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ABSTRACT 

 

Rhodococcus equi is a facultative intracellular pathogen that causes 

pyogranulomatous pneumonia in foals <6 months of age.  Why foals are highly susceptible 

to R. equi is unknown.  R. equi pneumonia is a leading cause of morbidity and mortality 

for foals and continues to be an economic burden for the horse industry world-wide.  A 

commercial vaccine against R. equi is lacking.  We determined the immunogenicity and 

efficacy of maternal vaccination with the highly conserved microbial surface 

polysaccharide, β-1→6-linked poly-N-acetyl glucosamine (PNAG) in foals against 

intrabronchial infection with R. equi and characterized the functional properties associated 

with antibodies to R. equi. 

We vaccinated 19 pregnant mares 6 and 3 weeks prior to foaling with PNAG and 

experimentally infected their foals at ~4 weeks of age with ~106 cfu of R. equi.  Eleven of 

12 (92%) foals born to immunized mares remained healthy, whereas 6 of 7 (86%) foals 

born to unvaccinated controls developed pneumonia (P=0.0017).  Antibodies to PNAG 

mediated killing of extracellular and intracellular R. equi in the presence of complement 

and neutrophils by PNAG recognition on infected cells.  Peripheral blood mononuclear 

cells from immune and protected foals released higher levels of interferon-γ in response to 

PNAG compared to controls, indicating vaccination also induced an antibody-dependent 

cellular release of immune cytokines.  To determine the relative function in immunity to  

R. equi, sub-isotypes IgG1 and IgG4/7 were enriched using a protein G column from PNAG 

hyperimmune or nonimmune plasmas.  They were compared in their ability to deposit 

complement component 1 (C1) on to PNAG and to mediate opsonophagocytic killing 
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(OPK) by neutrophils.  Sub-isotype IgG1 from PNAG hyperimmune plasma had the 

highest ability to deposit C1 onto PNAG (P<0.05) and to elicit OPK by neutrophils 

(P<0.05).  These results show maternal vaccination with PNAG generates antibodies that 

are transferred via colostrum that protect foals against the intracellular pathogen, R. equi 

by facilitating antibody-mediated opsonic killing, and that sub-isotype IgG1 targeting 

PNAG appears to be a correlate of protective immunity.  Additionally, vaccination 

appeared to modulate interferon-γ release in response to PNAG on R. equi, suggesting that 

PNAG antibodies derived from colostrum might mediate cell immunity. 
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NOMENCLATURE 

 

ADCC                         Antibody-dependent cellular cytotoxicity 

APC  Antigen presenting cell 

BAL Bronchoalveolar lavage 
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BCG Bacillus Calmette Guerin vaccine 
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CFU Colony forming unit 
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DC Dendritic cell 

DEAE Diethylaminoethyl 

ELISA Enzyme-linked immunosorbent assay 
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IFNγ Interferon gamma 

IgG Immunoglobulin G 

MAb Monoclonal antibody 

MDM Monocyte-derived macrophage 

OD Optical density 

OPK Opsonophagocytic killing 

PBMC Peripheral blood mononuclear cells 

PMN Polymorphonuclear cell 
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PNAG β-1→6-linked poly-N-acetylglucosamine 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

TB Tuberculosis 

TRIM21 Tripartite motif-containing 21 

TT Tetanus toxoid 

T-TBA Transendoscopic tracheobronchial aspiration 

VapA Virulence-associated protein A 
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CHAPTER I 

INRODUCTION: ANTIBODY-MEDIATED PROTECTION AGAINST THE 

INTRACELLULAR PATHOGEN RHODOCOCCUS EQUI 

 

Introduction 

Background on Rhodococcus equi (R. equi) and R. equi pneumonia 

Rhodococcus equi (R. equi) is a ubiquitous facultative intracellular bacterial 

pathogen that causes severe pyogranulomatous pneumonia in foals less than 6 months of 

age, and is among the leading causes of morbidity and mortality for foals (1-3).  Why 

foals but not adult horses are highly susceptible to R. equi is unknown and there is no 

commercial vaccine available.  Infection occurs when environmental R. equi found in 

the soil (4) or in feces of herbivores (3) is aerosolized and inhaled into the lungs of foals 

(5, 6), presumably during the first few weeks after birth (7).  Virulent R. equi that are 

inhaled into the lower airways of foals can enter alveolar macrophages, interfere with 

phagosome maturation and phagolysosome fusion (8), and replicate intracellularly (9, 

10), ultimately causing pneumonia (11).  

Virulence  

Virulent R. equi are characterized by expression of the virulence-associated 

protein A (VapA), encoded by an 85-kilobase plasmid (1, 12-14).  Avirulent R. equi or 

R. equi cured of vapA plasmids are unable to cause disease in foals (15) and mice (16) or 

to multiply intracellularly within murine macrophages in vitro (17).  In contrast, R. equi 

containing vapA plasmids successfully evade intracellular killing and replicate inside 
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macrophages (17, 18), preventing phagosome maturation and its fusion with lysosomes 

(19) and leading to persistent infection in mice (14).  The continuous replication of  

R. equi eventually kills the host cell by necrosis (20), characterized in foals by a 

proinflammatory response (12, 19) and pneumonia (20).  Evidence exists that vapA is 

necessary but not sufficient for virulence in macrophages (14, 17).  

Respiratory infections in young foals caused by R. equi pneumonia continue to 

be a major problem for the horse industry world-wide and an economic burden due to 

mortality rates, cost of treatment and prophylaxis, and decreased performance and 

earnings because recovered foals are less likely to race as adults than their birth-cohort 

(21, 22).  The cumulative incidence data is sparse and varies among farms.  Generally, 

cumulative incidence of clinical signs is between 5-15% but cumulative incidences 

greater than 20% are not unusual with case fatality rates typically 10-30% (23-25).  

Thus, the purpose of this paper is to review immunity to R. equi with an emphasis on 

current knowledge about antibody-mediated protection and possible mechanisms for this 

protection. 

Immunity to R. equi pneumonia 

Role of cell-mediated immunity 

Historically, intracellular pathogens were considered to be killed by cell-

mediated immunity (CMI) whereas humoral immunity was thought to be responsible for 

killing extracellular bacteria (26, 27).  This dogma arose because it was assumed that 

once inside of a cell, pathogens were shielded from antibodies that could only eradicate 

pathogens extracellularly (28).  In addition, diseases caused by intracellular pathogens 

such as R. equi have been associated with individuals with impaired CMI (such as 
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persons with AIDS) (27, 29).  Most evidence regarding the role of CMI against R. equi 

has come from experiments in mice demonstrating that functional T lymphocytes are 

necessary for intracellular clearance of virulent R. equi (30-32).  Although cluster of 

differentiation 8-positive (CD8+) cytotoxic T lymphocytes (CTLs) can recognize and 

kill R. equi-infected cells, CD4+ lymphocytes have been demonstrated to be the 

principal determinant for complete pulmonary clearance of R. equi by producing 

interferon-gamma (IFNγ) and activating macrophages (32-34).  The importance of the 

role of CD4+ T lymphocytes in the clearance of R. equi has been demonstrated in mice 

in which enriched CD4+ or CD8+ spleen lymphocytes from previously immunized mice 

were transferred to naïve mice prior to experimental infection with R. equi (32).  By day 

6 post-infection, bacterial numbers in lungs of CD4+-transferred mice were significantly 

lower compared to CD8+ mice (32).  Interestingly, on day 13 post-infection both groups 

cleared R. equi from all organs; however, CD4+ cells were found in organs of CD8+ 

recipients while there were no CD8+ lymphocytes in the organs of CD4+ recipients (32).  

Similarly, Kanaly et al. showed CD4+ Th1 lymphocytes and IFNγ production were 

responsible for the clearance of R. equi infection in transgenic mice that were deficient 

in either CD8+ or CD4+ T lymphocytes (33) using monoclonal antibodies against 

cytokines (30).  Additionally, in another study adoptive transfer of R. equi-specific 

CD4+ Th1 cells cleared R. equi infection from the lungs of R. equi-susceptible nude 

mice, but transfusion of an R. equi-specific CD4+ Th2 cell line expressing IL-4 failed to 

clear pulmonary infection (35).  This Th2 response has been proposed to contribute to 

the unique susceptibility of young foals to R. equi infection (30, 35, 36).  
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The relevance of findings in mice to the pathogenesis of disease in foals is 

unknown.  Foals are generally deficient in the ability to produce IFNγ but they are able 

to produce a protective Th1-type immune response to natural infection (37-39) and low-

dose experimental infections of R. equi pneumonia (40, 41).  Jacks et al. demonstrated 

that foals experimentally infected with R. equi at 7 to 10 days of age had increased IFNγ 

expression from R. equi-stimulated lymphocytes and increased CD4+ T lymphocytes in 

bronchoalveolar lavage fluid (BALF) (42), confirming the ability of young foals to 

produce a Th1 response against R. equi (40).  Evidence exists that CMI is crucial for 

immunity to R. equi infections and is the protective immune response of adult horses.  

Adult horses rapidly clear virulent R. equi infection without showing clinical signs of 

pneumonia due to significant increases in pulmonary CD4+ and CD8+ T-lymphocytes 

producing IFNγ and marked increases in lymphoproliferative responses to soluble  

R. equi antigen and VapA (43).  This rapid clearance of R. equi infections is associated 

with a Th1 pulmonary recall response and is considered to confer the immunity seen in 

adult horses (43-45).  This recall response is characterized by significant proliferation 

and increase of antigen-specific memory CD4+ T lymphocytes in the lung and the 

production of IFNγ in response to infection (44-46).  Virulent R. equi in the lungs of 

adult horses activate memory T-cells bearing receptors specific for R. equi antigens (43).  

Then, the memory cells expand and recruit activated effector cells to the affected lung 

(i.e., a recall response) to secrete type 1 cytokines such as IFNγ to clear pulmonary 

infection by R. equi (43, 44).  The clearance of R. equi infections in adult horses by 

CD4+ T cells is associated with IFNγ expression and subsequent macrophage activation 

(46).  CD4+ T lymphocytes may provide help for CD8+ T lymphocytes to secrete IFNγ 
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or to recognize and kill R. equi-infected macrophages as cytotoxic effector cells (44).  

Lopez et al. demonstrated R. equi-infected adult horses develop VapA-specific immune 

responses that predominantly stimulate IFNγ expression, showing that VapA is an 

antigen targeted by protective pulmonary T-lymphocyte responses in horses (46).  It is 

probable that the time-lag required for CMI responses to develop and the apparent 

deficiencies in adaptive immune responses of foals render young foals more susceptible 

to R. equi pneumonia (39, 47). 

Role of humoral immunity against intracellular infections  

Recently, the viewpoint that CMI is the only mechanism for controlling 

intercellular pathogen infections has been challenged by evidence that antibodies can 

also play an important role in protection.  For example, acetone-killed vaccines have 

been demonstrated to be highly effective at protecting mice and people against the 

intracellular pathogen Salmonella typhi (48).  Furthermore, all viruses are intracellular 

pathogens, and specific antibodies are known to confer protection against many viral 

infections, such as smallpox, yellow fever, measles, varicella, and rabies (49-51).  

Mycobacterium tuberculosis (Mtb) is arguably the most important intracellular pathogen 

of humans as one-third of the world’s population is infected with latent Mtb (52).  

Individuals with active or latent tuberculosis (TB) produce different humoral signatures 

and antibody glycosylation pattern, and antibodies from people with latent TB drive 

macrophages to kill intracellular Mtb (53).  Chen et al. demonstrated that antibodies 

specific to the mycobacterial capsular polysaccharide arabinomannan in sera of 

individuals vaccinated with bacillus Calmette-Guerin (BCG) vaccine were able to 
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opsonize BCG and Mtb, and enhance phagocytosis and phagolysosome fusion in human 

macrophages (54).  Prados-Rosales et al. developed a capsular polysaccharide conjugate 

vaccine against Mtb that decreased bacterial numbers in lungs and spleen in infected 

mice and prolonged their life (55).  These results indicate that antibody can play a role in 

protective immunity against pathogens residing intracellularly. 

Antibody-mediated protection against R. equi 

Antibodies are glycoprotein molecules, called immunoglobulins (Ig), produced 

by B lymphocytes that bind antigens with high specificity and affinity at their antigen-

binding sites (variable regions), and simultaneously interact with other molecules of the 

immune system with their constant region to carry out the necessary effector functions to 

clear infection (56).  In particular, IgG is the most common type of antibody found in 

blood and extracellular fluid (56).  Understanding the role of antibody-mediated 

immunity against intracellular infection with R. equi is important for fundamental 

immunology, vaccine design, and development of immunotherapy against R. equi 

infections (26).  There are several lines of evidence indicating a role for antibodies in 

protecting against R. equi infection. 

Serological evidence from natural exposure 

Serological evidence from foals indicates that natural exposure to R. equi 

generally results in a robust humoral response against R. equi antigens (39, 57, 58).  

Serum IgG against R. equi develops following natural exposure in most foals (healthy or 

pneumonic) and adult horses such that titers against R. equi are not exclusively 

associated with disease (24, 37, 39, 59-62).  Rising titers of anti-R equi antibodies 
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detected by enzyme-linked immunosorbent assay (ELISA) in foals were indicative of 

development of R equi pneumonia (60, 63).  Foals with naturally occurring  R. equi 

pneumonia have been shown to have higher concentrations of VapA-specific IgA in 

their tracheal aspirates, and VapA-specific IgG4/7 and IgG3/5 sub-isotypes in their serum 

(37, 64).  This response was not seen in naturally exposed adult horses or healthy foals, 

who produce an IgG1 response (37).  The increase in R. equi-specific IgG3/5 in naturally 

infected foals, a response associated to a Th2-biased ineffective response (37), may be a 

good predictor of R. equi pneumonia and possible marker for disease (64).  However, 

systematic evaluation of previously described serological tests for antibodies against  

R. equi such as the serum hemolysis inhibition test (SHI test) indicate that these tests do 

not accurately identify foals with disease or predict foals that will develop disease (65, 

66).   

Humoral immune responses to experimental infection 

Experimental infection induces rapid humoral IgG responses in foals and adult 

horses (67).  Seven equine IgG sub-isotypes have been identified: IgG1, IgG2, IgG3, 

IgG4, IgG5, IgG6 and IgG7 (67, 68).  There are scant and conflicting data regarding the 

role of IgG sub-isotypes in immunity to R. equi.  In adult horses experimentally infected 

with R. equi there seems to be an increase in IgG1(37), IgG4/7 (40), or both IgG1 and 

IgG4/7 (46).  Experimental challenge of neonatal foals using a low dose of R. equi, which 

has been shown to result in disease progression similar to that of natural infection (69), 

resulted in a significant increase in VapA-specific IgG1 and IgG4/7 (40).  An IgG1-biased 

profile has been reported to be a reliable measure of protection against R. equi 
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pneumonia (67, 70) and IgG4/7- and IgG3/5-biased responses are more prevalent among 

pneumonic foals (37). It is suggested that IgG4/7 and IgG3/5 reflect a Th2-type (non-

protective) response, whereas IgG1 represents a (protective) Th1-type response (37, 71).  

Other studies, however, show IgG4/7 has a protective role against R. equi in both 

naturally (38) and experimentally infected foals (40).  Moreover, an IgG3/5-specific  

R. equi response was found in foals that were protected against R. equi infection by oral 

administration of 1x108 colony forming unit (cfu) of live, virulent R. equi (72) while our 

laboratory has shown oral administration of 1x1010 cfu of live virulent R. equi to foals 

increased serum IgG1 more strongly than IgG4/7 (73).  Additional studies of serological 

responses following natural and experimental infection of foals with R. equi are greatly 

needed.  

Plasma transfusion 

The efficacy of humoral immunity against a pathogen can be demonstrated by 

acquiring protection after passive transfer of antigen-specific antibody.  Several studies 

evaluating the impact of transfusion of plasma derived from immunized donor horses (so 

called hyper-immune plasma (74)) on development of R. equi pneumonia following 

natural or experimental infections have been conducted, yielding conflicting results.  

Transfusion of HIP was first demonstrated to protect pony foals from experimental 

infection with nebulized R. equi (75).  Subsequently, field studies in California 

demonstrated efficacy of protection in endemic farms (76).  Ensuing field studies, 

however, have yielded evidence either of protection that was not statistically significant 

(61, 77) or of failure to protect (78).  Recent experimental infectious challenge studies, 
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however, demonstrate that HIP from a commercial plasma manufacturer was able to 

reduce severity of pneumonia caused by R. equi (79, 80).  Epidemiological data also 

indicate that transfusion reduces the cumulative incidence of R. equi pneumonia (81, 82).  

Most recently, our laboratory has demonstrated that plasma hyperimmune against the 

highly-conserved bacterial polysaccharide β-1→6-linked poly-N-acetylgucosamine 

(PNAG) protected foals against experimental infection with virulent R. equi (70). 

A number of explanations exist for the variable findings regarding the efficacy of 

prophylactic transfusion of R. equi HIP to protect foals.  Evidence exists that commercial 

plasma products vary in their concentrations of antibodies targeting R. equi, as well as in 

the distribution of sub-isotypes induced (80).  The various reports used different 

products of plasma and foals were transfused at varying ages (61, 75-77, 79, 83); these 

factors could have contributed to efficacy of the transfused products.  Moreover, the 

volume of plasma transfused also was variable among studies (25, 61, 75-77).  The 

original report demonstrating efficacy in pony foals used a dose of 4 ml of plasma per kg 

body-weight of foals (75).  This corresponds to 2 liters for a 50 kg foal; however, most 

studies used only 1 liter of plasma for transfusion of foals (76, 77).  Some of the studies 

were under-powered because clinically useful relative risk reductions of > 33% were 

observed, yet statistical significance was not achieved (61, 77). 

Collectively, the available data indicate that transfusion of HIP reduces the 

severity and cumulative incidence of R. equi pneumonia at farms.  This provides 

compelling evidence for a role for antibody in mediating protection against the 

intracellular pathogen R. equi.  Discovering the characteristics and functions of 

antibodies that protect against R. equi pneumonia will allow us to elucidate their role in 
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mediating protection against intracellular pathogens.  Further studies are warranted to 

determine the type(s) of antibodies responsible for this protection, the dose 

(concentration and volume) of antibodies necessary, and optimal age(s) at which a foal 

should be transfused in order to maximize benefits of transfusion of HIP. 

