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ABSTRACT 

 

 

 This study is to compare and validate two models for random wave transformation 

with experimental data. Both models are based on frequency domain KdV equation. First 

model is a modified version of KdV equation which was derived to provide shoaling and 

dispersion relation of each frequency mode. Second model is a dispersive nonlinear 

shoaling model including shallow water limits and dissipation terms. Results expected are 

as follows 1) Second model is expected to overestimate the results in higher frequencies 

but can predict satisfactorily close in the lower and intermediate frequency zones of the 

energy spectrums. 2) First model is expected to predict the transformation better than that 

of the second because of the fully dispersive nature.  

Energy spectrum plots from models are expected to match close to the 

experimental plots in the lower frequencies and the first model is expected to be much 

closer to the experimental data than that of the second model. The validation plots of both 

the models are expected to be as close as they can be in the Infra gravity and Swell regions 

of the spectrum; the second model is expected to do better in the Sea wave region of the 

spectrum. 
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NOMENCLATURE 

 

B/CS Bryan/College Station 

C.C. Complex Counterpart 

TAMU Texas A&M University 

OSU Oregon State University 

TWL Tsunami Wave Lab 

M1 Model one 

M2 Model two 

Expt. Experiment or Experimental 
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1. INTRODUCTION 

 

 Waves approach a beach or a cliff while constantly changing their shapes and, in 

most cases, they break. The aim of the study is to establish a better model to best predict 

the wave transformation. The characteristics of wave transformation depend on the local 

bathymetry and on its variations, as water depth, affects the shoaling and refraction 

characteristics, frequency dispersion, and energy dissipation. Most commonly used 

shoaling wave theories and models are mainly based on linear wave theory.  

While models based on linear theory are computationally fast, they do have 

drawbacks. Many of these models are based on the so-called WKB assumption, which 

impose that the change in water depth is small over a wavelength. These models predict 

surface elevation changes by conserving energy flux and calculating the changes in the 

parameters required for this to be maintained.  

Linear wave models are sufficient if the goal is to predict lumped parameters such 

as significant wave height. However, for many processes this is insufficient. For example. 

the nonlinear aspects of the wave transformation are necessary to estimate the properties 

of sediment transport. Sediment transport mainly depends on the velocity of the particles, 

and skewness and asymmetry of the waves which are necessary for the pickup and 

transport of the particles. Nonlinear wave behavior is thus necessary to capture this effect. 

Modern shallow water wave  theory started with Peregrine (1967), who used the 

Boussinesq theory to model long waves with small amplitudes propogating in varying 

water depth. These equations are considered as an advancement to the linear wave theory. 
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Boussinesq equations can predict the transformation of monochromatic waves.. 

Boussinesq equations have only lowest order of nonlinearity and dispersion, and are thus 

considered weakly nonlinear and weakly dispersive. The treatment of nonlinearity, 

however, is quite different than classic Stokes waves. 

Ursell (1953) had demonstrated that Stokes perturbation solutions to address 

nonlinearity were valid only for Ursell number 
 ���
�� ≪ 1 and that the shallow water 

approximated equations are valid for 
 ���
�� ≫ 1, where 
 is length scale or wave length, h 

is the water depth and a is the water surface elevation.  

Scholars came up with better approach to address these problem with the help of 

frequency domain analysis. Slowly varying, linear, finite-depth theory is roughly 

consistent with observations of root mean square shoaling wave heights, but some spectral 

features are apparently due to nonlinear effects (Guza & Thronton 1980). The Korteweg 

de Veris and Boussinesq equations are extended to improve damping and dispersion 

characteristics. It was always obviously clear that the wave braking process is nonlinear 

by nature.  

Freilich and Guza (1984) came up with the “consistent shoaling model” from the 

one dimensional Boussinesq euation. Mase and Kirby (1992) developed a hybrid model 

to predict the transformation by modifying the KdV equation and including both fully 

dispersive linear shoaling, shallow water nonlinearity and a damping coefficient in the 

equation to represent breaking.  

The initial models did not predict the energy content in the high frequency region 

of the spectrum because of the degree of nonlinearity is low and the shoaling properties 
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are neglected an extent. So, these models are expected to show how adding the shoaling 

and dissipation to the equation gives a better prediction of the transformation. In this study 

two nonlinear models for the transformation of waves in special regions are focused on. 

