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ABSTRACT

This study is to compare and validate two modaisdndom wave transformation
with experimental data. Both models are basedeguincy domain KdV equation. First
model is a modified version of KdV equation whichsaderived to provide shoaling and
dispersion relation of each frequency mode. Seaoodel is a dispersive nonlinear
shoaling model including shallow water limits anssipation terms. Results expected are
as follows 1) Second model is expected to overegérthe results in higher frequencies
but can predict satisfactorily close in the lowed antermediate frequency zones of the
energy spectrums. 2) First model is expected tdigiréne transformation better than that
of the second because of the fully dispersive eatur

Energy spectrum plots from models are expected aictm close to the
experimental plots in the lower frequencies andfits¢ model is expected to be much
closer to the experimental data than that of tieers® model. The validation plots of both
the models are expected to be as close as théyedarthe Infra gravity and Swell regions

of the spectrum; the second model is expected toetter in the Sea wave region of the

spectrum.
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NOMENCLATURE

B/CS Bryan/College Station

C.C. Complex Counterpart
TAMU Texas A&M University

OoSsu Oregon State University
TWL Tsunami Wave Lab

M1 Model one

M2 Model two

Expt. Experiment or Experimental
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1. INTRODUCTION

Waves approach a beach or a cliff while constastignging their shapes and, in
most cases, they break. The aim of the study éstablish a better model to best predict
the wave transformation. The characteristics ofeMaansformation depend on the local
bathymetry and on its variations, as water deptfects the shoaling and refraction
characteristics, frequency dispersion, and energgightion. Most commonly used
shoaling wave theories and models are mainly basdihear wave theory.

While models based on linear theory are computaliprfast, they do have
drawbacks. Many of these models are based on toalleal WKB assumption, which
impose that the change in water depth is small awgavelength. These models predict
surface elevation changes by conserving energydhuk calculating the changes in the
parameters required for this to be maintained.

Linear wave models are sufficient if the goal iptedict lumped parameters such
as significant wave height. However, for many psses this is insufficient. For example.
the nonlinear aspects of the wave transformatiemacessary to estimate the properties
of sediment transport. Sediment transport mainpedds on the velocity of the particles,
and skewness and asymmetry of the waves which ezessary for the pickup and
transport of the particles. Nonlinear wave behaidhus necessary to capture this effect.

Modern shallow water wave theory started with Bene (1967), who used the
Boussinesq theory to model long waves with smalplaaodes propogating in varying

water depth. These equations are considered atvan@ment to the linear wave theory.



Boussinesq equations can predict the transformatbnmonochromatic waves..
Boussinesq equations have only lowest order ofineatity and dispersion, and are thus
considered weakly nonlinear and weakly dispersiviee treatment of nonlinearity,
however, is quite different than classic Stokeseagav

Ursell (1953) had demonstrated that Stokes pertiorbasolutions to address

2
nonlinearity were valid only for Ursell numbe‘% « 1 and that the shallow water

/12

OF > 1, whereA is length scale or wave length,

approximated equations are valid

is the water depth aralis the water surface elevation.

Scholars came up with better approach to addrese throblem with the help of
frequency domain analysis. Slowly varying, lineénite-depth theory is roughly
consistent with observations of root mean squasalsig wave heights, but some spectral
features are apparently due to nonlinear effectz&@ Thronton 1980). The Korteweg
de Veris and Boussinesq equations are extendethpoove damping and dispersion
characteristics. It was always obviously clear thatwave braking process is nonlinear
by nature.

Freilich and Guza (1984) came up with the “consisghoaling model” from the
one dimensional Boussinesq euation. Mase and KitB92) developed a hybrid model
to predict the transformation by modifying the Kéduation and including both fully
dispersive linear shoaling, shallow water nonliitgaeind a damping coefficient in the
equation to represent breaking.

