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ABSTRACT 

A complete inventorying of resources, under the Petroleum Resources Management 

System (PRMS), requires credible low, best, and high case forecasts at all resources 

classification levels (Reserves, Contingent resources, and Prospective resources). 

Repeatable and accepted methodology for forecasting production and calculating EURs 

for each of these classification levels are not available: current methods to forecast 

production are inadequate for undeveloped resources, as they require production or 

pressure history, are overly simplified, or are time consuming and financially 

burdensome. Additionally, these methods do not quantify the level of uncertainty 

associated with a given forecast, which is needed to comply with the low, best, and high 

forecasts (often associated with a probability, P10, P50, P90), needed for inventorying 

under PRMS framework.  

RTA has been hailed as a happy medium between empirical and numerical 

simulation techniques to forecast production in unconventional, undeveloped plays in 

that it considers the completion and reservoir mechanics of the well and of the formation 

from which it produces (like numerical simulation techniques, unlike empirical 

techniques), and is straight-forward and user-friendly (like empirical techniques, unlike 

numerical simulation techniques). RTA also, does not require production history to 

generate a production forecast.  

However, there are currently few practical methods in industry which allow for the 

probabilistic forecasting of production using RTA. While we can consider a “best 

match” (or P50) forecast generated with RTA as a 2P (i.e., best or most likely) forecast, 
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regulators and investors are far more interested in 1P (lower volume, high confidence) 

forecasts. The purpose of this work is to develop a workflow to generate a range of 

production forecasts using RTA techniques, from which probabilistic forecasts can be 

extracted. The methods involve first history-matching available production data, by 

varying critical reservoir and completion parameters to find the reservoir and completion 

parameter combinations which yield a best-fit (via least deviation calculated rate trends 

from observed rate trends). From this condensed number of best-fit history matches, 

appropriate probabilistic production forecasts for a certain well can be extrapolated.  

In this work, we show that incorporating Experimental Design (ED/DOE) 

techniques makes RTA a more practical production forecasting technique, reducing the 

number of history matches that need to be assessed, from which production forecasts can 

be generated. From this reduced set of best-fit history matches, appropriate probabilistic 

forecasts and EURs in accordance with PRMS and SEC standards, can be extracted.  
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NOMENCLATURE 

Af = Fractured area (ft2) 

Bgi = Formation volume factor 

b = Arps’ b-factor  

b’ = Intercept of normalized gas pressure vs. √𝑡 plot 

ct = Total compressibility (psi-1) 

cf = Formation compressibility (psi-1) 

Di = Arps’ decline parameter, (time-1) 

h = Formation thickness (ft) 

k = Permeability (nd) 

Lex = Lateral length (ft) 

m(pi) = Pseudo-initial pressure 

m(pwf) = Psedo-flowing well pressure 

mcp = Match parameter, and slope of normalized gas pressure vs. √𝑡 plot 

mcpT = “Target” mcp, and slope of normalized gas pressure vs. √𝑡 plot 

nf  = Number of fractures 

Pgas = Gas price ($/Mscf) or ($/MMscf) 

pi = Initial reservoir pressure (psi)  

pwf = Flowing well pressure (psi) 

qi = Initial flowrate (MMscf/ time)  

q = Production rate (MMscf/ time)  

Q = Cumulative production (MMscf) 

s = Skin factor, dimensionless 

Sg = Gas saturation (%) 

So = Oil saturation (%) 

Sw = Water saturation (%) 

t = Time (hours, days, months, years) 

telf = Time to end of linear flow (hours, days, months, years) 

xf = Fracture half-length (ft) 
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Acronyms 

BDF = Boundary-dominated flow 

DCA = Decline curve analysis 

DOE = Design of Experiments 

E&P = Exploration & Production 

ED = Experimental Design 

ELgas = Economic Limit, gas (MMscf/ month) OR (Mscf/ month) 

EUR = Estimated Ultimate Recovery (MMscf) 

FCD = Dimensionless fracture conductivity 

IRR = Internal rate of return (%) 

LOE = Lease Operating Expense ($/well/month) 

MCS = Monte Carlo Simulation 

MFHW = Multi-fractured horizontal well 

NPV = Net present value ($) 

NRI = Net Revenue Interest (%) 

OGIP = Original gas in place (MMscf) 

P10 = Value at confidence level 10% 

P50 = Value at confidence level 50% 

P90 = Value at confidence level 90% 

PRMS  = Petroleum Resources Management System 

RTA = Rate Transient Analysis 

SRV = Stimulated reservoir volume 

SSE = Sum of squared errors 

TVD = Total vertical depth (ft.) 

WI = Working Interest (%) 
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Greek Nomenclature 

Ф = Phi, porosity (%) 

µ = Viscosity (cp) 



x 

TABLE OF CONTENTS 

Page 

ABSTRACT ................................................................................................................ ii 

DEDICATION ........................................................................................................... iv 

ACKNOWLEDGEMENTS ........................................................................................ v 

CONTRIBUTORS AND FUNDING SOURCES ..................................................... vi 

NOMENCLATURE ................................................................................................. vii 

TABLE OF CONTENTS ............................................................................................ x 

LIST OF FIGURES .................................................................................................. xii 

LIST OF TABLES .................................................................................................... xv 

1. INTRODUCTION ................................................................................................ 1 

1.1 Background .................................................................................................... 1 

1.2 Status of the Question ..................................................................................... 5 

1.3 Objectives and Application ............................................................................ 7 

1.4 Current Forecasting Methods ......................................................................... 8 

1.5 Rate Transient Analysis ................................................................................ 11 

1.6 Assumptions of this work ............................................................................. 12 

2. DATA COLLECTION AND METHODS ......................................................... 15 

2.1 Identified Area of Interest ............................................................................ 15 

2.2 Analytical Modeling in Commercial Software ............................................ 17 

2.3 Data Collection ............................................................................................. 19 

2.3.1 Initial Pressure, Lateral Lengths, Fracture Stages, 
and Temperature ............................................................................ 20 

2.3.2 Formation Height and Porosity ..................................................... 21 

2.3.3 Fracture Half-Length ..................................................................... 24 

2.3.4 Permeability ................................................................................... 25 
2.4 Experimental Design .................................................................................... 26 

2.5 Workflow: using diagnostic plots to history match and forecast 
production..................................................................................................... 32 



xi 

2.6 Incorporating DOE Techniques into History Matching and Production 

Forecasting with RTA .................................................................................. 40 

2.7 Summary ...................................................................................................... 41 

3. RESULTS ............................................................................................................ 43 

3.1 Application of workflow to history match and forecast production for 

Barnett shale MFHWs .................................................................................. 43 
3.1.1 Forecasting production for Well D, 12-month history match 

and 60-month history match .......................................................... 43 
3.1.2 Identifying probabilistic forecasts for Well D, 12-month 

history match ................................................................................. 58 
3.1.3 Forecasting production for Well K, 12-month history match 

and 60-month history match .......................................................... 62 
3.1.4 Identifying probabilistic forecasts for Well K, 20-month 

history match ................................................................................. 71 

3.1.5 Examples of application of method to history match 

and forecast production ................................................................. 74 

3.1.6 Assessing reliability of methods to determine individual 

probabilistic forecasts .................................................................... 78 
3.1.7 Comparing DOE-generated forecasts with forecasts 

generated with software ................................................................. 88 
3.2 Incorporating Economic Constraints to Forecasts ........................................ 93 

3.3 Results Summary .......................................................................................... 96 

4. SUMMARY AND CONCLUSIONS .................................................................. 97 

4.1 Conclusions .................................................................................................. 99 

REFERENCES ........................................................................................................ 100 

APPENDIX .............................................................................................................. 102 



xii 

LIST OF FIGURES 

Page 

Fig. 1—Top five petroleum (and other liquid) producing countries ........................... 1 

Fig. 2—Top three natural gas producing countries, 2015 ........................................... 2 

Fig. 3—United States oil and gas proven reserves, 1966-2016 ................................... 3 

Fig. 4—PRMS resources classification matrix ............................................................ 5 

Fig. 5—Location of wells producing from the Barnett shale, 

Denton County, Texas .................................................................................. 16 

Fig. 6—Well locations overlaid on geologic maps of Barnett shale, 

Denton County, TX ..................................................................................... 22 

Fig. 7—Estimated probability distribution: porosity ................................................. 23 

Fig. 8—Estimated probability distribution: net pay thickness................................... 23 

Fig. 9—Estimated probability distribution: fracture half-length ............................... 25 

Fig. 10—Estimated probability distribution: permeability ........................................ 26 

Fig. 11—Experimental design: Efficiently maximizing the design space ................. 29 

Fig. 12—Graphical explanation of DOE terminology ............................................... 30 

Fig. 13—Gas normalized pressure vs. √𝒕 plot........................................................... 34 

Fig. 14—History Match Workflow............................................................................ 37 

Fig. 15—Incorporating DOE into the history matching process ............................... 41 

Fig. 16— Assessing mcp: Well D ............................................................................... 44 

Fig. 17—Well D, 12-month history match and forecasts, months 0-60 .................... 47 

Fig. 18—Well D, 12-month history match and forecasts, months 0-30 .................... 48 

Fig. 19—Well D, 12-month history match and forecasts, months 30-60 .................. 49 

Fig. 20—Log-log plot, Rate vs. MBT, Well D .......................................................... 50 

Fig. 21—Well D, 12-month history match and forecasts, months 0-60 .................... 51 



xiii 

Fig. 22—Well D, 12-month history match and forecasts, months 48-60 .................. 51 

Fig. 23—Well D, 60-month history match rate-time profiles, months 0-60 ............. 53 

Fig. 24—Well D, 60-month history match rate-time profiles, months 0-12 ............. 54 

Fig. 25—Well D, 60-month history match rate-time profiles, months 12-30 ........... 55 

Fig. 26—Well D, 60-month history match and forecasts, months 30-60 .................. 55 

Fig. 27— Comparison of 12-month cumulative gas production forecasts: 

Well D, 12-month history match ............................................................ 60 

Fig. 28— Comparison of 60-month cumulative gas production forecasts 

(months 40-60): Well D, 12-month history match ................................. 61 

Fig. 29— Assessing mcp: Well K ............................................................................... 62 

Fig. 30—Well K, 12-month history match and forecasts .......................................... 64 

Fig. 31—Well K, 12-month history match and forecasts, months 0-30 .................... 65 

Fig. 32—Well K, 12-month history match and forecasts, months 30-60 .................. 65 

Fig. 33—Log-log plot, Rate vs. MBT, Well K .......................................................... 68 

Fig. 34—Well K, 12-month history match and forecasts, months 0-60 

(assumed telf) ........................................................................................... 69 

Fig. 35— Comparison of 60-month cumulative gas production forecasts: 

Well K, 12-month history match ............................................................ 73 

Fig. 36— Well F, 12-month history match and production forecasts ....................... 75 

Fig. 37— Well H, 12-month history match and production forecasts ....................... 76 

Fig. 38— Well I, 15-month history match and production forecasts ........................ 76 

Fig. 39— Well J, 12-month history match and production forecasts ........................ 77 

Fig. 40—12-month cumulative production, Barnett Shale MFHWs ......................... 79 

Fig. 41—60-month cumulative production, Barnett Shale MFHWs ......................... 79 

Fig. 42—Comparing relative frequency of TVD, Barnett Shale MFHWs ................ 81 

Fig. 43—Comparing relative frequency of Lateral Lengths, 

Barnett Shale MFHWs ........................................................................... 81 



xiv 

Fig. 44—Comparing relative frequency of fracture stages, 

Barnett Shale MFHWs ........................................................................... 82 

Fig. 45—12-month cumulative production, sample set, 

Barnett Shale MFHWs ........................................................................... 83 

Fig. 46—60-month cumulative production, sample set, 

Barnett Shale MFHWs ........................................................................... 83 

Fig. 47—Well D Probabilistic forecasts: 12-month history match, identified 

from 1,000 DOE runs ............................................................................. 85 

Fig. 48— Well D Probabilistic forecasts: 12-month history match, identified 

from 250 DOE runs ................................................................................ 86 

Fig. 49—Well D Probabilistic forecasts: 12-month history match, identified 

from 125 DOE runs ................................................................................ 86 

Fig. 50—Well D Probabilistic forecasts: 12-month history match, identified 

from 45 DOE runs .................................................................................. 87 

Fig. 51— Comparing Harmony vs. DOE method forecasts, Run 941 ...................... 90 

Fig. 52— Comparing Harmony vs. DOE method forecasts, Run 447 ...................... 91 

Fig. 53— Comparing Harmony vs. DOE method forecasts, Run 119 ...................... 92 

Fig. 54—Fracture half-length probability distribution (Cherian) ............................ 103 

Fig. 55—Log-log plot, Well F ................................................................................. 104 

Fig. 56—Log-log plot, Well H ................................................................................ 104 

Fig. 57—Log-log plot, Well I .................................................................................. 105 

Fig. 58—Log-log plot, Well J .................................................................................. 105 

Fig. 59—Comparing Harmony vs. DOE method forecasts, Run 108 ..................... 106 

Fig. 60—Comparing Harmony vs. DOE method forecasts, Run 880 ..................... 106 

Fig. 61—Comparing Harmony vs. DOE method forecasts, Run 682 ..................... 107 

Fig. 62—Comparing Harmony vs. DOE method forecasts, Run 1167 ................... 107 



xv 

LIST OF TABLES 

Page 

Table 1—Parameters required for production forecasting with RTA 

in Harmony ............................................................................................. 17 

Table 2 —Input parameter descriptions ..................................................................... 20 

Table 3—Factors and Factor levels input into DOE software, estimated 

reservoir and completion parameters, Barnett Shale .............................. 45 

Table 4—Quality of matches – 12-month history match, Well D ............................. 52 

Table 5—Quality of matches: 60-month history match, Well D ............................... 57 

Table 6—Comparing 12-month EURs: Well D......................................................... 59 

Table 7—Quality of matches – 12-month history match, Well K (variable telf) ....... 67 

Table 8—Quality of matches – 12-month history match, Well K (fixed telf) ............ 70 

Table 9—Identifying Probabilistic Forecasts, Well K ............................................... 72 

Table 10—Effect of # DOE runs on Probabilistic Forecasts and P10/P90 ratio ....... 87 

Table 11— Known well parameters, required for forecasting with RTA in 

Harmony, Well D ................................................................................... 89 

Table 12— Treatment combinations which yield the best-fit history matches: 

Well D, 12-month history match ............................................................ 89 

Table 13— Comparing 60-month EURs, DOE and Harmony forecasts ................... 93 

Table 14—Economic Limit assumptions and calculations ........................................ 95 

Table 15—Key of Barnett Shale MFHWs well aliases ........................................... 102 



1 

1. INTRODUCTION

1.1 Background 

The development of unconventional plays has revolutionized the oil and gas 

industry within the United States. Resources from unconventional plays, previously 

thought to be economically and commercially inaccessible, are now prolific and 

lucrative. The development of new technologies and completion techniques in recent 

history (specifically, horizontal drilling and hydraulic fracturing technologies) have 

positioned the United States as the leading oil and gas producing country in the world, 

recently surpassing two oil giants (Saudi Arabia and Russia) in annual production rates. 