Vaccines 

Evidence exists that antibodies appear capable of mediating protection against  

R. equi. Several vaccines have been tested against R. equi such as subunit vaccines (84), 

genetically-modified organisms (85, 86), and DNA vaccines (87-89); however, none has 

proven to be protective (84, 86, 87).  A recent promising candidate vaccine comprised of 

a mutant strain of R. equi with an impaired steroid catabolic pathway administered intra-

tracheally to 2- to 4-week-old foals provided partial protection against subsequent 

experimental infection with virulent R. equi at 6- to 8-weeks of age (90).  Oral 

administration of live virulent R. equi to foals during the first weeks of life has been 

documented to protect against intra-bronchial infection with R. equi (72, 91).  However, 

widespread administration of large numbers of live, virulent R. equi as a vaccine is 

considered infeasible because of potential to cause disease in the host and concerns for 

widespread environmental contamination.  

Challenges of developing a vaccine against R. equi pneumonia arise because 

foals mount less effective immune responses to vaccines.  This is due to their naive or 

immature immune system (1, 92, 93).  These challenges are further complicated by the 

fact that foals are infected very early in life (7) when they are more susceptible to 

infection (69).  For this reason, maternal vaccination has been evaluated for protecting 
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foals against R. equi pneumonia.  The rationale for maternal vaccination targeting  

R. equi is to provide passive transfer of antibodies via colostrum to foals to protect them 

against infection with R. equi, recapitulating the protection derived by transfusion of 

HIP.  Early studies of maternal vaccination failed to protect foals despite evidence that 

antibodies recognizing R. equi were transferred to foals (94, 95).  A subsequent study in 

France, however, documented protection of foals by maternal vaccination with 

supernatant from cell culture of virulent R. equi (71).  Recently, our laboratory 

demonstrated that vaccination of mares against PNAG protected their foals against 

intrabronchial infection with virulent R. equi (70).  We further demonstrated that the 

anti-PNAG antibodies were transferred to their foals via colostrum, and that these anti-

PNAG antibodies were capable of fixing complement component 1 (C1) and mediating 

opsonophagocytic killing (OPK) ex vivo (63).  These data provide compelling evidence 

that antibody-mediated protection is possible against this intracellular pathogen. 

Mechanisms of antibody-mediated protection 

The mechanism by which anti-PNAG antibodies mediate immunity to R. equi in 

foals is unknown.  Antibody-mediated protection against intracellular pathogens is 

achieved through a variety of different mechanisms that have been characterized as 

either classical or non-classical (27, 28, 96). 

Classical mechanisms 

Classical mechanisms of antibody-mediated killing of intracellular bacteria 

include: 1) opsonization; 2) neutralization of bacteria or bacterial toxins; 3) antibody-
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dependent cellular cytotoxicity (ADCC); and, 4) interaction of the constant region (Fc) 

of antibodies with Fc receptors (FcR) of effector cells (26, 28). 

Opsonization 

Antibody-mediated opsonization is the coating of IgG on the surface of 

pathogens which enhances uptake and killing of the pathogen by phagocytic cells.  

Antibody opsonization of pathogens (when they are extracellular) can prevent infection 

of target cells either by interfering with pathogen motility (97-99), by neutralizing 

critical surface epitopes required for host cell entry (100-103), by complement-mediated 

bacterial degradation (104-107), or by promoting intracellular degradation (26).  Some 

of these functions are accomplished by antibodies without additional mediators or cells, 

while others require other components of the immune system such as complement, 

phagocytic cells, or effector cells such as natural killer cells (28, 96).  For example, 

when IgG opsonizes a pathogen by recognizing and binding to specific epitopes by its 

Fab portion (variable region), its Fc portion (constant region) can be simultaneously 

recognized by phagocyte FcR which in turn activates ingestion and killing of the 

opsonized pathogen (108).   

Examples of opsonizing antibodies mediating protection against R. equi in foals 

can be found in a study by Cauchard et al. demonstrating that the opsonizing activity of 

maternally-derived antibodies protected foals against natural infection of R. equi at an 

endemic horse-breeding farm (71).  The opsonizing activity of these antibodies was 

determined in vitro by the increased phagocytosis of R. equi by neutrophils (71).  Other 

studies have also shown R. equi opsonized with antibodies from HIP increased activation 

and cytokine production of neutrophils and monocyte-derived macrophages, and 
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oxidative burst in macrophages (92).  In our anti-PNAG vaccine study, in vitro 

opsonization of R. equi with anti-PNAG IgG increased the deposition of C1 onto PNAG 

and the opsonic killing of R. equi by equine neutrophils (70).   

Neutralization 

Neutralization is the ability of an antibody by itself to inhibit infection of 

susceptible cells or to inhibit an initial step in pathogenesis (109).  Antibodies can inhibit 

or “neutralize” microbes and their toxins by blocking the binding of these microbes and 

toxins to cellular receptors.  Binding of antibodies to microbial structures can result in 

conformational changes that interfere with the ability of the microbes to interact with 

cellular receptors, thus preventing infection (110).  Many microbial toxins also bind to 

specific cellular receptors to mediate their pathologic effects.  Examples include the 

tetanus toxin known as tetanospasmin which causes paralysis by binding to and 

inhibiting receptors in the motor end plate of neuromuscular junctions (111), and 

exotoxins produced by Staphylococcus aureus that overstimulate T cells to produce large 

quantities of cytokines leading to acute toxic shock (112).  Antibodies against such 

toxins hinder the interactions of toxins and host cells and thus prevent the toxins from 

causing tissue injury and disease.  Antibody-mediated neutralization of microbes and 

toxins is independent of complement and leukocytes in vitro; however, the mechanism 

of in vivo neutralization is not known (113).  As it seems to require only the antigen-

binding regions of the antibodies, it can be mediated by antibodies of any isotype in the 

circulation (IgG; IgM; IgA; IgE) and in mucosal secretions (IgA).  Evidence exists that 

neutralizing antibodies are transferred from R. equi HIP to foals (75).  It has been 
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suggested that passively transferred antibodies neutralize R. equi before it invades 

macrophages, and that opsonization could impair intracellular replication of R. equi if 

internalized via FcR on neutrophils and macrophages by increasing phagolysosome 

formation and increasing oxidative burst activity of phagocytes (114-116).  If high 

concentrations of R. equi–specific antibodies are present in the pulmonary epithelial 

lining fluid at the time of infection, bacterial viability may be reduced and phagocytosis 

and intracellular bacterial killing may be improved (75, 115).  

ADCC 

Another classical method of antibody-mediated killing of intracellular infections 

is ADCC, in which antibody (typically IgG) forms a bridge between an infected target 

cell (or directly with some pathogens) and an FcR-bearing effector leukocyte (i.e., 

monocytes, neutrophils, eosinophils, or natural killer cells) (109).  The engagement of 

FcR by antibody-coated pathogens activates the effector leukocyte resulting in either 

lysis or apoptosis of the target cell/pathogen (96, 109).  Although ADCC can readily be 

demonstrated in vitro, its role in vivo for host defense against microbes is not definitively 

established.  ADCC seems to be important in protection against tumors, but its role in 

infections is less clear and complicated by the multiple functions of antibody (117-119).  

Gorander et al. showed that protection of mice vaccinated against the herpes virus HSV-

2 was associated with non-neutralizing antibodies that mediated ADCC as well as the 

production of CD4+ T cell IFNγ responses (120).  Complement-independent killing of 

bacteria in vitro in the presence of cytotoxic T lymphocytes has been described for 

bacterial pathogens (121, 122).  IgA and IgG, in combination with intestinal-derived 
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murine lymphocytes, is reported to mediate ADCC against S. flexneri and Salmonella 

spp. (123, 124) and IgA in combination with murine lung lymphocytes also has 

antibacterial activity against Streptococcus pneumoniae (125).  ADCC protection has 

been documented in vitro for nematode parasites (126-130) and in vivo against parasitic 

flatworms (Schistosoma mansoni) (131), roundworms (Brugia malayi), microfilaria 

(132), and trypanosomes (133, 134).  It is important to note that many of the effector 

cells mediating ADCC are also capable of antibody-mediated phagocytosis (109).  

Finally, antibodies may also inhibit infections using the components of ADCC (i.e., 

infected target cells, antibody, and FcR-bearing effector cells) for cell-mediated 

inhibition.  In such examples, development of intracellular parasites is blocked by 

triggering of both FcγRIIa and FcγRIIIa but the host cell is not killed (135, 136). 

Interaction of antibodies with FcR of effector cells 

As mentioned above, FcR of effector cells can be triggered by antigen-bound 

antibodies by non-specific binding of the Fc portion of the immune complex.  The FcR 

most responsible for the induction of phagocytosis of opsonized (marked) microbes is 

the FcγR family of receptors that recognize IgG isotypes (137). This family includes 

FcγRI (CD64), FcγRIIA (CD32), FcγRIIB (CD32), FcγRIIIA (CD16a), and FcγRIIIB 

(CD16b), each with different affinity for IgG and their sub-isotypes.  Non-specific 

binding of antigen-bound antibodies to FcR can trigger this receptor to contribute to 

protection against intracellular pathogens (27, 96, 138, 139) by: altering the 

inflammatory response via cytokine production (96); activating complement and 

neutralizing immunomodulatory microbial products (113); stimulating a respiratory 
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burst (114); and, enhancing production of microbial oxidants (114), antigen presentation 

(115, 116), phagocytosis (61), and antibody-dependent cellular cytotoxicity.  

Non-classical mechanisms 

Non-classical mechanisms by which antibodies mediate protection against 

infection by intracellular pathogens include: 1) intracellular antibodies, 2) intracellular 

FcR, and, 3) non-specific engagement of FcRs. 

Intracellular antibodies 

Antibodies can enter infected cells through pinocytosis and be transported 

intracellularly to mediate their effects in the intracellular space (26, 140).  In the 

bacterial phagosome they may neutralize toxins or viruses (9, 27, 141-143), and in the 

nucleus they may bind to eukaryotic chromatin and trigger transcriptional responses 

which could interfere with the course of infection of intracellular pathogens.  Incubation 

of Mtb ingested by macrophages with specific antibodies inhibits intracellular 

replication (144), possibly by the same intracellular transport of neutralizing antibodies 

described above (145).  Antibodies can bind to intracellular pathogens and alter 

transcriptional expression of cell wall constituents (e.g., reduced polysaccharide release 

in C. neoformans (146) and reduced mycolic acid content in Mtb (147)) which interferes 

with microbial pathogenesis by reducing biofilm formation and changing bacterial 

biochemistry (55, 148). 
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Intracellular FcR 

The tripartite motif-containing 21 (TRIM21) is an intracellular FcR that binds 

IgGs bound to pathogens (mainly viruses) from both humans and rodents (149). The 

interaction between TRIM21 and IgG is highly conserved in mammals. It allows 

phagocytic and nonphagocytic cells to resolve intracellular pathogen infection and viral 

replication by binding to internalized antibody-coated cytosolic viruses and bacteria and 

targeting them for proteasomal degradation by auto-ubiquitination that targets proteins to 

the proteasome for degradation (150).  Other than targeting apoptotic cells for 

phagocytosis (149), TRIM21 predominantly neutralizes viruses, such as adenovirus 

(150-152), nonenveloped viruses (150, 152), but also neutralizes certain bacteria, 

(Salmonella enterica) (153).  Interestingly, the number of antibodies required for 

neutralization by TRIM21 are low: 5–6 antibodies per virus particle are sufficient to 

neutralize rhinovirus (154) and 1–4 for poliovirus (155, 156).  Another intracellular FcR 

is the neonatal Fc receptor (FcRn) which ensures protection of the neonate and adult 

hosts against a variety of pathogens for which antibodies are protective (157).  The FcRn 

structurally resembles the major histocompatibility class I (MHC-I) molecules and 

enables transportation of IgG molecules across cells without targeting them to lysosomes 

(157).  This is possible due to its ability to bind with high affinity to IgG molecules only 

at acidic pH (<6.5) (such as in acidic environment of endocytic vacuoles) but not at 

neutral or higher pH (physiological pH) (157).  This is necessary, for example, for FcRns 

found in the intestinal epithelium of neonates for efficient transportation of IgG from the 

slightly acidic intestinal lumen to the basolateral side of the epithelium where the pH is 

neutral to slightly basic (158).  During the short period of time during which neonates 
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have FcRns, antibodies derived from colostrum are transported from the intestinal lumen 

by transcytosis across epithelial cells into the circulation of the neonate to protect them 

from infections (159).  FcRns located in the epithelium of the intestinal lumen can also 

mount effective immune responses against epithelial pathogens by: 1) transporting the 

pathogen-specific IgG from the systemic circulation across the epithelial barrier into the 

intestinal lumen; 2) inhibiting the adhesion and/or invasion of the bacterium of the 

invading pathogen; 3) mediating transcytosis of IgG/bacteria complexes into the lamina 

propria; and, 4) induction of an antigen-specific immune response induced by DCs that 

are able to activate antigen-specific acquired immune responses by CD4+ T cells and 

their expansion within regional lymphoid structures and associated peripheral tissues 

(157).  FcRn expression in the intestinal, genitourinary, and respiratory tract epithelium 

enables the transmucosal transportation of pathogen-specific IgG to prevent colonization 

and invasion of pathogenic bacteria and viruses infections (160).  FcRns have also been 

found in human neutrophils where they facilitate IgG-mediated bacterial phagocytosis 

by translocating IgG-opsonized bacteria from neutrophil granules to nascent phagosomes 

upon phagocytosis(161).  

Non-specific engagement of FcRs 

Engagement of FcRs mediates intracellular killing by altering microbial 

physiology (55, 146), or by targeting immune complexes to lysosomes for degradation 

(FcR-mediated lysososmal targeting) (92, 162).  FcR-mediated lysosmal targeting of 

intracellular pathogens modifies intracellular signaling leading to phagolysosomal fusion 

of intracellular pathogens that would otherwise evade lysosomal fusion for its 
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degradation (163).  There is evidence that equine IgG1, IgG4/7, and IgG3/5 likely interact 

with FcRs on effector cells (67, 164) and contribute to protection against R. equi (46, 

165, 166).  The interaction of IgG1 and IgG4/7 with FcγR elicit a strong respiratory burst 

from equine lymphocytes (67), and mediate efficient phagocytosis of  

R. equi by equine neutrophils and alveolar macrophages (71, 114, 167).  Studies show 

when antibody-opsonized Mtb interacts with FcR (FcɛRII-CD23 or FcγIIIa) on 

macrophages, it mediates controlled bacterial replication within mature phagosomes (9, 

139).  Although the role of FcR-mediated protection against R. equi is not fully 

understood, bacterial entry of antibody-opsonized R. equi via the FcR could potentially 

alter its fate by inducing intracellular killing (67).  

A novel non-classical mechanism 

Recently, the laboratory of our collaborator, Gerald Pier has found evidence for 

the possibility of another non-classical mechanism by which antibodies mediate 

protection against intracellular R. equi (70).  PNAG antigen was identified on the surface 

of infected macrophages but not uninfected macrophages, indicating the antigen 

originated from the intracellular bacteria (70).  The Pier laboratory proposes that when 

R. equi infects macrophages, the polysaccharide PNAG from the R. equi is released in 

the form of extracellular vesicles from infected cellular compartments and becomes 

embedded in the surface of the infected macrophage.  These PNAG antigens serve as 

targets for anti-PNAG antibodies to identify infected cells and, along with complement 

and neutrophils, to lyse the cells, thereby releasing the intracellular microbes, which are 

then killed by classic opsonic killing involving complement and neutrophils (70).  
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However, direct evidence is lacking that these PNAG molecules are associated with 

rhodococcal membranes embedded in the equine macrophage membrane, or that the 

cells are targeted by antibodies for destruction by equine neutrophils. Nor is it 

established whether this mechanism occurs in vivo to control infection of R. equi in the 

lungs of foals.   

It thus will be necessary to conduct experiments showing PNAG to be associated 

with bacterial membranes found embedded in the membrane of R. equi-infected, but not 

uninfected, foal alveolar macrophages in vitro.  Foal alveolar macrophages infected in 

vitro with live, virulent R. equi could be used for the microscopic identification of 

PNAG on R. equi vesicles embedded on the surface of foal alveolar macrophages using 

monoclonal antibodies against PNAG and membrane dyes of different absorbent 

wavelengths and as a target cell for opsonic killing by equine neutrophils.  It also will be 

necessary to demonstrate that anti-PNAG antibodies induce significantly greater opsonic 

killing of R. equi-infected alveolar macrophages than of uninfected alveolar 

macrophages in the presence of equine complement and neutrophils; macrophages could 

be infected either in vitro or recovered from infected (and uninfected control) foals.  

Correlation of in vitro effects with in vivo protection against R. equi would provide 

compelling evidence of the existence of this proposed new mechanism of antibody-

mediated protection against intracellular infection.    

Conclusions 

A full understanding of immunity of foals to R. equi remains elusive.  

Nevertheless, it appears that antibodies can mediate protection in foals.  Having a fuller 
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understanding of the mechanisms of this protection is greatly needed to improve control 

and prevention of this disease.  Moreover, lessons learned by studying R. equi should 

have relevance to understanding the role of antibodies in mediating protection against 

other intracellular bacteria. 
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CHAPTER II 

ANTIBODY TO POLY-N-ACETYL GLUCOSAMINE PROVIDES PROTECTION 

AGAINST INTRACELLULAR PATHOGENS: MECHANISM OF ACTION AND 

VALIDATION IN HORSE FOALS CHALLENGED WITH RHODOCOCCUS EQUI* 

Synopsis 

Immune correlates of protection against intracellular bacterial pathogens are 

largely thought to be cell-mediated, although a reasonable amount of data supports a role 

for antibody mediated protection.  To define a role for antibody-mediated immunity 

against an intracellular pathogen, Rhodococcus equi, that causes granulomatous 

pneumonia in horse foals, we devised and tested an experimental system relying solely 

on antibody-mediated protection against this host-specific etiologic agent.  Immunity 

was induced by vaccinating pregnant mares 6 and 3 weeks prior to predicted parturition 

with a conjugate vaccine targeting the highly conserved microbial surface 

polysaccharide, poly-N-acetyl glucosamine (PNAG).  We ascertained antibody was 

transferred to foals via colostrum, the only means for foals to acquire maternal antibody.  