The initial models did not predict the energy comie the high frequency region

of the spectrum because of the degree of nonlityeiariow and the shoaling properties



are neglected an extent. So, these models areterpecshow how adding the shoaling
and dissipation to the equation gives a betteriptied of the transformation. In this study
two nonlinear models for the transformation of waire special regions are focused on.
The models predict both cross spectral energy antinear modal phase changes. In the
experimental section details of wave parameteldeceld and data processing along with
the conditions under which they ae collected islarpd. Measurements are compared

with the two models for all the wave conditionsexperimental section and conclusions

are drawn.



2. PROBLEM AND BACKGROUND

In this section of the thesis the advancements bwear wave theory and the
reasons for the advancement that resulted in tinds/ svill be discussed.

Starting with the boundary value problem to solf@ the potential
¢ in (x,y, z)coordinate system. We consider water depth h thatawly varying and

relatively small amplitudg waves.

V2p =V p+¢,, =0 for —h<z<ny (2.1.9)

¢, =—Vph.Vpo for z=-h (2.2.a)

g+ +5(Vad)? +2(p)2 =0 for  z=p (2.3.9)
Ne— ¢, +Vun. Vo =0 for z=n (2.4.a)

where subscripts denote differentiation with respethat parameter. These equations are
approximated using Taylor series expansion fromDzas starting point and retaining the
terms to the second order nonlinearity (€7)) where € = ka is the nonlinearity

parameterk is the wave number aradis amplitude of wave. The truncated version is as

following
Vip+ ¢, =0 for —h<z<0 (2.1.b)
b, = -V,h.Vod  for z=—h (2.2.b)
g+ e +5 (Vad)? +5 ()% + Ny = 0(e2) for  z=0 (2.3.b)
Ne — Gy + Ve Vpp — nep,, = 0(?) for z=0 (2.4.b)

A superpositioned solution is assumed for the gatken



d(x,y,2,t) = Zﬁ:l fa(kn, h, Z)$n(kn' Wp, X, Y, t) (2.5)
wherek,, is the wave number angl, is radian frequency of thé”" frequency component.

coshky(h+2)

Here fn - coshkyh

andk,, and w,, follow the linear dispersion relation

(nw)? = gk,tanh(k,h) (R.6
Combining the boundary conditions 2.3.b and 2.4db eliminatingn from the equation,
assuming slowly varying bottom slope and using @reen’s second identity on the
variablesf, and¢, Kaihatu and Kirby(1995) came up with the equatidth nonlinear

terms that oscillate near the frequengyexplained in Section 2.2.

~

Bee = V- [(CCo), Tnbu] + 03 (1 - 2) = 2{5, T[22 (G, i),

gZ

L5 (G| = 22 (T D), + T (B Tub) + O (B Ted)]) @7

Now by specifying the time dependence by assuntiaddlilowing relation and parabolic

approximation we derive the equation in Section 2.2

Py, t) = S eiont 4 £ piont (2.8)

2.1 Peregrine (1967) Boussinesq Equations

Peregrine started with Euler equations along vaiymptotic expansion of
depending variables derived the surface elevatgumton so that the second order
variables are included. Using the Euler equatimestical momentum equations with

substitution of second order variable and averadwgzontal velocity over depth



conservation of mass equation (2.9) and an equéiaf) for conservation of momentum
are derived.
ne+ V.(h+n)u=0 (.9
T+ LY+ gVnn = V[V (RT)] — 20, (V.1 (2.10)
where h is the water depthy is the free surface elevatiof, is the depth averaged
horizontal velocityV,represents horizontal gradient operatondg)( and the subscrift
denotes differentiation w,r,t time. Assuming plame direction wave with andu as
n = ae!®*~0D gndy = u, eikx-ot) (2.11)
Solving these “standard” Boussinesq equationslj2résult in the dispersion

relation (2.12)

2 2
w? = _[12’;{:)2] ~ gk?h[1 -2 (2.12)

wherek is the wave number. This dispersion relation isidaly the linear dispersion
relation. These equations are useful and effeativeredicting shallow water wave
transformation. Adding damping and dissipation batter the prediction in the shoaling
and the breaking regions. These equations fundathetdck the frequency dependent
dispersion nature which is a major characteristitwo-dimensional topography wave
propagation and deep-water application. It has lsaatied that the Boussinesqg equations
based nonlinear wave shallow water models can beedaising time domain and
frequency domain models. Korteweg-deVries (KdV) &mns were used by Svendsen
(1976) Liu et al. (1985) to give water surface al&n with flat bottom (2.13) and variable

depth (2.14) were formulated respectively.



