property

ISE Integrated Synthesized Environment

ISIM Integrated Synthesized Environment Simulator

MPI Multiple Precision Integer

LUT Look Up Table

RSA Rivest-Shamir-Adleman

RPi Raspberry Pi

VLSI Very Large Scale Integrated

6

CHAPTER I

INTRODUCTION

Comparable to the printing press and the telegraph, the rise of the internet has revolutionarily

transformed almost every aspect of our society [1]. Over the past few decade, observed as Moore’s

Law, the semiconductor industry maintained steady logarithmic scale expansion of the VLSI

circuit transistor-count. This allowed the continuous development of faster, smaller, more power

efficient, yet exceptionally more affordable computing devices. Today, any sub $300 laptop can

outperform a $20 million supercomputer from the 80’s with ease [2]. Additionally, the leap

forward in wireless communication technologies amplified by the uptrend in performance per watt

capabilities of general purpose Central Processing Units (CPUs) and the downtrend in cost per

gigabyte on memory/storage devices fostered an increasingly broad new platform of mobile

communication and cloud computing [3]. The wireless internet age dawns.

Internet communications transmit in open medium, meaning the messages can be easily

intercepted. Cryptographic schemes have been implemented for security purposes. Among them,

public key encryption schemes such as the RSA and Diffie-Hellman key exchange algorithm are

well regarded as most influential. Truly, the internet owes part of its success to them because

secure communications through open transmission medium between two unknown parties was not

considered possible prior to their inception.

Interestingly, based on number theories and computer science practices, public key algorithms are

designed around computational hardness assumptions [4]. Therefore, if such assumptions are

7

nullified, either by new discoveries in mathematics or through brute force attacks utilizing the

improved computing power brought by the newer generation technology, modern cryptographic

algorithms will collapse. Exposing vital secure communications at a global scale can have

devastating repercussions to the modern society.

Key, key exchange, and the prime number

Cryptanalysis assumes the method of encryption/decryption is known by the adversary, thus the

only thing that stops the adversary from knowing your plaintext message is a securely transmitted

crypto key. However, transmitting the key insecurely would defeat the purpose of using

cryptography. This is the Key Exchange Problem [5]. Additionally, modern public key crypto-

algorithms are asymmetrical by design, meaning computational heaviness is unevenly distributed

between the corresponding encryption and decryption algorithms. Such characteristics make

public key algorithms unattractive for maintaining continuous communication. Thus, in practice,

secure transmissions are initiated by both unmet parties generating a secure key using one form of

public key crypto-algorithms, such as the commonly used Diffie-Hellman key exchange algorithm.

The remaining transmission is then protected by a faster symmetrical crypto-algorithm using the

secure key, such as the Advance Encryption Standard.

Public key crypto-algorithms heavily depend on the interesting properties of prime numbers. First,

since there is no proven theory to govern their occurrences among natural numbers, entropy can

be extracted based solely on their existence. Second, prime numbers obey certain mathematically

laws with stunning regularity and extreme precision [5], of which, instills a rigid mathematical

integrity. Capitalizing fully on those properties, Diffie-Hellman key exchange algorithm relies on

8

its ultra large prime modulus for security, more specifically, an ultra large safe prime where both

modulus 𝑝 and
𝑝−1

2
 are prime numbers. However, such inseparable dependency along with the

periodic leap forward in computing power have produced a continuous loop where an ever-larger

safe prime number modulus is required to offset the increase in computing power. As a result, the

default size of the safe prime modulus has steadily risen to 2048 bit over the years. Unfortunately,

along with the increase in computing power, so raises the difficulty in finding ultra large safe prime

numbers.

Computing the ultra large safe prime modulus

The common method of conventional prime number generation is to start at a random odd number,

𝑠 , of the desired bit-width from a high entropy pseudo-random source. From there, a set of

candidates is established that includes {𝑠, 𝑠 + 𝑛, 𝑠 + 2 ∙ 𝑛, … , 𝑠 + 𝑘 ∙ 𝑛} 𝑘 ∈ ℤ+, with 𝑛 being a

small even number. Then, the probabilistic Rabin-Miller primality tests iteratively progresses

through the set until the one candidate passes the test and returns as the prime number. By

definition, the Rabin-Miller primality test assesses number 𝑛 using 𝑚 randomly chosen values of

𝑏 < 𝑛. If n is composite, the probability that it is a strong pseudo prime for one 𝑏 is at most
1

4
, so

the probability that it passes all m tests is at most (
1

4
)

𝑚

. Therefore, if n passes all m tests, then n is

prime with a probability at 1 − (
1

4
)

𝑚

 [5]. In practices, after 5 successful pass of the Rabin-Miller

test using different 𝑏 values, the probability of 𝑛 being prime becomes1 − (
1

4
)

5

 = 0.999023, or

99.9023%, already a reasonably high probability to suggest confidence in the state of primality.