Fig. 1 presents the top six oil producing countries from 1980 to 2017, showing sharp 

production increase from the United States after 2010, which can be attributed to the 

“shale boom.” 

Fig. 1—Top five petroleum (and other liquid) producing countries. 

Reprinted from the U.S. EIA (2017) 
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Between 2005 and 2010, the rate at which the United States produced crude oil was 

on track to match or exceed the rate at which crude oil was produced by Saudi Arabia 

and Russia, two of the world’s long-leading oil and gas giants. Around 2012, U.S. 

production surpassed all other countries, becoming the world’s top oil producing 

country. (U.S. EIA, 2017). 

As of 2015, the United States was also the top natural gas producing country in the 

world, having produced 27,065 Bcf of natural gas, as shown in Fig. 2. Russia closely 

trailed United States in natural gas production, both countries far surpassing Iran, the 

world’s third top natural gas producing country at that time, which had produced less 

than 25% of United States production levels in that year (EIA, 2015).  

Fig. 2—Top three natural gas producing countries, 2015 
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Employing these new drilling and completion technologies has not only led to an 

increase in annual oil and natural gas production within the United States; these 

technologies have subsequently led to an increase in national reserves: (proved) 

reserves of crude oil and condensate, as well as natural gas reserves, from 1966-2016 

are shown in Fig. 3. The large spikes to national reserves observed between 2006 and 

2011, can also be attributed to the “shale boom” (U.S. EIA, 2017). As of 2013, the 

United States has 322.7 trillion cubic feet of gas reserves and 33.4 billion barrels of oil 

(EIA, 2012-13).  

Fig. 3—United States oil and gas proven reserves, 1966-2016. Reprinted from 

the U.S. EIA (2017) 

While there is much opportunity to develop these unconventional plays previously 

thought to be uneconomic, the geologic complexity of these plays (primarily, the 

extremely low values of permeability) makes estimating ultimate recovery in these 

plays (especially on an individual well basis) with high confidence very difficult. 
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Despite the prolific production and the success of advanced completion technologies 

in unconventional exploration and production, forecasting production and estimating 

ultimate recovery in these plays is still widely misunderstood. 

There is a considerable amount of uncertainty which currently exists in the oil and 

gas industry, whether it be estimating geologic parameters, or estimating project costs 

and revenues, and estimating total recovery estimates in these plays are no exception. 

Capen (1976) discusses the difficulty of assessing uncertainty, how we as humans tend 

to be overconfident in estimating a range of potential outcomes, much narrower than 

what exists in reality. McVay (2015) echoes this, reporting that overconfidence 

combined with a “directional bias” leads to poor estimates, and that executing plans 

based on these poor estimates can lead to unfortunate consequences: he notes that over-

promising and under-delivering has yielded “portfolio disappointment” for E&P 

companies, including NPV realizations that are a mere 30%-35% of what is initially 

estimated in some cases. Quantifying the uncertainty associated with a given EUR or 

with a given production forecast allows us to make better decisions. In short, Capen 

(1976) and others in industry have shown that our inabilities to correctly asses a range 

of outcomes can lead to serious financial consequences.  

In short, we need to disregard our biases and “guess” better, by guessing less, and 

always have a range of reasonable scenarios to root business planning and development 

decisions. Especially in the early stages of development, estimating ultimate recovery 

and, subsequently, making business development plans, is much more difficult for 

unconventional plays than it is for their conventional, geologically simpler 

counterparts. While higher uncertainty associated with a forecast in unconventional 
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plays can be attributed to the geologic complexity, having little to no knowledge of past 

production only heightens this uncertainty.  

1.2 Status of the Question 

A complete inventorying of resources, under the Petroleum Resources Management 

System (PRMS), requires credible low, best, and high case forecasts and estimates 

(resources categories) at all resources classification levels (reserves, contingent 

resources, and prospective resources). This inventorying system is explained 

graphically, in the Petroleum Resources Management System (PRMS) Matrix. The 

PRMS matrix, shown in Fig. 4, is complete with “resources classifications” (reserves, 

contingent resources, and prospective resources), and “resources categories” (level of 

certainty).  

Fig. 4—PRMS resources classification matrix 
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The PRMS “categories” (horizontal axis) furthest left within each classification 

(vertical axis) is regarded as the bucket which holds our most conservative recovery 

estimates (or as the category for the estimates in which we are most confident), while 

the category furthest right is regarded as the bucket which holds our most optimistic 

recovery estimates (or as the category where we place estimates in which we are least 

confident). As our confidence in an estimate increases, our estimate of the recoverable 

resource volume decreases: the “low” estimate is our highest-confidence estimate 

(often referred to as the “P90” estimate) and the high estimate is our lowest-confidence 

estimate (often referred to as the “P10” estimate). 

Repeatable, practical, and accepted methodology for forecasting production and 

calculating EURs at all classification and categorization levels is not available, but 

needed for unconventional resources, especially for undeveloped—contingent and 

prospective—resources. Current methods to do so are time-and money-intensive, are 

over simplified (and do not consider critical physical components of the reservoir or 

well), or require historical production rates to extrapolate an outlook for production 

rates. Probabilistic forecasts for undeveloped resources must be based solely on 

probability distributions of representative reservoir and completion parameters, since, 

for these resources classifications, there is no production history to match. This makes 

estimating production behavior extremely difficult.  

There is a need for a methodology in industry which allows us to estimate 1P, 2P, 

and 3P reserves, as well as 1C, 2C, and 3C contingent resources and “low,” “best,” and 

“high” prospective resources in unconventional plays which meet SEC and PRMS 
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standards.  The motivation for this work is to make Rate Transient Analysis (RTA) a 

more practical method to probabilistically forecast production, and estimate ultimate 

recovery in undeveloped, unconventional plays. We propose that history-matching 

limited production data (and subsequently, probabilistically forecasting production) 

with RTA could be more practical by incorporating Experimental Design (ED, or DOE) 

techniques. Introducing a practical, and physically sound method to probabilistically 

forecast production in undeveloped plays is of great value to industry, as assessing a 

range of scenarios (consistent with regulatory guidelines) of reserves, contingent 

resources, and prospective resources, is necessary for purposes of reserves disclosures 

and financial reporting purposes, for regulators and investors. In addition, quality 

inventorying of resources is integral for operating companies for budget and project 

planning purposes.  

1.3 Objectives and Application 

This work delivers a systematic workflow to probabilistically forecast production 

and estimate ultimate recovery for wells with limited production data using Rate 

Transient Analysis (RTA) and by incorporating Experimental Design, or Design of 

Experiments (ED, or DOE), techniques. By incorporating DOE techniques into the 

process of forecasting production with RTA, the number of forecasts required to form 

a satisfactory and valid probabilistic range of outcomes is systematically reduced. This 

subsequently reduces the computational and analysis time required to assemble this 

range of possible outcomes, which is especially beneficial for project planning in 
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unconventional plays, as thousands of wells actively continue to be planned and drilled 

in these plays.  

1.4 Current Forecasting Methods 

Current methods to probabilistically forecast production are inadequate for 

undeveloped resources in unconventional plays, as they often require production 

history, or are overly simplistic, making them unsuitable for capturing the geologic and 

flow complexities of unconventional plays. Currently available methods to forecast 

production which do have the capacity to capture these complexities, however, are 

regarded as so detailed and specific that generating large numbers of forecasts to 

generate a probabilistic range of forecasts becomes time-consuming and financially 

burdensome. These methods also come with a steep learning curve, making them 

unattractive to a wide audience.  

We review some popular methods used to estimate reserves and resources volumes 

and to forecast production here; the application of these methods is dependent upon the 

amount of production data available (and whether it is available), on the reservoir and 

well information available, and on the characterization of the reservoir. We also address 

the limitations of each method as they relate to estimating ultimate recovery and 

production forecasting in undeveloped, unconventional plays. 

• Volumetric Analysis. Volumetric analysis is a simple, physically sound

method to estimate reserves and resources volumes; however, this method requires 

knowledge of recovery factors, and knowledge of parameters used to estimate drainage 

volume such as formation thickness, drainage area, porosity, initial water saturation, 
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and initial reservoir pressure. While Monte Carlo Simulation (MCS) and other 

probabilistic methods could be used to develop a range of possible recovery volumes 

with volumetric analysis, if the required input parameters are not known accurately, 

estimated ranges of recovery would be erroneous. Additionally, volumetric analysis 

does not help us to forecast production in with time. The heterogeneity in 

unconventional plays also introduces a potential challenge in accurate estimation of 

volumes in place.  

• Material Balance Analysis (MBA). Material balance can be used to forecast

gas production, and, like volumetric analysis, is simple in application. However, MBA 

requires average reservoir pressure data to forecast production; when evaluating 

undeveloped resources plays, this information is unavailable. This method also does 

not take into consideration many other physical parameters of the reservoir or well 

• Arps’ Decline Relations. Decline curve analysis (DCA), and especially

Arps’ decline relations, are arguably the most common method used to forecast 

production in industry today. Arps’ decline relations are easy to implement, and require 

no physical information about the reservoir, or of the well itself, to forecast production. 

However, the accuracy of these methods are limited, as they are applicable only to wells 

producing in boundary-dominated flow (BDF). Because unconventional wells do not 

reach BDF for extended amounts of time—years—sometimes persisting in transient 

linear flow for the duration of well life, Arps’ decline relations are inadequate for 

forecasting production in unconventional plays, especially during early times of 

production. Significant advancements have been made in industry in recent years to 
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develop DCA methods applicable to unconventional shale plays, but they lack a sound 

fundamental basis.  

• Numerical Simulation. Advanced techniques such as numerical simulation,

can be used to forecast production in unconventional plays for volumes of any 

resources classification. Numerical simulation techniques require specific physical 

parameters of the well and reservoir, and are robust tools to forecast production. 

However, when trying to forecast many wells at one time—or many forecasts in a 

probabilistic range—numerical simulation techniques become extremely burdensome. 

Not only does generating a forecast in this way require extended amounts of time due 

to the amount of computational power used, but it also requires specialized knowledge 

of the simulation program to work properly. Numerical simulation is considered to be 

a rigorous approach to generate forecasts, and reserves and resources estimations, but 

is also regarded to be time-consuming and costly. 

We have concluded that several popular current approaches to forecast production 

or estimate reserves and resources volumes are either too simple to handle the physical 

complexities of unconventional plays, or are time consuming and financially 

burdensome, and come with a steep learning curve. In addition, many methods do not 

readily quantify the level of uncertainty associated with a given forecast needed to 

comply with the low, best, and high recovery estimate categories (P10, P50, P90) in 

accordance with PRMS, or with SEC reporting standards. 
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1.5 Rate Transient Analysis 

Rate transient analysis (RTA) is widely used as a diagnostic tool in industry to 

determine reservoir and completion parameters, however, RTA can also be used as a 

tool to estimate ultimate recovery in unconventional plays, as it does not require 

production or pressure history as a data input to generate a forecast. Unfortunately, 

methods to practically, probabilistically forecast production using RTA are not widely 

available: while a “best match” forecast generated with RTA can logically be viewed 

as a P50 (i.e., best or most likely) forecast, regulators and investors are far more 

interested in a range of recovery estimates, especially P90 (lower volume, high 

confidence) recovery estimates.  

Existing RTA-based workflows available to generate a range of production 

forecasts (consistent with P10, P50, P90 PRMS and SEC guidelines) are sub-optimal: 

current industry software packages do not allow the user to easily forecast a 

probabilistic range of production forecasts automatically; rather, the individual 

forecasts which could comprise a probabilistic range must be generated one at a time.  

While Monte Carlo Simulation (MCS) is often used to generate many results of an 

“experiment” at one time, often thousands of runs are required to yield a satisfactory 

range of results, many of which are redundant. Production forecasting with RTA also 

presents a challenge of “non-uniqueness,” meaning several different combinations of 

input parameters can yield essentially the same production forecast, which could lead 

a user manually inputting many different input parameter combinations to arrive at a 

range of forecasts could be left with many redundant results, instead of an intended 

range of results. Except for very simple situations, MCS is not a practical alternative 
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for production forecasts with many uncertain reservoir and completion parameters, as 

in shales and other resource plays.  

By incorporating DOE techniques, we can plan our “experiments”—the 

combinations of input parameters used to generate forecasts with RTA—more 

efficiently, to mitigate any potential cause for the generation of non-unique results. This 

not only reduces the number of runs to be performed, necessary to create a satisfactory 

range of forecasts, but also minimizes redundancy while maximizing our range of 

results.  