The models predict both cross spectral energy and nonlinear modal phase changes. In the 

experimental section details of wave parameters collected and data processing along with 

the conditions under which they ae collected is explained. Measurements are compared 

with the two models for all the wave conditions in experimental section and conclusions 

are drawn. 
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2. PROBLEM AND BACKGROUND 

 

 In this section of the thesis the advancements over linear wave theory and the 

reasons for the advancement that resulted in this study will be discussed.  

 Starting with the boundary value problem to solve for the potential 

� �
 ��, �, ��coordinate system. We consider water depth h that is slowly varying and 

relatively small amplitude � waves. 

∇�� = ∇��� + ��� = 0        for       −ℎ ≤ � ≤ �                      (2.1.a) 

�� = −∇�ℎ. ∇��        for         � = −ℎ                           (2.2.a) 

�� + � + !
� �∇���� + !

� ����� = 0        for         � = �                              (2.3.a) 

� − �� + ∇��. ∇�� = 0        for         � = �                              (2.4.a) 

where subscripts denote differentiation with respect to that parameter. These equations are 

approximated using Taylor series expansion from z = 0 as starting point and retaining the 

terms to the second order nonlinearity (O ("�)) where " = #$ is the nonlinearity 

parameter, k is the wave number and a is amplitude of wave. The truncated version is as 

following 

∇��� + ��� = 0        for    −ℎ ≤ � ≤ 0                      (2.1.b) 

�� = −∇�ℎ. ∇��        for      � = −ℎ                           (2.2.b) 

�� + � + !
� �∇���� + !

� ����� + ��� = %�"��    for      � = 0                              (2.3.b) 

� − �� + ∇��. ∇�� − ���� = %�"��        for      � = 0                              (2.4.b) 

A superpositioned solution is assumed for the potential 
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���, �, �, &� = ∑ ()�#), ℎ, ���*)�#), +), �, �, &�,)-!                         (2.5) 

where #) is the wave number and +) is radian frequency of the 
 � frequency component. 

Here  () =  ./01 23��4��
./01 23�  and #) $
5 +) follow the linear dispersion relation  

�
+�� = �#)&$
ℎ�#)ℎ�                                               (2.6) 

Combining the boundary conditions 2.3.b and 2.4.b and eliminating � from the equation, 

assuming slowly varying bottom slope and using the Green’s second identity on the 

variables () and �*) Kaihatu and Kirby(1995) came up with the equation with nonlinear 

terms that oscillate near the frequency +) explained in Section 2.2. 

�*  − ∇�. 67889:)∇��*); + +)� <1 − =>3
=3 ? = !

� @∑ ∑ 6AB�4AC�
9� 7�*D �*E : −ED

AB�AC�
9� 7�*D�*E: ; − ∑ ∑ 67∇��*D. ∇��*E: + ∇�. 7�*D ∇��*E: + ∇�. 7�*E ∇��*D:;ED F)   (2.7) 

Now by specifying the time dependence by assuming the following relation and parabolic 

approximation we derive the equation in Section 2.2. 

�*)��, �, &� = GH3
� IJKA3 + GL3∗

� IKA3                                  (2.8) 

 

2.1 Peregrine (1967) Boussinesq Equations 

 Peregrine started with Euler equations along with asymptotic expansion of 

depending variables derived the surface elevation equation so that the second order 

variables are included. Using the Euler equations, vertical momentum equations with 

substitution of second order variable and averaging horizontal velocity over depth 
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conservation of mass equation (2.9) and an equation (2.10) for conservation of momentum 

are derived.  

� +  ∇. �ℎ + ��NO = 0                                              (2.9)                                      

N OOO +  NO. ∇�NO + �∇�� =  �
� ∇�P∇�. �ℎN OOO�Q −  ��

R ∇�P∇�. NOQ                  (2.10) 

where h is the water depth, � is the free surface elevation, NO is the depth averaged 

horizontal velocity, ∇�represents horizontal gradient operator in (x,y), and the subscript t 

denotes differentiation w,r,t time. Assuming plane one direction wave with � and NO as 

� = $IK�2SJA � and NO = NTIK�2SJA �                             (2.11) 

 Solving these “standard” Boussinesq equations (2.11) result in the dispersion 

relation (2.12)  