Surely, additional tests can be performed to increase such probability further; however, the return

per test diminishes remarkably quickly.

9

Even though stipulated by the prime number theorem, an infinite number of primes do exist; they

are still an extremely rare breed among natural numbers. The average gap between consecutive

prime numbers less than n is roughly log(𝑛) [5], meaning the larger the number, the larger the gap

between successive primes. As a unique but small subset of the regular primes, the safe prime’s

staggeringly low density crucially increases the number of candidates in between two successive

safe primes. Furthermore, since both 𝑝 and
𝑝−1

2
 must pass the Rabin-Miller primality test, the

amount of computation needed doubles at each candidate. Collectively, depending on the initial

randomly seeded starting position, extremely to prohibitively costly amount of computing resource

must be dedicated to the generation process while the operating system and other potentially

critical programs may suffer prolonged and continuous deficiency in available resources.

Unfortunately, even though the total computing power provided by the cloud computing platforms

have skyrocketed, as the essential parameter of the Diffie-Hellman key exchange algorithm, safe

prime number modulus must be computed privately by where only the limited local computing

resource is available. This causes significant issues on the power conscious mobile and embedded

platforms because of their less powerful CPUs. Thus, to avoid the heavy computations involved

in generating a large arbitrary precision prime, they are not typically generated from scratch.

Rather, they are reused from previous work or taken from recommendations in established

standards [6], making such practices a major security vulnerability for the Diffie-Hellman key

exchange [7].

Capitalizing on the combined iterative nature of the multi-candidate style generation procedure

and the successive Rabin-Miller primality tests based individual candidate checking method, this

10

project proposes a dedicated Field Programmable Gate Array synthesized ALU module to alleviate

the overall CPU resource utilization of the safe prime generation process.

Organization

To provide a better understanding of today’s hardware and software environment, Chapter 2 details

the various common hardware platforms selected for testing and the profiling software tools used.

Additionally, the methods of analysis and implementation are presented along with the analytical

software used to provide an overview of the project direction.

Chapter 3 focuses on the analyses of the aggregated testing results obtained from different

hardware platforms. The hot function of the generator program is pinpointed and studied

extensively. From there, timing, data paths, and other design metrics are extracted to implement a

graphical representation of the actual algorithm, which the proposed hardware will be based upon.

Chapter 4 describes the procedures taken to actuate the implementation on the specific design

platform. With the careful evaluation of those newly added system constraints, the proposed

implementation of the ALU is presented. Last, to ensure design correctness, the rigorous testing

of the system is detailed.

Finally, Chapter 5 concludes the thesis with the proposed hardware design summary and possible

future research areas.

11

CHAPTER II

METHODS

Intel CPUs are based on the influential x86 Complex Instruction Set Computer (CISC) style

microarchitecture. ARM processor is on the other end of the spectrum with the ARMv7 Reduced

Instruction Set Computer (RISC) style microarchitecture. Their combined dominance in the

general purpose CPU market propels this project to select three particular types mobile platform

CPUs: Lenovo ThinkPad Yoga 12 with Intel 4th Generation “Haswell” Core i7-4500U representing

the high-end Ultrabook laptop market segment, Foxconn Kangaroo with Intel Cherrytrail Atom

X5-Z8500 representing the MINI-PC and tablet segment, and Raspberry Pi 2b with ARM Cortex-

A7 representing the smartphone and embedded device segment. In terms of the operating systems,

Ubuntu 15.10 64-bit Desktop Edition and Microsoft Windows 10 Pro 64-bit are installed on the

x86 platforms. Due to the lack of support from Microsoft over the ARMv7 platform, only Debian

based Raspbian version Jessie is installed on the RPi platform.

CPUs of the aforementioned platforms are designed with only fixed-precision Arithmetic Logic

Unit (ALU) instructions using either 32 or 64-bit wide registers, based on their memory addressing

capabilities. However, in order to perform modular arithmetic operations on 2048-bit ultra large

numbers, multiple precision arithmetic functions are implemented collectively as software

libraries, commonly written in C. Among them, mbedTLS, previously known as PolarSSL, a

liberal Apache licensed Free Open Source Software crypto-library, which is also notably

maintained by the prominent CPU design firm ARM, became the library of choice for two reasons.

First, as its name may suggest, the mbedTLS library differentiates itself as an embedded platforms

12

solution, where the different cryptographically algorithms and protocols are loosely coupled. The

included Diffie-Hellman parameter generator program is an isolated, ready-to-use program that

can be compiled by both the Windows based Microsoft Visual Studio and Linux based Make tool.