Horses lack transplacental antibody transfer.  Next, a randomized, controlled, blinded 

challenge was conducted by inoculating at ~4 weeks of age ~106 cfu of R. equi via 

intrabronchial challenge.  Eleven of 12 (91%) foals born to immune mares did not 

develop clinical R. equi pneumonia, whereas 6 of 7 (86%) foals born to unvaccinated 

                                                 

* Reprinted with permission from “Antibody to Poly-N-acetyl glucosamine provides protection against 
intracellular pathogens: Mechanism of action and validation in horse foals challenged with Rhodococcus 
equi” by Colette Cywes-Bentley, Joana N. Rocha, Angela I. Bordin, et al. PLoS Pathog. 2018; 
14(7):e1007160, Copyright [2018] by Public Library of Science (PLOS) 
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controls developed pneumonia (P = 0.0017).  In a confirmatory passive immunization 

study, infusion of PNAG-hyperimmune plasma protected 100% of 5 foals against  

R. equi pneumonia whereas all 4 recipients of normal horse plasma developed clinical 

disease (P = 0.0079). Antibodies to PNAG mediated killing of extracellular and 

intracellular R. equi and other intracellular pathogens.  Killing of intracellular organisms 

depended on antibody recognition of surface expression of PNAG on infected cells, 

along with complement deposition and PMN assisted lysis of infected macrophages.  

Peripheral blood mononuclear cells from immune and protected foals released higher 

levels of interferon-γ in response to PNAG compared to controls, indicating vaccination 

also induced an antibody-dependent cellular release of this critical immune cytokine.  

Overall, antibody-mediated opsonic killing and interferon-γ release in response to PNAG 

may protect against diseases caused by intracellular bacterial pathogens. 

Introduction 

Correlates of cellular and humoral immunity to major intracellular, non-viral 

pathogens capable of informing vaccine development are incompletely understood. It is 

unknown which ones can form the basis of a highly effective vaccine to prevent diseases 

such as tuberculosis (TB).  Protection studies conducted to date, primarily in laboratory 

rodents and non-human primates, have not led to an effective human vaccine for such 

pathogens (168, 169) outside of the limited efficacy of the live Bacillus Calmette-Guerin 

whole-cell vaccine against TB (169-171).  Rhodococcus equi is a Gram-positive, 

facultative intracellular pathogen carrying an essential virulence plasmid that primarily 

infects alveolar macrophages of horse foals following inhalation.  R. equi replicates 
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within a modified phagocytic vacuole, with survival dependent on the virulence plasmid 

preventing phagosome-lysosome fusion, resulting in a granulomatous pneumonia that is 

pathologically similar to that caused by Mycobacterium tuberculosis infection in humans 

(2).  R. equi also causes extrapulmonary disorders including osseous and intra-abdominal 

lymphadenitis (1, 2, 172).  The disease is of considerable importance to the equine 

industry (1, 2, 172), and while some reports indicate vaccination and/or passive transfer 

of hyperimmune plasma using bactrin-based or virulence associated protein A vaccines 

can reduce the severity of R. equi pneumonia (80, 173), it is generally felt that most 

attempts to date to create an effective R. equi vaccine have been unsuccessful (89, 174).  

There is no approved vaccine for R. equi in any animal species.  Presently, it can be 

solidly reasoned that cell-mediated immune (CMI) responses underlay the basis for 

natural immunity to R. equi.  Disease occurs almost exclusively in foals less than 6 

months of age, but by ~9 months of age most young horses become highly resistant to 

this pathogen (1, 2, 172, 175).  This acquired natural resistance is obviously not 

antibody-mediated inasmuch as the solid immunity to infection in healthy horses >9 

months of age, which obviously includes pregnant mares, is not transferred to 

susceptible foals via antibody in the colostrum.  Colostrum is the only source of maternal 

antibody in foals and the offspring of other animals producing an epitheliochorial 

placenta.  Therefore, an effectual vaccine trial can be designed to test whether an 

antibody-eliciting immunogen is efficacious by immunization of pregnant mares that 

should lead to colostral transfer of vaccine-induced antibody to their offspring, with a 

subsequent evaluation of protective efficacy following challenge of these foals with 

virulent R. equi. R. equi synthesizes the conserved surface capsule-like polysaccharide, 
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poly-N-acetyl glucosamine (PNAG), wherein this antigen is intercalated into the same 

extracellular space as classical bacterial capsules (176) or serves as a single, 

encapsulating antigen on the surface of organisms such as Neisseria gonorrhoeae and 

non-typable Hemophilus influenzae (176).  PNAG is also expressed by fungal and 

protozoan pathogens (176).  As such, PNAG is a target for the development of a vaccine 

potentially protective against many pathogens (176, 177).  Since numerous microbes 

produce this antigen, there is natural IgG antibody in most human and animal sera (178, 

179).  But natural antibody is generally ineffective at eliciting protection against 

infection.  Natural antibodies usually poorly activate the complement pathway and thus 

ineffectively mediate microbial killing (178-180).  By removing most of the acetate 

substituents from the N-acetyl-glucosamine sugars comprising PNAG (181, 182), or 

using synthetic oligosaccharides composed of only β-1→6-linked glucosamine 

conjugated to a carrier protein such as tetanus toxoid (TT), (176, 180, 183, 184) 

complement-fixing, microbial-killing, and protective antibody to PNAG can be induced.  

A final premise justifying immunizing pregnant mares to evaluate vaccine-induced 

immunity to R. equi is that foals are considered to be infected soon after birth (7) when 

they are more susceptible to infection (69) and when their immune system is less 

effective in responding to vaccines (174, 185-187).  This precludes active immunization 

of very young foals as a strategy for vaccine evaluation against R. equi. Indeed, as part 

of our clinical evaluations of a PNAG vaccine for R. equi, we attempted to immunize 

foals starting at two days of age and were unsuccessful at inducing antibody.  Therefore, 

in order to ascertain if R. equi pneumonia could be prevented by antibody to PNAG, 

pregnant mares were vaccinated with the 5GlcNH2-TT vaccine, the transfer of 
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functional opsonic antibodies via colostrum to foals verified, and foals were challenged 

at 25-28 days of life with virulent R. equi.  The primary hypothesis of this randomized, 

controlled, blinded challenge study was that induction of complement-fixing, functional 

antibody to PNAG would prevent the development of clinical R. equi pneumonia in 

challenged foals. 

Results 

Maternal vaccination induces serum and colostral antibody to PNAG that is orally 

transferred to foals 

Mares were immunized twice approximately 6 and 3 weeks prior to their 

estimated date of parturition (based on last known breeding date) with 125 or 200 μg of 

the 5GIcNH2 vaccine conjugated to TT (AV0328 from Alopexx Vaccine, LLC) 

adjuvanted with 100 μl of Specol.  Immunization of mares resulted in no detectable local 

or systemic reaction following either 1 or 2 vaccine doses except for a slightly swollen 

muscle 24 h after the first vaccination followed at day 2 by a small dependent edema that 

resolved by day 3 in a single mare.  Serum samples from mares immunized in 2015 were 

only collected on the day of foaling, so statistical comparisons with immunized mare 

titers were only made between all 7 control samples collected on the day of foaling (D0 

post-foaling (PF)) with 12 vaccinated samples collected pre-immunization, on day 21 

prior to the booster dose, and on D0 PF (S1 Fig).  When compared with IgG titers to 

PNAG in non-immune controls obtained on D0 PF, immunization of mares against 

PNAG gave rise to significant (P < 0.05) increases in total serum IgG titers as well as 

increases in the titers of equine IgG subisotypes IgG1, IgG3/5, and IgG4/7 (S1 Fig) on day 

21 after a single immunization, and on D0 PF after the booster dose.  Similarly, total IgG 
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and IgG subisotype titers were significantly higher in the colostrum obtained on the day 

of foaling from vaccinated mares compared with controls (S2 Fig).  Notably, non-

immunized mares had antibody titers to PNAG, representative of the natural response to 

this antigen commonly seen in normal animal and human sera.  Successful oral delivery 

of antibody to the blood of foals born to vaccinated mares (hereafter termed vaccinated 

foals) was shown by the significantly higher titers of serum IgG to PNAG compared 

with foals from control mares at ages 2, 28, and 56 days, but not 84 days (Fig 1A).  Foal 

serum concentrations of subisotypes IgG1, IgG3/5, and IgG4/7 to PNAG were significantly 

higher at 2, 28, and 42 days of age in the vaccinated group compared with the control 

group, and subisotype IgG1 titers remained significantly higher through age 56 days (Fig 

1B-1D).  The pattern in vaccinated foals of decreasing titers to PNAG with increasing 

age was consistent with the decay of maternally-transferred immunoglobulins. 
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Fig 1. Total IgG and IgG subisotype antibody titers to PNAG in sera of horse foals. 
Endpoint serum titers (N = 7 controls, 12 vaccinated) of IgG or IgG subisotypes are plotted 
by vaccine group as a function of age in days. A: IgG antibody end-point titers to PNAG 
were significantly higher in an age-dependent matter between foals from mares that were 
vaccinated (filled symbols n = 12) compared with titers in sera of foals from unvaccinated, 
control mares (open symbols n = 7) through Days 39-42 of life. B-D: Concentrations of 
IgG1, IgG4/7, and IgG3/5 to PNAG were significantly higher in foals in the vaccinated group 
than the unvaccinated, control group through the day indicated on the figure. Statistical 
comparisons made using linear mixed-effects modeling with individual foal as a random 
effect; NS = not significant.   
 

Orally obtained colostral antibody to PNAG protects foals against intrabronchial 

infection with R. equi 

Protection studies were undertaken using a randomized, controlled, blinded 

experimental trial design. At days 25-28 of life, foals in the study were challenged with 

~106 cfu of live R. equi contained in 40 ml of vehicle, with half of the challenge 

delivered to each lung by intrabronchial dosing with 20 ml.  Foals were followed for 

development of clinical R. equi pneumonia (Table 1) for 8 weeks.  The proportion of 
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vaccinated foals that developed R. equi pneumonia (8%; 1/12) was significantly (P = 

0.0017; Fisher's exact test) less than that of unvaccinated control foals (86%; 6/7), 

representing a relative risk reduction or protected fraction of 84% (95% C.I. 42% to 

97%, Koopman asymptotic score analysis (188)).  The duration of clinical signs 

indicative of R. equi pneumonia was significantly (P ≤ 0.027, Wilcoxon rank-sum tests) 

longer for foals from control than vaccinated mares (Table 2).  Thoracic 

ultrasonographic examination is the standard clinical technique for monitoring areas of 

pulmonary abscessation or consolidation attributed to R. equi infection.  The severity 

and duration of ultrasonographic lesions were significantly greater in foals born to 

controls than vaccinated mares (Fig 2).  Vaccinated foals that were protected against 

pneumonia had less severe clinical signs and smaller and fewer ultrasonographic lesions 

compared with control foals.  Thus, maternal vaccination against PNAG demonstrated 

successful protection against clinical R. equi pneumonia, a disease for which there is no 

current vaccine (89), using a randomized, blinded experimental challenge model. 
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Table 1. Case definition for diagnosis of R. equi clinical pneumonia. 

 

 

Table 2. Duration of clinical signs in foals from vaccinated or unvaccinated mares. 
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Fig 2. Comparison of induction and regression of ultrasonographic lesions in foals from 
vaccinated or unvaccinated mares following R. equi challenge. 
A: Kaplan-Meier survival plot comparing duration of detectable ultrasonographic lesions as 
evidence of pulmonary abscessation. Duration of pulmonary lesions identified by ultrasound was 
significantly (P = 0.008; Log-rank test) shorter for foals of vaccinated mares (solid line) versus 
those of foals from control mares (hatched line). B: Cumulative sum of maximum diameters of 
thoracic ultrasonography lesions (N = 7 Controls, 12 Vaccinated). The sums of the cumulative 
maximum diameters were significantly (P = 0.007; Wilcoxon rank-sum test) lower for foals from 
vaccinated mares (n = 12) than for unvaccinated control mares (n = 7). Open circles indicate 
foals diagnosed with pneumonia, filled circles indicate foals that did not develop pneumonia. 
Symbols with outer gray rings indicate the unvaccinated foal that did not get pneumonia and the 
vaccinated foal that did develop pneumonia.  
 

Passive infusion with hyperimmune plasma to PNAG protects foals against R. equi 

pneumonia 

To substantiate that vaccination-mediated protection was attributable to antibody 

to PNAG, hyperimmune plasma was prepared from the blood of 5GlcNH2-TT-

immunized adult horses and 2 L (approximately 40 ml/kg) infused into 5 foals at 18-24 

hours of age.  Four controls were transfused at the same age with 2 L of standard 

commercial horse plasma.  Titers of control and hyperimmune plasma IgG subisotypes 

and IgA antibody to PNAG and OPK activity against R. equi (S3 Fig) documented 

significantly higher titers of functional antibody to PNAG in the plasma from vaccinated 

donors and in foals transfused with the plasma from vaccinated donors compared to foals 
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transfused with standard plasma. After challenge with R. equi as described above, there 

was a significant reduction in clinical signs in the foals receiving PNAG-hyperimmune 

plasma, compared to controls, except for the duration of ultrasound lesions (Table 3).  

None of the 5 foals receiving PNAG-hyperimmune plasma were diagnosed with  

R. equi pneumonia, whereas 4 of 4 recipients of normal plasma had a diagnosis of 

clinical pneumonia for at least 1 day (P = 0.0079, Fisher's exact test; relative risk 

reduction or protected fraction 100%, 95% C.I. 51%-100%, Koopman asymptotic score 

(188)).  

 

Table 3. Duration of clinical signs in foals infused with control or PNAG-hyperimmune 
plasma. 

 

 

R. equi expression of PNAG in vitro and in vivo 

Using immunofluorescence microscopy, we demonstrated that 100% of 14 

virulent strains of R. equi tested express PNAG (S4 Fig).  Moreover, we found that 

PNAG was expressed in the lungs of foals naturally infected with R. equi (S5A Fig), 

similar to our prior demonstration of PNAG expression in the lung of a human infected 
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with Mtb (176).  PNAG was detected within apparent vacuoles inside R. equi-infected 

horse macrophages in vivo (S5B Fig). 

PNAG vaccine-induced opsonic antibodies mediate killing of both extracellular and 

intracellular R. equi 

Testing of the functional activity of the antibodies induced in the pregnant mares 

and in foal sera on the day of challenge demonstrated the antibodies could fix equine 

complement component C1q onto the PNAG antigen (Fig 3A).  Notably, the natural 

antibody to PNAG in sera of non-vaccinated, control mares and their foals did not 

deposit C1q onto the PNAG antigen, consistent with prior findings that natural 

antibodies are immunologically inert in these assays (178, 179, 189).  Sera from 

vaccinated foals on the day of R. equi infection mediated high levels of opsonic killing 

of extracellular R. equi whereas control foals with only natural maternal antibody to 

PNAG had no killing activity (Fig 3B), again demonstrating the lack of functional 

activity of these natural antibodies to PNAG.  As some of the vaccinated foals developed 

small subclinical lung lesions that resolved rapidly (Table 1, Fig 2) it appeared the bolus 

challenge did lead to some uptake of R. equi by alveolar macrophages but without 

development of detectable clinical signs of disease.  This observation suggested that 

antibody to PNAG led to resolution of these lesions and prevented the emergence of 

clinical disease.  Based on the finding that R. equi-infected foal lung cells expressed 

PNAG in vivo (S5 Fig), we determined if macrophages infected with R. equi in vitro 

similarly expressed PNAG, and also determined if this antigen was on the infected cell 

surface, intracellular, or both.  We infected cultured human monocyte-derived 
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macrophages (MDM) for 30 min with live R. equi then cultured them overnight in 

antibiotics to prevent extracellular bacterial survival.  To detect PNAG on the infected 

cell surface we used the human IgG1 MAb to PNAG (MAb F598) conjugated to the 

green fluorophore Alexa Fluor 488.  To detect intracellular PNAG, we next 

permeabilized the cells with ice-cold methanol and added either unlabeled MAb F598 or 

control MAb, F429 (190) followed by donkey anti-human IgG conjugated to Alex Fluor 

555 (red color).  These experiments showed there was no binding of the MAb to 

uninfected cells (S6A Fig) nor binding of the control MAb to infected cells (S6B Fig).  

However, we found strong expression of PNAG both on the infected MDM surface and 

within infected cells (S6C Fig).  Similarly, using a GFP-labeled Mtb strain (S6D and 

S6E Fig) and a GFP-labeled strain of Listeria monocytogenes (S6F Fig) we also 

visualized intense surface expression of PNAG on infected human MDMs in culture, 

even when the bacterial burden in the infected cell was apparently low. Importantly, 

within infected cultures, only cells with internalized bacteria had PNAG on their surface 

(S6G Fig), indicating the antigen originated from the intracellular bacteria. Thus, cells in 

infected cultures that did not ingest bacteria did not obtain PNAG from shed antigen or 

lysed infected cells.  
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Fig 3. Functional activity of antibody in foal sera on day of challenge with R. equi.  
A: Serum endpoint titer (N = 7 Controls, 12 Vaccinated) of deposition of equine C1q onto 
purified PNAG. P values determined by non-parametric ANOVA and pairwise comparisons by 
Dunn's procedure. NS, not significant. B: Serum endpoint titer (reciprocal of serum dilution 
achieving killing ˃ 30% of input bacteria) for opsonic killing of R. equi in suspension along with 
horse complement and human PMN. Values indicate individual titer in foal sera on day of 
challenge with R. equi, black bars the group median and error bars the 95% C.I. (upper 95% C.I 
for vaccinated foals same as median). P value by Wilcoxon rank-sum test.   
 

This finding is consistent with published reports of intracellular bacterial release 

of surface vesicles that are transported among different compartments of an infected host 

cell (191).  Next, we examined if the surface PNAG on infected cells provided the 

antigenic target needed by antibody to both identify infected cells and, along with 

complement and PMN, lyse the cells, release the intracellular microbes, and kill them by 

classic opsonic killing.  Human MDM cultures were established in vitro, infected for 30 

min with live R. equi, and then cells were washed and incubated for 24 h in the presence 

of 100 μg gentamicin/ml to kill extracellular bacteria and allow for intracellular bacterial 

growth.  Then, various combinations of the human IgG1 MAb to PNAG or the control 

MAb F429 along with human complement and human PMN were added to the cultures, 

and viable R. equi determined after 90 min.  While a low level of killing (≤ 30%) of 

intracellular R. equi was obtained with PMN and complement in the presence of the 
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control MAb, there was a high level of killing of the intracellular R. equi when the full 

compendium of immune effectors encompassing MAb to PNAG, complement, and PMN 

were present (Fig 4A).  Similarly, testing of sera from vaccinated foals on the day of 

challenge, representing animals with a low, medium, or high titer of IgG to PNAG, 

showed they also mediated titer-dependent killing of intracellular R. equi (Fig 4B).  