+� =  92��
6!4U

��2���; ≈ �#�ℎ 61 − �2���
W ;                           (2.12) 

where k is the wave number. This dispersion relation is basically the linear dispersion 

relation. These equations are useful and effective in predicting shallow water wave 

transformation. Adding damping and dissipation can better the prediction in the shoaling 

and the breaking regions. These equations fundamentally lack the frequency dependent 

dispersion nature which is a major characteristic in two-dimensional topography wave 

propagation and deep-water application. It has been studied that the Boussinesq equations 

based nonlinear wave shallow water models can be solved using time domain and 

frequency domain models. Korteweg-deVries (KdV) equations were used by Svendsen 

(1976) Liu et al. (1985) to give water surface elevation with flat bottom (2.13) and variable 

depth (2.14) were formulated respectively. 
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 The KdV equations and Kadomtsev-Petviashvili (KP) equations have water 

surface elevation as their only dependent variable. For deriving these equations potential 

is used, and the coordinate system is moving with the speed of X�ℎ. But the wave is not 

assumed to be study and the wave have some shift in time.  

!
= � + �S + �Y

Z� � + W
�� ��S + ��

R �SSS = 0                              (2.13) 

<!
= � + �S + �Y

Z� � + W
�� ��S + ��

R �SSS?S +  !
�� 7ℎ�[:[ = 0              (2.14) 

where the subscripts x and y refer to differentiation w.r.t. x and y respectively. A second-

degree nonlinearity is assumed and accounted for in these equations. Permanent form 

solutions for solitary and cnoidal waves were derived from these equations. The dispersion 

relation used in formulating these equations was 

 + =  X�ℎ# 61 − !
R �#ℎ��;                                          (2.15) 

where + is frequency of the wave. This relation (2.7) is basically an approximated form 

of dispersion relation (2.16) from linear wave theory.  

+� = �# tanh #ℎ                                                (2.16) 

Boussinesq (1871) derived the set of evolution equations that contained weak 

dispersion terms due to finite depth, and weak nonlinearity due to finite amplitude. 

Korteweg-deVries (1895) followed with a single equation (KdV) describing a similar 

system supporting unidirectional wave motion only. These two equation are valid in the 

regime where the Ursell number is of order one (O(1)). Problem with all these models and 

these dispersions relations is that they converge in shallow water region and diverge at 

high kh values. All the models assumed close to linear conditions which are far from the 
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actual cases. So, these models are expected to work better in the regions where kh<<1. So, 

for the other regions better model was required. And frequency domain based nonlinear 

models provided the solution. 

 

2.2 Fully Non-Linear Frequency domain models 

 Both KdV and Boussinesq equations were extended to improve damping and 

dispersion characteristics by Madsen, Murray, Sorensen and also Kangaonkar and 

LeMehaute (1991) in separate studies. Before that Freilich and Guza (1984) came up with 

the “consistent shoaling model” from fully dispersive nonlinear shoaling model which was 

the result of modified spectral KdV equation.  

 We should start with resonant triad interaction concept to move further in Freilich 

and Guza derivation. For going to derivation completely with frequency domain, 

periodicity in time was to be assumed and time dependency was removed. The basic 

assumption of Fourier transform says we assume that the random wave will repeat itself 

after we stop the time period or as long as we take the reading. This will allow us to 

formulate spatially varying amplitudes of wave components. Phillips (1977) discussed 

implications of triad resonance interaction which is basically shallow water resonance. 

Here waves are treated as periodic with some phase difference, varying amplitudes, and 

nonlinear effects come from resonance affects. Here complete resonance is assumed.  

Armstrong et al. (I962) and Bretherton (1964) introduced the concept of ‘near 

resonance’ in weakly nonlinear systems with discrete spectra. They showed that, on 

moderate length or time scales, significant cross-spectral energy transfers and modal phase 
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modifications could take place if the resonance conditions were only approximately 

satisfied. 

Using the following Fourier series representation of the surface elevation and 

resonance conditions, complex amplitudes are introduced into the equations (2.13 and 

2.14).  

� =  ∑ !
�)̀-! a)IK)�b 2UcSJdU � + e. e.                                (2.17.1) 

Some of the product terms oscillate at n and they may follow the following combinations 

from the normal and conjugate terms. 

n = l+m 

n = l-m 

n = m-l 

n = -l-m  

where l, m are any numbers from 1 to ∞. Taking above combinations that only oscillate 

in nth frequency and dividing the exponential parts the resulting equation is limited to N 

number of combinations.  