1.6 Assumptions of this work 

The following are assumptions we make in this work: 

a. Homogenous reservoir properties, and their implications. Petrophyiscal

properties such as permeability, porosity, formation height, etc., may not be 

homogenous throughout an unconventional play, however we assume fully 

homogenous formations in this work. 

b. Fracture stages and spacing. We assume a single fracture per stage, and

assume fracture spacing to be uniform for each of the simulated wells in this work, and 

assume that spacing equals lateral length divided by the number of fractures. This is 

also an assumption of the software model used in this work.  

c. Fully penetrating planar fractures. Heterogeneous reservoir features may

adversely impact the effectiveness of fracture stimulation treatments, ultimately 

resulting in fractures that only partially penetrate the height of the formation. While we 

assume that this may occur in some instances, we do not assess the effects of 
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anomalous, partially penetrating fractures in this work. The fracture half-lengths 

mentioned throughout this work are assumed to be uniform for each “well.”  

d. Fracture conductivity levels. We assume infinite fracture conductivity

throughout the life of each well. This is also an assumption of the software model used 

in this work. 

e. Permeability. We assume that permeability remains constant throughout the

life of the well. This assumption is not required by the software model used in this 

work. 

Reservoir Boundaries and Original Gas in Place (OGIP). The analytical model in 

the software which we used to validate our methods assumes a homogeneous, single-

phase, rectangular reservoir, and a horizontal wellbore with equally spaced fractures 

along the length of the wellbore, and of equal specified half-length. This model, the 

“Horizontal Multifrac General Model”, does not assume that reservoir dimensions are 

constrained by the dimensions of the completion; we do not specify any spacing 

between wells in this work. However, in some portions of this work, we assume OGIP 

is dependent upon SRV, and modeled by Eq. 1: 

𝑂𝐺𝐼𝑃 =
2𝑥𝑓𝐿𝑒𝑥ℎ𝜑(1 − 𝑆𝑤)

𝐵𝑔𝑖
………………………………………………... (1)
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Bgi is calculated using Eq. 2 (Petrowiki, June 2018): 

𝐵𝑔𝑖 = 0.0282793 
𝑧𝑇

𝑝

…………………………………………………………. (2) 

f. Water Saturation (Sw), Oil saturation (So), and Gas saturation (Sg). For each

simulated well, we assume constant Sw of 35%, So of 0%, and Sg of 65%. 

g. Single-phase flow. We recognize this is a major limitation of RTA and have

narrowed our focus to include only gas wells, and have assumed that these wells have 

no marginally significant oil, water, or other liquid production. This is also an 

assumption of the software used for validation purposes, in this work. 

h. Flow-back and/or invasion of fracture fluid. During early time production,

wells may produce “back” residual fracture fluid that has invaded the stimulated 

reservoir region, causing temporary, superficial, multi-phase flow (which cannot be 

accurately modeled with rate transient analysis). We will ignore any periods of early 

time water production in wells, always assuming single phase flow. However we will, 

if and when necessary, eliminate these anomalous monthly gas rates from any analysis 

of wells currently producing in the Barnett shale.  
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2. DATA COLLECTION AND METHODS

RTA is an attractive method to forecast production in that it considers the physical 

reservoir and completion characteristics of the well and of the reservoir, but does not 

require the time or financial commitment of a numerical simulator. However, RTA falls 

short as a production forecasting method in that it lacks the ability to probabilistically 

forecast production: the objective of this work is to develop a more practical approach 

to probabilistically forecast production in unconventional, undeveloped plays, using 

RTA. To develop and validate these approaches, it was first necessary to identify an 

area of interest, and gather sets of relevant input parameters required for RTA 

production forecasting relative to that area of interest.  

2.1 Identified Area of Interest 

The Barnett Shale is often regarded as the first unconventional play to be developed 

economically in the United States, the commercial development made possible by 

hydraulic fracturing and completion technologies. By 2005, the Barnett Shale produced 

nearly one trillion cubic feet of natural gas annually, the success of developing the play 

economically driving exploration and production companies to develop other 

previously untapped shale plays. We have chosen to focus on the Barnett Shale in the 

development of this work, in hopes that the literature and data of wells in this play is 

commensurate with its rich history. 

Geographically limiting our study in this way enabled us to capture some variance 

of reservoir and completion parameters, while keeping the variance of each parameter 
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quite concentrated. Wells in Denton County are heavily concentrated toward the 

southwestern corner of the county, as shown in Fig. 5. 

Fig. 5—Location of wells producing from the Barnett shale, Denton County, 

Texas. Adapted from DrillingInfo (2018) 

Publicly available databases were used to extract information of 120 multi-

fractured, horizontal gas wells (MFHWs) in the Barnett Shale, all in Denton County, 

Texas, and were studied to obtain necessary information about input parameters for this 

work. By narrowing our focus to wells in a limited geographic area, we are able to 

constrain the petrophysical heterogeneity among wells in the study, and make more 

reliable estimates of reservoir and completion properties for theoretical wells. 

This group of 120 wells was chosen based on the amount of production history and 

amount of completion details publically available for each well: each of these 120 wells 



17 

had been producing for at least 60 months at the time of data collection, accompanied 

with a reported well depth, and reported lateral length. Probability distributions for each 

of the respective parameters were derived using this information.  

2.2 Analytical Modeling in Commercial Software 

The industry software program IHS Harmony (we refer to this as simply 

‘Harmony’), was used throughout this work to generate production forecasts using 

RTA. The input parameters required by Harmony to generate a single production 

forecast, as well as the parameters which are automatically calculated by the software, 

are listed in Table 1.  

Table 1—Parameters required for production forecasting with RTA in 

Harmony 

Parameter Description 

R
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Pi Initial pressure, psi 

Pwf Flowing well pressure, psi 

xf Fracture half-length, ft. 

Lex Lateral Length, ft. 

FCD Dimensionless fracture conductivity 

nf Number of fractures, # 

k Permeability, nd/ md 

h Formation height, ft. 

Ф Porosity, % 

Sg Gas saturation, % 

So Oil saturation, % 

Sw Water saturation, % 

T Temperature, °R 

A
u
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 cf Formation compressibility, psi-1 

ct Total compressibility, psi-1 

Bgi Formation volume factor, (rcf/scf) 

Xe Reservoir length, ft. 

Ye Reservoir width, ft. 

While Harmony is robust and we assume the forecasts it generates with RTA are 

accurate, the program has limitations, primarily in that it does not allow for the 
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generation of more than one forecast at a time: in other words, a single set of parameters 

associated with a forecast must be input one at a time, to generate a single production 

forecast. This makes evaluating large numbers of wells extremely burdensome, 

especially when certain input parameters required to generate the forecasts are 

unknown, and when many different combinations of parameters can yield the same 

results with RTA. Additionally, there are currently no capabilities within Harmony to 

take into consideration any kind of economic parameters. 

This software allows for the generation of probabilistic production forecasts with 

RTA, using Monte Carlo Simulation (MCS) techniques to randomly sample the 

probability distributions of each input parameter (these probability distributions are 

nominated by the user) and generate a range of forecasts, allowing the user to specify 

the number of random runs they would like to have performed. With MCS, however, 

thousands of forecasts need to be generated in order to arrive at a valid range, which is 

inefficient. Additionally, accurate probability distributions of reservoir and completion 

parameters are not often known, nor are they easily found; inputting probability 

distribution estimates that are not of great certainty yields inaccurate results. The 

inaccuracy of these results is only compounded when randomly sampling many 

uncertain probability distributions, with MCS. 

In this work, we try to overcome these limitations, applying DOE techniques to 

reduce the number of runs required to compile a reliable probabilistic range of forecasts 

(based on quality of history match), and eliminate the necessity of having accurate 

probability distributions of each input parameter to generate a range of production 
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forecasts. DOE techniques are used to create a set of unique “treatment combinations”, 

which are then ranked based on best-fit history match of production data of a well. The 

treatment combinations which achieve a best-fit history match to production data are 

then used as input parameters to generate a production forecast, for that well. From this 

condensed range of best-fit forecasts, appropriate P10, P50, and P90 forecasts can be 

determined. We then assess how the forecasts generated this way, compare to forecasts 

generated using the same input parameters, with Harmony. We also assess how well 

the methods we present are able to accurately estimate unknown reservoir and 

completion parameters of a certain well.  

The first step of our proposed workflow requires generating DOE treatment 

combinations, which serve as our history-match parameters, and as our parameters to 

forecast production. This requires, first, identifying the DOE technique that can 

configure the raw (reservoir and completion) information it is fed, in a way that best 

fits our needs. Prior to that, it requires we obtain the necessary and raw data we would 

like to be properly configured.  

2.3 Data Collection 

The required input parameters to forecast production using RTA in the IHS 

Harmony software, description of whether they will be varied or constant in our 

analysis, and how we obtained information about that parameter in our analysis, are 

listed in Table 2. 
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Table 2 —Input parameter descriptions 

Parameter Description Constant/ Variable 

Source 
(value if 

constant) 

Pi Initial pressure, psi Constant/ Uncontrollable Public well data 

Pwf Flowing well pressure, psi Constant/ Uncontrollable Assumed (500 psi) 

xf Fracture half-length, ft. Variable/ Controllable Literature search 

Lex Lateral Length, ft. Constant/ Uncontrollable Public well data 

FCD Dimensionless fracture conductivity Constant/ Uncontrollable Assumed (Infinite) 

nf Number of fractures, # Constant/ Uncontrollable Public well data 

k Permeability, nd/ md Variable/ Controllable Literature search 

h Formation height, ft. Variable/ Controllable Literature search 

Ф Porosity, % Variable/ Controllable Literature search 

Sg Gas saturation, % Constant/ Uncontrollable Assumed (65%) 

So Oil saturation, % Constant/ Uncontrollable Assumed (0%) 

Sw Water saturation, % Constant/ Uncontrollable Assumed (35%) 

T Temperature, °R Variable/ Controllable Public well data 

cf Formation compressibility, psi-1 Pressure-dependent Calculated 

ct Total compressibility, psi-1 Pressure-dependent Calculated 

Bgi Formation volume factor, (rcf/scf) Pressure-dependent Calculated 

In the sections that follow, we discuss how probability distributions of each of the 

listed parameters in Table 2 were derived; “raw” information from those probability 

distributions were groomed by DOE techniques to compile the treatment combinations, 

which were used to history-match available production data, and used to generate 

production forecasts.  

2.3.1 Initial Pressure, Lateral Lengths, Fracture Stages, and Temperature 

Although not all parameters required as input to forecast production with RTA were 

not publically available, the RTA input parameters which were publically available (on 

a per-well basis) include total vertical depth, lateral length, fracture stages (we assume 

one fracture per stage), and initial bottom hole temperature. We estimate initial 

reservoir pressure using an assumed pressure gradient of .465 psi/ft. 
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Major input parameters necessary to generate production forecasts with RTA in 

Harmony which were not available in public well data include included fracture half 

length, dimensionless fracture conductivity, permeability, formation height, porosity, 

initial water saturation, initial gas saturation, initial oil saturation, fluid compressibility, 

and formation compressibility. Latitude and longitude data of the wells in our set, 

however, were publically available, and well locations were also used throughout the 

data collection process. We discuss their function in the following section. 

2.3.2 Formation Height and Porosity 

Supplementary to publicly available well data sets, a literature review of the Barnett 

shale was conducted in attempt to understand reasonable parameter ranges for the 

remaining unknown reservoir and completion parameters needed to forecast production 

using RTA. Fu et al. (2015) offer an in-depth look at the geological characterization of 

the Barnett Shale via geologic mapping of porosity, and net pay zone thickness maps. 

The locations of our wells were overlaid on to these geological maps to extract 

probability distribution estimates of formation height and porosity for our well set, as 

shown in Fig. 6. 
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Fig. 6—Well locations overlaid on geologic maps of Barnett shale, Denton 

County, TX. Map reprinted from Fu et al (2015) 

While Fu et al. explicitly report the mean, median, mode, standard deviation, and 

ranges for porosity for the entire play, it is clear from the maps that the probability 

distributions of porosity for wells in Denton County will likely be much different than 

the porosity levels of the entire play. The best-fit probability distribution of porosity is 

shown in Fig. 7; for our study, we assume a range of porosity between 5.5%-7%. 
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Fig. 7—Estimated probability distribution: porosity 

The same procedure used to develop a probability distribution for porosity was 

performed to extract information about net pay thickness. The best-fit probability 

distribution of net pay thickness is shown in Fig. 8. 

Fig. 8— Estimated probability distribution: net pay thickness 
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By overlaying our well locations onto the geologic maps of Fu et al., we were able 

to derive probability distributions of net pay thickness to be used in our analysis. For 

our study, we assume a range of porosity between 175 feet and 375 feet.  

2.3.3 Fracture Half-Length 

Fracture half-length is a parameter that is seldom known (often determined from 

diagnostic plots), and one that greatly impacts production levels. Cherian et al. (2009) 

presented a probabilistic distribution of fracture half-lengths for MFHWs, reporting a 

lognormal distribution with a mean value of 285 ft., P90 value of 123 feet, and a P10 

value of 504 feet; however, the focus of their work in the Piceance Basin (this 

distribution is shown in Fig. 54). Yu et al. (2013) study the optimization of MFHWs in 

the Barnett shale, having run experiments with varying fracture half-lengths uniformly 

distributed with a range from 200 feet to 400 feet.  

