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ABSTRACT 

 

Sting-mounted models that undergo significant unsteady motion suffer from 

degraded data quality because the data is time-averaged to remove the unsteady 

fluctuations. However, time-averaged data is not always an accurate representation of 

the true data. Eliminating such errors is addressed in this study by developing and 

evaluating the performance of a Kalman filter for estimating instantaneous load and 

model attitude data for a sting-mounted wind tunnel model. The particular model is 

6.25% scale WB-57 that is tested in the Oran W. Nicks Low Speed Wind Tunnel at 

Texas A&M University. The pitch and plunge motion of the model are measured using 

accelerometers and the loads and moments are measured using an internal balance.  

This work shows that a simplified state-space model consisting of 3 state 

variables and one measurement can successfully estimate plunge position and normal 

force of a sting-mounted test article by minimizing the difference between actual and 

predicted measurements in the Kalman filter. The aerodynamic normal force results 

compared well with conventional time-averaged wind tunnel data used as a metric to 

measure the successfulness of the state estimation technique. 

A more extensive state space model with 6 state variables and 4 measurements 

has the potential to estimate the pitch position and pitching moment in conjunction with 

the plunge position and loads. Doing so would require a different technique to quantify 

and tune the process noise covariance matrix.  
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NOMENCLATURE 

 

a Lift Curve Slope 

AR Aspect Ratio 

b Wingspan 

BMC Balance Moment Center 

Iyy mrg
2, Pitch Moment of Inertia 

g Gravitational Acceleration 

k Reduced Frequency 

m Mass of Model 

Maero,BMC Aerodynamic Pitching Moment about the Balance Moment Center 

Maero,AC Aerodynamic Pitching Moment about the Aerodynamic Center 

MIB Internal Balance Pitching Moment 

Naero Normal Force due to and Measured by Internal Balance 

NIB Normal Force due to Aerodynamic Forces 

q Dynamic Pressure 

rg Pitch Axis Radius of Gyration about the Balance Moment Center 

S Wing Area 

U∞ Freestream Velocity 

W Weight of Model 

xAC Distance of Aerodynamic Center of Model with Respect to the 

Balance Moment Center 
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XCG Distance of Center of Gravity of Model with Respect to the 

Balance Moment Center 

z’ Deflection in the z-direction from the Commanded Position, also 

referred to as the plunge position 

α Angle of Attack 

ω Frequency of Oscillations 

ωn Natural Frequency 

θ θ0+ θ’, True Pitch Angle of Model 

θ0 Constant Commanded Angle of Attack 

θ’ Rotation of the Commanded Angle of Attack due to Unsteadiness 

of Model 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

The objective of this study is to develop and implement a Kalman filter to 

estimate the instantaneous position and loads of a wind tunnel model attached to the test 

section via a flexible sting. A Kalman filter is a mathematical model that estimates the 

state of a dynamical system by comparing instantaneous measurements and expected 

states. Using the difference between the actual measurements and expected states, the 

state estimates are updated [1].  

While wind tunnel testing can quickly produce accurate data when models are 

steady, unsteady model motion can degrade data quality and impede test performance. In 

current practice at the Texas A&M University Low Speed Wind Tunnel (LSWT) as well 

as other facilities, time averages are taken of the unsteady data to eliminate the unsteady 

fluctuations. Data is only recorded if load fluctuations fall below a specified threshold. 

Then, a correction for mean sting bending is applied during data reduction. The angle of 

attack varies across the sample because the model is not at a true static condition. The 

current process is time consuming and does not address the dynamics of the model. 

This thesis applies a Kalman filter to the unsteady data produced by a dynamic 

model mounted in the wind tunnel to effectively capture the instantaneous loads and 

attitude. This enables a sting mounted model to be tested more efficiently and for higher 

quality data to be recorded.  
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The Kalman filter combines the internal balance data and accelerometer data to 

provide a closer approximation to the true state of the test article than if the filter used 

only one sensor. Accelerometers are used to measure the linear acceleration. Using two 

accelerometers each mounted at separate locations both linear (plunge) and pitch 

acceleration can be measured. The end of the sting has an internal force balance that 

measures loads and moments about its balance moment center. The filter also 

incorporates a linearized governing equation model. The Kalman filter focuses on 

prediction and correction where prediction is accomplished using the model and the 

correction is accomplished using the measurements. This study will focus on the pitch 

and plunge deflections of the model and the associated normal force and pitch moment 

measured by the internal balance. 

Conventionally, data is recorded during wind tunnel testing when the tunnel and 

model configuration is “on condition.” In most test cases, angle of attack of the model is 

an important parameter that must be controlled with high accuracy when collecting data. 

However, an error in angle of attack of the test article is introduced by induced 

aerodynamic forces transmitting dynamics on a sting-mounted model [2]. These inertial 

effects produce a bias in the axial force [3]. The phenomenon is designated as “sting 

whip” by Steinle and Peters [3]. When the model and tunnel are not on condition or the 

article is too dynamic, the test point cannot be completed until the desired condition is 

met. This precludes the completion of test objectives. The importance of the current 

research is to be able to filter out the sting whip effect such that the data collected is 
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representative of the true state of the model, since at this time, there is no process in 

routine wind tunnel testing that compensates for this effect.  

Multiple studies have been completed surrounding inefficiencies in wind tunnel 

testing and ways to overcome these fallbacks. Steinle and Peters focused on developing 

an integrated method of deriving both inertial and dynamic derivative effects from data 

using elastic properties of the sting/balance support system to calculate the true 

dynamics. Assumptions made during the test were that the sting and model forward of 

the internal balance were treated as a single mass, the model forward of the end of the 

sting was rigid, and the cantilever response of the sting bending was in phase with the 

applied normal force and moment due to the internal balance. The results of the wind 

tunnel testing concluded that “random motion a sting-model support system can induce a 

thrusting bias error to axial force, and hence drag, measurement.” It was also concluded 

that there was a lack of sufficient data to expand the analysis for higher dynamic motion. 

Steinle and Peters analyzed one data point at Mach 0.9 and state that a missing 

component is changing the Mach number and dynamic pressure to investigate changes in 

results. Fortunately, the work presented in this thesis shows the result of the trends of 

varying dynamic pressure. [3] 

Crawford and Finley conducted a wind tunnel test in the Langley 16-Foot 

Transonic Tunnel to try to correct the sting whip effect. The purpose of the test was to 

validate the accuracy of a sting whip correcting angle of attack measurement system 

when exposed to a large sting whip error. The angle of attack ranged from -4 degrees to 

10 degrees in 2 degree increments and the Mach numbers tested were from 0 to 0.9. As a 
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result of the sting whip correcting system, 85% to 90% of the error was removed and all 

but the extreme cases were brought within the targeted 0.01 degree angle of attack 

accuracy. [2] 

Another transonic wind tunnel test conducted by Weiss measured model 

vibrations and inertial bias. Accelerations and balance readings were taken during a pitch 

polar at Mach 0.7 to 0.9 of a Bombardier high-speed model in the North American 

Trisonic Tunnel. A tri-axial accelerometer was mounted close to the model’s center of 

gravity to measure the normal, side, and axial acceleration. A six-component internal 

balance was mounted on a straight sting. A qualitative analysis of the sting whip effect 

was completed by determining the magnitude-squared coherence function of the axial 

acceleration as well as the squared tangential velocity in pitch and yaw. An important 

conclusion from this work is that there is a link between model dynamics and inertial 

bias that cannot be ignored. Particularly, model dynamics can give rise to rigid body 

oscillations with respect to the support system. These model dynamics are distinguished 

by different vibration modes in normal, side, and axial directions. [4] 

The specific research objectives of this thesis are to construct a state space model 

to represent the motion of a sting-mounted wind tunnel model, collect data from onboard 

accelerometers and internal balance for a variety of angles of attack and dynamic 

pressures that will provide good model dynamics, and apply and tune a Kalman filter to 

project the filtered wind tunnel measurements onto the state estimates. The ultimate goal 

is to demonstrate successful use of the Kalman filter technique in test article state 

estimation so that future wind tunnel test events can follow this approach and improve 
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efficiency and data accuracy. Future tests will only need to change parameter values and 

perform the system identification tests to construct the stiffness matrix in order to use the 

filtering technique. 
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CHAPTER II 

KALMAN FILTER APPLICATION 

 

In order to accomplish load and attitude estimation, a comprehensive 

understanding of the Kalman filter and its application is required. This chapter will 

define the Kalman filter, establish important equations, and explain how the filter will be 

implemented in this research. A Kalman filter combines measurement feedback with 

linear model dynamics to achieve a better state estimate than either approach alone. 

Doing so removes noise from the data and projects the measurements onto the state 

estimate. Measurement feedback enables effective use of instantaneous load and attitude 

data rather than time-averaged data. A Kalman filter is an optimal recursive estimator 

meaning the current state depends on the previous state [1]. The approach uses the 

system dynamics, measurements, system noises, measurement errors, uncertainties, and 

state initial conditions to estimate the current value of the state variables with a 

minimized error. The state of the system is the instantaneous position, velocity, forces 

and/or moments that the filter is attempting to estimate. The Kalman filter minimizes the 

mean square error of the estimated state relative to the true state if all noise is Gaussian. 

[5] 

The main steps of the filter are state prediction, gain calculation, and state 

estimate correction. The state of the system is what the filter is attempting to estimate 

such as position or forces. The inputs are the measurement vector, y, and the control 

input vector, u. For this work, accelerometer signals and internal balance readings are 
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the measurement inputs to the filter, y. The control input is the commanded angle of 

attack, u = cos θ0. The output of the filter is the state vector estimate, x which includes 

aerodynamic loads, pitch and plunge values, and pitch and plunge rates. The state vector 

has two values at the same time: an a priori estimate which is the predicted value before 

the correction using the Kalman gain and an a posteriori estimate which is the value 

after the corrections.  

The Kalman filter approach outlined below is from Crassidis and Junkins [1]. 

