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ABSTRACT

Ensembles of nanoclusters are formed in bulk HeII by the injection of products of a radiofre-

quency discharge in impurity-helium gas mixtures into bulk superfluid 4He (HeII). The ensembles

of nanoclusters contain high concentrations of stabilized nitrogen atoms residing mostly on the

surfaces of rare gas or nitrogen nanoclusters. These samples are characterized by a high energy

density which allows the study of energy release processes in chemical reactions initiated by warm-

ing ensembles of nanoclusters. Optical spectra in the ultra-violet, visible, and near-infrared ranges

were recorded during the destruction of these ensembles of nanoclusters, accompanied by a rapid

release of chemical energy stored in the samples.

Rare gases such as neon, argon, and krypton were used to study the effects of changing the

relative concentrations of nitrogen in rare gases used for sample preparation on thermolumines-

cence spectra during destruction of nitrogen-rare gas-helium samples. Spectra obtained during the

bright flashes of the final destruction of the samples contain M- and β-bands of NO molecules the

intensities of which depend on concentration of molecular nitrogen in the gas mixture as well as

on the type of rare gas present in the gas mixture.

During the destructions of samples containing stabilized nitrogen, oxygen, hydrogen, and deu-

terium atoms, the known bands of atomic nitrogen and oxygen, and bands of molecular nitrogen,

oxygen, and NO were observed as well as several other interesting features including a broad band

near λ∼ 360 nm, which has been identified as an emission corresponding to the 2Ag →1Ag transi-

tion of N4(D2h) polymeric nitrogen. Also the sharp lines at λ = 336 nm, 473 nm, and 1170 nm were

observed, which were assigned to the emission of the ND radicals formed due to recombinations

of nitrogen atoms in excited metastable states and deuterium atoms in the ground state during the

destruction of ensembles of molecular nitrogen nanoclusters.

The influence of rotation speed of a beaker containing HeII on the intensity of luminescence

of collections of nanoclusters immersed in HeII was also studied. Luminescence was found to

increase with the concentration of molecular nitrogen in the nitrogen-helium gas mixtures used

ii



for the formation of the molecular nitrogen nanoclusters. The intensity of α-group emission of

nitrogen atoms (2D → 4S transition) in nanoclusters also increased with the rotational speed of

the beaker. We suggest that this effect is connected to the processes of recombination of nitrogen

atoms residing on the surfaces of nanoclusters after their trapping into quantum vortices in HeII.

Increasing the rotation speed of the beaker results in the increasing density of quantum vortices

in HeII. The probability for nanoclusters to become trapped in the vortex cores increases with the

vortex density. Inside the vortex cores, the collision rate of nanoclusters increases substantially,

leading to more efficient recombination of nitrogen atoms stabilized on the surfaces of nanoclusters

and, therefore to more intense atomic nitrogen luminescence.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Investigations of thermoluminescence of solid nitrogen and rare gases containing stabilized

atoms at low temperates have a long history [11, 12, 13, 14, 15, 16, 17, 18]. Later, investigations

of destruction of ensembles of nanoclusters containing stabilized atoms formed in bulk superfluid

helium (HeII) were performed [19, 20, 21, 22, 23].

The ensembles of nanoclusters were created by injecting products of discharges in nitrogen-

helium or nitrogen-rare gas-helium mixtures into bulk HeII [24, 25]. This method allows the

formation of a porous structure consisting of a collection of impurity nanoclusters with high con-

centrations of stabilized atoms inside superfluid helium (HeII). This method has also been used to

examine oxygen impurities ∼ 10 ppm in low temperature plasmas [26].

Injecting radiofrequency discharge products into HeII creates highly porous aggregates of nan-

oclusters immersed in HeII. The characteristic size of the impurity nanoclusters is of order 5 nm

and the overall density of the impurity atoms and molecules inside HeII is of order 1020 cm−3 as

determined from ultrasonic and x-ray experiments [27, 28, 29, 30, 31, 32]. The nanoclusters form

porous aerogel-like structures known as impurity-helium condensates, which have a broad distri-

bution of pore sizes ranging from 8 to 860 nm [28, 33, 34]. Just after preparation of the samples the

pores are filled with liquid helium. The highest concentrations of stabilized atoms were achieved

in nitrogen-helium condensates with relative concentration of stabilized nitrogen atoms (N/N2 ×

100 %) in the range 10-30 % [35].

The stabilized atoms reside mostly on the surfaces of the nanoclusters [36, 37, 38]. It is believed

that a layer of solid helium covered the surfaces of impurity nanoclusters thus preventing reactions

between nitrogen atoms residing on the surfaces of nanoclusters. The average concentration of

stabilized nitrogen atoms was of order 1019 cm−3 [36, 39, 40]. The values of local concentrations

of N atoms are substantially larger, 8 × 1020 cm−3 [36, 39, 40, 41] as determined from the width
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of electron spin resonance spectra. The ensembles of molecular nitrogen nanoclusters with stabi-

lized nitrogen atoms contain high densities of stored chemical energy [35, 36, 37]. As a result,

these ensembles of nanoclusters are characterized by high specific energy content (up to 104 J/g )

[39, 41]. The investigations of thermoluminescence of the ensembles of nanoclusters containing

stabilized atoms were performed for samples prepared from nitrogen atoms and molecules [3] and

also atoms of rare gases [19, 21, 22].

High concentrations of nitrogen atoms stabilized in molecular nitrogen nanoclusters provide

substantial chemical energy for promoting recombination reactions of stabilized atoms during

warming of the samples [39, 40, 41]. These porous structures are stable while immersed in bulk

superfluid helium. Removing liquid helium from the porous structures led to a collapsing of the

pores, resulting in approaching and colliding of nanoclusters which initiated chemical reactions of

atoms residing on the surfaces of the nanoclusters. The rapid release of stored chemical energy

resulted in rapid heating and intense thermoluminescence of the samples. In the past, studies of

thermoluminescence during the destruction of samples were performed for impurity-helium con-

densates containing N2 molecules, N atoms, and rare gas atoms, as well as small amounts of oxy-

gen atoms (N2/O2 ∼ 10−3 − 10−4). Strong emissions from N atoms (α, α′, δ, δ′-groups), O atoms

(β, β′, β′′ groups), N2 molecules (VK bands), NO molecules (M and β-bands), XeO molecules

(green bands), O2 molecules (second Herzberg bands), and N− anions (γ-line) were observed in

these experiments [3, 5, 19, 21, 22, 23, 42]. These studies provided examples of chemical reac-

tions at low temperatures in collections of nanoclusters containing stabilized nitrogen and oxygen

atoms.

Previously, work has been performed via ESR studies on hydrogen and nitrogen atoms stabi-

lized in corresponding molecular matrices [43] as well as N2:RG Matrices [2, 36]. The method

of matrix isolation provides possibilities for studying exotic highly unstable species. In the past,

considerable efforts were made to create systems with high concentrations of matrix-isolated free

radicals [16]. Different practical applications were proposed for those systems such as clean energy

storage and more efficient rocket fuel. An additional application could be research on cryochemi-
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cal reactions of exotic species. Conditions inside of our Dewar are similar to those in outer space,

so it may be possible to examine processes that occur in the interstellar medium.

Fascination with quantum vortices in superfluid helium (HeII) started with their discovery in

the 1950s, and continues today [44]. Investigations of quantum vorticies in superfluid helium have

recently attracted great attention [45, 46, 47]. The visualization of vortex cores [44] has led to

the observation of the reconnection of vortices and direct observation of Kelvin waves excited

by quantized vortex reconnections [48, 49], characterization of the probability density function

representing particle velocity [50] and acceleration in thermal counterflow [51]. Metastable he-

lium molecules were used as tracers in superfluid helium [52], providing the possibility to study

quantum turbulence in He in the T = 0 limit [53] and examine the normal fluid behavior in thermal

counterflow [54, 55]. The technique of nanowire formation by ablating metallic nanoparticles from

a target in HeII was realized on the basis of coalescence of the nanoparticles in the vortex cores

[56, 57]. The luminescence of ensembles of molecular nitrogen nanoclusters containing stabilized

nitrogen atoms was initiated in HeII by quantum vortices [58]. In this latter case the dependence

of luminescence intensity on temperature was correlated with that of the vortex density in the

temperature range 1.2 - 2.1 K.

There are two main goals in this work: To study the optical spectra of thermoluminescence

emitted during the warming and destruction of ensembles of molecular nitrogen nanoclusters with

high concentrations of stabilized nitrogen atoms, and to study quantum vortex initiation of lumi-

nescence of molecular nitrogen nanoclusters with stabilized atoms submerged in HeII.

Chapter 2 describes the experimental setups and the processes used to create and study our

samples. In our stainless steel cryostat, the samples can be simultaneously investigated with elec-

tron spin resonance (ESR) and optical spectroscopy techniques. In the glass Dewar setup, all stages

of sample preparation, luminescence, and destruction can be observed directly, and by multiple op-

tical spectroscopy techniques. The large inner diameter of the glass Dewar allows the possibility

for many different experiments to be conducted inside. This permitted us to mount a stepper motor

to investigate luminescence resulting from chemical reactions of atoms stabilized on the surfaces

3



of nanoclusters initiated by the rotation of a beaker containing HeII.

In Chapter 3, the experiments describe the addition of rare gases: argon, neon, and krypton

to the nitrogen-helium gas mixtures from which the samples were created. Optical spectra were

recorded during the destruction of these samples, and striking differences were found in the ob-

served spectra. A correlation between molecular nitrogen content in the gas mixture used to pre-

pare the samples and the concentration of stabilized atoms was observed using ESR spectroscopy

techniques.

Spectra of the luminescence emitted during the destruction of samples prepared from nitrogen-

helium gas mixtures with small admixtures of molecular hydrogen isotopes are described in Chap-

ter 4. The admixture of hydrogen or deuterium in the gas mixtures used to prepare our samples

enhanced the broad band at λ = 360 nm, which was determined to be emission from the N4 polyni-

trogen. Emission from several transitions of the ND radical were also observed in the visual range.

Bands at λ = 336 and 473 were tentatively assigned to the emission of the A3Π+
i → X3Σ− and

b1Σ+ → X3Σ− transitions of the ND radical respectively.

In Chapter 5 we discuss the investigations of luminescence during the destruction of samples

which were performed in the ultraviolet (UV), visual (VIS), and near-infrared (NIR) optical ranges

simultaneously. The spectra taken in the NIR range revealed a band at λ = 1170 corresponding

to the b1Σ+ → a1∆ transition of the ND radical. The presence of this band further supported the

assignment of the band observed at λ = 473 nm, as the b1Σ+ → X3Σ− transition of the ND radical.

Chapter 6 presents studies of the influence of the rotation speed beaker containing HeII on the

α-group N(2D → 4S transition) luminescence during the injection of gas mixtures. The increase

of vortex density led to the increased recombination probability of the nitrogen atoms residing on

the surfaces of the nanoclusters.
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2. EXPERIMENTAL APPARATUS AND TECHNIQUE

2.1 Combined Optical and ESR Spectroscopy Setup

2.1.1 Experimental Setup

The experimental setup used to study the impurity-helium samples at low temperature allows

application for both optical and electron spin resonance (ESR) spectroscopies simultaneously. It

utilizes a custom-designed Janis research cryostat and a home-made insert. These have been thor-

oughly described elsewhere [1]. The cryostat has a variable temperature insert (VTI) where the

sample is created and studied. Investigations can be performed in the temperature range from 1 K

to 300 K.

The temperature inside the VTI during sample preparation is maintained at 1.45 K using an Ed-

wards model E2M80 two-stage mechanical pump and is measured by a germanium thermometer.

Generally, sample accumulation lasts 10 minutes and the volume of the accumulated sample is ∼1

cm3. After sample preparation the beaker is lowered into the microwave cavity, located in the tail

of the cryostat and the center of the electromagnet where ESR and optical studies can take place.

There is only optical access through the quartz windows at the bottom of the tail of the cryostat.

2.1.2 ESR and optical spectra registration systems

This experimental setup consists of a custom-fabricated Janis research cryostat whose tail sits

within the poles of a 1.5T Varian research electromagnet (see Fig. 2.1). This cryostat has con-

centric LN2 and LHe baths surrounding the VTI as well as a vacuum-insulated jacket that reduces

liquid cryogen loss due to heat leaks. There are two fused quartz-silica windows in the tail of the

Janis Research cryostat, which is located between the poles at the center of an electromagnet which

allow optical access. Outside of the window, a focusing lens is installed for directing light emitted

from the sample into a bifurcated fiber optic cable which feeds simultaneously into an Ocean optics

HR2000+ and an Andor SR-500i spectrometer.

Inside the bore of the research cryostat we have installed a custom-fabricated insert. The vari-
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Figure 2.1: Diagram showing the scheme of the combined optical and ESR spectroscopy setup.

able temperature insert (VTI) houses all of the equipment required for the experiment: The atomic

source, quartz sample collection beaker, stainless steel control rods, modulation coils, and ruby

crystal. The atomic source provides the excited atoms and molecules. Temperatures above 2.8K
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Figure 2.2: Diagram showing a block diagram of the combined optical and ESR spectroscopy
setup. Reprinted with permission from [1].

inside of the variable temperature insert (VTI) can be stabilized by a computer-controlled PID

heater and regulating the pumping speed of the mechanical pump, as well as the flow of helium

liquid or vapor from the main bath through the needle valve.

A Bruker EMXPLUS spectrometer was used to record ESR spectra of stabilized atoms. This

spectrometer can record standard definition spectra with 1024 points or high resolution spectra
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Figure 2.3: Schematic of the combined optical ESR spectroscopy VTI. 1: Quartz capillary, 2:
Stainless steel control rods, 3: LN2 volume, 4: Quartz discharge tube, 5: Discharge electrodes, 6:
Orifice, 7: Teflon blade, 8: Quartz beaker, 9: Teflon gear, 10: Modulation coils, 11: Slits in the
copper cavity, 12: Ruby crystal, 13: Fountain pump. Reprinted with permission from [2].
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with 2048 points. The ESR parameters for the registration of the derivative of atomic nitrogen

absorption signals are as follows: Center field for N atoms is 3190 G with a sweep of 200 G in four

minutes. The klystron microwave bridge provides ∼10-20 microwatts of power. The modulation

frequency is 100 kHz with an amplitude of 0.5 G. For the ruby crystal used as secondary a standard,

the center field is 1820 G. To measure the concentration of stabilized N atoms, ESR signals from

the sample are compared to signals from the ruby crystal. This ruby was permanently affixed to the

bottom of the microwave cavity where it is used as a secondary standard. The calibration of the ab-

solute value of the number of spins was performed using a standard organic diphenyl-picrylhydrazl

(DPPH) sample with a known number of spins ∼ 2.4× 1017. The atomic nitrogen concentrations

were calculated by dividing the number of atoms by the volume of the sample. Typically samples

are studied at different temperatures. Starting directly after sample preparation, the temperature

is stabilized at 1.3 K while scans are taken. Typically a series of scans are performed at different

temperatures until the sample is destroyed.

2.2 Optical Setup

Our experimental setup has been described elsewhere [3]. The cryogenic portion of the exper-

imental setup consists of two concentric, silvered glass double-walled Dewars. These Dewars are

silvered to prevent the radiative transfer of heat. To allow optical access, there are two slit win-

dows in the silvering. An advantage of this system, is that all processes from sample creation to

sample destruction can be optically studied. The outer Dewar is filled with Liquid nitrogen (LN2)

and the inner Dewar is filled with liquid helium (LHe). The glass helium Dewar is connected by

a pumping line to an Edwards model E2M80 two-stage mechanical pump, and an Edwards model

EH1200 roots blower. The inside of the Dewar is cooled by the evaporation of He4 removed by

these two pumps. With the roots blower running, temperatures inside the helium Dewar of 1.1 K

are achievable.

The glass Dewars are supported by an aluminum frame connected to a vibration isolation ta-

ble. The hollow spaces inside of this frame were filled with lead shot, which loads the vibration

isolation table helping reduce vibration transmission to the setup. To prevent transmission of vi-
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brations from footsteps, a false floor was constructed using aluminum I-beams and CNC water-jet

cut quarter inch aluminum plates. The main pumping line also has a series of bellows to reduce

vibrations from the vacuum pumps.

2.2.1 Optical Insert

The optical insert houses the atomic source and mechanically supports the experimental appa-

ratus inside of the glass helium Dewar. The optical insert is connected to the vacuum system with

a large flange with a rubber o-ring. The top flange of the cryogenic system houses all of the con-

nections to room-temperature equipment, including a vacuum feed-through for our cryogenic fiber

assembly, and a vacuum feed-through for all electrical connections. Directly below the top flange

are 4 Styrofoam baffles which help reduce heat transfer from the room-temperature top flange.

The insert connects the support for the sample collection beaker to the top flange with a series of

thin-wall stainless steel tubes connected to brass flanges. These stainless steel tubes terminate in a

brass flange which can be used to mount additional equipment inside of the Dewar.

2.2.2 Rotating Beaker Assembly

One unique feature of this setup is the ability to rotate our beaker at cryogenic temperatures.