The range of fracture half-length values used in this work is conservative in that we 

honor values reported by Yu et al., but extend the minimum end of the range as low as 

100 feet, consistent with the minimum values of fracture half-length reported by 

Cherian et al. Because most reservoir and completion parameters are distributed 

lognormally, we combine the two aforementioned distributions of fracture half-length 

and assume our fracture half-lengths are characterized by a probability distribution with 

a P90 value of 100 feet, and a max value of 400 feet, which translates best into a 

lognormal distribution with a mean value of 201 feet, a P90 value of 100 feet, and a 

P10 value of 339 feet. This best fit probability distribution is shown in Fig. 9.   
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Fig. 9— Estimated probability distribution: fracture half-length 

2.3.4 Permeability 

The ultra-low permeability values of unconventional plays are the primary obstacle 

which must be overcome to produce economically from these plays. Permeability is a 

reservoir parameter which greatly affects production levels, and one that is highly 

variable within unconventional plays: because permeability data is not made publicly 

available on a per-well basis, the range of permeability values used in this work was 

compiled from a variety of literature sources, from which many different ranges of 

permeability values from the Barnett shale were reported.  

The range of permeability established for this work is an amalgamation of the 

Barnett permeability ranges suggested in literature: DrillingInfo suggests an average 

permeability of the Barnett Shale of 250 nd. Ezisi et al. (2012) suggest a range between 

70 nd to 500 nd. Anderson et al. (2012) utilize a SRV permeability between 100 nd and 

5000 nd in their work. For this work, we consider a range based off a lognormal 
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distribution for permeability, with a P90 of 80 nd, and a P10 value of 750 nd. The mean 

of the permeability probability distribution for this work is 168 nd. This distribution is 

shown in Fig. 10. 

Fig. 10— Estimated probability distribution: permeability 

2.4 Experimental Design 

After making estimates of the parameters of the Barnett shale which would 

eventually be used to forecast production with RTA techniques (and validated in 

Harmony), we then investigated Experimental Design techniques and how they could 

be implemented to streamline the process of probabilistically forecasting production 

using RTA.  
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Experimental Design (ED), or the Design of Experiments (DOE), is a family of 

techniques that can aid in the optimization of performing experiments. Choosing the 

most appropriate DOE technique for a given experimentation process depends on the 

format and the objective of the experiment itself, and on the intent of the project 

owners. An “experiment” can be defined broadly as a process of data collection with 

the intent of gathering enough information about the effects of changing conditions, 

variables, or “factors” on the outcome, result, or “response”, to either make 

conclusions, or make predictions about, future responses. “Control variables” are those 

variables in an experiment that are held constant, usually to put more focus on the 

effects of the independent, “uncontrollable variables.”  DOE can be regarded as the 

planning and organization of an experiment before it takes place, to reduce redundancy, 

ensure the appropriate data is being used to achieve such objectives, and to achieve 

results and conclusions of experiments in a more efficient manner.  

With this background in mind, we can consider production forecasting and the 

process of estimating ultimate recovery for a given area, using RTA, as an experiment: 

engineers must perform many different “runs”—using many different combinations of 

varying parameters (many of which are seldom known with certainty) —to eventually 

achieve many individual “results”, a satisfactory probabilistic range of recovery 

estimates or production forecasts.  Monte Carlo Simulation (MCS) is often used as a 

tool to generate many results, to form a “complete” range of possible scenarios. As it 

applies to history-matching and production forecasting with RTA, MCS can require 

thousands of runs be executed to return a full distribution, only three (!) of which are 

required for PRMS and SEC reserves and resources reporting purposes. 
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When production forecasting with RTA, there is an inherent challenge of non-

uniqueness: more than one combination of input parameters into this analytical model 

can yield similar results: when MCS is used in the experimentation process of 

production forecasting, many of the runs generated are redundant, due to this challenge 

of non-uniqueness. Especially if an engineer is manually inputting runs—different 

combinations of parameters—in effort to achieve a satisfactory history match with any 

pre-existing production history, it is valuable to know which combinations will 

generate negligible results. When some production history of a well is known, the 

treatment combinations generated with DOE techniques can be used to history match 

for unknown reservoir and completion parameters, and subsequently be used to 

generate production forecasts. 

DOE aids us in identifying the combinations of input parameters (“treatment 

combinations”) that will allow us to survey the entire “experimental region” more 

efficiently, by determining on a statistical basis, which unique combinations of input 

parameters will yield the most impactful results, maximizing the experimental region 

in a minimal number of runs, reducing redundancy in the results in our experiments, 

saving us time and resources. We describe DOE, graphically, in Fig. 11.  

Representing experimental design visually: (A) an experiment (in-progress), 

carried out without DOE techniques, is performed in a locally and inefficient way. (B) 

A complete experiment carried out without DOE techniques allows us to see “full 

coverage” of the experimental region, however there is some risk that some results may 

be redundant, or negligible. (C) An experiment run using DOE techniques creates 

locally unbiased runs, which allows us to see the same maximized coverage of the 
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experimental region in (B), but in many less runs, as the results of every experiment 

are not surveyed.  

Fig. 11—Experimental design: Efficiently maximizing the design space 

In DOE, the experimental variables are referred to as factors, the values of which 

those factors can be varied are referred to as levels. We explain this, and other DOE 

terminology, in Fig. 12: the experiment described in Fig. 11 is a 3-factor, 2-level 

experiment (each factor in each trial is either a “+” or a “-”). 
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Fig. 12—Graphical explanation of DOE terminology 

Many classical DOE techniques only consider two “factor levels”, or, binary 

variation of any “controllable” parameter within the experiment. Because forecasting 

production with RTA probabilistically is an “experiment” that requires many different 

“factors” (input parameters) and “factor levels” (range of parameter values) to generate 

each forecast in a probabilistic range, classical DOE techniques did not apply, which 

quickly narrowed the pool of possible DOE techniques that could be integrated into 

this work: to investigate production forecasting and EUR estimation using RTA 

thoroughly, more than two levels for each factor need to be considered.  
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The DOE approach we identified to be the most consistent with the objectives of 

this work is “D-Optimal Design.” D-Optimal designs use raw factor, and raw factor 

level data input by the user, to return a set of optimal “treatment combinations” to be 

run in the experimental process. These treatment combinations are the unique 

combinations of factors which are said to “maximize the design space.”  D-Optimal 

designs allow the user to nominate more than two levels of each factor, and also allow 

the user to nominate the number of trials (treatment combinations) to be conducted in 

the experiment, to construct the optimal set of treatment combinations based on the 

maximum D-Optimal criterion (which is the maximum of |X'X|, the determinant of the 

information matrix X'X) (www.itl.nist.gov, March 2018). The algorithm used to 

determine this optimal set of treatment combinations first analyzes all possible 

combinations of input parameters, and through a step-and-exchange process, identifies 

the combinations which to include in the final “design” (www.itl.nist.gov, March 

2018).  

With D-Optimal design, the user has some freedom to specify the number of “trials” 

to be returned in the final design. However, the minimum number of trials that must be 

included for the design to be considered “efficient” does depend somewhat on the 

number of factors and factor levels the user wishes to include in an experiment: the 

quality of a set of trials created with D-Optimal designs lies in its D-efficiency value. 

D-Optimal design techniques are deemed “optimal” if the D-efficiency metric

(included in the output of the DOE software) is greater than or equal to 0.7. For this 

work, the number of trials nominated and utilized for our experiments ranged from 36 

trials (the maximum for a two-factor, six-level experiment, when history matching 

http://www.itl.nist.gov/
http://www.itl.nist.gov/
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production to determine reservoir and completion parameters, when many parameters 

are already known) up to 1,000 trials (for a 4-factor, 6-level experiment, when history 

matching and forecasting production for wells, when less parameters are “known”). In 

any case, the trials identified to be among the “top” 20 to 50 (based on quality of 

history-match) were used to generate production forecasts.  

In this work, we will feed the DOE software six to seven raw levels—discrete 

values—of each “controllable” factor (reservoir and completion parameters), to 

configure treatment combinations which will be used in the history matching and 

production forecasting processes in this work. Although we realize the controllable 

factors in our analysis are not always necessarily controllable, we have chosen to vary 

them in our analysis as they are all parameters with high influence on production levels 

and ultimate recovery, and known with little certainty. 

2.5 Workflow: using diagnostic plots to history match and forecast production 

We discussed that although the experiments we designed consisted of up to 1,000 

trials (or treatment combinations), only the best-fitting 20 to 50 treatment combinations 

were used to generate production forecasts for each well. We discuss the process used 

to identify these top-ranked treatment combinations in this section, in addition to 

discussing how production forecasts were then generated from those top-ranking 

combinations.  
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Wattenbarger (1998) originally proposed Eq. 3(3, to determine contacted surface 

area (A) and permeability (k) for shale gas wells producing in transient linear flow. 

𝐴√𝑘 =
1262

𝑚𝑐𝑝√𝜑𝜇𝑐𝑡

×
𝑇

𝑚(𝑝𝑖) − 𝑚(𝑝𝑤𝑓)
…………………………………… (3)

Where 

𝐴 = 4𝑥𝑓ℎ ……………………………………………………………… (4) 

Eq. 3 assumes that all other parameters—reservoir temperature (T), porosity (φ),  

viscosity (μ), and total compressibility (ct)—in the reservoir are known, and uses the 

parameter mcp , which is the slope of the gas normalized pressure vs. √𝑡 diagnostic plot. 

An example of that plot is shown in Fig. 13. 
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Fig. 13—Gas normalized pressure vs. √𝒕 plot 

The trend line shown in the gas normalized pressure plot (Fig. 13), is an expression 

for gas normalized pressure. This expression can be written in terms of mcp and b’, 

shown in Eq. 5 (Fekete, 2018). 

𝑚(𝑝𝑖) − 𝑚(𝑝𝑤𝑓)

𝑞
=  𝑚𝑐𝑝√𝑡 + 𝑏′ 

……………………………… (5) 

Where m(pi) and m(pwf) are pseudo-pressures of initial reservoir pressure (pi) and 

well flowing pressure (pwf), respectfully. The parameter b’ in Eq. 5 is considered to be 

a metric of completion effectiveness, indicative of skin and finite fracture conductivity. 

Rearranging Eq. 5, mcp can be expressed in terms of rate (q) and time (t), in Eq. 6: 
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𝑚𝑐𝑝 =

𝑚(𝑝𝑖) − 𝑚(𝑝𝑤𝑓)
𝑞

√𝑡 ……………………………………………… (6) 

To generate production forecasts with our proposed workflow first requires the well 

to be history matched. A “target” mcp value (we will refer to the target mcp as mcpT) will 

be calculated using Eq. 6 for each well to be forecasted, based on the well’s available 

production history. This target mcpT value serves as our history matching parameter.  

We then rearrange Eq. 3 in terms of mcp (not mcpT), expand the A term, and rearrange 

the equation so the known parameters of the well to be forecasted lie in the first term, 

while unknown parameters lie in the second term in Eq. 7: 

𝑚𝑐𝑝 =
1262 × 𝑇

4√𝜇𝑐𝑡 × [𝑚(𝑝𝑖) − 𝑚(𝑝𝑤𝑓)]
×

1

𝑥𝑓ℎ√𝑘𝜑
…………………………… (7)

For each trial (or treatment combination) generated using DOE techniques (in some 

cases, up to 1,000 trials, as we discussed in previous sections), an mcp value was 

calculated using Eq. 7, having input each trial’s unique combination of parameters. In 

an appropriately formatted Excel spreadsheet, this requires essentially no 

computational time. 

We assume that during transient linear flow, all variables (with the exception of 

time) remain constant. Viscosity (µ), and total compressibility (ct),  are approximated 

for each trial based on pi, using a helpful tool created and made publically available by 
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the University of Louisiana at Lafayette (University of Louisiana at Lafayette, 2018). 

From this tool, cg is approximated. We then assume that ct can be approximated by Eq. 

8 (assuming Sg = 65% for each trial). 

𝑐𝑡 = 𝑐𝑔 × 𝑆𝑔 …………………………………………………………… (8) 

The treatment combinations were then ranked, based on how closely their 

calculated mcp values matched the mcpT value of the well to be forecasted (based on 

lowest sum of squared error, or SSE).  

So, although not all generated treatment combinations were used to generate 

production forecasts, all treatment combinations were contenders during the history 

matching process. As discussed, only the best 20-50 top-ranking trials (again, based on 

calculated mcp deviation from mcpT value of well to be forecasted) were used to generate 

production forecasts; more specifically, the mcp value of each trial identified as a “top” 

match was used to generate a production forecast, using a rearrangement of Eq. 6, 

shown in Eq. 9: 

𝑞 =  
𝑚(𝑝𝑖) − 𝑚(𝑝𝑤𝑓)

𝑚𝑐𝑝√𝑡 + 𝑏′
…………………………………………………… (9)
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Using Eq. 6, Eq. 7, and Eq. 9 allows us to perform history matches, and to 

extrapolate production forecasts, for MFHWs with short production histories and 

limited reservoir and completion information. This workflow is described in Fig. 14. 

Fig. 14—History Match Workflow 

Explaining the workflow shown in Fig. 14 further: Eq. 7 is used to calculate many 

possible values of mcp, using treatment combinations devised using DOE techniques, 

(which we discuss in the following section). Incorporating DOE techniques allows us 

to estimate unknown reservoir and completion parameters, based on which treatment 

combinations—when used in coordination with the known parameters of a given 

well—yield an mcp value closest to the well’s true mcpT value.  
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Independent methods are needed to forecast production in transient linear flow 

(early time), and to forecast production in boundary-dominated flow (BDF) (late time). 

The time at which the method used to forecast changes is the time at which pressure 

changes in the reservoir due to production have reached the outermost boundary of the 

reservoir (Wattenbarger et al., 1998). Estimating this transition time, the time to end of 

linear flow, telf, is critical in properly estimating production rates. 