Measurement of the release of lactate dehydrogenase as an indicator of lysis of the 

macrophages showed that the combination of antibody to PNAG, complement, and PMN 

mediated lysis of the infected human cells (Fig 4°C), presumably releasing the 

intracellular bacteria for further opsonic killing. PNAG can be digested with the enzyme 

dispersin B that specifically recognizes the β-1→6-linked N-acetyl glucosamine residues 

(192, 193) but is unaffected by chitinase, which degrades the β-1→4-linked N-acetyl 

glucosamines in chitin.  Thus, we treated human macrophages infected for 24 h with  

R. equi with either dispersin B or chitinase to determine if the presence of surface PNAG 

was critical for killing of intracellular bacteria.  Dispersin B treatment markedly reduced 

the presence of PNAG on the infected cell surface (S7 Fig) as well as killing of 

intracellular R. equi by antibody, complement, and PMN (Fig 4D). Chitinase treatment 

had no effect on PNAG expression (S7 Fig) or killing, indicating a critical role for 

PNAG intercalated into the macrophage membrane for antibody-mediated killing of 

intracellular R. equi. 
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Fig 4. Opsonic killing of intracellular R. equi.  
A: Maximal killing of intracellular R. equi mediated by MAb to PNAG requires both 
complement (C') and PMN (C'+PMN). Background killing <5% is achieved with heat-
inactivated C' (HI C') or PMN + HI C'. B: Pre-immune, normal foal sera (NFS) or representative 
immune foal sera with low, medium (Med) or high titers to PNAG obtained on the day of 
challenge with R. equi mediate killing of intracellular R. equi along with C' and PMN. C: 
Measurement of percent cytotoxicity by LDH release shows MAb to PNAG or PNAG-immune 
sera plus C' and PMN mediate lysis of infected cells. D: Opsonic killing of intracellular R. equi 
requires recognition of cell surface PNAG. Treatment of infected macrophage cultures with 
dispersin B to digest surface PNAG eliminates killing whereas treatment with the control 
enzyme, chitinase, has no effect on opsonic killing. Bars represent means of 4-6 technical 
replicates. Depicted data are representative of 2-3 independent experiments. Bars showing <0% 
kill represent data wherein the cfu counts were greater than the control of PNAG MAb + PMN + 
HI C'.  
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Antibody to PNAG mediates intracellular killing of other intracellular pathogens 

To show that antibody to PNAG, complement, and PMN represent a general 

mechanism for killing of disparate intracellular pathogenic bacteria that express PNAG, 

we used the above described system of infected human macrophages to test killing of 

Mycobacterium avium, Staphylococcus aureus, Neisseria gonorrhoeae, Listeria 

monocytogenes and Bordetella pertussis by the human MAb to PNAG or horse serum 

from a foal protected from R. equi pneumonia.  Human MDM infected with these 

organisms expressed PNAG on the surface that was not detectable after treatment with 

dispersin B (S7 Fig).  When present intracellularly, all of these organisms were killed in 

the presence of MAb to PNAG or anti-PNAG immune horse serum, complement, and 

PMN following treatment of the infected cells with the control enzyme, chitinase, but 

killing was markedly reduced in infected cells treated with dispersin B (Figs 5A and S8).  

As with R. equi, maximal lysis of infected cells occurred when antibody to PNAG plus 

complement and PMN were present (Fig 5B and S9 Fig), although when analyzing data 

from all 5 of these experiments combined there was a modest but significant release of 

LDH with antibody to PNAG and complement alone (Fig 5B and S9 Fig).  
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Fig 5. Opsonic killing of multiple intracellular pathogens by antibody to PNAG, 
complement (C') and PMN depends on infected-cell surface expression of PNAG and is 
associated with release of LDH.  
A: Killing of 5 different intracellular bacterial pathogens by monoclonal or polyclonal antibody 
(10% concentration) to PNAG plus PMN and C' was markedly reduced following treatment of 
infected cells with Dispersin B (circles) to digest surface PNAG compared to treatment with the 
control enzyme, Chitinase (squares). Symbols represent indicated bacterial target strain. 
Horizontal bars represent means, and error bars show the 95% C.I. Symbols showing <0% kill 
represent data wherein the cfu counts were greater than the control of PNAG MAb + PMN + HI 
C'. P values: paired t-tests comparing percent intracellular bacteria killed with each 
antibody/antiserum tested after Chitinase or Dispersin B treatment. B: Opsonic killing is 
associated with maximal LDH release from infected cells in the presence of antibody to PNAG, 
C' and PMN. Bars represent means from 5 different intracellular pathogens, error bars the 95% 
C.I., overall ANOVA P value by one-way repeated measures ANOVA, pair wise comparisons 
determined by two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli.  
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Maternal PNAG vaccination and antibody transfer to foals enhances in vitro cell-

mediated immune responses against R. equi 

Cell-mediated immune (CMI) responses in vaccinated and unvaccinated, control 

foals were assessed by detecting production of IFNγ from peripheral blood mononuclear 

cells (PBMC) stimulated with a lysate of virulent R. equi. IFNγ production at 2 days of 

age was significantly (P < 0.05; linear mixed-effects modeling) lower than levels at all 

other days for both the control and vaccinated groups (Fig 6A, P value not on graph).  

There was no difference in IFNγ production between vaccinated and control foals at day 

2 of age.  Vaccinated foals had significantly higher (~10-fold) production of IFNγ in 

response to R. equi stimulation (Fig 6A) from cells obtained just prior to challenge on 

days 25-28 of life compared to unvaccinated controls.  By 56 days of age, and 4 weeks 

post R. equi infection, the controls likely made a CMI response to the lysate antigens as 

they were infected at day 25-28 of life, accounting for the lack of differences between 

vaccinates and controls in PBMC IFNγ production at day 56.  To substantiate the 

specificity of this CMI reaction from the PBMC of vaccinated foals, we demonstrated 

that stimulation of their PBMC with an R. equi lysate treated with the enzyme dispersin 

B diminished IFNγ responses by ~90% (Fig 6B).  We did not test PBMC from control 

foals for specificity of their responses to PNAG.  We also made a post hoc comparison 

of CMI responses between foals that remained healthy and foals that developed 

pneumonia. In this analysis (Fig 6C), foals that remained healthy (11 vaccinates and 1 

control) had significantly (P < 0.05; linear mixed-effects modeling) higher CMI 

responses at all ages, including age 2 days, than foals that became ill (1 vaccinate and 6 

controls), suggesting that both innate and acquired cellular immunity contribute to 
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resistance to R. equi pneumonia.  Overall, it appears the maternally derived antibody to 

PNAG sensitizes foal PBMC to recognize the PNAG antigen and release IFNγ, which is 

a known effector of immunity to intracellular pathogens. 

 

 

 

 

Fig 6. Cell-mediated immune responses of foal PBMCs.  
A: Foals (N = 7 controls, 12 vaccinated) from vaccinated mares (V) had significantly (P <0.05; 
linear mixed effects modeling) higher concentrations of IFNγ produced at 28 days of age (prior 
to challenge) than control (C) foals in response to stimulation by a lysate of R. equi. IFNγ 
production at 2 days of age was significantly (P <0.05; linear mixed-effects modeling) lower 
than those at all other days for both the control and vaccine groups (P values not shown on 
graph). B: IFNγ production from PBMC from 5 vaccinated foals at 56 and 84 days of age 
following intrabronchial infection with virulent R. equi. Stimuli included media only (negative 
control), Concanavilin A (ConA; positive control), lysate of virulent R. equi strain used to infect 
the foals (R. equi lysate); and the same lysate treated with dispersin B to digest PNAG. All 3 
stimulated groups were significantly different from the medium control at both day 56 and 84 
(Overall ANOVA for repeated measures (P < 0.0001); P  0.0070 for all pairwise comparisons to 
media only and for pairwise comparison for R. equi lysate vs. lysate plus dispersin B (indicated 
on top of graph), Holm-Sidak's multiple comparisons test. C: Foals (N = 7 controls, 12 
vaccinated) that developed pneumonia (P) had significantly (P < 0.05; linear-mixed effects 
modeling) lower concentrations of IFNγ expression at each day relative to foals that remained 
healthy (H).  
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Discussion 

In this study we tested the hypotheses that antibody to the conserved surface 

microbial polysaccharide, PNAG, could mediate protection against a significant 

intracellular pathogen of horse foals, R. equi.  Overall we supported this hypothesis by 

showing maternal immunization against the deacetylated glycoform PNAG induced 

antibodies that protected ~4-week-old foals from challenge with live, virulent R. equi.  

Mechanistically we found that vaccine-induced antibody to PNAG deposited 

complement component C1q onto the purified PNAG antigen, mediated opsonic killing 

of both extracellular and intracellular R. equi, and sensitized PBMC from vaccinated 

foals to release IFNγ in response to PNAG. It appears that this spectrum of antibody 

activity induced by the 5GlcNH2-TT vaccine were all critical to the protective efficacy 

observed.  While immunization-challenge studies such as those performed here are often 

correlative with protective efficacy against infection and disease, such studies can have 

limitations in their ability to predict efficacy in the natural setting.  Bolus challenges 

provide an acute insult and immunologic stimulus that mobilizes immune effectors and 

clears infectious organisms, whereas in a field setting, such as natural acquisition of  

R. equi by foals, infection likely occurs early in life with onset of disease signs taking 

several weeks to months to develop (1, 2).  Thus, it cannot be predicted with certainty 

that the protective efficacy of antibody to PNAG manifest in the setting of acute, bolus 

challenge will also be effective when a lower infectious inoculum and more insidious 

course of disease develops.  In the context of acute challenge, we noted that many of the 

protected, vaccinated foals developed small lung lesions after challenge that rapidly 

resolved and no disease signs were seen.  Finding such lesions by routine ultrasound 
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examination of foals that occurs on farms (194) might instigate treatment of subclinical 

pneumonia if equine veterinarians are either unwilling to monitor foals until clinical 

signs appear or unconvinced that disease would not ensue in vaccinated foals.  This 

approach could obviate the benefit of vaccination.  The protection studies described here 

for R. equi disease in foals has led to the implementation of a human trial evaluating the 

impact of infusion of the fully human IgG1 MAb to PNAG on latent and new onset TB.  

The MAb has been successfully tested for safety, pharmacokinetic, and 

pharmacodynamic properties in a human phase I test (195).  The trial in TB patients 

began in September 2017 (South African Clinical Trials Register: 

http://www.sanctr.gov.za/SAClinicalbrnbspTrials/tabid/169/Default.aspx, then link to 

respiratory tract then link to tuberculosis, pulmonary; and TASK Applied Sciences 

Clinical Trials, AP-TB-201-16 (ALOPEXX): https://task.org.za/clinical-trials/).  The 

MAb was chosen for initial evaluation to avoid issues of variable immunogenicity that 

might arise if a vaccine were tried in a TB-infected population, and to have a greater 

margin of safety in case of untoward effects of immunity to PNAG in the human setting. 

It is expected the half-life of the MAb will lead to its reduction to pre-infusion levels 

over 9 to 15 months whereas this might not be the case following vaccination.  A 

successful effect of the MAb on treatment or disease course in TB will lead to an 

evaluation of immunogenicity and efficacy of a PNAG targeting vaccine in this patient 

population.  The vaccine used here in horse mares was part of a batch of material 

produced for human phase 1 safety and immunogenicity testing (ClinicalTrials.gov 

Identifier: NCT02853617), wherein early results indicate that among a small number of 

vaccinates there were no serious adverse events and high titers of functional antibody 
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elicited in 7 of 8 volunteers given either 75 μg or 150 μg doses twice 28 days apart.  As 

part of the safety evaluation, vaccinates kept daily logs of health status, which focused 

on potential signs or symptoms of disease resulting from disruption of normal microbial 

flora.  This is not only a well-known consequence of antibiotic treatments (196), but also 

can occur from many licensed and experimental drugs (197) across all major drug 

classes.  No adverse events attributable to microflora changes were reported. In addition, 

we have previously published an extensive analysis of the low potential of antibody to 

PNAG to impact the normal microbial flora (176).  Numerous investigators have studied 

how antibodies can mediate protection against intracellular bacterial pathogens (198-

200), although specific mechanisms of immunity are not well defined.  The in vitro 

results we derived indicated that a cell infected with a PNAG-producing pathogen has 

prominent surface display of this antigen that serves as a target for antibody, 

complement and PMN to lyse the infected cell and release the intracellular organisms for 

subsequent opsonic killing.  Likely other bacterial antigens are displayed on the infected 

host cell as well, and thus this system could be used to evaluate the protective efficacy 

and mechanism of killing by antibodies to other antigens produced by intracellular 

organisms.  Although we have not investigated the basis for the appearance of PNAG in 

the plasma membrane of infected host cells, we suspect that microbial extracellular 

vesicles, known to be released by many microbes (201), are a likely source of the plasma 

membrane antigen due to trafficking from infected cellular compartments (191).  A 

notable component of the immune response in the foals associated with the protective 

efficacy of the maternally derived antibody was the release of IFNγ from PBMC in 

response to a R. equi cell lysate.  The response to the lysate significantly dropped after 
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treatment of the lysate with the PNAG-degrading enzyme dispersin B, indicating that an 

antibody-dependent cellular response to PNAG underlay the IFNγ response.  As this 

cytokine is well known to be an important component of resistance to intracellular 

pathogens (202), it was notable that the maternal immunization strategy led to an 

antibody-dependent IFNγ response from the PBMC of the vaccinated foals.  After 

challenge with R. equi, the control foals also developed an IFNγ-PBMC response.  It 

also appears that the reliance on traditional T-cell effectors recognizing MHC-restricted 

microbial antigens to provide components of cellular immunity can potentially be 

achieved with an antibody-dependent mechanism of cellular responses, further 

emphasizing how antibody can provide immunity to intracellular pathogens.  This study 

addressed many important issues related to vaccine development, including the utility of 

maternal immunization to provide protection against an intracellular pathogen via 

colostrum to immunologically immature offspring, the efficacy and mechanism of action 

of antibody to PNAG in protective efficacy, and identification of a role for antibody-

dependent IFNγ release in the response to immunization that likely contributed to full 

immunity to challenge.  The success of immunization in protecting against R. equi 

challenge in foals targeting the broadly synthesized PNAG antigen raises the possibility 

that this single vaccine could engender protection against many microbial pathogens.  

While the potential to protect against multiple microbial targets is encouraging, the 

findings do raise issues as to whether antibody to PNAG will be protective against many 

microbes or potentially manifest some toxicities or unanticipated enhancements of 

infection caused by some organisms.  Thus, continued monitoring and collection of 

safety data among animals and humans vaccinated against PNAG is paramount until the 
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safety profile of antibody to PNAG becomes firmly established.  Overall, the protective 

efficacy study in foals against R. equi has initiated the pathway to development of 

PNAG as a vaccine for significant human and animal pathogens, and barring 

unacceptable toxicity, the ability to raise protective antibodies to PNAG with the 

5GlcNH2-TT conjugate vaccine portends effective vaccination against a very broad 

range of microbial pathogens. 

Materials and methods 

Experimental design 

The objective of the research was to test the ability of maternal vaccination of 

horse mares with a conjugate vaccine targeting the PNAG antigen to deliver, via 

colostral transfer, antibody to their offspring that would prevent disease due to 

intrabronchial R. equi challenge at ~4 weeks of life. A confirmatory study using passive 

infusion of immune or control horse plasma to foals in the first 24 hours of life was also 

undertaken. The main research subjects were the foals; the secondary subjects were the 

mares and their immune responses. The experimental design was a randomized, 

controlled, experimental immunization-challenge trial in horses, with pregnant mares 

and their foals randomly assigned to the vaccine or control group. Group assignment was 

made using a randomized, block design for each year. Data were obtained and processed 

randomly then pooled after unblinding for analysis. Investigators with the responsibility 

for clinical diagnosis were blinded to the immune status of the foals. An unblinded 

investigator monitored the data collected to ascertain lack of efficacy and stopping of the 

infections if 5 or more vaccinated foals developed pneumonia. A similar design was 

used for the transfusion/passive immunization study, except for the stopping rule. 
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Samples size determination 

The sample size for the foal protection study was based on prior experience with 

this model (2, 41, 174) indicating a dose of 106 cfu of R. equi delivered in half-portions 

to the left and right lungs via intrabronchial instillation would cause disease in ~85% of 

foals. Thus, a control group of 7 foals, anticipating 6 illnesses, and a vaccinated group of 

12 foals, would have the ability to detect a significant effect at a P value of <0.05 if 75% 

of vaccinated foals were disease free using a Fisher's exact test, based on the use of the 

hypergeometric distribution that underlies the experimental design wherein there is no 

replacement of a subject into the potential experimental outcomes once it is diagnosed as 

ill. All clinical and immunological data to be collected were defined prior to the trial in 

mares and foals, and no outliers were excluded from the analysis. The primary endpoint 

was development of clinical R. equi pneumonia as defined under Clinical Monitoring 

below. Experiments were performed over 3 foaling seasons: 2015 and 2016 for the 

active immunization of pregnant mares, with results from the 2 years of study combined, 

and 2017 for the passive infusion study. 

Ethics statement 

All procedures for this study were reviewed and approved by the Texas A&M 

Institutional Animal Care and Use Committee (protocol number AUP# IACUC 2014-

0374 and IACUC 2016-0233) and the University Institutional Biosafety Committee 

(permit number IBC2014-112). The foals used in this study were university-owned, and 

permission for their use was provided in compliance with the Institutional Animal Care 
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and Use Committee procedures. No foals died or were euthanized as a result of this 

study. 

Vaccine 

Mares in the vaccine group received 125 μg (during 2015) or 200 μg (2016) of 

synthetic pentamers of β-1→6-linked glucosamine conjugated to tetanus toxoid (ratio of 

oligosaccharide to protein 35-39:1; AV0328, Alopexx Enterprises, LLC, Concord, MA) 

diluted to 900 μl in sterile medical grade physiological (i.e., 0.9% NaCl) saline solution 

(PSS) combined with 100 μl of Specol (Stimune Immunogenic Adjuvant, Prionics, 

Lelystad, Netherlands, now part of Thermo-Fischer Scientific), a water-in-oil adjuvant. 