This study uses the continuous-time Kalman filter since the time between samples is 

sufficiently small for time to be continuous. [1] 

𝒙̇ = 𝐴𝒙 + 𝐵𝒖 + 𝐺𝒘 

𝒚̂ = 𝐶𝒙 + 𝐷𝒖 + 𝒗 

In the above equations, bold formatting signifies a vector. A is the linear state 

transition model, i.e. linearized homogeneous equations of motion, and B is the control 

input model. No “control” is used in this work. Instead, Bu contains the inhomogeneous 

gravity load. C and D linearly transform the state vector and the control input vector, 

respectively, into the expected measurements, ŷ. P is the covariance of the state vector 

estimate. Covariance is the measure of how adjustments to one state are correlated with 

changes in another variable. R is the estimated measurement error covariance which has 

the standard deviation of the sensor noise, v, squared as the diagonal. Q is the covariance 

of the process noise, w. G is the gain matrix that controls how the system noise affects 

the system state and the vector w is the system noise vector. The vector v is the 

measurement noise vector. The system noise vector and measurement noise vector are 
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not known but are characterized by Q and R respectively. ỹ is the vector of 

measurements and ŷ is the predicted measurement value associated with states estimated 

by the model.  

The covariance, P, is calculated by solving the continuous Riccati equation 

shown in Table 1. Since A, C, R, and Q are constant, Ṗ is zero. Steady state values are 

used for P and K. The steady state P value is calculated by setting the left-hand side of 

the Riccati equation equal to 0. In Matlab, this is accomplished using the continuous-

time algebraic Riccati equation solution function with inputs A, C, Q, and R. The steady 

state value for K is calculated using the Gain equation from Table 1. Main Kalman filter 

equations are shown in Table 1. 

Table 1. Kalman Filter Equations 

Model 

𝒙̇ = 𝐴𝒙(𝑡) + 𝐵𝒖 + 𝐺𝒘 

𝒚̂ = 𝐶𝒙 + 𝐷𝒖 + 𝒗 

Gain 𝐾 = 𝑃𝐶𝑇𝑅−1 

Covariance 𝑃̇ = 𝐴𝑃 + 𝑃𝐴𝑇 − 𝑃𝐶𝑇𝑅−1𝐶𝑃 + 𝐺𝑄𝐺𝑇 = 0 

Estimate 𝒙̇̂ = 𝐴𝒙̂ + 𝐵𝒖 + 𝐾[𝒚̃(𝑡) − 𝒚̂(𝑡)] 

 

The term “Gw” from the model equation and the term “v” from the ŷ equation is 

not included in the implementation of the Kalman filter. These values are not included 

because the vectors, w and v, fluctuate about zero and have the effect of increasing 

uncertainty, as already quantified in the P vector. In Table 1, x and y change based on 

time step and the rest of the terms are constant with each time step. 
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Using the equations of motion, A and B alone, it is possible to predict future 

system states. Of course, as time proceeds, these predictions become less accurate. To 

account for this, sensor measurements, ỹ, are compared to measurements that result from 

the predicted states, ŷ. When the difference, the ‘residual,’ is non-zero, a correction can 

be applied to improve the estimated state accuracy. To apply the Kalman filter, first the 

steady-state values of the covariance of the state vector estimate, P, and the Kalman 

gain, K, are calculated. For the first state vector prediction, a vector of zeros is assumed 

as the initial condition for the estimation equation. Then, the estimation equation in 

Table 1 is integrated to get the corrected state vector estimate. In the correction step, the 

term K[𝑦̃-𝑦̂] accounts for inaccuracies in the state transition model and the random noise 

by the Kalman gain weighting the residual between the measurement and prediction. The 

goal is to minimize this residual. For each time step, the estimation equation is integrated 

using the corrected state vector estimate from the previous time step as the initial 

condition. 

To help with Kalman filter performance, the Kalman gain can be tuned. A low 

gain weighs the model predictions more so that the filter follows the model more closely 

than sensor data. A high gain weighs the most recent measurement more. To adjust the 

Kalman gain, the process noise covariance can be adjusted since it is initially estimated. 

The measurement noise covariance is not adjusted since the measurement error can be 

estimated using knowledge of the sensors and instruments. Using these tuning 

properties, the filter can converge quicker and be more representative of the true state of 

the test article. 
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One problem with the experiment is the lack of knowledge of the process noise. 

The process noise encompasses the random forces acting on the physical system such as 

turbulence or varying flow conditions in the wind tunnel. Since the process noise cannot 

be effectively measured in this test case, it is estimated and tuned during data processing 

with the Kalman filter. A solution to this problem later would be to use the 

Autocovariance Least-Squares (ALS) Technique which estimates noise covariances 

from data [6]. This technique could be attempted in future work, but is not implemented 

here. 
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CHAPTER III 

METHODS AND EXPERIMENTS 

 

With the requirements and equations of the Kalman filter have been defined, the 

present experiment can be introduced. The state space model based on this experiment’s 

test article and the wind tunnel measurements are fundamental inputs to the Kalman 

filter. The experimental rig design and sensor information are explained in the following 

sections. 

 

3.1 Experimental Setup 

A 1:16 scale modified WB-57 was tested at the LSWT located at Texas A&M 

University. The LSWT has a 7-ft-tall by 10-ft-wide by 12-ft-long test section. The model 

was built for a previous test with NASA. The model has a wingspan of 88.1 inches, an 

aspect ratio of 7.5, and wing area of 1039 in2. The model’s span efficiency factor, e, is 

assumed to be 0.85. This test article was chosen due to the dynamic motion observed 

during a previous experiment. An internal balance was mounted onto the LSWT High 

Attitude Robotic Sting (HARS) system. The HARS system controls the pitch and roll of 

the model while keeping the model centered in the test section. The sting and balance 

system was then internally secured to the model using a balance block. Figure 1 shows 

the sting and balance system installed in the wind tunnel test section.  
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Figure 1. Sting and Balance Installation in the Wind Tunnel Test Section. 

 

The internal balance measures the aerodynamic forces and moments. Internal 

balance limits are discussed in the next section. Single-axis accelerometers were 

mounted on the inside and outside of the model. Two accelerometers were mounted 

along the centerline inside the model, one accelerometer was mounted externally on the 

port wing, and the last was mounted on the starboard wing. The offset of the two 

centerline accelerometers allowed for the pitch or plunge angle to be calculated. In the 

Accelerometers section, the specifications and locations of the accelerometers are 

tabulated and labeled. The complete experimental set up with the model mounted onto 

the sting is shown in Figure 2. Flow is from the left to right. 
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Figure 2. WB-57 Modified Model Installed in the LSWT Test Section. 

 

The internal balance used in the experiment is the Task Corporation Mark XIII. 

The Mark XIII is a strain gauge internal balance that measures two normal force loads, 

two side force loads, an axial force load, and a rolling moment. Pitch and yaw moments 

are calculated from the respective forces and known distances between the gauges. The 

limits of the balance are displayed in Table 2. Figure 3 shows a close-up view of the 

Mark XIII internal balance that is mounted inside of the test article. The diameter of the 

internal balance is 1.25 inch. 
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Table 2. Mark XIII Internal Balance Limits 

Mark XIII Internal Balance Limits 

N1, N2 500 lbf, ±0.4 lbf 

S1, S2 500 lbf, ±0.5 lbf 

Axial Force 150 lbf, ±0.1 lbf 

Rolling Moment 800 in.lbf, ±1.7 in.lbf 

Pitching Moment 2625 in.lbf 

Yawing Moment 2125 in.lbf 

 

 

Figure 3. Close-up View of the Mark XIII Internal Balance. 
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All accelerometers were purchased from PCB Piezotronics. Specific information 

about each accelerometer is shown in Table 3 and the physical location of each 

accelerometer is shown in Figure 4. 

 

Table 3. Accelerometer Specifications and Physical Location of Sensor Mounting. 

 Location of 

Accelerometer 

Model 

Number 

Serial 

Number 

Sensitivity 

(mV/g) 

Bias 

Level (V) 

1 
Center Front 352C68 122350 

98.8 (10.07 

mV/m/s2) 
11.3 

2 
Center Rear 352C68 124921 

98.2 (10.02 

mV/m/s2) 
11.1 

3 
Port Wing 333B40 40733 

498 mV/g 

(50.7 mV/m/s2) 
10.9 

4 
Starboard Wing 333B40 47712 

490 mV/g 

(49.9 mV/m/s2) 
11.1 

 

 

Figure 4. Visual Location of Accelerometers on WB-57 Planform. [7] 

 

1 

2 

4 3 141/16” 

distance 
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3.2 Experiments 

Table 4 is the test matrix for the wind tunnel testing. Data was collected on 5 

April 2017 at the LSWT. Each data point includes 20,000 samples collected at 1 kHz. 

Prior to wind-on testing, rap tests (that is, striking the test article with a mallet) were 

completed to determine the weight and natural frequencies of the model and aid in 

constructing the A and C matrices for the Kalman filter. For this test, the roll angle is 0° 

and the angle of attack is commanded to a value determined by the test point 

configuration. 

 The first set of data points are the conventional sting deflections where weight is 

added to the model with wind-off and the commanded pitch angle set to 0. Rap tests are 

then completed with wind-off. During the rap tests, a mallet strikes the test article to get 

the ring-down characteristics for system identification. The location of the mallet strike 

depends on which system response is being identified. For pitch, the mallet strikes three 

locations on the model: the nose, center of the model, and the tail. The last wind-off test 

is the conventional static tare pitch sweep from -10° to 20°. These data points are used in 

the traditional data reduction where the static tare is removed from the internal balance 

sensors to get the aerodynamic loads. However, the static tare data is not removed from 

the single α runs to get the aerodynamic loads. Instead, the aerodynamic load is a state 

for estimation and the internal balance reading is a traditional measurement. Single α 

runs are completed at each commanded pitch angle and dynamic pressure with internal 

balance and accelerometer data collected. The pitch angle range is from -10° to 20° with 

2° intervals. The dynamic pressures tested are 7.5 psf, 15 psf, and 22.5 psf. 
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Table 4. Test Matrix 

Run Number Configuration Test Name Commanded 

Pitch Angle 

13 Wind-off Conventional Sting 

Deflection 

0 

13 Wind-off Pitch Rap Tests (Nose, 

Center, Tail) 

0 

13 
Wind-off Roll Rap Tests (Port Wing 

Tip, Center, Starboard Wing 

Tip) 

0 

13 

Wind-off Yaw Rap Tests (Port Side of 

Nose, Trailing Edge of Port 

Wing, Starboard Side of 

Tail) 

0 

14 Wind-off Static Tare -10° to 20° by 2° 

15 Wind-on 

q=7.5 psf 

Single α Runs -10° to 20° by 2° 

16 Wind-on 

q=15 psf 

Single α Runs -10° to 20° by 2° 

17 Wind-on 

q=22.5 psf 

Single α Runs -10° to 20° by 2° 
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CHAPTER IV 

GOVERNING EQUATIONS AND STATE-SPACE MODEL 

 

In order to use a Kalman filter, a linearized state space model is required. The 

derivation of the governing equations is discussed below. The complete state space 

model is summarized at the end of this chapter. Important quantities used in the derived 

equations and in the free body diagrams of Figure 5 and Figure 6 are defined above in 

the Nomenclature section. 