Such isolation helps the project to obtain testing results not skewed by non-essential components

such as memory debugging.

Software analysis platform

With the hardware and software firmly in place, profiling software is introduced to gain insights

with respect to the overall generator program behavior in terms of performance metrics and

resource utilization statistics. Profilers run parallel to the target program, which allows the

continuous analysis of the target program’s detailed statistics. Among a handful of choices, two of

the most popular profiling programs are utilized: Windows operating system based Microsoft

Visual Studio and Linux operating system based gprof. Visual Studio Enterprise 2015 offers an

in-depth diagnostic profiling tool over the Intel x86 microarchitecture under the Microsoft

Windows environment. However, because Windows operating system’s scheduler does not allow

full system utilizations to the Visual Studio compiled Diffie-Hellman parameter generator program,

a win32 console style executable, only the resource utilization distribution statistics portion of the

Visual Studio profiling result can be treated as definitive data. Conversely, the Linux operating

system allows full system utilization for its terminal run software. As a result, Linux based gprof

is also used, even though it is much less sophisticated in comparison to other profilers. However,

this is much desired as gprof introduces very little overhead for the actual profiling operations. It

makes gprof output data much more authoritative in performance data, as it exposes the maximum

amount of system resource to the program under profiling. Once data gathering and aggregation

13

completes, the project shifts the focus to the understanding of the dictating algorithms and the

method of their implementation within the generator program. Any meaningful results are then

forwarded downstream as potential design metrics.

Design implementation platform

During the designing of the proposed hardware, the main objective is to perform a weight based

assessment of all the design metrics to determine their relative significance; then develop a

hardware design based on the previous evaluation results. National Instrument’s myRIO device is

introduced as a hardware development platform because it is powered by the Field Programmable

Gate Array (FPGA) device market leading manufacturer Xilinx’s Zynq 7010 series All

Programmable System-on-Chip (SoC) processor, where FPGA device is integrated with a “hard”

dual-core ARM Cortex-A9 CPU on the same die. This duality style design enables the project to

deploy the safe prime generator program to run under the Linux Real-Time operating system on

the Cortex-A9 CPU while allowing the project to deploy the proposed hardware module and

modify the mbedTLS program to utilize such module. National Instruments myRIO development

platform’s specifications need to be taken into special consideration, as they place significant

system constraints to the overall design in the area such as the clock speed, IO capabilities between

the ARM core and the FPGA, as well as the method of development. From there, a design is draft

by considering all potential design metrics collectively. Before entering the next stage, such a

proposal is reevaluated against all metrics to ensure conformity to the weighted design metrics.

Once the design is proposed, the focus is shifted to the construction a functioning prototype.

Xilinx’s FPGA is usually programmed using Xilinx Integrated Synthesize Environment with

14

Hardware Description Language’s such as Verilog. Even though National Instruments myRIO

device only natively supports the NI LabVIEW graphical programming language, the LabVIEW

FPGA program environment does support the importation of Xilinx Component Level IP block

which can be generated from the Xilinx ISE based HDL project. As the result, this project utilizes

the Xilinx ISE as the main development platform, as it offers an extensive suite of analytic and

testing tools for synthesizing FPGA designs. Finally, the implemented prototype undergoes

extensive testing within Xilinx ISE using custom test bench code to ensure the logic correctness

of the proposed design.

15

CHAPTER III

ANALYSIS

Based on mbedTLS version 2.2.1, nine hundred profiles of 2048-bit safe prime computations are

automated using gprof across all three hardware platforms with Linux shell script. Without user

interference, the gprof generated data is more accurate as full system resources dedicated

uninterruptedly to the generator program. Such data is aggregated and processed to demonstrate

the relationship between the entire computation run time and the individual function run time

versus the hardware platforms.

Diffie-Hellman safe prime generator profiler results

With the x-axis showing the number of profile iteration linearly and the y-axis showing the total

computation time in logarithmic scale, Fig. 1. depicts the negative proportional relationship

between the CPU performance and the total time spent for single prime generation where a more

powerful Core i7 is taking considerably less computation time than the ARM Cortex-A7. From 5

seconds to 7 hours, the gargantuan difference in total computation time is considered to be

contributed by the randomly seeded starting position. If such position is relatively close to a safe

prime, then relative insignificant amount of computation is required. However, when the initial

position is rather far away from the next safe prime, compounded by the slower CPU performance,

a prohibitive hour long computation could be required at 100% CPU utilization. Overall, this graph

demonstrates the significance in the total amount of CPU resource needed for a single 2048-bit

safe prime.