The KdV equations and Kadomtsev-Petviashvili (KRjuations have water

surface elevation as their only dependent varidfbe.deriving these equations potential
is used, and the coordinate system is moving wighspeed of/ gh. But the wave is not

assumed to be study and the wave have some shiften
1 hy 3 h?
“Ne N+ o+ oM+ My = 0 (2.13)

(F7c 4+ + e+ ) + 52 (hmy) =0 (2.14)
where the subscripts x and y refer to differendiativ.r.t. x and y respectively. A second-
degree nonlinearity is assumed and accounted folnese equations. Permanent form
solutions for solitary and cnoidal waves were dagtifrom these equations. The dispersion

relation used in formulating these equations was

w = \[ghk [1 =3 (kh)?| (2.15)
wherew is frequency of the wave. This relation (2.7) &sioally an approximated form
of dispersion relation (2.16) from linear wave theo

w? = gk tanh kh 18)
Boussinesq (1871) derived the set of evolution egoa that contained weak
dispersion terms due to finite depth, and weak ineatity due to finite amplitude.
Korteweg-deVries (1895) followed with a single etjoia (KdV) describing a similar
system supporting unidirectional wave motion ofillgese two equation are valid in the
regime where the Ursell number is of order one [P@roblem with all these models and
these dispersions relations is that they convargehallow water region and diverge at

high kh values. All the models assumed close to lineaditimms which are far from the



actual cases. So, these models are expected tdowtigk in the regions whekb<<1. So,
for the other regions better model was requiredd Aequency domain based nonlinear

models provided the solution.

2.2 Fully Non-Linear Frequency domain models

Both KdV and Boussinesq equations were extendegnfwove damping and
dispersion characteristics by Madsen, Murray, Sseenand also Kangaonkar and
LeMehaute (1991) in separate studies. Before ttali¢ch and Guza (1984) came up with
the “consistent shoaling model” from fully dispersnonlinear shoaling model which was
the result of modified spectral KdV equation.

We should start with resonant triad interactioncapt to move further in Freilich
and Guza derivation. For going to derivation cortgdle with frequency domain,
periodicity in time was to be assumed and time ddpecy was removed. The basic
assumption of Fourier transform says we assumetlibatandom wave will repeat itself
after we stop the time period or as long as we thkereading. This will allow us to
formulate spatially varying amplitudes of wave caments. Phillips (1977) discussed
implications of triad resonance interaction whishbasically shallow water resonance.
Here waves are treated as periodic with some pthiffeeence, varying amplitudes, and
nonlinear effects come from resonance affects. idemgplete resonance is assumed.

Armstrong et al. (1962) and Bretherton (1964) idtroed the concept of ‘near
resonance’ in weakly nonlinear systems with digcrgbectra. They showed that, on

moderate length or time scales, significant crggesssal energy transfers and modal phase



modifications could take place if the resonancedamns were only approximately

satisfied.

Using the following Fourier series representatidrthee surface elevation and

resonance conditions, complex amplitudes are intted into the equations (2.13 and

2.14).
N = Tily;AnenUkadmio 4o c (2.17.1)

Some of the product terms oscillate at n and thay follow the following combinations

from the normal and conjugate terms.

n=I+m
n=I-m
n=

n=-l-m

wherel, m are any numbers from 1 to. Taking above combinations that only oscillate
in nth frequency and dividing the exponential p#nes resulting equation is limited bb
number of combinations.