Figure 5 and Figure 6 show annotated free body diagrams of the model and 

sting/internal balance systems respectively. Equations are derived in the conventional 

aircraft body-fixed frame. The +x direction is pointed out the aircraft’s nose. The +z 

direction is pointed downward and the +y direction is pointed out the starboard wing. 

Positive theta is rotation about the +y axis. 
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Figure 5. Free Body Diagram of Model Shown Installed in the LSWT Test 

Section. 

 

 

Figure 6. Free Body Diagram of the Sting/Internal Balance. 

 

The derivation of the equations of motion begin with summing all forces and 

moments acting on the test article in the body-fixed frame. The forces acting on the test 

article in the z-direction are the normal force due to aerodynamic forces, the normal 
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force applied to the model by the sting through the internal balance, and the weight. The 

moments acting on the test article are the aerodynamic pitching moment about the 

balance moment center (BMC), the pitching moment applied through the internal 

balance, and the moment due to the weight acting at the center of the gravity. 

Conservation of z-momentum 

𝑁𝐼𝐵 − 𝑁𝑎𝑒𝑟𝑜 + 𝑊 cos(𝜃0 + 𝜃′) =
𝑊

𝑔
𝑧̈′ 

𝑧̈′ =
𝑔

𝑊
𝑁𝐼𝐵 −

𝑔

𝑊
𝑁𝑎𝑒𝑟𝑜 + 𝑔 cos(𝜃0 + 𝜃′) 

Conservation of y-angular momentum 

𝑟𝑔,𝑦𝑦
2 =

𝐼𝑦𝑦

𝑚
 

−𝑀𝐼𝐵 + 𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶 − 𝑊 cos(𝜃0 + 𝜃′) 𝑥𝐶𝐺 =
𝑊

𝑔
𝑟𝑔

2𝜃′̈  

𝜃′̈ = −
𝑔

𝑊𝑟𝑔
2

𝑀𝐼𝐵 +
𝑔

𝑊𝑟𝑔
2

𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶 −
𝑔

𝑟𝑔
2

cos(𝜃0 + 𝜃′) 𝑥𝐶𝐺  

For this study, θ’ is considered a small angle and a small angle approximation is 

used. Therefore, cos(θ’)≈1 and sin(θ’)≈θ’. Also, (θ’)2≈0. Using this approximation, the 

above equations for 𝑧̈′ and are 𝜃′̈  simplified to: 

𝑧̈′ =
𝑔

𝑊
𝑁𝐼𝐵 −

𝑔

𝑊
𝑁𝑎𝑒𝑟𝑜 + 𝑔 cos 𝜃0 − 𝑔𝜃′ sin 𝜃0                            (1) 

𝜃′̈ = −
𝑔

𝑊𝑟𝑔
2

𝑀𝐼𝐵 +
𝑔

𝑊𝑟𝑔
2

𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶 −
𝑔𝑥𝐶𝐺

𝑟𝑔
2

cos 𝜃0 +
𝑔𝑥𝐶𝐺

𝑟𝑔
2

𝜃′ sin 𝜃0          (2) 

The internal balance attached to the sting acts as a cantilevered beam with a force 

or moment applied at the end. Using beam deflection equations for a load and moment 
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applied separately at the end of the beam, equations for the normal force due to the 

internal balance and the internal balance pitching moment can be derived.  

 

Load Applied at End of Beam 

𝑧′ = −
𝑁𝐼𝐵𝐿3

3𝐸𝐼
 

𝜃′ =
𝑁𝐼𝐵𝐿2

2𝐸𝐼
 

Moment Applied at End of Beam 

𝑧′ = −
𝑀𝐼𝐵𝐿2

2𝐸𝐼
 

𝜃′ =
𝑀𝐼𝐵𝐿

𝐸𝐼
 

Rearranging to Calculate Stiffness Matrix 

[
𝑧′

𝜃′] = [
− 𝐿3

3𝐸𝐼⁄ − 𝐿2

2𝐸𝐼⁄

𝐿2

2𝐸𝐼⁄ 𝐿
𝐸𝐼⁄

] [
𝑁𝐼𝐵

𝑀𝐼𝐵
] 

[
𝑁𝐼𝐵

𝑀𝐼𝐵
] = [

− 12𝐸𝐼
𝐿3⁄ − 6𝐸𝐼

𝐿2⁄

6𝐸𝐼
𝐿2⁄ 4𝐸𝐼

𝐿⁄
] [

𝑧′

𝜃′] 

[
𝑁𝐼𝐵

𝑀𝐼𝐵
] = [

𝑘𝑁𝑍 𝑘𝑁𝜃

𝑘𝑀𝑍 𝑘𝑀𝜃
] [

𝑧′

𝜃′] 

Stiffness Matrix, k 

𝑁𝐼𝐵 = 𝑘𝑁𝑍𝑧′ + 𝑘𝑁𝜃𝜃′                                                       (3) 

𝑀𝐼𝐵 = 𝑘𝑀𝑍𝑧′ + 𝑘𝑀𝜃𝜃′                                                      (4) 
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In reality, the stiffness matrix comes from data collected during the wind tunnel 

test from the wind-off system identification tests. The system identification tests 

determine the weight and natural frequencies of the model and in turn the stiffness 

matrix from k=wn
2m. The stiffness matrix given above is estimated using estimated 

values for L, E, and I. L is the sting length, E is the elastic modulus, and I is the area 

moment of inertia of the sting. The true stiffness values come from the system 

identification tests and are used in the Kalman filter state-space equations. 

Substituting the Equations (3) and (4) for beam bending into Equations (1) and 

(2) gives Equations (5) and (6) respectively. Equations 5 and 6 are the main motion 

equations that are used in the state space model. 

𝑧̈′ = (
𝑘𝑁𝑍𝑔

𝑊⁄ ) 𝑧′ + (
𝑘𝑁𝜃𝑔

𝑊⁄ ) 𝜃′ −
𝑔

𝑊
𝑁𝑎𝑒𝑟𝑜 + 𝑔 cos 𝜃0 − 𝑔𝜃′ sin 𝜃0        (5) 

𝜃′̈ = − (
𝑘𝑀𝑍𝑔

𝑊𝑟𝑔
2⁄ ) 𝑧′ − (

𝑘𝑀𝜃𝑔
𝑊𝑟𝑔

2⁄ ) 𝜃′ +
𝑔

𝑊𝑟𝑔
2

𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶 −
𝑔𝑥𝐶𝐺

𝑟𝑔
2

cos 𝜃0

+
𝑔𝑥𝐶𝐺

𝑟𝑔
2

𝜃′ sin 𝜃0                                                                                                  (6) 

Even though the model is dynamic, steady aerodynamics are assumed to simplify 

the above equations. The linear region of the lift curve is assumed and the lift curve 

slope is approximated as a≈2π. Furthermore, it is assumed that α0 and θ’ are small. In an 

actual wind tunnel test, the lift is not zero at 0° angle of attack (α0 ≠ 0°) because of 

blockage corrections and the lift curve slope is not equal to 2π due to the finite wing. 

However, the state transition model does not need to be exact, only reasonably good so 

that the Kalman filter can converge quickly to estimate the states. Therefore, these 

approximations are expected to be sufficient. A drag approximation is included in the 
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normal force. Since the order of magnitude of drag is less than the order of magnitude of 

lift, there would be a minimal effect on the results if the drag approximation diverges 

from the exact value.  

The angle of attack, α, is approximately equal to θ which is the sum of the 

commanded angle of attack, θ0, and the rotation from the commanded angle of attack 

due to unsteadiness of model, θ’. The derivative of θ with respect to time is θ̇′ since θ0 is 

constant. The derivation of the aerodynamic normal force is shown below by applying 

the above assumptions to the lift and drag coefficients, calculating the lift and drag 

forces, and then resolving the lift and drag forces into the normal force, Naero. 

𝐶𝐿 = 𝑎(𝛼 − 𝛼0)            𝑤ℎ𝑒𝑟𝑒 𝑎 =
𝑑𝐶𝐿

𝑑𝛼⁄ ≈ 2𝜋 

𝐿 = 𝑎(𝛼 − 𝑎0)𝑞𝑆 ≈ 𝑎𝛼𝑞𝑆 

𝐶𝐷 = 𝐶𝐷,0 +
𝐶𝐿

2

𝜋𝑒𝐴𝑅
 

𝐷 = (𝐶𝐷,0 +
𝐶𝐿

2

𝜋𝑒𝐴𝑅
) 𝑞𝑆 ≈ (𝐶𝐷,0 +

𝑎2𝛼2

𝜋𝑒𝐴𝑅
) 𝑞𝑆 

𝑁𝑎𝑒𝑟𝑜 = 𝐿 cos 𝛼 + 𝐷 sin 𝛼 

𝑁𝑎𝑒𝑟𝑜 ≈ 𝑎𝑞𝑆𝛼 cos 𝛼 + (𝐶𝐷,0 +
𝑎2𝛼2

𝜋𝑒𝐴𝑅
) 𝑞𝑆 sin 𝛼 

𝑁𝑎𝑒𝑟𝑜 ≈ 𝑞𝑆 (𝑎𝛼 cos 𝛼 + 𝐶𝐷,0 sin 𝛼 +
𝑎2𝛼2

𝜋𝑒𝐴𝑅
sin 𝛼) 

Substitute θ0 + θ’ for α: 
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𝑁𝑎𝑒𝑟𝑜 ≈ 𝑞𝑆 (𝑎(𝜃0 + 𝜃′) cos(𝜃0 + 𝜃′) + 𝐶𝐷,0 sin(𝜃0 + 𝜃′)

+
𝑎2(𝜃0 + 𝜃′)2

𝜋𝑒𝐴𝑅
sin(𝜃0 + 𝜃′)) 

Expanding sin(θ) and cos(θ) and simplifying using the small angle assumption 

for θ’ as well as assuming that (θ’)2 and θ’sin(θ0) are very small (≈0): 