Because of the shallow water assumption which gives the “consistent shoaling 

model”. 

cg3
cS +  �Y

Z� a) − K)�2U���
R a) + WK)2U

h� P∑ aDa)JD)J!D-! +  2 ∑ aD∗,J)D-! a)4DQ  = 0    (2.17) 

n = 1,2,3……..N  

Liu et al, gave a 2D version of equation 2.17 
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2�
#Ta)S + 2j
2k3 7ℎa)[:[ + g3

k3 6K)2j
� l)S − 2
�#T�#T − #�l) + )�2jAm�

W9�2 ; =
                                                 W)�22j

Zk3 �∑ aDa)JD)J!D-! + 2 ∑ aD∗a)4D,J)D-! �                       (2.18.1) 

n = 1,2,3……..N 

where #T is the constant reference wavenumber and l) is a function defined as 

l) = ℎ <1 − )�A��
W9 ?                                             (2.18.2) 

 

where #! represents primary wave-number and n! represents primary frequency. N 

represents the number of equations that we wish to solve. Higher the N better the accuracy 

similarly, the complexity and the time to solve increases with increase in N. The equation 

is named consistent because of the nonlinearity in all the variable being at same order. 

 

2.3 Mase and Kirby Hybrid Equation – Model one  

Green’s Law which defines the evolution of non-breaking surface waves 

propogating in shallow water of varying depth and width is used to modify the equation 

(2.18) also involving the fully dispersive shoaling linear theory.  

cg3
cS =  − �Y

Z� a)                                                (2.19) 

Equation (2.19) is compared to the component of fully dispersive linear theory to give  

cg3
cS =  − 7=>3:Y�=>3

a)                                           (2.20) 

Which can be substituted back in the equation (2.18) to give 
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cg3
cS + 7=>3:YZ=>3

a) − �
#! op 23�
qrs1 23� − 1t a)    + WK)2U

h� P∑ aDa)JD)J!D-! +
                                                      2 ∑ aD∗,J)D-! a)4DQ = 0                                                  (2.21) 

n = 1,2,3,…….N 

where 89 is the group-velocity. And for the calculation of group velocity by formula 

89) = )A
�23 <1 + �23�

0us1 ��23��? where #)is calculated by the linear dispersion relation  

�
+�� = �#)&$
ℎ�#)ℎ�. Here 
+ =  +) and +), #) pair satisfy the lowest order 

dispersion relation. Some featured of this interaction show slow energy transfer between 

interacting modes, slow phase shifts among interacting modes though they are small in 

scale.  

This resulted modified version of KdV equation with changed shoaling and 

dispersion terms give exact relation of each frequency mode. To the equation (2.21) 

energy dissipation and damping terms are added to get the first model in our study. The 

equation that our first model is based on is  

cg3
cS +  7=>3:YZ=>3

a) − �
#! op 23�
qrs1 23� − 1t a) + WK)2U

h� P∑ aDa)JD)J!D-! +  2 ∑ aD∗,J)D-! a)4DQ +
                                                                           v)a)  = 0                                                 (2.22) 

n = 1,2,3,……N 

where v) mostly is nearly constant for short distance and estimated using the spectral 

energy densities. It contains effects of shoaling and nonlinear wave interaction effects. 

∑ P�w)�S + 2v)w)Q,)-! = 0                                    (2.23.1) 
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where Sn is the spectral density. Thornton and Guza (1983) formulated an expected value 

of energy dissipation rate based on the probabilistic method of Rayleigh distribution of 

waves height. This study gave an easy way to calculate v). 

v) = vT + <x3
x̅ ?� v!                                    (2.23.2) 

where vT $
5 v! formulation is explained in the section 2.4. 

