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ABSTRACT

In this research, we address the stability issues in Cooperative Data Exchange (CDE), 

one of the central problems in wireless network coding. We consider a setting in which the 

users are selfish, i.e., would like to maximize their own utility. More specifically, we 

consider a setting where each user has a subset of packets in the ground set X, and wants 

all other packets in X. The users can exchange data by broadcasting coded or uncoded 

packets over a lossless channel, and monetary transactions are allowed between any pair 

of users. We define the utility of each user as the sum of two sub-utility functions: (i) 

the difference between the total payment received by the user and the total transmission 

rate of the user, and (ii) the difference between the total number of required packets by 

the user and the total payment made by the user. A rate-vector and payment-matrix 

pair (r, p) is said to stabilize the grand coalition (i.e., the set of all users) if (r, p) is Pareto-

optimal over all minor coalitions (i.e., all proper subsets of users who collectively know 

all packets in X). Our goal is to design algorithms that compute a stabilizing rate-

payment pair with minimum total sum-rate and minimum total sum-payment for any 

given instance of the problem. In this work, we propose two algorithms that maximize the 

sum of utility of all users (over all solutions), and one of the algorithms also maximizes 

the minimum utility among all users (over all solutions). The second algorithm requires a 

broker, where each user has to trust the broker and use the broker to exchange payments, 

whereas in the first algorithm there is no such requirement. In the first algorithm, the users 

directly compensate user broadcasting the packet in that particular round. Our scheme 

minimizes the total number of transmitted packets, as well as the total amount of 

payments. We also perform an extensive simulation study to evaluate the performance of 

our scheme in practical setting.

ii



DEDICATION

To my family and friends

iii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Alex Sprintson,

for all the support, inspiration and mentoring that he provided throughout the course of my

graduate studies. I would like to thank my co-advisor, Dr. Srinivas Shakkottai for all the

valuable guidance regarding my career, research and coursework. I greatly benefitted from

the informative discussions with both of them. I am grateful to Dr. Natarajan Gautam for

serving on my thesis committee.

I wish to express my sincere appreciation and thanks to Dr. Anoosheh Heidarzadeh for

mentoring me throughout the course of this thesis, being patient and allowing me to learn

gradually and steadily. All the useful discussions with him taught me about how to approach

a research problem, fragment it into smaller sub-problems and then most importantly, present

it in a succint, meaningful way.

A special thanks to all the current and past NAPA lab members for their support and the

valuable inputs.

Finally, I would like to thank my family, my friends, in College Station and in India, for

the constant encouragement and the unwavering belief.

This thesis, for all its worth, is dedicated to all of them.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Alex Sprintson

[advisor] and Professor Srinivas Shakkottai [co-advisor] of the Department of Electrical and

Computer Engineering and Professor Gautam Natarajan of the Department of Industrial and

Systems Engineering.

All the work conducted for the thesis was completed by the student in conjunction with

Visiting Assistant Professor Anoosheh Heidarzadeh of the Department of Electrical and

Computer Engineering.

Funding Sources

This work was done independently without outside financial support.

v



NOMENCLATURE

CDE Cooperative Data Exchange

P2P Peer-to-Peer

WSDE Weakly Secure Data Exchange

MAC Medium Access Control

TCP Transmission Control Protocol

IC Index Coding

MDS Maximum Distance Separable

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 CDE with Selfish Clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. STABILIZING COOPERATIVE DATA EXCHANGE PROBLEM.. . . . . . . . . . . . . . . . . . 8

3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Proposed Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Proof of theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



LIST OF FIGURES

FIGURE Page

1.1 Network Coding Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1 Users in the initial setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 User 1 transmits in the first round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 User 2 transmits in the second round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 User 1 transmits again in the third round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 mini∈N(p
−
i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 maxi∈N(p
−
i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 mini∈N(ui) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.8 vari∈N(p
+
i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9
∑

i∈N(ri) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.10 vari∈N(p
−
i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



1. INTRODUCTION

Wireless technology has become the most sought after medium of gaining access to net-

work. The novel technique of network coding greatly improves the performance of wireless

networks. The traditional methods entail employing coding at the source nodes or the links

to protect against the erasures/losses or to compress the redundant information. The network

is handed the task of transmitting the information provided by the source nodes without any

modification. In contrast to the traditional approach, the network coding technique allows

for the mixing of the information received from different source nodes by the intermediary

network nodes.

Ahlswede et al. proposed the technique of network coding in their seminal work [1].

Their work detailed the advantages of employing network coding over the traditional network

operation methodology. All the packets are treated as the symbols of a finite field, which are

transmitted by the intermediary nodes in the form of a coded combination. In order to decode

the information in these coded combinations or to generate new packets, the receiving nodes

have to apply the field operations.

Figure 1.1: Network Coding Example
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Figure 1.1 shows how network coding can be used to reduce the number of transmissions

and henceforth, reduce the usage of network resources. This is an example showcasing

multicast network coding. Each link in the network is capable of transmitting a single packet

per channel use. Both the destination nodes, t1 and t2 need packets x1 and x2 from the

source node s. As shown in the figure, only one channel use can suffice the needs of both

the destination nodes, whereas, with the traditional routing approach, link (3,4) would have

to be used twice, to transfer x1 to t2 and x2 to t1.

It was shown in [2] that employing network coding can enhance the robustness of the net-

work in case of a link and node failure. After several intitial works on the wired networks,

network coding found its application in wireless networks following the work done by Katti

et al. [3]. They have introduced the opportunistic listening and opportunistic coding tech-

niques. In opportunistic listening, wireless receivers store all the packets, for a short interval

of time, transmitted over the wireless channel, regardless of packets’ destination. Whereas,

opportunistic coding is a strategy to improve network performance through coding by trans-

mitting coded packets during the appropriate time slots. Following their seminal work, a lot

of research has has been done in inspecting the advantages of network coding in wireless

networks and the improvements in the network performance.

In this work, we shall go through the problem of Cooperative Data Exchange (CDE) in

wireless networks with selfish users. El Rouayheb et al. [4] first proposed the CDE prob-

lem. It is a Peer-to-Peer (P2P) method of exchanging information, over a broadcast channel,

among wireless clients. We consider the game-theoretic perspective of the CDE problem.

We allow monetary transaction between the players. In our setting, each player has a utility

function that captures the value fo the information gained through the exchange as well as

the transmission cost. The problem is to find a rate schedule, i.e. the transmissions rate for

each user, and a payment schedule, i.e. the payment made and received by each user during

the transmission, to stabilize the grand coalition (i.e., set of all users). We propose two algo-

rithms, each of which finds a solution that guarantees the stability of grand coalition for any

2



instance. Both algorithms maximize the sum utility of all users, while one also maximizes

the minimum utility among all users.