𝑁𝑎𝑒𝑟𝑜 ≈ 𝑞𝑆 (𝑎𝜃0 cos 𝜃0 + 𝑎𝜃′ cos 𝜃0 + 𝐶𝐷,0 sin 𝜃0 + 𝐶𝐷,0𝜃′ cos 𝜃0

+
𝑎2

𝜋𝑒𝐴𝑅
(𝜃0

2 sin 𝜃0 + 𝜃0
2𝜃′ cos 𝜃0))                                                             (7) 

𝑑𝑁

𝑑𝑡
= 𝑁̇𝑎𝑒𝑟𝑜 = 𝑞𝑆 (𝑎 cos 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +

𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0) 𝜃′̇              (8) 

The aerodynamic axial force derivation is shown below. However, the 

aerodynamic axial force is only a function of θ0, therefore, the time derivative of Aaero is 

0 since θ0 is constant over time. The axial force will not be included in the state space 

model. From the assumptions and calculations previously shown in the aerodynamic 

normal force derivation, the lift and drag equations are: 

𝐿 ≈ 𝑎𝛼𝑞𝑆 

𝐷 ≈ (𝐶𝐷,0 +
𝑎2𝛼2

𝜋𝑒𝐴𝑅
) 𝑞𝑆 

Resolving the lift and drag forces into the aerodynamic axial force gives: 

𝐴𝑎𝑒𝑟𝑜 = −𝐿 sin 𝛼 + 𝐷 cos 𝛼 

𝐴𝑎𝑒𝑟𝑜 = −𝑎𝛼𝑞𝑆 sin 𝛼 + (𝐶𝐷,0 +
𝑎2𝛼2

𝜋𝑒𝐴𝑅
) 𝑞𝑆 cos 𝛼 
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Substitute θ0 + θ’ for α: 

𝐴𝑎𝑒𝑟𝑜 = −𝑎(𝜃0 + 𝜃′)𝑞𝑆 sin(𝜃0 + 𝜃′) + (𝐶𝐷,0 +
𝑎2(𝜃0 + 𝜃′)2

𝜋𝑒𝐴𝑅
) 𝑞𝑆 cos(𝜃0 + 𝜃′) 

Expanding sin(θ) and cos(θ) and simplifying using the small angle assumption 

for θ’ as well as assuming that (θ’)2 and θ’sin(θ0) and θ’θ0 are very small (≈0): 

𝐴𝑎𝑒𝑟𝑜 = 𝑞𝑆 (−𝑎𝜃0 sin 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +
𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0) = 𝑓(𝜃0) 

𝑑𝐴𝑎𝑒𝑟𝑜

𝑑𝑡
= 0 

The next important derivation for the state space model is the aerodynamic 

pitching moment about the BMC. The aerodynamic pitching moment about the BMC is 

the sum of the moment caused by the normal force and the aerodynamic pitching 

moment about the aerodynamic center. In the absence of knowledge of the true 

aerodynamic center, the location of the aerodynamic center is taken to be at the quarter 

chord location of the wing.  

𝑀𝐵𝑀𝐶 = 𝑁𝑎𝑒𝑟𝑜𝑥𝐴𝐶 + 𝑀𝑎𝑒𝑟𝑜,𝐴𝐶 − 𝑊𝑥𝐶𝐺 cos 𝜃 

            𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶 

𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶 = 𝑁𝑎𝑒𝑟𝑜𝑥𝐴𝐶 + 𝑀𝑎𝑒𝑟𝑜,𝐴𝐶 

Taking the derivative of the aerodynamic pitching moment about the BMC with 

respect to time gives: 

𝑑𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶

𝑑𝑡
=

𝑑𝑁𝑎𝑒𝑟𝑜

𝑑𝛼

𝑑𝛼

𝑑𝑡
𝑥𝐴𝐶 +

𝑑𝑀𝑎𝑒𝑟𝑜,𝐴𝐶

𝑑𝛼

𝑑𝛼

𝑑𝑡
 

The time derivative of the angle of attack is approximately equal to the time 

derivative of the rotation from the commanded angle of attack, θ’. The derivative of the 
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aerodynamic pitching moment about the aerodynamic center with respect to the angle of 

attack is approximately 0. These two approximations simplify the equation for the time 

derivative of the aerodynamic pitching moment about the BMC. 

𝑑𝛼

𝑑𝑡
=

𝑑𝜃′

𝑑𝑡
 𝑎𝑛𝑑 

𝑑𝑀𝑎𝑒𝑟𝑜,𝐴𝐶

𝑑𝛼
≈ 0 

𝑑𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶

𝑑𝑡
=

𝑑𝑁𝑎𝑒𝑟𝑜

𝑑𝛼

𝑑𝜃′

𝑑𝑡
𝑥𝐴𝐶 

In order to get the full equation for the time derivative of Maero,BMC, the derivative 

of the aerodynamic normal with respect to angle of attack needs to be computed. This is 

shown below. 

𝑁𝑎𝑒𝑟𝑜 ≈ 𝑞𝑆 (𝑎𝛼 cos 𝛼 + 𝐶𝐷,0 sin 𝛼 +
𝑎2𝛼2

𝜋𝑒𝐴𝑅
sin 𝛼) 

𝑑𝑁𝑎𝑒𝑟𝑜

𝑑𝛼
= 𝑞𝑆 (−𝑎𝛼 sin 𝛼 + 𝑎 cos 𝛼 + 𝐶𝐷,0 cos 𝛼 +

𝑎2𝛼2

𝜋𝑒𝐴𝑅
cos 𝛼 +

2𝑎2𝛼

𝜋𝑒𝐴𝑅
sin 𝛼) 

Replacing α with θ=θ0+θ’: 

𝑑𝑁𝑎𝑒𝑟𝑜

𝑑𝛼
= 𝑞𝑆 (−𝑎(𝜃0 + 𝜃′) sin(𝜃0 + 𝜃′) + 𝑎 cos(𝜃0 + 𝜃′) + 𝐶𝐷,0 cos(𝜃0 + 𝜃′)

+
𝑎2(𝜃0 + 𝜃′)2

𝜋𝑒𝐴𝑅
cos(𝜃0 + 𝜃′) +

2𝑎2(𝜃0 + 𝜃′)

𝜋𝑒𝐴𝑅
sin(𝜃0 + 𝜃′)) 

Expanding sin(θ) and cos(θ) and simplifying using the small angle assumption 

for θ’: 
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𝑑𝑁𝑎𝑒𝑟𝑜

𝑑𝛼
= 𝑞𝑆 (−𝑎𝜃0 sin 𝜃0 + 𝑎𝜃0𝜃′ cos 𝜃0 + 𝑎𝜃′ sin 𝜃0 + 𝑎(𝜃′)2 cos 𝜃0 + 𝑎 cos 𝜃0

− 𝑎𝜃′ sin 𝜃0 + 𝐶𝐷,0 cos 𝜃0 − 𝐶𝐷,0𝜃′ sin 𝜃0 +
𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0

+
2𝑎2

𝜋𝑒𝐴𝑅
𝜃0𝜃′ cos 𝜃0 −

𝑎2𝜃0
2

𝜋𝑒𝐴𝑅
𝜃′ sin 𝜃0 −

2𝑎2

𝜋𝑒𝐴𝑅
𝜃0(𝜃′)2 sin 𝜃0

+
2𝑎2

𝜋𝑒𝐴𝑅
𝜃0 sin 𝜃0 +

2𝑎2

𝜋𝑒𝐴𝑅
𝜃′ sin 𝜃0 +

2𝑎2

𝜋𝑒𝐴𝑅
𝜃0𝜃′ cos 𝜃0

+
2𝑎2

𝜋𝑒𝐴𝑅
(𝜃′)2 cos 𝜃0) 

Assuming that (θ’)2 and θ’sin(θ0) are very small (≈0) and that θ’θ0 is relatively 

small (≈0) since the value of θ0 between 0° and 20°, the equation simplifies to: 

𝑑𝑁

𝑑𝛼
= 𝑞𝑆 (−𝑎𝜃0 sin 𝜃0 + 𝑎 cos 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +

𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0

+
2𝑎2

𝜋𝑒𝐴𝑅
𝜃0 sin 𝜃0)                                                                                            (9) 

𝑑𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶

𝑑𝑡
= 𝑞𝑆𝑥𝐴𝐶 (−𝑎𝜃0 sin 𝜃0 + 𝑎 cos 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +

𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0

+
2𝑎2

𝜋𝑒𝐴𝑅
𝜃0 sin 𝜃0) 𝜃̇′                                                                                      (10) 

The state space model for the Kalman filter uses Equations 5, 6, 8, and 10. All 

assumptions and estimates presented in this study are to construct a reasonably good 

model where the Kalman filter will account for the model imperfections. The Kalman 

filter accounts for the imperfections by multiplying the difference between the true 

measurements and predicted measurements by the Kalman gain. The more accurate the 
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model, the more quickly the filter is expected to converge. The only control input in this 

study is the commanded angle of attack. Therefore, the u vector only includes a variable 

in u1.  

𝑢1 = cos 𝜃0 

𝑥1 = 𝑧′ 

𝑥2 = 𝑧̇′ = 𝑥1̇ 

𝑥3 = 𝑁𝑎𝑒𝑟𝑜 

𝑥4 = 𝜃′ 

𝑥5 = 𝜃̇′ = 𝑥4̇ 

𝑥6 =  𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶 

 

𝑥̇1 = 𝑧̇′ = 𝑥2 

𝑥̇2 = 𝑧̈′ = (
𝑘𝑁𝑍𝑔

𝑊⁄ ) 𝑥1 + (
𝑘𝑁𝜃𝑔

𝑊⁄ ) 𝑥4 −
𝑔

𝑊
𝑥3 − 𝑔 sin 𝜃0 𝑥4 + 𝑔𝑢1 

𝑥̇3 =
𝑑𝑁𝑎𝑒𝑟𝑜

𝑑𝑡
⁄ = 𝑞𝑆 (𝑎 cos 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +

𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0) 𝑥5 

𝑥̇4 = 𝜃̇′ = 𝑥5 

𝑥̇5 = 𝜃̈′ = − (
𝑘𝑀𝑍𝑔

𝑊𝑟𝑔
2⁄ ) 𝑥1 − (

𝑘𝑀𝜃𝑔
𝑊𝑟𝑔

2⁄ ) 𝑥4 +
𝑔

𝑊𝑟𝑔
2

𝑥6 +
𝑔𝑥𝐶𝐺

𝑟𝑔
2

sin 𝜃0 𝑥4

−
𝑔𝑥𝐶𝐺

𝑟𝑔
2

𝑢1 
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𝑥̇6 =
𝑑𝑀𝑎𝑒𝑟𝑜,𝐵𝑀𝐶

𝑑𝑡

=  𝑞𝑆𝑥𝐴𝐶 (−𝑎𝜃0 sin 𝜃0 + 𝑎 cos 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +
𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0

+
2𝑎2

𝜋𝑒𝐴𝑅
𝜃0 sin 𝜃0) 𝑥5 

Putting the above equations in matrix form which is necessary for Kalman filter 

application: 

𝒙̇ = 𝐴𝒙 + 𝐵𝒖 + 𝐺𝒘 

𝒚̂ = 𝐶𝒙 + 𝐷𝒖 + 𝒗 

A is a 6x6 matrix. B and x are 6x1 vectors and u is a 1x1 vector. C is a 4x6 

matrix and D is 4x1 vector. 