16

Fig. 1. 2048-bit Safe Prime Generator Run Time per Iteration

The most important result of the gprof profiler data is the hot function of the Diffie-Hellman safe

prime generator program. Represented in Fig. 2., with the consistently dominating over 90%

overall CPU time utilization, the project turns focus to the mpi_mul_hlp() function. Additionally,

the similar behavior in x86 based Core and Atom CPUs with the minor ±4% gap in utilization

between the x86 group versus the ARMv7 based Cortex-A7 CPU demonstrates the

microarchitecture based differentiation in actual performance metrics.

17

Fig. 2. 2048-bit Safe Prime Generator Hot Function CPU Utilization per Iteration

Using the same low overhead type of CPU sampling method, the project performs generator

program profiling on the x86 machines using Windows based Microsoft Visual Studio 2015

Enterprise Integrated Development Environment. The Visual Studio results perfectly complement

the gprof profiler’s data. Taken directly from Visual Studio, Fig. 3. below demonstrates the

function call hierarchy of the generator program dh_genprime. The overall 97.18% inclusive

samples by the mpi_miller_rabin confirms the iterative nature of the Rabin-Miller primality test

algorithm. From there, mpi_mul_hlp() function is presented as the hot function with 94.25%

exclusive CPU time usage with over 3 million exclusive samples taken. Additionally, the

dependency tree suggests that mpi_mul_hlp() function is a multiplication helper function in

performing the Montgomery multiplication algorithm.

18

Fig. 3. Diffie-Hellman Safe Prime Generator Program Function Call Tree

Further examination of the Visual Studio profile result shown on Fig. 4. confirms the previous

proposition. The mbedTLS implementation of Montgomery multiplication algorithm is showing

with a left column populated by the Visual Studio profiler results, of which details the CPU time

utilization of each line. Towards the bottom, two instances of the hot function mpi_mul_hlp() are

apparent with the near identical 47.1% and 47.9% exclusive CPU utilization. Evidently, the

function comments atop suggest that this implementation of the Montgomery multiplication

algorithm is based on algorithm 14.36 from the Handbook of Applied Cryptography.

19

Fig. 4. mbedTLS mpi_montmul() Code with Lined Based CPU Usage

Montgomery multiplication algorithm and the helper function

Montgomery multiplication algorithm accelerates the solving of 𝑥 ≡ 𝑎 ∙ 𝑏 𝑚𝑜𝑑 𝑛, where both

operands 𝑎 , 𝑏 and modulus 𝑛 are ultra large integers. The classic method incurs heavy

computations attained from the complex multiplication of two ultra large numbers and the

excessive number of divisions required for the final modulo operation. However, based on the

Montgomery reduction algorithm, Montgomery multiplication algorithm uses easy-to-realize shift

operations in place of the more difficult division operations. By introducing one extra

multiplication, one addition, and a conditional subtraction [8], Montgomery multiplication

algorithm removes the computational intensive modulo operation entirely. While the overhead

associated with the added operations can be over exorbitant for small integers, once entering the

20

Multiple Precision Integer (MPI) space, it becomes relatively insignificant. With the removal of

the modulo operation, shown on Fig. 3., the 96.16% inclusive CPU utilization of the

mpi_mont_mul() function is predominantly contributed by the multiplication computations.

Fig. 5. Algorithm 14.36 from the Handbook of Applied Cryptography [9]

Fig. 5. shows the computer science implementation details of the actual Montgomery

multiplication. Knowing mbedTLS’ mpi_mont() function is based on such implementation, the

project found that with some simple manipulation to the Eq. 1. from Fig. 5., it can be separate in

three consecutively performed operations presented by Eq. 2.1 - 2.3. Clearly, the Eq. 2.1 and Eq.

2.2 not only carry identical format but also the same serial operation style as the mpi_mul_hlp()

function. To speed up the process, mpi_mul_hlp() function is optimized in its entirety using C

macro based CPU microarchitecture specific assembly codes to avoid compiler interference. With

𝑏 = 232 in the mbedTLS implementation, the final division presented by Eq. 2.3. can be translated

to a simple shift operation where the least significant 32-bit of 𝑆 or its equvalent

(𝐴 + 𝑋𝑖 ∙ 𝑌 + 𝑈𝑖 ∙ 𝑀) is simply discarded.

21

𝐴 ← (𝐴 + 𝑋𝑖 ∙ 𝑌 + 𝑈𝑖 ∙ 𝑀)/𝑏 (1)

𝑅 ← (𝐴 + 𝑋𝑖 ∙ 𝑌) (2.1)

𝑆 ← (𝑅 + 𝑈𝑖 ∙ 𝑀) (2.2)

𝐴 ← 𝑆/𝑏 (2.3)

Closer examination of Eq. 1. reveals that parallelization can be applied both internally and

externally. Within each multiplication, because 𝑋𝑖 is a 32-bit unsigned integer and 𝑌 is an equal

bit-sized unsigned integer as the safe prime number in generation of n-bit, 𝑌 can be rewritten as

Eq. 3. where 𝑌0, 𝑌1, … , 𝑌𝑛 are 32-bit unsigned integers with 𝑌0 being the least significant 32-bits.

