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ABSTRACT

This dissertation is motivated by the lack of combined ptg4iased and data-driven
framework for solving power system challenges that areduced by the integration of
new devices and new system components. As increasing nwhsgchastic generation,
responsive loads, and dynamic measurements are involthd planning and operations
of modern power systems, utilities and system operatorsayeeat need of new analysis
framework that could combine physical models and measutatg together for solving
challenging planning and operational problems.

In view of the above challenges, the high-level objectivéhid dissertation is to de-
velop a framework for integrating measurement data ingelgahysical systems modeled
by dynamical equations. To this end, the dissertation fishiifies four critical tasks
for the planning and operations of the modern power systehes:data collection and
pre-processing, the system situational awareness, th@a®emaking process, as well as
the post-event analysis. The dissertation then takes amerete application in each of
these critical tasks as the example, and proposes the gHyased/data-driven approach
for solving the challenging problems faced by this specifipleation.

To this end, this dissertation focuses on solving the falh@specific problems using
physics-based/data-driven approaches. First, for the claltection and pre-processing
platform, a purely data-driven approach is proposed toctidtad metering data in the
phasor measurement unit (PMU) monitoring systems, andrerike overall PMU data
guality. Second, for the situational awareness platformphysics-based voltage stabil-
ity assessment method is presented to improve the sit@ghi@ovareness of system volt-
age instabilities. Third, for the decision making platforacombined physics-based and

data-driven framework is proposed to support the decisiaking process of PMU-based



power plant model validation. Forth, for the post-eventsia platform, a physics-based
post-event analysis is presented to identify the root aokthe sub-synchronous oscilla-
tions induced by the wind farm integration.

The above problems and proposed solutions are discussethihid Section 2 through
Section 5. The results of this work can be integrated to addpeactical problems in

modern power system planning and operations.
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Mismatch of wind turbine and doubly-fed induction
generator (DFIG) rotating speed from their steady-state
values.

Difference betweer\w,, andAw,,.

wind turbine mechanical torque and DFIG electro-
magnetic torque.

DFIG stator current on q and d axes.
DFIG rotor current on q and d axes.
DFIG stator voltage on g and d axes.
DFIG rotor voltage on g and d axes.
DFIG total real power output.

DFIG stator reactive power output.

Real power of DFIG rotor-side converter and grid-side
converter.

Capacitance and voltage of DFIG DC-link capacitor.
DFIG stator and rotor leakage reactance.

DFIG magnetizing reactance.

DFIG stator and rotor resistance.

Damping and stiffness of wind turbine mechanical
shaft.

Inertia of wind turbine mechanical shaft 2-mass model.

Transmission line resistance and inductance.
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Equivalent transformer reactance of transmission
system.

Series and shunt capacitance of transmission system.

Inductance and capacitance of ith inductor/capacitor in
the network.

Current of ith network inductor on g and d axes.
Voltage of ith network inductor on g and d axes.
Voltage of ith network capacitor on g and d axes.
Current of ith network capacitor on g and d axes.
Voltage of ith remote power system on g and d axes.
Time derivative of x.

Wind speed.

Dynamic mechanical rotating angle &f mass of wind
turbine mechanical shatft.

Dynamic and steady-state mechanical rotating speed of
it" mass of wind turbine mechanical shaft.

Mismatch between; andw;.
Dynamic and steady-state DFIG electrical rotor speed.

Rated mechanical rotating speeddfmass of wind tur-
bine mechanical shaft.

Rated mechanical rotating speed of the generator.
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mass of wind turbine mechanical shatft.

Rotating speed of synchronous reference frame.

Rotating speed corresponding to system rated
frequency.

Number of poles in DFIG.
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1. INTRODUCTION

1.1 Modern Power Grids in The Data-Rich Environment

In the past few decades, increasing number of new devicdeearg integrated into the
electric power systems, bringing new device models as welesv measurement data into
the power system planning and operations. Different fraditional power systems which
interconnect conventional power plant and non-responsads through the transmission
power grids monitored by the supervisory control and datpsition (SCADA) system,
modern power systems consist of stochastic power genesatioch as wind farms and so-
lar panels, responsive loads with distributed generat@owlsprice-responsive demands, as
well as modern metering devices, such as the phasor measutremts (PMUs), which
provides massive amount of data and information on the disgof the transmission
power systems. These new generations, demands, and rgedexiites offer great op-
portunities for the entire power system business to geaedaliver, and consume elec-
tricity in a greener, smarter, more secure and more ecoranviy. In the meantime, the
stochastic nature of the renewable generations, the maakgtipation of the active load-
ing centers, and the “curse of dimensionality” introducgdHhe massive amount of PMU
metering data also bring new challenges to the planning @edations of the modern

power grids in this data-rich environment.
1.2 Challenges for Planning and Operations of The Data-RiclPower Grids

Figure 1.1 identifies several critical tasks for the plagrand operations of the modern
power grids in the data-rich environment. With the pres@maof the massive amount of
metering data and modeling parameters for system-levdicatipns, a reliable data col-
lection and pre-processing platform is needed to ensurati&ability and accuracy of all

the metering data and modeling parameters. After the igibigection and pre-processing

1



of all the metering data and modeling parameters, a situat@wvareness platform is es-
tablished to assess the system security and reliabilibgubkie metering data and modeling
parameters, and provide necessary alarms when criticdlteams are identified. Once the
critical conditions are identified, a decision making psxes then involved to diagnose
the problem and make necessary corrections. For probleti&tho be corrected through
the decision making process, system instability events lneaypnduced. These events are
then recorded in the form of metering data (such as PMU clixed saved for offline

post-event analysis, in order to prevent them from hapgeagain.

- oy Qi ;
Raw Metering Data P a ( Situational Awareness)
=

Y = (1) Stability Assessment.
=

(2) Market Monitoring.

|

\
— \
|

£ |
- SN

X ~IES |

e | |
— 1 .\ y 1

Post-Event Analysis — -
Decision Making

Figure 1.1: Critical tasks for the planning and operaticithie modern power grids in the
data-rich environment.

In the above process for power system planning and opegatibe following critical

challenges are identified for each of the major tasks:



1) A data collection and pre-processing platform:how to ensure the data quality of
both metering data and modeling parameters, when the neaasiount of data is being
integrated into the modern power grids?

2) A situational awareness platform: how to take advantage of the recent develop-
ments in the control and optimization societies, in ordentprove the situational aware-
ness in modern power systems with stochastic generati@ahadive loading centers?

3) A decision making platform: how to combine the physics-based and data-driven
analytics to build an enhanced decision making platform suygport the power system
planning and operations in the data-rich environment?

4) A post-event analysis platform:how to better analyze the root cause of the system
instability events induced by stochastic generations sgolhind farms and solar panels?

Motivated by the above critical challenges faced by uéiitand system operators for
the planning and operations of the data-rich power grids dissertation takes one specific
example in each of the four critical tasks, and provides méwork to apply combined
physics-based and data-driven analytics for the moderrepsystem planning and oper-

ations.

1.3 Combined Physics-Based and Data-Driven Analytics for ®&ver System Plan-

ning and Operations

In this dissertation, a framework is proposed for combinbysprs-based and data-
driven analytics for the modern power system planning aredatpns. The framework is
introduced through a series of concrete examples for sphvie above critical challenges
using combined physics-based and data-driven technidgieebe specific, the following
examples are presented to demonstrate the proposed fraknewo

1) The data collection and pre-processing platform:a purely data-driven approach

is proposed to detect bad metering data in the PMU monit@ysgems, and ensure the



overall PMU data quality.

2) The situational awareness platform:a physics-based voltage stability assessment
approach is presented to improve the situational awarerieystem voltage instabilities.

3) The decision making platform: a combined physics-based and data-driven frame-
work is proposed to support the decision making process afBisised power plant model
validation.

4) The post-event analysis platform:a physics-based post-event analysis is presented
to identify the root causes of the sub-synchronous osiaifiatinduced by the wind farm

integration.
1.4 Suggested Contributions

The main contributions of this dissertation are suggestddlbws:

1. A framework is proposed for integrating measurement atalarge physical sys-
tems modeled using differential-algebraic equations.

2. A data-driven algorithm is developed for improving theéadquality of PMU mea-
surement systems.

3. A comprehensive approach is proposed for exploring thveepdlow solvability
problem for the purpose of strengthened voltage stabilibnitoring of modern power
grids.

4. A decision support framework is proposed for automathng éntire process of
PMU-based power plant model validation, with the capabditbatch power plant model
validation and automatic diagnosis of power plant modedingrs.

5. An enhanced analysis is presented for identifying thé caoses of the wind-farm-

induced sub-synchronous oscillations.



1.5 Dissertation Organization

The rest of the dissertation is organized as follows. Se@ipresents the purely data-
driven approach to detect bad metering data in the PMU miangsystems. Section
3 proposes the exploration of the power flow solvability peob for enhanced system
voltage stability monitoring. Section 4 introduces theoaodtion platform for the PMU-
based power plant model validation as well as the diagneaisdwork for power plant
modeling errors. Section 5 presents the post-event asdtysidentifying the root causes
of the wind-farm-induced sub-synchronous oscillationgcti®n 6 provides concluding

remarks to this dissertation.



2. DATA-DRIVEN PRE-PROCESSING FOR IMPROVED PMU DATA QUALM*

2.1 Motivation

In recent years, there has been significant deployment cfgphraeasurement units
(PMU) around the world. Compared with traditional metenmgts in supervisory control
and data acquisition (SCADA) systems, PMUs provide measenés with much higher
sampling rates. The high-resolution PMU measurementsgorth information on sys-
tem dynamics, which stimulates the development of advaanatytics, such as dynamic
state estimation [5], PMU-based model validation [6], andesarea control and protec-
tion [7, 8]. However, as a large amount of data is streaming tine control center, the
PMU data quality problem becomes one of the major challefgesystem operators.
Generally speaking, low-quality PMU data represents daad¢annot accurately reflect
the underlying system behavior. The inaccuracy can be damsgarious problems such
as sensing noises, data loss, and the global positioningsy&PS) time errors. As an
example, the ratio of low-quality PMU data, reported by @ahia Independent System
Operator (ISO) in 2011, ranged from 10% to 17% [9]. In 2018, riltio of low-quality
PMU data in China was reported to range from 20% to 30% [10¢ diline data quality
monitoring of PMUs becomes a major barrier for any advanddtdased analytics.

In order to improve data quality of PMU systems, various rad#thave been proposed.
In [11], a PMU-based state estimator is introduced to degtleasor angle bias and current
magnitude scaling problems. In [12], the Kalman filteringhieique is applied to detect
low-quality PMU data. Both state estimator and Kalman fiiased approaches require

prior knowledge on system topology and model parameterddiacting low-quality data.

*This section is in part a reprint with permission from Meng \&hd Le Xie of the material in the
paper: “Online Detection of Low-Quality Synchrophasor ld@@ments: A Data Driven Approach”, in
IEEE Transactions on Power Systemwsl. 32, no. 4, pp. 2817-2827, July 2017 [1]. Copyright 20REE.



Therefore, the detection accuracy of the above approachgsom affected when gross
errors are presented in system topology or parametershdfarore, these methods can-
not operate successfully when state estimation divergeause of gross measurement
errors, system physical disturbances, or stressful dpgravnditions. In [13,14], serveral
logic-based low-quality data detection schemes are predefhese approaches compare
PMU data with certain thresholds, apply high-noise filtersstv PMU measurements, and
perform cross-checking on PMU measurements obtained itby¢éoysical locations, in
order to detect abnormal PMU measurements. However, thresggfined logics may be
rendered ineffective when large disturbances occur in theied power grid. In [15],
clustering algorithms are applied to extract informatioomni power system time-varying
data. These clustering techniques could potentially b&eapo detect system anomalies
such as low-quality PMU data or system physical disturbané®ference [16, 17] pio-
neered a purely data-driven method to improve PMU data tyualihis method applies
low-rank matrix factorization techniques to detect andarefjow-quality PMU data. It has
satisfactory performance under both normal and fault-aratng conditions. However,
since the matrix factorization techniques bear high comtputal burden such as nonlinear
optimizations, it becomes a challenge when applied forties applications.

In view of the current efforts on PMU data quality improverf¢his section presents a
data-driven approach for online detection of low-qualigl® measurements. It leverages
the spatio-temporal similarities among multi-time-imgtBMU data, and applies density-
based local outlier detection technique to detect lowigu&MU measurements. The
major advantages of the proposed approach are summarizetlaes. (1) This is a
purely data-driven approach, without requiring any prinowledge on system topology
or model parameters, which eliminates the potential mexieins caused by inaccurate
system information; (2) the proposed approach can operi@uwt any converged state

estimation results and is suitable for filtering out grosasueement errors for advanced



power system analytics; (3) the proposed approach hasdagtutational speed, which
could be beneficial for real-time applications; and (4) thgoathm is able to perform
detections under both normal and fault-on operating camdit The proposed detection
algorithm differentiates high-quality PMU data recordadidg system physical distur-
bances (faults) from the low-quality data, which avoidsepbial false alarms caused by
physical disturbances.

The rest of the section is organized as follows. Section B2gnts the problem for-
mulation of the low-quality PMU data detection issue; Sat.3 discusses the proposed
data-driven approach for low-quality PMU data detectioegt®n 2.4 presents case study
results to verify the proposed approach; Section 2.5 pesvabncluding remarks to this

section.
2.2 Problem Formulation

This section presents the key features differentiatingdosality PMU measurements
from the high-quality ones. Based on these features, loaltguPMU measurements are
formulated asspatio-temporal outlieramong high-quality measurements in the power
grid. Accordingly, the low-quality PMU data detection pleim is formulated to be a

spatio-temporal outlier detection problem.
2.2.1 Key Features of High-Quality and Low-Quality PMU Data

Letm x n matrix M denote a set of PMU measurements collected frd@MU chan-
nels of the same type (i.e., all of them are voltage/cumpemtér channels), withim time

instants. This measurement matrix can be decomposed mfoltbwing two matrices:

M=L+D (2.1)



where thek!” column of matrixL represents the accurate measurements corresponding to
the k' PMU channel inM/, and D denotes the matrix containing inaccurate information
caused by data quality problems. Each nonzero ebffyepresents a measurement error
of the j** PMU channel at time instarnt Here, a PMU channel represents one of the fol-
lowing electrical quantities obtained by a PMU: voltage miude, voltage phasor angle,
current magnitude, current phasor angle, real power, aactive power. Thereforel/;;

is a real number instead of a complex number.

Definition 1. M;; is defined to be low-quality PMU data if its correspondidg;| > ,

wherer is a positive threshold to determine low-quality data.