Because of the shallow water assumption which gikies“consistent shoaling
model”.

dAy
dx

in3k,3h2 3i

k - - *
6 An + :hl [Z?zllAlAn—l + 22%":17‘141 An+l] =0 (217)

hy _
+ EA”

Liu et al, gave a 2D version of equation 2.17



. k Ay [ink n?kow*h] _
2inkoAn, + é(h/lny)y +o [TO Gy — 207k (ko — k)G, + 3g°zk ] =

3n2kkg
4Gy,

Qi Ay + 231 AjAn ) (2.18.1)

wherek, is the constant reference wavenumber @nd a function defined as

G,=h (1 _ nzwzh)

» (2.28.
where k; represents primary wave-number amg represents primary frequency. N

represents the number of equations that we wishlt@. Higher the N better the accuracy
similarly, the complexity and the time to solveneases with increase in N. The equation

is named consistent because of the nonlinearigyl ithe variable being at same order.

2.3 Mase and Kirby Hybrid Equation — Model one

Green’s Law which defines the evolution of non-lieg surface waves
propogating in shallow water of varying depth andttvis used to modify the equation
(2.18) also involving the fully dispersive shoaliingear theory.

= -, 19)

Equation (2.19) is compared to the component &y filispersive linear theory to give
aty __ Cony (2.20)

dx 2Cq,

Which can be substituted back in the equation {2d give

10



daan | (Cgn) . ( Kkl

3ink _
b 1)+ A, +

22X A Al =0 2.21)

where C; is the group-velocity. And for the calculation gfoup velocity by formula

nw 2knh . . . . .
an—m(1+m) where k,is calculated by the linear dispersion relation

(nw)? = gk,tanh(k,h). Here nw = w, and w,, k, pair satisfy the lowest order
dispersion relation. Some featured of this inteosicshow slow energy transfer between
interacting modes, slow phase shifts among intergqehodes though they are small in
scale.

This resulted modified version of KdV equation withanged shoaling and
dispersion terms give exact relation of each freagyemode. To the equation (2.21)
energy dissipation and damping terms are addeettthg first model in our study. The

equation that our first model is based on is

ddn, . (Can), . knh 3ink _ s
g S gy — ik (i = 1) Ay + SR A+ 2B A A +
a,A, =0 Z2)
n=123,...... N

wherea,, mostly is nearly constant for short distance astarated using the spectral
energy densities. It contains effects of shoaling monlinear wave interaction effects.

n=1[(Sn)x + 20,5,]1 = 0 (2.23.1)

11



where Sn is the spectral density. Thornton and GL@&3) formulated an expected value
of energy dissipation rate based on the probaibilmethod of Rayleigh distribution of

waves height. This study gave an easy way to Gatiea),.
2
a, = ag + (];—“) a2 (2.23.2)

wherea, and a; formulation is explained in the section 2.4.

2.4 Modified Fully Dispersive Shoaling model — Mbdgo

Starting with Freilich and Guza’s “consistent dimamodel” (2.18) the further
modifications are done by adding a term that isivadent to the undifferentiated
dissipation term in the KdV equation (2.14), and a, are introduced to purpose of
division of dissipation to frequency and frequesqguared terms. Adding the dissipation

term results in

Sy Be g T Y B o A A+ 2SN A Agd] +
nxdf 2
fp
n=12,3..... N
where ay = e, *f (2.25)
2 TN_, abs(4n)
@y = (B —ao) (") > (zﬁzldf;Z(abs(An»Z) (2.26)

3b3f,
g = [( il )/ 55] 2SN (42 (2.27)
wheree, is the parameter that specifies the dependendessipation on frequency. is

a function of “b” and ¥” parameter in the Thornton and Guza dissipatieakdrequency

12



f, and depth h. The second model is designed bastw@uuation (2.24y, represents

uniform energy decay in all frequency componentsandenoted thg? dependence.

13



3. EXPERIMENTS AND SETUP

3.1 Experiments and Reason

The main reason that resulted in these experineatphotograph of leading edge
fission waves at Koh Pu island prior to the arriwthe 2004 tsunami. The image shows
a leading edge marked by short waves and thesé whoes appeared to be cnoidal in
shape. These waves also had temporal and spatialisdine with the longest sea present

in the region. So obviously the concern was theseaior this special case and its

interaction with the random waves in the backgroohithat picture.