The possibility of rotating a beaker containing HeII was demonstrated in previous work [59, 60].

In our setup rotation of the beaker is accomplished by connecting the quartz beaker to the output

shaft of a stepper motor (see Fig. 2.5). The quartz beaker sits in a Teflon holder which is attached

to a brass flange with screws. The brass flange is secured to the output shaft of the stepper motor

with a set screw.

The electric motor is powered by a 24 VDC power supply controlled by a stepper motor driver

and an Arduino UNO development board with an ATMEGA 328 microcontroller. The micro-

controller is running a program which enables the motor, controls the direction of rotation, and

“ramps up" the rotational speed from zero to the desired speed, as well as displaying this speed

on a seven-segment display. The microcontroller provides a chain of TTL pulses to the DM320T

stepper motor driver. This driver has built-in current limiting capabilities that reduce heating inside
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Figure 2.4: Diagram showing the scheme of the optical experiment. 1: Quartz capillary, 2: Optical-
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Figure 2.5: Rotating beaker assembly. 1: Atomic source, 2: Nitrogen-helium jet, 3: Fountain
pump line, 4: Quartz beaker, 5: Teflon beaker holder, 6: Brass flange, 7: NEMA 8 stepper motor,
8: Optical fiber.

of the stepper motor coils, as well as providing the microstepping. These are controlled by dip-

switches located on the side of the stepper motor driver. The motor is a standard NEMA 8 motor

with 200 steps per revolution, or 1.8 deg. per step. With the microstepping from the driver, there

are a total of 1600 microsteps per revolution (13.5 arcmin per microstep). Each TTL pulse from
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the microcontroller advances the motor one step. The use of microstepping allows for smoother

rotation of the beaker.

The motor itself is an off-the shelf part, which was modified to perform in cryogenic conditions.

The two bearings connected to the rotor were removed and throughly cleaned using an aerosol

solvent. This solvent is generally used to remove oil and debris from automotive sensors, and it is

safe for sensitive electronics. The liquid oil lubricants would be frozen at cryogenic temperatures.

The bearings were then lubricated using a molybdenum disulfide (MbS2) dry lubricant applied

with an aerosol solvent. After application, the solvent is evaporated, leaving a thin film of dry

MbS2.

The operation of the motor provided an additional heat load so that all experiments were per-

formed at a slightly elevated temperatures 1.53-1.54 K compared to the optimal condition (T = 1.5

K).

2.3 Optics

The emission of the ultraviolet (UV) and visible (VIS) light is collected using a cryogenic

fiber assembly installed inside the helium Dewar that withstands liquid helium temperatures. This

fiber assembly collects light from the bottom of the sample collection beaker and terminates at a

vacuum-tight optical feed-through on the top flange.

A bifurcated optical fiber is connected on the atmospheric side of the vacuum feed-through.

This optical fiber transfers the light emitted from the sample to the Andor Shamrock SR-500i with

Newton EMCCD camera and the Ocean Optics HR2000+ spectrometers [3]. By employing this

bifurcated fiber assembly, we can make simultaneous measurements with two different spectrom-

eters.

The Andor spectrometer can take high resolution spectra (0.53 nm, first grating) for a narrower

spectral range (∆λ = 340 nm), but has a much higher sensitivity, allowing for an exposure time

of 3 ms during registration. The quantum efficiency of the Andor spectrometer using the Newton

EMCCD camera and the 1st grating is shown in Fig. 2.6a. The Ocean Optics spectrometer can

record spectra continuously over a large wavelength range from 200 to 1100 nm, with spectral
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Figure 2.6: a) Quantum Efficiency of Andor SR-500i spectrometer while using Newton EMCCD
camera with the 1st grating, b) Quantum efficiency of the Ocean Optics HR2000+ spectrometer, c)
Quantum efficiency of Avantes NIR 512-1.7 TEC spectrometer.

resolution 1.3 nm (generally used with a registration time from 100 to 500 ms). The quantum

efficiency of the Ocean Optics spectrometer is shown in Fig. 2.6b.

The Ocean Optics and Andor Spectrometers were wavelength calibrated using an Ocean Optics

HG-1 Mercury Argon Calibration source. This source emits light with known wavelengths and

intensities from λ = 253 - 922 nm.

The spectra of NIR emission is observed from the exterior of the Pyrex Dewars through a strip

window in the silvering. A collection lens focuses light emitted by the sample onto the entrance

of a collimating lens where a fiber optic cable is attached. The fiber connects to an Avantes NIR

512-1.7 TEC spectrometer. This spectrometer can continuously record spectra in a range from

944-1650 nm, with an exposure time of 100-500 ms, and a resolution of 5 nm. The quantum

efficiency of the Avantes spectrometer is shown in Fig. 2.6c.

The Ocean Optics and Avantes Spectrometers were externally synchronized using a home-

made trigger box connected to each spectrometers accessory port. The connections are illustrated

in Fig. 2.7. The Ocean Optics HR2000+ was connected using the HR4-CBL-DB15 accessory

cable which converts from the 3M Pak-50 connector on the spectrometer to a standard DB-15HD.

The Avantes spectrometer was connected using a standard DB26HD cable. The trigger-box en-

closure houses DB15HD and DB26HD breakout boards which connect the external trigger input
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and ground connections for each spectrometer. It also has a BNC bulkhead for the TTL input of

an external trigger, which was provided by a Tektronix CFG250. The TTL signal is sent on the

inner conductor, with the outer conducted being grounded. The TTL input signal was externally

switched using a physical relay actuated by an Arduino UNO development board using the LINX

firmware connected via USB to a computer running Labview. Both spectrometers were externally

triggered to the rising edge, and controlled via USB by their respective programs; Ocean Optics

SpectraSuite and Avantes Avasoft 8. Spectra from the Ocean Optics and Andor Spectrometers

were synchronized during analysis.

During the creation of our samples, luminescence from the jet of radio-frequency discharge

products can be observed with all three spectrometers simultaneously in the glass Dewar. Typically

the Andor Spectrometer uses the “step-and-glue" function. In this regime, the spectrometer will

accumulate 100 scans, each with a 250 ms exposure time with the high resolution grating. Upon

completing these scans, the grating is moved to the next portion of the spectral range, and the pro-

cess is repeated until the entire desired range has been recorded. This method allows broad-range

high-resolution spectra to be obtained over the range from 200-900 nm. The Avantes spectrometer

generally is set to record continuously with the range of 950-1650 nm with an exposure time of

500 ms. The Ocean Optics spectrometer records continuously in the range from 200-1100 nm with

an exposure time of 250 ms.

After sample accumulation, the decay of α-group emission is observed in the glass Dewar.

Generally, the Avantes and Ocean-Optics spectrometers observed the decay on the same file with

the same settings as the sample creation. The Andor spectrometer however, recorded a kinetic

series with a 1 second exposure time on the third grating. The duration will depend on the observed

sample, but a typical series length would be 150 seconds.

During the sample destruction, all three spectrometers can record simultaneously in both the

Janis cryostat and the glass Dewar setups. The Andor spectrometer typically records a kinetic

series of 120,000 spectra, each with exposure time of 3 ms, giving a total of 6 minutes of recording

per series using the first grating in the ranges of 240-580 nm or 540-880 nm. However, studies
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using a longer exposure time with the higher resolution 1st grating were performed on the γ-line

emission of the nitrogen anion. The Ocean Optics and Avantes spectrometers generally record with

a 250 ms integration time.

2.4 Automatic filling system

In both the combined optical and ESR spectroscopy set-ups LN2 is used to cool the discharge

tube. Initially this tube was filled manually, but this posed problems with waste, inconsistent

cryogen levels, and the possibility for water to condense inside. When water from the air is allowed

to condense inside, the dangerous condition of an ice plug can form, trapping evaporating nitrogen

vapor inside the tube. This pressurized gas can forcibly eject the tube, destroying it as well as the

discharge insert. Another issue occurs if the LN2 is allowed to solidify. When the discharge is

started, the solid nitrogen can sublimate creating a tremendous amount of vapor which can also

destroy the tube. To alleviate these issues an automatic filling system was developed.

The system works by pressurizing a nitrogen Dewar with nitrogen gas. The nitrogen gas is

provided from a gas line connected to an exterior tank. The gas flows from the tap through a

regulator where the pressure is reduced to less than 5 PSI. Then it passes through an air hose to a

3-way normally closed solenoid valve. This 3-way normally closed solenoid valve will exhaust to

the atmosphere when the valve is de-energized, and connect the inlet when energized. This allows

the storage Dewar to continuously vent, keeping it at atmospheric pressure until pressure is needed

to fill. Once energized, nitrogen gas will flow through the valve into the Dewar pressurizing it. The

pressurized liquid nitrogen is forced from the storage Dewar through a transfer line into the quartz

discharge tube. The pressure inside the Dewar was limited using an overpressure valve, which

opens automatically when a set pressure is exceeded.

The solenoid valve is controlled by a circuit as seen in Fig. 2.7. There is an option to control

with a Labview program which controls an output of the serial port. The control circuit takes this

input and sends it to a solid-state relay which will energize the solenoid when the input is set high.

When the input is low, the solenoid is de-energized. There is a fly-back diode in parallel with the

solenoid to allow the current induced by Lenz’s law to circulate until dissipated.
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Figure 2.7: Automatic filling system circuit, optically-coupled physical relays are on the left, the
Arduino development board is in the center, and solid-state relays are on the right.

The Labview program controls when the solenoid is to be energized. It does this by measur-

ing the temperature at two locations inside of the quartz tube. One thermocouple is located at the

bottom of the quartz tube, and the other is located near the top. The temperatures are measured

using copper-constantan thermocouples which give approximately 25µV per degree K. Both ther-

mocouples have one end placed in a reference bottle of LN2 placed nearby. The voltages from

the thermocouples are measured with HP 3478A digital multimeters which are connected to the

controlling computer using GPIB.

The Labview program reads the values from the HP multimeters, converts them into temper-

atures which are relative to the reference, and decides whether or not to energize the solenoid. If

the upper thermocouple becomes 10 K warmer than the bottom thermocouple, the solenoid will be

energized for 60 seconds, filling the quartz tube.

The lowermost thermocouple is also used to control the PID heating system which consists

of an Agilent power supply connected to an annular heater located at the bottom of the quartz
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tube. The Labview program reads the temperature of the lowermost thermocouple and controls the

output of the power supply to the heater to hold the temperature 1 K cooler than the reference. This

prevents the cold helium vapor from freezing the LN2 present in the bottom of the quartz discharge

tube.

An Arduino UNO development board is controlled via USB by a PC running Labview using

the LINX firmware developed by makerhub. This arrangement allows for 13 pins of TTL GPIO

to be controlled via USB. The control box where the Arduino is mounted includes 4 solid state

relays for controlling 24 VDC solenoid valves and 4 optically coupled physical relays capable of

controlling AC or DC devices at voltages less than 120 VAC as shown in 2.7. Currently there

are two 3-way solenoids responsible for filling the main LN2 bath or the quartz discharge tube.

One solenoid valve was used for flushing dry N2 gas to remove any LN2 or water from the quartz

tube, and another solenoid valve was used for filling the main helium bath with clean He gas. A

schematic of these connections is shown in Fig. 2.8.

In conjunction with a controlling Labview program, this control box allows the glass-Dewar

optical set-up to be pre-cooled and operated autonomously for up to 8 hours. With this arrange-

ment, the operator can fill the main bath and the two LN2 storage Dewars the night before the

experiment. Dry N2 gas flushes the quartz tube before starting the experiment preventing the con-

densation of any water inside of the discharge tube. The level of LN2 in the main nitrogen bath

is maintained by the Labview and automatic filling systems. A thermocouple is installed inside

the main bath. One end of this thermocouple is approximately 10 cm below the level of the foam

cover, and another is at the bottom of the bath. When there is a∼ 10 K temperature differential, the

upper thermocouple probe is assumed to be out of LN2 and the LN2 bath is filled from the storage

Dewar.

After the LN2 bath is filled with LN2, the main helium Dewar is filled with ∼ 775 Torr of UHP

helium gas. This helium gas acts as a heat transfer gas which allows the experimental insert inside

the helium Dewar to thermalize to liquid nitrogen temperature. While the apparatus is cooling, the

helium Dewar is kept above atmospheric pressure. This prevents any contaminants from the air in
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Figure 2.8: Automatic filling system diagram. Pressurized He and N2 gas lines are shown in black
and LN2 lines are shown in blue.

the room to enter into the system. This pressure is maintained by a solenoid valve connected to a

pressurized UHP He gas cylinder. This solenoid is controlled by the Labview program which reads
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the pressure from a MKS-PDR 2000 capacitive manometer.

At a pre-determined time, the valve to the N2 gas flushing will be closed, ceasing the flow of N2

gas into the quartz discharge tube. Immediately following this, the 3-way valve will pressurize the

LN2 storage Dewar forcing LN2 from the storage Dewar into the discharge tube. Two heaters will

also be turned on, shown as heaters 1 and 2 on Fig. 2.7. These heaters are made of resistive wires

connected to DC power supplies. The DC power supplies are connected to physical relays that are

controlled by a TTL signal from the Arduino development board. The two heaters warm the quick

connectors which seal around the outer diameter of the quartz discharge tube, and to the top of

the quartz capillary where the stainless steel capillary is connected. These heaters help prevent the

build-up of ice around these connections. If ice is allowed to build up around these connections,

the nitrile O-ring can become frozen and brittle, causing leaks into our system.

The current configuration of this set-up requires approximately 6 hours to pre-cool the inner

parts from room temperature to LN2 temperature. The ability to automate the pre-cooling process

saves the operator the wait time.

2.5 Pre-cooling

Before liquid helium can be transferred into the experimental setup, the system should be

cooled as much as possible to minimize the evaporative losses. This is done by cooling the interior

of the experimental apparatus to LN2 temperatures.

2.5.1 Glass Dewar Pre-cooling

For the glass Dewar setup, pre-cooling is accomplished by filling the nitrogen bath and quartz

discharge tube with LN2. Once these volumes have been filled, the helium Dewar is flooded with

ultra high purity (UHP) 5.0 helium gas from Praxair (99.999% purity). This gas is used as a transfer

gas to cool the inner parts of the apparatus to LN2 temperature. An automatic LN2 filling system

is used to maintain the level LN2 in the discharge tube (see Section 2.4).

As the interior of the apparatus is cooled, helium gas is periodically added to keep the pressure

inside greater than atmospheric pressure. This prevents contaminants from entering the system in
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the event of a leak, and reduces the amount of time to cool the inner parts.

Care has to be taken to keep the nitrogen bath full to prevent the helium gas from diffusing

from inside of the inner Dewar into the vacuum space. If enough helium diffuses through the

Pyrex into the vacuum space the Dewar becomes “soft”. A soft Dewar will have an unacceptable

helium evaporation rate, and will have to be serviced. The Dewars that we had manufactured by

Pope Scientific have a sealed glass nipple that can be opened by a glass blower. This port allows

the vacuum space to be evacuated of any diffused helium gas.

The temperature is read using a factory calibrated Lakeshore Cryotronics GR-300-AA-0.3D

Germanium thermometer connected to a Linear Research Incorporated LR-400 4-wire AC resis-

tance bridge.

2.5.2 Metal Cryostat Pre-cooling

The Janis cryostat is pre-cooled by filling the liquid helium bath with LN2. Once the bath is

cooled to this temperature, the LN2 is ejected by pressurizing the volume using ultra high purity

(UHP) helium gas. The liquid ejected from the helium bath can then be added to the LN2 bath.

The main helium bath is pumped to a good vacuum (< 1 Torr) to ensure that all nitrogen liquid was

ejected. If there is LN2 remaining in the bottom of the bath, it will be impossible to transfer liquid

helium due to the latent heat of the solidifying nitrogen.

2.6 Liquid helium transfer

Once the apparatus is cooled to LN2 temperature, helium can be transferred from a transport

Dewar into the system. This is done with a vacuum-jacketed cryogenic transfer line. The transport

Dewar is placed on a lifting cart. The vent port of the transport Dewar is connected to a manifold

which connects to the helium gas recovery system, and a cylinder of UHP helium gas. The main

helium bath of the experimental apparatus is connected to the helium gas recovery system. The

transport Dewar is lifted and the vacuum jacketed transfer line is inserted into both the transport

Dewar and the experimental apparatus. Once the transfer line is inserted completely, the transport

Dewar is pressurized with UHP helium gas. This forces the helium liquid from the transport Dewar
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into the helium bath of the apparatus. When the desired amount of helium liquid is transferred,

the cylinder of pressurized helium gas is closed, and the transport Dewar is vented to the recovery

system. Once the pressure in the transport Dewar has equalized to atmospheric pressure, the Dewar

is lowered and the transfer line is withdrawn.

2.7 Gas Handling System

The gas mixtures that are used to create our samples are prepared at room temperature in a gas

handling system. This system consists of a manifold connecting gas storage tanks to gas mixing

tanks, and a connection to an Edwards model 18 dual-stage rotary vane mechanical vacuum pump.