It has been shown in [16,17], when low-quality PMU data ispreed in certain power
system, the rank of matrix/ would be higher than the rank of matrx due to the nonzero
entries in matrixD. This phenomenon indicates the linear dependency (sitgjlamong
PMU measurements would be weakened by data quality problems

In order to demonstrate the above property of low-qualitylPMeasurements, Fig-
ure 2.1 shows voltage magnitude curves measured by two PMtbsnearby physical
locations. Both curves were recorded at the same time pesiben a line-tripping fault
was presented in the system (from 3s to 5s). The upper cuntaios low-quality data
at around 1s. By observing only the upper curve, it is diffitalconfirm whether the
data spikes are caused by physical disturbance or datdayqoiablem, since all the data
spikes have outlier behavior compared with their tempoegjmbors. However, by com-
paring multiple PMU curves obtained in different locatiavfsthe system, it would be
possible to differentiate spikes caused by data-qualiplems and those caused by dis-
turbances, since spikes caused by data-quality probleensugliers compared with their
spatial neighbors, while spikes caused by disturbancesaamp curves recorded by mul-

tiple PMUs and therefore cannot be considered as outliergpaced with their spatial



neighbors.

Voltage Magnitude Synchrophasor Curve with Low—Quality Data
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Figure 2.1: Comparison between PMU curves with and withowtduality data [1].

The above observations can be summarized as the followinigieures of low-quality

and high-quality PMU data under normal/fault-on operatingditions:

Feature 1. Both low-quality PMU measurements and fault-on PMU measerds exhibit

weak temporal similarities with the measurements obtaatetie neighboring time peri-
ods, while high-quality PMU measurements obtained durioigmal operating conditions
exhibit strong temporal similarities with the measurernsenivtained at the neighboring

time periods.

Feature 2. Low-quality PMU measurements exhibit weak spatial sintiks with the
measurements obtained by the neighboring PMUs at the sameeperiod, while fault-
on PMU measurements exhibit strong spatial similaritiehwhe measurements obtained

by the neighboring PMUs at the same time period.

It should be noted that strong electrical connections anmanghboring PMUs are re-

quired in order for the above features to be valid. Therefbigher PMU measurement
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redundancy would lead to better accuracy in low-qualityadhdtection, and lack of mea-
surement redundancy could cause miss detections for tip@ged algorithm. As more
and more PMUs are being installed in power grids around thedwthe measurement
redundancy would be enhanced, and therefore the detecitomegy of the proposed al-

gorithm would be improved.
2.2.2 Formulation of Low-Quality PMU Data as Spatio-Temposl Outliers

According to the discussions in the previous section, laalgy PMU measurements
have weaker spatio-temporal similarities with their higality neighbors, under both
normal and fault-on operating conditions. Therefore, ¢Hew/-quality measurements can
be formulated as spatio-temporal outliers among all the PMddsurements in the system.
With a proper definition of similarity metrics for PMU curvethe degree of similarity
between two PMU curves can be quantified, and data-minirigntgaes can be applied to
detect the spatio-temporal outliers whose degrees ofaiityilare significantly different
from other PMU curves.

For a measurement matri¥ obtained within a certain period of time, general steps to

formulate the detection problem are described as follows:

Step 1:  Define a proper similarity metric (distance functiof()\/;, M;), which quanti-

fies the degree of similarity between teand;** column of M.

Step2: Map each column of/ (a data curve obtained from certain PMU channel) to
the spaces where the distance functiof{ 1/;, ;) is defined. Each column af/

can be represented as a poinfSin

Step 3: Examine the outlier behavior of the points$h according to distance function
f(M;, M;). Points lying far from the majority are more likely to be oets with

low-quality data.
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Figure 2.2 demonstrates the above formulation through plsisxample. Thregx8
measurement matriced (1), M(2), M(3) are sampled from the same set of PMU chan-
nels at three different time periods. Each matrix contair®V8J curves within 2 con-
secutive time instants\/ (1) contains 6 high-quality PMU curves and 2 low-quality PMU
curves obtained under normal operating conditibf{2) and M (3) contain 8 high-quality
PMU curves obtained under fault-on and normal operatinglitimms, respectively. The
Euclidean distance is used as the similarity metric (dstafunction), and each PMU
curve in the three matrices is projected to the 2D Euclidgeate shown in Figure 2.2.
The x andy coordinates of each point are the data values at the first ecwhd time
instant of the corresponding PMU curve, respectively.

The following observations can be drawn from Figure 2.2:Ti¢ cluster of fault-on
PMU data (fault-on cluster) lies far from the clusters oftiiguality PMU data under nor-
mal operating condition (normal-condition cluster), icating weak temporal similarity
between the two clusters; (2) all the points within the faitcluster lie close to each
other, indicating strong spatial similarities among p®iwithin the fault-on cluster; and
(3) the two points representing low-quality PMU curves &efrom the normal-condition
cluster, as well as the majority of points in the low-quatityster, indicating weak spatial
and temporal similarities with their neighboring pointshefefore, the low-quality data

points can be defined as spatio-temporal outliers undefdisulation.
2.3 Online Detection of Low-Quality PMU Data

Based on the previous discussion, we propose a densitytbdasal outlier factor
(LOF) analysis to detect low-quality PMU data. In [18], sianiLOF-based techniques
are introduced for the detection of high sensing noises alsé data injections in PMU
data. This section improves the similarity metrics for PMuwes, which lead to more ro-

bust performance on detecting various types of data qualdiglems, including not only
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Figure 2.2: 2D points representing PMU curves under nofedt/on/low-quality condi-
tions. (a) Overall figure with all the 2D points under norrfeallt-on/low-quality condi-
tions. (b) Zoomed-in figure with all the 2D points under faniit condition. (c) Zoomed-in
figure with all the 2D points under normal condition and higghality 2D points under low-
quality condition [1].

sensing noises and false data injections, but also datessaitd un-updated data problems.
2.3.1 Similarity Metrics Between Synchrophasor Curves

In this subsection, two similarity metrics are proposeddetecting low-quality PMU
data whose variance is significantly higher or lower tharsfiatio-temporal neighbor-

hoods.

Definition 2. Let M (k) denote the PMU measurement matrix obtained atttietime
period. The length of each time period equals to the length@moving data window of

the proposed algorithm. Le¥;(k) and M; (k) denote theé® and ;' columns ofM (k).
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Let 0;(k) denote the standard deviation &f;(k), Let C' denote the data set of all the
PMU measurements identified to be clean (without data qupiiiblems) by the proposed
algorithm. The normalized standard deviation for PMU daltdained from the' channel

at thek!" time period is defined as follows:

Norm Ui(k)

. k) =

o k) = e vetn®)
ST xo (M)

(2.2)

where

1 (M;(t) € C)
xXc(M;(t)) = (2.3)
0 (M(t) ¢ C)

The normalized deviation¥°"™ (k) represents the standard deviation of data curve
obtained from thé!® PMU channel at thé'" time period, normalized by the average stan-
dard deviation of the historical clean measurements obtefom the same PMU channel.
Consideringr; (k) as a indicator of the strength of system dynamic responseded by
i'" PMU channel at thé' time period,c Yo" (k) is a normalized indicator which com-
pares the current strength of system dynamic responsehvatiaverage historical strength
recorded by the same sensing channel. This normalizatmseps removes the influence

of PMU physical locations on the dynamic strength of the PMidres.
2.3.1.1 Similarity Metric for Low-Quality PMU Data with HigVariance

The similarity metric (distance functiorf); (¢, j) between\; (k) andM, (k) is defined

as follows:

fui, §) = oo — o (2.4)

i J
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2.3.1.2 Similarity Metric for Low-Quality PMU Data with Lowariance

The similarity metric (distance functiorf), (i, j) between\/;(k) andM; (k) is defined

) (2.5)

The above two similarity metrics measure the differencevbet dynamic strength of

as follows:

Norm Norm

0;
Norm
9;

9;

O.ZNorm

Y

fr(i,j) = max <

data curves\/;(k) and M; (k). Since during the same time periédclean PMU curves

across the system tend to have similar dynamic strengthlgsiyiow/high strength under

normal/fault-on operating conditionjy (¢, j) andfy (i, j) values tend to be small for clean
measurements. However, the dynamic strength of low-quBMU curves tend to be

different from that of the clean curves, since dynamics of-tpuality PMU curves are

mainly driven by the dynamics of the data quality problenasher than the true system
dynamics. Thereforefy(i,7) and f1.(7, j) values tend to be large for low-quality PMU
measurements.

Although both similarity metrics could reflect the outliegtavior of both low-quality
data with high variance (such as sensing noises, data spilces and low variance (such
as un-updated datajy (¢, j) tends to be more sensitive to high-variance data problehs an
f1(i, j) tends to be more sensitive to low-variance data problemdetJmormal operating
conditions, the performance ¢f; (¢, 7) in detecting low-variance data problems (such as
un-updated data) could be unsatisfactory. This is becauderunormal operating condi-

tions, the normalized standard deviations for clean measeants tend to be close to one,

while the normalized standard deviations for low-variadata (such as un-updated data)
tend to be close to zero. Therefore, under normal operatingitions, 5 (7, j) between
clean data and un-updated data would remain close to on& yylii, j) between clean

data and un-updated data would be a very large number. Howaweer normal oper-
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ating conditions,f4 (i, j) between two clean data sets would be a small positive number
(close to zero), and; (i, j) between two clean data sets would lie around one. Therefore,
the f1 (i, 7) value between un-updated data and clean data tends to belangehthan
fi(i,7) value between two clean data sets, leading to a better detgerformance. This

performance difference is further demonstrated througk studies.
2.3.2 Density-Based Outlier Detections for PMU Data

Built upon the above similarity metrics, LOF analysis, whis a density-based out-
lier detection technique, is applied to solve the low-gyatiata detection problem. In
this subsection, procedures for calculating LOFs are graficussed. The mathematical

definition of “density” is presented below. Details of LOFadysis can be found in [19].
2.3.2.1 Calculation of K-Distance(P)

Let the measurement matriX be a database consisting of synchrophasor measure-
ments. Lep, ¢, o be some objects i/, each object represents a columnlin Let ik be a
positive integer. The distance betwegeandq, denoted byi(p, q), is defined byfy (p, q)
or fr(p, q)-

For any positive integek, the k—distance of objectp, denoted bye—distance(p), is
defined as the distanckp, o) betweerp and an objecbte M such that:

a) for at leask objectso’c M\ {p} it holds thatd(p, o')<d(p,0), and

b) for at most: — 1 objectso’e M\ {p} it holds thatd(p, o) < d(p,0).

In the above definitiony’ € M\ {p} denotes{o’ : o’'e M, o'&{p}}

Intuitively, k—distance(p) represents the distance between objentd thek' nearest
neighbor ofp. The value oft—distance(p) provides a measure on the density around the
objectp. For the same number @&f, smallerk—distance(p) indicates higher density

aroundp.
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2.3.2.2 Identification of K-Distance Neighborhood of P

Givenk—distance(p), thek-distance neighborhood ofgontains every object whose

distance fronp is not greater than the—distance. This concept is defined in (2.6).

Ni—distancen)(P) = {geM\{p}|d(p, ) <k—distance(p)} (2.6)

These objects are called th&-nearest neighbors of p
2.3.2.3 Calculation of Reachability Distance of Object énfirObject O

Thereachability distance of object p with respect to objedsalefined in (2.7).

reach—disty(p, o) = max{k—distance(o),d(p,0)} (2.7)

Intuitively, if objectp is far away from objecd, then the reachability distance between
p ando is simply their actual distancép, o). However, if they are “sufficiently” close to
each other, the actual distantig, o) is replaced by thé—distance(o). The reason is that
in doing so, the statistical fluctuationsdif, o) for all thep’s close too can be significantly
reduced. The strength of this smoothing effect can be chedirby the parametéetr. The
higher the value of;, the more similar the reachability distances for objectthiwithe
same neighborhood.

Figure 2.3 illustrates the relationship among true distaf@s, o), k—distance(o),
reach—distg(p1,0), andreach—distg(ps,0). In this examplek = 3, and true dis-
tanced(-) is the Euclidean distanéeAccording to the above definitions;-distance(o)

represents the distance between objeand thek!” nearest neighbor aof. Therefore,

tIt should be noted that the notion of reachability in thist&gcdoes not refer to reachability concept in
hybrid system literature.

fIt should be noted that Euclidean distance is used here amlyhe illustration of the concepts of
k—distance(-) andreach—disty(-).In the proposed low-quality data detection algorithm,ttie distance
d(-) is defined by similarity metricgz (-) and f.()
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Figure 2.4: Overall flowchart of the proposed approach [1].

whenk = 3, k—distance(o) = d(ps,0), wherep; is the third nearest neighbor of
The radius of the circle in Figure 2.3 represehtsdistance(o). Since true distance
d(p1,0) < k—distance(o), and true distancé(ps, o) > k—distance(o), the reachability
distance betweem ando is reach—disty(p1, 0) = k—distance(o), while the reachability
distance betweep; ando is reach—disty(p1,0) = d(ps,0). These reachability distances
reach—disty(-), developed through the comparison between the true diesaitig and

the k—distance(o), will then be used to formulate the local outlier factor.
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2.3.2.4 Calculation of Local Reachability Density of P

Thelocal reachability density of s defined as

ZOEN}VIinPts (p) Tea'Ch_diStMinPts (p: O)

|NMinPts(p)|

WhereN inpis(P) = Nutinpts—distance(p) (D), @NAdMinPts is a positive integer.
Intuitively, the local reachability density of an objecis the inverse of the average

reachability distance based on thén Pts-nerest neighbors of.
2.3.2.5 Calculation of LOF of P

Thelocal outlier factor of pis defined as

Irdarinpis(0)

D e Nurs LA
LOFssinpis (p) _ ENT%]I\:;‘-S(I;Z l(;i;x){mPts(P) (29)

The local outlier factor of objegt captures the degree to whiphs an local outlier. It
is the average of the ratio of the local reachability densfty and those op’s Min Pts-
nearest neighbors. It is easy to see that the Ig¥gdiocal reachability density is, and the
higher the local reachability densities;g$ Min Pts-nearest neighbors are, the higher the

LOF value ofp is.
2.3.3 Robust Detection Criterion and Parameter Selections

In order to improve the robustness of the proposed appraheHpllowing detection

criterion and parameter selection procedure are applidtktalgorithm.
2.3.3.1 Robust Detection Criterion

Due to the propagation delay of electro-magnetic waves, Phistalled at different
locations of a large-scale power system may respond to gdiydisturbances at the time

instants slightly asynchronous with each other. If a shavimg data window is chosen
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for the algorithm, this slight time shift may cause falsermis under fault-on operating
conditions. In order to avoid the false alarms without idtroing too much computa-
tional burden, PMU measurements within the current moviig avindow are identified
to contain low-quality data only if there are alrealdgonsecutive moving data windows
prior to this current window, whose LOF values exceed thedhold valuel is a integer
slightly less than the length of the moving data window. Tdriterion would introduce a
small detection delay to the proposed algorithm. Howewecgesthe length of the moving
data window is set to be short for the purpose of online appba, the delay would be a

insignificant value.
2.3.3.2 Parameter Selections

Three parameters need to be determined for the proposeaitlalgonumber of nearest
neighbors {/inPts) of each object, length of the moving data window, and LOEghr
olds for various similarity metrics. These parameters cadétermined through off-line
training using historical data. In order to reduce the deiaalelay, the length of moving
data window should remain short. Théin Pts value can be selected to be around half of
the total number of PMU channels, by assuming the total numidew-quality curves at
each time window should be less than the total number of gigdlity PMU curves.