3



2. BACKGROUND AND RELATED WORK 1

2.1 Background

Past few years have seen a lot of research being done in the field of cooperative commu-

nication in wireless networks. Cooperative communication can help us achieve space-time

diversity, increased coverage, better data rates and energy efficiency. This kind of communi-

cation has the following advantages:

• Due to topological proximity of terminals, the transmissions within the close group

of users is more reliable as compared to the transmission from the base station to any

terminal,

• Local communication has a smaller footprint, hence allowing the user to utilize re-

sources freely without interfering with the resources of the base station,

• Even if the connection with the base station is either too weak or unavailable after

the initial phase of transmission, the users can communicate over the local network to

recover the files.

The original setting of this problem considers a peer-to-peer data exchange scenario over

a lossless broadcast channel. There is a group N of users and a ground set X of packets.

Each user knows a subset of packets in X , and wants to learn the rest of packets in X . The

users exchange their packets by broadcasting coded or uncoded versions of their packets,

and the problem is to find a solution (i.e., the transmission rate of each user and the set of

packets transmitted by each user) such that all users achieve omniscience with minimum

total sum-rate. In this work, we revisit the CDE problem from a game-theoretic perspective

where all users are selfish.
1*Reprinted with permission from “A Monetary Mechanism for Stabilizing Cooperative Data Exchange

with Selfish Users” by A. Heidarzadeh, I. Tyagi, S. Shakkottai, and A. Sprintson, 2018, in Proc. IEEE ISIT’
18, Jun. 2018 ©2018 IEEE.
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2.1.1 CDE with Selfish Clients

In this setting, there can be a monetary transaction between any pair of users, and the util-

ity function of each user is defined as the sum of two sub-utility functions as follows: (i) the

difference between the total payment the user receives from other users and its transmission

rate, and (ii) the difference between the total number of packets the user wants and the total

payment it makes to other users. Thinking of the sum of the transmission rate and the total

payment being made by each user as its cost for participating in the exchange session, and

thinking of the sum of the number of packets each user learns and the total payment being

received by the user as its gain due to its participation in the exchange session, the utility

function of each user is the surplus of the user.

The problem is to find a rate schedule {ri}i∈N and a payment schedule {pi,j}i,j∈N for

the grand coalition (i.e., the set of all users) to achieve omniscience all together that is

Pareto optimal, with respect to the utility function, over all minor coalitions (i.e., any proper

subset of users who collectively know all packets in X). That is, a pair ({ri}i∈N , {pi,j}i,j∈N)

is a solution if there is no pair ({r̃i}i∈S, {p̃i,j}i,j∈S) for any minor coalition S to achieve

omniscience together such that the utility of some user(s) in S is strictly greater, and the

utility of no user in S is less. Note that a solution stabilizes the grand coalition in that no

minor coalition has incentive to break the grand coalition. The goal is to find a solution that

minimizes the total sum-rate and the total sum-payment simultaneously.

In this work, we propose two algorithms, each of which finds a solution for any problem

instance. Moreover, we show that both algorithms maximize the sum of utility of all users

(over all solutions), and one of the algorithms also maximizes the minimum utility among

all users (over all solutions).

2.2 Related Work

Since the seminal work by Ahlswede et al. [1], the field of network coding has much

evolved. Starting work focused mainly on network code construction for multicast networks,

5



modeled as graph with one or more source nodes and multiple sink nodes. The amount of

work being done in wireless network applications of network coding is far less as compared

to work done in wired networks. The most conventional ways of increasing throughput

in wireless networks are mostly related to making the routing protocols more efficient or

modifying the trannsport or MAC protocols [5–7]. Deb et al. [8] and Lun et al. [9] first

explored the network coding applications in wireless network systems. However, both of the

papers employed algorithms developed for wired multicast networks and hence, remained

far from the problems specific to the wireless systems. Katti et al. [3], [10] made the first

major breakthrough in the wireless network coding. They have proposed algorithms that

leverage the broadcast nature of wireless networks. Specifically, they propose a framework

in which wireless devices listen to packets sent by the neighboring devices, irrespective of

the packets’ destinations. This technique is called opportunistic listening. With the help of

a coding scheme that can take advantage of this information, devices can improve the over-

all throughput by combining packets from various sources. The corresponding technique is

called opportunistic coding. Both these techniques laid the foundation for network coding

schemes in wireless domain, which could effectively utilize the broadcast properties of wire-

less channel. Authors in [11], propose different optimal opportunistic coding algorithms for

various mesh networks. Settings with one-hop networks, consisting of only two nodes ex-

changing packets among themselves and one node capable of sending and receiving packets

from both nodes, were studied in [12–15].

Another problem which received very wide attention from the researchers, first intro-

duced in the context of satellite networks by Birk et al. in [16, 17], is Index Coding (IC).

The clients in IC have some prior information through opportunistic learning and are in need

of certain packets. The base station transmitting to the clients, can take advantage of the

knowledge of the clients and in turn, can reduce the total transmissions required. After [17],

researchers developed great insight into the properties of IC and followed with many papers.

Bar-Yossef et al. [18] formulated IC as a graph theory problem. IC was eventually proved to

6



be an NP-hard problem in [19] which is hard to approximate in [20].

Similar to IC, CDE is a setting of wireless network coding problem which employs op-

portunistic coding and listening. The side information present with the CDE clients is ac-

quired through the technique of opportunistic learning. However, unlike IC, the clients in

CDE perform opportunistic coding in order to get all of the required information with min-

imum transmission cost. After being first proposed by Rouayheb et al. [4], much work has

been done with respect to the algorithms for this problem [21–24]. Reference [21] provided

the randomized algorithm and [22] proposed the deterministic algorithm for CDE problem.

Reference [23] gave a divide-and-conquer method to find the optimal coding strategy. A

different version of the problem was given in [24], where fractional packets were considered

and hence, submodularity property of the cut-set bounds was employed. Work in [25–27]

examined cost, fairness and multi-hop network topology w.r.t. CDE. CDE is related to the

secret key agreement problem, formulated in [28], in [29].

A coalition-game model for the CDE problem was recently proposed in [30]. This model

differs from our work in two aspects: (i) the utility function is different from ours, and (ii)

the criteria for the stability of the grand coalition is different from the Pareto optimality

considered here.

Recently, in [31], there was some work being done on a related problem, where each

user has two utility functions: its rate and its delay. They defined the stability of the grand

coalition via the Pareto optimality with respect to both the rate and delay functions simul-

taneously. The researchers showed that over all the minor coalitions there does not exist

any non-monetary mechanism (without the peer-to-peer payments) that stabilizes the grand

coalition for all problem instances. This result is the motivation of this work on the design

of a monetary mechanism for stabilizing the grand coalition for any problem instance.

7



3. STABILIZING COOPERATIVE DATA EXCHANGE PROBLEM 1

3.1 Problem Setup

We consider the original setting of the cooperative data exchange (CDE) problem as

follows. Consider a group of n users and a set of k packets X , {x1, . . . , xk}. Let N ,

{1, . . . , n} and K , {1, . . . , k}. Initially, each user i ∈ N has a subset Xi of the packets in

X , and ultimately, the user i wants the rest of the packets X i , X \ Xi. The index set of

packets in Xi for each user i is known by all other users. Also, without loss of generality, we

assume that X = ∪i∈NXi. The objective of all users is to achieve omniscience, i.e., to learn

all packets in X , via exchanging their packets by broadcasting (coded or uncoded) packets.