The rationale for increasing the dose in 2016 was that some vaccinated mares had 

relatively low titers, although all foals of vaccinated mares born in 2015 were protected. 

Mares in the unvaccinated group were sham injected with an equivalent volume (1 ml) 

of sterile PSS. All pregnant mares were vaccinated or sham vaccinated 6 and 3 weeks 

prior to their estimated due dates. For the transfusion of hyperimmune plasma, adult 

horses (not pregnant) were immunized as above, blood obtained, and hyperimmune 

plasma produced from the blood by the standard commercial techniques used by Mg 

Biologics, Ames, Iowa for horse plasma products. Controls received commercially 

available normal equine plasma prepared from a pool of healthy horses. 

Study populations and experimental infection 

Twenty healthy Quarter Horse mare/foal pairs were initially included in this 

study; 1 unvaccinated mare and her foal were excluded when the foal was stillborn. The 

unvaccinated group consisted of 7 mare/foal pairs (n = 4 in 2015 and n = 3 in 2016) and 
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the vaccinated group consisted of 12 mare/foal pairs (n = 5 in 2015 and n = 7 in 2016). 

For the passive infusion of hyperimmune plasma, 9 foals were used, 4 infused with 2 L 

of commercial normal horse plasma (Immunoglo Serial 1700, Mg Biologics, Ames, IA, 

USA) and 5 were infused with 2 L of PNAG-hyperimmune plasma produced using 

standard methods by Mg Biologics. Group assignment was made using a randomized, 

block design for each year. All foals were healthy at birth and had total serum IgG 

concentrations >800 mg/dl at 48 h of life using the SNAP Foal IgG test (IDEXX, Inc., 

Westbrook, Maine, USA), and remained healthy through the day of experimental 

challenge. Immediately prior to experimental infection with R. equi, each foal's lungs 

were evaluated by thoracic auscultation and thoracic ultrasonography to document 

absence of pre-existing lung disease. To study vaccine efficacy, foals were 

experimentally infected with 1 x 106 of live R. equi strain EIDL 5-331 (a virulent, vapA-

gene-positive isolate recovered from a pneumonic foal). This strain was streaked onto a 

brain-heart infusion (BHI) agar plate (Bacto Brain Heart Infusion, BD, Becton, 

Dickinson and Company, Sparks, MD, USA). One cfu was incubated overnight at 37°C 

in 50 ml of BHI broth on an orbital shaker at approximately 240 rpm. The bacterial cells 

were washed 3 times with 1 X phosphate-buffered saline (PBS) by centrifugation for 10 

min, 3000 x g at 4ºC. The final washed pellet was resuspended in 40 ml of sterile 

medical grade PBS to a final concentration of 2.5 x 104 cfu/ml, yielding a total cfu count 

of 1 x 106 in 40 ml. Half of this challenge dose (20 ml with 5 x 105) was administered 

transendoscopically to the left mainstem bronchus and the other half (20 ml with 5 x 105) 

was administered to the right mainstem bronchus. Approximately 200 μl of challenge 
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dose was saved to confirm the concentration (dose) administered, and to verify virulence 

of the isolate using multiplex PCR (23). 

For transendoscopic infection, foals were sedated using intravenous (IV) 

injection of romifidine (0.8 mg/kg; Sedivet, Boehringer-Ingelheim Vetmedica, Inc., St. 

Joseph, MO, USA) and IV butorphanol (0.02 mg/kg; Zoetis, Florham Park, New Jersey, 

USA). An aseptically-prepared video-endoscope with outer diameter of 9-mm was 

inserted via the nares into the trachea and passed to the bifurcation of the main-stem 

bronchus. A 40-mL suspension of virulent EIDL 5-331 R. equi containing approximately 

1 x 106 viable bacteria was administered transendoscopically, with 20 ml infused into the 

right mainstem bronchus and 20 ml into the left mainstem bronchus via a sterilized 

silastic tube inserted into the endoscope channel. The silastic tube was flushed twice 

with 20 ml of air after each 20-ml bacterial infusion. Foals and their mares were housed 

individually and separately from other mare and foal pairs following experimental 

infection. 

Sample collections from mares and foals 

Colostrum was collected (approx. 15 ml) within 8 hours of foaling. Blood 

samples were collected from immunized mares 6 weeks and 3 weeks before their 

predicted dates of foaling, and on the day of foaling. Blood samples from 4 non-

vaccinated mares in the 2015 study were only collected on the day of foaling, whereas 

blood was collected from the 3 non-vaccinated mares in the 2016 study at the same time-

points as those for vaccinated mares. Blood for preparation of hyperimmune plasma was 

collected from immunized adult horses 2 weeks after the second injection of 200 μg of 
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the 5GlcNH2-TT vaccine plus 0.1 ml of Specol in a total volume of 1 ml. Blood samples 

were drawn from foals on day 2 (the day after foaling), and at 4, 6, 8, and 12 weeks of 

age. Samples at 4 weeks (25-28 days of life) were collected prior to infection. Blood was 

collected in EDTA tubes for complete blood count (CBC) testing, in lithium heparinized 

tubes for PBMC isolation, and in clot tubes for serum collection. Transendoscopic 

tracheobronchial aspiration (T-TBA) was performed at the time of onset of clinical signs 

for any foals developing pneumonia and at age 12 weeks for all foals (end of study) by 

washing the tracheobronchial tree with sterile PBS solution delivered through a triple-

lumen, double-guarded sterile tubing system (MILA International, Inc. Erlanger, KY, 

USA). 

Clinical monitoring 

From birth until the day prior to infection, foals were observed twice daily for 

signs of disease. Beginning the day prior to infection, rectal temperature, heart rate, 

respiratory rate, signs of increased respiratory effort (abdominal lift, flaring nostrils), 

presence of abnormal lung sounds (crackles or wheezes, evaluated for both 

hemithoraces), coughing, signs of depressed attitude (subjective evidence of increased 

recumbence, lethargy, reluctance to rise), and nasal discharges were monitored and 

results recorded twice daily through 12 weeks (end of study). Thoracic ultrasonography 

was performed weekly to identify evidence of peripheral pulmonary consolidation or 

abscess formation consistent with R. equi pneumonia. Foals were considered to have 

pneumonia if they demonstrated ≥ 3 of the following clinical signs: coughing at rest; 

depressed attitude (reluctance to rise, lethargic attitude, increased recumbency); rectal 
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temperature >39.4ºC; respiratory rate ≥ 60 breaths/min; or, increased respiratory effort 

(manifested by abdominal lift and nostril flaring). Foals were diagnosed with R. equi 

pneumonia if they had ultrasonographic evidence of pulmonary abscessation or 

consolidation with a maximal diameter of ≥ 2.0 cm, positive culture of R. equi from T-

TBA fluid, and cytologic evidence of septic pneumonia from T-TBA fluid. The primary 

outcome was the proportion of foals diagnosed with R. equi pneumonia. Secondary 

outcomes included the duration of days meeting the case definition, and the sum of the 

total maximum diameter (TMD) of ultrasonography lesions over the study period. The 

TMD was determined by summing the maximum diameters of each lesion recorded in 

the 4th to the 17th intercostal spaces from each foal at every examination; the sum of the 

TMDs incorporates both the duration and severity of lesions. Foals diagnosed with  

R. equi pneumonia were treated with a combination of clarithromycin (7.5 mg/kg; PO; q 

12 hour) and rifampin (7.5 mg/kg; PO; q 12 hour) until both clinical signs and thoracic 

ultrasonography lesions had resolved. Foals also were treated as deemed necessary by 

attending veterinarians (AIB; NDC) with flunixin meglumine (0.6 to 1.1 mg/kg; PO; q 

12-24 hour) for inflammation and fever. 

Immunoglobulin ELISAs 

Systemic humoral responses were assessed among foals by indirectly quantifying 

concentrations in serum by ELISA from absorbance values of PNAG-specific total IgG 

and by IgG subisotypes IgG1, IgG4/7, and IgG3/5. ELISA plates (Maxisorp, Nalge Nunc 

International, Rochester, NY, USA) were coated with 0.6 μg/ml of purified PNAG (203) 

diluted in sensitization buffer (0.04M PO4, pH 7.2) overnight at 4ºC. Plates were washed 
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3 times with PBS with 0.05% Tween 20, blocked with 120 μl PBS containing 1% skim 

milk for 1 hour at 37°C, and washed again. Mare and foal serum samples were added at 

100 μl in duplicate to the ELISA plate and incubated for 1 hour at 37ºC. Serum samples 

were initially diluted in incubation buffer (PBS with 1% skim milk and 0.05% Tween 

20) to 1:100 for total IgG titers, 1:64 for IgG1 and IgG4/7 detection, and to 1:256 for 

IgG3/5 detection. A positive control from a horse previously immunized with the 

5GlcNH2-TT vaccine and known to have a high titer, along with normal horse serum 

known to have a low titer, were included in each assay for total IgG titers. For the 

subisotype assays, immune rabbit serum (rabbit anti-5GLcNH2-TT) was diluted to a 

concentration of 1:102,400 as a positive control and used as the denominator to calculate 

the endpoint OD ratio of the experimental OD values. The immune rabbit serum was 

used to account for inter-plate variability and negative control of normal rabbit serum 

were included with the equine serum samples. After 1 hour incubation at 37°C, the plates 

were washed 3 times as described above. For total IgG titers, rabbit anti-horse IgG 

whole molecule conjugated to alkaline phosphatase (Sigma-Aldrich, St. Louis, MO, 

USA) was used to detect binding. For IgG subisotype detection, 100 μl of goat-anti-

horse IgG4/7 (Lifespan Biosciences, Seattle, WA, diluted at 1:90,000), or goat anti-horse 

IgG3/5 (Bethyl Laboratories, Montgomery, TX, USA, diluted at 1:30,000) conjugated to 

horseradish peroxidase, or mouse anti-horse IgG1 (AbD Serotec, Raleigh, NC, USA), 

diluted at 1:25,000) were added to the wells and incubated for 1 hour at room 

temperature. For the IgG1 subisotype, goat antibody to mouse IgG (Bio-Rad, Oxford, 

England, diluted at 1:1000) conjugated to peroxidase was used for detection. Plates were 

washed again, and for the total IgG titers pNPP substrate (1 mg/ml) was added while for 
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peroxidase-conjugated antibody to mouse IgG, SureBlue Reserve One Component TMB 

Microwell Peroxidase Substrate (SeraCare, Gaithersburg, MD, USA) was added to the 

wells. Plates were incubated for 15 to 60 minutes at 22ºC in the dark. The reaction was 

stopped by adding sulfuric acid solution to the wells. Optical densities were determined 

at 450 nm by using microplate readers. Equine subisotype concentrations of PNAG-

specific IgG1, IgG4/7, and IgG3/5 were also quantified in colostrum of each mare using the 

same protocol described above for serum. Colostral samples were diluted in incubation 

buffer (PBS with 1% skim milk and 0.05% Tween 20) to 1:8,192 for IgG1, 1:4096 for 

IgG4/7 detection, and at 1:64 for IgG3/5 detection. For total IgG endpoint titers were 

calculated by linear regression using a final OD405nm value of 0.5 to determine the 

reciprocal of the maximal serum dilution reaching this value. For IgG subisotypes, an 

endpoint OD titer was calculated by dividing the experimental OD values with that 

achieved by the positive control on the same plate. 

PNAG expression by clinical isolates of R. equi 

Clinical isolates of R. equi were obtained from the culture collection at the 

Equine Infectious Disease Laboratory, Texas A&M University College of Veterinary 

Medicine & Biomedical Sciences. All strains were originally isolated from foals 

diagnosed with R. equi pneumonia and were obtained from geographically distinct 

locations. R. equi strains were grown overnight on BHI agar then swabbed directly onto 

glass slides, air dried and fixed by exposure for 1 minute to methanol at 4ºC. Samples 

were labeled with either 5 μl of a 5.2 μg/ml concentration of MAb F598 to PNAG 

directly conjugated to Alexa Fluor 488 or control MAb F429 to alginate, also directly 
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conjugated to Alexa Fluor 488, for 4 hours at room temperature. During the last 5 

minutes of this incubation, 500 nM of Syto83 in 0.5% BSA/PBS pH 7.4 was added to 

stain nucleic acids (red fluorophore). Samples were washed and mounted for 

immunofluorescent microscopic examination as described (176). 

Analysis of PNAG expression in infected horse tissues and human monocyte-derived 

macrophage cultures 

The Texas A&M College of Veterinary Medicine & Biomedical Sciences 

histopathology laboratory provided paraffinized sections of lungs obtained at necropsy 

from foals with R. equi pneumonia. Slides were deparaffinized using EzDewax and 

blocked overnight at 4°C with 0.5% BSA in PBS. Samples were washed then incubated 

with the fluorophore-conjugated MAb F598 to PNAG or control MAb F429 to alginate 

described above for 4 hours at room temperature. Simultaneously added was a 1:500 

dilution (in BSA/PBS) of a mouse antibody to the virulence associated Protein A (VapA) 

of R. equi. Binding of the mouse antibody to R. equi was detected with a donkey 

antibody to mouse IgG conjugated to Alexa Fluor 555 at a dilution of 1:250 in 

BSA/PBS. Samples were washed and mounted for immunofluorescence microscopic 

examination. To detect PNAG expression in cultured human monocyte-derived 

macrophages (MDM), prepared as described below in opsonic killing assays, the 

infected MDM were washed and fixed with 4% paraformaldehyde in PBS for 1 hour at 

room temperature. To visualize PNAG on the surface of infected cells, MDM cultures 

were incubated with the fluorophore-conjugated MAb F598 to PNAG or control MAb 

F429 to alginate for 4-6 hours at room temperature. Samples were then imaged by 
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confocal microscopy to visualize extracellular PNAG expression. Next, these same 

samples were treated with 100% methanol at 4ºC for 5 min at room temperature to 

permeabilize the plasma membrane. Samples were washed with PBS then incubated 

with either 5.2 μg/ml of MAb F598 to PNAG or MAb F429 to alginate for 1-2 hours at 

room temperature, washed in PBS then a 1:300 dilution in PBS of donkey antibody to 

human IgG labeled with Alexa Fluor 555 added for 4-6 hours at room temperature. 

Samples were washed and mounted for immunofluorescence microscopic examination. 

C1q deposition assays 

An ELISA was used to determine the serum endpoint titers for deposition of 

equine complement component C1q onto purified PNAG. ELISA plates were sensitized 

with 0.6 μg PNAG/ ml and blocked with skim milk as described above, dilutions of 

different horse sera added in 50 μl-volumes after which 50 μl of 10% intact, normal 

horse serum was added as a source of C1q. After 60 minutes incubation at 37ºC, plates 

were washed and 100 μl of goat anti-human C1q, which also binds to equine C1q, 

diluted 1:1,000 in incubation buffer, added and plates incubated at room temperature for 

60 minutes. After washing, 100 μl of rabbit anti-goat IgG whole molecule conjugated to 

alkaline phosphatase and diluted 1:1,000 in incubation buffer was added and a 1-hour 

incubation at room temperature carried out. Washing and developing of the color 

indicator was then carried out as described above, and endpoint titers determined as 

described above for IgG titers by ELISA. 
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Opsonic killing assays 

To determine opsonic killing of R. equi, bacterial cultures were routinely grown 

overnight at 37°C on chocolate-agar plates, and then killing assessed using modifications 

of previously described protocols (203). Modifications included use of EasySep Human 

Neutrophil Isolation Kits (Stem Cell Technologies Inc., Cambridge, Massachusetts, 

USA) to purify PMN from blood, and use of gelatin-veronal buffer supplemented with 

Mg2+ and Ca2+ (Boston Bioproducts, Ashland, Massachusetts, USA) as the diluent for all 

assay components. Final assay tubes contained, in a 400-μl volume, 2 x 105 human 

PMN, 10% (final concentration) R. equi absorbed horse serum as a complement source, 

2 x 105 R. equi cells and the serum dilutions. Tubes were incubated with end-over-end 

rotation for 90 minutes then diluted in BHI with 0.05% Tween and plated for bacterial 

enumeration. For intracellular opsonic killing assays, human monocytes were isolated 

from peripheral blood using the EasySep Direct Human Monocyte Isolation Kit (Stem 

Cell Technologies) and 2 x 104 cells placed in a 150 μl volume of RPMI and 10% heat-

inactivated autologous human serum in flat-bottom 96-well tissue culture plates for 5-6 

days with incubation at 37°C in 5% CO2. Differentiated cells were washed and 5 x 105 

cfu of either R. equi, M. avium, S. aureus, N. gonorrhoeae, L. monocytogenes or B. 

pertussis, initially grown on blood or chocolate agar plates at 37°C overnight in 5% CO2, 

suspended in RPMI and 10% heat-inactivated autologous human serum added to the 

human cells for 30 minutes. Next, these cells were washed and 150 μl of RPMI plus 10% 

autologous serum with 50 μg gentamicin sulfate/ml added and cells incubated for 24 

hours at 37°C in 5% CO2. For some experiments, 50 μl of 400 μg/ml of either chitinase 

(Sigma-Aldrich) or dispersin B (Kane Biotech, Winnipeg, Manitoba), a PNAG-
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degrading enzyme (192, 204), dissolved in Tris-buffered saline, pH 6.5, were added 

directly to gentamicin containing wells and plates incubated for 2 hours at 37°C in 5% 

CO2. Cell cultures were washed then combinations of 50 μl of MAb or foal serum, 50 μl 

of 30% human serum absorbed with the target bacterial strain as a complement source, 

or heat-inactivated complement as a control, and 50 μl containing 1.5 X 105 human 

PMN, isolated as described above, added. Controls lacked PMN or had heat-inactivated 

complement used in place of active complement, and final volumes were made up with 

50 μl of RPMI 1640 medium. After a 90-minute incubation at 37°C in 5% CO2, 10 μl 

samples were taken from selected wells for analysis of lysis by lactate dehydrogenase 

release, and 100 μl of trypsin/EDTA with 0.1% Triton X100 added to all wells lyse the 

cells via a 10-minute incubation at 37°C. Supernatants were diluted and plated on 

chocolate or blood agar for bacterial enumeration as described above. 