The time to end of transient linear flow (telf) is estimated using Eq. 10 (Fekete, 

2018): 

𝑡𝑒𝑙𝑓 = (
𝑑𝑖√𝜑𝜇𝑐𝑡

2 × .159√𝑘
)

2

………………………………………………… (10) 

Where 𝜇 and 𝑐𝑡 are estimated for each run using the tool available through the 

University of Louisiana at Lafayette (and dependent on a “random” pi value determined 

by DOE techniques). In Eq. 10, k is also determined randomly by DOE techniques. The 

value of 𝜑 is kept constant at 6.0% throughout this work.  

We calculate di to be the half-distance between two fractures, using Eq. 11: 

𝑑𝑖 =
𝐿

2 ∗ 𝑛𝑓
…………………………………………………………… (11) 

Where L and nf  are known parameters of the well to be forecasted. 
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Eq. 10 could also be expressed in terms of xf, as we present in Eq. 12 (Fekete, 

2018): 

𝑡𝑒𝑙𝑓 = (
𝐴√𝜑𝜇𝑐𝑡

4 × .159 𝑥𝑓√𝑘
)

2

………………………………………………… (12) 

Production during boundary-dominated flow was then estimated using Arps’ 

hyperbolic decline model, shown in Eq. 13. 

𝑞 =  
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

…………………………………………………………. (13) 

The b- parameter used to forecast production in this work is kept constant at b = 

0.4; Fetkovich et al. (1996) as well as Lee and Sidle (2010) suggest using this value for 

b when using Arps’ to forecast production in gas wells, when pwf is approximately equal 

to 10% of pi. This condition is consistent with the assumptions of this work.  

When forecasting production with Eq. (13), we assume qi to be the last monthly 

production rate of the well while in a transient flow period.  

The Di – parameter used for this work is estimated for each individual forecast, by 

rearranging Eq. (13), as shown in Eq. 14: 

𝐷𝑖 =
(
𝑞0

𝑞𝑡
).4 − 1

. 4𝑡𝑒𝑙𝑓 …………………………………………………………. (14) 
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Where q0 is the first appropriate and representative forecasted production rate 

during the transient flow period, qt is the last forecasted production rate during the 

transient flow period (the same as qi), t is replaced by telf, and where we have replaced 

the b -parameter in Eq. 13 with .4.   

2.6 Incorporating DOE Techniques into History Matching and Production 

Forecasting with RTA 

Because of the challenge of non-uniqueness presented when history-matching and 

generating a production forecast with RTA, it is difficult to predict which combinations 

of parameters will yield a unique forecast: DOE pre-determines the combinations of 

input parameters that we will use to history match and forecast production, reducing 

the work required to generate these combinations on our own, while reducing the 

number of runs required to form a “complete” experiment, by mitigating redundant 

results. We describe graphically, how DOE treatment combinations are incorporated 

into the history matching process, in Fig. 15. 
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Fig. 15—Incorporating DOE into the history matching process 

Preparing a worksheet to perform the workflow we describe above, in a program 

such as MS Excel, allows us to calculate thousands of potential mcp values (and 

identify previously unknown reservoir and completion parameters of a well) in a 

matter of seconds. Once the best-matched mcp values for a given well are established, 

a range of production forecasts—from which forecasts that can be regarded as 

probabilistic P10, P50, P90 forecasts can be extracted—can be generated just as 

quickly.  

2.7 Summary 

In this chapter, we have identified the Barnett shale as our area of interest, and 

explained the literature search that was performed to develop probability distributions 

of reservoir and completion parameters. We explained that discrete values from these 

probability distributions were fed into a DOE software, where D-Optimal design 
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algorithms were employed to develop efficient sets of treatment combinations, to be 

used in history-matching existing production data of wells, and subsequently, 

generating production forecasts. 

   We suggest using D-Optimal design techniques as a DOE method as we do in this 

work, to simplify the process of probabilistically forecasting production with RTA: we 

conclude that D-Optimal designs are helpful as when “randomly” creating 

experimental runs, but also helpful when the effects of certain input parameters vary 

discretely and definitively (such as completion parameters, when decimal change to 

parameters such as lateral lengths and number of fractures tend to be negligible).  
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3. RESULTS

In this chapter, we forecast production for Barnett Shale MFHWs using the 

simplified approach which we have presented. We then apply the workflow throughout 

the history-matching process, but generate production forecasts using a software which 

allows for forecasting production with RTA, and compare our results.  

3.1 Application of workflow to history match and forecast production for 

Barnett shale MFHWs  

The workflow described in Section 2.5 was used to history match, and generate a 

range of production forecasts, for several MFHWs currently producing in the Barnett 

shale. The generated forecasts compared with the true production rates of several wells 

are reviewed in Section 3.1.5, however we first highlight two particular wells (“Well 

D” and “Well K” more in depth in Sections 3.1.1 through 3.1.4. 

3.1.1 Forecasting production for Well D, 12-month history match and 60-month 

history match 

The first step of our production forecasting workflow involves determining the 

slope (“target” mcp, or mcpT), and intercept (b’) of the gas normalized pressure vs. √𝑡 

plot, for the well to be forecasted. This may be done with any amount of production 

data available; it is critical when working with this diagnostic plot that the analyst 

remove any anomalous production rates from the plot to arrive at an accurate 

representative mcpT value.  
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We present an example of this initial diagnostic plot in Fig. 16, which includes both 

12 months and 60 months of production data to showcase that it may be possible that 

more than one trend line (and subsequently, more than one mcp and b’ values) could be 

detected, depending on how much production data is being analyzed, or vary depending 

on the time increment analyzed.  

Fig. 16— Assessing mcp: Well D 

Fig. 16 showcases the normalized pressure vs. √𝑡 plot for a MFHW (“Well D”) 

currently producing gas from the Barnett shale. We can see that for Well D, there is a 

clear primary trend of the data regardless of the amount of production data being 

analyzed, and that neither mcpT nor b’ changes drastically from an analysis of 12 

months, to 60 months, of production data.  
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For this portion of work, we systematically vary four parameters, fracture half-

length (xf), porosity (φ), formation height (h), and permeability (k), using DOE 

techniques for the history matching portion of our workflow. Six levels of each factor 

(xf, φ, h, and k) were input into a DOE software to generate 1,000 treatment 

combinations. These factor levels are shown in Table 3, and drawn from the probability 

distributions of parameters shown in Section 2.3. Using the 1,000 treatment 

combinations, and with known parameters of Well D (number of fractures, nf, initial 

pressure, pi), assumed parameters of Well D (flowing well pressure, pwf,) and estimated 

parameters of Well D (pseudo-pressures, total compressibility, ct, and viscosity, μ) 

1,000 mcp values were calculated for Well D.  

Table 3—Factors and Factor levels input into DOE software, estimated 

reservoir and completion parameters, Barnett Shale 

Parameter Description Units Factor levels input into DOE software 

xf Fracture half-length ft. 100 125 200 250 300 350 

h Formation height ft. 175 250 300 325 350 375 

k (outer) Permeability nd 80 100 250 400 600 800 

phi Porosity % 0.04 0.05 0.055 0.06 0.065 0.07 

1,000 treatment combinations were generated using the factor levels listed in Table 

3 in a DOE software. Generating these 1,000 combinations of parameters, using DOE 

techniques, requires less than eight seconds. These combinations, in addition to the 

known parameters of Well D (number of fractures, nf, initial pressure, pi), assumed 

parameters of Well D (flowing well pressure, pwf,) and estimated parameters of Well D 
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(pseudo-pressures, total compressibility, ct, and viscosity, μ) were used to calculate a 

mcp value for each of the 1,000 aforementioned treatment combinations.  

These treatment combinations were then ranked based on how closely their 

calculated mcp values matched the target mcpT value of Well D (determined from the 

diagnostic plot shown in Fig. 16, using the 12-month production data and trend line).  

The mcp values which most closely matched the mcpT value of Well D were then used 

to generate production forecasts during the transient flow period. As mentioned in 

Chapter 2, an independent method is needed to forecast production during BDF: for 

every best-matched treatment combination, a unique telf and Di will be estimated, and 

a b-parameter of .4 will be used to estimate production in BDF using Arps’ decline 

relations. 

In Fig. 17, we show the 40 best-matched forecasts, matched on 12-months of 

production history, and compare the forecasts to the 60 months of true production data 

for Well D.  
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Fig. 17—Well D, 12-month history match and forecasts, months 0-60 

In Fig. 18 and Fig. 19, we parse this forecast into smaller time increments, to 

analyze the quality of the forecasts generated on the basis of a 12-month history match, 

more closely.  
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Fig. 18—Well D, 12-month history match and forecasts, months 0-30 
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Fig. 19—Well D, 12-month history match and forecasts, months 30-60 

The forecasts shown in Fig. 17 through Fig. 19 match the true production data of 

Well D satisfactorily for months 0-60, when history-matched with only 12 months of 

production data. Because when history-matching and forecasting on only 12 months of 

production data, we have no inclination of when exactly the transition from transient 

flow to BDF will occur, it can be seen from Fig. 17 through Fig. 19 that some best-fit 

forecasts (best-fit to 12 months of production data) towards the end of the 60 months 

forecasting duration may not capture this transition time properly. To analyze to what 

degree the forecasts estimated this time properly, we show a log-log plot of rate vs. 

MBT for Well D, in Fig. 20.  
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Fig. 20—Log-log plot, Rate vs. MBT, Well D 

Fig. 20 shows, from a half-slope trend line, that Well D remains in transient linear 

flow for the entirety of the 60 months of publically available production data (and the 

duration for which we generated our forecasts). With this information, we generate 

production forecasts using our methods, extending the period for which we transient 

linear flow occurs for the 60 months forecasting duration period, in Fig. 23.  
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Fig. 21—Well D, 12-month history match and forecasts, months 0-60 

Fig. 22—Well D, 12-month history match and forecasts, months 48-60 

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

M
M

s
c
f/

m
o

n
th

Time (months)

20

22

24

26

28

30

32

34

36

38

40

48 50 52 54 56 58 60

M
M

s
c
f/

m
o

n
th

Time (months)



52 

Table 4 outlines the average absolute discrepancy between each generated forecast, 

and the monthly production rates of Well D, as well as the discrepancy between each 

trial’s 12-month EUR and 60-month EUR when compared with the true EURs of Well 

D at those time durations. 

Table 4—Quality of matches – 12-month history match, Well D 

Run 

12-month
EUR

discrepancy 

60-month
EUR

discrepancy 

12-month
Average

ABS Rate
discrepancy  

60-month
Average

ABS Rate
discrepancy  

227 2.75% 1.19% 5.21% 2.60% 

231 2.75% 1.19% 5.21% 2.60% 

880 2.38% 0.86% 4.96% 2.59% 

682 1.70% 0.24% 4.52% 2.58% 

941 1.62% 0.18% 4.48% 2.60% 

447 1.32% -0.10% 4.32% 2.72% 

108 0.81% -0.56% 4.08% 2.94% 

119 0.81% -0.56% 4.08% 2.94% 

1167 0.61% -0.74% 3.99% 3.03% 

1413 -0.03% -1.32% 3.74% 3.31% 

678 -0.07% -1.36% 3.73% 3.33% 

641 -0.09% -1.37% 3.72% 3.34% 

652 -0.09% -1.37% 3.72% 3.34% 

669 -0.09% -1.37% 3.72% 3.34% 

1104 -0.42% -1.67% 3.62% 3.50% 

1126 -0.42% -1.67% 3.62% 3.50% 

1433 -0.96% -2.17% 3.53% 3.83% 

719 -0.96% -2.17% 3.53% 3.83% 

1372 -1.05% -2.24% 3.52% 3.88% 

628 -1.12% -2.30% 3.51% 3.92% 

863 -1.18% -2.36% 3.51% 3.96% 

365 -1.48% -2.64% 3.51% 4.14% 

975 -1.72% -2.85% 3.51% 4.29% 

430 -2.08% -3.18% 3.51% 4.51% 

900 -2.58% -3.63% 3.55% 4.81% 

195 -2.80% -3.83% 3.58% 4.94% 

852 -3.58% -4.54% 3.80% 5.42% 

426 -3.79% -4.73% 3.90% 5.55% 

389 -3.81% -4.75% 3.90% 5.56% 

400 -3.81% -4.75% 3.90% 5.56% 

417 -3.81% -4.75% 3.90% 5.56% 

1256 -4.05% -4.97% 4.03% 5.71% 

1474 -4.23% -5.14% 4.13% 5.82% 

1502 -4.23% -5.14% 4.13% 5.82% 

611 -4.57% -5.45% 4.33% 6.03% 

376 -4.80% -5.65% 4.47% 6.17% 

1092 -4.89% -5.74% 4.52% 6.22% 

1338 -5.07% -5.91% 4.64% 6.34% 

1444 -5.09% -5.92% 4.65% 6.35% 

113 -5.50% -6.29% 4.91% 6.59% 

Average -1.59% -2.74% 4.03% 4.33% 
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The treatment combinations of input parameters which yielded the seven best-fit 

forecasts to Well D based on a 12-month history match are listed in Section 3.3, in 

Table 11.

The production forecasts generated on the basis of a 12-month history for Well D 

match true production data sufficiently well (when we have foresight to when telf will 

actually occur), estimating monthly rates within 5%, 12-month EUR within 2%, and 

60-month EUR within 3%.

We then investigate how the fit of rate-time profiles could be improved for Well D, 

when generated on the basis of a 60-month history match. 

Fig. 23—Well D, 60-month history match rate-time profiles, months 0-60 
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In Fig. 24 through Fig. 26, we parse this forecast into smaller time increments, to 

analyze more closely the quality of the 60-month history match forecasts. 