A subset S of users in N is a coalition if ∪i∈SXi = X . We refer to any coalition S ⊂ N

as a minor coalition, and refer to the coalition N as the grand coalition. Whenever we use

the notation S for a subset of users, we assume that S is a coalition, unless explicitly noted

otherwise.

Let Z+ be the set of non-negative integers. For any S ⊆ N , a rate vector r , [r1, . . . , rn] ∈

Zn
+ is S-omniscience-achieving if there exists a transmission scheme with each user i ∈ S

transmitting ri (coded or uncoded) packets such that all users in S achieve omniscience, re-

gardless of transmissions of the rest of the users. Note that, for any S-omniscience-achieving

rate vector, random linear network coding (over a sufficiently large finite field) suffices as

a transmission scheme for all users in S to achieve omniscience (with any arbitrarily high

probability) [25].

For any S ⊆ N , we denote by RS the set of all S-omniscience-achieving rate vectors r

such that ri = 0 for all i 6∈ S. For any arbitrary subset S ⊆ N and any rate vector r, we

define the sum-rate rS ,
∑

i∈S ri and r∅ , 0. By a standard network coding argument [25],

for any S ⊆ N , r ∈ RS iff rS̃ ≥ | ∩j∈S\S̃ Xj|, for every (non-empty) S̃ ⊂ S.

1*Reprinted with permission from “A Monetary Mechanism for Stabilizing Cooperative Data Exchange
with Selfish Users” by A. Heidarzadeh, I. Tyagi, S. Shakkottai, and A. Sprintson, 2018, in Proc. IEEE ISIT’
18, Jun. 2018 ©2018 IEEE.
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We consider CDE under a monetary mechanism where there can be a payment from any

user to any other user. For all i, j ∈ N , let pi,j ≥ 0 be the total payment from the user i

to the user j, and let pi,i = 0. For a payment matrix p , [pi,j], let p+i ,
∑

j∈N\{i} pj,i

and p−i ,
∑

j∈N\{i} pi,j be the total incoming payment of the user i and the total outgoing

payment of the user i, respectively.

For any S ⊆ N , we denote by PS the set of all payment matrices p such that pi,j = 0 and

pj,i = 0 for all i ∈ S, j 6∈ S, i.e., there is no incoming payment to any user in S from any user

out of S and there is no outgoing payment from any user in S to any user out of S. For any

S ⊆ N , we define the sum-payment pS ,
∑

i,j∈S pi,j . Note that
∑

i∈S p
+
i =

∑
i∈S p

−
i = pS

for all p ∈ PS .

Definition 1 (Utility). For any S ⊆ N , any r ∈ RS , and any p ∈ PS , the utility of each user

i ∈ S is given by

ui(r, p) , (p+i − ri) + (|X i| − p−i ),

where u+
i (r, p) , p+i − ri is the net utility due to the user i’s contribution to the system, and

u−i (r, p) , |X i| − p−i is the net utility due to the system’s contribution to the user i.

Note that the cost per transmission and the value per packet are assumed to be unity for

all users.

The two functions u+
i (r, p) and u−i (r, p) motivate the notion of rationality defined as

follows.

Definition 2 (Rationality). For any S ⊆ N , any r ∈ RS and any p ∈ PS , the rate-payment

pair (r, p) is rational if u+
i (r, p) ≥ 0 and u−i (r, p) ≥ 0 for all i ∈ S.

Hereafter, we focus on the rational rate-payment pairs only, and omit the term “rational”

for brevity.

We assume that all the users are selfish, i.e., each user may or may not agree with its rate

specified by a rate vector or its payments specified by a payment matrix. The goal is to find a

9



rate-payment pair (r, p), r ∈ RN and p ∈ PN , under which N is stable. We formally define

the notion of stability based on the utility function as follows.

Definition 3 (Stability). For any rate-payment pair (r, p), r ∈ RN and p ∈ PN , N is (r, p)-

stable if there is not a rate-payment pair (r̃, p̃), r̃ ∈ RS , and p̃ ∈ PS , for some S ⊂ N , such

that

• ui(r, p) ≤ ui(r̃, p̃) for all i ∈ S, and

• ui(r, p) < ui(r̃, p̃) for some i ∈ S.

The (r, p)-stability of the grand coalition is equivalent to the Pareto optimality of (r, p)

over all minor coalitions.

Definition 4 (Feasibility). A rate-payment pair (r, p) is feasible if N is (r, p)-stable.

Note that a feasible solution guarantees that no minor coalition of users has incentive to

break the grand coalition.

Definition 5 (Optimality). A feasible (r, p) is optimal if there is not a feasible (r̃, p̃) such that

rN > r̃N or pN > p̃N .

Note that, for an optimal solution, the sum-rate and the sum-payment are minimum

among all feasible solutions.

The problem is to determine if an optimal solution exists for any given instance, and if

so, to find such a solution.

3.2 Proposed Algorithms

Algorithm 1

In this section, we present an algorithm that, for any given instance, finds an optimal

solution.

The algorithm begins with an all-zero rate vector r = [ri]i∈N and an all-zero payment

matrix p = [pi,j]i,j∈N , operates in rounds, and updates r and p over the rounds.

10



Algorithm 1: Algo1(n, k, {Ui}ni=1, Fq)

1 N ← {1, . . . , n}, K ← {1, . . . , k}
2 ri ← 0 ∀i ∈ N , pi,j ← 0 ∀i, j ∈ N
3 l← 1, V0 ← ∅
4 while dim(Ui ∪ Vl−1) < k for some i ∈ N do
5 Tl ← {i ∈ N : dim(Ui ∪ Vl−1) = maxi∈N dim(Ui ∪ Vl−1)}
6 Select an arbitrary user t ∈ Tl

7 Rl ← {i ∈ N : Ut 6⊆ span(Ui ∪ Vl−1)}
8 Select an encoding vector vl ∈ Fk

q such that vil = 0 ∀{i ∈ K : ui 6∈ Ut} and
vl 6∈ span(∪i∈Rl

Ui ∪ Vl−1)
9 Have the user t transmit the packet yl =

∑
i∈K vilxi

10 rt ← rt + 1
11 pi,t ← pi,t + 1/|Rl| ∀i ∈ Rl

12 Vl ← Vl−1 ∪ vl
13 l← l + 1

14 end
15 return r = [ri]i∈N and p = [pi,j]i,j∈N

For any (uncoded) packet xi, i ∈ K, denote the (unit) encoding vector of xi by ui ,

[u1
i , . . . , u

k
i ], where ui

i = 1 and uj
i = 0 for all j 6= i. For any (linearly coded) packet

yj ,
∑

i∈K vijxi, where vij ∈ Fq (for some finite field Fq), denote the encoding vector of yj

by vj , [v1j , . . . , v
k
j ].