 

2.4 Modified Fully Dispersive Shoaling model – Model two 

 Starting with Freilich and Guza’s “consistent shoaling model” (2.18) the further 

modifications are done by adding a term that is equivalent to the undifferentiated 

dissipation term in the KdV equation (2.14). vT $
5 v! are introduced to purpose of 

division of dissipation to frequency and frequency squared terms. Adding the dissipation 

term results in  

cg3
cS +  �Y

Z� a) − K)�2U���
R a) + WK)2U

h� P∑ aDa)JD)J!D-! +  2 ∑ aD∗,J)D-! a)4DQ +

                                       zvT + v! o)∗cx
x{ t�| a) = 0                                                       (2.24) 

n = 1,2,3…..N 

where                                             vT =  I} ∗ ~                                                         (2.25) 

                        v! =  �~ − vT� ∗ 7(}�: ∗ < ∑ ����g3��3�U∑ cx)������g3����3�U ?                                   (2.26) 

~ = �oW��x{√�
Z�m√9 t /ℎ�.�� X4 ∑ �a)��,)-!m                                     (2.27) 

where I} is the parameter that specifies the dependence of dissipation on frequency. ~ is 

a function of “b” and “�” parameter in the Thornton and Guza dissipation, peak frequency 
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(} and depth h. The second model is designed based on the equation (2.24). vT represents 

uniform energy decay in all frequency components and v! denoted the (� dependence.  
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3. EXPERIMENTS AND SETUP 

 

3.1 Experiments and Reason 

The main reason that resulted in these experiments is a photograph of leading edge 

fission waves at Koh Pu island prior to the arrival of the 2004 tsunami. The image shows 

a leading edge marked by short waves and these short waves appeared to be cnoidal in 

shape. These waves also had temporal and spatial scale in line with the longest sea present 

in the region. So obviously the concern was the cause for this special case and its 

interaction with the random waves in the background of that picture. 

 

 

 

 

 

 

 

 
Figure 1: 2004 Indian ocean tsunami near Koh Pu Island P.C. Anders Garwin. 
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For many years solitary waves were considered to be the proxy for tsunami waves. 

Because of these images and their contrary observations further study was needed to 

determine the characteristics of tsunami. So different combinations of cnoidal waves with 

random waves were used in the experiments. 

 

3.2 Experimental Facility and Setup 

The experiments were conducted at the Large Wave Flume in the O.H. Hinsdale 

Laboratory at Oregon State University during 2013-2014. The wavemaker is with a 

programmable hydraulic actuator capable of generating repeatable regular, irregular, 

tsunami, and user-defined waves. Main goal of the experiments was to determine the 

tsunami interaction with the oceanographic surroundings and the nearshore wave 

mechanics.  

 

 

Figure 2: Large wave flume (LWF) bathymetry. P.C. OSU website. 
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Figure 3: Large wave flume (LWF) with waves at OSU. P.C. OSU website. 

 

The bathymetry used in the models and in the experiment is explained and shown 

below. The profile has change in slope twice along the length. Minimum depth in profile 

is set to be one centimeter. Total length of the basin is set to be 58 meters in the model. 

Millimeter resolution is used in the simulation. A total of 18 wave gauges are used in the 

experiments. In which gauge 9 from the wave maker side was faulty. 

 

Figure 4: Wave basin profile with changing slope. 
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Depth profile 

X distance Depth (from-to) Slope 
0.00 to 10.97 m 2.00 m 0 
10.97 to 14.62 m 2.00 - 1.69 m 1:12 
14.62 to 52.84 m 1.69 - 0.01 m 1:24 

52.84 to 58 m 0.01 m 0 
Table 1: Depth profile. 

 

Table 2: Gauge locations from the self-calibrating wave gauge. 

 

 

Figure 5: Gauge (1-18) locations with basin profile in experiments. 

 

Gauge Location 
Gauge 0 (models only) 10 cm    

Gauge 1 3.65 m Gauge 10 31.08 m 
Gauge 2  7.32 m Gauge 11 33.00 m 
Gauge 3 10.96 m Gauge 12 34.76 m 
Gauge 4 14.62 m Gauge 13 36.57 m 
Gauge 5 18.28 m Gauge 14 38.40 m 
Gauge 6 21.94 m Gauge 15 40.35 m 
Gauge 7 25.70 m Gauge 16 41.98 m 
Gauge 8 27.41 m Gauge 17 43.99 m 
Gauge 9 29.34 m Gauge 18 46.00 m 
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Figure 6: Gauge (0-18) locations with basin profile in models. 