Those 32-bit pieces are commonly referred as the limbs of an MPI.

𝑌 = 𝑌0 ∙ 232∙0 + 𝑌1 ∙ 232∙1 + 𝑌2 ∙ 232∙2 + ⋯ + 𝑌𝑛 ∙ 232∙𝑛 (3)

𝑋𝑖 ∙ 𝑌 can be readily expanded using the distributive property of multiplication to arrive at Eq. 4.

𝑋𝑖 ∙ 𝑌 = 𝑋𝑖 ∙ 𝑌0 ∙ 232∙0 + 𝑋𝑖 ∙ 𝑌1 ∙ 232∙1 + 𝑋𝑖 ∙ 𝑌2 ∙ 232∙2 + ⋯ + 𝑋𝑖 ∙ 𝑌𝑛 ∙ 232∙𝑛 (4)

Clearly, the same transformation applies to the multiplication of 𝑈𝑖 ∙ 𝑀 . It is apparent both

multiplications can be individually parallelized by n-threads of smaller 32-bit-by-32-bit

multiplications. Both special case multiplications are serially implemented with separate helper

functions; however, since the none of the operands and results of both multiplications are

dependent of one another, two multiplications can be performed concurrently. Collectively, a

notable amount of computations from Eq. 1. can be executed in parallel to reduce overall run time.

22

Graphical representation of parallelized 𝑨 ← (𝑨 + 𝑿𝒊 ∙ 𝒀 + 𝑼𝒊 ∙ 𝑴)/𝒃

Following the size requirements set forth by Fig. 5., this project presents an example based on Eq.

5. External and internal parallelization capabilities of the Eq. 1. are demonstrated by Fig. 6. and

Fig. 7., respectively.

𝐴[0: 159] ← (𝐴[0: 159] + 𝑋𝑖[0: 31] ∙ 𝑌[0: 127] + 𝑈𝑖[0: 31] ∙ 𝑀[0: 127])/𝑏[0: 31] (5)

From Fig. 6. each square is a memory element of 32-bit or 4-bit in size. Each horizontal box of 2

memory elements represents an instance of 32-bit by 32-bit multiplication operation that can be

parallelized, while its 64-bit result is evenly separated and stored into two 32-bit sized memory

element. This level of parallelization is the most influential determinant to the overall circuit speed

because the critical path is determined by the position of the slower multipliers. The descending

vertical arrows performs the column based operation of 𝑓 ← (𝑒1 + ⋯ + 𝑒𝑗), where 𝑒1, … , 𝑒𝑗 are

all the memory elements aligned directly above the 𝑓 element at the base. The ascending arrows

are simple forwarding operations. From observation, the first column has 4 elements with 𝑗 = 3;

the last column has 2 elements with 𝑗 = 0, the second to the last column has 5 elements with 𝑗 =

4, and all the remaining columns have 7 elements with 𝑗𝑚𝑎𝑥 = 6. In other words, the majority of

the return value’s limbs require the maximum 6 additions; while less additions are needed for the

initialization and finalization stage. Based on extended testing, this project found such result is

preserved for all 𝐴s with size greater than 64-bit, or equivalently as having more than 2 limbs. This

establishes the basic internal data path control logic. Centering on the majority 6-addition columns,

Using the second column of Fig. 6. as an example, Fig. 7. depicts the internal parallelization by

23

rearranges 3 out of the 6 linear additions to 3 parallelized additions represented by the 3 vertical

boxes. Six stages of additions are reduced down to 4 stages as the direct result.

A0

[0:31]
A1

[0:31]
A2

[0:31]
A3

[0:31]

Ui M0

[0:31]
Ui M0

[32:63]

Ui M1

[0:31]
Ui M1

[32:63]

Ui M2

[0:31]
Ui M2

[32:63]

Xi Y0

[0:31]
Xi Y0

[32:63]

Xi Y1

[0:31]
Xi Y1

[32:63]

Xi Y2

[0:31]
Xi Y2

[32:63]

Discard
[0:31]

A0

[0:31]
A1

[0:31]
A2

[0:31]
A3

[0:31]

Carry
[0:3]

Carry
[0:3]

Carry
[0:3]

Carry
[0:3]

Ui M3

[0:31]
Ui M3

[32:63]

Xi Y3

[0:31]

Carry
[0:3]

A4

[0:31]

Xi Y3

[32:63]

A4

[0:31]