Let Ui be the set of (unit) encoding vectors of packets in Xi, and Vl be the set of encoding

vectors of all packets being transmitted by the end of the round l. Let V0 , ∅. We refer to

span(Ui ∪ Vl) and dim(Ui ∪ Vl) as the knowledge and the size of knowledge of the user i

at the end of the round l, respectively, where span(V) and dim(V) denote the vector space

of (linear) span (over Fq) of a collection V of vectors in Fk
q and the dimension of span(V),

respectively.

Consider an arbitrary round l > 0. Let Tl be the set of all users i with maximum dim(Ui∪

Vl−1). In the round l, the algorithm first selects an arbitrary user t ∈ Tl, and then the user

t constructs (using its uncoded packets) and broadcasts a (coded) packet yl (with encoding

vector vl).

Let Rl be the set of all users i such that Ut 6⊆ span(Ui ∪ Vl−1). The encoding vector

11



vl of the packet yl satisfies two conditions: (i) vil = 0 ∀{i ∈ K : ui 6∈ Ut}, and (ii)

vl 6∈ span(∪i∈Rl
Ui ∪ Vl−1). (Such a vector vl ∈ Fk

q always exists and it can be found in

polynomial time using a randomized or a deterministic algorithm so long as q ≥ n · k or

q ≥ n, respectively [21].) Note that Rl is the set of all users i whose knowledge at the

beginning of the round l is not a superset of (initial) knowledge of the transmitting user t,

and the encoding vector vl of the packet yl being transmitted by the user t in the round l is

not known to any user i ∈ Rl at the beginning of the round l. Thus, the transmission of the

packet yl increases the size of knowledge of any user i ∈ Rl by one, and it does not change

that of any user i 6∈ Rl.

Next, the algorithm increments rt by 1 and increments pi,t by 1/|Rl| for all i ∈ Rl. At

the end of the round l, the algorithm augments Vl−1 by vl, and constructs Vl, i.e., Vl =

Vl−1 ∪ {vl}. The rounds continue until the size of knowledge all users is k. Once the

algorithm terminates, it returns the rate vector r and the payment matrix p.

Example below shows how this algorithm works for a group of users with side informa-

tion. Consider a group of 4 users and a set of 6 packets, {x1, . . . , x6}. Each figure below has

the want-set, packets required by that user to gain access to the complete file, written inside

it. For example, user 1 here has packet x1 in its want-set or in other words, has access to

packets in X1 = {x2, . . . , x6}. Each user i will start with its own subset Xi and wants the

packets in Xi. The index set of packets available to each user is known by the other users.

Want-sets written in red depict the users who are still incomplete and those in black belong

to the users who have gained access to all the packets/become complete by that moment.

Rate vector, payment matrix and utility vector belonging to this CDE are, r = [2, 1, 0, 0],

p =

[
0, 1

3
, 0, 0; 1

3
, 0, 0, 0; 5

6
, 1
3
, 0, 0; 5

6
, 1
3
, 0, 0

]
, u(r, p) = [2

3
, 2
3
, 11

6
, 11

6
], respectively.

Theorem 1. The output of Algorithm 1 is optimal.

Algorithm 2

In this section, we present an algorithm that for any given instance provides an optimal

solution with maximum sum-utility and maximum min-utility among all optimal solutions.
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Figure 3.1: Users in the initial setting
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Figure 3.2: User 1 transmits in the first round
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Figure 3.3: User 2 transmits in the
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Figure 3.4: User 1 transmits again in the third
round

Algorithm 2 is similar to Algorithm 1, and the only difference is in the set of users that

make payments and the update rule of the payments in each round. We assume that there is a

broker that collects the payment p−i by each user i, and returns the payment p+i to each user

i. The algorithm begins with all-zero payment vectors p+ and p−, and updates these vectors

over the rounds as follows. Consider an arbitrary round l > 0. Let Pl be the set of users

with maximum |X i| − p−i . Assuming that the user t transmits in the round l, the algorithm

increments p+t by 1 and increments p−i by 1/|Pl| for all i ∈ Pl.

In the example shown for algorithm 1, if we run algorithm 2, the rate vector, payment

vectors and utility vector are, r = [2, 1, 0, 0], p+ = [2, 1, 0, 0], p− = [0, 0, 3
2
, 3
2
], u(r, p) =

[1, 1, 3
2
, 3
2
], respectively.

Theorem 2. The output of Algorithm 2 is optimal. Moreover, the output of Algorithm 2 has

13



Algorithm 2: Algo2(n, k, {Ui}ni=1, Fq)

1 N ← {1, . . . , n}, K ← {1, . . . , k}
2 ri ← 0, p+i ← 0, p−i ← 0 ∀i ∈ N
3 l← 1, V0 ← ∅
4 while dim(Ui ∪ Vl−1) < k for some i ∈ N do
5 Tl ← {i ∈ N : dim(Ui ∪ Vl−1) = maxi∈N dim(Ui ∪ Vl−1)}
6 Pl ← {i ∈ N : |X i| − p−i = maxi∈N(|X i| − p−i )}
7 Select an arbitrary user t ∈ Tl

8 Rl ← {i ∈ N : Ut 6⊆ span(Ui ∪ Vl−1)}
9 Select an encoding vector vl ∈ Fk

q such that vil = 0 ∀{i ∈ K : ui 6∈ Ut} and
vl 6∈ span(∪i∈Rl

Ui ∪ Vl−1)
10 Have the user t transmit the packet yl =

∑
i∈K vilxi

11 rt ← rt + 1
12 p+t ← p+t + 1
13 p−i ← p−i + 1/|Pl| ∀i ∈ Pl

14 Vl ← Vl−1 ∪ vl
15 l← l + 1

16 end
17 return r = [ri]i∈N and p = [p+i , p

−
i ]i∈N

maximum sum-utility and maximum min-utility among all optimal solutions.

3.3 Proof of theorems

Proof of Theorem 1

In this section, we reserve the notations r and p for the outputs of Algorithm 1.

Lemma 1. (r, p) is rational (i.e., p+i ≥ ri and |X i| ≥ p−i for all i ∈ N ).

Proof. By the procedure of Algorithm 1, p+i = ri since the user i receives one unit of

payment for each transmission it makes, and |X i| ≥ p−i since the user i pays at most one

unit for each transmission that increases its size of knowledge, and it does not pay for any

other transmission.

Let Ns be the sth subset of users that achieve omniscience simultaneously, and let ls be

the round at which the users in Ns achieve omniscience. Note that the sets Ns are disjoint.
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Denote by N (s) the set of all users in N1, . . . , Ns. Let m be such that N (m) = N . By using

similar ideas as in the proof of [31, Lemma 4], the following result can be shown.

Lemma 2. For any s ∈ [m] and any S ⊆ N (s) such that S ∩ Ns 6= ∅, we have ls ≤ r̃S for

all r̃ ∈ RS .

Proof. Fix an arbitrary s ∈ [m]. Fix an arbitrary S ⊆ N (s) such that S ∩Ns 6= ∅, and an

arbitrary r̃ ∈ RS . Let {yl}1≤l≤ls be the set of the algorithm’s choice of packets being trans-

mitted from the round 1 to the round ls, and let {vl}1≤l≤ls be the set of encoding vectors of

these packets.