Non-zero components of A matrix: 

𝐴1,2 = 1 

𝐴2,1 =
𝑘𝑁𝑍𝑔

𝑊
 

𝐴2,3 = −
𝑔

𝑊
 

𝐴2,4 =
𝑘𝑁𝜃𝑔

𝑊
− 𝑔 sin 𝜃0 

𝐴3,5 = 𝑞𝑆 (𝑎 cos 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +
𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0) 

A4,5 = 1 

𝐴5,1 = −
𝑘𝑀𝑍𝑔

𝑊𝑟𝑔
2
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𝐴5,4 = −
𝑘𝑀𝜃𝑔

𝑊𝑟𝑔
2

+
𝑔𝑥𝐶𝐺 sin 𝜃0

𝑟𝑔
2

 

𝐴5,6 =
𝑔

𝑊𝑟𝑔
2

 

𝐴6,5 = 𝑞𝑆𝑥𝐴𝐶 (−𝑎𝜃0 sin 𝜃0 + 𝑎 cos 𝜃0 + 𝐶𝐷,0 cos 𝜃0 +
𝑎2

𝜋𝑒𝐴𝑅
𝜃0

2 cos 𝜃0

+
2𝑎2

𝜋𝑒𝐴𝑅
𝜃0 sin 𝜃0) 

Non-zero components of B matrix: 

𝐵2,1 = 𝑔 

𝐵5,1 = −
𝑔𝑥𝐶𝐺

𝑟𝑔
2

 

 

Non-zero components of C matrix: 

𝐶1,1 =
𝑘𝑁𝑍𝑔

𝑊
 

𝐶1,3 =
−𝑔

𝑊
 

𝐶1,4 =
𝑘𝑁𝜃𝑔

𝑊
− 𝑔 sin 𝜃0 

𝐶2,1 =
−𝑘𝑀𝑍𝑔

𝑊𝑟𝑔
2

 

𝐶2,4 = −
𝑘𝑀𝜃𝑔

𝑊𝑟𝑔
2

+
𝑔𝑥𝐶𝐺

𝑟𝑔
2

sin 𝜃0 

𝐶2,6 =
𝑔

𝑊𝑟𝑔
2
 

𝐶3,1 = 𝑘𝑁𝑍 
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𝐶3,4 = 𝑘𝑁𝜃 

𝐶4,1 = 𝑘𝑀𝑍 

𝐶4,4 = 𝑘𝑀𝜃 

Non-zero components of D matrix: 

𝐷1,1 = 𝑔 

𝐷2,1 =
𝑔𝑥𝐶𝐺

𝑟𝑔
2

 

4.1 Matlab Kalman Filter Implementation 

 The Kalman filter is implemented using Matlab. All constants and matrices using 

the above equations are defined. Data is loaded into the script for each test run and data 

point corresponding to Appendix A. The angle of attack and dynamic pressure are 

changed for each data point. A pseudocode is presented below to show the steps that 

were taken to get the post-Kalman filter results [8].  

1. Define all constants. Define dynamic pressure and angle of attack based on data 

file being filtered. 

2. Define state space matrices for A, B, C, D, and u. 

3. Define noise covariance matrices Q and R. 

4. Calculate the steady-state value for P using Matlab’s continuous algebraic 

Riccati function. 

5. Import processed data 

a. Save z acceleration, theta acceleration, NIB, MIB to the xmeasured matrix. If 

needed, convert units from English to SI units. 
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6. Calculate the steady-state value of the Kalman gain. 

7. Set the first initial condition of the state vector estimate. 

8. For each time step integrate 𝒙̇ = 𝐴𝒙 + 𝐵𝒖 + 𝐾[𝒚(𝑡) − (𝐶𝒙 + 𝐷𝒖)] using 

Matlab’s ode15s with the initial condition and measurements from this time step. 

9. Plot results. 
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CHAPTER V 

ANALYSIS 

 

Before discussing the results of the experiment and filtering technique, several 

procedures are completed using the collected data that are necessary before applying the 

state estimation technique. These include calculating plunge and pitch acceleration from 

sensors readings, identifying specific model parameters such as weight and moment of 

inertia, and calculating sensor noise. 

 

5.1 State System Measurements 

The strain gauges readings from the internal balance are converted to pounds-

force. The total normal force is calculated by adding the N1 and N2 data. The pitching 

moment is calculated by subtracting the N2 reading from the N1 reading and multiplying 

by the distance between the two strain gauges, 5.25 inches (0.1334 meters). The z-

acceleration is calculated by averaging the centerline accelerometers readings. The pitch 

acceleration is calculated by subtracting the back centerline accelerometer from the front 

centerline accelerometer and dividing by the distance between them. 

 

5.2 System Identification Analysis 

Using data from a static tare run show the model to weigh 159 lbf (708 N). The 

estimated weight from the Solidworks design file is 158 lbf (705 N). The center of 

gravity location was calculated using N1 and N2 internal balance strain gauge readings 
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during the static tare run and determining the location where these two strain gauge 

readings were equivalent. This yielded a center of gravity 24 inches (0.621 meters) from 

the nose of the aircraft model. The center of gravity location from Solidworks is 21.8 

inches (0.553 meters). The pitch moment of inertia, Iyy, is calculated using the Equation 

11 below where m is the mass of the model, g is the acceleration due to gravity, d is the 

distance from the axis of rotation to the center of gravity, and ω is the frequency. Iyy 

calculated from the system identification is 24.4 kg-m2. From Solidworks, Iyy is 25.1 kg-

m2. 

𝐼𝑎𝑥𝑖𝑠 =
𝑚𝑔𝑑

𝜔2
                                                                   (11) 

Overall similarity between these values and predicted values is surprisingly good. 

Measurement noise is quantified with the innate bias and collected data standard 

deviation of the internal balance strain gauges, N1 and N2, and the centerline 

accelerometers. The bias error is taken from the instruments specification sheets. The 

centerline accelerometers have a bias of 10% of the sensitivity. The sensitivities of the 

accelerometers are calculated by finding the voltage output during the static tare run at 

0° angle of attack. The front centerline accelerometer has a bias of 0.0067 m/s2 and the 

back centerline accelerometer has a bias of 0.0016 m/s2. The two biases were squared, 

added, and square rooted to find the combined error, σbias,accel, which is 0.0069 m/s2. For 

z-acceleration and theta-acceleration, the standard deviations of the individual 

accelerometers were combined similarly. The standard deviation of front centerline 

accelerometer is 0.15 m/s2 and the standard deviation of the back centerline 

accelerometer is 0.17 m/s2. The combined standard deviation, σrandom,z accel, of the z 
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acceleration is 0.0015 m/s2. The combined standard deviation, σrandom,theta accel, of the 

theta acceleration is 0.0017 rad/s2. The innate bias, σbias,N, of the normal force is 1.4 N. 

The innate bias of the pitching moment, σbias,PM, is 0.19 N-m. For the internal balance 

normal force and the pitching moment, the standard deviations of the N1 and N2 strain 

gauges were calculated and added similarly. The standard deviation of the N1 strain 

gauge is 3.2 N and the standard deviation of the N2 strain gauge is 3.2 N. The combined 

normal force standard deviation, σrandom,N, is 4.5 N. The combined pitching moment 

standard deviation, σrandom,PM, is 0.6 N-m. These values are included in the determination 

of the measurement error covariance matrix, R with the non-zero values of R shown 

below. 

𝑅1,1 = 𝜎𝑏𝑖𝑎𝑠,𝑎𝑐𝑐𝑒𝑙
2 + 𝜎𝑟𝑎𝑛𝑑𝑜𝑚,𝑎𝑐𝑐𝑒𝑙

2 = (0.0069)2 + (0.0015)2 = 0.00005 (𝑚
𝑠2⁄ )

2

 

𝑅2,2 = 𝜎𝑏𝑖𝑎𝑠,𝑎𝑐𝑐𝑒𝑙
2 + 𝜎𝑟𝑎𝑛𝑑𝑜𝑚,𝑎𝑐𝑐𝑒𝑙

2 = (0.0069)2 + (0.0017)2 = 0.00051 (𝑟𝑎𝑑
𝑠2⁄ )

2

 

𝑅3,3 = 𝜎𝑏𝑖𝑎𝑠,𝑁
2 + 𝜎𝑟𝑎𝑛𝑑𝑜𝑚,𝑁

2 = (1.4)2 + (4.5)2 = 22.21 𝑁2 

𝑅4,4 = 𝜎𝑏𝑖𝑎𝑠,𝑃𝑀
2 + 𝜎𝑟𝑎𝑛𝑑𝑜𝑚,𝑃𝑀

2 = (0.19)2 + (0.6)2 = 0.396 (𝑁𝑚)2 

 

5.2.1 Stiffness Matrix Extraction 

The natural frequency is computed by finding the logarithmic decrement 

following a rap test. Plots of the rap pitch total normal force and pitching moment are 

evaluated to find t, Ͳ, n, x(t), and x(t+nͲ). Using these values, the logarithmic 

decrement, δ, is calculated using Equation 12. The logarithmic decrement is useful for 

calculating the damping ratio, ζ. The damped frequency, wd, is calculated using the 
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period, Ͳ. The natural frequency, wn, is calculated using the damped frequency and the 

damping ratio. The equations for damping ratio, damped frequency, and natural 

frequency are shown in Equations 13, 14, and 15 respectfully. An example of the one of 

the rap pitch tests outputs in shown in Figure 7 for an impulse at the nose of the model. 