Fig. 6. External Parallelization Diagram

24

A1

[0:31]

Ui M0

[32:63]

Ui M1

[0:31]

Xi Y0

[32:63]

Xi Y1

[0:31]

Discard
[0:31]

A0

[0:31]

Carry
[0:3]

Carry
[0:3]

A1

[0:31]

Carry
[0:3]

Xi Y0

[32:63]
Xi Y1

[0:31]
Carry
[0:3]

Ui M1

[0:31]
Ui M0

[32:63]

A0

[0:31]
Discard
[0:31]

Fig. 7. Internal Parallelization Diagram

25

CHAPTER IV

IMPLEMENTATION

To successfully create and implement an optimized peripheral hardware form of Eq. 1., it is

necessary to analyze the basic system components such as multipliers, adders and registers, as well

as the manner in which they behave in unity. This is accomplished through the use of target

deployment platform specifications within the Xilinx ISE. This software is used to extract the

maximum operating frequencies of the individual components as well as their maximum operating

load power consumption. The implemented pipelined acceleration hardware is then developed in

stages before being rigorously verified through Verilog-based test benching, in which the results

are compared to that of preexisting implementation data.

Component maximum operation frequency extraction

The essence of any hardware is the frequency at which it operates. In order to analyze the

maximum frequency at which each component can operate, a Verilog implementation of each

building block is instantiated and tested through input and output test arrays. By feeding values

into the arithmetic unit, or flip flop in the case of a register, the delay can be measured from the

input of the numerical data to the output of the resultant. Through the synthesis of these

components, a maximum delay is produced, which yields the maximum operating frequency of

any such unit. Table 1. shows the extracted values for each of the respective components of the

design. These frequencies dictate the maximum computational speed, as well as the speed at which

values are pushed from one stage of the pipeline to the next.

26

Table 1. Pipelined Component Frequency Analysis Data

Pipelined Design Component Max Frequency

32 Bit Register 956.023 MHz

64 Bit Register 956.023 MHz

32 Bit Multiplier 223.449 MHz

32 Bit Adder 678.228 MHz

64 Bit Adder 533.532 MHz

For the 32-bit and 64-bit adder, the implementation consists of two inputs of the corresponding

adder bit length, along with a clock signal and an output equivalent to the bit quantity + 1. Through

Xilinx logic amalgamation, the maximum frequency is found to be 678.228 MHz and 533.532

MHz, respectively. The method is identical for the multiplier with the exception of the output bit

width becoming twice as long as the input, 64 bits. The synthesis of the 32-bit multiplier yields a

maximum operating frequency of 223.449 MHz, significantly lower due to the complexity

involved with the multiplication operation in hardware. The registers, used as intermediary value

latches, are tested simply through pushing values of the respective bit length through the simulated

design. By extracting the delay from the arrival time of the input value to the time required for

output realization, the maximum operating frequency is obtained. It is of importance to note that

due to the lack of a substantial path to and from the registers for an individual component,

additional internal data manipulation is needed to extract a meaningful clock rate. This synthesis

yields a maximum value latching frequency of 956.023 MHz for both bit length registers. This is

due to bus data arriving at each respective register input at the same time under ideal conditions.

Due to the potential data arrival skewness through the pipeline, the peripheral ALU operation

frequency will be throttled 5 Hz below the operating frequency of the slowest component, in this

particular case, the multiplier.

27

Pipeline development

In order to maximize the frequency by which the mpi_mul_hlp() function is able to compute results,

a pipelined system is utilized, characterized in Appendix A. This pipeline is partitioned into

separate sections, each having a unique arithmetic operation, or computation bit length. The

transitional stage between these arithmetic operations contains the registers responsible for holding

preceding arithmetic results until the next clock cycle, where the operational resultants is pushed

forward to the next stage. Each of the intrinsic functionalities of the arithmetic stages is described

below along with specific constraints based on the pipelined design.

The loading stage is the beginning of the mpi_mul_hlp pipelined hardware. In this initialization

stage, the values for the first 8 32-bit registers are loaded into their corresponding locations. This

is done through the use of input control signals which coincide with a specific register location.

This 4-bit signal control first loads the 32-bit limb values 𝑋𝑖 and 𝑈𝑖, then the remaining values,

which are the upper and lower 32-bits of the input parameters 𝑌 and 𝑀 . Once the final

multiplication dependent value is loaded, a flag is set which initiates arithmetic stage 1. As this

occurs, the remaining values, 𝐴1 and 𝐴2, are loaded into their respective registers for use in the

second stage. Once all values are loaded, the control signal stalls until stage 2 results are latched,

before alternately replacing the coupled values [𝑌1 𝑀2] and [𝑌2 𝑀2] , based on pipeline cycle

iteration. For the first arithmetic stage, four 32-bit multiplications are performed in parallel,

yielding a 64-bit product for each instantiation. These products are released to an output register

feeding into the second stage input latch before an arithmetic stage specific flag is set high,

signifying the completion of the multiplication stage of the pipeline. This flag register is wired to

the subsequent arithmetic unit instantiation as an always block trigger, allowing the next stage to

28

perform its respective operation as soon as the previous stage is complete and the results are latched

in to the stage two input registers. Once the second stage completes the first set of computations,

the values of the products are no longer needed. Consequently, the flag is reset to low, effectively

resetting the multiplication module in its entirety.