 

Experimental data consists of waves run at time periods 6, 7, and 8 seconds with 

Cnoidal and Random waves and their combination. Test combinations consisted of 

Cnoidal only, 3 random waves, and 3 combined waves. Combined waves data is as follows 

T (s) Cnoidal H (m) Random Hs (m) 

6 0.49 0.89 

6 0.71 0.71 

6 0.89 0.49 

7 0.49 0.89 

7 0.71 0.71 

7 0.89 0.49 

8 0.49 0.89 

8 0.71 0.71 

8 0.89 0.49 

Table 3: Wave height details of each case. 

 

Each period that is has seven trials first one is pure cnoidal second through fourth 

pure random and fifth through seventh combined cnoidal and random waves. The input 

data that is the time series of input wave is measured at the self-calibrating wave gauge 

and in models we consider that as the zero X coordinate. Total sampling time for the all 
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the second through seventh trials was same that is around 1200 seconds that is 20 min and 

all the first trials were same and around 620 seconds that is about 10 min. Time step for 

the sampling was fiftieth of a second, so the number of samples are as per the time of 

sampling. 

 

3.3 Models and Setup 

Matlab® is being used in the modeling and simulation. Some internal functions 

are used in the models like fast Fourier transformation (fft), inverse Fourier transformation 

(ifft) and Hilbert transformation (hilbert). Used Runge-Kutta formulation to model state 

at next step as an explicit function of the current value of the state and its derivatives. The 

step implies the millimeter resolution. 

In the models the minimum water depth h is set to be one centimeter. Time step is 

set to be equal to the time step in experiments. X direction step is set to be one millimeter 

for better accuracy. Water density is set to be 1025 kg/cu.m. ‘b’ is set to be 1.2 and gamma 

is set to be 0.6 which are parameters in the Thornton and Guza dissipation theory which 

defines ratio of front face covered in white water ( normally 0.8 < b < 1.7 ) and defines 

the ratio of Hrms and h in the saturated surface ( 0.4 < gamma < 0.8 ) respectively. 

Each first trial data is divided into 15 individual realizations of 2048 data points to 

have a wave with time-period around 40.96 sec. Similarly, second through seventh trials 

were divided into 29 individual realizations of 2048 data points which gives a wave with 

time-period 40.96 sec. An example plot of output from wave gauges 4 to 6 is given below. 
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Figure 7: Wave gauge output example. 

Initial data till 720 data points were ignored because the wavemaker takes some time to 

give the required wave. And likewise, data at the end of the output is also vomited to have 

better accuracy. Fast Fourier transform (fft) function in Matlab is used to calculate the 

complex amplitudes of the wave and the respective phase. As we get the out put of fft in 

both positive and negative side of the frequency bands we double the amplitudes and use 

only one side of the spectrum and that’s on the positive side. Each doubled complex 

amplitude is associated with frequency (Hz) steps and the quantity of the step is calculated 

from the time step used in the experiments.  

 Wave number is always calculated using the linear dispersion relation that is 

equation (2.16). So, Newton-Raphson method is used to iterate the wave number value 

with input of wave number (which change for every equation) and water depth at that x 

direction step. With these as the input the models are run to have the complex amplitudes 

at every gauge location for comparison and saved. With these amplitudes spectral density 

is calculated and associated with respective frequency. We are only interested in the 

spectrum till the frequency is thrice the peak frequency because the rest of the data is 

normally of little to no interest to us.  
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 The evolutionary characteristics of the waves are parametrized using the 

Asymptotic behavior studies. Skewness and Asymmetry are calculated using the water 

surface elevation at required distance from the wave maker using inverse fast fourier 

transform (ifft) function in the Matalb.  

w#In
I�� =  ��� ⟩
⟨�� ⟩�/�                                                  (3.1) 

a����I&�� =  ⟨������
⟨�� ⟩�/�                                                  (3.2) 

where H denotes the Hilbert transform and Hilbert transform function in Matlab is used 

for this purpose in the models and ‘< >’ brackets resemble ensemble average. Skewness 

and Asymmetry are statistical third moments that represent wave shape at that location 

and its evolution. 
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4. MODEL RESULTS AND COMPARISON 

 

4.1 Spectrum comparison 

 At each wave gauge location, the complex amplitudes solved are saved in the 

workspace of the Matlab. Spectral energy has been calculated for all the realizations and 

averaged for a single output spectrum per wave gauge in both models and also for the 

experimental data. Plots for spectrum are always scaled in log scale for Y axis that is the 

spectral energy and X axis in this study represents ratio of frequency and calculated peak 

frequency. Reason for the above approach is to have a better look of Infra, Swell, and Sea 

regions in the spectrum. Very less plots can be included in this section but most of the 

plots are included in the appendix section of the thesis. 