According to the previous discussions, the overall flowtbbthe proposed algorithm
is shown in Figure 2.4. Key steps for implementing this lowalify data detection ap-

proach are as follows.

Step 1:  Create the current moving data window by reading in PMU meesmsants at the

latest time instant.
Step2:  Computefy(-) andf(-) values for each pair of PMU curves.

Step 3:  Compute LOF value of each PMU curve, basedfan-) and f.(-). For each
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PMU curve, the LOF value can be calculated following the éiqua in the previous

subsection.

Step 4:  If the LOF value corresponding tf;(-) or f.(-) of thei’* PMU curve exceeds
the threshold, go to Step 5; otherwise, go to Step 7.

Step 5:  If the previoud consecutive LOF values correspondingftg(-) or fz(-) of the
i'" PMU curve exceed the threshold, go to Step 6; otherwise, §telp 7.

Step 6: Thei'” PMU curve is detected to contain low-quality data at curtamée win-

dow.

Step 7:  Move the data window to the next time instant, and go backeép $t

Although the above calculation procedure involves loogingcess for the LOF cal-
culation of each PMU curve, there is no time-consuming cdatpn (such as matrix
inversion, decomposition, etc.) involved in the above pthae. All the operations within
the looping process request light computational effortse @omputational burden of the
entire process is not significant. The computational peréorce of the proposed algorithm

is demonstrated through the case studies.
2.4 Case Studies

The proposed approach is tested using both synthetic ahdoglad PMU data. Low-
guality measurements caused by various reasons are usedfyaie effectiveness of the
approach. In all the following test cases, a unique set adrdalgn parameters are used:
moving data window length = 20 data points; LOF thresholdesponding tofy(-) =
10; LOF threshold corresponding 3 (-) = 100; Number of neighboring data for LOF
algorithm = 0.5x number of PMU curves. In order to demonstrate the proposedade
is capable to detect low-quality data under fault-on opegatonditions, a system physical

disturbance (fault) is recorded by the PMU data in each test.c
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2.4.1 Case Study with Synthetic Data

The synthetic PMU measurements are sampled from the siionligsults of a stan-
dard IEEE-14 test system, with a sampling rate of 50Hz. Aet#plase line-to-ground
fault is presented while running the simulation. In each ¢ase, one type of low-quality

data is randomly inserted into a subset of the test data.
2.4.1.1 Synthetic Data with High Sensing Noise

This test data set contains 14 synthetic voltage magnituebsorement curves, where
3 of them (No. 1, 5, 14) contain Gaussian noises lasting frefto®.4s, with a signal-to-

noise ratio (SNR) of 40dB. Figure 2.5 shows the 3 curves watia duality problems.

Synchrophasor Measurements with Gaussian Noises

o =
0 N

Synchrophasor Channel No. 1

Voltage Magnitude (pu)

0.6 || [Data with Gaussian Noises
04l Synchrophasor Channel No. 5
0'2 . . Synchrophasor Channel No. 14
' 2 4 6 8 10 12
Time (s)

Figure 2.5: Synthetic PMU measurements with high sensimnggria].

Table | presents the detection results. It shows that alBtheisy data segments are
successfully detected, without introducing any falsemalby the physical disturbance. A
small detection delay (less than 0.38s) is introduced, dleet length of the moving data
window. The average computing time for each moving data aing 0.0161s Figure
2.6 presents the LOF values of all the PMU curves, when dathtgproblem or physical

disturbance is presented. This comparison shows that thevalies exceed the thresh-
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old when low-quality data is presented, while remain belbe/threshold when physical
disturbance is presented. The results indicate the prdpos¢hod is able to detect low-

quality PMU data while avoiding false alarms caused by sygihysical disturbances.

Table I: Detection Results for Synthetic PMU Data with HigdnSing Noise [1]

Index of PMU Starting Time of Ending Time of
with High Noise Noisy Segment Noisy Segment

1 6.22s (LOF = 620.5) 6.78s (LOF = 31.9)
5 6.34s (LOF = 429.1) 6.78s (LOF = 73.3)
14 6.34s (LOF = 418.6) 6.76s (LOF = 48.2)

LOF Values of Synchrophasor Channels

LOF Values of Synchrophasor Channels
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Figure 2.6: LOF values of synthetic PMU channels when plasissturbance (right) or
high sensing noise (left) is presented [1].

2.4.1.2 Synthetic Data with Spikes

This test data set contains 47 synthetic real power measutecarves, where 4 of
them (No. 3, 6, 30, 45) contain data spikes lasting from G@3s4s. These spikes can be

caused by problems such as data loss or time skew of GPS ddtkHigure 2.7 shows
the 4 curves with data quality problems.
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Synchrophasor Measurements with Spikes
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Figure 2.7: Synthetic PMU measurements with data spikes [1]

The detection results are shown in Table Il. All the 4 spikes detected and no
false alarm is introduced by physical disturbance. Thediiete delay introduced by the
length of the moving data window is less than 0.36s. The aeec@mputing time for
each moving data window 13.0627s Figure 2.8 presents the LOF values of all the PMU
curves, when data quality problem or physical disturbaspegsented. It is clear that low-
quality data would cause the LOF values to exceed the thicdsiwbile system physical

disturbances would not cause a significant increment in L&&es.

Table II: Detection Results for Synthetic PMU Data with Sgui1]

Index of PMU Starting Time of Ending Time of
with Data Spike|  Spike Segment Spike Segment
3 6.46s (LOF = 107.7) 6.76s (LOF = 85.2)
6 6.46s (LOF = 113.9) 6.76s (LOF =90.4)
30 6.48s (LOF = 102.3) 6.76s (LOF = 71.5)
45 6.44s (LOF = 270.3) 6.76s (LOF = 58.7)
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Figure 2.8: LOF values of synthetic PMU channels when pslsturbance (right) or
data spike (left) is presented [1].

2.4.1.3 Synthetic Data with Un-Updated Data

This test data set contains 14 synthetic voltage magnituebsorement curves, where
3 of them (No. 6, 12, 13) contain un-updated data lasting 8ero 6.4s. Figure 2.9 shows

the 3 curves with data quality problems.

Synchrophasor Measurements with Un—-updated Data
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Figure 2.9: Synthetic PMU measurements with un-updateal [d#t

Table Il presents the detection results. The 3 un-updaatal segments are detected,
while the presence of physical disturbance does not caystakse alarm. The detection

delay introduced by the length of the moving data window s&slthan 0.36s, and the
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average computation time for each moving time windo®@.&128s

Table Ill: Detection Results for Synthetic PMU Data with Upédated Data [1]

Index of PMU Starting Time of Ending Time of
with Un-updated Data Un-updated Segment Un-updated Segment
6 6.36s (LOF = 3423.6) 6.40s (LOF = 3519.5)
12 6.36s (LOF = 3423.6) 6.40s (LOF = 3519.5)
13 6.36s (LOF = 3423.6) 6.40s (LOF = 3519.5)

2.4.1.4 Synthetic Data with False Data Injection

This test data set contains 47 synthetic real power measutecarves, where 4 of
them (No. 15, 21, 29, 42) contain false data injectionsrgsfiom 6s to 6.4s. Figure 2.10

shows the 4 curves with data quality problems.

Synchrophasor Measurements with False Data Injections
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Figure 2.10: Synthetic PMU measurements with false daezimgn [1].

The detection results are shown in Table IV. Although phalsitisturbance is pre-

sented, all the 4 false data injections are correctly detkand no false alarm is intro-
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duced. The detection dely caused by the length of the moatg @window is less than
0.38s. The average computing time for each moving data wingl0.0627s

In all the above case studies using synthetic PMU measurttsmé&e maximum de-
tection delay is less than 0.4s, and the maximum computing for each moving data
window is less than 0.1s. It is summarized in [20] that thexdatency requirements for
online quasi-steady-state applications (state estimagimall signal stability analysis, os-
cillation analysis, voltage stability analysis, etc.) garfrom 1s to 5s. It is clear that both
the detection delay and the computing time of the proposetthadesatisfy the latency
requirements for PMU-based online quasi-steady-statbcagipns. Therefore, the pro-
posed method is suitable for online dtection of low-qualiyu measurements, in order

to improve the accuracy of these PMU-based applications.

Table IV: Detection Results for Synthetic PMU Data with feaBata Injections [1]

Index of PMU with Starting Time of Ending Time of

False Data Injection Injected Data Segmentinjected Data Segment
15 6.32s (LOF =39.7) | 6.78s (LOF = 30.9)
21 6.32s (LOF =25.7) | 6.78s (LOF =19.9)
29 6.32s (LOF =14.1) | 6.78s (LOF =10.7)
42 6.34s (LOF =10.8) | 6.72s (LOF =10.9)

2.4.2 Case Study with Real-World Data

High-quality PMU measurements obtained from a real-wodd/gr grid are used to
test the proposed approach. The sampling rate of the da@DIszL A line-tripping fault
is recorded by the data. In each test case, one type of loliygdata is manually inserted

to a randomly-chosen subset of the test data, so that thedtouth of the existence of
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low-quality data is known for sure.
2.4.2.1 Real-World Data with High Sensing Noise

This test data set contains 39 real-world voltage magnitugigsurement curves, where
4 of them (No. 10, 15, 23, 29) contain Gaussian noises lagtimg 1s to 1.2s, with a SNR
of 40dB. The SNR of the original clean data set is tested to élélvelow 40dB. Figure

2.11 shows the 4 curves with data quality problems.

Synchrophasor Measurements with Gaussian Noises
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Figure 2.11: Real-world PMU measurements with high sensoige [1].

Table V presents the detection results. It shows that alttheisy data segments are
successfully detected, without introducing any falseraléy the physical disturbance.
A small detection delay (less than 0.19s) is introduced, tduée length of the moving
data window. The average computing time for each moving dataow is 0.0376s
Figure 2.12 presents the LOF values of all the PMU curves nwieta quality problem
or physical disturbance is presented. This comparison slibat the LOF valus exceed
the threshold when low-quality data is presented, whileaiarbelow the threshold when
physical disturbance is presented. The results indicaetbposed method is able to

detect low-quality PMU data while avoiding false alarmsszaiby physical disturbances.
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Table V: Detection Results for Real-World PMU Data with Higansing Noise [1]

Index of PMU Starting Time of Ending Time of
with High Noise Noisy Segment Noisy Segment
10 1.17s (LOF = 286.9) 1.39s (LOF = 30.0)
15 1.16s (LOF =577.8) 1.39s (LOF =43.3)
23 1.16s (LOF = 206.3) 1.39s (LOF =12.3)
29 1.16s (LOF =328.2) 1.39s (LOF = 35.1)

LOF Values of Synchrophasor Channels LOF Values of Synchrophasor Channels
When Gaussian Noises Are Presented When Physical Event Is Presented
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Figure 2.12: LOF values of real-world PMU channels when pajgdisturbance (right)
or high sensing noise (left) is presented [1].

2.4.2.2 Real-World Data with Spikes

This test data set contains 22 real-world real power measnecurves, where 4 of
them (No. 3, 6, 20, 21) contain data spikes at the time ingthtO6s. In this test case,
the length of each data spike is one sample. This test sceisazieated in order to test
the performance of the algorithm in detecting single datgpdut. Figure 2.13 shows the
4 curves with data quality problems.

The detection results are shown in Table VI. All the 4 spikes detected and no
false alarm is introduced by physical disturbance. Thediiete delay introduced by the

length of the moving data window is less than 0.19s. The gemmputing time for
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Figure 2.13: Real-world PMU measurements with data spikes [

each moving data window 3.0150s Figure 2.14 presents the LOF values of all the PMU
curves, when data quality problem or physical disturbaspeasented. It is clear that low-
quality data would cause the LOF values to exceed the thigdsibile system physical

disturbances would not cause a significant increment in LOF.

Table VI: Detection Results for Real-World PMU Data with g5 [1]

Index of PMU Starting Time of Ending Time of
with Data Spike|  Spike Segment Spike Segment
3 1.22s (LOF =52.0)| 1.25s (LOF = 28.2)
6 1.22s (LOF =124.8) 1.25s (LOF = 69.2)
20 1.22s (LOF =50.5)| 1.25s (LOF = 27.2)
21 1.22s (LOF = 71.7)| 1.25s (LOF = 39.5)
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Figure 2.14: LOF values of real-world PMU channels when pajfgdisturbance (right)
or data spike (left) is presented [1].

2.4.2.3 Real-World Data with Un-Updated Data

This test data set contains 13 real-world current magnitueesurement curves, where
4 of them (No. 1, 5, 7, 13) contain un-updated data lastingnfis to 1.2s. Figure 2.15

shows the 4 curves with data quality problems.
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Figure 2.15: Real-world PMU measurements with un-updaged [d].

Table VII presents the detection results. The 4 un-updadéal skgments are detected,
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while the presence of physical disturbance does not caystakse alarm. The detection
delay introduced by the length of the moving data window g&slthan 0.18s, and the

average computation time for each moving data windo@4.15s

Table VII: Detection Results for Real-World PMU Data with Wpdated Data [1]

Index of PMU with Starting Time of Ending Time of
Un-updated Data| Un-updated Segment Un-updated Segment
1 1.18s (LOF = 4637.2) 1.20s (LOF = 4537.2)
5 1.18s (LOF = 4637.2) 1.20s (LOF = 4537.2)
7 1.17s (LOF =3317.8) 1.20s (LOF = 4537.2)
13 1.18s (LOF = 4637.2) 1.20s (LOF = 4537.2)

Figure 2.16 presents the current magnitude data obtaioned AMU channels No. 1
and No. 2, where PMU channel No. 1 contains un-updated datafs to 1.2s, and PMU
channel No. 2 contains clean data only. Figure 2.17 preskataormalized deviations
of the two PMU channels, as the computation data window moxgstime. It is clear
that: 1) under normal operating conditions, the normalidedations of clean data seg-
ments lie close to one; 2) under fault-on operating conagjdhe normalized deviations
of clean data segments increase significantly; 3) the nazethteviations of un-updated
data segments decrease towards zero.