The second stage consists of cascaded sets of addition modules along with a register used to retain

the value of the 𝑠2𝑏 addition instance. Due to the configuration of the pipelined design, the 𝑠2𝑏

value must be buffered for a single cycle and added in the subsequent pipeline iteration. A

multiplexed supplementary constant value register is used for the first stage, with the buffer

register as the logic high selection for the multiplexer. The select bit of the multiplexer is controlled

through the return register, in which the latching of a return value sets an internally controlled flag

high for the duration of the pipeline cycling. The preliminary arrangement of the cascading adders

is set through logic in the module, while the most efficient LUT based mapping and routing is left

to the compiler’s optimization capabilities.

Once the finalized sum of the second stage is complete, the values are pushed into an intermediary

register which, as previously mentioned, releases the stalled 𝑠2𝑏 register value into the second

stage for the next iteration. The values are then shifted into 2 separate 32-bit return registers, 𝑅1

and 𝑅2. Due to the addition of propagating carry bits, the 𝑅2 register has a 4-bit extension which

is separated from the final return and placed into a stage 2 register for the next iteration. After the

pipelined hardware is implemented the system undergoes an initial analysis which yields 584 used

Look Up Tables (LUTs) out of 17600 and 20 used Digital Signal Processors (DSPs) out of 80.

29

Simulation-based verification

In order to verify the functionality of the optimized pipeline hardware implementation, Xilinx ISim

is utilized along with a test bench file, used for the control of inputs to the pipeline as well as the

output extraction from the return registers. The testing frequency is set at 220 MHz, slightly below

the maximum tested frequency of the multiplier modules.

Fig. 8. represents the pipelined hardware simulation results for a single iteration based on a

0xFFFFFFFF value for all input bus registers with the exception of registers 𝐴1 and 𝐴2 , whose

value is set to 0. For the initial iteration of the hardware, the first return register yields an output

value of 0x02 while the second return register yields a value of 0xFFFFFFFE. The carry from the

lower return register is then returned to stage 2 to be included in the subsequent cycle’s arithmetic.

This cycle also signifies the release of the buffered s2b register value into the data path of the

pipeline.

Fig. 8. 1-Cycle Pipeline Simulation Results

30

Once the operation of the single cycle pipelined helper function is verified to correctly compute

accurate intermediate results, the pipeline’s cyclical behavior is tested for accuracy. Fig. 9.

represents the results of a 2-cycle simulation, in which the carry from the first return set is added

to the data path in addition to the stalled value located in the buffer register. Clearly, the

0xFFFFFFFC value from the buffer register, through the cascading adder stage, is combined with

the carry bit from the previous cycle to produce the new result. Because this is a two stage

simulation, no other values are fed into the test bench, essentially setting most of the remaining

arithmetic input and output values to 0. This indicates the 0xFFFFFFFD value is precise for the

output of a secondary pipeline cycle in which no further inputs are supplemented. The increase in

active stage length is due to the continuous flow of data through the pipelined hardware, which is

throttled computationally based on the input clock signal. This successful application of the

pipelined Eq. 1. function hardware substantiates the ability to combine both instances of the helper

function in a parallelized manner, providing an optimized hardware-based solution that reduces

CPU resource dependencies during the safe prime number generation.

Fig. 9. 2-Cycle Pipeline Simulation Results

31

CHAPTER V

CONCLUSION

This project proposes a minimalistic implementation of a parallelized and pipelined ALU module

for handling the heavy computations of the Montgomery multiplication algorithm on the Xilinx

Zynq 7010 FPGA embedded processor system. With more than 90% CPU bound arithmetic

offloaded, the remaining residual CPU utilization of the mbedTLS based safe prime generation

does not instigate significant impact on the overall system performance. This design enables more

frequent random safe primes generation because the cost in CPU resource is significantly lowered.

In turn, it may help to patch the logjam security vulnerability of the Diffie-Hellman key exchange

protocol. More important, the gain in security is at a marginally minimal cost in both hardware

and software. Utilizing merely 3% of LUTs and 20% of DPS of the Zynq 7010 SoC, even with the

consideration of a platform-specific IO logic block, the proposed implementation does not

introduce heavy expenditures in hardware realization. At the same time, software crypto-libraries

such as mbedTLS can be modified to replace its existing Montgomery multiplication helper

function with relative ease.