A line connects this manifold to a Brooks 5850E mass flow controller which maintains a steady

flux of 5 × 1019 atoms or molecules per second. A stainless steel capillary connects the flow

controller to the cryogenic portion of the setup.

The hydrogen-nitrogen-helium gas mixtures are prepared using Linde Electronics & Specialty

research grade helium gas (99.9999% purity). We also used research purity nitrogen and hydrogen

gases (99.9999%) from Matheson and deuterium gas (99.6% D2 and 0.4% HD) from Cambridge

Isotope Laboratory Inc. The oxygen content in the gas mixtures ∼ 1 ppm results from contam-

ination in this helium gas. We increased the helium content of our gas mixtures to enhance the

efficiency of dissociation of impurity molecules in the discharge.

2.8 Sample Creation

The main bath is disconnected from the helium recovery system and connected to the Edwards

Model 80 vacuum pump. The main bath is allowed to pump down to several Torr and the fountain

pump is turned on, filling the sample collection beaker with HeII.

The samples are created by passing gas mixtures through a radio frequency (RF) discharge

zone and injecting them into a quartz beaker filled with HeII [24, 25].

The atomic source that produces the excited atoms and molecules is made up of a quartz tube

with a concentric inner quartz capillary. The quartz discharge tube is inside of a double-walled

stainless steel vacuum jacket which thermally insulates the atomic source from the cold helium
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Figure 2.9: Diagram showing the scheme of the room temperature gas handling system.

vapor inside the main helium bath. At the bottom of the discharge tube there are two electrodes

which surround the quartz capillary. The tube is filled with LN2 which simultaneously cools the

incoming gas mixture and the discharge electrodes. The RF discharge (f ∼ 50 MHz, power ∼ 75

W) is provided by a HP 8556B signal generator amplified by an E&I 3100L amplifier connected

to electrodes surrounding the bottom of the quartz capillary. After passing through the discharge
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zone, the dissociated impurity atoms and excited molecules along with helium gas exit the quartz

capillary through an orifice diameter∼ 0.75 mm and enter the helium Dewar. The pressure gradient

∼ 2 Torr between the discharge zone and cryostat creates a well-formed jet which is injected into

a beaker of superfluid HeII placed 2.5 cm below the orifice. Impurity atoms and molecules are

rapidly cooled in the gas jet by the dense helium vapor and coalesce into nanoclusters. The jet

penetrates the surface of the HeII where the gas mixture containing dissociated impurity atoms

and excited species forms a porous structure consisting of ensembles of nanoclusters. The helium

level in the beaker is kept constant by a thermo-mechanical fountain pump which pumps HeII

from the bottom of the main helium bath. During sample preparation a temperature of 1.5 K was

maintained by pumping on the main bath with the Edwards model E2M80 vacuum pump. The

temperature inside the beaker was measured using a factory-calibrated Lake Shore Cryotronics

GR-300-AA-0.3D germanium thermometer.

2.8.1 Process of Drying the sample

After the sample has accumulated for 10 - 30 minutes, the flow of gas mixture is ceased, and

the RF discharge is turned off. The fountain pump is then turned off, ceasing the flow of HeII into

the sample collection beaker. Over the course of ∼ 15 - 20 minutes the liquid helium exits the

beaker via film creep and evaporation, leaving a “dry” sample.

2.8.2 Destroying the sample

After the sample is dry, the pumping line is closed and the temperature inside of the sample

beaker begins to increase from 1.2 to ∼15 K in ∼ 50 s, initiating destruction of the sample. As the

temperature increases with time, the stabilized nitrogen atoms begin to diffuse through the sample,

and recombine, resulting in luminescence of the sample. Thermoluminescence from the sample

increases with temperature until T ∼ 10 K when the sample is completely destroyed in a series of

bright flashes.
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3. OPTICAL AND ELECTRON SPIN RESONANCE STUDIES OF DESTRUCTION OF

POROUS STRUCTURES FORMED BY NITROGEN-RARE GAS NANOCLUSTERS IN

BULK SUPERFLUID HELIUM∗

3.1 Introduction

In this chapter we studied changes in the integrated spectra emitted during the destruction of

nitrogen-neon-helium and nitrogen-argon-helium samples when the ratio of the nitrogen to rare

gas atoms is changed from 1/20 to 1/1. It was found that when the ratio changed from 1/20 to

1/5, broad β-bands of NO molecules appeared in the spectra. This observation is a result of an

accumulation of NO molecules [3] and an efficient recombination of N(2D) with O(3P) atoms as

well as an energy transfer from metastable N2(A3Σu) molecules to NO molecules at the end of the

destruction. This effect is observed only for samples with local concentrations of stabilized N(4S)

atoms larger than 7×1018 cm−3 for nitrogen-neon-helium samples and larger than 1.3×1019 cm−3

for nitrogen-argon-helium samples. The presence of oxygen atoms in the system is a result of trace

amounts of oxygen in the helium gas used for sample preparation.

3.1.1 Experimental Method

Experiments were performed in the metal optical helium cryostat. After sample preparation,

ESR spectra of N(4S) atoms stabilized in the samples were obtained at temperature ∼ 1.3 K and

studies of sample thermoluminescence were also performed. Firstly, we studied thermolumines-

cence of the samples immersed in superfluid helium during warming up from 1.2 to 2.14 K. This

annealing of the sample in HeII does not change the measured ESR signal of stabilized nitrogen

atoms in the samples as is verified by registration of ESR signals of N(4S) atoms before and after

annealing.

Secondly, studies of thermoluminescence at higher temperatures were performed. As the tem-

∗Material in this chapter was reprinted with permission from “Optical and Electron Spin Resonance Studies of
Destruction of Porous Structures Formed by Nitrogen-Rare Gas Nanoclusters in Bulk Superfluid Helium”, by P. T.
McColgan, A. Meraki, R. E. Boltnev, D. M. Lee, and V. V. Khmelenko. Journal of Low Temperature Physics, DOI
10.1007/s10909-016-1707-5, Copyright 2017 by Springer.
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perature increases, thermoluminescence of the sample was observed and recorded by the optical

spectrometers and the concentrations of nitrogen atoms stabilized in the samples were monitored

by the ESR spectrometer. This annealing compacts the sample so that more nitrogen atoms enter

the sensitive region of the microwave cavity resulting in a growing ESR signal.

Finally, studies were performed when helium is evaporated from the sample cell. These consist

of gradually warming the sample, using a PID controlled heater, as the helium vapor entered the

sample cell chamber through a needle valve. This initiates faster warming of the sample in helium

vapor, raising the temperature from 2.8 K to 20 K. The ESR measurements were performed at

the following temperatures: T = 2.8, 3.5, 5, 10, and 20 K. During registration of ESR spectra the

temperature was stabilized by a PID controller. ESR signals (normalized to temperature) continued

growing as the temperature is increased to 3.5 K. During this warming up, we observed more

intense thermoluminescence and the final destruction of the sample with bright flashes. The ESR

measurements show a sharp decrease in the ESR signal from N atoms during the final destruction

which occurs in the temperature range between 5 and 10 K for all samples studied.

3.2 Experimental Results

3.2.1 Dynamics of thermoluminescence during destruction of impurity-helium samples

An example of the dynamics of thermoluminescence during the destruction of a nitrogen-neon-

helium sample is shown in Fig. 3.1. Each spectrum in Fig.3.1 is the sum of 100 spectra with

integration time of 3 ms. Sample luminescence is characterized by a green glow of the nitrogen

atoms (the α-group), which intensifies in time as the temperature inside the sample cell increases

along with an intermittent appearance of β-group of oxygen atoms during flashes. Generally, V-K

bands of molecular nitrogen are also observed before the final sample destruction when the sample

explodes in a series of flashes, the spectra of which include the α- and α′-groups of N atoms, the

β- and β′′-groups of O atoms, and the V-K bands of nitrogen molecules, as well as the M- and

β-bands of NO molecules. After the final bright flash, which occurs on the ∼107th second, the

decay of luminescence of nitrogen atoms surviving in solid nitrogen micro-crystallites (α-group)
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Figure 3.1: Dynamics of the thermoluminescence spectra during destruction of nitrogen-neon-
helium sample recorded by the Andor Spectrometer. The sample was prepared from gas mixture
[N2]:[Ne]:[He] 1:1:100. The most prominent emission was from the α-group of nitrogen atoms,
transition N(2D→4S), and β-group of oxygen atoms, transition O(1D→1S).

is observed.

Fig. 3.2 shows a comparison of the integrated spectra obtained during the destruction of sam-

ples prepared from nitrogen-argon-helium and nitrogen-neon-helium mixtures. The ratio of molec-

ular nitrogen and rare gas for these mixtures is equal to 1/20 but the ratios of impurity (nitrogen +

rare gas) to helium are different: 1:100 for the first gas mixture and 1:20 for the second. Spectra

were obtained in the spectral range 240-580 nm. The identifications of the band and lines observed

are also shown in Fig. 3.2. The most intense lines in both spectra are the α-group of N atoms, tran-

sition (2D - 4S), and the β-group of O atoms, transition (1D - 1S). The intensity of β-group emission
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Figure 3.2: Comparison of integrated thermoluminescence spectra obtained during the destructions
of samples prepared from a) nitrogen-argon-helium gas mixture [N2]:[Ar]:[He] = 1:20:2000, and
b) nitrogen-neon-helium gas mixture [N2]:[Ne]:[He] = 1:20:400.

of O atoms is comparable to that of the α-group emission of N atoms because of the much higher

(∼ 105 times) probability of O(1D - 1S) transition than that of the N(2D - 4S) transition. Although

the concentration of stabilized N atoms in the sample is more than three orders of magnitude larger

than that of O atoms, the significantly greater probability of the transition of O atoms leads to an

observation of emission from O atoms comparable to emission from N atoms. The V-K bands of

N2 molecules, corresponding to the (A3Σ+
g → X3Σ+

u ) transitions, are also present in both spectra,

but the surroundings for N2 molecules are different: Ar atoms in nitrogen-argon-helium samples
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and N2 molecules in the nitrogen-neon-helium sample. This result shows differences in the forma-

tion of the nanoclusters for these different gas mixtures. In the case of the nitrogen-argon-helium

sample the nitrogen atoms and molecules form a mixed nanocluster with argon atoms. However,

in the case of nitrogen-neon-helium samples the nitrogen atoms and molecules formed the core

of the nanocluster (due to their larger van der Waals interaction) which later is covered by a layer

of Ne atoms. During destruction, the Ne layer is evaporated first, allowing processes of N atom

recombination and the emission of excited species occur in the remaining molecular nitrogen core

of the nanocluster. The α′- and δ′′- groups of N atom, the β′- and β′′- groups of O atom as well

as the γ-line of N− anion [5] are also present in the spectra. α′-, δ′′-, β′-, and β′′- are the lines,

which correspond to simultaneous electronic transitions of atoms and vibrational transitions of

neighboring N2 molecules. The presence of these lines indicates that N2 molecules are neighbors

of emitting N(2D) and O(1D) atoms. The γ-line at 793 nm was only recently identified as the

transition (1D - 3P) of a nitrogen anion N− [5]. The excited states of the N− anion are formed as a

result of interaction of delocalized electrons and metastable nitrogen atoms N(2D) during the pro-

cess of sample destruction [5]. Additionally in the spectra of the nitrogen-argon-helium sample,

weak M-bands and broad β- bands of NO molecules are present. M-bands correspond to the (a4Π

- X2Π) transitions and β-bands correspond to (B2Π - X2Π) transitions of NO molecules.

In the following studies we will focus on investigating spectra in the spectral range 240-580

nm where a majority of the bands and lines are present and all significant changes occur.

3.2.2 Nitrogen-neon-helium samples

For preparation of nitrogen - neon - helium condensates, the gas mixture with ratios 1:20 and

1:50 of impurity to helium gas were used but the ratio between N2 and Ne was changed from

1:20 to 1:1. After sample preparation, the ESR spectra of nitrogen atoms stabilized in nitrogen-

neon-helium samples were obtained at 1.3 K. During warming up, the ESR spectra were measured

at temperatures 2.8, 3.5, 5, 10 and 20 K. Fig. 3.3 shows ESR spectra of N(4S) atoms stabilized

in the samples formed from different nitrogen-neon-helium mixtures. Spectra were obtained for

the samples which were compressed during evaporation of helium from the cell and correspond
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Table 3.1: Average concentrations of nitrogen atoms determined by ESR spectroscopy in nitrogen
- neon - helium samples

Gas mixture Before sample destruction After sample destruction

[N2]:[Ne]:[He] = 1:20:400 2.6× 1018 cm−3 1.2× 1017 cm−3

[N2]:[Ne]:[He] = 1:5:100 7.0× 1018 cm−3 9.6× 1016 cm−3

[N2]:[Ne]:[He] = 1:1:100 1.25× 1019 cm−3 8.8× 1016 cm−3

to the maximum concentration of nitrogen atoms for each of the samples. Although maximal

concentrations were obtained at different temperatures for different samples, all signals presented

in Fig. 3.3 were normalized to the temperature 1.3 K. We can see that as the content of nitrogen

molecules in the gas mixture is increased, the ESR signals from nitrogen atoms stabilized in the

samples became larger and the line widths are increasing due to stronger dipole-dipole interactions.

The maximum average concentration of nitrogen atoms obtained from our ESR measurement

for nitrogen-neon-helium samples as well as the concentration of atoms remaining in the ESR cav-

ity after destruction of the samples are listed in Table 3.1. Increasing the ratio of N2/Ne from 1/20

to 1/1 in the gas mixture used for sample preparation led to increasing the average concentration

of stabilized nitrogen atoms in the samples from 2.6 × 1018 cm−3 to 1.25 × 1019 cm−3 before

destruction. The highest concentration was achieved in the sample prepared from the gas mixture

[N2]:[Ne]:[He] = 1:1:100 with the largest content of N2 molecules. The difference in residual con-

centrations of N atoms after sample destruction is not understood. This question needs additional

studies.

Figure 3.4 shows the comparison of the integrated thermoluminescence spectra during destruc-

tion of nitrogen-neon-helium condensates. The most intense lines in the spectra are the α-group of

N atoms and the β-group of O atoms. Also, V-K bands of N2 molecules and M- and β-bands of NO

molecules, as well as the β′′-group of O atoms are present in the spectra. However, they are much

weaker than those of the α- and β-groups. We observe that as the ratio N2/Ne is increased, broad

β-bands of NO molecules appear. In the spectra taken of the sample prepared from the gas mix-

ture [N2]:[Ne]:[He] = 1:20:400 we found the V-K molecular nitrogen bands along with the atomic
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Figure 3.3: Comparison of ESR spectra of N(4S) atoms stabilized in the samples prepared from the
following nitrogen-neon-helium gas mixtures: a) [N2]:[Ne]:[He] = 1:20:400, b) [N2]:[Ne]:[He] =
1:5:100, and c) [N2]:[Ne]:[He] = 1:1:100.

nitrogen α-group and atomic oxygen β-groups. The positions of V-K bands correspond to excited

N2 molecules surrounded by nitrogen molecules. In the spectra of the sample prepared from the

[N2]:[Ne]:[He] = 1:5:100 gas mixture, weak M-bands and intense broad β-bands of NO molecules

are present as well as the V-K bands corresponding to (A3Σ+
u , v′ = 1 → X3Σ+

u , v
′′ = 5 − 9)

transitions in N2, which were not seen in the spectrum obtained from the previous sample (see Fig.

3.4b). The M-bands and β-bands were emitted by NO molecules surrounded by neon atoms [61],

but the V-K bands were emitted by excited N2 molecules surrounded by molecular nitrogen. The

spectrum of the sample prepared from gas mixture [N2]:[Ne]:[He] = 1:1:100 is dominated by the
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Figure 3.4: Comparison of integrated spectra obtained during the destruction of samples pre-
pared from the following nitrogen-neon-helium gas mixtures: a) [N2]:[Ne]:[He] = 1:20:400, b)
[N2]:[Ne]:[He] = 1:5:100, and c) [N2]:[Ne]:[He] = 1:1:100.

β-bands of NO molecules in a neon environment (See Fig. 3.4c).

3.2.3 Nitrogen-argon-helium samples

For preparation of nitrogen-argon-helium samples, the gas mixtures with a 1/100 ratio of rare

gas to helium gas was used, but the ratio between N2 and Ar was changed in the range from

1/20 to 1/1. After sample preparation, the ESR spectra of nitrogen atoms stabilized in nitrogen-

argon-helium samples were obtained at the temperature of 1.3K. ESR measurements were also
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Table 3.2: Average concentrations of nitrogen atoms determined by ESR spectroscopy of nitrogen-
argon-helium samples

Gas mixture Before sample destruction After sample destruction

[N2]:[Ar]:[He] = 1:20:2000 1.9× 1018 cm−3 7.6× 1015 cm−3

[N2]:[Ar]:[He] = 1:5:600 1.3× 1019 cm−3 8.2× 1016 cm−3

[N2]:[Ar]:[He] = 1:1:200 3.6× 1019 cm−3 4.9× 1016 cm−3

performed at the different stages of warming at temperatures 2.8, 3.5, 5, 10 and 20 K. Figure 3.5

shows ESR spectra of N(4S) atoms stabilized in the samples prepared from different nitrogen-

argon-helium gas mixtures. The spectra correspond to the largest ESR signals for each of the

samples obtained in the process of warming up. As the concentration of nitrogen in the gas mixture

is increased, the average concentration of nitrogen atoms stabilized in the sample also increases.