Fig. 24—Well D, 60-month history match rate-time profiles, months 0-12 
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Fig. 25—Well D, 60-month history match rate-time profiles, months 12-30 

Fig. 26—Well D, 60-month history match and forecasts, months 30-60 
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The 40 best-fit history matches, shown in Fig. 24 through Fig. 26 (matched on 60 

months of production data), match the true production data of Well D satisfactorily for 

months 0-60: each of the 40 best-fit rate-time profiles for Well D estimate monthly 

production rates within less than 4% discrepancy (Table 5). We conclude that having 

more production history as a basis to history match yields better fitting production 

forecasts when using our proposed workflow, although this is no surprise. This is 

correlated with having a better understanding of when telf will occur; while we vary this 

parameter with DOE techniques, history matching for other reservoir and completion 

parameters simultaneously, telf could also be estimated using the equation presented in 

(12), in combination with (3), presented by Wattenbarger (by history matching 

available production data). Proper estimation of telf is critical when trying to properly 

forecast production for longer periods of time.  

Table 5 outlines the average absolute discrepancy between the production rates of 

Well D, and the 40 best-fit rate-time profiles (generated based on a 60-month history 

match) as well as the discrepancy between each trial’s 12-month EUR and 60-month 

EUR when compared with the true EURs of Well D at those time durations.  
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Table 5— Quality of matches: 60-month history match, Well D 

Run 

12-month
EUR

discrepancy 

60-month
EUR

discrepancy 

60-month
Average
ABS rate

discrepancy 

195 5.37% 5.36% 5.09% 

1144 5.12% 5.12% 4.87% 

426 3.98% 4.00% 3.95% 

389 3.96% 3.99% 3.94% 

400 3.96% 3.99% 3.94% 

417 3.96% 3.99% 3.94% 

1256 3.68% 3.72% 3.77% 

1474 3.47% 3.51% 3.65% 

1502 3.47% 3.51% 3.65% 

611 3.07% 3.13% 3.46% 

376 2.81% 2.88% 3.37% 

1092 2.71% 2.77% 3.33% 

1338 2.50% 2.57% 3.27% 

1444 2.48% 2.55% 3.27% 

113 2.01% 2.09% 3.15% 

441 2.00% 2.08% 3.14% 

1161 1.80% 1.89% 3.10% 

648 1.52% 1.61% 3.06% 

663 1.52% 1.61% 3.06% 

178 1.35% 1.45% 3.04% 

1403 0.54% 0.67% 3.05% 

1407 0.54% 0.67% 3.05% 

600 0.40% 0.53% 3.07% 

622 0.40% 0.53% 3.07% 

174 -0.54% -0.39% 3.37% 

148 -0.56% -0.41% 3.38% 

165 -0.56% -0.41% 3.38% 

1355 -0.56% -0.41% 3.38% 

1366 -0.56% -0.41% 3.38% 

359 -1.03% -0.86% 3.60% 

852 -1.50% -1.32% 3.85% 

215 -1.50% -1.32% 3.85% 

1302 -1.60% -1.42% 3.91% 

471 -1.66% -1.48% 3.94% 

909 -1.86% -1.67% 4.05% 

900 -2.44% -2.24% 4.42% 

185 -2.53% -2.32% 4.48% 

396 -2.75% -2.54% 4.63% 

868 -2.79% -2.57% 4.66% 

1222 -2.79% -2.57% 4.66% 

Average 0.93% 1.05% 3.68% 



58 

3.1.2 Identifying probabilistic forecasts for Well D, 12-month history match 

While a range of forecasts as we have presented for Well D are valuable, assigning 

specific P10, P50, and P90 forecasts are of greater interest to industry, as these forecasts 

and estimates comply with both PRMS and SEC standards. Because operators typically 

will not have access to five years of production data (with which to history-match and 

generate production forecasts), we return to the forecasts generated with only 12 

months of production data for Well D for this portion of work. 

We then analyzed the best-fit cumulative production forecasts for Well D 

(generated on the basis of a 12-month history match): from these best-fit forecasts 

representative P10, P50, and P90 forecasts for Well D were determined, based on level 

of discrepancy from the reference solution (the true 12-month cumulative production 

of Well D). These forecasts were identified on the assumption that we know that 

boundary-dominated flow will not occur for this particular well during the period of 

time for which we are interested in (first 60 months of well life). This is confirmed by 

the log-log plot shown in Fig. 20.  

We show the 12-month EURs for each of the best-fit forecasts, arranged in 

ascending order, according to the discrepancy from true 12-month EUR, in Table 6. 

Run 447 yields a forecast with a discrepancy closest to 0 (discrepancy of -.10%), which 

can logically be viewed as a P50 forecast (this is highlighted (in blue) in Table 6). By 

fitting the 12-month EUR discrepancies shown in Table 4 with a normal probability 

distribution with a mean of -.10%, P90 and P10 discrepancies, and corresponding P90 

and P10 forecasts, can be identified:  Run 1388 and Run 231 were determined as P90 

and P10 forecasts, respectively, and are also highlighted in Table 6 (in green, and in 
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orange, respectively).  Trials which yielded duplicate 12-month EURs and 12-month 

EUR discrepancies are not shown in this table. These results yield a considerably small 

P10/P90 ratio of 1.07, indicating an estimated range of outcomes that may be overly 

confident. 

Table 6— Comparing 12-month EURs: Well D 

Run 

12-month
EUR

discrepancy 

12-month
EUR

(MMscf) 

227 1.19% 1049 

231 1.19% 1049 

880 0.86% 1045 

682 0.24% 1039 

941 0.18% 1038 

447 -0.10% 1035 

108 -0.56% 1031 

1167 -0.74% 1029 

1413 -1.32% 1023 

678 -1.36% 1022 

669 -1.37% 1022 

1104 -1.67% 1019 

1433 -2.17% 1014 

1372 -2.24% 1013 

628 -2.30% 1013 

863 -2.36% 1012 

365 -2.64% 1009 

975 -2.85% 1007 

430 -3.18% 1003 

900 -3.63% 999 

195 -3.83% 997 

852 -4.54% 989 

426 -4.73% 987 

417 -4.75% 987 

1256 -4.97% 985 

1474 -5.14% 983 

611 -5.45% 980 

376 -5.65% 978 

1092 -5.74% 977 

1338 -5.91% 975 

1444 -5.92% 975 

113 -6.29% 971 

The representative P10, P50, and P90 forecasts, based on discrepancy from 12-

month EUR, as well as the reference solution, is shown in Fig. 27. 
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Fig. 27— Comparison of 12-month cumulative gas production forecasts: 

Well D, 12-month history match 

Although the forecasts were generated on a 12-month history match, we then 

expand these forecasts to assess how they look after 60 months, analyzing the quality 

more closely, by focusing on the last 20 months of the 60-month forecasting period, in 

Fig. 28. 
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Fig. 28— Comparison of 60-month cumulative gas production forecasts 

(months 40-60): Well D, 12-month history match 

We can see from Fig. 27 and Fig. 28 that the methods we present can be used to 

quickly, easily—but most importantly—sufficiently probabilistically forecast 

production, despite limited available production data used to history match and forecast 

production for Well D.  

The forecasts, when extrapolated to 60 months, yield a 60-month P10/P90 ratio of 

1.08, also narrow. A narrow range such as this is not always preferable or appropriated 

when evaluating many different scenarios. In upcoming sections, we assess the validity 

of this narrow band of estimated forecasts, and discuss using a decreased number of 

experimental runs when history matching production to obtain a wider range of 

forecasts. 
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3.1.3 Forecasting production for Well K, 12-month history match and 60-month 

history match  

We then perform the same series of history matches for Well K, as we had done for 

Well D. When looking at the gas normalized pressure vs. √𝑡 plot of Well K (shown in 

Fig. 29), to determine the mcpT, and intercept (b’), we can see that the values of mcpT 

and b’ differ significantly when matched with either 12, 24, or 60 months of production 

data.  

Fig. 29— Assessing mcp: Well K 
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From Fig. 29, it is clear that unlike Well D (shown in Fig. 16), mcp (and b’ intercept) 

change considerably from an analysis of 12 months of production data, when compared 

with parameters drawn from a diagnosis of 24 months or 60 months of production data. 

For this portion of work, we systematically vary four parameters, fracture half-

length (xf), porosity (φ), formation height (h), and permeability (k), using DOE 

techniques (and using the same 1,000 treatment combinations used for Well D) for the 

history matching portion of our workflow. Using the 1,000 treatment combinations, 

and with known parameters of Well K (number of fractures, nf, initial pressure, pi), 

assumed parameters of Well K (flowing well pressure, pwf,) and estimated parameters 

of Well K (pseudo-pressures, total compressibility, ct, and viscosity, μ) 1,000 mcp 

values were calculated for Well K.  

These treatment combinations were then ranked based on how closely their 

calculated mcp values matched the target mcpT value of Well K (determined from the 

diagnostic plot shown in Fig. 29, using the 12-month production data and trend line).  

The mcp values which most closely matched the mcpT value of Well K were then used 

to generate production forecasts during the transient flow period. As mentioned in 

Chapter 2, an independent method is needed to forecast production during BDF: for 

every best-matched treatment combination, a unique telf and Di will be estimated, and 

a b-parameter of .4 will be used to estimate production in BDF using Arps’ decline 

relations. 

In Fig. 30, we show 40 best-fit forecasts (when history matched with a 12-month 

mcpT), for Well K.  
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Fig. 30—Well K, 12-month history match and forecasts 

In Fig. 31 and Fig. 32, we parse this forecast into smaller time increments, to 

analyze the quality of the forecasts generated on the basis of a 12-month history match, 

more closely.  
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Fig. 31—Well K, 12-month history match and forecasts, months 0-30 

Fig. 32—Well K, 12-month history match and forecasts, months 30-60 
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The forecasts shown in Fig. 31 and Fig. 32, match the true production data of Well 

K satisfactorily for months 0-60, when history-matched with only 12 months of 

production data. Table 7 outlines the average absolute discrepancy between each 

generated forecast, and the monthly production rates of Well K, as well as the 

discrepancy between each trial’s 12-month EUR and 60-month EUR when compared 

with the true EURs of Well K at those time durations. Recall that each of the forecasts 

reviewed in this table switch to forecasting in BDF at different times, in accordance 

with the values of the parameters within the treatment combination used to history 

match and generate the forecast.   
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Table 7—Quality of matches – 12-month history match, Well K (variable telf) 

Run 

12-month
EUR

discrepancy 

60-month
EUR

discrepancy 

12-month
Average
ABS rate

discrepancy 

60-month
Average
ABS rate

discrepancy 

1310 -3.19% 1.38% 3.29% 3.66% 

91 -3.19% -15.57% 3.29% 19.93% 

1291 -3.12% 1.98% 3.26% 4.50% 

1028 -3.04% 1.94% 3.23% 4.32% 

1045 -3.04% 1.94% 3.23% 4.32% 

883 -2.99% -17.76% 3.38% 22.55% 

801 -2.82% 0.44% 3.16% 3.00% 

829 -2.82% 0.44% 3.16% 3.00% 

57 -2.73% -2.07% 3.13% 4.90% 

1357 -2.73% -8.16% 3.13% 11.40% 

68 -2.14% -1.84% 3.03% 5.51% 

1094 -1.86% -8.98% 3.00% 12.86% 

256 -1.75% 2.55% 2.99% 3.86% 

583 -1.72% 1.30% 2.99% 3.55% 

1327 -1.69% 3.62% 2.99% 5.32% 

1053 -1.41% 3.17% 2.96% 4.38% 

1081 -1.41% 3.17% 2.96% 4.38% 

782 -1.39% 4.12% 2.96% 5.80% 

343 -1.37% -11.65% 2.96% 16.14% 

1135 -1.24% -14.62% 2.88% 19.55% 

391 -1.06% -16.70% 2.76% 21.98% 

169 -0.97% -18.13% 3.63% 23.83% 

38 -0.94% 2.95% 2.96% 4.07% 

309 -0.92% 1.75% 2.96% 4.16% 

1023 -0.58% 5.63% 2.98% 7.35% 

1280 -0.49% 5.92% 2.98% 7.73% 

1297 -0.49% 5.92% 2.98% 7.73% 

818 -0.20% 4.36% 3.00% 5.11% 

835 -0.20% 4.36% 3.00% 5.11% 

536 -0.10% 5.64% 3.00% 6.91% 

1034 0.01% 6.52% 3.01% 8.16% 

595 0.28% -7.96% 3.03% 13.06% 

643 0.54% -13.60% 3.02% 18.99% 

128 0.69% -15.08% 3.15% 20.86% 

1333 1.11% 7.87% 3.23% 9.22% 

1070 1.20% 7.12% 3.26% 8.01% 

1087 1.20% 7.12% 3.26% 8.01% 

572 1.31% 5.87% 3.31% 6.14% 

760 1.40% 8.86% 3.37% 10.51% 

16 1.49% 6.65% 3.45% 7.10% 

Average -2.23% -3.40% 3.08% 8.80% 
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When history-matching (and forecasting) on only 12 months of production data, we 

have little inclination of when exactly the transition from transient flow to BDF will 

occur; it can be seen from Fig. 31 and Fig. 32 that some best-fit forecasts (best-fit to 12 

months of production data) may not capture this transition time properly. To analyze 

to how many treatment combinations did yield an estimated telf consistent with true telf 

of Well K, we show a log-log plot of rate vs. MBT for Well K, in Fig. 33.  