Evidently, ultra large MPI modular exponentiation is the foundation for many other prominent

modern cryptographic algorithms such as RSA and Elliptic Curve Cryptography. As suggested by

Fig. 3., Montgomery multiplication algorithm function is also the hot function for the modular

exponentiation algorithm, which is represented as the mbedlts_exp_mod() function. Thus,

following this relationship, the proposed design is essentially a dedicated ALU module for the

modular exponentiation algorithm as well.

32

The combined benefits of the low cost in implementation and wide areas of application support

one unique system design methodology: FPGA embedded processor system, where programmable

hardware is integrated alongside fixed-design CPU to assist and to accelerate certain tasks that are

excessively resource intensive for CPU only systems [10]. This project demonstrates that in the

case with the mbedTLS Diffie-Hellman parameters generator, the proposed implementation is

capable to provide significant results. Based on such findings, additional research is suggested to

focus in the area of automating the processes of locating the specific CPU intensive task,

translating such task onto programmable hardware, and providing software accessible interface to

enable fast development and deployment of the hot function based programmable hardware design.

From there, programmable hardware assisted computing platforms can be further enhanced to

dynamically program hardware modules based on real-time utilizations to achieve even greater

overall system performance. A new system design paradigm can potentially be introduced as the

result.

33

REFERENCES

[1] S. Gustin. (2013) The Internet Doesn't Hurt People- People Do: The New Digital Age.

Time Magazine [Online]. Available: http://business.time.com/2013/04/26/the-new-

digital-age-promise-and-peril-ahead-for-the-global-internet/

[2] J. Sheesley. (2008, September 7, 2015). The 80's supercomputer that's sitting in your lap.

TechRepublic [Online]. Available: http://www.techrepublic.com/blog/classics-rock/the-

80s-supercomputer-thats-sitting-in-your-lap/

[3] J. B. J. Hagel, T. Samoylova, M. Lui, "From exponential technologies to exponential

innovation," Online 2, 2013.

[4] R. R. B.G. Aswathy, "Modified RSA public key algorithm," presented at the 2014 First

International Conference on Computational Systems and Communications (ICCSC),

Trivandrum, 2014.

[5] J. S. Kraft and L. C. Washington, An introduction to number theory with cryptography:

Boca Raton, Florida : CRC Press, [2014], 2014.

[6] K. B. David Adrian, Zakir Durumeric, Pierrick Gaudry , Matthew Gree , J. Alex

Halderma , Nadia Heninger, Drew Springall, Emmanuel Thome , Luke Valent , Benjamin

VanderSloot, Eric Wustrow, Santiago, Zanella-Beguelin, Paul Zimmermann, "Imperfect

Forward Secrecy: How Diffie-Hellman Fails in Practice," presented at the 22nd ACM

Conference on Computer and Communications Security, Denver, Colorado, 2015.

[7] M. Mimoso. (2015, October 5, 2015). Prime Diffie-Hellman Weakness May Be Key To

Breaking Crypto. Available: https://threatpost.com/prime-diffie-hellman-weakness-may-

be-key-to-breaking-crypto/115069/

[8] Y. Gong and S. Li, "High-Throughput FPGA Implementation of 256-bit Montgomery

Modular Multiplier," in 2010 Second International Workshop on Education Technology

and Computer Science (ETCS), 2010, pp. 173-176.

[9] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied

cryptography. Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Boca Raton :

CRC Press, [1997], 1997.

[10] T. P. Morgan. (2015, 2016-04-10 22:50:31). Why Hyperscalers And Clouds Are Pushing

Intel Into FPGAs. Available: http://www.nextplatform.com/2015/07/29/why-

hyperscalers-and-clouds-are-pushing-intel-into-fpgas/

http://business.time.com/2013/04/26/the-new-digital-age-promise-and-peril-ahead-for-the-global-internet/
http://business.time.com/2013/04/26/the-new-digital-age-promise-and-peril-ahead-for-the-global-internet/
http://www.techrepublic.com/blog/classics-rock/the-80s-supercomputer-thats-sitting-in-your-lap/
http://www.techrepublic.com/blog/classics-rock/the-80s-supercomputer-thats-sitting-in-your-lap/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/115069/
https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/115069/
http://www.nextplatform.com/2015/07/29/why-hyperscalers-and-clouds-are-pushing-intel-into-fpgas/
http://www.nextplatform.com/2015/07/29/why-hyperscalers-and-clouds-are-pushing-intel-into-fpgas/

34

APPENDIX A