𝛿 =
1

𝑛
ln (

𝑥(𝑡)

𝑥(𝑡 + 𝑛Τ)
)                                                          (12) 

𝜁 =
1

√1 + (
2𝜋
𝛿

)
2

                                                               (13) 

𝑤𝑑 =
2𝜋

Τ
                                                                       (14) 

𝑤𝑛 =
𝑤𝑑

√1 − 𝜁2
                                                                 (15) 

 

Figure 7.  Total Normal Force and Pitching Moment Responses for Rap Pitch Test with 

Impulse at the Nose. 
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Using Equation 16 for the transient response of an underdamped harmonic 

oscillator, the constants of the function (A, σ, ω, and φ) are calculated such that the plot 

directly matches the rap pitch test responses. Figure 8 shows the transient response 

function in red overlapping the rap pitch test in blue that is also shown in Figure 7. 

Appendix B shows all of the rap pitch tests with Equation 16 superposed. 

𝑦 = 𝐴𝑒−𝜎𝑡 cos(𝜔𝑡 + 𝜑)                                                         (16) 

In Equation 16, A is a constant, σ is the exponential decay of oscillations, ω is 

the angular frequency, and φ is the phase. For all three of the rap pitch tests, σ and ω 

should be similar. The stiffness, k, is calculated using wn
2/m and wn is calculated from 

√σ2 + ω2. Table 5 shows the value of these constants for each of the rap pitch tests for 

the total normal force. Table 6 shows the value of these constants for each of the rap 

pitch tests for the pitching moment. 
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Figure 8. Underdamped Harmonic Oscillations Plotted on Top of the Response from the 

Rap Pitch Test with Impulse at Nose. 

 

Table 5. Values for Equation 16 for the Total Normal Force during Rap Pitch Tests. 

Impulse Location σ ω (rad/s) wn (rad/s) k (N/m) 

Nose 0.045 35.06 35.06 88655 

Center 0.065 35.09 35.09 88807 

Tail 0.060 35.1 35.1 88858 
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Table 6. Values for Equation 16 for the Pitching Moment during Rap Pitch Tests. 

Impulse Location σ ω (rad/s) wn (rad/s) k (N/m) 

Nose 0.075 35.06 35.06 88655 

Center 0.065 35.1 35.1 88858 

Tail 0.075 35.1 35.1 88858 

 

The kNZ term dominates the stiffness matrix. Therefore, the kNZ value is 

calculated from the rap tests and used to calculate the rest of the stiffness matrix using 

the stiffness matrix equations in Chapter 4, shown in Equation 17. The kNZ value is -

888782 N/m and the length of the sting is 44 inches (0.12 meters). Using these values, EI 

is solved for and then plugged into the kNθ, kMZ, and kMθ expressions to get the values in 

Equation 18. 

[
𝑘𝑁𝑍 𝑘𝑁𝜃

𝑘𝑀𝑍 𝑘𝑀𝜃
] = [

− 12𝐸𝐼
𝐿3⁄ − 6𝐸𝐼

𝐿2⁄

6𝐸𝐼
𝐿2⁄ 4𝐸𝐼

𝐿⁄
]                                  (17) 

[
𝑘𝑁𝑍 𝑘𝑁𝜃

𝑘𝑀𝑍 𝑘𝑀𝜃
] = [

−88781.64 −5766.38
5766.38 499.369

]                                (18) 

 

5.3 Initial Process Noise Covariance Estimate 

 The process noise covariance matrix, Q, represents how well the model predicts 

the process. Higher Q values mean that the model does an inadequate job at predicting 

the state. Consequentially, the range which the estimated state lies in is increased. A 

diagonal Q means that the state parameters are independent from each other. This is not 

true in this study since all the equations are coupled in the state space system. Therefore, 
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a fully populated, symmetric Q matrix is used for initial Kalman filtering. This is the Q 

prior to tuning the filter.  

To calculate the Q, the variance of the difference between two runs at the same 

dynamic pressure and alpha were calculated. The variance for the z acceleration was 

used for the z position and velocity and the variance for the theta acceleration was used 

for the theta position and velocity. The variance for the normal force due to the internal 

balance was used for the aerodynamic normal force and the variance for the pitching 

moment due to the internal balance was used for the aerodynamic pitching moment. The 

square roots of the variances were calculated to yield the standard deviations and these 

were used as the diagonal of a process noise matrix. This matrix is multiplied by a 

matrix of normally distributed random numbers generated by the Matlab function 

“randn.” Q is calculated by taking the covariance of the resulting matrix. Omidvarnia 

introduced this method in a simple example to explain how a linear Kalman filter works 

and how to implement the filter in Matlab. [9] 

An illustration of the effectiveness of having a better initial estimate of the 

process noise covariance matrix is shown in Figure 9. The plot is an example of the 

residual for normal force due to the internal balance. As stated preciously, the residual is 

the difference between the measurements, y, and the observation model, Cx+Du. The 

objective is to minimize this residual. The blue line represents an estimate of the Q 

matrix with the diagonal equal to 10-5. The red line uses Q with the method discussed 

above implemented. This shows that adjusting the Q matrix to be more representative of 
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the process noise dramatically reduces the residual. This also shows that the Q matrix is 

essential to tuning the Kalman filter to get better convergence. 

 

Figure 9. Effect of Estimation of Process Noise on the Residual.  
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CHAPTER VI 

RESULTS 

 

 Carrying out the data analysis and constructing the Kalman filtering code allows 

all data points to be evaluated and their results interpreted. Results from three different 

techniques are illustrated below with explanations of data trends and the filtering 

performance. The first section discusses the results if the data was analyzed using the 

conventional method used at the LSWT. Follow-on sections examine the Kalman filter 

application for two state-space models.  

 

6.1 Conventional Technique for Wind Tunnel Experimentation 

Figure 10 is generated by using the current technique of time-averaging the data 

samples. Traditionally, the static tare tests remove the loads due to gravity to obtain the 

aerodynamic loads. The plot shown has the static tare values removed to show the 

aerodynamic loads for each dynamic pressure and angle of attack. An important feature 

that is missing from this plot is that it does not show that for each of the data points, the 

model is dynamic in the test section and the pitch angle is oscillating about the 

commanded angle of attack. As a result of the oscillations, the aerodynamic normal force 

is also changing with respect to time. This plot is used as a resource for checking the 

aerodynamic normal force output from the Kalman filter during the static rap tests. 

For each dynamic pressure, the plots intersect at the same commanded angle of 

attack of -2°. As the dynamic pressure increases and the angle of attack increases, lift 
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increases as expected. For all dynamic pressures, the plots show stall at about 10°. Large 

oscillatory behavior of the model in the test section was observed at commanded angles 

above 10°. The oscillations were larger at higher dynamic pressures and commanded 

angles. 

 

 

Figure 10. Summary Plot of Lift and Drag Forces Using Conventional Data Reduction 

Method. 

 

6.2 Kalman Filter Results from 3-State Kalman Filter 

The approach outlined in Chapters 4-6 using the collected data from the 

accelerometers and internal balance was attempted first using a 6-state model. However, 

the results showed large residuals and complications converging for the z acceleration 
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and theta acceleration. The troubleshooting and potential flaws of the system are 

explained below. A 3-state model did prove successful so is detailed first. 

Simplifying the proposed model to one measurement and three state space 

variables proved successful for all data points. The internal balance normal force is the 

sole measurement with the plunge (z’) position, plunge (z’) velocity, and aerodynamic 

normal force as the state space variables. For the rap pitch test when θ0 is zero, the 

output of the aerodynamic normal force matches the total lift calculated in Figure 10. 

Furthermore, the plunge (z’) velocity and position oscillate about a reasonable value and 

with a minimum residual. These two characteristics were indicative of good performance 

of the filter using a simplified model. The appended test is explained below. 

The state space model is simplified to a 3x3 matrix for A, a 3x1 matrix for B, and 

a 1x3 matrix for C. The simplified A, B, and C matrices are shown below. D is 0 

because NIB does not have any inputs. 

𝑢 = cos 𝜃0 

𝑥1 = 𝑧′ 

𝑥2 = 𝑧̇′ 

𝑥3 = 𝑁𝑎𝑒𝑟𝑜 

𝑥1̇ = 𝑧̇′ = 𝑥2 

𝑥2̇ = 𝑧̈′ =
𝑘𝑁𝑍𝑔

𝑊
𝑥1 −

𝑔

𝑊
𝑁𝑎𝑒𝑟𝑜 + 𝑔𝑢 

𝑥3̇ = 𝑁̇𝑎𝑒𝑟𝑜 = 0 
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Non-zero components of A matrix: 

𝐴1,2 = 1 

𝐴2,1 =
𝑘𝑁𝑍𝑔

𝑊
 

𝐴2,3 = −
𝑔

𝑊
 

 Non-zero components of B: 

𝐵2,1 = 𝑔 

 Non-zero components of C: 

𝐶1,1 = 𝑘𝑁𝑍 

The observability matrix is checked to confirm all states are observable. The rank 

of the observability matrix is 3 and the dimension of the state vector is 3. Therefore, all 

three states are observable with one measurement. The Kalman filter is implemented 

using the same Matlab code as the extended system except with the edited state space 

system and one measurement. The measurement error is 22.21 N2. The process noise 

covariance matrix is a 3x3 matrix. Since the system is much simpler than before, only 

the diagonal is non-zero. For the first initial process noise matrix, the Q matrix is the 

identity matrix multiplied by 0.001.  

To accelerate filter convergence, a better initial state estimate is used for the first 

time step. The initial condition for the state values is the steady-state plunge distance that 

the test article experiences due to the weight, 0 for plunge velocity, and an estimate for 

the aerodynamic normal force. The equations for the initial condition are shown below. 
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𝑥1(0) =
(𝑊 − 𝑥3(0))

𝑘𝑁𝑍
 

𝑥2(0) = 0 

𝑥3(0) = 2𝜋
𝐴𝑅

𝐴𝑅 + 2
𝑞𝑆 sin 𝜃0 

In order to improve filter convergence, a process called tuning is applied to the 

noise covariance matrices. To tune the filter, the diagonal of Q is modified. Increasing 

the element of the diagonal that multiplies that state value increases the process noise of 

that state value. Increasing the value is beneficial if process of calculating that state 

value is untrustworthy. If the process of calculating that state value is trusted, then lower 

process noise improves performance. The z’ position and velocity have low process 

noise because their equations consider the bending of the sting and the aerodynamic 

normal force. As a result, the process of calculating the position and velocity 

displacement is more reliable. 