Figure 2.18 presents thg, (7, j) and f, (i, j) values of PMU channels No. 1 and No.
2, as the computation data window moves with time. Figur® présents the LOF values
of PMU channels No. 1 and No. 2, as the computation data windowes with time. It
is clear from Figure 2.18 and Figure 2.19 ttfati, j) is more sensitive to the un-updated
data thanfy (7, j), and therefore leads to a better detection performancerfarpadated

data.
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Figure 2.16: Real-world current magnitude PMU measuresjdiht
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Figure 2.17: Normalized deviation of PMU channel No. 1 and RIfi].

2.4.2.4 Real-World Data with False Data Injection

This test data set contains 39 real-world voltage magnitueisurement curves, where
4 of them (No. 2, 20, 27, 37) contain false data injectionsigsrom 1s to 1.2s. Figure
2.20 shows the 4 curves with data quality problems.

The detection results are shown in Table VIII. Although pbgkdisturbance is pre-
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Figure 2.18: Similarity metrig¢y (i, 7) (left) or f(7, j) (right) between PMU channels No.
1 and No. 2 [1].
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Figure 2.19: LOF values when similarity metyig (¢, j) (left) or f.(7, j) (right) is applied
[1].

sented, all the 4 false data injections are correctly detkantd no false alarm is introduced.
The detection delay caused by the length of the moving datdaw is less than 0.19s.
The average computing time for each moving data winddvig75s

In all the above case studies using real-world PMU measuranthe maximum de-
tection delay is less than 0.2s, and the maximum computing for each moving data

window is less than 0.05s. It is summarized in [20] that thia dltency requirements for
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Figure 2.20: Real-world PMU measurements with false dgéiion [1].

online quasi-steady-state applications (such as stateagin, small signal stability anal-
ysis, oscillation analysis, voltage stability analysit,. e range from 1s to 5s. It is clear
that both the detection delay and the computing time of tl@sed method satisfy the
latency requirements for PMU-based online quasi-stetatg-@pplications. Therefore,
the proposed method is suitable for online dtection of lavality PMU measurements, in
order to improve the accuracy of these PMU-based applitsitio

Since the detection delay of the proposed algorithm is maialised by the length of
the moving data window, the delay could be estimated and vechahen the occurrence
time of the low-quality data is reported. By doing this, teparted occurrence time of the
low-quality data could be very close to its actual occurestime.

For power grids with a large number of PMUs, the computatfmeesl of the proposed
algorithm could be further improved by applying the det@ttlgorithm in a decentralized
framework. In large systems, multiple detection enginegdctbe applied to process PMU
measurements obtained from different physical locatio®ntrol areas (such as different
states or different local control centers). PMUs lying fani each other could be grouped

into different subgroups, and be processed in parallel fhigrént detection engines. This
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decentralized framework could help reduce the number of Rit&hnels that need to
be processed by each detection engine, and therefore imglewcomputation speed of
each detection engine. Since this method does not requreyatem-wide information

(such as system topology), it can be easily decentralizétbwi spending extra effort on
creating the reduced or equivalent system model.

Meanwhile, parallel processing could also help improveoitlene computation perfor-
mance of the proposed algorithm. Multiple processors cbaldpplied at each detection
engine, so that several consecutive moving data windowlsl dzuprocessed by different
processors at the same time. This parallel technique caybdove the overall compu-
tation speed when the proposed algorithm is applied to pey&ems with a significant

number of PMUSs.

Table VIII: Detection Results for Real-World PMU Data withlse Data Injections [1]

Index of PMU with Starting Time of Ending Time of

False Data Injection Injected Data Segmentinjected Data Segment
2 1.16s (LOF =74.3) 1.39s (LOF =71.2)
20 1.16s (LOF =117.7)| 1.39s (LOF =111.1)
27 1.16s (LOF = 95.5) 1.39s (LOF =91.6)
37 1.16s (LOF =383.4)| 1.39s (LOF = 365.7)

2.5 Section Conclusion

This section presents a framework that is possible for erdietection and improve-
ment of PMU data quality issues. The proposed approach fatesthe low-quality PMU
data as spatio-temporal outliers among all the PMU measemtnand performs detection

through a density-based local outlier detection algoritBmilarity metrics are proposed
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to quantify the spatio-temporal similarities among mtiltie-instant PMU measurements.
The proposed approach has satisfactory performance untienbrmal and fault-on op-
erating conditions. It requires no prior information onteys modeling and topology. The
computation speed of the proposed algorithm is suitableribine applications. Synthetic
and real-world PMU measurements are used to verify the tefeeess of the proposed
approach. This framework, if successful, could potentibost up system operators’
confidence of PMU-based analytics in modern power systems.
Built upon this work, future research could focus on develgpsimilarity metrics

with more sensitive and robust performance, identifyingt rcauses of the low-quality

problems, and correcting the low-quality PMU data.
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3. PHYSICS-BASED SITUATIONAL AWARENESS FOR VOLTAGE STATBITY
ASSESSMENT

3.1 Motivation

Power systems with deep renewable penetration are moreralie to voltage insta-
bilities, due to the increased generation uncertaintiesdatreased reactive power sup-
port of the renewable power plants [21]. Fundamentally kipga the voltage instability
problem is induced by the underlying saddle-node bifuoretiappening in the power sys-
tem [22—24]. The degree of voltage instability of a certadwpr system can be measured
through its voltage stability margin. Specifically, the movgystem voltage stability mar-
gin measures the distance between the closest bifurcadioin gnd the current operating
condition. All the possible bifurcation points in the systéorm the hyper-surface of the
power flow solution boundary.

There is a large literature studying the voltage stabiligrgms and the power flow
solution boundaries. In [25, 26], continuation methodsmioposed to trace the closest bi-
furcation point along a pre-specified direction of load eéroent. In [25], the pre-specified
loading direction is allowed to have one degree of freedohlgan [26], the pre-specified
loading direction may have two degrees of freedom, makimp#sible to visualize the
power flow solution boundary in a two-dimensional space2If,Jan upper bound is pro-
vided for the voltage stability margin along a pre-specifaatiing direction, through the
second-order cone programming. In [28, 29], the bifurcapoint that is locally closest
to the current operating condition is obtained througlatiee method, direct method, and
optimization-based method.

In order to further explore the power flow solution boundang #éhe voltage stabil-

ity margin in high-dimensional loading space, we propose approaches to visualize
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the power flow solution boundary in high-dimensional logdépace, and to calculate the
global lower bound of the voltage stability margin. Commiangth the existing techniques
for obtaining the voltage stability margin, the proposegrapches merit the following
advantages: 1) the proposed approaches do not assume a&ifiedpdirection of load
increment, which reduces the impact of load uncertaintyheowvoltage stability assess-
ment; 2) the proposed approaches study the global properttige power flow solution
boundary and the voltage stability margin around a certparating condition, instead of
searching for the locally closest bifurcation points.

The rest of this section is organized as follows: Sectiond&&cribes the proposed
visualization tool for the power flow solution boundary ighidimensional space; Section
3.3 presents the proposed method for calculating the loaend of the voltage stability

margin; Section 3.4 provides concluding remarks for thidiea.
3.2 Visualization of The Power Flow Solution Boundary
3.2.1 Introduction to Power Flow Solution Boundary

The nonlinear power flow problem (in polar coordinating eyst can be expressed

using the following set of equations:

f(z,A) =0 (3.1)

wherexe R" represents the bus voltage magnitudes and phase anglB3represents
the bus real/reactive power generations/loads.

For a point lying on the power flow solution boundary, (3.1)sinbe satisfied, i.e.,
it must be a power flow solution. However, since all the polyitsg on the power flow
solution boundary should be bifurcation points of the cgprnding dynamic system, it

must also satisfy the following equation:
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detf.(z,\) =0 (3.2)

where f,(z, \) represents the Jacobian matrix of the power flow equativadyated

at the current operating conditigm, \), anddet represents the matrix determinant.
3.2.2 Formulation of The Visualization Problem

The objective of the visualization problem can be statedbows:

For a given operating poirit:®, \Y), find a collection of operating points*, \*), such
that:

1) Each poin{z*, \*) lies on the power flow solution boundary (i.e., satisfies)@rid
(3.2)).

2) The collection of pointgz*, \*) describes the geology of the power flow solution
boundary aroundz?, \°).

In order to achieve the above objective, the visualizatimblem is formulated as the
following optimization problem, and a dynamic-programgtioased approach is proposed

to solve the optimization problem:

min||A® — X*(|
st f(z%\%) =0 (3.3)
fl@®, A7) =0
det fo(x*, \*) = 0
The above optimization framework searches for the power 8oltion boundary
point(x*, \*), which has the shortest Euclidean distance towards the gperating point
(2%, A%). A dynamic-programming-based approach is proposed tegbk above opti-

mization problem. After running the dynamic programmingaaithm, a collection of

points(z*, A*) on the power flow solution boundary can be obtained, and thiogg of

40



the power flow solution boundary around’, \°) can be characterized.
3.2.3 Proposed Solution for The Visualization Problem

The dynamic-programming-based algorithm for solving tlei@lization problem is

described using the following pseudo codes:

Algorithm 1: Visualization of Power Flow Solution Boundary

1 Initialization: determine a small step sizdor the change of parameteks

2 Obtain initial power flow solutioniz, A¢) by solving f (zo, Ag) = 0;

3 Starting from(zy, \o), obtain all the possible next moving steps by the following
iterations:

4 for k=1:1:length(\y) do

5 AR = N+ 0,--+ 7, ,0]T (7 is thek! element);

6 f(:cgk), )\gk)) = 0 (f is the power flow equations) ;

7 end

8 Solve the following recursion problem using dynamic progmang - memorization
technique:

o G(xg,\g) =
1+ MINGED, A, a@® a0, g glleratOo) \Tength(a)yy .

whereG(-) represents the optimization problem formulated in (3.3).
After running the above dynamic-programming-based allgorj a collection of points
lying on the power flow solution boundary aroufg, \) can be obtained, and the geol-

ogy of the power flow solution boundary aroupxd, \¢) can be characterized accordingly.
3.3 Calculation of Lower Bound of The Voltage Stability Margin

One of the key disadvantages of the above visualizationri#thgois that, the dynamic-

programming-based algorithm performs a greedy searchégrawer flow solution bound-
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ary around a certain operating condition, and therefor@mputationally expensive and
difficult to be applied to large-scale practical power syste

In order to overcome the above disadvantage, another tigois proposed to cal-
culate the global lower bound of the voltage stability margirhe formulation of this

algorithm is presented in the following section.

3.3.1 Problem Formulation for Calculating The Lower Bound o The Voltage Sta-

bility Margin

The following optimization problem is formulated for thel@alation of the lower

bound of the voltage stability margin:

min||\° — X3
st fr(x® A0 =0
fr(@ X =0
vl fr(x*, \*) =0 (3.4)
viv =1
g™ < gt < g
A\ L \mae
wheref"(-) denotes the power flow equations in rectangular coordigatistem;f? (-)
denotes the Jacobian matrix of the power flow equations amngalar coordinating sys-
tem;v denotes the left eigenvector of the power flow Jacobian mt(ic*, A*); z™** and
2™ denote the upper and lower bounds 61 respectively; and™** and \™" denote
the upper and lower bounds fat, respectively.
The key advantage of (3.4) is that, by applying power flow &quna in rectangular co-
ordinating system, and introducing the left eigenvectdahefpower flow Jacobian matrix,

the above optimization problem can be formulated as a potyaleconstrained polyno-
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mial optimization problem. The lower bound of the minimalugof the above problem
can be obtained through a series of sum-of-squares (SCQ&ptelns. The proposed al-
gorithm for obtaining the SOS-based lower bound of the nabproblem is presented in

the following section.

3.3.2 Proposed Solution for Calculating The Lower Bound of Tie Voltage Stability

Margin

The following algorithm is proposed for obtaining the loviberund of the polynomial-

constrained polynomial optimization problem describe(Bid):

Algorithm 2: Calculating Lower Bound of The Voltage Stability Margin

1 Initialization: Formulate (3.4) into the following polynaal-constrained
polynomial optimization form:
¢ =min. folx) st. ful@) >0 (k=1,---,m);

2 Obtain the following generalized Lagrangian function:
Lz, -+ s pm) = fo(z) = By () fu(z),  for Vo e R".Vuy € SOS,;

3 Obtain the following generalized Lagrangian dual:
max n st. L(x,py, - pm) —n >0 (Vx€R™), p € SOS., -, pim €
SOS, ;

4 Obtain sum-of-squares (SOS) relaxation of onder
n"=maxr n st. L(x,pi, -, pum) —n € SOS, (Vxr € R"), €
SOSi1, -+ s pim € SOy ;

5 Solve the above SOS relaxation using SOS optimization engia semi-definite
programming), and obtain the lower bounid;

6 Check the tightness of . If needed, update usingr + 1 and re-run the algorithm ;

whereSOS,, denotes the set of sum of square polynomials with degreg r denotes

the relaxation order of the SOS relaxatiep;= r — [degree(fy)/2] (k=1,---,m)is
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chosen to balance the degrees of all the tegpis) fi.(z) (k=1,---,m).

The details of the above sum-of-squares relaxation can tedfan [30-32]. It is
proved in [30, 31], that under a moderate assumption whighires the feasible region of
the original polynomial optimization problem to be compadbe global minimum of the
original polynomial optimization problem can be approxiethas closely as desired by
solving a finite sequence of SOS optimization problems tijinacsemi-definite program-

ming (i.e.,n” < ", n" — (* asr — oo).
3.4 Case Studies

The proposed visualization algorithm is tested using aetimes test system. Figure 3.1
shows the one-line diagram of the three-bus system. In gheystem, Bus 1 is modeled as
the slack bus, Bus 2 is modeled as the PQ bus, and Bus 3 is rdaelbe PV bus. When
visualizing the power flow solution boundary in high dimemsl space, the following
parameters remain unchanged: the terminal voltage matgatiBus 3 (the PV bus), as
well as the terminal voltage magnitude and voltage phaskearid@us 1 (the slack bus).
The following three variables can be changed independentlyder to obtain the power
flow solution boundary in the high-dimensional space: tle ppwer load variation of
Bus 2 (PQ bus), the real power generation variation of Bus\8l{&s), and the reactive
power load variation of Bus 2 (PQ bus).

Figure 3.2 shows the visualization of the power flow soluttmundary (around the
current operating condition) in the three-dimensionakspavhere the three axes denote
the real power load variation of Bus 2 (PQ bus), the real pgeeeration variation of Bus
3 (PV bus), and the reactive power load variation of Bus 2 (B€),lrespectively. It can
be seen from Fig. Y, that there are multiple local minimahp®existed in the non-convex

three-dimensional surface.
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Figure 3.1: One-line diagram of the three-bus test system.
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Figure 3.2: Three-dimensional power flow solution boundaound the current operating
condition.
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3.5 Section Conclusion

In this section, we propose two approaches to visualizediepflow solution bound-
ary in high-dimensional loading space, and to calculateglbbal lower bound of the
voltage stability margin. Compared with the existing tagies for obtaining the voltage
stability margin, the proposed approaches merit the faligmdvantages: 1) the proposed
approaches do not assume any specified direction of loadnmesrt, which reduces the
impact of load uncertainty to the voltage stability assessn?) the proposed approaches
study the global properties of the power flow solution boupdend the voltage stability
margin around a certain operating condition, instead offcédrag for the locally closest
bifurcation points.