Cell-mediated immunity 

The cell-mediated immune response to vaccination was assessed by measuring 

IFNγ production from isolated horse PBMCs that were stimulated with an R. equi 

antigen lysate of strain EIDL 5-331, or the same lysate digested for 24 hours at 37°C 

with 100 μg/ml of dispersin B. The PBMCs were isolated using a Ficoll-Paque gradient 

separation (GE Healthcare, Piscataway, NJ, USA) and resuspended in 1X RPMI-1640 

media with L-glutamine (Gibco, Life Technologies, Grand Island, NY, USA), 15% fetal 

bovine serum (Gibco), and 1.5% penicillinstreptomycin (Gibco). The PBMCs were 

cultured for 48 hours at 37°C in 5% CO2 with either media only, the mitogen 

Concanavalin A (positive control; 2.5 μg/ml, Sigma-Aldrich), or R. equi lysate 
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representing a multiplicity of infection of 10. After 48 hours, supernatants from each 

group were harvested and frozen at -80°C until examined for IFNγ production using an 

equine IFNγ ELISA kit (Mabtech AB, Nacka Strand, Stockholm, Sweden) according to 

the manufacturer's instructions. Optical densities were determined using a microplate 

reader and standard curves generated to determine IFNγ concentrations in each sample 

using the Gen 5 software (Biotek, Winooski, VT, USA). 

Statistical methods 

Categorical variables with independent observations were compared using chi-

squared or, when values for expected cells were ≤5, Fisher's exact tests. For estimation 

of the 95% C.I. of the relative risk, the Koopman asymptotic score (188) was 

determined.  Continuous, independent variables were compared between 2 groups using 

either paired t-tests or Mann-Whitney tests and between > 2 groups using the Kruskal-

Wallis test with pairwise post hoc comparisons made using Dunn's procedure. 

Continuous variables with non-independent observations (i.e., repeated measures) were 

compared using linear mixed-effects modeling with an exchangeable correlation 

structure and individual mare or foal as a random effect. Survival times were compared 

non-parametrically using the log-rank test. All analyses were performed using S-PLUS 

statistical software (Version 8.2, TIBCO, Inc., Seattle, Wash, USA) or the PRISM 7 

statistical program. Mixed-effect model fits were assessed using diagnostic residual plots 

and data were transformed (log10) when necessary to meet distributional assumptions of 

modeling; post hoc pairwise comparisons among levels of a variable (e.g., age) were 
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made using the method of Sidak (205). Significance was set at P ≤ 0.05 and adjustment 

for multiple comparisons made.  
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CHAPTER III 

PNAG-SPECIFIC EQUINE IGG1 MEDIATES SIGNIFICANTLY GREATER 

OPSONIZATION AND KILLING OF RHODOCOCCUS EQUI THAN DOES IGG4/7 

Synopsis 

Rhodococcus equi is a facultative intracellular bacterial pathogen that causes 

severe pneumonia in foals 1 to 6 months of age, whereas adult horses are highly resistant 

to infection.  We have shown that vaccinating pregnant mares against the conserved 

surface polysaccharide capsule, β-1→6-linked poly-N-acetyl glucosamine (PNAG) 

elicits opsonic killing antibody that transfers via colostrum to foals and protects them 

against experimental infection with virulent R. equi.  We hypothesized that equine IgG1 

might be more important than IgG4/7 for mediating protection against R. equi infection in 

foals.  To test this hypothesis, we compared complement component 1 (C1) deposition 

and polymorphonuclear cell-mediated opsonophagocytic killing (OPK) mediated by 

IgG1 or IgG4/7 enriched from either PNAG hyperimmune plasma (HIP) or standard 

plasma.  Sub-isotype IgG1 and IgG4/7 from PNAG HIP and standard plasma were 

precipitated onto a diethylaminoethyl ion exchange column, then further enriched using 

a protein G Sepharose column.  We determined C1 deposition by ELISA and estimated 

OPK by quantitative microbiologic culture.  Anti-PNAG IgG1 deposited significantly (P 

< 0.05) more C1 onto PNAG than did IgG4/7 from PNAG HIP or Sub-isotype IgG1 and 

IgG4/7 from standard plasma.  In addition, IgG1 from PNAG HIP mediated significantly 

(P < 0.05) greater OPK than IgG4/7 from PNAG HIP or IgG1 and IgG4/7 from standard 

plasma.  Our findings indicate that anti-PNAG IgG1 is a correlate of protection against  
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R. equi in foals, which has important implications for understanding the 

immunopathogenesis of R. equi pneumonia, and as a tool for assessing vaccine efficacy 

and effectiveness when challenge is not feasible. 

Introduction 

Rhodococcus equi is a ubiquitous facultative intracellular pathogen that causes 

severe pyogranulomatous pneumonia in foals 3 weeks to 6 months of age, and is among 

the leading causes of morbidity and mortality for foals (1, 2).  Although effective 

treatments exist (82, 206-208), no vaccine to prevent R. equi pneumonia in foals is 

commercially available.  Recently, our laboratory has demonstrated that vaccination of 

pregnant mares targeting the highly conserved microbial surface polysaccharide, β-1→6-

linked poly-N-acetyl glucosamine (PNAG) protects their foals against subsequent 

intrabronchial infection with virulent R. equi (70).  Antibodies do not cross the equine 

epitheliochorial placenta during gestation (209) and thus foals are born 

agammaglobulinemic.  Consequently, vaccination of mares during late gestation was 

presumed to protect foals by antibodies transferred postnatally from mares to foals via 

colostrum.  Foals born to PNAG-vaccinated mares acquired antibody to PNAG from 

colostrum of the immunoglobulin (IgG) Sub-isotype 1 (IgG1; a.k.a., IgGa) and Sub-

isotype IgG4/7 (a.k.a., IgGb), with differences in titers between vaccinates and controls of 

the former being generally higher than those of the latter.  This finding was considered 

potentially important clinically because different equine IgG Sub-isotype are known to 

mediate different effector functions in immune responses (37, 46, 67, 165, 166).  Direct 
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comparison of the function of these Sub-isotype, however, was not determined in our 

prior study.  

Conflicting data exist regarding the role of IgG Sub-isotype in immunity to  

R. equi (37, 46, 67) and other equine pathogens (165, 166). It has been proposed that the 

predominant Sub-isotype response against R. equi determines whether a foal develops a 

protective Th1-type response (mediated by IgG1) or a non-protective Th2-type response 

(mediated by IgG3/5 and IgG4/7) (37, 46, 67).  Other studies, however, indicate that the 

IgG4/7 Sub-isotype provides protective immunity against R. equi and other intracellular 

pathogens (46, 67, 165, 166).  Immunoglobulin G can opsonize R. equi for efficient 

phagocytosis by equine polymorphonuclear cells (62, 71, 167), and both IgG1 and IgG4/7 

contribute to protection against bacterial infection by their ability to: 1) elicit a strong 

respiratory burst from equine peripheral blood mononuclear cells (67); 2) bind to Fc 

receptors (FcRs) on effector cells (67, 164); and, 3) bind complement (C’) component 1 

(C1) and activate C’ via the classical pathway (67).  Although IgG3/5 also elicits a 

respiratory burst and interacts with FcRs (67), there is contradictory evidence as to 

whether it fixes C’, or inhibits C’ fixation by IgG1 or IgG4/7 (37, 164, 210).  The 

presence of IgG3/5 antibody to R. equi is indicative of exposure to infection, but not of a 

protective immune response (211).  The finding that anti-PNAG IgG1 titers were 

generally higher relative to foals of unvaccinated mares than those of IgG4/7 in 

vaccinated and protected foals suggested that anti-PNAG IgG1 could represent a 

correlate of protective immunity in foals.  Thus, we sought to directly compare 

functional responses (viz., deposition of C1 onto PNAG and opsonophagocytic killing 

[OPK] of virulent R. equi by PMNs) of IgG1 isolated from plasma hyperimmune to 
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PNAG (PNAG HIP) with those of IgG4/7 from PNAG HIP, and with those of IgG1 or 

IgG4/7 from standard plasma. 

Results 

Enrichment of IgG sub-isotypes from equine plasma 

To compare functional responses of IgG Sub-isotype IgG1 and IgG4/7 from 

PNAG HIP and standard plasma, we first needed to enrich these Sub-isotype from 

plasma.  We used a diethylaminoethyl (DEAE) ion exchange column to enrich whole 

IgG molecules from standard commercial equine plasma and PNAG HIP, provided by 

the same manufacturer (Mg Biologics, Ames, IA) (Fig. 7).  This resulted in the release of 

IgG into chromatography fractions collected from the flow-through represented in the 

first peak in Fig. 7.  We confirmed the presence of IgG1 and IgG4/7 in this flow-through 

by enzyme-linked immunosorbent assay (ELISA) (Table 4).  We stripped the remaining 

proteins bound to the DEAE column from the column with a salt wash-out (second peak 

in Fig 7).  We monitored the quality of the IgG enrichment from equine plasma by using 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on saved 

samples of the enrichement process: the original whole plasma, the supernatant from 

dextran sulphate precipitation, the dialysate from desalination, chromatography fractions 

with whole IgG (first peak of DEAE ion exchange column in Fig. 7), and 

chromatography fractions from the column salt wash-out (second peak of DEAE ion 

exchange column in Fig. 8).  
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Fig 7. Protein profile of DEAE ion exchange column.  
First peak to the left depicts flow-through of IgG (includes IgG subclasses IgG1 and IgG4/7), 
which does not bind to the DEAE ion exchange column. The second peak to the right represents 
other proteins which were retained in the DEAE ion exchange column and were removed with a 
salt wash-out. 
 

IgG                                                                    Salt wash-out 
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Table 4. Concentrations (ng/ml) of IgG1 and IgG4/7 from the combined fractions of the 
flow-through of the DEAE ion exchange column (first peak in Fig 7). 
An ELISA plate coated with antibodies specific for either equine IgG1 or IgG4/7 
immunoglobulins detected these IgG Sub-isotype in the flow-through from PNAG hyper 
immune plasma (PNAG HIP) and standard plasma (Standard) (shown in two-fold dilutions). 
Dilutions of flow-through highlighted in orange were tested in wells coated with IgG1 and 
dilutions of flow-through highlighted in blue were tested in wells coated with IgG4/7. The 
concentration of IgG1 in the PNAG HIP and standard plasmas was detected within the range of 
concentrations set by the standard IgG1 (approx. 150 to 7 ng/ml). The Sub-isotype IgG4/7 was 
highly concentrated in the flow-through of PNAG HIP and standard plasma, as every dilution 
surpassed the concentration intervals set by the IgG4/7 standard (>209 ng/ml). Concentrations of 
each IgG Sub-isotype dilution represent the mean of the dilution in duplicate. 

 

 

Verification of IgG enrichment using sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) 

To detect potential protein loss during the enrichment process, we performed 

SDS-PAGE on samples of the different fractions obtained from the plasma enrichment 

of IgG (Fig. 8).  We found substantial amounts of albumin present in the whole 

(untouched) plasma, supernatant (after precipitation), and dialysate (after desalination), 

suggesting that there was no major protein loss.  We showed fractions from the first peak 

in Fig. 7 to be depleted of albumin, and to instead have strongly enriched bands that 

corresponded to heavy and light IgG chains, confirming presence of IgG (see Fig. 8).  

The strong band of albumin reappeared in the wash-out (second peak in Fig. 7), that had 
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only trace bands of heavy and light chains of IgG.  It should be noted that this gel was 

heavily loaded with proteins such that small amounts of protein can be detected.  This 

figure demonstrates the successful enrichment of the fractions containing predominately 

IgG that was substantiated by the results of ELISA testing (Table 4).  

 

 

Fig 8. SDS PAGE of samples from different phases of plasma enrichment.  
Columns left to right: whole serum; supernatant from dextran sulphate; dialysate after 
desalination; IgG from flow-through (from first peak to the left of DEAE in Fig 1); salt wash-out 
used to clean column of other retained proteins (from second peak of DEAE in Fig 1); and, 
molecular weight standard. Whole serum, supernatant, dialysate, and the wash-out all had robust 
bands that correspond to albumin protein (see arrows). The flow-through, containing IgG 
molecules, was clear of the albumin band and showed prominent bands that correspond to equine 
IgG heavy and light chains (see arrows). 
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Isolation of IgG1 and IgG4/7 using protein G Sepharose columns  

For the isolation of IgG1 and IgG4/7 from the flow-through in the DEAE ion 

exchange columns (first peak to the left, Fig. 7) we used a Protein G Sepharose column 

(Fig. 9).  A continual decrease in pH (represented by the green line in Fig. 9) allowed for 

the capture of IgG1 in the fractions represented in the smaller peak beneath the pH 

gradient in Fig. 9.  Further decrease in the pH allowed for the dissociation of IgG4/7 from 

the Protein G Sepharose column and its collection into the fractions represented by the 

taller peak beneath the pH gradient in Fig 3.  We confirmed the presence or absence of 

IgG1 and IgG4/7 in the eluted fractions by ELISA (Table 5). 

 

 

Fig 9. Protein profile of the isolation of IgG subisotypes using a pH gradient of 8.0 to 2.0 in 
a protein G sepharose column.  
The subisotype IgG1 was eluted into fractions (comprising of the smaller peak to the left) by a 
pH gradient (green line) while other proteins remained bound to the protein G column. Further 
decrease in pH (rise in the green line) eluted IgG4/7 into another set of fractions (represented by 
the taller peak to the right). The elution of the 2 IgG Sub-isotype at different pH values allowed 
for their isolation. Presence of these Sub-isotype in these fractions was confirmed by ELISA (see 
Table 5). 
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Table 5. Concentrations (ng/ml) of IgG1 and IgG4/7 sub-isotypes were simultaneously 
determined by ELISA from the chromatography fractions collected from the protein G 
column from Fig 9.  
Fractions 47 to 51 (highlighted in orange) corresponded to the smaller peak in Fig 9. In these 
fractions, the presence of IgG1 was detected at a peak concentration of 63.25 ng/ml. There was 
no IgG4/7 detected in these fractions. Fractions 57 to 65 (highlighted in blue) corresponded to the 
second (taller) peak in Fig 9 where the presence of IgG4/7 was detected by ELISA at a peak 
concentration of 93.9 ng/ml. There was no IgG1 detected in these fractions. Neither IgG Sub-
isotype were detected by ELISA in the remaining fractions before and after the pH gradient. 

 

 

Complement component C1q deposition of standard plasma, PNAG HIP and their IgG 

sub-isotypes  

To test for differences in classical C’ pathway activation between IgG1 and IgG4/7 

from PNAG HIP and standard plasma, we compared their ability to deposit C1 onto 

PNAG.  We found that antibodies from whole PNAG HIP (positive control) deposited 

significantly (P < 0.05; linear mixed-effects modeling, using the method of Sidak for 

pair-wise comparisons) more C1 onto PNAG than did those from whole standard plasma 

(Fig. 10), Sub-isotype IgG1 or IgG4/7 isolated from PNAG HIP, and Sub-isotype IgG1 or 
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IgG4/7 isolated from standard plasma. IgG1 isolated from PNAG HIP deposited 

significantly (P < 0.05) more C1 than did whole standard plasma, IgG4/7 derived from 

PNAG HIP, and IgG1 or IgG4/7 from standard plasma.  No other differences were 

significant.  For the PNAG HIP and Sub-isotype IgG1 and IgG4/7 derived from it, 

however, there were significant (P < 0.05; linear mixed-effects modeling using the 

method of Sidak for pair-wise comparisons) decreases of optical densities (ODs) with 

dilution.  Collectively, these results indicate that IgG1 derived from PNAG HIP 

deposited significantly (P < 0.05) more C1 onto PNAG than did IgG4/7 from PNAG HIP, 

or IgG1 or IgG4/7 isolated from standard plasma. 
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Fig 10. Impact of IgG-subisotype and source on PNAG C1q deposition.  
Model-estimated mean OD values for deposition of C1q onto PNAG for standard plasma, PNAG 
HIP, IgG1 from PNAG HIP (IgG1P), IgG4/7 from PNAG HIP (IgG4/7P), IgG1 from standard 
plasma ( IgG1S), and IgG4/7 from standard plasma (IgG4/7S). Plasmas and IgG Sub-isotype were 
serially diluted by 1:1 from 10 to 0.625 μg/ml. It should be noted that the concentration for 
plasma is reflective of IgG1 in plasma (but not IgG4/7). The OD values are derived from the 
amount of complement deposited onto plates coated with PNAG as determined by ELISA. Sidak 
method for mean comparison for concentrations with different symbols differed significantly (P 
< 0.05) from the other conditions (*PNAG HIP; #IgG1P). 