This is characterized by an increasing amplitude and appearance of broad wings of the ESR spectra.

Broad wings appear due to increasing local concentration of N atoms [36] in the samples with

higher nitrogen content. The maximum average concentrations of nitrogen atoms determined from

ESR measurements as well as estimates of concentrations of atoms surviving after destruction are

listed in Table 2. As the concentration of molecular nitrogen is increased following the N2/Ar

ratio 1:20 to 1:1, the concentration of stabilized nitrogen atoms before destruction increases from

1.9× 1018 cm−3 to 3.6× 1019 cm−3 as seen in Table 3.2.

Figure 3.6 shows integrated spectra taken during destruction of the samples prepared from

different nitrogen-argon-helium gas mixtures. Increasing the content of N2 molecules in the gas

mixture leads to increasing thermoluminescence intensity of the samples during destruction. As in

the case of nitrogen-neon-helium samples, the most intense lines during destruction of nitrogen-

argon-helium samples are the β-group of O atoms and the α-group of N atoms. Also the V-K bands

of N2 molecules are present in all spectra. The positions of V-K bands in the observed integrated

spectra during destruction of nitrogen-argon-helium samples are listed in Table 3.3. Also in Table

3.3, the positions of V-K bands in an N2 matrix and in an Ar matrix observed in the previous work

[62] are shown for comparison. From the comparison of the V-K band positions obtained in this
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Figure 3.5: Comparison of ESR spectra of N(4S) atoms stabilized in samples prepared from the
following nitrogen-argon-helium gas mixtures: a) [N2]:[Ar]:[He] = 1:20:2000, b) [N2]:[Ar]:[He]
= 1:5:600, and c) [N2]:[Ar]:[He] = 1:1:200

work and obtained earlier in nitrogen and argon matrices, we can conclude that in the samples

prepared from gas mixture with N2/Ar ratio equal to 1/20, the V-K bands are found to be similar to

those in an argon matrix, whereas, in samples prepared from gas mixtures with a greater content of

nitrogen (ratios N2/Ar equal to 1/5 and 1/1) the V-K bands are similar to those in a nitrogen matrix.

Another feature of the spectra is the presence of M-bands and β-bands of NO molecules. It

should be noted that the behavior of these bands are different. The intensities of M-bands are

highest for the sample prepared from the gas mixture with the ratio of N2/Ar equal to 1/20, and

are reduced upon increasing the content of N2 in the gas mixture. In contrast, the intensities of
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β-bands of NO molecules are minimal for the lowest content of N2 molecules and increase with

the increasing content of N2 in the gas mixture. The β-bands are broad and the positions of the

bands are sometimes shifted from the position of the β-bands of NO molecules for the Ar matrix.
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Figure 3.6: Comparison of integrated spectra obtained during the destruction of samples pre-
pared from the following nitrogen-argon-helium gas mixtures: a) [N2]:[Ar]:[He] = 1:20:2000, b)
[N2]:[Ar]:[He] = 1:5:600, and c) [N2]:[Ar]:[He] = 1:1:200.
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Table 3.3: Positions (in nm) of Vegard-Kaplan bands observed during destruction of nitrogen-
argon-helium samples

ν" 1:1:200 1:5:200 1:20:1200 in N2 [62] in Ar [62]
ν” = 4 248.1 247.3 248.0 248.2 247.1
ν” = 5 262.5 262.3 261.5 262.6 261.4
ν” = 6 278.6 278.0 278.0 278.6 277.2
ν” = 7 296.2 296.0 295.4 296.4 294.8
ν” = 8 316.3 316.2 315.1 316.3 314.6
ν” = 9 339.0 338.4 337.8 338.8 336.8
ν” = 10 364.5 364.1 362.4 364.4 362.0
ν” = 11 393.6 392.5 392.4 393.6 390.9
ν” = 12 427.6 421.0 427.4 424.2
ν” = 13 467.5 467.0 463.1

3.2.4 Comparison of the spectra for samples formed from different nitrogen-rare gas-helium

gas mixtures.

Fig. 3.7 shows integrated spectra obtained during destruction of the samples prepared from gas

mixtures N2: Rare gas (RG): He where RG = Ar, Ne, and Kr. The ratio for N2/RG is equal to 1/5

for all gas mixtures. In all spectra, V-K bands of N2 molecules and M-bands of NO molecules are

present. Surprisingly, the emission of N2 molecules occurs from N2 layers, whereas the emission

of NO molecules comes from the corresponding RG layers (Ar, Ne or Kr). The striking difference

in the spectra of nitrogen-krypton-helium samples presented in Fig. 3.7c is the domination of the

M-bands and the complete absence of β-bands of NO molecules. In contrast, in the spectra of the

nitrogen-neon-helium and nitrogen-argon-helium samples, the M-bands are weak, but β bands of

NO molecules are intense and broad (see Fig. 3.7a and 3.7b).

3.3 Discussion

We studied ensembles of molecular nitrogen-rare gas nanoclusters containing stabilized nitro-

gen atoms. Concentrations of nitrogen atoms stabilized in the samples were determined by ESR

measurements. By changing the ratio of molecular nitrogen to rare gas from 1/20 to 1/1 in condens-

ing gas mixtures, the average concentration of stabilized N atoms can be changed from 2.6× 1018
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Figure 3.7: Comparison of integrated spectra obtained during the destructions of samples prepared
from different nitrogen-rare gas-helium mixtures: a) [N2]:[Ar]:[He] = 1:5:600, b) [N2]:[Ne]:[He]
= 1:5:600, and c) [N2]:[Kr]:[He] = 1:5:1200.

cm−3 to 1.25×1019 cm−3 in nitrogen-neon-helium samples and from 1.9×1018 cm−3 to 3.6×1019

cm−3 in nitrogen-argon-helium samples. As one can see, an addition of neon or argon atoms does

not substantially influence the efficiency of N atom stabilization in contrast with the results on

heavier krypton atoms, which increase the stabilization efficiency of nitrogen [36] and hydrogen

[38, 63] atoms in impurity-helium condensates. During the process of warming up, recombina-

tion of stabilized nitrogen atoms was initiated and the thermoluminescence spectra were studied.

The mechanism of thermoluminescence is the following: Recombination of N(4S) atoms produces

N2(A3Σ+
u ) molecules. The excitations from metastable molecules can easily be transferred through

37



the N2 solid matrix and excite stabilized N(4S) and O(3P) atoms which result in α-group emission

of N atoms and β-group emission of O atoms. Decreasing the N2/RG ratio in the gas mixture

should lead to formation of nanoclusters with increasing numbers of RG atoms. This results in re-

ducing the efficiency of transferring excitations through the nanoclusters. This should enhance the

emission of V-K band of N2 molecules. This effect is clearly observed for nitrogen-neon-helium

samples (see Fig. 3.4). For the ratio N2/Ne = 1/20 the strongest V-K bands were observed and,

as expected, the increase of N2/Ne ratio led to better energy transfer by excitation from N2(A3Σu)

molecules to other species such as N and O atoms and NO molecules.

In the case of nitrogen-argon-helium samples increasing the N2/Ar ratio also led to increasing

the intensity of N and O atoms as well as NO molecule emissions, although the V-K bands of N2

molecules were still present in the spectra.

The main effect observed in this work is the enhancement of the emission of β-bands of NO

molecules with an increase of the N2/RG ratio. In the experiments we observed NO β-bands cor-

responding to transitions from the lowest vibrational level of B2Π state. There are two possible

processes for excitation of this state: the energy transfer from N2(A3Σu) molecules and recombi-

nation of nitrogen atoms in the metastable 2D-state with oxygen atoms in the ground 3P-state. Both

mechanisms become more efficient during the final stages of destruction at higher temperatures.

This behavior is consistent with the previous investigations of NO molecules in solid N2 and solid

rare gases [64, 65, 66, 67].

The broad features, which we assigned to the β-group of O atoms, probably corresponds to

emission of rare gas oxide excimers NeO, ArO and KrO [68, 69, 70]. More detailed studies of

their emission are underway. The broad feature near 632 nm in the nitrogen-neon-helium spectra

can be assigned to the spin-forbidden transition O(1D-3P) in a Ne matrix (see Fig. 3.2a) which was

observed for the first time in [68].

3.4 Conclusions

1. In these experiments we observed optical luminescence spectra during the destruction of

samples prepared from different nitrogen-rare gas-helium mixtures. The α-group of nitro-
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gen, β-group and β′′-group of oxygen as well as V-K bands of N2 and M- and β-bands of NO

molecules were present in every sample tested. We found that as the relative concentration

of nitrogen to rare-gas increased, the prevalence of β-bands of NO molecules increased. In

addition to having a greater intensity, the centers of these bands tended to shift. The NO-

β-bands tended to blue-shift for samples prepared from gas mixtures containing neon with

increasing molecular nitrogen concentration, and red-shift for argon containing gas mixtures

with increasing molecular nitrogen concentration.

2. The thermoluminescence observed during the destruction of nitrogen-neon-helium and nitrogen-

argon-helium samples substantially differs compared to that of nitrogen-krypton-helium-

samples. In nitrogen-krypton-helium samples the M-bands (a4Π, v′ = 0 → X2Π, v′′ =

4-11) of NO molecules were observed, in contrast to nitrogen-neon-helium and nitrogen-

argon-helium samples where the β-bands (B2Π, v′=0→ X2Π , v′′ = 10-15) dominate for NO

molecules.

3. The average concentrations of nitrogen atoms are directly related to the content of nitrogen

molecules in the gas mixture from which the impurity-helium samples are prepared.
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4. LUMINESCENCE OF MOLECULAR NITROGEN NANOCLUSTERS CONTAINING

STABILIZED NITROGEN, OXYGEN, HYDROGEN, AND DEUTERIUM ATOMS.∗

4.1 Introduction

Chemical and physical processes occurring in solid nitrogen have stimulated a broad range of

research including studies of ices present in the interstellar medium [71], as well as studies of

high-energy density materials (HEDM). A promising method in the search for high energy density

systems has achieved local concentrations as high as 2×1021 cm−3 of stabilized nitrogen atoms in

aerogel-like ensembles of nitrogen nanoclusters submerged in superfluid helium [36, 39, 40, 41].

In this method the products of a radio-frequency (RF) discharge in nitrogen-helium gas mixtures

were injected into bulk superfluid helium, resulting in the production of ensembles of molecular

nitrogen nanoclusters containing very high concentrations of stabilized nitrogen atoms [24, 25].

This method also holds promise for the study of low temperature chemical reactions in ensem-

bles of nanoclusters. For example, exchange tunneling reactions between atoms and molecules

of hydrogen isotopes were studied in nanoclusters immersed in superfluid helium [1, 72, 73, 74].

Another possibility is the investigation of chemical reactions of a variety of heavier atoms and

molecules during the warming of ensembles of nanoclusters containing stabilized atoms. Earlier

investigations of chemical reactions during warming were performed in ensembles of molecular

nitrogen and nitrogen-rare gas nanoclusters containing stabilized N and O atoms [19, 21, 23, 26].

Rapid release of stored chemical energy in the samples resulted in intense thermoluminescence.

In the optical spectra of thermoluminescence the bands of N and O atoms as well as N2, NO and

O2 molecules were observed. During investigations of the dynamics of spectra accompanying the

destruction of these samples, it was found that during the process of annealing by raising the sam-

ple temperature, the emission of N, O atoms and the Vegard-Kaplan (V-K) bands of N2 molecule

were present. At the end of the destruction process bright flashes were observed, and in the spectra

∗Material in this chapter was reprinted with permission from “Luminescence of Molecular Nitrogen Nanoclusters
Containing Stabilized Atoms”, by P. T. McColgan, A. Meraki, R. E. Boltnev, D. M. Lee, and V. V. Khmelenko. Journal
of Physical Chemistry A. DOI 10.1021/acs.jpca.7b09661, Copyright 2017 by American Chemical Society.
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of these flashes, intense bands of O atoms and NO and O2 molecules were present [3]. It was

found that small changes in the oxygen content in the nanoclusters drastically influenced the opti-

cal spectra obtained[3]. This earlier work provided examples of observations of chemical reactions

in collections of nanoclusters containing stabilized nitrogen and oxygen atoms.

In the experiment presented in this chapter, we added hydrogen or deuterium molecules into

the gas mixtures used for preparing the samples in bulk superfluid helium. Firstly, we expected that

the addition of a small quantity of hydrogen isotopes would increase the efficiency of dissociation

of atoms in the RF discharge zone, creating samples with the highest energy content [13]. During

destruction of these samples, new nitrogen compounds such as polynitrogen molecules might be

formed. The synthesis of high energy density materials is a significant problem, and a promis-

ing direction is to synthesize polymeric nitrogen. A large energetic release from polynitrogen

molecule decomposition provides a strong motivation to study polynitrogen as a clean high energy

density material. Such materials decompose into environmentally clean N2, and produce enormous

amounts of energy per unit mass without harmful waste [75]. Theoretical calculations have evalu-

ated the structure and stability of numerous isomers of possible Nn molecules with n ranging from

3 to 60, but only some of the isomers are good candidates for HEDM. Neutral and ionic species

N3, N+
3 , N−3 , N+

4 , were detected and studied in solid nitrogen films [18, 76, 77, 78, 79, 80]. A

cation N+
5 has been synthesized as a part of a compound [81, 82]. There are some detailed reviews

of experimental and theoretical work on polynitrogen compounds in the literature [83, 84]. Ex-

perimental evidence was obtained for the existence of tetranitrogen (tetrazete), N4, in the gas and

solid phases [85, 86, 87, 88]. Matrix isolated tetranitrogen was obtained by condensing products

of an electrical discharge on a cold window [87], or by bombarding solid nitrogen by electrons

[88]. In the former case an intense broad band at λ = 360 nm was observed, which was assigned

to the emission of N4(D2h) tetranitrogen. There are several approaches for the creating the N4

species. The formation of N+
4 cations followed by a neutralization reaction with electrons has been

experimentally realized [85, 86, 87, 88]. However the association of two metastable N2(A3Σ+
u )

molecules was suggested as an alternative mechanism for the formation of N4 polynitrogen [6].
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The conditions during our experiments are ideal for testing this suggestion. In our experiments,

molecular nitrogen nanoclusters with high concentrations of stabilized N(4S) atoms were formed.

During destruction of the ensembles of nanoclusters, N(4S) atoms recombine and create a large

quantity of metastable N2(AΣ+
u ) molecules. Interactions of pairs of these molecules during the

explosive destruction of the samples can lead to the formation of N4 polymers which could be

identified by the light emitted at λ = 360 nm [88].

Secondly, the addition of hydrogen or deuterium in the nitrogen-helium gas mixture provides

the possibility of observing radicals containing H or D atoms such as the NH (ND) radicals. Eight

emission systems of the NH radical have been found in the range from vacuum UV at 160 nm to

near IR at ∼1.2 µm [10, 89]. The most intense transition is the triplet system A3Π→X3Σ− with a

maximum around 336 nm. This band is a chief characteristic of the NH radical [9, 13, 90, 91, 92,

93, 94, 95, 96]. The singlet systems c1Π→a1∆ at λ = 324 nm [97, 98], c1Π→b1Σ+ at λ = 450 nm

[99, 100], and d1Σ+ →b1Σ+ at λ = 162 nm [89, 101] have been observed in gas phase spectra. The

weak, forbidden transitions a1∆ →X3Σ− at λ = 795 nm [10, 102] and b1Σ+ →X3Σ− at λ = 471

nm [10, 103] were observed in the emission spectra of NH (ND) in noble-gas matrices. Recently,

the transition between the two lowest metastable states b1Σ+ →a1∆ was detected at 1.17 µm in

the emission spectra of matrix isolated NH [10]. In our experiments, the spectra were throughly

examined in these spectral regions to observe the bands of NH (ND) radicals.

In this chapter we present studies of the dynamics of optical spectra during the destruction of

ensembles of molecular nitrogen nanoclusters containing stabilized nitrogen, oxygen and also hy-

drogen or deuterium atoms. We found that in the spectra of the samples prepared from deuterium-

nitrogen-helium gas mixtures the bands at λ = 336, 360, and 471 nm are present in addition to

bands observed during destruction of nanoclusters containing only N and O atoms. The intensity

of all bands in the spectra were influenced by the presence of admixtures of hydrogen isotopes.

We conclude that the band at λ = 360 nm belongs to the emission of the N4 compound, supporting

the results obtained in Ref.[30]. Possible mechanisms for the formation of the N4 compounds are

discussed. The emission at λ = 336 nm was assigned to the A3Π,v′ = 0→X3Σ−,v′′ = 0 transition
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of ND radicals. The assignment of 473 nm band is still controversial. Two species, ND radicals

and N− anions [5] may be responsible for this emission.