“

Figure 1: 2004 Indian ocean tsunami near Koh RunésP.C. Anders Garwin.

14



For many years solitary waves were considered thdproxy for tsunami waves.
Because of these images and their contrary obsengaturther study was needed to
determine the characteristics of tsunami. So diffecombinations of cnoidal waves with

random waves were used in the experiments.

3.2 Experimental Facility and Setup

The experiments were conducted at the Large Wawmé-in the O.H. Hinsdale
Laboratory at Oregon State University during 20034 The wavemaker is with a
programmable hydraulic actuator capable of gemegatepeatable regular, irregular,
tsunami, and user-defined waves. Main goal of tkgeements was to determine the
tsunami interaction with the oceanographic surringel and the nearshore wave

mechanics.

Figure 2: Large wave flume (LWF) bathymetry. P.GlOwebsite.
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Figure 3: Large wave flume (LWF) with waves at OFUC. OSU website.

The bathymetry used in the models and in the exyaari is explained and shown
below. The profile has change in slope twice alihrgglength. Minimum depth in profile
is set to be one centimeter. Total length of th&rbes set to be 58 meters in the model.
Millimeter resolution is used in the simulationtétal of 18 wave gauges are used in the

experiments. In which gauge 9 from the wave makier was faulty.

Wave Basin Profile

56 60 64

Depth inm

-2.5

Length inm

Figure 4. Wave basin profile with changing slope.
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Depth profile

X distanct Depth (fron-to) Slope
0.00t0 10.97 1 2.00 n 0
10.97 t0 14.62 1 2.00-1.69n 1:12
14.62 t0 52.84 1 1.69-0.01 n 1:24
52.841058r 0.01n 0
Table 1: Depth profile.
Gauge Locatio
Gauge 0 (models onl 10 cm
Gauge 3.65n Gauge 1 31.08 n
Gauge = 7.32 Gauge 1 33.00 n
Gauge . 10.96 n Gauge 1 34.76 n
Gauge - 14.62 n Gauge 1 36.57 n
Gauge ! 18.28 n Gauge 1 38.40 n
Gauge ! 21.94 n Gauge 1 40.35n
Gauge 25.70 n Gauge 1 41.98 n
Gauge ! 2741n Gauge 1 43.99 n
Gauge ' 29.34 n Gauge 1 46.00 n

Table 2: Gauge locations from the self-calibrativaye gauge.

4572m
(15t)

Side View
Wave maker 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2
self-calibrating (arrow), f
fixed (line) and cantilever !
’ e e T T T T T T T ‘ | ‘ | | ‘ ‘ ‘ _——— | %n
2 ; vy ooy oy T AR L )
m (6ft 7|n) i Vectrinos (triangles) l—/u 12 i
X 1 == |
x=28688m 87.430m
(94ft 1in) (286ft 10in)

Figure 5: Gauge (1-18) locations with basin prafil@xperiments.
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Wave Gauge Locations

, (GO GL G2 G3 G4 G5 h6 7 G8 (9 G10 Gl1 G12 Gi3 G14 (15 G16 G17  G18

3.p5 7| 10p5 146 18145 21 25]5] 2. 328! 38, 401} & -/IJZML 54175
_—

|

&
I

B

Depth inm

—T

Length in m

Figure 6: Gauge (0-18) locations with basin prafienodels.

Experimental data consists of waves run at timegdsr6, 7, and 8 seconds with
Cnoidal and Random waves and their combinationt €embinations consisted of

Cnoidal only, 3 random waves, and 3 combined wavembined waves data is as follows

T(s) Cnoidal H (m) Random Hs (m)
6 0.49 0.89
6 0.71 0.71
6 0.89 0.49
7 0.49 0.89
7 0.71 0.71
7 0.89 0.49
8 0.49 0.89
8 0.71 0.71
8 0.89 0.49

Table 3: Wave height details of each case.