In the future work, we would explore the power flow solutiorubdaries of various
test systems, and further improve the proposed approaciesding to the verification

results.
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4. COMBINED PHYSICS AND DATA DECISION SUPPORT FOR POWER PLAN
MODEL VALIDATION *

4.1 Motivation

The phasor measurement unit (PMU) based power plant molightian (PPMV) has
been widely adopted in North America for identifying andreating inaccurate power
plant dynamic models. In the North America Electric ReligpiCorporation (NERC)
guidelines and standards [33—36], the generator owners)@f@ suggested to perform
PMU-based PPMV to determine interim power plant model patars in supplement of
their long-term plans for the offline tests, and the planmiogrdinators (PCs) are required
to implement a documented process to perform model vatidatiising PMU disturbance
recordings, which includes not only the determination otiaacceptable model, but also
the resolution to the underlying model problems. Theseajuids and standards urge the
PCs and GOs to establish a systematic and standardizedspriocapplying PMU-based
PPMV to all the eligible power plants within their systemsivéh the huge number of
power plants available in North America power grids, it wbhe a challenging and time-
consuming task for PCs and GOs to perform the PMU-based PPMA/regular basis, if

convenient software tools are not available.
4.1.1 The Concept of PMU-Based PPMV

In order to use PMU-recorded disturbance data to validaeyhamic model of a spe-
cific power plant, a PMU must be installed at the point of iobemection (POI) between

the power plant and the rest of the system. The dynamics oEgtef the system is then

*This section is in part a reprint with permission from Meng,Wieihong Huang, Frankie Qiang Zhang,
Xiaochuan Luo, Slava Maslennikov, and Eugene Litvinov &f tiaterial in the paper: “Power Plant Model
Verification at ISO New England”, &2017 IEEE PES General Meetin@hicago, IL [2]. Copyright 2017
IEEE.
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represented using the PMU measurements obtained at théBtiled dynamic models
of the system outside the studied power plant are ignoreadifl@entire system (except
for the studied power plant) is equivalenced as an infinite(te POI bus).

After obtaining the PMU voltage magnitude d&td”*Y and voltage phase angle data
9FMU at the POI, these measurements are injected into the POinboisler to represent
the system dynamics outside the studied power plant. Aigahsimulation study is then
performed to the reduced system with the dynamic modelseo$tildied power plant and
the PMU injection curves. The simulated real and reactivegs@urves at the POR S
and@¥™ are then compared with the corresponding PMU curves at@e U and
QFPMUY _If significant mismatch is found between the PMU curves #eddorresponding
simulation curves, the studied power plant model is comsiiénaccurate, and further
model diagnosis and calibration need to be performed.

In this section, a PPMV case refers to the set of datgi™«, Q%mu, pPMU QPMUL
generated by running the above simulation procedure orncthéostudied power plant
model. A mismatched PPMV case refers to the PPMV case withifgignt mismatch
between the PMU curves and the corresponding simulatioresuA mismatched PPMV
case indicates the underlying model problems for the stud@ver plant model. When
multiple sets of{ PPMU QFPMUY curves are obtained different transient events, various
PPMV cases can be generated accordingly for the studiedrgdamt model. If the un-
derlying model problem of a mismatched PPMV case is alreambyvk, this case could
serve as a labeled data point for the model diagnosis framketescribed in the following
section. These labeled data points could be generatedgtnsoomulation studies with in-
correct power plant models, as well as practical PPMV studigh detailed engineering

judgment for the model problems.

48



4.1.2 The Current Procedure for PMU-Based PPMV

The current procedure for PMU-Based PPMV is shown in Figuite A hree types
of inputs are needed for the PMU-based PPMV: the PMU datangwsuitable physical
events, the power flow case data, and the dynamic modeliagataransient simulations.
These inputs are sent through a transient simulation engthehe capability of running
the PMU-based PPMV. A series of simulation curves can thesbb&ned. Based on the
simulation results, the comparison study is performed émtifly critical mismatches be-
tween the simulation curves and the corresponding PMU su®ace critical mismatches
are identified, the model calibration process is perfornoedfe adjustment of the model

parameters or structures of the power plant.

‘ E’f:f.m....._. ‘ |L-__Jf=y a7
A — ] 7
’_"____z.bk————
G ifi = Match for
Verified D Model
PMU Data ‘ erified Dynamic Models v,
(Multi Events) | — -
A oG ] i |
Power Flow |— | : —» | Checkfor
File PMU-Based PPMV { Mismatch
i

Simulation & PMU Curves

Dynamic / ‘ T Mismatch for
Models /Q Model Calibration ig Some Events

Problem Diagnosis.

F_rr > *: ;
e b = Sensitivity Analysis.

Calibrated Dynamic Models

Optimization-Based Calibration.

Figure 4.1: The current procedure of PMU-based PPMV.
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Within the process of model calibration, three key funcsioreed to be performed:
1) the model problem diagnosis which identifies the speceigaes with modeling er-
rors using engineering judgement; 2) the sensitivity asialj37] which identifies sensi-
tive parameters for the adjustment; 3) the optimizatiogeblacalibration which applies
optimization techniques such as the ensemble Kalman 8@ fhe variable projection
method [38], and the particle swarm optimization [39] tofpen model calibration auto-
matically.

Currently, most utilities and independent system opesai®0Os) perform the PMU-
based PPMV in a manual way. Although there is huge potendrahfitomating the en-
tire process shown in Figure 4.1, production-grade so&waols for PMU-based PPMV
have not been widely applied to the industrial practicesthia section, the following
efforts towards an automated PMU-based PPMV are introduted batch power plant
model validation tool is designed and developed to autarallyiperform the model vali-
dation (without calibration) for multiple power plants ngia single disturbance event; 2)
a feature-based diagnosis framework is proposed as an atitasureening tool to mimic
the engineering judgement process and diagnose the umdgmydeling problems before
detailed calibrations.

The rest of this section is organized as follows. Sectiorpde8ents the main functions
of the batch power plant model validation tool; Section #tBaduces the automatic power
flow initialization process developed for the batch powanpmodel validation tool. Sec-
tion 4.4 proposes the feature-based diagnosis framewotkéoPMU-based PPMV. Sec-
tion 4.5 presents the case study results for the proposed/RitAdnosis framework. Sec-

tion 4.6 provides the concluding remarks for this section.
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4.2 Batch Power Plant Model Validation Tool

The batch power plant model validation (BPPMV) tool is desig to automatically
perform the model validation for multiple power plants gsmsingle disturbance event.
The PSAT and TSAT programs (developed by Powertech Labs#Mare executed to
perform core functions of power flow computation and timerdn simulation, respec-
tively. After reading the user inputs of selected power fdaand disturbance event pe-
riod (start/end time), the BPPMV tool automatically quertee commercial PMU and
SCADA databases for necessary measurements, calls PSAbviar flow initialization
module, and creates TSAT cases for playback simulationenidpmpleting simulations,
the model validation results are saved automatically inttldb data files, Excel data
sheets, Matlab figure files, and PNG figure files. The abovetifumecan be executed ei-

ther sequentially (in automatic operation mode), or séphréin manual operation mode).
4.2.1 Main User Interface of BPPMV Tool

The BPPMV tool is equipped with a graphical user interfaee (Bigure 4.2). All
the functions implemented in the BPPMV tool can be launchenhfthis main window.
The operational status of each function can be viewed frarstatus bar at the bottom
of the main window. When the BPPMV main window is launchedtfe first time, the
following settings can be initialized: 1) locations of thBAT and PSAT programs, offline
model validation case files, BPPMV mapping file, and path &idation outputs; 2) PMU
and SCADA data sampling rates, and PMU and SCADA databasietials; 3) TSAT
simulation length, time step, and integration method; 4)d®ovalidation input signals
and output data format. Once initialized, the above sestoan be saved into a default
configuration file, so that users can load them the next tireg dpen it. Figure 4.3 shows

the user interface for parameter settings.
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Figure 4.2: Main user interface of the BPPMV tool [2].

4.2.2 Raw PMU/SCADA Data Display

After loading the initial configurations, all the power plarligible for model valida-
tion will be listed on the left of the main user interface (iglre 4.2). Users can select the
desired power plants and one disturbance period (startifeed to set up a BPPMV case.
The main user interface is equipped with the function of ldiging raw PMU/SCADA
data for user-selected power plants, so that users canlyiguspect the selected distur-
bance and check the data quality. When raw signals withrdifeunits are selected for
visualization, a separate window will pop up with all theesst¢d signals grouped into

different subplots, based on their units (see Figure 4.4).
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Figure 4.3: Separate user interface for parameter sef@hgs

4.2.3 Model Validation Results Display

A separate user interface (see Figure 4.5) is designeddaresults display, which is
accessible from the main user interface. Comparisons leetwetual PMU curves and
TSAT simulation curves can be displayed for each selecteegpplant. The comparison
results of the following quantities can be visualized: eatrmagnitude, current angle, real

power, reactive power, voltage magnitude, voltage angleflaguency.
4.3 Power Flow Initialization Process for The BPPMV Tool

This section presents a convenient power flow initializapoocess, which is a neces-
sary step to start a time-domain simulation. The challerege Is to estimate the Gener-
ator Step-up Transformer (GSU) losses, derive the actuedrgéor output, and match the
point-of-interconnection (POI) initial conditions of theodel validation cases with actual

PMU data. The key advantages of the proposed initializgitomeess are: 1) it involves
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only power flow calculations provided by software vendoiksit 2loes not require extra
programming efforts on power flow or state estimation calttahs; 3) it involves no it-
erative searches or heuristic trial-and-errors. Detanéthlization approaches for single

generator case and multi-generator-single-POI case awided as follows.
4.3.1 Single Generator Case

The proposed initialization method for single-generasses involves two power flow
calculations and the following PMU measurements at the R@Gldye needed: voltage
magnitudel "MV voltage anglé” ™V, real power injectionP”YV and reactive power

injectionQMY, The detailed steps are highlighted below:

Step 1.  Replace the rest of the system with an equivalent generBidiJ¢Gen) model

attached to the POI bus.

Step 2.  Model the POI bus as a PV bus, and set the following power flaarpaters for
the PMU-Gen: set the desired real power injectioP4s/V -G = pPMU and the
reactive power injection a@"MU-Gen — QPMU_ Fix its reactive output by setting

its upper/lower reactive power limits 7Y

Step 3:  Model the subject generator bus as a slack bus, and set tbwifay power flow
parameters: let it regulate the voltage at the POI bus anttheeatesired voltage as

VPMU- get the desired voltage angle of the generator b#§%s= 97V
Step 4: Model other buses as PQ buses.
Step 5:  Run the power flow calculation using the above settings anel thee results.

Step 6: Based on the power flow case saved in Step 5, remodel the PQisbaislack

bus and the generator bus as a PV bus; set the desired voitglgecd POI bus as

QPOI — HPMU

55



Step 7:  Run the second power flow calculation using these settingssawe the final

results.

The main purpose of the first power flow (Step 1 to Step 5) is tiwimtke initial power
flow condition of the POI bus with the PMU measured valué§!V, pPMU andQ?MY,
The key idea is to model the POI bus as PV bus only without geltagulation. Since the
POI bus voltage is regulated by the subject generator, tlualagenerator reactive power
output is solved by the first power flow calculation. The sabgenerator’s real power
output is solved because it is modeled as a slack bus. Thadeower flow (Step 6 and
Step 7) is to match the voltage angle of the POI bus with thesh&MU valued” MV

Compared with the popular iterative state estimation aggrpthe proposed method
only applies two power flow calculations and is easy to im@aehusing any commercial

software.
4.3.2 Multi-generator-single-POIl Case

The proposed initialization method for multi-generatorgse-POI cases are described
as follows. Since PMU data only has the total output (at PEOADA measurements of
each generator’s output are also needed: real p&wef”4, and reactive powep>¢4P4,

Power flow initialization is conducted with the followingegis:

Step 1.  Replace the equivalent system with an equivalent genefidlJ-Gen) model
attached to the POI bus.

Step 2.  Model the POI bus as a slack bus, and set the following power glarameters
for the POI bus: set the desired active power injectionBa4V-¢en — pPMU gnd
the reactive power a@"MU-Gen — QPMU- fix its reactive power output by setting

its upper/lower reactive power limits g7V,
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Step 3:  Model the subject generators’ buses as PV buses, and seillhwsifg power
flow parameters: let them regulate the voltage at the POI bdssat the desired
voltage as the PMU valug?”V: set theirQ“" values to be thei€)*“4P4 values;
set theirP%*" values to be theiP*“4P4 values; set the desired voltage angle of the

generator buses &§" = MU,

Step 4: Enable governor response in the solution parameters dialaghe power flow

calculation using these settings and save the results.

In the power flow results, all the initial power flow conditomat the POI bus are
matched by the measured valudg”MU  pPMU_-OFPMU and "MV Besides, the ac-
tive and reactive power outputs for each non-POI generasomatched by the measured
values: P3¢4PA and Q5¢4P4: offline units are turned off accordingly. The key idea here
is to use the governor response to resolve the small actwermpmismatches caused by
GSU losses and match the POI boundary conditions.