4.2 Experimental Results

4.2.1 Influence of hydrogen on thermoluminescence spectra of ensembles of nitrogen nan-

oclusters

First we studied the destruction process of samples prepared from the gas mixture H2:N2:He

1:330:33,000. Figures 4.1 and 4.2 show the dynamics of luminescence during the destruction of

samples prepared from gas mixture H2:N2:He = 1:330:33,000 in the wavelength range 240 to 580

nm and 540 - 880 nm, respectively. Figure 4.1a shows the dynamics of the emission of α-group

of N atoms, Vegard-Kaplan (V-K) bands of N2 molecules and β- and β′′- groups of O atoms [3]

which were observed from the beginning of sample thermoluminescence. The intensities of these

features increase with temperature. The spectrum of emission observed during the early stage of

destruction, with identification of bands is shown Fig. 4.1b. At the end of the destruction during

bright flashes, the intense β-group and the band with maximum at λ = 360 nm were most intense.

The dynamics of thermoluminescence at the final stage destruction are shown in Fig. 4.1c. During

the time period of 60 ms the correlation between the emission of the β-group and the band with a

maximum at λ = 360 nm were observed. The spectrum of the most intense flash with identification

of the bands is presented in Fig 4.1d. The weak α-group of nitrogen atoms and β′′-group of oxygen

atoms are also present in this spectrum.

Figure 4.2a shows the dynamics of the emission of the β-group of O atoms, α′-group and

δ′′-group of N atoms, and the γ-line of N− anions [5]. The intensity of all lines increased with

temperature. The spectrum of the emission at the beginning of the destruction with the identifica-

tion of all observed bands is shown in Fig. 4.2b. The dynamics of the thermoluminescence during

the last 900 ms of sample destruction is shown in Fig. 4.2c with better time resolution. At the

end of the destruction, the intense β-group of O atoms and γ-line of N− anions, as well as weaker

δ′′-group of N atoms, and β′-group of O atoms were observed. The spectrum with identified bands
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Figure 4.1: Spectra taken in the range 240-580 nm by the Andor Spectrometer during destruction
of the sample prepared from gas mixture [H2]:[N2]:[He] 1:330:33000. a) Dynamics of lumines-
cence spectra for the entire destruction process. Each spectrum was accumulated during a period
of 1.5 s. b) Spectrum taken during destruction at t = 37.5 s with band identifications. Temperature
dependence on time during sample destruction is shown in the inset. c) Dynamics of lumines-
cence spectra during the final period of destruction (150 ms) of the sample with exposure time 3
ms. d) Spectrum taken at the end of sample destruction corresponds to t = 54.891 s with band
identifications.

corresponding to largest flashes at the end of destruction is shown in Fig. 4.2d. The most striking

change in the spectra compared to those obtained for nitrogen-helium samples [3, 21, 26] was the

appearance of a broad band with maximum at λ = 360 nm. The position and origin of the atomic

and molecular bands in the spectra presented in Figs. 4.1 and 4.2 are listed in columns 2 of Ta-

bles 4.1, 4.3, 4.4, 4.5. The presence of α′, β′, β′′, and δ′ groups of N and O atoms in the spectra
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indicates that N2 molecules are neighbors of these atoms [3, 104].
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Figure 4.2: Spectra taken in the range 540-880 nm with the Andor Spectrometer during destruction
of the sample prepared from gas mixture [H2]:[N2]:[He] = 1:330:33000 a) Dynamics of the lumi-
nescence spectra during the entire destruction process. Each spectrum has an exposure time of 1.5
s. b) Spectrum taken during destruction at t= 37.5 s with identification of all bands observed with
exposure time 1.5 s. c) Dynamics of the luminescence spectra during the final period of sample
destruction with exposure time 3 ms. d) Spectrum taken at the end of sample destruction at t =
37.491 s with band identifications.

As a next step, we observed the influence of the presence of molecular hydrogen in the initial

gas mixtures on the appearance of the band at λ = 360 nm. Thus spectra were studied during

destruction of the samples prepared from different H2:N2:He gas mixtures. The ratio between
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Table 4.1: Positions (nm) of the Vegard-Kaplan bands N2(A3Σ+
u v′ = 0 → X1Σg v′′) observed

during the destruction of samples prepared from different gas mixtures

Band in N2 [H2]:[N2]:[He] [D2]:[N2]:[He] [D2]:[N2]:[Ar]:[He] [D2]:[N2]:[Ne]:[He]
v′,v′′ Matrix [105] 1:330:33,000 1:2,000:100,000 1:500:4,500:225,000 1:500:5,000:100,000

0,4 248.4 248.6 250.08 248.2 248.9
0,5 263.0 263.2 263.22 263 263.7
0,6 278.9 279.1 278.69 278.6 279.5
0,7 296.8 296.8 296.49 296.4 297.1
0,8 316.8 317.2 318.12 315.9 317.2
0,9 339.3 - 337.9 338.3 340.1
0,10 365.2 365.5 365.65 - 365.5
0,11 393.5 394.4 394.3 394.9 394.6
0,12 427.1 - 429.99 - -

H2/N2 in these mixtures was changed from 1/200 to 1/500.

Table 4.2: Integrals of the intensities of bands (arb. units) observed during the entire destruction
process (Int) and during the largest flash (Flash) for samples prepared from different hydrogen-
nitrogen-helium gas mixtures

Band [H2]:[N2]:[He] [H]:[N2]:[He] [H]:[N2]:[He]
1:200:20,000 1:330:33,000 1:500:50,000

Int Flash Int Flash Int Flash

α 1.92×105 1.73×103 1.74×106 2.06×104 9.02×105 6.62×103

β 1.41×105 2.10×104 9.03×105 3.44×105 4.73×105 3.01×104

γ 1.13×105 4.01×103 4.38×105 7.53×104 2.82×105 5.42×103

λ = 360 nm - 5.49×104 - 1.75×105 - 4.06×104

V-K v′ = 0,v′′ = 7 3.39×105 9.76×103 1.62×106 6.00×103 1.00×106 1.22×104

Figure 4.3 shows the integrated spectra of the emission observed with the Ocean Optics spec-

trometer during the destruction of samples prepared from different H2:N2:He gas mixtures. Lines

and bands observed include the α-group and α′-group of N atoms, the γ-line of N− anions, the

Vegard-Kaplan (V-K) bands of N2 molecules (v′ = 0, v′′ = 2-12), and the β-group of O atoms.
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Figure 4.3: Integrated spectra observed with the Ocean Optics spectrometer during the entire de-
struction process for samples created from different H2:N2:He gas mixtures: a) [H2]:[N2]:[He] =
1:200:20,000. b) [H2]:[N2]:[He] = 1:330:33,000. c) [H2]:[N2]:[He] = 1:500:50,000.

This figure demonstrates the influence of the concentration of H2 in the sample gas mixture on the

intensity of the observed lines in the spectra. The integrals of intensities of bands shown in Figs.

4.3 and 4.4 are listed in Table 4.2. The maximum intensities of the lines were observed for the

gas mixture with the ratio H2/N2 = 1/330 as shown in Table 4.2. The intensities of bands from the

sample prepared from gas mixture with H2/N2 ratio equal to 1/200 are 4-9 times smaller and the

intensities of the bands of the sample prepared from gas mixture with ratio H2/N2 = 1/500 were

twice smaller.

Figure 4.4 shows spectra of the emission of the largest flashes observed with the Ocean Optics

spectrometer accompanying the destruction of samples prepared from gas mixtures with different

H2:N2:He ratios. Lines and bands observed include the α- , δ-, and δ′′ - groups of N atoms, the
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Table 4.3: Positions of lines of N and O atoms, and nitrogen anion observed during the destruction
of samples prepared from different gas mixtures.

in N2 [H2]:[N2]:[He] [D2]:[N2]:[He] [D2]:[N2]:[Ar]:[He] [D2]:[N2]:[Ne]:[He]
Matrix[14] 1:300:30,000 1:2,000:100,000 1:500:4,500:225,000 1:500:5,000:100,000

α 522.8 522 522.3 523.7 523.3
α′ 594.4 594.5 - 592.1 594.5
δ′′ 857 - - - 857.2
β 554.9 557.8 557.4 559.1 557.6
β′ 636.7 633.2 - 632.7 -
β′′ 494 - - - -
γ 791 793 794.0 794.2 793.8

Table 4.4: Positions of "new" lines emitted during the destruction of samples prepared from differ-
ent gas mixtures with the addition of hydrogen and deuterium molecules.

in N2 [H2]:[N2]:[He] [D2]:[N2]:[He] [D2]:[N2]:[Ar]:[He] [D2]:[N2]:[Ne]:[He]
Matrix 1:330:33,000 1:2,000:100,000 1:500:4,500:225,000 1:500:5,000:100,000

336 (ND)[9] - 337.8 336.6 337.7
471 (ND)[9] - 472.9 473.9 472.4
360 (N+

4 )[88] 361.9 363.3 361.5 365.1

γ-line of N− anions[5], the Vegard-Kaplan (V-K) bands of N2 molecules, the β-group of O atoms,

and the M-bands of the NO molecule. It is also interesting to note that for all samples made

from gas mixtures with small admixtures of molecular hydrogen, the broad feature at λ = 360 nm

was clearly observed only in the spectra of the largest flashes. This figure demonstrates the same

tendency between the concentration of H2 in the gas mixture used for sample preparation and

the intensity of the lines in the emitted spectra as was demonstrated in Fig. 4.3. The most intense

luminescence was observed for the sample prepared from the gas mixture with ratio H2/N2 ∼1/330

as shown in Table 4.2 and Fig. 4.4. In contrast to the integrated spectra, in the spectra of the largest

flashes, V-K bands are substantially suppressed, but a new rather intense band with maximum at λ

= 360 nm appears. The intensity of the band at λ = 360 nm for gas mixture with H2/N2 ratio 1/330
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Figure 4.4: Spectra of the largest flashes during the destruction of samples formed by different
hydrogen-nitrogen-helium gas mixtures: a) [H2]:[N2]:[He] = 1:200:20,000 b) [H2]:[N2]:[He] =
1:330:33,000 c) [H2]:[N2]:[He] = 1:500:50,000. Spectra were taken with the Ocean Optics spec-
trometer with exposure time 500 ms.

was three times greater than for the gas mixture with H2/N2 ratio 1/200 and four times greater than

for gas mixture with H2/N2 ratio 1/500.

4.2.2 Influence of deuterium on thermoluminescence spectra of ensembles of nitrogen nan-

oclusters

To understand the origin of the band at λ = 360 nm we performed experiments to study the

influence of the addition of D2 molecules to N2-He gas mixtures used for sample preparation on the

spectra obtained during sample destruction. The isotope shift effect can help in the identification
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of bands corresponding to species containing hydrogen isotopes.
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Figure 4.5: Spectra taken in the range 240-580 nm with the Andor Spectrometer. Spectra
were observed during the destruction of the sample prepared from gas mixture [D2]:[N2]:[He]
= 1:2,000:100,000: a) Luminescence dynamics for the entire destruction process. Each spectrum
has an exposure time 1.5 s. b) Spectrum taken at t = 34.5 s with 1.5 s exposure time with band
identifications. c) Dynamics during the final stage (60 ms) of the sample destruction. Each spec-
trum has exposure time 3 ms d) Spectrum taken at the end of destruction at t = 37.509 s with 3 ms
exposure time with band identifications.

Figure 4.5a shows the dynamics of the emission of the α-group of N atoms, the Vegard-Kaplan

(V-K) bands of N2 molecules and the β-group of O which were observed in the thermolumines-

cence of the sample prepared from the gas mixture D2:N2:He = 1:2,000:100,000. The intensities
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of the bands mentioned above increase with temperature. The spectrum of the emission is shown

in Fig. 4.5b near the end of destruction where the emission from the V-K band is most intense.

This spectrum also includes the strong α-group of N atoms, and the β-group of O atoms as well as

other weaker lines including the β′′-group from oxygen, and the line at λ = 473 nm. The dynamics

of thermoluminescence at the end of destruction is shown in Fig. 4.5c. During the time period of

60 ms, the intensity of emission of the β-group correlates with the intensity of the band at λ = 360

nm. The spectrum of this emission is shown in Fig 4.5d. The strong β-group of O atoms and the

band at λ = 360 nm along with the weaker α-group of N atoms, and bands at 337 nm and 473 nm

are also present in this spectrum. The positions and origins of atomic and molecular bands in the

spectra presented in Fig. 4.5 are listed in column 3 in Tables 4.1-4.5. It is interesting to note that

the appearance of the bands at λ = 336 nm and at λ = 473 nm in the samples prepared with the

addition of D2 molecules is in contrast with the case of hydrogen containing samples, where these

bands have not been observed.

Table 4.5: Positions (nm) of NO-M bands (a4Π, v′ = 0 → X2Π, v′′) and NO β-bands (B2Π, v′ =
0→ X2Π, v′′) observed during the destruction of samples prepared from different gas mixtures

N2 [H]:[14N2]:[He] [D2]:[N2]:[He] [D2]:[N2]:[Ar]:[He] [D2]:[N2]:[Ne]:[He]
v′,v′′ Matrix[67] 1:300:30,000 1:2,000:100,000 1:500:4,500:225,000 1:500:5,000:100,000

NO-M bands

0,7 399.41 394.8 398.8 401.6 395.2
0,8 428.71 429.0 429.4 430.9 429.9
0,9 462.00 464.1 463.6 - -
0,10 494.4[3] 496.8 494.2 494.6 496.6

NO-β bands

0,8 322.40 323.5 - - 324.4
0,9 340.40 340.7 - - 339.4
0,10 359.30 - - - -
0,11 383.75[3] 384.0 - - 384.0

We also studied the influence of the concentration of D2 molecules in the N2:He gas mixture
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used for sample preparation on the intensity of the bands in the spectra obtained during the de-

struction of the samples. Figure 4.6 shows the integrated spectra of the emission observed with the

Ocean Optics spectrometer during the destruction of different D2:N2:He samples. Lines and bands

observed include the α- and α′- groups of N atoms, the γ-line of N− anions, the V-K bands of N2

molecules (v′ = 0, v′′ = 2-13), and the β-group of O atoms. This graph demonstrates that there

exists an optimal concentration of D2 in the gas mixture used for sample preparation that produces

a maximum intensity for all lines of luminescence during sample destruction. This optimum con-

centration of D2 corresponds to the spectra shown in Fig. 4.6b. The integrals of intensities of the

bands shown in Figs. 4.6 and 4.7 are listed in Table 4.6.
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Figure 4.6: Integrated spectra taken with the Ocean Optics spectrometer during the destruction
of samples created from different deuterium-nitrogen-helium gas mixtures: a) [D2]:[N2]:[He] =
1:750:50,000, b) [D2]:[N2]:[He] = 1:2,000:100,000, and c) [D2]:[N2]:[He] = 1:10,000:500,000
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Figure 4.7: Spectra taken with the Ocean Optics spectrometer of the largest flashes during
the destruction of samples created from different deuterium-nitrogen-helium gas mixtures: a)
[D2]:[N2]:[He] = 1:750:50,000, b) [D2]:[N2]:[He] = 1:2,000:100,000, and c) [D2]:[N2]:[He] =
1:10,000:500,000.

Figure 4.7 shows spectra of the emission observed with the Ocean Optics spectrometer for the

largest flashes during destruction of samples prepared from different D2:N2:He gas mixtures. Lines

and bands observed include the broad band at λ = 360 nm, the α-group of N atoms, the γ-line of

N− anions, the weak Vegard-Kaplan (V-K) bands of N2 molecules (v′ = 0, v′′ = 2-11), the strong β-

group of O atoms, and the M-bands of NO molecules (v′ = 0, v′′ = 6-10). This graph demonstrates

the similar relation between the concentration of D2 in the gas mixture used for sample preparation

and the intensity of the luminescence observed during sample destruction as shown in Fig. 4.6.

The optimum concentration of D2 for observation of the most intense bands corresponds to the
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Table 4.6: Integrals of the intensities of bands (arb. units) observed during the entire destruction
process (Int) and during the largest flash (Flash) for samples prepared from different deuterium-
nitrogen-helium gas mixtures

Band [D2]:[N2]:[He] [D2]:[N2]:[He] [D2]:[N2]:[He]
1:750:50,000 1:2000:100,000 1:10,000:500,000

Int Flash Int Flash Int Flash

α 8.47×104 1.41×103 1.58×106 1.76×104 1.16×106 1.19×104

β 4.12×104 2.58×103 2.41×105 5.81×104 3.58×105 5.05×104

γ 2.24×105 1.24×104 2.86×105 5.07×103 2.01×105 1.11×104

λ = 360 nm - 2.58×104 - 1.25×105 - 6.77×104

V-K v′ = 0, v′′ = 7 1.23×105 5.13×103 5.47×105 9.48×103 1.15×105 4.86×103

[D2]:[N2]:[He] = 1:2,000:100,000 gas mixture as can be seen from Table 4.6. The spectrum of the

sample created from this gas mixture is shown in Fig. 4.7b. It is also interesting to note that in all

spectra of largest flashes of the samples prepared from D2:N2:He gas mixtures, the intense broad

feature at λ = 360 nm was observed.