For any S ⊆ N , we say that a set of packets is S-transmittable if the encoding vector of

each packet in the set lies in span(Ui) for some i ∈ S. Let ` , min(r̃S, ls). We prove by

induction (on l) that, for every 1 ≤ l ≤ `, there exists an S-transmittable set of r̃S − l + 1

packets such that if they were transmitted after the transmission of all the packets in the set

{y1, . . . , yl−1}, then S achieves omniscience.

For the base case of l = 1, there exists an S-transmittable set of r̃S packets such that

if they were transmitted, then S achieves omniscience (since r̃ ∈ RS). Next, consider an

arbitrary round l, 1 < l ≤ `. Fix the set of packets Y = {y1, . . . , yl−1}. By the induction

hypothesis, there exists an S-transmittable set of r̃S − l + 1 packets such that if they were

transmitted after the transmission of Y , then S achieves omniscience. Let Ỹ , {ỹl, . . . , ỹr̃S}

and Ṽ , {ṽl, . . . , ṽr̃S} be such a set of packets and the set of their encoding vectors, re-

spectively. Assume that the algorithm selects the user t, which may or may not be in S, to

transmit in the round l.

Since

dim(Ui ∪ Vl−1) ≥ k − r̃S + l − 1

for all i ∈ S (noting that, after the transmission of Y ∪ Ỹ , S achieves omniscience), and

dim(Ut ∪ Vl−1) ≥ dim(Ui ∪ Vl−1)
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for all i ∈ N (noting that, in the round l, the size of the knowledge of the user t is greater

than or equal to that of any other user i ∈ N ), then

dim(Ut ∪ Vl−1) ≥ k − r̃S + l − 1.

If

dim(Ut ∪ Vl−1) = k − r̃S + l − 1,

then the user t cannot transmit in the round l since the user t needs the set of all the packets

in Ỹ so as to achieve omniscience. This is, however, a contradiction (by assumption). Thus,

dim(Ut ∪ Vl−1) > k − r̃S + l − 1,

and consequently, Ỹ contains some packet ỹ such that its encoding vector ṽ ∈ span(Ut ∪

Vl−1). Fix such a packet ỹ and its encoding vector ṽ. Note that, after the transmission of

Y ∪ Ỹ \ {ỹ}, the user t achieves omniscience (i.e., dim(Ut ∪ Vl−1 ∪ Ṽ \ {ṽ}) = k), and

any user i ∈ S, i 6= t, needs no more than one packet so as to achieve omniscience (i.e.,

dim(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}) ≥ k − 1 for all i ∈ S, i 6= t). (The deletion of one packet

decreases the size of knowledge of any user by at most one.)

Consider an arbitrary i ∈ S, i 6= t. We consider two cases: (i) vl ∈ span(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}),

and (ii) vl 6∈ span(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}). In the case (i), since

vl ∈ span(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ})

and

vl ∈ span(Ut ∪ Vl−1),

then

span(Ut ∪ Vl−1) ⊆ span(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}),
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or equivalently,

span(Ut ∪ Vl−1 ∪ Ṽ \ {ṽ}) ⊆ span(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}).

Thus,

dim(Ut ∪ Vl−1 ∪ Ṽ \ {ṽ}) ≤ dim(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}),

or equivalently,

dim(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}) = k

since

dim(Ut ∪ Vl−1 ∪ Ṽ \ {ṽ}) = k.

Thus, after the transmission of Y ∪ Ỹ \ {ỹ}, the user i achieves omniscience. In the case (ii),

since

vl 6∈ span(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ})

and

dim(Ui ∪ Vl−1 ∪ Ṽ \ {ṽ}) ≥ k − 1,

then

dim(Ui ∪ Vl−1 ∪ {vl} ∪ Ṽ \ {ṽ}) = k.

Thus, after the transmission of Y ∪{yl}∪Ỹ \{ỹ}, the user i achieves omniscience. By (i) and

(ii), it follows that S achieves omniscience after the transmission of Y ∪ {yl} ∪ Ỹ \ ỹ. Thus,

there exists an S-transmittable set of r̃S − l packets Ỹ \ ỹ such that if they were transmitted

after the transmission of Y ∪ yl, then S achieves omniscience. This completes the inductive

proof.

From the above result, it follows that S achieves omniscience by the algorithm’s choice

of packets {yl}1≤l≤` being transmitted from the round 1 to the round `. Now there are two

cases: (i) ls > r̃S , and (ii) ls ≤ r̃S . In the case (i), ` = r̃S , and hence, all users in S must
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achieve omniscience by the round ` (= r̃S). This is, however, a contradiction since some

user(s) in S, particularly any user in S ∩Ns, achieves omniscience in the round ls (> `) (by

definition). Note that S ∩ Ns 6= ∅ (by assumption). In the case (ii), ` = ls, and the lemma

follows directly. This completes the proof.

Lemma 3. (r, p) is feasible (i.e., N is (r, p)-stable).

Proof. The proof follows by contradiction. Suppose that (r, p) is not feasible (i.e., N is

not (r, p)-stable). Thus, there exists r̃ ∈ RS and p̃ ∈ PS for some S ⊂ N such that

ui(r, p) ≤ ui(r̃, p̃) for all i ∈ S, and ui(r, p) < ui(r̃, p̃) for some i ∈ S. Thus,

∑
i∈S

ui(r̃, p̃) >
∑
i∈S

ui(r, p).

Note that ∑
i∈S

ui(r̃, p̃) =
∑
i∈S

p+i −
∑
i∈S

r̃i +
∑
i∈S

|X i| −
∑
i∈S

p−i .

Since
∑

i∈S p
+
i =

∑
i∈S p

−
i for all p ∈ PS , then

∑
i∈S

ui(r̃, p̃) =
∑
i∈S

|X i| −
∑
i∈S

r̃i.

Since ri = p+i for all i ∈ N , then
∑

i∈S ri =
∑

i∈S p
+
i . Thus,

∑
i∈S

ui(r, p) =
∑
i∈S

|X i| −
∑
i∈S

p−i .

Putting these arguments together, we get

∑
i∈S

p−i >
∑
i∈S

r̃i. (3.1)

Let s ∈ [m] be such that S ⊆ N (s) and S ∩ Ns 6= ∅. Note that all the users in S achieve

omniscience by the round ls. By the structure of the proposed algorithm, one unit of payment
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is made in each round (each user in Rl pays 1/|Rl| units of payment in the round l), and no

user pays in any round after it achieves omniscience (if the user i is complete at the beginning

of the round l, then i 6∈ Rl). Thus, it is easy to see that

∑
i∈S

p−i ≤ ls.

Moreover, by the result of Lemma 2, it follows that

ls ≤
∑
i∈S

r̃i

for all r̃ ∈ RS . By combining these two inequalities, we get

∑
i∈S

p−i ≤
∑
i∈S

r̃i. (3.2)

By comparing (3.1) and (3.2), we arrive at a contradiction. Thus, N is (r, p)-stable, as was

to be shown.