It is worth mentioning that even though the proposed in#&lon process is designed
for PSAT and narrated with PSAT terminologies, the prinig@ae generic and could be

applicable to other similar commercial software as well.
4.4 Feature-Based Diagnose Framework for Power Plant Modélalidation

The importance of phasor measurement unit (PMU) based polaet model valida-
tion (PPMV) is being recognized by researchers and praostis. In North America, the
PMU-based PPMV is typically performed manually by utilgtiand independent system
operators (ISOs) for diagnosing and calibrating power tataodel problems. In order to
guarantee the accuracy of the calibration results, enggrmeseed to provide manual judg-
ment to the mismatched PPMV cases, so that the type of thelmggeoblem (such
as wrong machine parameters, missing governor model},atn.be determined before

the model is sent for a detailed calibration. This manuagjudnt process has become
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the major bottleneck for automating the PMV-based PPMV. ¥ercome this difficulty,
this section proposes a feature-based diagnosis framawaktermining the types of the
power plant model problems. It mimics the human enginegudgment process via a
supervised learning engine. Instead of applying purelyeititting or sensitivity anal-
ysis, this approach uses the engineering experience tedr&iom the labeled historical
PPMV cases, establish the critical feature space, and tedarm artificial learning to
determine the type of a power plant model problem. The prepésmework could serve
as a screening tool for the PPMV engineering judgment psyaeisich could potentially

help automate the entire PMU-based PPMV applications.
4.4.1 Formulation of The Model Diagnosis Problem

In this section, the power plant model diagnosis problenoistilated as a statistical
classification problem. Figure 4.6 shows the overall flowtloé the model diagnosis

problem. The model diagnosis framework contains the falgwhree sub-problems.
4.4.1.1 Feature Extraction

To diagnose the power plant model problems automaticalitycal features need to
be extracted from the labeled data points (obtained fronpthetical or simulated PPMV
cases). For the PPMV applications, features are defineditalbedual measurable char-
acteristics of a critical mismatch pattern between the kited curve and the correspond-
ing PMU curve. These characteristics / mismatch patterokicgirongly suggest the un-
derlying model problem of the power plant. Figure 4.7 shogwesal examples of critical
features that can be extracted from mismatched PPMV caseEfrding to the engineer-
ing experience [37] and the underlying physics of the powantomodel, the post-event
steady state mismatch is a strong indicator of the turbinvegmr model problem; the in-
verse swing pattern during the transient period suggestsitddel problem with the power

system stabilizer (PSS); and the time shift betweer@h&Y and the*"* curves indi-
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Figure 4.6: Flowchart of the model diagnosis problem.

tance function).

4.4.1.2 Classifier Training

cates model problem with the controller time constant.
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In this section, we extract critical features using engimggjudgment of critical mis-
match patterns that would suggest unacceptable power pladels. For each critical
feature extracted, a quantification metric is proposed deoto quantify the degree of
mismatch between the simulated curve and the PMU curve. BA-tlignensional feature

space is then established, in which each of the feature Faguamtification metric (dis-

Once the critical feature space is established, all thefiistl/simulated PPMV cases

are projected onto this feature space. The degree of mikrhateween the PMU curve and
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Figure 4.7: Examples of critical feature extraction fronrsmatched PPMV cases.

the simulated curve in each PPMV case are then quantifiedghrthe high-dimensional
guantification metric (distance function). In this secfitire supervised learning approach
is applied to train the classifier for the model diagnosise Pphactical/simulated PPMV
cases with identified model problems serve as the labeledptants for the supervised

learning engine. Figure 4.8 presents the flowchart for thssifier training sub-problem.
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PPMV Cases

S 3 | Critical Feature Space
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Feature " i
1

Figure 4.8: Flowchart for the classifier training sub-peshl
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4.4.1.3 Power Plant Model Diagnosis

After the classifier is obtained through the supervisediegrapproach, it is then ap-
plied to classify the model problems of new PPMV cases intoafrthe known categories.
The classification results suggest the underlying modddlpros of the new PPMV cases.

Figure 4.9 presents the flowchart for the power plant modgejmsis sub-problem.

Trained Classifier Generator Modeling
S Diagnosis
New CTaSer o (PSS Failure/Governor
[ PPMV Generator Model Missing/Machine
\ Case Modeling Diagnosis Parameter Error. Etc.)

Generatog Modeling Diagnosis

5 l ﬁ O Governor Problem.
’L Ll .:?: " - »' O Steady-state mismatch.
e
[TER F
X

S

P oV Diagnosis Results
0

New PPMV Case [6]  Fopy, (o

Figure 4.9: Flowchart for the power plant model diagnosisgroblem.

4.4.2 Proposed Approach

In order to diagnose the power plant model problem using tbpgsed framework,
this section presents a supervised learning approachfaeretfitiate two kinds of power
plant model problems: 1) the missing turbine governor mpdeblem; and 2) the wrong
machine damping parameter problem. The supervised lgpamgine is built upon the
support vector machine (SVM) method. Two quantificationrmast(distance functions)
are developed based on the key mismatch features of the gboxer plant model prob-

lems.
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4.4.2.1 Key Feature for The Turbine Governor Problem

The following feature is used to identify if the turbine gover model is missing from
the entire power plant model:

Feature 1 If the turbine governor model is missing from the entire poplant model,
the post-event steady-state real power output of the polaet pemains the same as its
pre-event steady-state value. If the turbine governor miediecluded in the entire power
plant model, the post-event steady-state real power ooftlie power plant is different
from its pre-event steady-state value. These facts leadsignaficant post-event steady-
state mismatch between the real power curves obtained temmpwer plant models with
and without the turbine governor model.

The above feature is induced by the underlying physics ofptiveer plant turbine
governors. Designed to adjust the mechanical power inmd taerefore affecting the
electrical power output) of the power plant after a transarent, the turbine governor
maintains the real power balance of the power grid by chanthe post-event steady-
state real power generation to a new set point. Details adwaiturbine governor models
can be found in [42].

The quantification metric (distance function) in (4.1) isposed to quantify Feature

, 1 , ,
Dl (PPMU’ PSzmu) — E (pf]\/IU—de . pgzmu—de) (41)
k=1

whereP"MU and P5"™ denote the vectors containing the real power PMU and sinonlat
outputs, respectivelyP”MU—54 gnd PSimu—54y denote the: x 1 vectors containing the
post-event steady-state real power PMU and simulationutsitpespectivelyp; "'V ~>%
andp;"""~°% denote thé:' data points ofP?MU -S54 and PSimu—5dy, respectivelyD, (-)

denotes the distance function between the PMU curve anditgaged curve, when
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Feature 1 is applied. The post-event steady state periodedetermined using the rate
of change of the PMU/simulated curves. When the averageofatkange of the curve
segment is less than a per-defined threshold, this segmdtre ofirve can be identified as

the post-event steady state segment.
4.4.2.2 Key Feature for The Machine Damping Problem

The following feature is used to identify the wrong machiaenxbing parameter prob-
lem:

Feature 2 Due to the difference in the settings of the machine dampargmeters,
the real power PMU and simulation outputs tend to have diffedynamic patterns. Sig-
nificant mismatches can be observed between the PMU reakpone and the simulated
real power curve, before the transient event settles dowamtw steady state.

The above feature is caused by the fact that the machine dgrpprameter would
have significant impact on the oscillating behavior of thevgoplant real power output.

The quantification metric (distance function) in (4.2) isposed to quantify Feature 2.

DQ(PPMU, PSimu) — ln(DTvVV(PPJ\/IU—Detrend7 PSimu—Detrend)) (42)

whereP"MU and P5"™ denote the vectors containing the real power PMU and sinonlat
outputs, respectivelypp’MU—Detrend gnd pSimu—Detrend danote the vectors containing the
real power PMU and simulation outputs, whose mean valueseaneved from the cor-
respondingP?U and P, respectively;DTW (-) denotes the dynamic time warping
value between two time serids,(-) denotes the natural logarithm of a variahl®;(-) de-
notes the distance function between the PMU curve and theaied curve, when Feature
2 is applied.

In (4.2), the dynamic time warping is applied to quantify gmilarity between the

simulated curve and the PMU curve. The dynamic time warpsng technique for effi-
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ciently quantifying the similarity between two time seriggh approximately the same
overall component shapes [43]. The formulation of this téghe is briefly presented as
follows. More details of the dynamic time warping can be foum[43—46].

Let@ = ¢1,Q2, ..., Gi, -..qn, @aNdC = ¢y, ¢y, ..., ¢}, ..., ¢, denote the two time serieg
andC, of lengthn andm, respectively. LetD denotes the: x m matrix whose(i'", j)
element denotes the Euclidean distance between the twdspgiandc;. A warping
path 1V is a set of matrix elements that defines a mapping betwgaemd C. The k"
element oflV is defined asv, = (i,7),. Therefore W = wy, ws, ..., wg, ..., wg, Where
max(m,n) < K <m+n—1.

The dynamic time warping technique finds the warping p&thvhich minimizes the
warping cost shown in (4.3):

K

DTW(Q,C) = min(y| > wi/K) (4.3)

k=1

In the meantime, the warping paltli needs to satisfy the following constraints:

1. Boundary Conditionsw; = (1,1) andwy, = (m,n). This means the warping path

needs to start and finish in diagonally opposite corner oélise matrix.

2. Continuity: Givenuy, = (a,b), thenwy,_; = (d/, '), wherea—a’ < 1andb—b' < 1.

This restricts the allowable steps in the warping path tacel)t cells.

3. Monotonicity: Givenw, = (a,b), thenw,_, = (a’, V'), wherea’ —a < 0 and

b — b < 0. This forces the points il to be monotonically spaced in time.

According to the above discussion, the dynamic time warpaatpnique can be for-
mulated as a constrained optimization problem. The optpa#h 1/ can be found via
dynamic programming. To solve this problem, the followiegurrence is evaluated in the

dynamic programming algorithm:
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T(Zuj) = d(ql7 cj) + mm{r(z - 17.] - 1)7T(l - 1,j),T(i,j - 1)} (44)
wherer(i, j) denotes the cumulative distance at the current recursion.

4.4.2.3 Support Vector Machine Classifier for Power Plantdgldiagnosis

Based on the two key features extracted above, a two-dimegldieature space is es-
tablished for the classifier training. The proposed disdooctionsD; (-) andDs(-) serve
as the quantification metrics for the two dimensions of tlauiee space. A support vec-
tor machine classifier is trained to classify the two diffgneower plant model problems.
The classifier training process is briefly described aseldDetails of the support vector
machine technique can be found in [47].

Let (21, v1), ..., (4, y) denotes the training data set for the classifier. heraining
data point,(z;, v;), is the labeled data point obtained from #e PPMV training case.
y; = 1 if the turbine governor model is missing from the originalaebof thei” PPMV
case}y; = —1 if the machine damping parameter is incorrect for#thiePPMV case. The
2 x 1 vectorz; = [Dy(PPMU pSimuy p,(pPMU pSimu)T \where PPMU gnd pSim
denote the PMU and simulated real power curves forith@PMV case, respectively.
The above definition projects all the training PPMV case$i&ttvo-dimensional feature
space.

In this two-dimensional feature space, the support vectinime classifier is trained

through solving the following optimization problem:

min ||d]]2
(4.5)
st. y(d-x;—b)>1, fori=1,...n
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whered is al x 2 vector;b is a real valuef|d||, denotes the 2-norm af; the hyperplane
determined by’ - ¥ — b = 0 is the separating hyperplane for the two types of modeling
problems. The’ andb obtained by solving (4.5) determine the following suppa@ttor
machine classifierti—sgn (4 - & — b), wheresgn(-) denotes the sign function.

Following the above process, a trained linear classifierbmobtained to diagnosis
two types of power plant model problems: 1) the missing tnglgovernor model problem;
and 2) the wrong machine damping parameter problem. Theettailassifier can then be

applied to determine the underlying model problems for thiaheled PPMV cases.
4.4.3 Case Study

The proposed solution approach is tested using simulatbti/Riases generated from
the Western System Coordinating Council (WSCC) 9-busesystigure 4.10 shows the

one-line diagram of the test system.

Bus 2 Bus 7 Bus8
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Figure 4.10: One-line diagram of the test system.

In the original system, each power plant model contains atsgmous machine model,
an exciter model, and a turbine governor model. In ordemukite the scenarios induced

by incorrect power plant models, the power plant model at Bissmodified to simulate
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Figure 4.11: Real power generation at bus 2 (with correctguglant model).
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Figure 4.12: Real power generation at bus 2 (without turgmesrnor model).

two different model parameter/structure errors: 1) migsimbine governor model, where
the turbine governor model is removed from the original poggéant model; 2) wrong ma-
chine damping parameter, where the machine damping pagametined to an incorrect
value. Figure 4.11, Figure 4.12, and Figure 4.13 show thiep@aer generation curves
at bus 2 during various system events, when the correct pplaat model, the incor-

rect power plant model without the turbine governor moded] #ne incorrect power plant
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Figure 4.13: Real power generation at bus 2 (with wrong nrecamping parameter).

model with wrong machine damping parameter are appliepectsely. By comparing
Figure 4.11 and Figure 4.12, it is clear that, when the twlgiovernor is missing from the
original power plant model, the post-event steady-staligegaof responses during differ-
ent events return to their pre-event steady-state valodgating the underlying problem
with the turbine governor model. By comparing Figure 4.1d &igure 4.13, it is clear
that there are significant dynamic pattern mismatches legtwee curves in Figure 4.11
and the curves in Figure 4.13.

In this case study, the following two critical features aréracted for this study: 1)
post-event steady-state error; 2) the dynamic pattern atidm These features are ex-
tracted using methods described in the previous section.

Figure 4.14 shows the steady-state mismatch values foretllepower generations
during different events, when different model errors argliad. The green bars indicate
the steady-state mismatch values of the power plant modkbut the turbine governor,
and the blue bars indicate the steady-state mismatch vafyesver plant model with the
wrong machine damping parameter.

Figure 4.15 shows the dynamic time warping values for thé pewer generations
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during different events, when different model errors argliad. The green bars indicate
the dynamic time warping values of the power plant model adtithe turbine governor,
and the blue bars indicate the dynamic time warping valug®wakr plant model with the
wrong machine damping parameter.

It is clear from Figure 4.14 and Figure 4.15 that, when théite governor model
is missing from the power plant model, the steady state niigmea of the real power
outputs tend to be more significant; when the wrong machingitay parameter is set for
the power plant model, the dynamic pattern mismatches (digahby the dynamic time
warping values) of the real power outputs tend to be moreafsignt.

The trained classifier and the diagnosis result for the #st ¢s shown in Figure 4.16.
The similarity metrics are calculated according to the apphes in the previous section.
Within the feature space established using the above twoalieatures, the two different

modeling errors can be classified effectively. The correatieh diagnosis information for

Steady State Mismatch Values of
Different Model Errors
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Figure 4.14: Steady state mismatch values for real poweergéons during different
events, when different model errors are applied (the firsrS in green) are steady state
mismatch values of the power plant model without turbineegowur, the last 5 bars (in
blue) are steady state mismatch values of power plant matelwsong machine damping
parameter).
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Figure 4.15: Dynamic time warping values for real power gatiens during different

events, when different model errors are applied (the firsais lfin green) are dynamic
time warping values of the power plant model without turbgmeernor, the last 5 bars
(in blue) are dynamic time warping values of power plant nhadéh wrong machine

damping parameter).

test PPMV case can be generated after the classification.

The Trained Classifier and The Diagnosis Result
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Figure 4.16: The trained classifier and the diagnosis résuthe test PPMV case.
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4.5 Section Conclusion

In this section, a batch power plant model validation soféataol is presented. This
tool aims at automatically performing the model validatjaithout calibration) for multi-
ple power plants using a single disturbance event. Builtupcs software tool, a feature-
based diagnosis framework is proposed for automating ttieeggrocess of PMU-based
PPMV. It mimics the human engineering judgement procesa giapervised learning en-
gine. This proposed approach could serve as a screeninfptable PPMV engineering
judgement process, which could help automate the entire\P&bplication.