4.2.3 Destruction of samples prepared from Argon and Neon containing mixtures

To observe possible matrix effects on the positions of the atomic and molecular bands, we also

studied samples prepared from deuterium-nitrogen-helium gas mixtures with the addition of rare

gases Ne and Ar.

Figure 4.8a shows the dynamics of the emission of the sample prepared from gas mixture

D2:N2:Ar:He = 1:500:4,500:225,000. The α-group of N atoms, the V-K bands of N2 molecules

and the β-group of O atoms were observed from the beginning of sample thermoluminescence.

The intensities of these features increase with temperature. The spectrum of the sample emission

with identification of bands is shown in Fig. 4.8b. The spectrum was observed near the end of

destruction where the emission from the V-K band is most intense. This spectrum also includes

the strong α-group of N atoms, the β-group of O atoms, and in addition other weaker lines at λ

= 473 and the β′′-group of oxygen. The dynamics of thermoluminescence during the brightest

flashes is shown in Fig. 4.8 c. During the time period of 60 ms the emission of α-group, the β′-
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Figure 4.8: Spectra taken in the range 240-580 nm with the Andor Spectrometer. Spectra were
observed during the destruction of the sample prepared from gas mixture: [D2]:[N2]:[Ar]:[He] =
1:500:4,500:225,000: a) Dynamics of spectra during the entire destruction process with exposure
time 1.5 s. b) Spectrum taken at t = 44.1 s with 1.5 s exposure time with identification of all
observed bands. c) Dynamics of spectra taken with exposure time 3 ms during the final stages of the
sample destruction. d) Spectrum taken at t = 27.231 s with 3 ms exposure time with identification
of observed bands.

and β′′-groups and bands at λ = 336 nm, and λ = 473 nm as well as the broad feature at λ = 360

nm were observed. The spectrum of this emission with band identifications is shown in Fig. 4.8d.

Figure 4.9 shows a comparison of spectra taken during the destruction of samples created from

deuterium-nitrogen-helium gas mixtures as well as those formed with the addition of rare gases Ne

and Ar. Features observed in this spectra include the strong α-group of N atoms and the β-group

of O atoms, the V-K bands of N2 molecules (v′ = 0, v′′ = 4-11), the M bands of NO molecules (v′
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Figure 4.9: Spectra of the largest flash observed by the Andor Spectrometer with spectral res-
olution of 0.53 nm during the destruction of samples prepared from different gas mixtures:
[D2]:[N2]:[Ne]:[He] = 1:500:5,000:100,000 (blue), [D2]:[N2]:[Ar]:[He] = 1:500:4,500:225,000
(red), and [D2]:[N2]:[He] = 1:2,000:100,000 (black).

= 0, v′′ = 6-10), along with the broad band with maximum at λ = 360 nm, and the bands at λ = 336

nm and at λ = 473 nm. The most intense flash was from the sample prepared from the gas mixture

containing neon. The positions and origins of atomic and molecular bands in the spectra presented

in Figs 4.5 and 4.9 are listed in columns 3-5 of Tables 4.1, 4.3, 4.4, and 4.5.
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4.3 Discussion

The addition of hydrogen or deuterium molecules into the gas mixtures used for sample prepa-

ration can lead to the appearance of luminescence from some new species formed in chemical

reactions during the destruction of these samples. It was found that a relatively small change of

the hydrogen and deuterium impurity content drastically influenced the spectra obtained (see Figs.

4.3, 4.4, and 4.6, 4.7). Indeed, in the spectra obtained during the destruction of samples prepared

from deuterium-nitrogen-helium gas mixtures, we observed new intense bands at λ = 336, 360,

and 473 nm. For samples prepared from hydrogen-nitrogen-helium gas mixtures we observed only

one new intense band at λ = 360 nm in addition to the bands observed in the spectra obtained from

samples prepared from "pure" nitrogen-helium gas mixtures[3, 26].

Possible candidates for emission of these bands may be species containing H and D atoms

such as the radicals NH and ND. The energy levels and transitions of the NH radical are presented

in Fig. 4.10. The transitions A3Πi → X3Σ− and b1Σ+ → X3Σ− of ND can be responsible for

emission at λ = 336 and 473 nm, respectively. The position of the ND bands in different matrices

is shown in Table 4.7. The observed positions of the new lines at λ = 336 and 473 nm shown in

Table 4.4 are close to the positions of ND radical lines in the rare gas matrices (see Table 4.7).

Assignment of emission at λ = 473 nm to the b1Σ+, v′ = 0 → X3Σ−, v′′ = 0 transition of ND

radicals are also supported by a decrease of the emission of δ-, and δ′′ - groups of N atoms in the

spectra when the band at λ = 473 nm is present (see Fig. 4.7). The b1Σ+-state of the ND radical is

formed in the recombination of N(2P) and D(2S) atoms (see Fig. 4.10). As a result of this reaction

the N(2P) atoms were removed from the system and thus the δ-, and δ′′ emissions are absent. In

the emission from hydrogen-nitrogen-helium samples the band at λ = 473 nm is absent, but the

emission of the δ-, and δ′′ groups are present (see Fig. 4.4), providing evidence that N(2P) atoms

have undergone radiative decay and thus did not participate in the reactions with H(2S) atoms in

this case.
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Figure 4.10: Energy diagram for NH radicals [4]. The transitions observed in this work are shown
as thicker arrows.

Table 4.7: Positions (nm) of NH and ND transition A3Πi,v′ = 0 → X3Σ−, v′′ = 0 and b1Σ+,
v′ = 0→ X3Σ−, v′′ = 0 in different rare-gas matrices[9, 10].

Radical Matrix A3Πi, v′ = 0→ X3Σ−, v′′=0 b1Σ+, v′ = 0→ X3Σ−, v′′=0
NH Ne 335.92[9]

Ar 337.76[9] 472.99 [10]
Kr 338.95[9]

ND Ne 335.57[9]
Ar 337.76[9] 473.26 [10]
Kr 338.73[9]

An alternative interpretation for the line at λ = 473 nm may be the transition 1S0 →3P1 of

N− anion [5]. Fig. 4.11 shows the energy diagram for the three lowest energy levels of the N−
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anion. If the line at λ = 473 nm belongs to the N−(1S0 →3P1) transition we can calculate the

line corresponding to the N−(1S0 →1D2) transition, because we know the position of the line

corresponding to the N−(1D2 →3P1,2) transition (γ-line)[5]. The position of the N−(1S0 →3D2)

transition should be at λ = 1167 nm. The position of this line should be resolved even if the line

corresponding to the NH (ND) transition b1Σ+, v′ = 0 → a1∆+, v′′ = 0, which was observed in

an Ar matrix at λ = 1173.58 nm (1170.47 nm), is present in the spectra [10].

Figure 4.11: Energy diagram for N− anions [5].

Experiments with registration of lines from the samples in the NIR region should resolve this

problem. We can conclude that for the identification of the emission at λ = 473 nm there are two

possible candidates, the ND radical (transition b1Σ+,v′ = 0 → X3Σ−, v′′ = 0), or the N− anion

(transition 1S0 →3P1). Both of these candidates have the same precursor N(2P) atom.

From the comparison of the observed bands at λ = 336 nm with the results of emission from

ND(A3Πi,v′ = 0→X3Σ−,v′′ = 0) obtained in rare gas matrices (see Table. 4.7) we can assign this

emission to the A3Πi → X3Σ− transition of the ND radical. The A3Πi-state of ND radical is the

result of the recombination of N(2D) and D(2S) atoms. Indeed we observed a correlation between

intensities of emissions at λ = 336 nm and that of the α-group of N atoms, which supports the
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assignment for this emission.

Another candidate for emission of the band at 336 nm might be the N2 molecule transition

C3Πg, v′ = 0 → B3Πg,v′′ = 0. In the gas phase this band is located at λ = 337 nm [88], but there

is no evidence for observation of this band in solid nitrogen.

The most interesting result obtained in this work is the observation of the rather intense broad

band with the maximum at λ = 360 nm for hydrogen-nitrogen-helium and deuterium-nitrogen-

helium samples. After analysis of our previous results we found that we observed only very weak

bands at 360 nm during the destruction of nitrogen nanoclusters containing only stabilized nitrogen

atoms and small (10−3 − 10−4) admixtures of oxygen atoms [3, 21]. The addition of H2 or D2

molecules in the gas mixture used for sample preparation resulted in a large enhancement of the

intensity of the band appearing at λ = 360 nm in the luminescence spectra in the final stage of

sample destruction (see Figs. 4.4, 4.7, 4.9). We found that the maximum intensity of the 360

nm band corresponds to some optimum quantity of H2 or D2 present in the make-up gas mixture.

An important observation is that the addition of rare gases in the make-up gas mixture does NOT

significantly influence the position of this band (see Fig. 4.9).

In the literature there are two explanations for the emission bands at λ = 360 nm. The first ob-

servation of this broad band was obtained when solid nitrogen was irradiated by 400 eV electrons,

and the band was assigned to an unidentified impurity [106]. Later this luminescence band was

studied during the excitation of solid nitrogen films by 500 eV electrons [88]. The band was as-

signed to the emission of polynitrogen N∗4 which was formed as a result of a neutralization reaction

of N+
4 with electrons in solid nitrogen. The scenario of “hole self-trapping” for N+

2 ions with the

formation of N+
4 in a nitrogen matrix was quite recently proposed [18, 107] because of the local-

ized character of positive charge carriers in solid N2 [108]. This suggestion is in good accordance

with both the study of gas-phase equilibria of solvation reactions of N+
2 with N2 molecules which

revealed electrostatic bonding in the core clusters N+
4 [109] and the laser-induced dissociation

experiments showing N+
4 as the ionic core for the even ion clusters N+

2 − (N2)n [110].

Another interpretation of the 360 nm band corresponding to the transition ND (A3Π, v′ = 0→
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X3Σ−, v′′ = 1) was suggested from the analysis of the luminescence spectra of the 0.1% N2 doped

solid deuterium irradiated by electrons [111]. Emission of NH (ND) radicals was also studied in

different solid rare gases. It was found that the position of the (0-1) NH(A3Π → X3Σ−) transition

is shifted by a few nanometers for different solid rare gases and that the band had a resolved

structure [9]. We rule out this interpretation because of the unusual broad shape of the observed

band at λ = 360 nm and the absence of the more intense emission of the (0-0) NH(A3Π → X3Σ−)

transition.

In our experiments the spectra of the 360 band were not significantly influenced by the addition

of rare gases or by the replacement of hydrogen isotopes in the nitrogen nanoclusters. This would

also give a preference for the interpretation of the observed band at 360 nm in our experiments as

an emission of N4 polynitrogen. However, the question remains open as to why this emission was

enhanced when the impurities of H2 or D2 were present in the molecular nitrogen nanoclusters.

A possible explanation of this behavior is the change of the efficiency of formation of N atoms in

the discharge zone with the addition of H2 and D2 molecules. It has been known for many years

that the presence of water vapor in nitrogen discharges increases the production of N atoms via

dissociation of N2 molecules[13].

For the conditions of our experiments, the formation mechanism of N4 polynitrogen predicted

in earlier theoretical work[6] can be realized. It was shown that the barrier for N4 compound forma-

tion from two nitrogen molecules in the excited metastable A3Σ+
u states is very small (∼ 0.25 eV)

[6]. Intense recombination of N(4S) atoms during the explosive destruction of the samples results

in high concentrations of metastable N2(A3Σ+
u ) molecules [3] which can participate in bimolecular

reactions to form N4 compounds. The potential curves for different electronic configurations of

N4(D2h) polynitrogen is shown in Fig.4.12. The bound state of the N4 compound in the potential

curve of two interacting triplet molecules is located at a distance R = 1.83 Å between molecules

(see Fig. 4.12). The lower potential curve of the N4 compound for the interaction of two N2

molecules in the ground state at this distance has a repulsive character. Therefore, the emission

from the bound triplet-triplet 2Ag state of N4 to the singlet-singlet 1Ag state involving the dissoci-
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Figure 4.12: Dependence of the system energy on the distance between N2 molecules R. Each
curve corresponds to the indicated symmetry of the wave function. The interatomic distance inside
the N2 molecule was L = 1.274Å. Inset shows an N4 cluster of D2h symmetry[6].

ation of the compound into two molecules (transition 1 in Fig. 4.12) should be broad and without

any structure just as for the case of excimer molecules. The predicted energy of the emitted photon

is ∼ 3.1 eV. Both of these predictions are in good agreement with the broad non-structured emis-

sion with a maximum at λ = 360 nm (E ∼ 3.44 eV) observed in our experiments. According to

this analysis we can thus assign the observed emission at λ ∼ 360 nm to the 2Ag → 1Ag transition

of N4(D2h) compound [6]. After emission the compound dissociates into two N2 molecules in the

ground state.

In the case of formation of N4 compounds as a result of the interaction of N2(A3Σ+
u ) and

N2(B3∆u), the potential curve has a minimum at R = 1.55Å. At this distance there is also a min-

imum in the potential curve of N4 resulting from the interaction of two N2 (X1Σ+
g ) molecules in

the ground state (see Fig.4.12). This means that after emission of the photon with energy of ∼ 3

eV (transition 2 in Fig.4.12) the N4 compound will remain in the metastable state providing the

possibility for the formation of a high-energy density material.

Further experimental and theoretical work would be desirable to realize high energy density

materials from N4 polynitrogen.
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4.4 Conclusions

1. The process of stabilizing high concentrations of ground state atoms in molecular nitrogen

nanoclusters provides a unique opportunity to study low temperature reactions and to pro-

duce a variety of unusual species in excited states.

2. A weak broad band at 360 nm is observed during the destruction of ensembles of molecular

nitrogen nanoclusters containing stabilized nitrogen and small admixtures of oxygen atoms.

This band was enhanced in the spectra of samples prepared from gas mixtures that contained

hydrogen or deuterium.

3. Since this band is not changed significantly in rare gas matrices, we suggest that the N∗4

polynitrogen molecule is responsible for the emission of the band at 360 nm. The exact shape

and location of the 360 nm band is not altered by hydrogen isotope substitution. These N4

polynitrogen compounds are formed during the process of sample destruction accompanied

by fast chemical reactions of nitrogen atoms and molecules.

4. The observed emission at λ = 336 nm was assigned to the ND radical, A3Π, v′ = 0→X3Σ−,

v′′ = 0 transition.

5. The observed emission at λ = 473 nm may be assigned to the ND radical, b1Σ+, v′ = 0 →

X3Σ−, v′′ = 0 transition, but the alternative assignment to the N− anion 1S0 →3P1 transition,

can also be considered.
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5. LUMINESCENCE OF ND RADICALS DURING THE DESTRUCTION OF

MOLECULAR NITROGEN NANOCLUSTERS.∗

5.1 Introduction

In the previous chapter we described experiments in which small admixtures of hydrogen or

deuterium were added into gas mixtures used for preparation of nitrogen-helium condensates in

superfluid helium [112]. A new intense broad band at λ ∼ 360 nm was observed in these ex-

periments. This band was assigned to the 2Ag → 1Ag transition of N4(D2H) polymeric nitrogen.

Additionally, in the experiments with the introduction of deuterium, the bands at λ = 336 and 473

nm were observed and were tentatively assigned to the (A3Πi → X3Σ−) and (b1Σ+ → X3Σ−)

transitions of the ND radical [112]. The transition (A3Πi→ X3Σ−) at λ = 471 had previously been

observed in the emission spectra of the NH(ND) radicals in noble-gas matrices [9, 10, 95, 103].

However in the same experiment we observed the γ-line emission at 793 nm, which corresponds

to the 1D2→ 3P2 transition of N− anions [5]. The presence of N− anions during the destruction of

the samples raised the possibility of observing other transitions of this species. Therefore the tran-

sition 1S0 → 3P1,2 of N− anions may be an alternative interpretation for the line at λ = 473 nm. If

we assign the line at λ = 473 nm to the N− (1S0→ 3P1,2) transition, and knowing the wavelengths

of another transition N− anion (1D2 → 3P1,2) [5], it is possible to calculate the wavelength of the

transition N−(1S0 → 1D2). The calculated wavelength for N−(1S0 → 1D2) transition is equal to λ

= 1167 nm. The position of this line is very close to the position of the band corresponding to the

transition b1Σ+, v′ = 0→ a1∆+, v′′ = 0 of the NH(ND) radical which was observed at λ = 1170.47

nm in an argon matrix [10].

To resolve the problem regarding the possibility of two alternative assignments of the emission

at λ = 473 nm, we performed experiments with simultaneous registration of the spectra of emission

in the ultra-violet (UV), visual (VIS), and near infrared (NIR) regions during the destruction of pure

∗Material in this chapter was reprinted with permission from “Luminescence of ND radicals during the destruc-
tion of molecular nitrogen nanoclusters”, by P. T. McColgan, S. Sheludiakov, R. E. Boltnev, D. M. Lee, and V. V.
Khmelenko. Chemical Physics, DOI 10.1016/j.chemphys.2018.08.040, Copyright 2019 by Elsevier.
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nitrogen-helium samples and samples containing nitrogen and deuterium atoms. Analysis of these

spectra provides convincing evidence for the assignment of the bands at λ = 336, 473, and 1170

nm to the ND radical.