Lemma 4 ( [21]). For any r̃ ∈ RN , we have r̃N ≥ rN .

Proof. The proof can be found in [21].

Lemma 5. (r, p) is optimal (i.e., there is not a feasible (r̃, p̃) such that rN > r̃N or pN > p̃N ).

Proof. Consider an arbitrary feasible (r̃, p̃), r̃ ∈ RN and p̃ ∈ PN . We shall show that

r̃N ≥ rN and p̃N ≥ pN . By Lemma 4, r̃N ≥ rN for all r̃ ∈ RN . Since (r̃, p̃) is feasible,

then (r̃, p̃) is rational. Thus, p̃+i ≥ r̃i for all i ∈ N , and consequently, p̃N ≥ r̃N . Note that

pN = rN since p+i = ri. Thus, p̃N ≥ r̃N ≥ rN = pN . This completes the proof.

Proof of Theorem 2

In this section, we reserve the notations r and p for the outputs of Algorithm 2.

Lemma 6. (r, p) is rational.
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Proof. Let ri(l), p+i (l), and p−i (l) be ri, p+i , and p−i at the end of the round l−1, respectively.

Note that ri = ri(lm + 1), p+i = p+i (lm + 1), and p−i = p−i (lm + 1). We will show that

p+i (l) ≥ ri(l) and |X i| ≥ p−i (l) for all i ∈ N and all l ∈ [lm + 1]. Fix an arbitrary

l ∈ [lm + 1]. By the procedure of Algorithm 2, p+i (l) = ri(l), and particularly, p+i = ri. We

next show that |X i| ≥ p−i (l). The proof follows by contradiction. Suppose that |X i| < p−i (l)

for some i. Note that

max
i∈N
|X i| − p−i (l) = k −min

i∈N
(|Xi|+ p−i (l)).

Thus,

Pl = {i ∈ N : |Xi|+ p−i (l) = min
i∈N

(|Xi|+ p−i (l))}.

By the procedure of Algorithm 2, |Xi|+ p−i (l) are the same for all i such that p−i (l) > 0, and

|Xi| + p−i (l) = |Xi| ≤ k for all i such that p−i (l) = 0. Since |Xi| + p−i (l) > k for some i

(by assumption), then |Xi|+ p−i (l) > k for all i, and consequently, p−i (l) > 0 for all i (since

|Xi| ≤ k for all i). Since p−i (l) is non-decreasing in l for all i, then |Xi| + p−i > k for all i,

or equivalently, p−i > |X i| for all i. Thus,

∑
i∈N

p−i >
∑
i∈N

|X i|,

and consequently,

rN >
∑
i∈N

|X i|

since ∑
i∈N

p−i =
∑
i∈N

p+i = rN .

This is, however, a contradiction since

rN ≤ min
i∈N
|X i|+max

i∈N
|X i|
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(by the result of [4, Lemma 3]), and consequently,

rN ≤
∑
i∈N

|X i|.

Thus, |X i| ≥ p−i (l) for all i and all l, and particularly, |X i| ≥ p−i for all i. This completes

the proof.

Lemma 7. (r, p) is feasible.

Proof. Take an arbitrary S such that RS 6= ∅ (i.e., all users in S can achieve omniscience

together). By the same argument as in the proof of Lemma 3, it suffices to show that

∑
i∈S

p−i ≤ r̃S

for all r̃ ∈ RS . Run Algorithm 2 over the set S, and denote by (r̃, p̃) the output. Let

Ỹ = {ỹ1, . . . , ỹr̃S} and Ṽ = {ṽ1, . . . , ṽr̃S} be the set of all packets being transmitted from

the round 1 to the round r̃S and their encoding vectors, respectively. Note that r̃S is the

minimum sum-rate that all users in S can achieve omniscience (by Lemma 4). Assume,

without loss of generality, that |X1| ≤ |X2| ≤ · · · ≤ |Xn|. Define i? , mini∈S i, and

S? , {i?, . . . , n}. Since S ⊆ S?, thenRS? 6= ∅ (i.e., all users in S? can achieve omniscience

together). Moreover, run Algorithm 2 over the set S?, and denote by (r?, p?) the output.

Note that p?S? = r?S? (by the result of Lemma 6). Let Y ? = {y?1, . . . , y?r?
S?
} and V ? =

{v?1, . . . , v?r?
S?
} be the set of all packets being transmitted from the round 1 to the round r?S?

and their encoding vectors, respectively.

First, we show that

r?S? ≤ r̃S.

To do so, it suffices to show that all users in S?\S achieve omniscience after the reception of

all packets in Ỹ . The proof follows by contradiction. Consider an arbitrary user i ∈ S? \ S.

Suppose that the user i does not achieve omniscience after the reception of all packets in
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Ỹ , i.e., dim(Ui ∪ Ṽ ) < k. Since dim(Ui) ≥ dim(Ui?) and dim(Ui?) ≥ k − r̃S , then

dim(Ui) ≥ k − r̃S . Thus, there exists some round l such that the encoding vector ṽl of the

packet ỹl being transmitted by some user t ∈ S is in the knowledge set of the user i prior to

the round l, i.e.,

span(Ut) ⊆ span(Ui ∪ {ṽ1, . . . , ṽl−1}),

and consequently,

span(Ut ∪ {ṽ1, . . . , ṽl−1}) ⊆ span(Ui ∪ {ṽ1, . . . , ṽl−1}).

Thus,

span(Ut ∪ Ṽ ) ⊆ span(Ui ∪ Ṽ ).

Since dim(Ut ∪ Ṽ ) = k and dim(Ui ∪ Ṽ ) ≥ dim(Ut ∪ Ṽ ), then dim(Ui ∪ Ṽ ) = k. This is,

however, a contradiction since dim(Ui ∪ Ṽ ) < k (by assumption). Thus, all users in S? \ S

achieve omniscience after the reception of all packets in Ỹ , and so, r?S? ≤ r̃S .

Next, we show that ∑
i∈S?

p−i ≤ p?S? .

If S? = N , then ∑
i∈S?

p−i = pN = rN = r?N = p?N = p?S? .

Now assume that S? 6= N . If for some l, the packet y?l being transmitted by the user t ∈ S?

does not increase the size of knowledge of the user i ∈ N \ S? such that dim(Ui ∪ V ?) < k,

then

span(Ut) ⊆ span(Ui ∪ {v?1, . . . , v?l−1}),

and consequently,

span(Ut ∪ {v?1, . . . , v?l−1}) ⊆ span(Ui ∪ {v?1, . . . , v?l−1}).
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Thus,

span(Ut ∪ V ?) ⊆ span(Ui ∪ V ?).

Since dim(Ut ∪ V ?) = k and dim(Ui ∪ V ?) ≥ dim(Ut ∪ V ?), then dim(Ui ∪ V ?) = k. This

yields a contradiction since dim(Ui ∪ V ?) < k (by assumption). Thus, the packet y?l (for

any l) increases the size of knowledge of all users in N \S? that do not achieve omniscience

after the reception of all packets y?1, . . . , y
?
r?
S?