Future work will include extending the proposed power plaondel diagnosis frame-
work to other types of power plant model problems. More mismdeatures will be
extracted; comprehensive similarity metrics (distancefions) will be proposed for dif-
ferent types of model problems; various classification nepines will be applied in order

to obtain better classifiers.
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5. PHYSICS-BASED POST EVENT ANALYSIS FOR WIND FARM SUB
SYNCHRONOUS OSCILLATIONS

5.1 Motivation

In recent decades, increasing amounts of wind farms haveib&grated into power
systems around the world, helping relieve both energy aml@@mmental concerns, while
bringing challenging operational issues to system opesaibthe same time [48]. One
of the recently-discovered system instability phenomentheé sub-synchronous oscilla-
tion (SSO) induced by wind farm integration. In October 200@ Electric Reliability
Council of Texas (ERCOT) reported a SSO event in their wirtdgrated system [49].
The oscillation was triggered by a single line-to-groundltfaand eventually caused un-
stable power and voltage oscillation in the nearby areainguhe past few years, similar
wind-induced SSO events have also been observed repeatediiier wind-integrated
systems including Oklahoma Gas and Electric Company (OG&ED11 [50] and China
Jibei Power Grid in 2013 and 2014 [51]. Different from SSOidienits in ERCOT sys-
tem, the events discovered in OG&E and China Jibei Power @eiet not triggered by
large disturbances in nearby transmission network. Mtt/dy this phenomenon, this
section tend to analyze wind farm SSO from small-signdbibta point of view, instead
of transient stability issues. A recent publication [52¢yides detailed modal analysis
as well as electro-magnetic simulations to SSO events in&hibei Power Grid. This
section further studies the impact of wind farm spatialrihstion on SSO events through

applying quantitative sensitivity analysis and paramatiunstment verification to a multi-

*This section is in part a reprint with permission from Meng,We Xie, Lin Cheng, and Rongfu Sun
of the material in the paper: “A Study on The Impact of WindrRéBpatial Distribution on Power System
Sub-Synchronous Oscillations”, IEEE Transactions on Power Systemasl. 31, no. 3, pp. 2154-2162,
May 2016 [3]. Copyright 2016 IEEE, and in part a reprint wigrmission from Meng Wu and Le Xie of
the material in the paper: “Calculating Steady-State Qpeg&onditions for DFIG-Based Wind Turbines”,
in IEEE Transactions on Sustainable Ene(ggcepted, to appear) [4]. Copyright 2017 IEEE.
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wind-farm model derived from a practical wind-integratgdtem.

Significant progress has been made in the analysis and totigaf wind-induced
SSO. Several key issues on wind-induced SSO have beenigatest Fundamentally,
the nature of these SSO incidents observed in wind-intedragstems are similar to the
induction generator effect discussed in SSOs related teectional power plants. These
SSOs are caused by the resonance coupling between eleatritenagnetic parts of the
generator circuits and series-compensated transmissies |IAnderson et. al [53] sum-
marizes theoretical framework and systematical analgsithis kind of electro-magnetic
resonance in the context synchronous generatargiowever, recent studies reveal that
the integration of wind farms have introduced new challengehe analysis and control
of this problem: a) among various types of wind turbines lidpdied-induction-generator
(DFIG)-based wind turbines are the most vulnerable to S&@ilee converter controllers
of DFIG are highly participated in the SSO mode [54]; b) thegfrency of wind-induced
SSO depends closely on DFIG controller parameters, aneftirerhas a wide range,
which increases the difficulty of controller design and pagger tuning [55]; ¢) in a given
transmission network, wind farm consists of many spatidistributed wind turbines,
which requires multi-machine modeling and analysis in tleswof SSO. Possible con-
trol strategies to mitigate SSO using existing DFIG and F&&bntrollers in the system
have been proposed, and control signal selections havedsarssed for wind-induced
SSO mitigation [56-58].

Given the increasing presence of distributed wind powehendgrid, there is an in-
creasing concern to fundamentally investigate the cause@mter-measure of such SSO.
While a large body of literature exists for the issue of carieal synchronous generator-
induced SSO, the phenomena described in this section diffiae following sense: (1)
there is a cluster of spatially distributed asynchronousdvgenerators, and (2) the oper-

ating condition (e.g. wind speed) is inherently stochasticecent study of wind-induced
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SSO, most of the research has been focusing on single-neattfinite-bus or purely
simulation-based study. This section aims at filling the gigproviding rigorous analyti-
cal study on the wind farm spatial distribution’s impact &b

Motivated by the above gap between current research pogres industrial expec-
tations, this section studies the impact of wind farm spdigtribution on wind-induced
SSO using a multi-machine wind farm model derived from a ficabwind-integrated
power system. Eigenvalue sensitivity with respect to spsp@rameters as well as op-
erating conditions is performed to explore SSO in a multivfarm environment, the
coupling of wind turbines with identical and different pareter settings on the studied
SSO modes is investigated.

The rest of the section is organized as follows. Section scdbes the system mod-
eling techniques adopted in this section; Section Ill pegsoan initialization technique
for obtaining the steady-state operating condition of DiBkzed wind turbines; Section
IV presents the parameter sensitivity analysis for stuglytre impact of wind farm spatial
distribution on system SSO; Section V shows the case stuglytseand corresponding
analysis regarding the relationship between wind turberameters and system SSO be-

havior in a multi-wind-farm environment; Section VI pretethe concluding remarks.
5.2 Modeling of Multi-Wind-Farm-Integrated Systems for SSO Studies

Studies discussed in this section are based on the systgrtusérshown in Figure 5.1.

In the proposed multi-machine system structure, wind tebiwith the same param-
eters and nearby physical locations are grouped togetllereanesented by an integrated
model of DFIG-based wind farm. Multiple wind farm models kvdifferent parameters
are connected to the bulk power system through certain metdy;mmamic model. Since
studies presented in this section focus on the SSO probleisedaby wind farm inte-

gration, which has been shown to be related to series corapen®f transmission lines
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Figure 5.1: Overall structure of system model [3].

close to the wind farms [54], remote bulk power systems aréeteal by infinite buses, and
therefore no dynamics are considered. The above systeniwsgus suitable for study-
ing the impact of wind farm spatial distribution on SSO peyhl| without introducing too
much computational complexity.

It should be noted that model of wind turbines could be ofedéht level of details.
However, in this section, components that are essentitthégpurpose of SSO analysis and
control are selected to be modeled in detail. Discussiogarding essential models for
wind farm SSO analysis can be found in [56,59-61]. In ordehtexk the model fidelity of
wind turbines, online damping estimation methods propasedcent publications [62—
67] could be used for the purpose of comparing damping réedaeen practical wind
turbines and their models, once the maturity of online dawgpmstimation methods is

suitable for practical applications.
5.2.1 Modeling of DFIG-Based Wind Farm

For each integrated DFIG-based wind turbine model, winditr model described
in [59] is adopted. Figure 5.2 shows the overall structura 8fF1G-based wind turbine

with grid integration. Four dynamical subsystems are mextel
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Figure 5.2: Structure of DFIG-based wind turbine with gntegration [3].

5.2.1.1 Wind Turbine Mechanical Shaft Model

The multi-mass wind turbine mechanical shaft model is aglb this section. Its

dynamics fori” mass can be represented by the ODEs shown in (5.1) [68]:

(
(SZ':AWZ':(A)Z'—M;(

JiALdi =7; + K i+1(6i11 — 0;)
— Kiio1(6; — di-1) (5.1)
+ D iv1(Awipr — Aw;)

- Di,i—l(AWi - Awi—l) — D;Aw;

\
* rate
w, Wy

. r UV, = ——
vi(pole/2)? 7t wrate:

wherew; =
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5.2.1.2 DFIG Electro-magnetic Model

The DFIG electro-magnetic dynamics can be represented doittin order dynamic

model shown in (5.2) [69]:

Ugs lgs lgs
Vds ids ids
= Mgen (wT) + Ngen . (52)
Uqr 'Lqr 'Lqr
Vdr idr (5
where
Myen(wy) =
w w
—Ts - w_;,XSS 0 - W_b m
w w 53
w_bXSS —Ts w_b m 0 ( )
w—w w—w
L o
w—wr w—w
= Xm 0 o X -7y |
Xss 0 Xm 0
wyp wp
0 _ Xss 0 _Xm
. Wy Wy
Nyen = (5.4)
_Xm 0 _ Xer 0
wp wp
0 _Xo g X
L Wy wy |

In (5.2)-(5.4), full-order dynamics for DFIG stator andaptire modeled under syn-
chronous reference frame. The DFIG is assumed to operatede-phase balanced con-

dition.
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5.2.1.3 DFIG Converter Controller Model

In general, DFIG converter controllers can be represendayy5.5):

xc.trl = Actrlxctrl + Bctrluctrl

(5.5)

Yetrl = Cctrlxctrl + Dctrluctrl

The converter controller model shown in (5.5) usually aggplil-q decoupled control
to regulate DFIG power/torque and currents [68)..;, y.:,; are typically electrical vari-
ables of the DFIG-based wind turbine, aAgd,;, B.iyi, Ceiriy Dot @are determined by the

structure of the PI control loops.
5.2.2 DFIG DC-Link Model

DFIG DC-link dynamics can be represented by the ODE showA. ) (56]:

Cdcvdcvélc - Prsc - P, sc Pconverter (56)
g

loss

where
Prse = Vgrlgr + Varlar
Pyse = Vgslqq + Vdsiag (5.7)
Piarertet = gy Ry + i3, Ry
Equations (5.6) and (5.7) describe the dynamics of real pdeievery through DFIG
rotor and back-to-back converters. It should be noted tlGreactive power delivery
through rotor and converterg),, is usually regulated by DFIG converter controllers. In
most situationngef is set to be close to zero. The algebraic equation shown &) (5.

represents steady-state relationship for DFIG reactiveepalelivery through rotor and

converters:

Q' =Q, (5.8)
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whereQ, = vVysiag — Vaslqg-
5.2.3 DFIG-based Wind Turbine Grid Integration Model

The algebraic equations shown in (5.9) represent the ststadly bus current injec-
tion relationship when a DFIG-based wind turbine is cone@etith certain transmission
system:

lgl = lgs T+ lgg (5.9)
tq = ids + ldg

Based on (5.9), the overall dynamic model for DFIG-baseddwurbine with grid
integration can be represented by (5.1)-(5.9). This masleldiopted in the rest of the

section to calculate the steady-state operating conditbDFIG-based wind turbines.
5.2.4 Modeling of Dynamic Network System

In this section, dynamic network system consisting resssioductors and capacitors
is modeled under synchronous reference frame, inductoemisrand capacitor voltages
are treated as state variables. It should be emphasizethénatare two types of networks
which need to be considered separately: the non-degemaztaterk and degenerate net-
work. A network is said to be degenerate if [53] (1) it consaincircuit (loop) composed
only of capacitors and/or independent or dependent volkageces; (2) it contains a cut
set composed only of inductors and/or independent or deperdirrent sources. For de-
generate network, not all the capacitor voltages and imalectrrents are independent, and
therefore, those dependent ones cannot be consideredtatdeariables. In this section,
the following procedures are taken to build general dynaratevork model:

Step B.1: classify all system components into four typedtage source (wind farms
and remote systems), resistors (transmission line ressfacapacitors (series and shunt
capacitors, etc.), and inductors (transmission line itehae, shunt inductors, etc.).

Step B.2: merge all parallel-connected components of time $gpe into one integrated
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component.

Step B.3: create super bus: if a bus is connected with more ttiv@e integrated
component, identify it as a super bus.

Step B.4: create super component: merge all series-cathategrated components
of the same type between two super buses into one super cempon

Step B.5: identify dependent capacitors: check each lotiparsystem, if there exists
a loop containing only super capacitors and super voltageess, then identify one of the
grounded super capacitors as dependent capacitor, ififuieoegrounded super capacitors
presented, identify the capacitor with smallest suscegtas dependent capacitor.

Step B.6: identify dependent inductors: check each cutrsé¢tie system, if there
exists a cut set containing only super inductors, then ifjeanhe of the grounded super
inductors as dependent inductor, if there is no groundedrsaoductors presented, identify
the inductor with smallest susceptance as dependent mduct

Step B.7: build network model: terminal voltages of supdtage sources are con-
sidered as inputs of the network. For each independent iaduoapacitor, the inductor
current/capacitor voltage under synchronous refereramadrare considered to be state
variables. The dynamics of independent inductor/capaisteepresented by the follow-
ing equations:

+d 4 .4
wliiy, + Ly, = vy,

, (5.10)
wCwd + Ol =il
iVc; iVc; C; (5.11)

C
—wCjvl + Cvd =it
The currents/voltages of dependent inductors/capaatoveell as resistors can be repre-

sented by network inputs and state variables through KofflsHaw.

Through the above procedures, the following model for garmegtwork dynamic sys-
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tem can be obtained:

Tt = AntTnt + Briling (5.12)
wherex,, = [if i} ,--- i} ,if v vl - vl 08| denotes the state variables for
_ 1 1 1 1 T
the network systemy,.; = [vyq, Vas: s Vss Vs Ugings Vdings " > Vaings> Viing] dENOtES

the inputs for the network system,t, m, n denotes the total number of inductors, capac-
itors, remote power systems, and wind farms modeled in tdystystem, respectively;

A, andB,,; denotes the state matrix and input matrix of network systespectively.

1.1
Var s Vir
Power Curve
Control Logics 1 1 1 1
Wind P, Tg 1| Vygs Vginf 1
Speed 1| B e o IRV e " 7| Xonf
Speed 1 _/_ W, Wy Ve Vinf
Xnt
"qrn: Vir
Power Curve
~ Control Logics pt n n "
Wind e Tg n | Vs Vyinf "
. L __/_ o Xur [ n “ m | Xinf
Speed n _/_ Wy W Vs vdinf

Figure 5.3: System input/output relationship [3].

5.2.5 System Integration and Initialization

According to the previous discussions, the input/outplatti@nship of the entire sys-
tem can be represented by Figure 5.3. Wind farm models anebriemodel are inter-
connected through DFIG stator voltages. The entire systedehtan be described by the

following nonlinear ODEs:

Tou = fau(Tau, Warr, Panr) (5.13)
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wherez,; = [z, , 25, n]" denotes system state variablgg; = [py, ;. - - -, Pl Put]
denotes system parameters; = [P, w;, - -, Pl W, Ugin s Vding> = > Vs> Vi) - €=
notes system inputs.

In order to perform small signal analysis, steady-stateaip® point of the system
under certain operating condition should be obtained tjinauodel initialization. In this
section, the wind farm model and multi-machine network nhade initialized separately

using system power flow solutions.
5.2.5.1 Initialization of Network Model

Dynamic network model is initialized through the followisteps:

Step C.1: build power flow model for the multi-machine netkvaccording to its dy-
namic model. Each wind farm is modeled as PQ bus with posiiakand reactive power
injection to the network. One infinite bus is modeled as slack the other infinite buses
are modeled as PV bus with negative real and reactive poyeation to the network.