Each period that is has seven trials first onaurg gnoidal second through fourth
pure random and fifth through seventh combineddadcand random waves. The input
data that is the time series of input wave is meabat the self-calibrating wave gauge

and in models we consider that as the zero X coatei Total sampling time for the all

18



the second through seventh trials was same thabisid 1200 seconds that is 20 min and
all the first trials were same and around 620 sésdhat is about 10 min. Time step for
the sampling was fiftieth of a second, so the nurmdfesamples are as per the time of

sampling.

3.3 Models and Setup

Matlab® is being used in the modeling and simutatiBome internal functions
are used in the models like fast Fourier transfoiondfft), inverse Fourier transformation
(ifft) and Hilbert transformation (hilbert). UseduRge-Kutta formulation to model state
at next step as an explicit function of the cursaitie of the state and its derivatives. The
step implies the millimeter resolution.

In the models the minimum water depth h is settoie centimeter. Time step is
set to be equal to the time step in experimentdirection step is set to be one millimeter
for better accuracy. Water density is set to beb1@fZcu.m. ‘b’ is set to be 1.2 and gamma
is set to be 0.6 which are parameters in the Tharahd Guza dissipation theory which
defines ratio of front face covered in white waterormally 0.8 < b < 1.7 ) and defines
the ratio of Hrms and h in the saturated surfa@d & gamma < 0.8 ) respectively.

Each first trial data is divided into 15 individuaklizations of 2048 data points to
have a wave with time-period around 40.96 sec. I8rtyj second through seventh trials
were divided into 29 individual realizations of Bdata points which gives a wave with

time-period 40.96 sec. An example plot of outpatrfrwave gauges 4 to 6 is given below.
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Figure 7: Wave gauge output example.

Initial data till 720 data points were ignored besathe wavemaker takes some time to
give the required wave. And likewise, data at the ef the output is also vomited to have
better accuracy. Fast Fourier transform (fft) fumctin Matlab is used to calculate the
complex amplitudes of the wave and the respectnas@. As we get the out put of fft in
both positive and negative side of the frequenaydbave double the amplitudes and use
only one side of the spectrum and that's on thatigesside. Each doubled complex
amplitude is associated with frequency (Hz) steybthe quantity of the step is calculated
from the time step used in the experiments.

Wave number is always calculated using the lirdegpersion relation that is
equation (2.16). So, Newton-Raphson method is tsé@rate the wave number value
with input of wave number (which change for evegua&tion) and water depth at that x
direction step. With these as the input the modedsun to have the complex amplitudes
at every gauge location for comparison and saveath iMese amplitudes spectral density
is calculated and associated with respective frecueWe are only interested in the
spectrum till the frequency is thrice the peak freacy because the rest of the data is

normally of little to no interest to us.
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The evolutionary characteristics of the waves perametrized using the
Asymptotic behavior studies. Skewness and Asymmaateycalculated using the water
surface elevation at required distance from theemanaker using inverse fast fourier
transform (ifft) function in the Matalb.

(n*)

Skewness = 2R 3.1

(Hm)®
Asymmetry = (nzr)ls /2 3.3

where H denotes the Hilbert transform and Hilbexrh$form function in Matlab is used
for this purpose in the models and ‘< >’ bracketsemble ensemble average. Skewness
and Asymmetry are statistical third moments thatesent wave shape at that location

and its evolution.
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4. MODEL RESULTS AND COMPARISON

4.1 Spectrum comparison

At each wave gauge location, the complex ampldgusi@lved are saved in the
workspace of the Matlab. Spectral energy has bakulated for all the realizations and
averaged for a single output spectrum per wave ggaudpoth models and also for the
experimental data. Plots for spectrum are alwagkeddn log scale for Y axis that is the
spectral energy and X axis in this study represetis of frequency and calculated peak
frequency. Reason for the above approach is to a&dedter look of Infra, Swell, and Sea
regions in the spectrum. Very less plots can bkidwed in this section but most of the