Fig. 33—Log-log plot, Rate vs. MBT, Well K 

Fig. 33 shows, from a half-slope trend line, that Well K transitions into BDF 

between t ~ 33-34 months. With this information, we generate production forecasts 

using our methods, fixing the time at which we will switch to forecasting in BDF. We 

show these forecasts in Fig. 34.  
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Fig. 34—Well K, 12-month history match and forecasts, months 0-60 

(assumed telf) 

Comparing quality of fit of forecasts in Fig. 30 (12-month history match, no 

prevision of telf), and Fig. 34 (12-month history match, fixed telf) it is clear that quality 

of fit improves as more production data (and subsequent knowledge of telf) becomes 

available which again, is no surprise. Table 8 outlines the average absolute discrepancy 

between each generated forecast, and the monthly production rates of Well K, as well 

as the discrepancy between each trial’s 12-month EUR and 60-month EUR when 

compared with the true EURs of Well K at those time durations. Recall that each of the 

forecasts reviewed in this table switch to forecasting in BDF at a fixed time (33 

months).  
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Table 8—Quality of matches – 12-month history match, Well K (fixed telf) 

Run 

12-month
EUR

discrepancy 
60-month

EUR
discrepancy 

12-month
Average
ABS rate

discrepancy 

60-month
Average
ABS rate

discrepancy 

1310 -1.94% -3.19% 3.29% 4.31% 

91 -1.94% -3.19% 3.29% 4.31% 

1291 -1.84% -3.12% 3.26% 4.28% 

1028 -1.72% -3.04% 3.23% 4.24% 

1045 -1.72% -3.04% 3.23% 4.24% 

883 -1.41% -2.82% 3.16% 4.17% 

801 -1.41% -2.82% 3.16% 4.17% 

829 -1.41% -2.82% 3.16% 4.17% 

57 -1.28% -2.73% 3.13% 4.15% 

1357 -1.28% -2.73% 3.13% 4.15% 

68 -1.24% -2.14% 3.03% 5.02% 

1094 0.01% -1.86% 3.00% 4.10% 

256 0.17% -1.75% 2.99% 4.10% 

583 0.22% -1.72% 2.99% 4.10% 

1327 0.27% -1.69% 2.99% 4.11% 

1053 0.68% -1.41% 2.96% 4.15% 

1081 0.68% -1.41% 2.96% 4.15% 

782 0.71% -1.39% 2.96% 4.16% 

343 0.74% -1.37% 2.96% 4.16% 

1135 0.68% -1.41% 2.96% 4.15% 

391 1.42% -0.92% 2.96% 4.29% 

169 2.64% -0.10% 3.00% 4.58% 

38 1.38% -0.94% 2.96% 4.28% 

309 1.42% -0.92% 2.96% 4.29% 

1023 1.93% -0.58% 2.98% 4.40% 

1280 2.05% -0.49% 2.98% 4.43% 

1297 2.05% -0.49% 2.98% 4.43% 

818 2.50% -0.20% 3.00% 4.54% 

835 2.50% -0.20% 3.00% 4.54% 

536 2.64% -0.10% 3.00% 4.58% 

1034 2.81% 0.01% 3.01% 4.62% 

595 3.22% 0.28% 3.03% 4.75% 

643 3.89% 0.73% 3.13% 5.00% 

128 3.81% 0.67% 3.11% 4.97% 

1333 4.48% 1.11% 3.23% 5.24% 

1070 4.61% 1.20% 3.26% 5.30% 

1087 4.61% 1.20% 3.26% 5.30% 

572 4.78% 1.31% 3.31% 5.40% 

760 10.17% 1.40% 3.37% 12.33% 

16 5.06% 1.49% 3.45% 5.58% 

Average -0.55% -2.22% 3.09% 4.22% 

Comparing the results in Table 7 and Table 8, it is clear that the more production 

data available for a well yields forecasts with improved fits to true production. The 

results in Table 8 (when telf is fixed, or known) estimate monthly production rates 
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within less than 5% discrepancy, on average, over a 60-month period of time, and 

estimate 60-month cumulative production within 3%, on average. We conclude that 

having more production history as a basis to history match yields better fitting 

production forecasts when using our proposed workflow, although this is no surprise. 

This is correlated with having a better understanding of when telf will occur; having this 

information is critical when trying to properly forecast production for longer periods of 

time. 

3.1.4 Identifying probabilistic forecasts for Well K, 20-month history match 

Just as we had performed for Well D, we then analyzed the best-fit cumulative 

production forecasts for Well K.  

The 40 best-fit forecasts of Well K (12-month history-match, variable telf) were 

analyzed to determine representative P10, P50, and P90 forecasts, based on discrepancy 

from 12-month EUR We show the 12-month EURs for each of the best-fit forecasts in 

Table 7. For this portion of the analysis, we ignore t=1 in efforts to smooth the data.  



72 

Table 9—Identifying Probabilistic Forecasts, Well K 

Run 

Discrepancy, 
12-month
cumulative
production,

months 2-12

128 -1.61%

1333 -1.61%

643 -1.54%

818 -1.45%

835 -1.45%

391 -1.42%

1327 -1.22%

1053 -1.22%

1045 -1.13%

883 -1.13%

583 -0.49%

68 -0.19%

801 -0.08%

829 -0.04%

1357 -0.01%

1280 0.29% 

1297 0.29% 

1034 0.31% 

536 0.34% 

169 0.48% 

16 0.65% 

782 0.70% 

572 0.79% 

760 0.82% 

1070 1.18% 

1087 1.27% 

595 1.27% 

1135 1.59% 

343 1.59% 

1081 1.69% 

57 1.81% 

91 2.10% 

1310 2.37% 

1291 2.54% 

1028 2.99% 

1094 3.08% 

256 3.08% 

309 3.20% 

38 3.31% 

1023 3.40% 

From Table 9, we then determine representative P10, P50, and P90 forecasts, based 

on discrepancy from a 12-month EUR: run 1357 yields a forecast with a discrepancy 

closest to 0 (discrepancy of -.01%), which can logically be viewed as a P50 forecast 

(this is highlighted (in blue) in Table 9). By fitting the 12-month EUR discrepancies 
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shown in Table 9 with a normal probability distribution with a mean of -.01%, P90 and 

P10 discrepancies, and corresponding P90 and P10 forecasts, can be identified.  Run 

1333 and Run 91 were identified as P90 and P10 forecasts, respectively, and are also 

highlighted in Table 9.  We show these forecasts in Fig. 35. Although the forecasts 

were generated on the basis of a 12-month history match, we then expand these 

forecasts to assess how they look after 60 months. 

Fig. 35— Comparison of 60-month cumulative gas production forecasts: 

Well K, 12-month history match 

We can see from Fig. 35 that even when telf is unknown, that the methods we present 

can be used to quickly, easily—but most importantly—sufficiently probabilistically 

forecast production, despite limited available production data used to history match and 

forecast production for Well K. The forecasts in Fig. 35 after 12 months, yield a 
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P10/P90 ratio of 1.05, and when extrapolated to 60 months, yield a 60-month P10/P90 

ratio of 1.28.  

As mentioned during the probabilistic forecasting of Well D, a narrow range such 

as this is not always preferable—or correct—when evaluating many different 

scenarios. In the following section, we validate this narrow band of Well D, and discuss 

using a decreased number of experimental runs when history matching production to 

obtain a wider range of forecasts. 

3.1.5 Examples of application of method to history match and forecast production 

We showcased Wells D and K in depth to show it is possible to achieve high-quality 

production forecasts using the methods we present, regardless of whether the well 

reaches BDF during the forecasting period. We use this section to review that our 

methods can be used to successfully history match available production data with 

treatment combinations generated with DOE techniques, and used to sufficiently 

forecast production in transient linear flow (followed by production in BDF if 

necessary) to generate a range of production forecasts, from which appropriate P10, 

P50, and P90 forecasts can be extracted. We show the true production of these wells 

and 20 best-fit history matches (history-matched from 12-15 months of available 

production data, depending on quality of data) and 60-month production forecasts, in 

Fig. 36 through Fig. 39. All but one well shown in the below figures (Well I) is clearly 

shown to have reached BDF during the 60-month period forecasted when assessing a 

60-month log-log rate vs. material balance time plot (MBT) plot. All log-log rate-MBT
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plots for these wells (to detect transition from transient flow to BDF) are shown in Fig. 

55 through Fig. 58 in the Appendix.  

Fig. 36— Well F, 12-month history match and production forecasts 
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Fig. 37— Well H, 12-month history match and production forecasts 

Fig. 38— Well I, 15-month history match and production forecasts 



77 

Fig. 39— Well J, 12-month history match and production forecasts 

From the examples shown in Fig. 36 through Fig. 39, we show that when 

appropriate ranges of reservoir and completion parameters are sufficiently known, DOE 

techniques can be used to generate thousands of treatment combinations, from which a 

much more concentrated number of satisfactory history matches can be identified, and 

satisfactory production forecasts can be generated. Only 60 months of production data 

for each of the wells shown here is used to validate that forecasts generated, because 

only 60 months of production data was publically available for these wells. We validate 

how well this method can be used to forecast longer-term production in the following 

section. 
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3.1.6 Assessing reliability of methods to determine individual probabilistic 

forecasts 

In this section, we assess the reliability of our methods in determining individual 

probabilistic forecasts by analyzing cumulative production levels, and P10/P90 ratios 

of nearly 120 MFHWs producing from the Barnett Shale.  

The P10/P90 ratio is a useful performance metric in quantifying the variance of a 

given range of estimated production forecasts; a larger P10/P90 ratio indicates that 

dissimilar wells are being compared among a group, while a smaller P10/P90 ratio 

indicates a more homogenous group of wells: this homogeneity could be in reference 

to lateral length, net pay thickness, depth, and more (Ezisi et al. 2012).  

We first assess the P10/P90 ratio of both 12-month cumulative production, and 60-

month cumulative production for all 120 wells studied. The 12-month cumulative 

production of all 120 wells could be characterized by a lognormal distribution; we show 

this in a descending cumulative probability plot in Fig. 40. The 60-month cumulative 

production of all 120 wells could be characterized by a normal distribution; we show 

this in a descending cumulative probability plot in Fig. 41. 
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Fig. 40—12-month cumulative production, Barnett Shale MFHWs 

Fig. 41—60-month cumulative production, Barnett Shale MFHWs 
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Assessing 12-month cumulative production for all 120 wells studied yields a 

P10/P90 ratio of 2.31. Assessing 60-month cumulative production for all 120 wells 

studied also yields a P10/P90 ratio of 2.38. This is larger than the P10/P90 ratios we 

had calculated for Well D (1.07, 1.08), Well K (1.05, 1.28), and presumably larger than 

the P10/P90 ratios for other wells shown in Section 3.1.5. We mentioned previously 

that a very low P10/P90 ratio may be indicative of an estimated range of outcomes that 

is overly confident, and that this range should be wider when forecasting production 

(especially when limited production history is available).  

We also discussed that the P10/P90 ratio is commensurate to the homogeneity of 

the group of wells being studied. To validate whether our narrow estimated ranges—

when assessing whether production of Well D, Well K, and other wells we show in 

Section 3.1.5 are appropriate—we focus more closely on 16 wells from our 120 well 

data set which have very similar 12-month production volumes, all close to the average 

12-month cumulative production of the entire set (462 MMscf).

Before assessing the P10/P90 ratios of this sample set, we first compare completion 

and reservoir characteristics of this 16-well sample against the completion and reservoir 

characteristics of the full set of wells. We compare the total vertical depth, the lateral 

lengths, and number of fracture stages between the two sets, in Fig. 42, Fig. 43, and 

Fig. 44, respectively.  
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Fig. 42—Comparing relative frequency of TVD, Barnett Shale MFHWs 

Fig. 43—Comparing relative frequency of Lateral Lengths, Barnett Shale 

MFHWs 
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Fig. 44—Comparing relative frequency of fracture stages, Barnett Shale 

MFHWs 

Fig. 42, Fig. 43, and Fig. 44 confirm that the subset of wells that we have chosen 

to analyze further when assessing P10/P90 ratios not only have similar 12-month 

cumulative production levels (ranging from 428 MMscf to 478 MMscf), these wells 

also have reservoir and completion characteristics that fall within a more concentrated 

range than when assessing all 120 wells. This homogeneity among wells in this subset 

would corroborate any smaller P10/P90 ratios, if they were to be observed.  

The 12-month cumulative production of the sample set of wells could be best 

characterized by a uniform distribution; we show this in a descending cumulative 

probability plot in Fig. 45. The 60-month cumulative production of the sample set of 

wells could be best characterized by a triangular distribution; we show this in a 

descending cumulative probability plot in Fig. 46.  
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Fig. 45—12-month cumulative production, sample set, Barnett Shale 

MFHWs 

Fig. 46—60-month cumulative production, sample set, Barnett Shale 

MFHWs 
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Assessing 12-month cumulative production for this sample set of characteristically-

similar (and prolifically-similar) wells yields a P10/P90 ratio of 1.11. Assessing 60-

month cumulative production this sample set of wells studied yields a P10/P90 ratio of 

1.31. These ratios are significantly smaller than the ratios we observe when assessing 

a much larger set of wells (of which have more variable completion and reservoir 

characteristics, as shown in Fig. 42 and Fig. 44). We conclude from this portion of work 

that P10/P90 ratios for wells of similar attributes have small P10/P90 ratios when 

comparing 12-month cumulative production levels, and 60-month cumulative 

production levels: when building probabilistic forecasts for individual wells, it would 

be appropriate to have P10/P90 ratios that are just as small—if not smaller than—the 

ratios we observe for a concentrated group of wells.  

While the P10/P90 ratios of our probabilistic forecasts for Well D and Well K could 

be realistic, for risk-adverse planning purposes, the probabilistic ranges for these 

estimates could afford to be made wider. Because the purpose of DOE techniques is to 

survey the broad experimental space in the minimum number of runs, we suspected 

that had we performed the history-matching process on a decreased number of 

treatment combinations, that our P10/P90 ratios would be greater, and possibly more 

appropriate when determining P10, P50, and P90 forecasts.  We show probabilistic 

forecasts identified from pools of treatment combinations of various sizes, in Fig. 47 

through Fig. 50. 
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Fig. 47—Well D Probabilistic forecasts: 12-month history match, identified 

from 1,000 DOE runs 



86 

Fig. 48— Well D Probabilistic forecasts: 12-month history match, identified 

from 250 DOE runs 

Fig. 49—Well D Probabilistic forecasts: 12-month history match, identified 

from 125 DOE runs 
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Fig. 50—Well D Probabilistic forecasts: 12-month history match, identified 

from 45 DOE runs 

We compare the P10/P90 ratios of the forecasts shown in Fig. 47 through Fig. 50 

in Table 10. 