 

Determination of OPK activity using IgG sub-isotypes  

To further assess the functional capacity of each Sub-isotype, we determined 

opsonic killing of R. equi by PMNs in the presence of C’.  We used 2 negative controls: 

a bacterial control (Contrl Bact, Fig. 11) comprised of only media and R. equi, and a 

second control omitting antibodies (Contrl C’PMN, Fig. 5; presence of media, R. equi, 

equine C’, and equine PMNs).  We incubated tubes with end-over-end rotation for 90 
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minutes, and then serially diluted and plated for bacterial enumeration.  Each of the IgG 

Sub-isotype resulted in significant (P < 0.05; linear mixed-effects modeling) killing 

relative to the Contrl Bact, but the Contrl C’PMN did not differ significantly from the 

Contrl Bact (P=0.2106; linear mixed-effects modeling).  The proportion of bacteria 

surviving that were opsonized by IgG1 from PNAG HIP (mean proportion surviving, 

69%; 95% CI 61% to 78%) was significantly (P < 0.05; linear mixed-effects modeling 

using the method of Sidak for pair-wise comparisons) less than those opsonized with 

IgG1 from standard plasma (mean proportion surviving 79%; 95% CI, 70% to 87%), 

IgG4/7 from PNAG HIP (mean proportion surviving, 81%; 95% CI, 73% to 89%), and 

IgG4/7 from standard plasma (mean proportion surviving, 80%; 95% CI, 72% to 88%) 

(Fig. 11).  The proportion of bacteria surviving that were opsonized by IgG1 from PNAG 

HIP was also significantly (P < 0.05; linear mixed effects modeling using the method of 

Sidak for pair-wise comparisons ) less than that of bacteria treated without antibodies 

(Cntrl C’PMNs = 90%; [95% CI, 79% to 100%]). No other pairwise comparisons among 

treatments differed significantly (Fig. 11). 
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Fig 11. Effect of IgG-subtype and source on PMN killing of opsonized R. equi. 
Boxplot of proportional equine PMN killing of virulent R. equi when opsonized with IgG1 
derived from either PNAG HIP or standard plasma (IgG1P and IgG1S, respectively) or IgG4/7 
derived from PNAG HIP or standard plasma (IgG4/7P and IgG4/7S, respectively). Controls had 
bacteria and media only (Contrl Bact; reference category) or bacteria, media, complement (C’), 
and polymorphonuclear (PMN) cells (no antibodies; Contrl C’PMN). Triangles represent median 
values; bottoms and tops of boxes represent the 25th and 75th percentiles, respectively. Whiskers 
extend to a multiple (1.75) of the inter-quartile distance. Sidak method for mean comparison: 
boxes labelled with different letters differ significantly (P < 0.05) relative to control.  
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Discussion  

          We have previously shown that maternal vaccination with PNAG protects foals 

against experimental infection with live, virulent R. equi, and that this protection is 

likely mediated following colostral transfer to foals of maternal antibodies raised to 

PNAG (70).  Moreover, relative differences between titers of vaccinated foals and 

control foals of anti-PNAG IgG1 were greater than those for IgG4/7, suggesting anti-

PNAG IgG1 was more important for immunity to R. equi.  To further investigate this 

possibility, we compared the in vitro capacity of these 2 IgG Sub-isotype enriched from 

standard plasma and PNAG HIP to deposit C1on to PNAG) which leads to efficient 

OPK.  Our results indicate a functional basis for the observed association between 

relatively greater concentrations of IgG1 against PNAG than IgG4/7 in protected foals 

(70) supporting the importance of anti-PNAG IgG1 as a correlate of immunity against  

R. equi infection in foals.  

There is compelling evidence that antibodies can protect against intracellular 

infections, although conflicting results exist (26, 212-214).  Toxin neutralizing 

antibodies can contribute to protection against progression of R. equi pneumonia (75), 

though the protection they mediate is incomplete (1, 75, 93).  Beyond neutralizing 

activity, antigen-specific antibodies can alter inflammatory responses against certain 

intracellular pathogens through FcR-mediated signaling (27, 96, 138, 139), altering 

microbial physiology (55, 146), stimulating respiratory burst (92), opsonizing and 

activating C’ (92, 167, 215), enhancing phagocytosis (71), and via antibody-dependent 

cellular cytotoxicity of OPK (92, 162).  Activation of FcR could play an important role 

in R. equi protection, as the interaction of antibodies with FcɛRII-CD23 or FcγIIIa leads 
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to control of proliferation of ingested of Mycobacterium tuberculosis (Mtb) (139, 213, 

216), an organism similar to R. equi.  Antibody binding to the surface of the facultative 

intracellular pathogens C. neoformans (145) or Mtb (55) triggers transcriptional 

responses intracellularly that can interfere with microbial physiology.  Antibodies may 

enter cells via pinocytosis (144, 145) and mediate protection against intracellular 

pathogens by activity within infected cells.  For example, antibodies mediate protection 

against Listeria monocytogenes, by neutralizing the toxin listeriolysin within infected 

phagocytic cells; the toxin is delivered to the bacterial phagosome by intracellular 

transport (141).  

The ability of antibodies to mediate killing of intracellular pathogens can vary 

among IgG Sub-isotype.  In this study, we report that anti-PNAG IgG1 – but not anti-

PNAG IgG4/7 – mediated protective responses against R. equi. In other studies of R. equi 

infections, foals that remained healthy after experimental infection (41, 46, 84) with  

R. equi or during natural exposure (37, 38) to R. equi had high IgG1 titers against  

R. equi, which were indicative of either immunity or humoral response to R. equi.  There 

is also a link between IgG Sub-isotype and Th1 and Th2 cytokine responses (41, 217, 

218).  It is possible that IgG1 directs a Th1-type response resulting in enhanced cell-

mediated immunity (CMI) against R. equi (219-221), whereas IgG4/7 and IgG3/5 are 

associated with greater Th2 responses that do not enhance CMI (37).  A Th1 response 

has been linked to protection against R. equi in mice (30, 35, 222).  Varying protection 

among different Sub-isotype also has been observed for other intracellular pathogens 

such as Mtb, in which murine IgG Sub-isotype IgG1 and IgG3 prolonged survival of 

mice infected with Mtb that were associated with CMI (212, 222).  Arabinomannan-
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specific IgG3 elicited by a polysaccharide conjugate vaccine targeting Mtb conferred 

protection in infected mice (27, 212), possibly by altering expression of genes regulating 

bacterial metabolism (55).  Human IgG2 is responsible for immunity to certain bacterial 

infections by binding to bacterial capsular polysaccharide antigens on which it forms 

hexamers that increase its avidity for C1 (223).  Studies with C. neoformans show IgG1 - 

but not IgG3 - against a capsular polysaccharide protects against infection in mice (224).  

Opsonization of C. neoformans with IgG1 increases phagocytosis by macrophages and 

arrests intracellular fungal growth (225).  

The mechanisms by which anti-PNAG IgG1 mediates protection against R. equi 

are not fully explored, but a number of mechanistic insights have been experimentally 

derived.  It has recently been shown that PNAG derived from the surface of intracellular 

R. equi appears to be transported to the cytoplasmic membrane of infected macrophages 

(70).  The PNAG on the surface of the infected macrophages was detected by an anti-

PNAG monoclonal antibody, which could also facilitate deposition of C1 and 

chemotaxis of neutrophils to the infected cells, with subsequent lysis of the macrophages 

and release of the intracellular microbes for further opsonic killing.  Furthermore, 

antibodies to PNAG increased the release of IFNγ from PBMCs isolated from foals born 

to vaccinated mares in response to PNAG (70).  Equine Sub-isotype IgG1 could 

orchestrate interactions with other cell types by activating FcR on effector cells, and 

consequently mediating phago-lysosomal fusion within alveolar macrophages infected 

with virulent R. equi (96, 163).  The enhanced ability of equine IgG1 from PNAG HIP to 

mediate killing of R. equi could be due to higher specificity (epitope location and 

accessibility) than that of IgG4/7 to R. equi, as occurs for specific Sub-isotype in 
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mediating protection against other intracellular pathogens (26, 28, 163).  These 

mechanisms likely change as the foal’s immune system matures and requirements 

change, but more studies are needed.  

In summary, our results provide compelling evidence that equine IgG1 antibody 

to PNAG is a mediator of protective immunity to R. equi in foals from pregnant mares 

vaccinated against PNAG.  It remains to be demonstrated, however, whether anti-PNAG 

IgG1 administered to foals specifically mediates protection in vivo against either 

experimental or natural infection with R. equi.  Intracellular clearance of R. equi likely 

relies on the cooperation between innate, humoral, and CMI (27, 71) factors, as 

components of these systems are all involved in mediating protection against R. equi 

challenge.  The possibility to protect against intracellular pathogens by vaccines that 

elicit humoral immunity requires further understanding of how antibodies alter host cell-

pathogen interactions, and how antibodies interact with leukocytes to control and 

eliminate intracellular infections such as R. equi.  In horses, differences in functional 

activities of IgG Sub-isotype appear to impact such protective immunity, indicating that 

more molecular insights into protective immunity against R. equi and other similar 

pathogens can be garnered from additional studies of horse IgG Sub-isotype 

functionality. 

Materials and methods 

List of reagents and media 

1X RPMI medium 1640 [+] L-glutamine (ThermoFisher Scientific) with 5% 

heat-inactivated fetal bovine serum (ThermoFisher Scientific) as the diluent for all 
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components in polymorphonuclear (PMN) cell isolation, C’ acquisition from depleting 

R. equi specific antibodies from serum, and OPK assays.  

Standard sandwich ELISA kits (Horse IgG1 ELISA Quantitation Set and Horse 

IgG4/7 ELISA Quantitation Set, Bethyl Laboratories, Inc, Montgomery, TX, USA) to 

detect and quantify IgG sub-isotypes during the enrichemnet and isolation process.  

           ELISA buffers and solutions for: 

• Coating: 0.05 M Carbonate-Bicarbonate, pH 9.6, 

• Washing: 50 mM Tris, 0.14 M NaCl, 0.05% Tween 20, pH 8.0 

• Blocking: 50 mM Tris, 0.14 M NaCl, 1% BSA, 0.05% Tween 20, pH 8.0 

• Diluent: 50 mM Tris, 0.14 M NaCl, 1% BSA, 0.05% Tween 20, pH 8.0 

• Stopping enzymatic reaction: 0.18 M H2SO4  

Enrichment and isolation of IgG sub-isotypes IgG1 and IgG4/7  

We performed the IgG Sub-isotype isolation from plasma at the Texas A&M 

University Protein and Chemistry Laboratory, based on the method of Sugiura et al. 

(226). The plasma source used for the isolation of IgG Sub-isotype was standard, non-

immune, horse plasma with low titers to R. equi (Immunoglo Serial 1700, Mg Biologics, 

Ames, IA, USA) and PNAG HIP produced using previously described methods by Mg 

Biologics (70).  We removed the contaminants from 50 ml of plasma (either PNAG HIP 

or non-immune) using dextran sulphate to precipitate lipoproteins in the presence of 

cations such as Ca2+, and the salt (Ca2+) in the resulting protein solution (supernatant) 

using dialysis with a 5M Tris pH 8.0 buffer.  Then we passed the desalted protein 

solution through a DEAE Sepharose ion exchange column (GE Healthcare, Chicago, IL, 
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USA) to which IgG1 and IgG4/7 do not bind.  We collected the flow-through material into 

different fractions and detected presence of IgG1 and IgG4/7 by standard sandwich 

ELISA.  The flow-through fractions positive for IgG1 and IgG4/7 were bound to a Protein 

G Sepharose column (GE Healthcare) and eluted using a pH gradient ranging from 8.0 to 

2.0 to separate IgG1 from IgG4/7 on an AKTA pure chromatography system controlled by 

Unicorn (v7.0.3, GE Healthcare).  We collected the fractions in Tris buffer (1M, pH 7.5), 

combined, and concentrated using spin columns with molecular weight cutoff (MWCO) 

of 10,000 (VIVASPIN 15R, Sartorius Stedim Biotech, Goettingen, Germany). Isolation 

of IgG steps were monitored using SDS-PAGE) (60). 

ELISA for detection of IgG sub-isotypes 

We detected the concentration (in ng/ml) of IgG1 and IgG4/7 Sub-isotype 

collected from the chromatography fractions by standard sandwich ELISA.  We tested 

samples in duplicates in a 96-well plate that was coated with total horse IgG1 or IgG4/7.  

After 1 hour of incubation at room temperature (22oC), we washed the plate 5 times and 

blocked for 30 minutes at room temperature.  We washed the plate again before adding 

diluted standard and IgG Sub-isotype samples from chromatography fractions and 

incubated at room temperature for 1 hour.  Afterwards we added diluted horseradish 

peroxidase conjugated antibodies against IgG1 and IgG4/7 to the corresponding wells, and 

incubated for another hour at room temperature.  After a final wash, SureBlue Reserve 

One Component TMB Microwell Peroxidase Substrate (SeraCare, Gaithersburg, MD, 

USA) we added to the wells and incubated for 15 minutes at room temperature in the 
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dark.  We stopped the reaction before determining the optical densities at 450 nm by 

using microplate reader Synergy 2 (Biotek, Winooski, VT, USA).  

Polymorphonuclear (PMN) cell isolation 

For all procedures requiring blood in this study, blood was collected from 

university-owned donor horses using a protocol approved by the Texas A&M University 

IACUC (AUP# 2017-0440).  To isolate equine PMNs, we collected whole blood in 

plastic sodium heparin vacutainer tubes (ThermoFisher Scientific, Grand Island, NY, 

USA) by layering over Histopaque 1191 (Sigma-Aldrich Co, St. Louis, MO, USA) and 

Histopaque 1077 (Sigma-Aldrich Co), and centrifuging at 700 x g for 30 minutes at 

22°C yielded 2 opaque rings or layers.  We collected PMNs from the middle layer, 

washed once in 1X Hanks’ Balanced Salt Solution (ThermoFisher Scientific), and 

resuspended in 1X RPMI medium.  

Complement acquisition from depleting R. equi-specific antibodies from serum  

We used the C’ source from commercial equine serum (Sigma-Aldrich Co) 

diluted to a 40% solution containing R. equi which was grown overnight in brain-heart 

infusion broth and suspended to a concentration of an OD600 nm of 1.  To allow time for 

R. equi-specific antibodies in the commercial serum to bind to the R. equi cells, we 

incubated this serum/R. equi solution on ice for 30 minutes.  After this incubation time, 

we centrifuged the serum solution for 3 minutes at 6,000 x g at 4°C, discarded the pellet, 

incubated the supernatant again with R. equi at an OD600 nm of 1 for 30 minutes on ice, 

and centrifuged for 3 minutes at 6,000 x g at 4°C.  To remove residual bacterial cells we 
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filter-sterilized the supernatant through a 0.2-µm filter, and then we aliquoted, and stored 

at -80°C.  

Complement protein C1q deposition 

This assay was performed as previously described (70).  Briefly, we sensitized 

ELISA plates with PNAG and added dilutions of equine standard plasma, PNAG HIP, or 

the IgG Sub-isotype in 50-μl volumes with 50 μl of 10% intact horse serum as the source 

of C1 (Sigma-Aldrich Co).  After 60 minutes incubation at 37oC, we washed the plates 

and added 100 μl of goat anti-human C1 (Cedarlane, Burlington, NC, USA), which also 

binds to equine C1, diluted 1:1,000, and incubated the plates at room temperature for 60 

minutes.  After washing, we added 100 μl of rabbit anti-goat IgG whole molecule 

(Sigma-Aldrich Co) conjugated to alkaline phosphatase diluted to 1:2,000 and incubated 

for 1 hour at room temperature.  We finished by washing the plate and developing the 

color indicator before reading the optical densities. 

Opsonophagocytic killing (OPK) assay 

We determined the OPK of R. equi in the presence of PMNs, C’, and antibodies 

in 2-ml round-bottom tubes.  The total volume of each tube was 400 µl and comprised of 

4 x 106 equine PMN (1 x 107 cells/ml), 40% R. equi-absorbed horse serum as a C’ 

source, 4 x 106 cfu of R. equi (1 x 107 cfu/ml), and 10 µg/ml antibodies of either Sub-

isotype (IgG1 or IgG4/7) isolated from standard plasma or PNAG HIP.  We used two 

negative controls: a bacterial control (Contrl Bact), comprised only of media and R. equi; 

and a control omitting antibodies (Contrl C’PMN; presence of media, R. equi, equine C’ 
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and PMNs).  We incubated the tubes with end-over-end rotation for 90 minutes then 

serially diluted and plated for bacterial enumeration.  

Statistical analysis 

We analyzed the C1 deposition data (OD405 nm) using linear mixed-effects  

regression.  The outcome variable was the OD value and the dependent fixed variables 

were source of antibody (standard plasma, PNAG HIP, and IgG1 and IgG4/7 from either 

PNAG HIP or standard plasmas a categorical variable), concentration (as an ordered 

categorical variable), and their bivariate interaction terms, with individual experiment as 

a random effect.  The 95% confidence intervals were estimated using maximum 

likelihood methods.  For post hoc comparisons among dilutions and treatments, we used 

the method of Sidak (227), a significance level of P < 0.05.   

We analyzed the OPK data from 16 experiments conducted using PMNs from 16 

horses to compare the killing capacity of PMNs infected with either IgG1 or IgG4/7 

derived from PNAG HIP or standard plasma.  We determined the proportional killing by 

dividing the number of bacteria recovered from PMNs by the number from control 

samples.  We analyzed data using linear mixed-effects regression with the proportional 

killing as the dependent variable (standard plasma, PNAG HIP, IgG1P, IgG1S, IgG4/7P, 

and IgG4/7S), and estimated the 95% confidence intervals using maximum likelihood 

methods.  For post hoc comparisons among dilutions and treatments we used the method 

of Sidak (227), a significance level of P < 0.05.  For all linear mixed-effects regression 

models, the goodness of model fit was assessed by inspecting diagnostic residual plots 

and examining AIC and BIC values.  
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CHAPTER IV 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary of our findings 

The studies presented in this dissertation indicate that interaction of antibodies 

against the highly conserved microbial surface polysaccharide, β-1→6-linked poly-N-

acetyl glucosamine (PNAG) with different leukocytes mediated protection against intra-

bronchial infection of 1-month-old foals with virulent R. equi.  Below is a summary of 

our findings. 

Antibodies can provide immunity to intracellular pathogens 

Our results have shown that a vaccine targeting PNAG protects foals against 

experimental intra-bronchial infection with live, virulent R. equi and suggests that this 

protection is primarily antibody-mediated (please see Chapter II).  Further, our evidence 

indicates that this protection is attributable principally to anti-PNAG immunoglobulin G 

(IgG) sub-isotype 1 (IgG1) (please see Chapter III).  We theorize, based on preliminary 

results (summarized in Chapter II) that PNAG antibodies , protect against R. equi 

infections by identifying R. equi-derived PNAG embedded on the surface of infected 

macrophages causing lysis of the antibody-targeted macrophages by neutrophils and 

complement, and further killing of released intracellular R. equi by standard 

opsonophagocytic mechanisms.   
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Antibodies may indirectly prime peripheral blood mononuclear cells (PBMCs) to 

produce interferon-γ (IFNγ) 

In vitro stimulation of PBMCs from vaccinated and naturally protected foals with 

R. equi resulted in PNAG-specific release of IFNγ compared to controls.  This indicates 

PNAG vaccination also induced an antibody-dependent cellular release of this critical 

immune cytokine.  Overall, antibody-mediated opsonic killing and IFNγ release in 

response to PNAG seems to play a role in protection against diseases caused by R. equi 

and possibly other intracellular bacterial pathogens.   

 

Future Directions 

To expand our knowledge of the functional properties of these protective 

antibodies, we need to further investigate our results.  Relevant questions include the 

following. 

1) Is anti-PNAG IgG1 more effective than anti-PNAG IgG4/7 at protecting 

foals against experimental infection with live, virulent R. equi? 

2) Is PNAG identified in bacterial membranes embedded on the surface of 

alveolar macrophages? 

3) Does anti-PNAG IgG1 induce opsonic killing of R. equi-infected foal 

alveolar macrophages by neutrophils better than IgG4/7? 

4) Can alveolar macrophages be activated with anti-PNAG antibodies to kill 

intracellular R. equi? 