plots are included in the appendix section of Hesis.
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Figure 8: Gauge one, comparison of M1, M2 and Eofgpure cnoidal wave case.
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Figure 9: Gauge four, comparison of M1, M2 and Ewppure cnoidal wave case.
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Figure 10: Gauge eight, comparison of M1, M2 angtEaf pure cnoidal wave case.
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Selection of the three gauges 1, 4, and 8 was riamobecause they are on
different slopes in both the models and experinteaitare 0, 1/12, and 1/24 respectively.
As we can observe from the plots the peak of tleetspm is close to 0.97fp in all of the
plots in all cases. And model one, that is Mase ldimdy equation based is in better
proximity of the experimental data than that of thedel two that is fully dispersive
nonlinear model. We will discuss the inferenceratie pure random and combination of
random and cnoidal cases are observed. The ts@scare from the waves with time
period 8 sec. We can also see the gradual sepaddtaccuracy in the models from gauge

one to gauge eight.
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Figure 11: Gauge one, comparison of M1, M2 and Eofgust random wave case.
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Figure 12: Gauge four, comparison of M1, M2 andtEmpjust random wave case.
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Figure 13: Gauge eight, comparison of M1, M2 angtEaf just random wave case.
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And model two that is fully dispersive nonlinear aet is in better proximity of the
experimental data than that of the model one,ithistase and Kirby equation based. We

will discuss the inference after the combinatiomaofdom and cnoidal cases are observed.
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Figure 14: Gauge one, comparison of M1, M2 and Eofpandom and cnoidal wave case.
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Figure 16: Gauge 8, comparison of M1,M2 and Exptandom and cnoidal wave case.
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And model two, that is fully dispersive nonlineapael is in better proximity of the
experimental data than that of the model one ishidiase and Kirby equation based. Same

wave trial cases are examined for the time petGosksc and 7 sec and the observed results

are as following.

6 Sec Time period
Trial 1 Trial 2 Trial 5
i T+ i « HiL a
37 S 2
& | 93 X
H 14 “ [ ‘%
5 -« } 7 il 1¢
P L
) I : , <
// Dy
j /
oy TS
11 Y [E8E .
(i S : [ S

Table 4: 6 sec time period wave spectrum Trialsab@5 and their gauges 4 and 8

28



7 Sec Time period

Trial 1 Trial 2 Trial 5

Gauge!
auge?
104 L L " L
) 1 2 3 4 s [ 7
oo
Gauges
v — e
1 2 3 B s I 7

w3) A6:ua (piads : ) (095°,w0) ABlous [e400dS

Table 5: 7 sec time period wave spectrum Trialsab@5 and their gauges 4 and 8
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4.2 Third moments and Hrms.

From all the above plots we can observe that théetnane does better in the pure
cnoidal wave trials and model two does better ajtlst random and combined cnoidal
and random trials. Ursell number of the cnoidal @sis very high and so prediction of

these waves is good with shallow water approximatgdations-based models.

Skewness vs h(m)

1.5

0.5

2.5

-0.5

—0—T1M2 —@—T2M2 T5M2 TiIM1 —e—T2M1

——T5M1 —@—T1EX —@—T2EX —@—T5EX

Figure 17: Skewness Vs h(m) plot for Trials 1,2] &for both models and experiment.

Skewness trend with respect to water depth fof rim M1 and M2 along with

trial 5 in M1 and M2 seems to be out of trend widst of the trials and mainly

experimental data.
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Asymmetry Vs h(m)

2.5

—0—T1M2 T2M2 T5M2 TiIM1 —@—T2M1
—0—T5M1 —@—T1EX —@—T2EX —@—T5EX

Figure 18: Asymmetry vs h(m) plot Trials 1,2, antb6both models and experiment.

As expected asymmetry values are negative in alalla$te gauges location. Trial

1, 2 and 5 of experimental data seems to follovifarént trend than that of the rest trials.