5.2 Experimental Results
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Figure 5.1: Integrated spectra taken in the range 200-1100 nm by the Ocean Optics spectrom-
eter during destruction of the samples prepared from different gas mixtures a) [D2]:[N2]:[He] =
1:2000:100,000 (red), b) N2:He 1:100 (blue). Each spectrum was accumulated during a period of
75 s.

We studied spectra during the destruction of two samples prepared from gas mixtures: [N2]:[He]

= 1:100 and [D2]:[N2]:[He] = 1:2000:100000. Usually the process of sample destruction lasted ∼

65-70 s. Fig 5.1 shows integrated spectra obtained during the destruction in the UV and visual
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spectral ranges. Addition of deuterium in nitrogen-helium gas mixtures leads to a substantial re-

duction in the intensities of all bands previously observed from nitrogen-helium samples (see Fig.

5.1). In the integrated spectra of the nitrogen-helium sample the α, α′-groups of N atoms, β, β′,

and β′′-groups of O atoms, γ-line of N− anions, Vegard-Kaplan (V-K) bands of N2 molecules,

M-bands of NO molecules and the second Herzberg bands of O2 molecules are present [3]. Only

a few bands such as the α, α′-groups of N atoms and the β-group of O atoms, and γ-line of N−

anions [5] remain in the integrated spectra of the deuterium-nitrogen-helium sample.
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Figure 5.2: Spectra taken by the Ocean Optics Spectrometer during the most intense flashes dur-
ing the destruction of the samples prepared from different gas mixtures: a) [D2]:[N2]:[He] =
1:2000:100,000 (red), b) N2:He 1:100 (blue). Each spectrum was accumulated during a period
of 0.5 s. Features at λ = 336 and 473 nm are shown in the inset

However, the spectra of the largest flashes obtained during the destructions of both of these
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samples have more common features (see Fig. 5.2). All of the previously mentioned bands ob-

served in the integrated spectra of the nitrogen helium sample are present in the spectra of the

largest flashes of both samples. Also the δ, δ′′-groups of N atoms appeared in the spectra of both

samples. Additional bands at λ = 336 and λ = 473 have appeared in the spectra of the deuterium-

nitrogen-helium sample (see Fig. 5.2a). These bands preliminarily were assigned to the emission

of ND radicals, corresponding to transitions A3Πi→X3Σ− and b1Σ+→X3Σ−, respectively [112].

To understand when the emission of ND radicals appears during the destruction of the samples,

we studied the dynamics of the spectra. Experiments were performed with simultaneous registra-

tion of the spectra in the range 200-1100 nm with the Ocean Optics spectrometer and in the range

900-1650 nm by the Avantes spectrometer. In Fig. 5.3 we combined the spectra obtained by both

spectrometers. Fig. 5.3a shows the dynamics of the luminescence spectra in the range 200-1650

nm during the destruction of the deuterium-nitrogen-helium sample. From this figure we can con-

clude that in the spectra of most of the flashes, only α and δ-groups of N atoms and β-group of O

atoms and the bands at λ∼ 1170 nm are present. However during the largest flashes the maximum

number of molecular and atomic bands as well as the bands of the ND radical at λ ∼ 336, 473,

and 1170 nm are present, as can be seen in Fig. 5.3b. This was the first time in which the emission

of the band at λ = 1170 nm was observed (shown in Fig. 5.3a and 5.3b) during the destruction of

molecular nitrogen nanoclusters containing stabilized nitrogen and deuterium atoms.

To obtain further support that the emissions of the bands at λ = 336, 473, and 1170 belong

to the ND radical, we performed similar studies of a nitrogen-helium sample prepared from gas

mixture [N2]:[He] = 1:100. Figure 5.4a shows the dynamics of the luminescence spectra during

the destruction of the nitrogen-helium sample in the spectral range 200 - 1100 nm. From this

figure we can see that intensity of the α-group of N atoms increased with time and at the end of

the destruction in the large flashes, many atomic and molecular bands are present. In bright flashes

the δ-group of N atoms, β-group of O atoms, and NO bands are present. The spectra of the largest

flash from the nitrogen-helium sample is shown in Fig. 5.4b. There are no bands from the ND

radical in this spectrum. As can be seen from the spectra of the largest flash shown in Fig. 5.4a,
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Figure 5.3: Spectra obtained during the destruction of the sample prepared from the gas mixture
[D2]:[N2]:[He] = 1:2000:100,000. a) Dynamics of the luminescence spectra. b) Spectrum of the
brightest flash with identifications. Spectra were obtained by the Ocean Optics spectrometer in the
range 200-1100 nm, and by Avantes spectrometer in the range 900-1650 nm. Each spectrum was
accumulated during a period of 500 ms.
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Figure 5.4: Spectra obtained during the destruction of the sample prepared from the gas mixture
N2:He = 1:100. a) Dynamics of the luminescence spectra. b) Spectrum of the brightest flash.
Spectra were obtained by the Ocean Optics spectrometer in the range 200-1100 nm, and by Avantes
spectrometer in the range 900-1650 nm. Each spectrum was accumulated during a period of 500
ms.
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Figure 5.5: Comparison of the spectra taken in the range 940-1650 nm by the Avantes
Avaspec Spectrometer during destruction of the samples prepared from different gas mixtures a)
[D2]:[N2]:[He] 1:2000:100,000 (red), b) N2:He 1:100 (blue). Each spectrum was accumulated
during a period of 0.5 s.

there are only bands, corresponding to δ, δ′, and δ′′′-groups of N atoms, present in the NIR region

of this spectrum. Therefore we can conclude that in the absence of deuterium in the gas mixture

used for sample preparation the bands at λ = 336, 473, and 1170 are also absent. This provides

additional evidence for the assignment of these bands to emission of the ND radical. Figure 5.5

shows the comparison of the spectra in the region 950 - 1650 nm for deuterium-nitrogen-helium

and nitrogen-helium samples obtained during their destruction. There is no emission near λ = 1170

nm in the spectrum of the nitrogen-helium sample. At the same time the emission of N− anion at

λ= 793 (γ-line) is present in the spectrum of the nitrogen-helium sample (Fig. 5.4b). This allows

70



us to conclude that the band at λ = 1170 nm belongs to the ND radical. In Figs. 5.6a and 5.6b the

time dependences of the emission intensities of the α and δ-groups of N atoms and the bands at λ

= 336 nm, 473 nm and 1170 nm are shown.
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Figure 5.6: a) Comparison of integrated intensities behavior in time of the α-group emission
of N atoms (green line) and the emission of ND radicals at λ = 336 (blue line). b) Comparison
of integrated intensities behavior in time of the δ-group emission of N atoms (blue line) and the
emission at λ = 473 (black line) and 1170 nm (red line) of ND radicals.

5.3 Discussion

Previously, the thermoluminescence during the destruction of molecular nitrogen nanoclusters

containing nitrogen and oxygen atoms was studied. The well-known α, α′-groups of N atoms, the
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Figure 5.7: a) Energy diagram for N− anions. [7, 8] b) Energy diagram for NH radicals.[4]

β, β′, β′′-groups of O atoms, the V-K bands of N2 molecules, the M- and β-bands of NO molecules

and the second Herzberg bands of O2 molecules were observed in these studies [3, 21, 22, 23]. The

addition of hydrogen or deuterium in nitrogen-helium gas mixtures used for sample preparation

led to the appearance of the band at λ = 360 nm of polymeric nitrogen N4 and two bands at λ

∼ 336 and 473 nm, which were preliminarily assigned to the emission of the ND radical in the

thermoluminescence spectra during sample destruction [112]. The only remaining problem was

with the accuracy of the assignment of the band at λ = 473 nm to the b1Σ+ → X3Σ− transition of

the ND radical, because the alternative interpretation for this band could perhaps be the 1S0-3P1,2

transition of N− anion (see Fig 5.7a).

Figure 5.7a shows the energy diagram for the three lowest energy terms of the N− anion. The

transition (1S0 → 3P1) had never been observed previously for the N− anion. If this assignment

would be correct, we can find the position of the third transition, 1S0 - 1D2, of the N− anion shown

in Fig. 5.7a because the characteristics of the γ-line (at λ = 793 nm) corresponding to the 1D2 - 3P1,2

transition of N− anion is well known [5]. The result of the calculation for the 1S0 - 1D2 transition

of the N− anion provides a value λ = 1167 nm. This simple analysis motivates us to perform

experiments with simultaneous registration of thermoluminescence spectra during the destructions

of deuterium-nitrogen-helium samples in the UV, visual and near infrared, and compare these
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spectra with that obtained for “pure” nitrogen-helium samples for which the observation of the N−

anion bands might be expected.

Figures 5.1a and 5.1b show that there are no bands at λ = 336 and 473 nm in the integrated

spectra of thermoluminescence of the two samples studied. Both these bands together with the

band at λ = 1170 nm are present in the spectra of the most intense flashes during the destruction

of deuterium-nitrogen-helium samples (see Fig. 5.3b). Therefore we assigned these three bands to

the emission of the ND radical. Figure 5.7b shows the energy diagram for the NH(ND) radicals.

Bands at λ = 336, 471 and 1170 nm were assigned to the transitions A3Πi → X3Σ−, b1Σ+ →

X3Σ− and b1Σ+→ a1∆, respectively, of ND radicals. The formation mechanism for excited states

of ND radicals could be a result of recombination reactions of nitrogen atoms in excited states

N(2D) and N(2P) with deuterium atoms in the ground state.

N(2D) +D(2S)→ ND(A3Πi) (5.1)

N(2P ) +D(2S)→ ND(b1Σ+) (5.2)

The presence of substantial quantities of N(2D) and N(2P) atoms in nanoclusters is supported

by the observation of intense emission of α- and δ-groups where the lifetime of α-group is ∼ 30 s

and the lifetime of δ-group is ∼ 1 ms in solid molecular nitrogen [104].

As a consequence of these reactions, the emissions from A3Πi state which corresponds to the

bands at λ = 336 nm should correlate with the emission of α-group of nitrogen atoms, transition 2D

- 4S. The emission from b1Σ+ state of ND radical which corresponds to the bands at λ = 473 nm

and 1170 nm should correlate with the emission of the δ-group of nitrogen atoms, transition 2P -

2D. Figures 5.6a and 5.6b show that intensities of ND radical bands do correlate with the intensities

of the corresponding α and δ-group emissions of nitrogen atoms only in the largest flashes.
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5.4 Conclusions

1. Comparison of the spectra obtained during the destruction of nitrogen-helium and deuterium-

nitrogen-helium samples provided evidence for assignment of the bands observed in the lu-

minescence of deuterium-nitrogen-helium samples at λ = 336, 471, and 1170 to the emission

of ND radicals with corresponding transitions A3Π+
i → X3Σ−, b1Σ+ → X3Σ−, b1Σ+ →

a1∆.

2. These ND bands were observed during the final stages of destruction of the samples. The

processes of recombination of excited metastable nitrogen atoms with deuterium atoms in

ground state are responsible for the appearance of excited states of the ND radical.
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6. ROTATIONALLY INDUCED LUMINESCENCE OF NANOCLUSTERS IMMERSED IN

SUPERFLUID HELIUM.

6.1 Introduction

In this chapter we study the influence of vortex density in HeII on the intensity of luminescence

accompanied by the process of injection of molecular nitrogen nanoclusters into a rotating beaker

containing HeII. During these measurements, the nanoclusters continued to enter into the bulk HeII

inside the rotating beaker. Nitrogen atoms stabilized on the surfaces of nanoclusters [36] provide an

excellent opportunity for visualization of the process of capturing nanoclusters into vortex cores.

When two nanoclusters are captured into a vortex core they can collide and two nitrogen atoms

residing on the surfaces of these nanoclusters can then recombine, starting processes that lead to

luminescence of nitrogen atoms in nanoclusters. We observed the influence of rotation speed of

the beaker with HeII on the intensity of luminescence from the ensembles of nanoclusters.

We found that increasing the rotation speed of the beaker containing HeII led to an increase

of luminescence of the injected nanoclusters. We explained this effect by an efficient capturing of

nanoclusters in quantum vortex cores when the density of vortices was increased. Increasing the

density of vortices by increasing the rotational speed of the beaker containing HeII results in more

chemical reactions of pairs of nitrogen atoms on the surfaces of neighboring nanoclusters in vortex

cores, leading to increasing intensity of luminescence.

6.2 Experimental Method

We recorded the luminescence during the injection of the products of a discharge in nitrogen-

helium gas mixtures into bulk superfluid helium contained in the cylindrical quartz beaker (see

Fig. 6.1). During these recordings the beaker was rotated at various speeds. The rotation speeds

were equal to 3, 4, and 7.5 rad/s. These speeds were similar to those used for measurements

of the attenuation of second sound in uniformly rotating HeII [59]. For each rotation speed the

recording of luminescence lasted for 5 minutes. We performed investigations for three different

75



1

9

2

3
4

5

6

7

8

Figure 6.1: Rotating beaker assembly. 1: Atomic source, 2: Nitrogen-helium jet, 3: Fountain
pump line, 4: Quartz beaker, 5: Teflon beaker holder, 6: Brass flange, 7: NEMA 8 stepper motor,
8: Fountain pump body, 9: Optical fiber.

nitrogen-helium gas mixtures: N2:He = 1:400, 1:200, and 1:100.

6.3 Experimental Results

We recorded the luminescence spectra and their intensity during the injection of nanoclusters

into bulk superfluid helium while the beaker with helium was rotating uniformly. The spectra were
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obtained over a broad range. The Ocean Optics spectrometer provided spectra in the 200-1100

nm range, the Andor spectrometer in the 240-580 nm range, and the Avantes spectrometer in the

950-1650 nm range.

Figure 6.2 shows the spectra obtained by the Andor spectrometer during the condensation of

gas mixture N2:He = 1:200 for three different rotational speeds of the beaker filled with HeII.

From the comparison of these spectra one can see that the intensities of emission assigned to the

molecular nitrogen bands and helium atomic lines which were collected from the gas phase jet are

almost the same for all three rotation speeds of the beaker.
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Figure 6.2: Spectra observed with the Andor spectrometer during condensation of the gas mixture
N2:He = 1:200 into a beaker filled with HeII for different rotational speeds: a) 3 rad/s (black), b) 4
rad/s (red), c) 7.5 rad/s (blue). Each spectrum was obtained by integration of the emission during
a 5 minute time interval.
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In contrast, the α-group emission of nitrogen atoms in nanoclusters immersed into superfluid

helium depends on the rotation speed of the beaker with HeII. Increasing the rotation speed of the

beaker from 3 rad/s to 7.5 rad/s resulted in a substantial increase of the α-group emission. Figure

6.3 shows a comparison of intensities of α-group emission during the injection of two different gas

mixtures (N2:He = 1:100 and 1:200) for three different rotational speeds of the beaker filled with

liquid helium. These spectra were obtained by the Andor spectrometer using the first grating with

a resolution of 0.53 nm.
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Figure 6.3: Comparison of α-group emission observed during condensation of gas mixtures N2:He
= 1:100 (solid line) and 1:200 (dashed line) for different rotational speeds: 3 rad/s (black), 4 rad/s
(red), 7.5 rad/s (blue). Each spectrum was obtained by integration of the emission during a 5
minute time interval.
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We performed similar investigations for the gas mixture N2:He = 1:400. Fig. 6.4 shows the

dependence of the integrated intensity of the α-group of N atoms in nanoclusters immersed into

HeII on the rotation speed of the beaker for three different gas mixtures used for injection of

nanoclusters. It is clearly seen that increasing the rotational speed of the beaker led to an increase

of the integrated luminescence for each gas mixtures used in the experiments. Also, it was found

that increasing the flux of nitrogen clusters into bulk HeII resulted in increasing the intensity of the

α-group for each value of rotation speed of the beaker.

The spectra observed in the NIR range by the Avantes spectrometer shows a result similar to

that obtained in the UV-VIS ranges, namely, the emission from the gas-phase jet was essentially

unaltered by the rotation of the beaker with HeII as seen in Fig. 6.5. The most dramatic effect

of rotating HeII was observed for the emission of the δ-group of N atoms stabilized in the N2

nanoclusters as shown in Fig. 6.5. Figure 6.6a shows a comparison of the intensities of the over-

lapping N atom δ-group and N2(B3Πg, v′ = 0 → A3Σ+
u , v′′ = 0) emissions during the injection

of two different gas mixtures (N2:He 1:100 and 1:200) for three different rotational speeds of the

beaker. Similar investigations were made for gas mixture N2:He 1:400. We performed deconvolu-

tion for these overlapping bands. An example of the analysis is shown in Fig. 6.6b for the spectra

recorded during the injection of N2:He 1:100 gas mixture into the beaker rotating with the angular

speed 4 rad/s. A similar deconvolution was made for all spectra shown in Fig. 6.6a to obtain the

dependence of the integrated intensity of δ-group emission on the rotation speed of the beaker.