The calculation of the aerodynamic normal force carries a larger process noise 

since multiple assumptions are made that contradict the model dynamics such as 

assuming the linear region of the lift curve slope and steady aerodynamic loads. First, 

even though the angle of attack of the model is not static, steady aerodynamics are 

assumed. Also, the time derivative of the aerodynamic normal force is shown in the state 

space model as not dependent on the pitch angle deflection, θ’. Therefore, the process 

noise must be larger for Naero.  

Another way to show that there needs to be a larger process noise for Naero is to 

look at the reduced frequency value. The reduced frequency, defined k = ωc/U∞, 
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characterizes the degree of unsteadiness of the flow. The equation for reduced frequency 

is shown below where ω is the natural frequency of the test article, c is the airfoil chord, 

and U∞ is the freestream velocity. A crude estimate for the chord is the wingspan divided 

by the aspect ratio. For k=0, the flow is steady. For k between 0 and 0.05, the flow is 

quasi-steady and the unsteady effects can be neglected. For k greater than 0.05, flow is 

unsteady. For k greater than 0.2, flow is highly unsteady. The reduced frequencies for 

the dynamic pressures of 7.5, 15, and 22.5 psf are 1.19, 0.84, and 0.7 respectively. 

Because all reduced frequencies are greater than 0.2, the process noise for Naero must be 

large since the unsteady effects are not included in the A matrix. [10] 

Using the initial Q with the diagonal elements equal to 0.001, the results are 

shown for the state value estimates after applying the Kalman filter in Figure 11. These 

results are from a test case with the same dynamic pressure and angle of attack. On the 

same plot, the results from tuning the Q matrix are shown. Figure 12 shows the 

difference between the NIB measurement and the predicted NIB value resulting from the 

initial Q and the tuned Q. The goal is to minimize this difference. The goal is not 

achieved with the initial Q since the difference is steady at about 130 N. With the tuned 

Q, the residual is minimized. The tuned Q has a small process noise (0.0012) 

corresponding to the z’ position and z’ velocity and a high process noise (100) 

corresponding to Naero. The tuned Q is used for processing all configurations with the 

Kalman filter. 
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Figure 11. Post Kalman State Estimates Using Initial Q and Tuned Q. 
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Figure 12. Difference Between Measurement and Estimated NIB with Initial Q and 

Tuned Q. 

 

 First, the Kalman filter is applied to the rap tests with the wind off. A rubber 

mallet strikes the test article at three centerline locations. The first location is the nose, 

second is the center of the model, and the third is the tail of the model. The responses of 

rap tests are used to calculate the natural frequency of the test article. However, the 

Kalman filter is applied to the rap test data points in the interest of troubleshooting the 

filter and proving that the filter works since Naero and Maero should be roughly zero with 

wind-off. Results of executing the Kalman filter with the rap test with impulse at the 

nose is shown in Figure 13 and Figure 14 for the first 3 seconds. The large initial 

amplitude in blue on the plots in Figure 13 is from the impulse at the nose. After the 

impulse, the oscillations dampen out. The steady-state position of the test article is 0.8 
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cm below the zero position. This displacement is due to the weight of the test article. 

Naero has the steady-state value of 0 N as predicted. In Figure 14, the initial amplitude for 

the Cx+Du plot in orange is due to the Kalman filter trying to lock onto the measured 

value of NIB which takes less than a second. The second plot in Figure 14 mirrors the 

concept that the model can predict the measurement because after the model locks onto 

the measurement, the residual is approximately 0.  

 

Figure 13. Post Kalman Estimates for Rap Pitch Test with Impulse at Nose. 
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Figure 14. Comparison of Measurements with Predicted Measurements for Rap Pitch 

Test with Impulse at Nose. 

 

Another important feature to note is that the Kalman filter reduces the noise of 

the internal balance. This is shown in Figure 15 which shows a zoomed in view of the 

NIB plot of Figure 14. The output is shown between 4 and 4.5 seconds. The blue line is 

the measurement with noise and the smooth orange line is the predicted measurement by 

the Kalman filter. 
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Figure 15. Example of Kalman Filter Reducing Noise in Measurement. 

 

 The rap pitch test results show the dynamics of the model at a commanded pitch 

angle of 0° and wind-off. The next results discuss the effects of dynamic pressure and 

commanded pitch angle on the estimated position and aerodynamic load. The dynamic 

pressure and commanded angle of attack are changed as stated in Runs 15, 16, and 17 of 

Appendix A. 

For the plots presented for the wind-on setting, the tuned Q is applied. For each 

of the three dynamic pressures, the state estimate from the Kalman filter and the NIB 

measurement and prediction comparison are plotted for three different commanded pitch 

angles. Figure 16 and Figure 17 show the results for the dynamic pressure of 7.5 psf, 

Figure 18 and Figure 19 show the results for 15 psf, and Figure 20 and Figure 21 show 

the results for 22.5 psf.  
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Figure 16. State Estimations for q=7.5 psf for a Variety of Pitch Angles. 
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Figure 17. Residuals for a Variety of Pitch Angles at q=7.5 psf. 
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Figure 18. State Estimations for q=15 psf for a Variety of Pitch Angles. 
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Figure 19. Residuals for a Variety of Pitch Angles at q=15 psf. 

 

 

Figure 20. State Estimations for q=22.5 psf for a Variety of Pitch Angles. 
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Figure 21. Residuals for a Variety of Pitch Angles at q=22.5 psf. 

 

 As the commanded pitch angle increases in all three dynamic pressure cases, the 

steady-state value of the plunge position decreases and oscillations increase in amplitude 

about the steady-state value. The decrease in plunge position is due to the increase in 

Naero. Naero increases and exhibits more oscillations as the commanded pitch angle 

increases and as the dynamic pressure increases. The plunge velocity oscillates about 0 

in all cases. However, the amplitude of the plunge velocity increases as the commanded 

pitch angle increases. The sign of the plunge velocity is the opposite of the sign of the 

time derivative of Naero. As the normal force increases (positive d(Naero)/dt), the velocity 

should be negative because the plunge below horizontal decreases as Naero pushes the 

test article up.  
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Furthermore, the residual between the actual measurement and predicted 

measurement reaches the necessary steady-state value of 0 except in the θ0=8 deg and 

θ0=10 deg at q=22.5 psf cases. The reason for the larger residual is the test article 

reaches stall conditions. The Kalman filter output shows larger plunge oscillations for 

these cases, as was observed during the wind tunnel testing. The testing for q=22.5 psf 

was stopped at 10 degrees commanded pitch due to the large visible oscillations of the 

model. If the process noise is increased by orders of magnitude, the residual can be 

minimized by roughly 50% but does not reach a steady-state value of 0. 

The 3-state Kalman filter results do not include the instantaneous pitch angle 

since only the plunge position and velocity and the aerodynamic normal force are 

estimated. To get an estimated value for the pitch angle, the term z′̇/U∞ (plunge velocity 

divided by the freestream velocity) is added to the commanded pitch angle. For the 

dynamic pressure of 7.5 psf, the plunge velocity is reasonably small to assume a 

negligible correction to the instantaneous pitch angle. For the dynamic pressure of 15 

psf, the largest correction to the commanded pitch angle is roughly 0.5° for the highest 

commanded pitch angle. At the highest dynamic pressure of 22.5 psf, the correction term 

ranges from 0.5° for θ=0° to 1.5° for θ=10°. 

 

6.3 Kalman Filter Results from 6-State Kalman Filter 

Before developing the 3-state estimator shown above, a full 6-state approach 

estimator was attempted. Tuning is the process of adjusting the values that affect the 

Kalman gain depending on whether the estimate needs to place more weight on the 
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measurements or the predictions. The filter will perform best if the measurement error is 

a true representation of the system. However, the process noise covariance matrix is 

generated by random noise making it difficult to initialize the Q matrix with true values. 

Therefore, the R matrix is held constant as the Q matrix is adjusted to achieve good filter 

performance. 

 The measurement covariance is calculated based on the known sensor noise and 

determines the variability in the measurements. Since the measurement error is known, 

the process noise is the main variable that is tuned to produce better performance of the 

Kalman filter and minimize the residual between the measurements and model. The code 

was first ran using a diagonal process noise covariance matrix and tuned by increasing or 

decreasing the numbers on the diagonal. This method produced a large residual for all 

parameters and the filter did not converge during the 20 second time sample. 

Implementing the method discussed in Section 5.3 produced better results with the 

residual near zero for the normal force due to the internal balance. However, the plunge 

(z’) acceleration and pitch (θ’) acceleration proved difficult to minimize the residual 

between the measurement and model prediction.  

Not only was the residual large, but the behavior of the state values after 

applying the Kalman filter exhibited large values for the plunge and pitch velocities as 

well as the aerodynamic normal force and pitching moment showing an increasing linear 

relationship. All plots should be demonstrating small oscillations about 0. The behavior 

of individual plots improved by tuning the filter, however, changing the individual 

elements of the Q matrix is very tedious. The Q matrix has 36 values that can be tuned. 
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Changing one of the elements on the off-diagonal influenced multiple state values since 

the equations are coupled. Changing the values on the diagonal changes the process 

noise of that state value. Unfortunately, solely changing the diagonal values was not 

sufficient to achieve filter convergence. 

A potential reason for the difficulty in tuning the z’ acceleration and θ’ 

acceleration is the large amount of noise produced by the accelerometers. For this 

reason, during the system identification process, the strain gauge output was used to 

quantify the natural frequency and stiffness coefficients instead of the accelerometers. 

The accelerometers may not have been mounted sufficiently to reduce any vibrations 

transmitting from the model to the accelerometers. The excessive noise seen in the 

accelerometer readings as shown in Figure 22 may be vibration from insufficient 

mounting coupled with the oscillations of the model. The plunge acceleration shows less 

noise than the pitch angular acceleration. The pitch angular acceleration also shows large 

oscillations at roughly ±100 deg/s2 amplitudes. Figure 22 and Figure 23 are responses to 

the rap pitch test with the impulse applied at the nose of the model. These data points 

had the wind off with only the impulse force imparted on the model, yet the acceleration 

response showed large noise variations 
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Figure 22. Plunge (z’) and Pitch (θ’) Acceleration Response for Rap Pitch Nose. 

 

 

Figure 23. Normal Force due to Internal Balance Response for Rap Pitch Nose. 
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6.3.1 Continued Troubleshooting 

In an effort to build upon the 3-state Kalman filter model that has been proven 

successful, the z accelerometer data is added as a second measurement to the Kalman 

filter. Adding this measurement changes the C and D matrices and these matrices are 

defined below. C is a 2x3 matrix and D is a 2x1 matrix. 