Area under the spectral energy vs frequency plstgalculated and plotted
comparing M1, M2, and Experimental data with edatteoin three regions of the spectra
namely Infra gravity wave region, Swell wave regiand Sea wave region. We divided
the regions based on the peak frequency of thetrspecFirst Infra gravity region is
selected as the frequency region from first fregyestep to half of peak frequency.
Second the swell wave region of spectra is selestading from half of the peak
frequency to three times half of peak frequencythedest is considered in the sea wave

region till three times the peak frequency.
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Area under spectra Infra region Model2 vs Model1
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Figure 19: Area under spectra for trials 1,2, & Inifra gravity wave region and reference
X=Y.
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Area under spectra Infra region Model2 vs Model1
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Figure 19: Continued.
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Figure 20: Hrms Vs h plots of three trials from sesecond wave period case.
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5. INFERENCE AND SUMMARY

As mentioned earlier the study is to compare tvffernt models to the
experimental data from the OSU lab and to finddbredition under which the models do
a better prediction of wave transformation whilengotowards shore. The models are
based on equations 2.22 and 2.24. Both modelsdsame degree of nonlinearity, and the
dispersion relation is completely linear in modekeand approximated to second order
nonlinearity in model two. The dissipation terme same in both of the models and work
the same irrespective of the dissipation properties

In this section we discuss the inference of tha dad comparison plots shown in
the section 4. We observed that the fully dispersienlinear model that is model one is
doing good in predicting the wave data that is fjuceoidal and the weakly dispersive
nonlinear model that is model two with same dissgpeterms as model one is doing better
in predicting the just random and combined randathanoidal wave case. If we take the
natural occurrence in to consideration either waregandom or in rare cases the cnoidal
waves combine with random and occur in the timésohamis. So, we can say that the
weakly dispersive model that is fully nonlineardsing a better job in predicting the
natural case.

Going into details of the spectrum produced byrtoelels in trial one that is pure
cnoidal wave case the spectrum at peak frequentghnpeerfectly. The area under the
graph for the infra gravity wave region matches adtnperfectly. Crossing the peak

frequency, the spectrum produced from model ougnds to move out of sync with the
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data from experiments. The starting from the thikmble spectrum tend to over predict the
energy and local peaks tend to move further tharstipposed frequencies. Intermediate
frequencies are between the multiples of peak #equ acquired energy cause of the
nonlinearity nature in the models and are seernlgleathe spectrum plots which is not
observed in the experimental data.

Area under the spectrum calculated frequency regise shows a better picture
of the prediction. In Infra gravity wave region thieea under the models and data are close
and follow a trend to be in and around the x =gliln the Swell wave region same trend
is followed though the plots don’t meet in perfeghc the area under the plots seems to
be close. The sea wave region of the spectrum stifesent trend and the model one is
always seen to be under predicting than that ofritbdel two. In the case of pure cnoidal
wave the model one is close to the data.

The cases of just random wave and combined raradwhtnoidal wave seems to
follow a similar trend and model two is doing atbejob in predicting the cases close to
the data. In the infra gravity wave region areaaunpdots of models seem to be lower than
that of the data. In the Swell wave region, thepéoe perfectly matching the data. In the
sea wave region of the plots the models seem teryrédict the energy and can be seen
clearly in the just random wave case gauge 8 cosgaplot. And we can clearly see the
model two doing better prediction from the combieade higher frequencies.

The model that is nonlinear with weak dispersiwsnauilt into it is doing a better
job than that of model one in predicting the transfation of the waves which have the

randomness to its nature.
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Reasons for the nonlinear dispersion relationdll better in the random and
combined wave cases may be because the incompbeleearity in the equations
complementing the incomplete dispersion relationthe pure cnoidal wave case the
bounded wave nature is closely and not completdlpwfed by the data which can be
observed in the spectrum peaks. So, the modelstmdgtbe considering the pure bound
case and so the higher and intermediate frequeacgegxchanging the energy among
themselves.

Model one is clearly the winner in the case ofepemoidal wave case. So, we can
infer from this study that predicting wave transfiation is not always done right by any
single model. We can also see that the strong digperelation tends to make the model

under predict the energy in the higher frequenayezo
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