5) Can IFNγ produced by protected foals activate macrophages to kill 

intracellular R. equi? 
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6) By what mechanism do anti-PNAG antibodies mediate protection against 

R. equi infections? 

Is anti-PNAG IgG1 more effective than anti-PNAG IgG4/7 at protecting foals against 

experimental infection with live, virulent R. equi? 

The IgG sub-isotype IgG1 from PNAG hyperimmune plasma (HIP) seems to be 

more effective than IgG4/7 (from PNAG HIP) at mediating opsonophagocytic killing 

(OPK) of R. equi by neutrophils and depositing complement component 1q (C1q) on to 

PNAG.  These data suggest that anti-PNAG IgG1 is a correlate of protective immunity 

against R. equi.  To test this in vivo, we would need to show that transfusion of anti-

PNAG IgG1 but not anti-PNAG IgG4/7 can protect against R. equi pneumonia.  As there 

is no small animal model of R. equi pneumonia, we would have to do challenge 

experiments in foals.  We know that transfusion of 2 L of PNAG HIP protects foals 

against experimental infection with R. equi so we would need to isolate IgG1 and IgG4/7 

from the equivalent 2 L of PNAG HIP for the experiment.  Two groups of foals would 

be transfused with the equivalent of 2 L of either IgG1 or IgG4/7 from PNAG HIP within 

24 hours of birth and experimentally infected at approximately 1 month of age.  Anti-

PNAG IgG1 would be associated with protection against R. equi pneumonia if the group 

of foals transfused with this sub-isotype has significantly (P < 0.05) fewer pneumonic 

foals or if their clinical signs are significantly (P < 0.05) mitigated when compared to 

foals transfused with anti-PNAG IgG4/7. 
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Is PNAG identified in bacterial membranes embedded on the surface of alveolar 

macrophages? 

This question can be answered in vitro using fluorescently-labeled monoclonal 

antibodies and membrane dyes to microscopically identify PNAG on R. equi vesicles 

embedded in the surface of macrophages infected with live virulent R. equi but not on 

uninfected macrophages.  First, bronchoalveolar lavages (BAL) would be performed 

using foals to harvest alveolar macrophages to infect with R. equi.  Bacterial and 

macrophage membranes would be stained separately with fluorescent dyes (Deep Red 

and Green CMFDA dyes respectively) prior to in vitro infection.  Co-localization of 

PNAG detected with (orange Rhodamine Red-X) fluorescently labeled human anti-

PNAG monoclonal antibody F598 onto the deep red-stained R. equi membrane 

embedded in the green alveolar membrane of infected macrophages, and its absence in 

uninfected alveolar macrophages, will confirm that this surface PNAG came from 

bacterial vesicles within infected alveolar macrophages. 

Does anti PNAG IgG1 induce opsonic killing of R. equi-infected foal alveolar 

macrophages by neutrophils better than IgG4/7? 

This question can be answered by infecting macrophages in vitro as well as in 

vivo to see the effect of antibody-mediated OPK by neutrophils in the presence of 

complement and the different IgG sub-isotyes (IgG1 or IgG4/7) from PNAG 

hyperimmune or standard plasmas.  The efficacy of the different anti-PNAG IgG sub-

isotypes would be compared in their ability to recognize PNAG on the surface of 

infected macrophages to target them for opsonic killing by neutrophils.  Based on our 



 

87 

 

previous results, we would expect anti-PNAG IgG1 to mediate the most killing of 

infected macrophages and their intracellular R. equi.  

In the in vitro experiments, foal alveolar macrophages obtained from a BAL will 

be incubated with R. equi at a multiplicity of infection (MOI) of 10 for 45 min at 37 °C.  

These macrophages will serve as the target cells for opsonic killing by equine 

neutrophils in the presence of equine complement and the different IgG sub-isotyes.  

After incubating for 4h at 37 °C, the efficacy of the PNAG-specific antibodies mediating 

killing of R. equi can be evaluated by lysing the macrophages and enumerating bacteria 

on brain heart infusion (BHI) plates after 48h of incubation at 37 °C.  The lower the 

bacterial count will correlate with the higher efficacy of the PNAG-specific antibody 

used in the assay.  An alternative method is to use flow cytometry for bacterial 

enumeration.  Here, R. equi could be labeled with FITC or modified to produce GFP 

before infection.  After the opsonic assay, macrophages would be stained with Alexa 

Fluor 647 to detect viability.  Cells could then be analyzed by flow cytometry and the 

total number of macrophage-associated bacteria could be estimated by total fluorescence 

and the intracellular bacteria could be calculated after quenching with trypan blue and 

subtracting from the total fluorescence.  In addition, viability of intact macrophages and 

the number of intracellular and extracellular R. equi could be quantified. 

In the ex vivo experiments, macrophages recovered from BAL from 

experimentally infected foals would act as the R. equi-infected target cells for 

recognition by anti-PNAG antibodies in the OPK assay.  Bacterial enumeration would be 

determined through lysis of macrophages and plating of R. equi onto BHI plates.  If the 

results from the in vitro experiments correspond with the ex vivo experiments, then we 
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could correlate R. equi protection with anti-PNAG IgG1 antibodies in vivo through the 

new mechanism of PNAG recognition on the surface of macrophages by antibodies and 

their destruction through opsonic killing by neutrophils. 

Can alveolar macrophages be activated with anti-PNAG antibodies to kill intracellular 

R. equi? 

Above, we theorize that the R. equi-infected macrophage acts as a target cell for 

opsonic killing by neutrophils.  In this case, neutrophils seem to be the effector cells 

responsible for directly killing R. equi and clearing infections.  It would make sense that 

macrophages would be the effector cell responsible for the control and elimination of 

virulent R. equi infections, but to what extent are they actually responsible for active 

elimination of R. equi?  We have tried activating macrophages to kill intracellular  

R. equi by pre-incubating macrophages before R. equi infection with PNAG 

hyperimmune, R. equi hyperimmune, or nonimmune plasmas, and by opsonizing R. equi 

with each of those plasmas as well as each of the anti-PNAG IgG sub-isotypes and non-

immune IgG sub-isotypes before infecting macrophages.  These experiments failed to 

indicate any influence of antibodies on enhancing the killing of R. equi.  Although we 

have been unsuccessful in showing antibodies to enhance killing of R. equi by 

macrophages in vitro, we may be studying the wrong kind of macrophage.  The initial 

interaction of macrophages with soluble mediators, such as cytokines and antibodies, 

determines the functional phenotype of the cells (228).  Macrophages can be 

differentiated to become type 1 macrophages (M1), which are linked with helper T 

lymphocytes (Th) type 1 (Th1) responses or type 2 (M2) macrophages which are linked 
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with Th2 responses (228).  While M1 cells rely on IFNγ to mediate killing of 

intracellular pathogens and production of reactive oxygen species, it is the M2 cells that 

rely on ligation of their receptors for the constant region of antibodies (Fc receptors, or 

FcRs) with IgG from immune complexes to produce a Th2 response which subsequently 

decreases cellular responsiveness to IFNγ and inhibits the synthesis of reactive oxygen 

species (228).  Therefore, if R. equi-immunity in foals is attributable to deficient Th1-

type responses and relies on an antibody-mediated responses, then the macrophage is 

probably not the major effector cell responsible for clearance of R. equi infections in 

foals (1).  However, M1 cells may be indirectly activated by antibodies, because of the 

antibody-mediated IFNγ released by PBMCs of PNAG-protected foals we saw in our 

results.  Furthermore, equine IgG1 sub-isotype is associated with activation of Th1 CD4+ 

cells and IFNγ production, both of which play pivotal roles in stimulation of infected 

target cells and in activation of intracellular effector killing mechanisms (44, 46).  It 

would be interesting to repeat our experiments of infecting macrophages with antibody-

opsonized R. equi but this time, stimulating the macrophages with IFNγ and determining 

whether the macrophages in our assays are M1 or M2.  This will likely benefit our 

understanding of the role(s) of macrophages in mediating protection against R. equi 

infections. 

Can IFNγ produced by protected foals activate macrophages to kill intracellular  

R. equi? 

Maternal vaccination with PNAG and transfer of maternal antibodies to foals 

induced an antibody-dependent cellular release of IFNγ in response to R. equi 
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stimulation from PBMCs obtained from protected foals just prior to challenge.  To show 

whether the IFNγ released by PBMCs of immune foals activates macrophages to kill 

intracellular R. equi, we could stimulate PBMCs of vaccinated foals with R. equi to 

release IFNγ into the supernatant, and incubate that supernatant with R. equi-infected 

macrophages and see if there is any increase in bacterial killing.  It would also be 

important to study what other cell types PNAG antibodies could interact with other than 

lymphocytes, neutrophils, and macrophages as well as the mechanisms behind these 

interactions for a bigger picture of how the immune system orchestrates immunity 

against R. equi.  To provide cellular immunity T-cell effectors must be activated by 

recognizing microbial antigens presented to them by cell surface proteins called major 

histocompatibility complex (MHC) found, for example, on antigen presenting cells 

(APCs) such as dendritic cells (DC), B-cells, or macrophages.  This response can 

potentially be achieved with an antibodies by internalization of antigen-antibody 

immune complexes by FcR on APCs, enabling them to prime CD4+ T cells to produce 

IFNγ.  In this way, vaccine-primed CD4+ Th1 cells (or CD8+ cells) can lead to vaccine-

specific circulating T cells producing INFγ.   

By what mechanism do anti-PNAG antibodies mediate protection against R. equi 

infections?  

The mechanism by which IgG1 mediates protection against R. equi is unknown.  

For example, we don’t know if IgG1 protects by altering host cell-pathogen interactions 

or by interacting with leukocyte receptors to control and eliminate intracellular R. equi 

infections.  The specificity of antibodies will define its protection against intracellular 
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bacteria.  In particular, the different sub-isotypes may vary in efficacy against 

intracellular infections.  For example, 2 different IgG sub-isotypes can bind to a bacterial 

surface antigen with similar affinities but one may have higher affinity to FcγR and 

therefore be more protective than the other (109, 229).  Furthermore, some IgG sub-

isotypes can be more effective in complement activation than others or can even be 

associated with Th1 CD4+ T cells and IFNγ production (37, 38, 40, 67, 229).  The 

interaction of IgG1 with the FcR of a leukocyte, such as a macrophage infected with 

intracellular R. equi, could enable apoptosis and the destruction of intracellular virulent 

R. equi, by containing intracellular growth of R. equi and depriving the pathogen of its 

niche cell (230).  Activation of FcR by antibodies through the uptake of IgG-opsonized 

pathogens has shown to be important in antibody-mediated elimination of intracellular 

pathogens by inducing a respiratory burst, which produces reactive oxygen 

intermediates, enables fusion with lysosomes, and increases production of pro-

inflammatory cytokines (229, 230).  The nature of the macrophage receptor recognition, 

signaling, inflammation, and antigen presentation pathways differ during different stages 

of infection and disease, and the virulence status of the infecting R. equi strain also 

contributes to this diversity of responses (230).  Furthermore, formation of immune 

complexes and their binding to FcγR can trigger intracellular signaling pathways in 

macrophages, which are associated with microbicidal activity (27, 96, 138, 139).  The 

interaction of the expression of different cell surface receptors and pathogen initiates a 

cascade of signaling events that result in the release of soluble (cytokines) and cell-

associated antimicrobial and innate immune mediators.  These signaling pathways 
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related to the host's response to infection are unknown and depends on the site and stage 

of infection. 

Final Remarks 

Ultimately, understanding how antibodies influence the assortment of effector 

cells responsible for killing of R. equi and how they interact with each other will help us 

better understand how the PNAG vaccine mediates protection in foals.  Furthermore, 

understanding the mechanisms by which these antibodies make the difference between 

resistance and susceptibility to R. equi will allow us to uncover the mysteries behind the 

virulence of R. equi and implement these discoveries on other intracellular pathogens. 
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APPENDIX 

 

 

S1 Fig. Serum IgG and IgG subisotype titers to PNAG in immunized mare sera.  
Serum end-point titers of IgG or IgG subisotypes are plotted by vaccine group as a function of 
age in days. A: Total IgG antibody end-point titers to PNAG were significantly higher in sera of 
immunized mares at D21 and D0 PF compared with titers in sera of control mares at D0 PF. 
There was no significant (NS) difference in the IgG titers of the vaccinated mares at pre-
immunization and controls at D0 PF. B-D: Concentrations of IgG1, IgG4/7, and IgG3/5 were 
significantly higher in mares in the vaccinated group at D21 and D0 PF as indicated on the 
figure. Statistical comparisons were made by linear mixed-effects regression with 
exchangeable correlation structure, using the mare as random effect (to account for 
repeated measures) and multiple comparisons determined by the method of Sidak. 
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S2 Fig. IgG and IgG subisotype titers in mare colostra on day of foaling.  
End-point colostral titers of IgG or IgG subisotype. End-point values are plotted by vaccine 
group. A: Total IgG antibody end-point titers to PNAG were significantly higher in colostra of 
vaccinated mares (N = 10, 2 samples not tested due to limited quantities) compared with colostra 
of control mares N = 7). B: Concentrations of IgG1, IgG4/7, and IgG3/5 were significantly higher 
in colostra of mares in the vaccinated group (N = 12). Statistical comparisons were made by the 
Wilcoxon rank-sum test. 
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S3 Fig. Antibody titers to PNAG in control and hyperimmune horse plasma infused 
into newborn foals on day 1 of life.  
A: Titers of IgG subisotypes and IgA in control (open bars) and PNAG-immune 
(hatched bars) plasmas. B: horse IgG1, C: horse, IgG3/5, D: horse IgG4/7, or E: horse IgA 
in sera at day indicated on X-axis. Bars represent medians, error bars the interquartile 
ranges. OD ratios of IgG1, IgG4/7, and IgG3/5 did not differ significantly over time in 
controls but were significantly (P < 0.05) greater than age 2 days in foals transfused with 
anti-PNAG plasma at ages 28, 42, and 56 days (IgG1), or ages 28, 42, 56, and 84 for 
IgG4/7 and IgG3/5. OD ratio of IgA did not differ significantly (P > 0.05) among the 
different days for anti-PNAG-transfused foals, but controls had significantly (P < 0.05) 
higher IgA titers at age 2 days compared to control titers on days 28, 42, and 56. The OD 
ratio values for control foals' IgA on day 84 was significantly (P < 0.05) greater than 
those of control foals on days 28, 42, and 56. IgA titers between controls and anti-
PNAG-transfused foals differed significantly (P < 0.05) at day 84 only. All P values 
were determined by linear mixed-effects regression. F: Opsonic killing of R. equi EIDL 
990 by antibody in control or immune plasma. Monoclonal antibodies (MAb) were used 
as controls, as were tubes lacking PMN or complement (C') as indicated. Bars represent 
means of technical replicates. 
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S4 Fig. PNAG expression by R. equi clinical isolates. 
Designated individual clinical isolates of R. equi were reacted with either control MAb F429 to 
P. aeruginosa alginate or MAb F598 to PNAG, both directly conjugated to Alexa Fluor 488. 
Binding to PNAG on bacterial cells was visualized by immunofluorescence microscopy. Left-
hand panel in each pair shows DNA visualized by red-fluorophore Syto 83. Right-hand panel in 
each pair is green if PNAG detected by MAb F598. 
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S5 Fig. Expression of PNAG in lungs of R. equi infected foals.  
Either an uninfected control lung or lungs from foals with R. equi pneumonia were reacted with 
the indicated antibody to detect the presence of R. equi (red, antibody to VapA protein), PNAG 
(Green, MAb F598) or control MAb F429 to alginate. A: Low power (40X) sections indicating 
presence of R. equi and closely associated PNAG in infected lung. Bars = 10 μm. B: Higher 
magnification (60 X) shows individual infected cells in 2 different foal lung sections with 
PNAG-expressing R. equi contained in apparent intracellular vesicles. 
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S6 Fig. Surface and intracellular expression of PNAG in infected human MDM. 
Detection of PNAG either on the surface or within the infected cell was determined by first 
reacting cultures with MAb F598 to PNAG or control MAb F429, both directly conjugated to 
Alexa Fluor 488 (green fluorophore), on paraformaldehyde-fixed cells then washing and 
permeabilizing the cells with ice-cold methanol followed by reaction with the MAbs and 
secondary antibody to human IgG conjugated to Alexa Fluor 555 (red/orange). A-G: Cells and 
treatments indicated in figure. White bars = 10 μm. 
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S7 Fig. Human MDM cells infected with PNAG-expressing intracellular pathogens have 
high levels of the PNAG antigen on their surface that is removed by treatment with 
Dispersin B. 
PNAG on infected cell surfaces was detected by reacting cultures with MAb F598 to PNAG or 
control MAb F429, both directly conjugated to Alexa Fluor 488 (green fluorophore), on 
paraformaldehyde-fixed cells. Infected bacterial strains and treatments indicated in figure. For 
each figure, upper left quadrant shows nuclear DNA (red), upper right quadrant shows PNAG 
(green if present), lower left quadrant shows phase contrast, lower right quadrant shows co-
localization of DNA and PNAG (yellow-green to yellow to orange if present). White bars = 10 
μm. 
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S8 Fig. Opsonic killing of intracellular pathogens by antibody to PNAG, complement (C') 
and PMN depends on infected-cell surface expression of PNAG 
A-E: Killing of intracellular bacteria by antibody, PMN and C' was markedly reduced following 
treatment of infected cells with Dispersin B (open bars) to digest surface PNAG compared with 
treatment with the control enzyme, Chitinase (black bars). Depicted data are representative of 2-
3 independent experiments. Bars represent means of 6 technical replicates. Bars showing <0% 
kill represent data wherein the cfu counts were greater than the control of PNAG MAb + PMN + 
HI C'. 
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S9 Fig. Release of LDH from cells infected with intracellular pathogens following 
antibody plus immune effector treatment. 
A and B: Replicate experiments measuring release of LDH from cells infected with 
indicated pathogen treated with 10 μg/ml control or anti-PNAG monoclonal or 10% 
polyclonal antibody plus indicated immune effector. Bars indicate means of 
quadruplicates. C: Summary of LDH release for experiment in figure S9B. Mean (bars) 
and 95% C.I. (error bars) indicate release of LDH from cells infected with all five 
intracellular pathogens. Overall ANOVA P value by one-way repeated measures 
ANOVA, pair wise comparisons determined by two-stage linear step-up procedure of 
Benjamini, Krieger and Yekutieli. 
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