Table 10—Effect of # DOE runs on Probabilistic Forecasts and P10/P90 ratio 

DOE 
Runs 

P10/P90 ratio 

q, 12 
months 

q, 60 
months 

Q, 12 
months 

Q, 60 
months 

1000  1.08 1.09 1.07 1.08 

250 1.23 1.25 1.20 1.23 

125 1.53 1.58 1.41 1.51 

45 3.83 4.21 3.25 3.74 

From Table 10, we can see that when probabilistic forecasts are identified from a 

decreased number of best-matched treatment combinations, that our ranges (and 
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subsequent P10/P90 ratios) become larger. While we could conclude that narrow 

probabilistic ranges may be adequate when forecasting a single well (assuming no 

brash changes to production), we conclude that slightly wider ranges may be more 

appropriate for modest planning purposes, or when evaluating a larger set of wells with 

greater reservoir and completion variability.  

Identifying probabilistic forecasts from enlarged ranges could suggest the 

workflow we present could be used to probabilistically estimate resources volumes: 

when there is no “real” set of production data which to history “match”, our ranges 

should be wider, and obtaining "matches" from a less populated design space helps us 

achieve that.  

3.1.7 Comparing DOE-generated forecasts with forecasts generated with software 

In this section, we validate capabilities of our workflow with the RTA production 

forecasting capabilities of IHS Harmony. Harmony is a popular industry software in 

industry, and is considered to be robust by the oil and gas community. We will use 

known well data, as well as portions of the DOE treatment combinations which yielded 

the seven best-fit history-matches and subsequent forecasts (for Well D) in Section 

3.1.1 in this portion of work. 

We begin by generating production forecasts with Harmony using known 

parameters of Well D, (shown in Table 11) and the reservoir and completion data of 

each of the best-fit treatment combinations (shown in Table 12).  
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Table 11— Known well parameters, required for forecasting with RTA in 

Harmony, Well D 

Well Temperature, °F nf TVD (ft.) 

Reservoir 
pressure 

(psi) 
Lateral 

length (ft.) 

D 220 8 7953 3698 3084 

The seven treatment combinations which yielded the seven best-fit history-matches 

for Well D, are also reviewed in Table 12. 

Table 12— Treatment combinations which yield the best-fit history matches: 

Well D, 12-month history match 

Run φ h xf k 

880 0.065 375 250 250 

682 0.06 250 250 600 

941 0.065 200 300 600 

447 0.055 325 200 600 

108 0.05 300 350 250 

119 0.05 350 300 250 

1167 0.07 350 200 400 

We then compare each of the best-fit forecasts of Well D (generated using our 

methods and the treatment combinations listed in Table 12), to the corresponding 

forecast generated in Harmony (using the same input parameters of that treatment 

combination), and assess how the forecasts generated using either method compare to 

the true production of Well D. We compare three pairs of forecasts, as well as the true 

production of Well D, in Fig. 51 through Fig. 53. The three pairs of forecasts shown 

here were chosen at random, the remaining four pairs of forecasts—generated using the 
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four remaining treatment combinations highlighted in Table 12—are shown in Fig. 59 

through Fig. 62, in the Appendix.  

Fig. 51— Comparing Harmony vs. DOE method forecasts, Run 941 
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Fig. 52— Comparing Harmony vs. DOE method forecasts, Run 447 
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Fig. 53— Comparing Harmony vs. DOE method forecasts, Run 119 

From Fig. 51 through Fig. 53, we can see that the forecasts generated with 

Harmony, compared to the corresponding forecast generated using our DOE methods, 

visually agree, although tend to diverge over time. It can also be seen from these figures 

that forecasts generated with our proposed methods visually match the true production 

of Well D more closely than forecasts generated (using the same input parameters) with 

Harmony. The pairs of forecasts shown in the Appendix follow this same trend.  

We show the discrepancies between the each of the three forecasts in each figure 

(Fig. 51 through Fig. 53, as well as Fig. 59 and Fig. 62), in Table 13.  
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Table 13— Comparing 60-month EURs, DOE and Harmony forecasts, 

Well D 

While this portion of work was only performed with one well, we have reason to 

believe from other recent work done in industry that the results we see is not 

anomalous: when testing the RTA production forecasting capabilities of Harmony for 

oil production, Moinfar and Erdle (2016) encountered similar underestimations in 

cumulative production, attributing these lower-than-expected cumulative production 

estimates to the software’s inability to capture all physics associated with their 

assumptions, and in turn, over-compensating for those missing physics by 

“significantly degrading” fracture properties when history-matching historical data 

(Moinfar, Erdle 2016).  

3.2 Incorporating Economic Constraints to Forecasts 

Another advantage of history-matching and forecasting production with our 

methods is that only a software such as Microsoft Excel is required: in a single 

Microsoft Excel file, the user has the freedom to customize the interface of the program 

used to history-match (and generate forecasts), and the freedom to history-match on the 

Run 

60-month EUR (MMscf)

Discrepancy (Well D, 
60-month EUR 2893 

MMscf) 

DOE Harmony DOE Harmony 

880 2962 2654 2.38% -8.26%

682 2942 2479 1.69% -14.32%

941 2940 2541 1.62% -12.18%

447 2931 2639 1.31% -8.79%

108 2916 2807 0.80% -2.98%

119 2916 2774 0.80% -4.13%

1167 2911 2722 0.61% -5.92%
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basis of any parameter (Harmony is also limited in this regard as only a few parameters 

can be “automatically estimated” with the APE tool). We have mentioned in previous 

sections that a shortcoming of Harmony is that it does not allow the user to specify any 

economic variables in a forecast. However, with Excel, the user has the ability to 

incorporate economic parameters such as working interest, royalties, lease operating 

expense (LOE), and commodity price, to “end” a forecast once an economic limit is 

reached.   

We use Eq. 15 (Mian, 2011) to calculate the minimum rate at which gas must be 

produced per month to remain economic (ELgas) for forecasts within this section. 

𝐸𝐿𝑔𝑎𝑠 =
𝑊𝐼 × 𝐿𝑂𝐸 × (1 + 𝐼𝑅𝑅)

(1 − 𝑡) × 𝑁𝑅𝐼 × 𝑃𝑔𝑎𝑠  
……………………………………… (15) 

We assume: 

• Working interest (WI) of 100%

• Lease operating expense (LOE) of $2500 per well, per month

• Internal rate of return (IRR) of 15%

• Tax rate (t) of 7.5%

• Net revenue interest (NRI) of 100%

• Gas price of $3/ MMBtu

• 1 MMBtu = 1 Mscf = .001 MMscf

These values yield an ELgas  ≈1 MMscf/ month (see Table 14). 
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Table 14—Economic Limit assumptions and calculations 

WI 100 % 

IRR 15 % 

t 7.5 % 

NRI 100 % 

LOE  $  2,500.00 $/ well/ month 

Gas price  $  3.00 $/ MMBtu 

Gas price  $  3,000.00 $/ MMscf 

EL_gas 1.04 MMscf/ month 

Although not all forecasts generated in this work would have necessarily been 

affected by an economic limit, performing evaluations prior to incorporating 

economics could strongly affect the evaluation of the probabilistic range of forecasts. 

Incorporating economic limits can be much more complex than what we have 

demonstrated here, as we hold commodity price flat throughout the forecast (rather than 

use escalating or otherwise variable prices), we hold LOE flat, nor do we incorporate 

variables such as inflation.  

We suspect that had more complex economics been incorporated into the 

production forecasting analysis here, that impacts to longer-term production forecasts 

would have been realized, and recommend that when generating longer-term 

production forecasts and determining probabilistic forecasts and estimates, that these 

economic factors be considered.  



96 

3.3 Results Summary 

We have found that using DOE techniques are reliable in the history-matching 

process, and in generating a range of forecasts that match “future” production 

satisfactorily (as long as reliable probability distributions of input parameters are 

satisfactorily known). We have also discussed that incorporating D-Optimal designs 

are helpful when “randomly” creating experimental runs, when the effects of certain 

input parameters vary discretely and definitively (when decimal change to parameters 

such as lateral lengths and number of fractures tend to be negligible). 

We have demonstrated in this work that DOE techniques (specifically, D-Optimal 

designs) can be seamlessly incorporated to reduce the time required to obtain many 

satisfactory history-matches (in this work, we identified up to 40 best matches per 

well), and to generate appropriate and satisfactory production forecasts with RTA, even 

when production data is limited. From these best-fitting forecasts, appropriate P10, 

P50, and P90 forecasts can be elected.  

We showed that DOE techniques can be used in place of MCS to generate 

thousands of possible treatment combinations in a matter of seconds, and showed that 

by ranking mcp—a product of each treatment combination—the select treatment 

combinations which will yield the best-fit forecasts—during transient flow—can be 

very quickly identified, at the click of a button. We showed how independent methods 

to forecast production in BDF can be integrated with the workflow to forecast 

production beyond transient linear flow.  

. 
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4. SUMMARY AND CONCLUSIONS

In this work, we have discussed that there is currently a lack of practical methods 

to systematically, probabilistically forecast production in unconventional, undeveloped 

plays using Rate Transient Analysis (RTA). While numerical simulation techniques 

can be used to forecast production in unconventional plays, they are time-consuming, 

costly, and come with a steep learning curve, making them less attractive to a wide 

audience. Additionally, when generating many forecasts (to create a probabilistic range 

of forecasts), numerical simulation techniques become exponentially more 

burdensome.  

We also discussed that empirically-based production forecasting solutions, in 

combination with Monte Carlo Simulation (MCS) techniques, can be used to build a 

range of probabilistic forecasts, however empirical solutions are not as robust as other 

methods, as they do not require the input of physical reservoir or completion parameters 

of the well for analysis.  

Production forecasting with RTA, however, is considered to be more robust than 

empirical production forecasting techniques, in that it captures the physics of the 

reservoir and the completion characteristics of the well, yet is much simpler than 

numerical simulation techniques in application. While MCS can be incorporated into 

the process of forecasting production with RTA, it is sub-optimal when trying to history 

match available production data due to the challenge of non-unique solutions associated 

with RTA: many of the matches MCS generates may yield redundant results.  
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In this work, we have presented methods which show that probabilistically 

forecasting production with RTA—during transient flow—can be made more efficient 

by incorporating Experimental Design—or Design of Experiment (DOE)—techniques. 

We have shown that DOE techniques can generate appropriate, pre-designed treatment 

combinations which yield satisfactory—and unique—history matches, even when 

available production data is limited, and that these unique treatment combinations can 

be identified in seconds. These treatment combinations can be used to generate 

forecasts, in conjunction with any software which allows for production forecasting 

with RTA, to create a range of forecasts, from which probabilistic forecasts could be 

extracted.  

We have shown that by incorporating DOE techniques into probabilistic production 

forecasting analyses, the number of forecasts which need to be generated, necessary to 

build a reliable range of results, can be significantly reduced: while MCS techniques 

require thousands of runs be performed, we are able to extract P10, P50, and P90 

forecasts from a much smaller number of forecasts (no more than 50, in this work).  

We also showed an alternative method to generate many forecasts at once—more 

quickly than in an RTA software—using the treatment combinations of RTA input 

parameters created with DOE, to history-match available production data. While this 

method is very simplified, we showcased for several MFHWs in the Barnett Shale that 

the method can sufficiently history-match and generate valid production forecasts that 

are in agreement with the true “future” production of the wells presented  while in 

transient linear flow. We also propose methods which incorporate Arps’ decline 

methods to forecast production once the well has reached BDF.  
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4.1 Conclusions 

In this work we conclude that: 

• DOE techniques, in combination with RTA, can be used to efficiently

history match, and forecast production for, MFHWs currently producing from the 

Barnett Shale. The process of forecasting production from those history matches can 

be performed, as we have shown, in a simple Excel spreadsheet, or can be performed 

by, and/or validated with, any currently available software which allows for production 

forecasting with RTA.  

• Using a simple Excel spreadsheet, rather than an RTA software program, to

forecast allows for the input of economic parameters such as current gas price, lifting 

costs to “stop” production once the well is no longer able to produce economically. 

These same (simple) features are not currently available in software which generate 

production forecasts with RTA.  

• By using DOE techniques in lieu of MCS, the number of combinations of

input parameters which yield redundant forecasts and results, are minimized, reducing 

the total number of forecasts which need to be generated to compile a valid and reliable 

range of results. From this range, individual P10, P50, and P90 forecasts can be 

extracted, required for PRMS resource inventories.  
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APPENDIX 

Table 15—Key of Barnett Shale MFHWs well aliases 

Well 
alias 

API (last 
four digits) 

A -3840

B -3418

C -4020

D -4202

E -3869

F -3367

G -4210

H -3895

I -3878

J -3676

K -3930
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Fig. 54—Fracture half-length probability distribution (Cherian) 
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Fig. 55—Log-log plot, Well F 

Fig. 56—Log-log plot, Well H 
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Fig. 57—Log-log plot, Well I 

Fig. 58—Log-log plot, Well J 
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Fig. 59—Comparing Harmony vs. DOE method forecasts, Run 108 

Fig. 60—Comparing Harmony vs. DOE method forecasts, Run 880 
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Fig. 61—Comparing Harmony vs. DOE method forecasts, Run 682 

Fig. 62—Comparing Harmony vs. DOE method forecasts, Run 1167 