Figure 6.7 shows the dependence of the integrated intensity of N atoms δ-group in nanoclusters

immersed in HeII on the rotational speed of the beaker with HeII for three different gas mixtures

used for injection of nanoclusters. For gas mixture 1:400 an almost linear growth of the δ-group

intensity with increasing rotational speed of HeII was observed. For more concentrated gas mix-

tures N2:He = 1:100 and 1:200 increasing of the integrated intensity of δ-group was observed only

with increasing the rotation speed of the beaker from 3 to 4 rad/s. Further increase of the rotational

speed of the beaker with HeII to 7.5 rad/s resulted in a small decrease of the intensity of δ-group

emission.
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Figure 6.4: Dependence of integrated intensity of N atom α-group observed during the injection of
nitrogen-helium gas mixtures N2:He = 1:100 (black squares), 1:200 (red circles) and 1:400 (blue
triangles) into a rotating beaker with HeII on the rotation speed of the beaker.

6.4 Discussion

Superfluid helium is characterized by two unique features; anomalously high heat conductance

and formation of quantized vortices. The efficient heat removal property of HeII was efficiently

used in the method of injection of products of our discharge in nitrogen-helium gas mixtures into

bulk HeII [24]. This approach allows us to achieve the highest concentrations of stabilized nitrogen

atoms [35, 39, 40]. Nitrogen atoms are stabilized on molecular nitrogen nanoclusters which form

an aerogel-like porous structure inside HeII [28]. Nanoclusters are formed during the process of
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Figure 6.5: Comparison of the spectra in the range 950-1650 nm observed with the Avantes spec-
trometer during the injection of nitrogen-helium gas mixture N2:He = 1:100 (solid line) and 1:200
(dashed line) into a rotating beaker with HeII for different rotational speeds: a) 3 rad/s (black), b)
4 rad/s (red), c) 7.5 rad/s (blue)

cooling down atoms and molecules entering from the gas discharge zone by passage through the

cold helium vapors on the way to the surface of HeII in the collection beaker. From x-ray investi-

gations of nanoclusters collected inside HeII an estimate of the average size of nanoclusters of the

order of 5 nm has been made [27, 31]. This allows us to determine the flux of nanoclusters to be

2x1013 s−1 in the process of condensation of our nitrogen-helium gas mixture N2:He=1:100 which

has a flux 1019 s−1. Each nanocluster contains on average 50 nitrogen atoms, that reside mostly

on the surfaces of these nanoclusters [36]. Usually during the process of their injection into HeII,
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Figure 6.6: a) Comparison of the spectra of overlapping N atom δ-group and N2(B3Πg, v′=0 →
A3Σ+

u , v′′=0) emissions observed during the injection of nitrogen-helium gas mixtures N2:He =
1:100 (solid lines) and 1:200 (dashed lines) into rotating HeII for different rotational speeds: 3 rad/s
(black), 4 rad/s (red), 7.5 rad/s (blue). b) Deconvolution of the overlapping spectra of δ-group and
N2(B3Πg, v′=0 → A3Σ+

u , v′′=0) emissions. Experimental spectrum of these two bands recorded
during injection of N2:He = 1:100 gas mixture into beaker rotating at 4 rad/s (red), Lorentzian
fitting line for δ-group emission (magenta), Lorentzian fitting line for N2(B3Πg, v′=0 → A3Σ+

u ,
v′′=0) emission (green), the sum of the fitting lines (blue)

the nanoclusters collide inside superfluid helium and nitrogen atoms from the adjacent nanoclus-

ter can meet each other and recombine. This leads to continuous luminescence from nanoclusters

inside HeII. As a result of N atom recombination, the N2 molecules in high vibrational states are

formed. The recombination energy (∼9.8 eV) is released rather slowly on the time scale of a few

seconds [113, 114]. This time scale allows the removal of heat released from the nanoclusters

during the process of vibrational relaxation of excited N2 molecules by the high heat conductance
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Figure 6.7: Dependence of integrated intensity of N atom δ-group observed during the injection of
nitrogen-helium gas mixtures N2 = 1:100 (black squares), 1:200 (red circles), 1:400 (blue triangles)
into HeII on the rotation speed of the beaker. Integrated intensities of δ-group lines were obtained
from the deconvolution of the spectra shown in Fig. 6.6a.

of superfluid helium [115]. Another part of the N2 molecule excitation transfers efficiently to the

stabilized atoms and is subsequently released by light emission. These two processes prevent the

thermal explosions of nanoclusters [116]. As a consequence the ensembles of molecular nitrogen

nanoclusters with high concentrations of nitrogen atoms are stable upon immersion into superfluid

helium.

The mechanism of thermoluminescence in solid nitrogen containing stabilized nitrogen atoms

is well understood [16, 104, 3]. Two ground state nitrogen atoms recombine to form metastable

83



nitrogen molecules.

N(4S) +N(4S)→ N2(A
3Σ+

u ) (6.1)

Energy from these molecules can be transferred to ground state nitrogen atoms stabilized in the

nanoclusters.

N2(A
3Σ+

u ) +N(4S)→ N(2D) +N2(X
1Σ+

g ) (6.2)

These excited N(2D) nitrogen atoms emit the α-group.

N(2D)→ N(4S) + α− group (6.3)

Similarly for the δ-group, metastable nitrogen molecules can excite stabilized nitrogen atoms,

to the higher N(2P) metastable state:

N2(A
3Σ+

u ) +N(4S)→ N(2P ) +N2(X
1Σ+

g ) (6.4)

which emit the δ-group:

N(2P )→ N(2D) + δ − group. (6.5)

In this work, we studied the influence of the rotation speed of the beaker with HeII on the inten-

sity of luminescence of nitrogen atoms in the process of injecting nanoclusters into rotating HeII.

It was found experimentally (see Fig. 6.2 and 6.3) that rotation of the beaker with HeII substan-

tially increases the intensity of luminescence of nitrogen atoms in molecular nitrogen nanoclusters

immersed in HeII. Increasing the rotation speed of the beaker with HeII from 3 rad/s to 7 rad/s led

to 1.5-6 fold increase of α-group intensity for the gas mixtures studied. When we increased the

flux of nanoclusters by changing gas mixture from N2:He=1:400 to gas mixture N2:He=1:100 the

intensity of luminescence from nanoclusters in rotating HeII also increased for each of the three

rotation speeds investigated as seen in Fig. 6.7. In our earlier work we found that applying temper-

ature gradients to the collection of nanoclusters immersed in HeII led to the initiation of chemical
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reactions of nitrogen atoms stored on the surfaces of the nanoclusters [58]. The luminescence of

ensembles of nanoclusters immersed in HeII was found to be correlated with the vortex density

in bulk HeII. This correlation was explained by using a model which suggested that some loose

nanoclusters were captured in the vortex cores in HeII. Inside the vortex cores, nanoclusters collide

more efficiently and the recombination of nitrogen atoms residing on surfaces of nanoclusters was

initiated. As a result of nitrogen atom recombination and other processes described above, nitro-

gen atom luminescence was observed. The intensity of this luminescence thus tended to increase

with the density of vortices in the HeII. A complete discussion of the relationship between vortex

density and temperature was given in Ref. [58].

We follow the same model to explain the results obtained in this work, only the method of

forming vortices is more straightforward. By rotating our beaker containing HeII we created an

array of quantum vortices, which aligned parallel to the axis of the beaker corresponding to the

direction of the injected flux of nanoclusters entering bulk HeII. When nanoclusters enter into bulk

HeII, they introduce a heat flux, which is compensated by the superfluid component of HeII. The

superfluid component moves to the location of the entering nanoclusters, while simultaneously the

normal component of helium moves in the opposite direction. Nanoclusters can move together

with the normal component of helium. Thus nanoclusters can be captured in vortex cores. Increas-

ing vortex density by increasing the rotation speed of the beaker should increase the efficiency for

capturing nanoclusters into the array of vortex cores. Inside the vortex cores the collision rate of

nanoclusters becomes larger [57]. Collisions of pairs of nanoclusters can lead to recombination

of nitrogen atoms residing on their surfaces. As a result, rotation of the beaker can initiate chem-

ical reactions between nitrogen atoms in the vortex cores, leading to formation of highly excited

nitrogen molecules. The energy from excited nitrogen molecules was efficiently transferred to

stabilized nitrogen atoms, which was responsible for the increased luminescence.

The flux of gas in the jet as regulated by the Brooks flow controller is 5.0·1019 particles/sec.

n =
5.0 · 1019

6.02 · 1023
= 8.3 · 10−5mol (6.6)
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In the cold helium vapor, the atoms and molecules in the jet cool down to the temperature of

10 K. Knowing the temperature in the liquid helium in the beaker, 1.54 K, we can determine ∆T =

10 - 1.54 ∼ 8.46 K. The molar heat capacity of helium gas is Cv=20.78 J/(mol·K). The flux of gas

gives this amount of heat each second.

Q = nCv∆T = 14.6 · 10−3J (6.7)

The heat transferred from the jet is ≈ 14.6 mW.

We suggest that the surface of entering nanoclusters into HeII is semi-spherical with diameter

of 1 cm and surface area S,

S =
4

2
πr2 =

π

2
cm2 (6.8)

The heat flux is:

q =
14.6mW

1.57cm2
' 9.29

mW

cm2
(6.9)

The vortex density, L, is estimated using the following formula taken from Ref. [58]:

L1/2 = γ(T ) · q

ρs · s · T
(6.10)

Where q is the heat flux in mW/cm−2, ρs the density of the superfluid component of 4He and is

given from the formula from Ref. [117]:

ρs = ρ

(
1−

(
T

Tλ

)5.6
)
g/cm3 (6.11)

The entropy, s, of the liquid helium is given by:

s = 1.5838

(
T

Tλ

)5.6
J

g ·K
(6.12)

where T is the temperature of the HeII (T = 1.54 K), and γ is the empirical coefficient 150 s ·
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cm−2 which was experimentally determined in Ref. [118]. Plugging values into equation 6.10, we

obtain:

L1/2 =
150 s/cm2 · 9.29 · 10−3 J

s·cm2

.124 g/cm3 · .232 J
g·K · 1.54K

= 31.5 cm−1

(6.13)

Squaring, we find the estimate the vortex density created by the heat flux of the jet at the surface

of the crater to be:

L = 993 cm−2 (6.14)

It should be noted that this estimate rapidly falls off as 1
r4

(r is the radius of hemisphere that heat

travels through).

Feynman rules estimate the density of vortices created by rotation of HeII to be:

L = 2000 Ω cm−2 (6.15)

where Ω is the rotation speed of the beaker in rad/s. In our experiments, Ω was changed from 3

to 7.5 rad/s, so L was in the range from 6·103 cm−2 to 1.5·104 cm−2. These estimations provide

evidence that rotation of the beaker in our experiments led to the formation of much larger densities

of vortices than that created from the heat flux from the gas jet which was estimated in Eqn. 6.14.

Figure 6.8 shows a high resolution spectrum of α-group emission from nanoclusters recorded

during rotation of the beaker of HeII with Ω = 4 rad/s integrated over a 5 minute time period.

The leftmost peak of the spectrum at λ = 521 nm is emission from atoms residing on the surfaces

of the nanoclusters, while the peak at λ = 522 nm is emission from atoms in interstitial sites

inside the nanoclusters, and the broad feature is the phonon-induced emission of nitrogen atoms

in substitutional sites[104]. The dominant experimentally observed emission of atoms residing on

the surfaces of nanoclusters supports our model that the recombination of nitrogen atoms occurs

mostly on the surfaces of nanoclusters trapped in vortex cores.
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Figure 6.8: High resolution spectrum of α-group emission of nanoclusters immersed in HeII during
the rotation of the beaker at Ω = 4 rad/s recorded with 3rd grating of the Andor spectrometer.
Emission of atoms from surfaces of nanoclusters (red), interstitial sites (green), and substitutional
sites (blue), sum of Lorentzian deconvolutions (cyan).
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The density of the quantized vortices in HeII, L, is given by the Feynman rules with L = 2000 Ω

cm−2, where Ω is the angular velocity of the beaker in rad/s. The observed increase in the intensity

of N atom luminescence when rotation speed of HeII was increased from 3 to 7.5 rad/s can be

explained by the proportional increase of the vortex density from 6000 cm−2 to 15000 cm−2.

The increase in the intensity of luminescence for each rotation speed of the beaker with HeII

when the content of N2 molecules in the condensed gas mixtures was increased can be explained

by an increase of the flux of nanoclusters participating in chemical reactions in the vortex cores.

The model works well for explaining the behavior of α-group emission of N atoms in nanoclusters

injected into a rotating beaker with HeII.

The behavior of the δ-group emission of N atoms is similar to that at low rotation speeds of

HeII, but at higher rotation speed (7.5 rad/s) the intensity of δ-group emission was saturated (see

Fig. 7). To understand the latter result, additional investigations are needed. It may be that differ-

ences in the behavior of α-group and δ-group emissions are somehow connected to differences in

the lifetimes of the 2D and 2P states of nitrogen atoms in the N2 solid matrix which are equal to 30

s and 1 ms, respectively, or related to differences in the formation of these metastable states of N

atoms.

6.5 Conclusions

1. We observed direct correlation between the increase of rotation speed of the beaker with

HeII and the increase of luminescence intensity of N atom α-group in molecular nitrogen

nanoclusters during their injection into a rotating beaker with HeII. The increase of the lu-

minescence intensity with increasing HeII rotation speed was explained by the initiation of

chemical reactions of N atoms on the surfaces of nanoclusters trapped inside vortex cores.

Increasing the rotation speed of HeII led to an increase of the vortex density and, correspond-

ingly, an enhancement of the processes of chemical reactions involving trapped nanoclusters

in the vortex cores.

2. The method of initiation of luminescence of nitrogen nanoclusters immersed in HeII can be
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used to visualize vortex cores and to study quantum turbulence in HeII.

3. This method opens the possibility of initiating chemical reactions for a variety of free radicals

residing on the surfaces of nanoclusters immersed in bulk HeII. It may also provide new

possibilities for synthesis of exotic new species.
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7. SUMMARY AND CONCLUSIONS

Luminescence during the destruction of nanoclusters containing high concentrations of nitro-

gen atoms was investigated in the work included in this thesis. Optical spectroscopy was used to

determine the species present and the transitions that they undergo. ESR spectroscopy was used

to determine the concentrations of stabilized nitrogen atoms present in our samples. Using our

method of injecting gas mixtures through a radio-frequency discharge into HeII, we were able to

create highly energetic samples with high concentrations of stabilized ground-state nitrogen atoms.

This method provides a unique opportunity to study low temperature chemical reactions and pro-

duce unusual molecules in excited states.

7.1 Combined Optical and ESR Spectroscopy

Bands of atomic and molecular nitrogen and oxygen were present for all observed spectra. It

was found that the concentration of stabilized nitrogen atoms directly correlates with the content

of molecular nitrogen in the gas mixtures used to create the samples. The addition of different

rare gases in the gas mixtures used to create the samples dramatically changed the optical spectra

obtained during the sample destruction. Spectra observed during the destruction of samples pre-

pared from nitrogen-krypton-helium gas mixtures contained M-bands (a4Π, v′ = 0 → X2Π, v′′ =

4-11) from the NO molecules, whereas in the spectra of nitrogen-neon-helium and nitrogen-argon-

helium samples the β-bands (B2Π, v′ = 0→ X2Π , v′′ = 10-15) of NO molecules dominate.

7.2 Optical Spectroscopy

The unique conditions of our experiments allow us to form highly energetic systems, allowing

us to create new exotic species. This gives a unique opportunity to observe chemical reactions

at low temperatures involving unusual compounds. In our work we observed radicals such as

N4 polymeric nitrogen as well as ND radicals which were previously unobserved under these

conditions. During the destruction of samples prepared from nitrogen-helium gas mixtures the

weak, broad band at λ = 360 nm was identified as N4 polymeric nitrogen. It was found that
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the addition of hydrogen or deuterium greatly enhances this band. The shape of this band was

unaffected by an isotopic shift when hydrogen was replaced with deuterium. Bands at λ = 336,

and 473 nm were identified as the A3Π+
i → X3Σ− and b1Σ+ → X3Σ− transitions of the ND

radical. These identifications were supported by the ND(b1Σ+ → a1∆) transition observed in

spectra in the NIR region at λ = 1170 nm.

7.3 Rotationally Induced Luminescence

Correlation between the rotation speed of a beaker filled with HeII and the luminescence of

nitrogen atom α-group emission of nitrogen nanoclusters during their injection into a rotating

beaker filled with HeII was observed. This effect is explained by the initiation of chemical reactions

of N atoms stabilized on the surfaces of nanoclusters trapped in vortex cores. As the density of the

vortex cores, L, increases with the rotation speed of the beaker, the processes of chemical reactions

are enhanced.

This method of initiating luminescence of nitrogen nanoclusters immersed in HeII could be

used to visualize vortex cores and study quantum turbulence in HeII. Furthermore, this method

opens possibilities for initiating chemical reactions of free radicals residing on the surfaces of

nanoclusters immersed in HeII, possibly synthesizing new exotic species.
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