 

 

Figure 8: Gauge one, comparison of M1, M2 and Expt. of pure cnoidal wave case. 
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Figure 9: Gauge four, comparison of M1, M2 and Expt. of pure cnoidal wave case. 

 

 

Figure 10: Gauge eight, comparison of M1, M2 and Expt. of pure cnoidal wave case. 
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 Selection of the three gauges 1, 4, and 8 was important because they are on 

different slopes in both the models and experiment that are 0, 1/12, and 1/24 respectively. 

As we can observe from the plots the peak of the spectrum is close to 0.97fp in all of the 

plots in all cases. And model one, that is Mase and Kirby equation based is in better 

proximity of the experimental data than that of the model two that is fully dispersive 

nonlinear model. We will discuss the inference after the pure random and combination of 

random and cnoidal cases are observed. The trial cases are from the waves with time 

period 8 sec. We can also see the gradual separation of accuracy in the models from gauge 

one to gauge eight. 

 

 

Figure 11: Gauge one, comparison of M1, M2 and Expt. of just random wave case. 
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Figure 12: Gauge four, comparison of M1, M2 and Expt. of just random wave case. 

 

 

Figure 13: Gauge eight, comparison of M1, M2 and Expt. of just random wave case. 
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And model two that is fully dispersive nonlinear model is in better proximity of the 

experimental data than that of the model one, that is Mase and Kirby equation based. We 

will discuss the inference after the combination of random and cnoidal cases are observed. 

 

 

Figure 14: Gauge one, comparison of M1, M2 and Expt. of random and cnoidal wave case. 
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Figure 15: Gauge 4, comparison of M1, M2 and Expt. of random and cnoidal wave case. 

 

Figure 16: Gauge 8, comparison of M1,M2 and Expt. of random and cnoidal wave case. 
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And model two, that is fully dispersive nonlinear model is in better proximity of the 

experimental data than that of the model one, that is Mase and Kirby equation based. Same 

wave trial cases are examined for the time periods 6 sec and 7 sec and the observed results 

are as following. 

 

 6 Sec Time period  

Trial 1 Trial 2 Trial 5 

Table 4: 6 sec time period wave spectrum Trials 1,2 and 5 and their gauges 4 and 8 
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 7 Sec Time period  

Trial 1 Trial 2 Trial 5 

Table 5: 7 sec time period wave spectrum Trials 1,2 and 5 and their gauges 4 and 8 
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4.2 Third moments and Hrms. 

From all the above plots we can observe that the model one does better in the pure 

cnoidal wave trials and model two does better in the just random and combined cnoidal 

and random trials. Ursell number of the cnoidal waves is very high and so prediction of 

these waves is good with shallow water approximated equations-based models.  

 

 

Figure 17: Skewness Vs h(m) plot for Trials 1,2, and 5 for both models and experiment. 

 

Skewness trend with respect to water depth for trial 1 in M1 and M2 along with 

trial 5 in M1 and M2 seems to be out of trend with rest of the trials and mainly 

experimental data.  
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Figure 18: Asymmetry vs h(m) plot Trials 1,2, and 5 for both models and experiment. 

 

As expected asymmetry values are negative in almost all the gauges location. Trial 

1, 2 and 5 of experimental data seems to follow a different trend than that of the rest trials.  

  

Area under the spectral energy vs frequency plots is calculated and plotted 

comparing M1, M2, and Experimental data with each other in three regions of the spectra 

namely Infra gravity wave region, Swell wave region, and Sea wave region. We divided 

the regions based on the peak frequency of the spectrum. First Infra gravity region is 

selected as the frequency region from first frequency step to half of peak frequency. 