Non-zero components of C matrix: 

𝐶1,1 =
𝑘𝑁𝑍𝑔

𝑊
 

𝐶1,3 = −
𝑔

𝑊
 

𝐶2,1 = 𝑘𝑁𝑍 

 

Non-zero components of D matrix: 

𝐷1 = 𝑔 

Unfortunately, the plunge velocity and aerodynamic normal force exhibited the 

same behavior as the extensive state space model that was initially introduced in Chapter 

4. The estimated plunge velocity plot showed exponentially large velocities that were not 

feasible. The estimated Naero displayed an increasing linear relationship, whereas in the 

3-state model, Naero had an oscillatory response about a steady state value that was 

similar to the value in Figure 10.  
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CHAPTER VII 

CONCLUSIONS 

 

 The goal of this thesis was to prove successful utilization of the Kalman filter 

technique in test article state estimation so that future wind tunnel test events can follow 

this approach for efficiency and data accuracy. 

To achieve the fundamental goal, a state space model that represents the motion 

of a sting-mounted wind tunnel model was constructed and data was collected from 

accelerometers and the internal balance. The Kalman filter was applied to the wind 

tunnel measurements using the state space model and tuned to achieve favorable 

performance. During this process, several observations were made. 

First, the extended state space system that included pitch and plunge motion plus 

normal force, pitch moment, and acceleration data did not demonstrate good 

performance due to the complexity of tuning the process noise covariance matrix. The 

residual between measurements and the predicted measurements was minimized for 1 of 

the 4 measurements. Attempts at tuning the other parameters led to flawed state estimate 

results. All state space equations are coupled and experience process noise from multiple 

state space variables. The Autocovariance Least-Squares (ALS) technique might 

improve this situation. To overcome this problem, the model was simplified to three 

state space variables and the normal force due to the internal balance as the sole 

measurement. 
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Results from the simplified model indicate that the Kalman filter is beneficial to 

quantifying the plunge motion of the test article as well as the oscillations in the 

aerodynamic normal force. Furthermore, tuning the filter by adjusting Q is essential to 

achieving convergence of the Kalman filter. After attaining optimal performance, 

multiple trends were conclusive regarding the state estimates and system noise. As the 

commanded pitch angle increases, the plunge position decreases because the 

aerodynamic normal force increases. At the same time, the state estimate responses 

exhibit larger amplitudes at larger pitch angles and becomes more apparent with larger 

dynamic pressures. At stall conditions, the filter still behaves nominally but the residual 

and amplitude oscillations increase substantially.  

For testing at the LSWT, it is not recommended to use the Kalman filter during 

stall conditions or if the process noise must be larger than 100 units to minimize the 

residual. Also, if the residual cannot be minimized less than a threshold relative to the 

measurement, the filter is not suitable to produce trustworthy results. The last 

recommendation is to ensure fixed mounting of the accelerometers to the test article to 

reduce noise and external vibrations transmitted to the model. For future tests, the LSWT 

team will only need to change parameter values and conduct the system identification 

tests to implement the Kalman filter for state estimation. 

During the course of data acquisition and state estimation, multiple 

improvements became apparent for future work. An important issue during the test was 

the accelerometer noise. The noise was apparent during the simple rap tests. Due to the 

noise, NIB output had to be used for system identification instead of the accelerometer 
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data. In future tests, accelerometers with less noise or higher sensitivity are 

recommended. Another improvement, rather than different accelerometers, is to ensure a 

more robust way to mount the accelerometers that will reduce any extra vibration. 

Tuning the filter was an important step to getting the optimum estimation and 

smallest residual. For the extended state space system, tuning the Q matrix was 

burdensome. After calculating an initial Q, the matrix had to be hand-tuned by changing 

individual elements to slightly larger or smaller values to minimize the residual. In the 

future, a better technique like the ALS technique for tuning the Kalman filter by finding 

the best P and Q matrices would decrease the time required to implement this state 

estimation approach in wind tunnel testing.  

Valasek and Chen use the Observer/Kalman Filter Identification (OKID) 

technique to complete the system identification process an alternate way than the 

technique displayed here [11]. The technique could be used instead of the current 

practice in this work to identify the linear dynamic model of a nonlinear system. 

Applying the OKID method to this test would be useful to compare the OKID results 

with the present results and determine which technique would be more beneficial and 

robust for wind tunnel testing. This technique would eliminate the a priori assumptions 

about the model structure. For the present research, OKID was not used because there is 

value in deriving and understanding the forces and moments acting upon the test article 

and sting system. 

Furthermore, the current test focused on the pitch motion of the test article. Upon 

successful completion of the extended state space system, future tests can focus on the 
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roll and yaw motion of the test article. Accelerometers can be mounted on the wing tips 

to calculate the roll and yaw parameters. This test focused on one degree of freedom 

since adding more degrees of freedom would increase the complexity of the state 

estimation and tuning.  
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APPENDIX A 

RUN LOG 

 

Conventional Sting Deflection 

Test Run Point Description Comments 

1707 13 1 Static  

Rap Tests, Wind Off, Strike with Mallet at 3 Locations 

Test Run Point 
Description 

Comments 

1707 13 2 Rap Pitch – Nose  

1707 13 3 Rap Pitch – Center  

1707 13 4 Rap Pitch – Tail  

1707 13 5 

 

 

Rap Roll – Port Wing Tip Capping max amount of 

accelerometer; with regards 

to sensitivity and range, 

probably not the right 

accelerometers 

1707 13 6 Rap Roll – Center  

1707 13 7 Rap Roll – Starboard 

Wing Tip 

Capping max amount of 

accelerometer; with regards 

to sensitivity and range, 

probably not the right 

accelerometers 

1707 13 8 Rap Yaw – Port Side of 

Nose 

 

1707 13 9 Rap Yaw – Trailing Edge 

of Port Wing 

 

1707 13 10 Rap Yaw – Starboard Side 

of Tail 

One wing’s accelerometer is 

capping max 
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1707 13 11 Rap Roll – Using Hand Bad data 

1707 13 12 Rap Roll – Using Hand Retry of Point 11, Good data 

Conventional Static Tare Pitch Sweep 

Test Run Point 
Description 

Comments 

1707 14 1 Static Tare, α=0° Balance data should be the 

same at points 7 and 18 

1707 14 2 Static Tare, α=-10°  

1707 14 3 Static Tare, α=-8°  

1707 14 4 Static Tare, α=-6°  

1707 14 5 Static Tare, α=-4°  

1707 14 6 Static Tare, α=-2°  

1707 14 7 Static Tare, α=0° Balance data should be the 

same at points 1 and 18 

1707 14 8 Static Tare, α=2°  

1707 14 9 Static Tare, α=4°  

1707 14 10 Static Tare, α=6°  

1707 14 11 Static Tare, α=8°  

1707 14 12 Static Tare, α=10°  

1707 14 13 Static Tare, α=12°  

1707 14 14 Static Tare, α=14°  

1707 14 15 Static Tare, α=16°  

1707 14 16 Static Tare, α=18°  

1707 14 17 Static Tare, α=20°  
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1707 14 18 Static Tare, α=0° Balance data should be the 

same at points 1 and 7 

Single α Runs at q=7.5 psf with Accelerometers and Internal Balance 

Test Run Point 
Description 

Comments 

1707 15 1 α=0°, wind off  

1707 15 2 α=0°, wind on, q=7.5 psf  

1707 15 3 α=-10°, wind on, q=7.5 psf  

1707 15 4 α=-8°, wind on, q=7.5 psf  

1707 15 5 α=-6°, wind on, q=7.5 psf  

1707 15 6 α=-4°, wind on, q=7.5 psf  

1707 15 7 α=-2°, wind on, q=7.5 psf  

1707 15 8 α=0°, wind on, q=7.5 psf  

1707 15 9 α=2°, wind on, q=7.5 psf  

1707 15 10 α=4°, wind on, q=7.5 psf  

1707 15 11 α=6°, wind on, q=7.5 psf  

1707 15 12 α=8°, wind on, q=7.5 psf  

1707 15 13 α=10°, wind on, q=7.5 psf  

1707 15 14 α=12°, wind on, q=7.5 psf  

1707 15 15 α=14°, wind on, q=7.5 psf  

1707 15 16 α=16°, wind on, q=7.5 psf  

1707 15 17 α=18°, wind on, q=7.5 psf  

1707 15 18 α=20°, wind on, q=7.5 psf  
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1707 15 19 α=0°, wind on, q=7.5 psf  

Single α Runs at q=15 psf with Accelerometers and Internal Balance 

Test Run Point 
Description 

Comments 

1707 16 2 α=0°, wind on, q=15 psf  

1707 16 3 α=-10°, wind on, q=15 psf  

1707 16 4 α=-8°, wind on, q=15 psf  

1707 16 5 α=-6°, wind on, q=15 psf  

1707 16 6 α=-4°, wind on, q=15 psf  

1707 16 7 α=-2°, wind on, q=15 psf  

1707 16 8 α=0°, wind on, q=15 psf  

1707 16 9 α=2°, wind on, q=15 psf  

1707 16 10 α=4°, wind on, q=15 psf  

1707 16 11 α=6°, wind on, q=15 psf  

1707 16 12 α=8°, wind on, q=15 psf  

1707 16 13 α=10°, wind on, q=15 psf  

1707 16 14 α=12°, wind on, q=15 psf  

1707 16 15 α=14°, wind on, q=15 psf  

1707 16 16 α=16°, wind on, q=15 psf  

1707 16 17 α=18°, wind on, q=15 psf  

1707 16 18 α=20°, wind on, q=15 psf  

1707 16 19 α=0°, wind on, q=15 psf 

 

 

 



 

72 

 

Single α Runs at q=22.5 psf with Accelerometers and Internal Balance 

Test Run Point 
Description 

Comments 

1707 17 2 α=0°, wind on, q=22.5 psf  

1707 17 3 α=2°, wind on, q=22.5 psf  

1707 17 4 α=4°, wind on, q=22.5 psf  

1707 17 5 α=6°, wind on, q=22.5 psf  

1707 17 6 α=8°, wind on, q=22.5 psf  

1707 17 7 α=10°, wind on, q=22.5 

psf 

Too dynamic, HARS showed 

movement 

1707 17 8 α=0°, wind on, q=22.5 psf  

1707 17 9 α=0°, wind off  
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APPENDIX B 

RAP PITCH SYSTEM IDENTIFICATION TEST RESPONSES 
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