.

Since the size of knowledge of each user i ∈ N\S? after the reception of all packets in Y ?

is min{|Xi|+r?S? , k}, then the user i needs k−min{|Xi|+r?S? , k} (≤ k−min{|X1|+r?S? , k})

more packets to achieve omniscience. Thus, if the users in S? continue to make transmissions

after they all achieve omniscience, all users in N \S? achieve omniscience after the reception

of at most k −min{|X1| + r?S? , k} more packets. Thus, all users in N achieve omniscience

with at most r?S? + k − min{|X1| + r?S? , k} total transmissions. Since rN is the minimum

sum-rate for all users in N to achieve omniscience, then

r?S? + k −min{|X1|+ r?S? , k} ≥ rN .

We consider two cases: (i) |X1|+ r?S? ≥ k, and (ii) |X1|+ r?S? < k.

In the case (i), we have

r?S? ≥ rN = pN ≥
∑
i∈S?

p−i .

In the case (ii), we have

r?S? + k − |X1| − r?S? = k − |X1| ≥ rN .

Since rN ≥ k−|X1| (otherwise, the user 1 cannot achieve omniscience), then rN = k−|X1|.

Let c , mini∈N(|Xi|+ p−i ). If c < |Xi?|, then

∑
i∈S?

p−i ≤ p?S?
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since
∑

i∈S? p
−
i = 0. Now, assume that c ≥ |Xi?|. Recall that |X1| ≤ |X2| ≤ · · · ≤ |Xi? | ≤

· · · ≤ |Xn| (by assumption). Thus, c ≥ |Xi| for all i ∈ N \ S?. Note that

∑
i∈S?

p−i = rN −
∑

i∈N\S?

(c− |Xi|)

and

p?S? = r?S? .

We need to show that ∑
i∈S?

p−i ≤ p?S? .

Thus it suffices to show that

rN −
∑

i∈N\S?

(c− |Xi|) ≤ r?S? .

The proof follows by contradiction. Suppose that

rN −
∑

i∈N\S?

(c− |Xi|) > r?S? .

Since rN = k−|X1| and r?S? ≥ k−|Xi?| (otherwise, the user i? cannot achieve omniscience),

then

k − |X1| −
∑

i∈N\S?

(c− |Xi|) > r?S? ≥ k − |Xi? |,

and consequently,

|Xi?| > |X1|+
∑

i∈N\S?

(c− |Xi|).

Since ∑
i∈N\S?

(c− |Xi|) = (i? − 1)c− (|X1|+ · · ·+ |Xi?−1|),
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then

|X2|+ · · ·+ |Xi?| > (i? − 1)c.

This is, however, a contradiction since c ≥ |Xi| for all i ∈ [i?] (by assumption), and so,

(i? − 1)c ≥ |X2|+ · · ·+ |Xi?|.

Thus, ∑
i∈S?

p−i ≤ p?S? .

Moreover, ∑
i∈S

p−i ≤
∑
i∈S?

p−i

since S ⊆ S? (by definition). By combining the above arguments, it then follows that

∑
i∈S

p−i ≤ r̃S,

as was to be shown.

Lemma 8. (r, p) is optimal.

Proof. The proof follows from the same argument as in the proof of Lemma 5, and hence

omitted to avoid repetition.

Lemma 9. For any optimal (r̃, p̃), we have
∑

i∈N ui(r, p) =
∑

i∈N ui(r̃, p̃) and mini∈N ui(r, p) ≥

mini∈N ui(r̃, p̃).

Proof. The proof of the first part (i.e., maximum sum-utility) is straightforward. Take an

arbitrary optimal (r̃, p̃). Since r̃N = rN and p, p̃ ∈ PN , then

∑
i∈N

ui(r̃, p̃) =
∑
i∈N

|X i| − r̃N =
∑
i∈N

|X i| − rN =
∑
i∈N

ui(r, p).
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For the proof of the second part (i.e., maximum min-utility), we need to show that

min
i∈N

ui(r̃, p̃) ≤ min
i∈N

ui(r, p)

for any optimal (r̃, p̃). Take an arbitrary optimal (r̃, p̃). Since p̃+i = r̃i (otherwise, p̃N > rN =

pN since p̃+i ≥ r̃i (by rationality of (r̃, p̃)), and so, (r̃, p̃) cannot be optimal), then ui(r̃, p̃) =

|X i| − p̃−i . Note that p̃N = pN . Let c , mini∈N(|Xi|+ p−i ). Note that |X i| − p−i = k − c if

c ≥ |Xi|, and |X i| − p−i = |X i| = k − |Xi| if c < |Xi|. Thus, ui(r, p) = k −max{c, |Xi|}

for all i ∈ N . Since |Xn| ≥ |Xi| for all i ∈ N (by assumption), then it follows that

min
i∈N

ui(r, p) = k −max{c, |Xn|}.

We consider two cases: (i) c < |Xn|, and (ii) c ≥ |Xn|.

In the case (i), mini∈N ui(r, p) = k − |Xn| = |Xn|. If p̃−n > 0, then

un(r̃, p̃) = |Xn| − p̃−n < |Xn| = min
i∈N

ui(r, p).

If p̃−n = 0, then un(r̃, p̃) = |Xn|, and consequently,

min
i∈N

ui(r̃, p̃) ≤ un(r̃, p̃) = min
i∈N

ui(r, p) = k − c.

In the case (ii), mini∈N ui(r, p) = k − c. Suppose that mini∈N ui(r̃, p̃) > mini∈N ui(r, p).

Let j ∈ N be such that |Xj| − p̃−j = mini∈N ui(r̃, p̃). Thus, |Xj| − p̃−j > k − c. Since
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|X i| − p̃−i ≥ |Xj| − p̃−j for all i ∈ N , then |X i| − p̃−i > k − c. Thus,

∑
i∈N

|X i| −
∑
i∈N

p̃−i =
∑
i∈N

|X i| − p̃N

=
∑
i∈N

|X i| − r̃N

=
∑
i∈N

|X i| − rN

= nk −
∑
i∈N

|Xi| − rN

> nk − nc,

or equivalently, (
∑

i∈N |Xi|+ rN)/n < c. Since c = mini∈N(|Xi|+ p−i ) (by definition) and

c ≥ |Xn| (by assumption), then it is easy to see that c = (
∑

i∈N |Xi| + rN)/n. This is a

contradiction since (
∑

i∈N |Xi|+ rN)/n < c. Thus, mini∈N ui(r̃, p̃) ≤ mini∈N ui(r, p). This

completes the proof.

3.4 Simulations

In this section, we evaluate the effect of changing the number of users and number of

packets on various statistical parameters in the random packet distribution setting. We as-

sume that each packet would be present, independently from other users and other packets,

at each user, with probability 0 < p < 1. All the following simulations assume that the

users are following our two algorithms, described previously in this thesis. In the following

simulations, we consider three different settings: total of 4 users and 8 packets, total of 6

users and 8 packets, and total of 6 users and 10 packets. We have simulated for the following

statistical parameters: mini∈N(p
−
i ), maxi∈N(p

−
i ), mini∈N(ui), vari∈N(p+i ),

∑
i∈N(ri), and

avgi∈N(ui).