Second the swell wave region of spectra is selected starting from half of the peak 

frequency to three times half of peak frequency and the rest is considered in the sea wave 

region till three times the peak frequency. 
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Figure 19: Area under spectra for trials 1,2, & 5 in Infra gravity wave region and reference 
x=y. 
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Figure 19: Continued. 
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Figure 19: Continued. 
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Table 6: Area under spectra for trials 1, 2, and 5 in Swell wave region. 
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Table 7: Area under spectra for trials 1, 2, and 5 in Sea wave region.  
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Figure 20: Hrms Vs h plots of three trials from seven second wave period case. 
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5. INFERENCE AND SUMMARY 

 

 As mentioned earlier the study is to compare two different models to the 

experimental data from the OSU lab and to find the condition under which the models do 

a better prediction of wave transformation while going towards shore. The models are 

based on equations 2.22 and 2.24. Both models have same degree of nonlinearity, and the 

dispersion relation is completely linear in model one and approximated to second order 

nonlinearity in model two. The dissipation terms are same in both of the models and work 

the same irrespective of the dissipation properties. 

 In this section we discuss the inference of the data and comparison plots shown in 

the section 4. We observed that the fully dispersive nonlinear model that is model one is 

doing good in predicting the wave data that is purely cnoidal and the weakly dispersive 

nonlinear model that is model two with same dissipation terms as model one is doing better 

in predicting the just random and combined random and cnoidal wave case. If we take the 

natural occurrence in to consideration either waves are random or in rare cases the cnoidal 

waves combine with random and occur in the time of tsunamis. So, we can say that the 

weakly dispersive model that is fully nonlinear is doing a better job in predicting the 

natural case.  

 Going into details of the spectrum produced by the models in trial one that is pure 

cnoidal wave case the spectrum at peak frequency match perfectly. The area under the 

graph for the infra gravity wave region matches almost perfectly. Crossing the peak 

frequency, the spectrum produced from model output tends to move out of sync with the 
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data from experiments. The starting from the third mode spectrum tend to over predict the 

energy and local peaks tend to move further than the supposed frequencies. Intermediate 

frequencies are between the multiples of peak frequency acquired energy cause of the 

nonlinearity nature in the models and are seen clearly in the spectrum plots which is not 

observed in the experimental data.  

 Area under the spectrum calculated frequency region wise shows a better picture 

of the prediction. In Infra gravity wave region the area under the models and data are close 

and follow a trend to be in and around the x = y line. In the Swell wave region same trend 

is followed though the plots don’t meet in perfect sync the area under the plots seems to 

be close. The sea wave region of the spectrum shows different trend and the model one is 

always seen to be under predicting than that of the model two. In the case of pure cnoidal 

wave the model one is close to the data. 

 The cases of just random wave and combined random and cnoidal wave seems to 

follow a similar trend and model two is doing a better job in predicting the cases close to 

the data. In the infra gravity wave region area under plots of models seem to be lower than 

that of the data. In the Swell wave region, the plots are perfectly matching the data. In the 

sea wave region of the plots the models seem to under predict the energy and can be seen 

clearly in the just random wave case gauge 8 comparison plot. And we can clearly see the 

model two doing better prediction from the combined case higher frequencies.  

 The model that is nonlinear with weak dispersiveness built into it is doing a better 

job than that of model one in predicting the transformation of the waves which have the 

randomness to its nature.  
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 Reasons for the nonlinear dispersion relation to hold better in the random and 

combined wave cases may be because the incomplete nonlinearity in the equations 

complementing the incomplete dispersion relation. In the pure cnoidal wave case the 

bounded wave nature is closely and not completely followed by the data which can be 

observed in the spectrum peaks. So, the models might not be considering the pure bound 

case and so the higher and intermediate frequencies are exchanging the energy among 

themselves. 

 Model one is clearly the winner in the case of pure cnoidal wave case. So, we can 

infer from this study that predicting wave transformation is not always done right by any 

single model. We can also see that the strong dispersion relation tends to make the model 

under predict the energy in the higher frequency zones. 
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APPENDIX 

Results from 7 Sec wave period case in trial 1, 2, and 5. 

 

Gauge 1-6 Trial 1 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
 



 

44 
 

 

Gauge 1-6 Trial 2 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
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Gauge 1-6 Trial 5 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
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Gauge 7-12 Trial 1 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
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Gauge 7-12 Trial 2 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
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Gauge 7-12 Trial 5 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
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Gauge 13-18 Trial 1 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
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Gauge 13-18 Trial 2 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
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Gauge 13-18 Trial 5 comparison of M1, M2 and Expt. spectral density (cm^2.s) Vs 
frequency (Hz) 
 