27



Figure 3.5: mini∈N(p
−
i )

Figure 3.6: maxi∈N(p
−
i )
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Figure 3.7: mini∈N(ui)

Figure 3.8: vari∈N(p+i )
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Figure 3.9:
∑

i∈N(ri)

Figure 3.10: vari∈N(p−i )

We can observe in the graphs corresponding to mini∈N(ui) and
∑

i∈N(ri) that the values

have a decreasing trend as the value of p increases. This can be attributed to the fact that with

more number of packets available with the users from the beginning, there is lesser need of

the number of transmissions to make all the users complete. Less transmissions eventually
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result in lesser exchange of money too, which when combined with fewer (ri), can take a

negative hit on the value of (ui).

We have calculated the 95% confidence intervals for each statistical parameter for each

each probability point for the setting where there are a total of 4 users and 8 packets. Below

are the values:

For p = 0.1,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.5708± 0.00454 3.2924± 0.00839

mini∈N(p
−
i ) 1.4043± 0.00399 0.6383± 0.00797

vari∈N(p
−
i ) 0.33± 0.00797 1.6763± 0.00395

mini∈N(ui) 2.6941± 0.06766 3.4457± 0.00683

vari∈N(p
+
i ) 2.0279± 0.00406∑

i∈N(ri) 7.9336± 0.00406∑
i∈N(ri), and vari∈N(p

+
i ) are same for both algorithms.

For p = 0.15,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.6034± 0.0051 3.2598± 0.0089

mini∈N(p
−
i ) 1.3419± 0.00418 0.6348± 0.00791

vari∈N(p
−
i ) 0.3885± 0.00478 1.6712± 0.0157
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mini∈N(ui) 2.5544± 0.00784 3.2565± 0.00714

vari∈N(p
+
i ) 2.0588± 0.0217∑

i∈N(ri) 7.7967± 0.00607

For p = 0.20,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.6056± 0.00642 3.2119± 0.0093

mini∈N(p
−
i ) 1.2785± 0.00429 0.6126± 0.0078

vari∈N(p
−
i ) 0.4358± 0.00564 1.6561± 0.0161

mini∈N(ui) 2.4256± 0.00793 3.0842± 0.00734

vari∈N(p
+
i ) 2.0525± 0.0217∑

i∈N(ri) 7.6064± 0.00781

For p = 0.25,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.5912± 0.00729 3.1643± 0.00975

mini∈N(p
−
i ) 1.2036± 0.00439 0.5518± 0.00767

vari∈N(p
−
i ) 0.4824± 0.00646 1.6735± 0.0163

32



mini∈N(ui) 2.2758± 0.00802 2.9044± 0.00761

vari∈N(p
+
i ) 2.0719± 0.0221∑

i∈N(ri) 7.3656± 0.00932

For p = 0.30,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.5604± 0.00806 3.1152± 0.0102

mini∈N(p
−
i ) 1.13± 0.00438 0.4868± 0.00742

vari∈N(p
−
i ) 0.5214± 0.00736 1.6989± 0.0166

mini∈N(ui) 2.1374± 0.00803 2.7339± 0.00782

vari∈N(p
+
i ) 2.0402± 0.022∑

i∈N(ri) 7.0984± 0.0104

For p = 0.35,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.5208± 0.00871 3.0488± 0.0107

mini∈N(p
−
i ) 1.0478± 0.0.0136 0.4188± 0.00842

33



vari∈N(p
−
i ) 00.5576± 0.00803 1.7064± 0.0167

mini∈N(ui) 1.9776± 0.0115 2.0087± 0.00216

vari∈N(p
+
i ) 2.0087± 0.0216∑

i∈N(ri) 6.7999± 0.0115

For p = 0.40,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.4545± 0.00935 2.968± 0.0111

mini∈N(p
−
i ) 0.9662± 0.0.0436 0.3693± 0.00666

vari∈N(p
−
i ) 00.5862± 0.0088 1.6929± 0.0168

mini∈N(ui) 1.8178± 0.00801 2.3507± 0.00824

vari∈N(p
+
i ) 1.9551± 0.0255∑

i∈N(ri) 6.456± 0.0123

For p = 0.45,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.3939± 0.0098 2.8741± 0.0113

mini∈N(p
−
i ) 0.8741± 0.0.0428 0.3202± 0.00618
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vari∈N(p
−
i ) 0.6108± 0.00932 1.6564± 0.0166

mini∈N(ui) 1.6464± 0.00784 1.9037± 0.0207

vari∈N(p
+
i ) 1.9037± 0.0207∑

i∈N(ri) 6.1070± 0.013

For p = 0.50,

Algorithm 1 Algorithm 2

maxi∈N(p
−
i ) 2.3028± 0.0102 2.7565± 0.0115

mini∈N(p
−
i ) 0.7942± 0.0.0409 0.2733± 0.00564

vari∈N(p
−
i ) 0.6167± 0.00988 1.5934± 0.0165

mini∈N(ui) 1.489± 0.00755 1.9557± 0.00802

vari∈N(p
+
i ) 1.8152± 0.02∑

i∈N(ri) 5.7323± 0.0134

Above are the values for 95% confidence interval till p = 0.5, similarly we can calculate

the values for 95% confidence interval for higher values of p.
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4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

We considered the problem of peer-to-peer data exchange in a lossless broadcast setting.

Our goal was to ensure the stability of the grand coalition under which it is guaranteed that

all users obtain complete information at the end of the exchange process, with there being no

incentive for any subset of users to break away on their own. The previous work done with

the same motive of stabilizing the CDE had a non-monetary mechanism and was not able to

ensure stability in all problem instances. The key novelty of our framework was the design

of monetary mechanism that not only ensures stability, but also maximize the social good of

the system as a whole. The selfish nature of the users and the exchange of money, in lieu

of transmissions, to ensure stability, provides a solid foundation for its pragmatic use in real

wireless networks.

4.2 Future Work

Future research work can take multiple directions. In our current CDE setup, we consider

only integer packets or a random linear combination of linear packets. It will be interesting to

find out a polynomial-time algorithm for CDE. Present literature only provides for a Linear

Program to solve a CDE but no algorithm. If successful, we can then try to find a stable

solution for grand coalition with fractional packets too. Also, the current problem has a

fixed instance and the initial packets corresponding to each user do not change. Further

work can be done for a setting where, after a fixed duration of time, a set of packet is added

to the present knowledge of each user. This could represent a practical situation where the

packets are continuously transferred from the base station to the mobile devices, whereas

the mobile devices are also broadcasting coded or uncoded packets among themselves. In

the present setup, we have considered the users to be selfish but truthful, where they declare

actual set of packets to the other users. This could be changed to a setting where the users
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are not truthful and an algorithm has to be developed which ensures that being truthful is the

best strategy for the users (gives them maximum utility).
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