Step C.2: solve power flow problem for the network and obtteady-state voltages
for all wind farms and infinite buses. Calculate the corresiiog voltages on q and d
axes.

Step C.3: obtain steady-state operating points of the nm&tgystem by solving (5.12)
with z;,; = 0.

Through the above procedures, initial conditions for nekvgbate variables can be ob-

tained directly from power flow solution of the corresporgigteady-state network model.
5.3 Initialization of The DFIG-Based Wind Turbine Model

Initialization of DFIG-based wind farm model has been dssad in recent litera-
ture [70-72], while agreement on the most appropriate agbrdias not been reached.
This section proposes an analytical approach to calcliatenttial steady-state operating

conditions for DFIG-based wind turbines, after valid povlew solutions are obtained.
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The key idea stems from formulating the original problemmgsa set of linear-quadratic
equations, which makes the problem analytically solvadldvantages of the proposed
method over previous direct initialization methods canumamarized as follows: (1) an-
alytical formulation and closed-form solution to the ialtzation problem are provided,
which can be easily implemented in commercial software @wegr system transient sim-
ulation; (2) a full-order dynamic model under d-q referefigene is adopted as repre-
sentation for DFIG system; (3) loss of DFIG back-to-backvewter is considered; (4)
DFIG dg-reference frame can be of arbitrary direction, .= |v;| andv,, = 0 are not

assumed; (5) nonzero reactive power delivery through DRi@gjde converter can be
supported; (6) model re-initialization can be performezkly at any time, and initializa-
tion for wind turbine operations below rated output can b# sugported. The proposed
method takes advantage of the relationship among wind sgectrical power output,

and DFIG rotor speed, which can be obtained through eithidrtBsts or designed control

logics.
5.3.1 Formulation of the Initialization Problem for DFIG-b ased Wind Turbines

In order to obtain steady-state operating conditions fol@PBased wind turbines, all
the time-derivative terms in the dynamic models shown id)(6.5) need to be set to
zero, that is, the DFIG-based wind turbine needs to opetateady state. The algebraic
equations shown in (5.14)-(5.24) represent the steadg-stkationship for the model ini-

tialization process.

T = — Ki,i+1(5i+1 - 52) + Ki,i—1<5i - 5i—1)
— D iv1(Awipr — Aw;) (5.14)

+ Di,i_l(Awi — Awi_l) + DZALUZ
Aw; =w; —w; =0 (5.15)
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. w . w .
Vgs = —Tslgs — _Xsslds - _szdr (516)
Wy w

Vas = wibXssz'qs — ryias + wimez'qr (5.17)

Vg = — 2 wb“’” Xoigs — Tyigr %eridr (5.18)

Var = " X s+ o X iy — Tria (5.19)
Whp

—~Vgsliqg — Vasldg + Vgrlgr + Variar = iogRg + i, Ry (5.20)

Q0 = Vgsiag — Vasieg (5.21)

ActriZetrt + Berittetrs = 0 (5.22)

i = igs -+ g (5.23)

g = lds T ldg (5.24)

In (5.14)-(5.24), the steady-state mechanical shaft misdepresented by (5.14)-(5.15),
the steady-state DFIG model is represented by (5.16)-(3H®steady-state dc-link model
is represented by (5.20)-(5.21), the steady-state caveontroller model is represented
by (5.22), and the steady-state grid integration relatignfor DFIG-based wind turbine
is represented by (5.23)-(5.24).

The steady state calculation problem for DFIG-based wingites can be formulated
as solving the algebraic equations shown in (5.14)-(5.&4d, obtaining steady-state val-
ues for all the state variables involved in the wind turbigeamic model. In the following
section, detailed discussions on known and unknown vasahbl (5.14)-(5.24) as well as

analytical solutions to this problem are presented.
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5.3.2 Calculating Steady State Operating Conditions for DFE5-based Wind Tur-

bines

In order to solve the initialization problem formulated retprevious section, known
variables (system inputs) and unknown variables in (5(2494) should be identified. In

this section, the following assumptions are made on the kn@awiables:

Assumption 1. There exists a valid power flow solution for the studied sydiefore the
steady state calculations. Steady-state bus voltage phasmd current injection phasor

i, of the studied DFIG-based wind turbine can be obtained frioengower flow analysis.

Based on the above assumption, when DFIG is modeled undeh®mous reference
frame, its stator voltage and terminal current on g and d exe¥e derived frona; andi,.
Therefore s, vas, iq, andig can be considered as known variables for the initialization

problem.

Assumption 2. DFIG steady-state rotor speed’ has a one-to-one mapping with wind
speed, and the value of(v,;,4) Can be obtained under any wind speed condition, that

is, w; is a known variable for the initialization problem.

This assumption requires the rotor speed-wind speed ajirvg,;,,;) should be known
and stored prior to the steady state calculations. In madipplications, this curve can be
obtained using field test data or supervisory control objest It should be emphasized
that generating* (v,i,q) CUrve via supervisory control objectives is practicallpkgable
for various types of wind turbine control systems. Key pagtars for calculating the
wi(vwing) relationship can be obtained through vendors of the windites. Detailed
discussion on wind turbine control systems can be found8h j&n example for obtaining
the steady-state reference signalsdrand the blade pitch angle of a series of General

Electric (GE) wind turbines can be found in [73].
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Based upon the above assumptions on known variablgsus, iy, ia, w;) for the
steady state calculation problem, the following sectioresent details of the proposed

direct initialization approach.
5.3.2.1 Steady-State Operating Conditions of Mechanicaft3Jlodel

According to the steady-state relationship of mechanttattsnodel shown in (5.14)-

(5.15), the steady-state condition for state variallean be represented as (5.25):

(5.25)

It should be noted that under steady-state conditips, —K; ;11 (d;+1 — d;).

It is clear from the above discussions that calculating dstegatew, involves no
knowledge on state variables of DFIG, DC-link or convertentcoller model. Once
steady-state, is obtained, it can be considered as a known input variablthéosteady-

state analysis of the other three models.
5.3.2.2 Steady-State Operating Conditions of DFIG Model B&-link Model

The DFIG and DC-link models together form a nonlinear dyrasystem. Its
steady-state relationship is represented in (5.16)-§p(323)-(5.24). Since,s, vys, iq, La
are assumed to be known, andis considered as known input from the steady-state anal-
ysis of mechanical shaft model, the following 8 unknown ables need to be determined:
Ugrs Udry Tqry Ldry Tdsy Lgs» Gqgr Ldg- 1N Order to obtain these unknowns, nonlinear equations
(5.16)-(5.21), (5.23)-(5.24) need to be solved. Since t¢ked humber of equations match

with the total number of unknowns, this problem is fully detened.

Theorem 1. The steady state calculation problem for DFIG model and D®&4nodel has

at most one solution. If the solution exists, analyticahfats of all the 8 unknowns are
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available.

Proof. It can be concluded that in the 8 equations shown in (5.1@%{5 (5.23)-(5.24),
Equations (5.16)-(5.19), (5.21), (5.23)-(5.24) repreédierear relationship among the 8
unknowns, while Equation (5.20) represents nonlineardrptec) relationship among the

8 knowns. Therefore, these equations can be grouped a3 én@g5.27):

I
Ti—1
A — b, (5.26)
Li+1
Tg
f([xlv"' y Li—1, Li41, " ,..'lfg],..'lfi) =0 (527)

where (5.26) represents linear relationship shown in {5(349), (5.21), (5.23)-(5.24),
and (5.27) represents nonlinear relationship shown ir0f5.2

x; denotes an arbitrary unknown variable selected from thekBanns,: is an integer
satisfying1<i<8, [z1, -+, 2;_1,Ti11, -+ ,25)7 denotes the vector of unknown variables
except forz;. A denotes the parameter matrix for vecter, - - - , z; 1, ziy1, -+, 28]7, b

denotes the parameter vector for unknown variable
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According to the linear relationship of (5.26), Equatiotr2) can be obtained:

€

= A b, (5.28)

xrg

Therefore, the nonlinear relationship of (5.27) can be rigten as (5.29):

FIA o] ) = 0 (5.29)

Since (5.27) is a quadratic function of the 8 unknowns, itlsawoncluded that (5.29)
represents a quadratic function of single unknown variabl@ he number of solutions to
(5.29) lies within the following three situations:

a) There is 0 solution to (5.29): in this situation, soluttorx; does not exist. There-
fore, according to (5.28), solutionsftay, - - - ,x;_1, 7,41, - - , 5]’ do not exist either. The
original problem has no solution.

b) There are 2 different solutions to (5.29): in this sitaatithere exists two different
solutions tar, which correspond to two distinguished equilibrium poimitthe DFIG/DC-
link model. However, the following paragraph shows at least of the two equilibrium
points is unstable.

If 4., is selected to be the single unknown variable (5.29) can be represented as

(5.30);

aigg +bigg+c=0 (5.30)
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If within a small neighborhood of an equilibrium point, thesgem input,; is perturbed

along the trajectory shown in (5.31):

iqr = lgs + (aily + bigg + ) (5.31)

Then according to (5.23), within a small neighborhood of guilérium point,i,, is

perturbed along the trajectory shown in (5.32):

igg = iy + bigg + C (5.32)

Whena < 0, Figure 5.4 represents the vector field for (5.32) along trextdon ofi,:

04 - . .

02

di fdt
qg
o

02

04}

05 1 15 2 25

|
qq

Figure 5.4: Vector field for (5.32) along the direction:gf [4].

It can be concluded from Figure 5.4 that, when system irpus perturbed along

the trajectory of (5.31), within the small neighborhood qtigibrium point I, ., will
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leave its steady-state valdgwith a local velocityz'(;g. According to the system algebraic
relationship, state variables of the system will also |ehesr steady-state values. There-
fore, within the small neighborhood &f, there exists a certain kind of small perturbation
which will drive the system away from the neighborhood ofThis indicates thaf; is an
unstable equilibrium point of the system.

Whena > 0, similar idea can be applied atigcan be shown to be unstable. Therefore,
there is at most one stable equilibrium point in the systerd,there is at most one valid
solution to the original problem, which corresponds to ttadke equilibrium point.

c) There is 1 solution to (5.29): in this situation, thereséxia unique solution to,
which corresponds to an equilibrium point of the DFIG/D@klimodel. Since there is
a bifurcation happening in this situation (the total numbgequilibrium points in the
system is changing from 0 to 1 to 2), the system itself is stmadly unstable, that is,
a small perturbation in system parameter or input wouldcaffignamic behavior of the
system [74]. Since it is not meaningful to start simulatioremenvalue analysis from a
structurally unstable system, this unique solution is rabitMor the original problem.

Therefore, there is at most one valid solutioto the original problem, whose can be
obtained analytically by solving (5.29). Analytical forteaf the remaining 7 unknowns

[x1, -+, @1, %1, -+, 28]7 can be determined through (5.28). O

The above theorem and proof demonstrate an approach tdatelsteady-state op-
erating conditions for DFIG-based wind turbines in an atiedy way. For the purpose
of implementation, this approach can be realized by selgctj, as unknown variable
x;. The derivations shown in (5.33)-(5.41) represent thegutace of obtaining analytical

solutions to the 8 unknowns:
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From (5.21),,, can be expressed as (5.33):

ref
Vs . Qg
_qu + 7
Ugs Ugs

iy =
Substitute (5.33) into (5.23) and (5.24):

lgs = lql — Ugg

ref
. Uds . Qg
lgs = tqp — —lgg — — —
Ugs Ugs

Substitute (5.34) and (5.35) into (5.16) and (5.17):

WpT's Xss'Uds

ldr = (me X Uas )qu
QSEfXSS Wy WpT's . Xss .
* XmUgs B mequ B mequ B X—mldo
= aliqg + bl
. (Xss WpT'sVUds )
Logr = — )
! X wXivgs 9
Wp Xss . WpT's . Q;efwbrs
T Ox e T X et X T X
== CLQ’iqg + b2
Substitute (5.34)-(5.37) into (5.18) and (5.19):
(W — wy) XmVas (w—w,)Xpay .
Vgr = ( sV — Q2T — @ )igg
w—w)Qr X, —
( >Qg - v ermidl - bZTT’
WyUys Wy
B (w— wr)Xr,,bl)
Whp
= agiqg + bg
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(W—w) Xopay (W —w,) X,

Var = ( o - o - Tral)iqg
- Wy erb - Wy Xm
p ez Xty | (o)X (5.39)
Whp Whp
== a4iqg + b4

Substitute (5.33), (5.36) - (5.39) into (5.20):

CL5’L§§ + b5iqg +c5 = 0 (540)
where:
Vs
a5 =a2a3 + a104 — Rg — Rg—2
qu
2
Uds
b5 = — VUgs — U_ + a3b2 + a2b3 + a4b1
qs
2Qrefvds
+ CL1b4 - ‘Rggi2
qu
2
Qrefvds R Qref
Cx :(— g + b2b3 + b1b4 - 2g )
,UQS 'qu

Through solving (5.40), analytical solution of unknown iahte i,, can be obtained

using (5.41):

Z(l) _ —b5 — 1/ bg - 4&565

qg 2as
(5.41)

1(2) _ _b5 _'_ \/ bg - 4a505

a9 2as

Substituting (5.41) into (5.33)-(5.39), two set of solasofor the other 7 unknown
variables can be obtained accordingly. Whegn< 0, the unique candidate for the valid
steady-state operating conditions correspond%’toWhen% > 0, the unique candidate

for the valid steady-state operating conditions corredpdﬁoiél).
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5.3.2.3 Steady-State Operating Conditions of Converterti@ter Model

It is obvious that at steady state, all the state variableoterter controller should
match their reference values. Therefore, the steady-statéts shown in (5.42) can be
obtained:

——— (5.42)

ctrl

wherez’¢/ denotes the reference values for controller state vasaBliferent sets of ref-
erence values can be specified in order to study wind turkenfepnance under different
steady-state operating conditions.

For wind turbines with complex nonlinear control structjthe steady-state operating
conditions of the nonlinear control elements (such as theat#on, hysteresis, and relays)
can be obtained through standard initialization techrsdgioe generator controllers. It
should be noted that these nonlinear control elements anelatd elements for not only
DFIG-based wind turbines but also other types of genergdtush as synchronous gen-
erators that ware widely modeled in power system simulaibafs). The initialization
problem for these nonlinear control structures can be golgng existing techniques,
and therefore is out of the scope of this section. In [73], possible realization of the
initialization technique for the nonlinear control strues of a series of GE wind turbines
is discussed. This realization can be generalized to dhtpihe steady-state operating
conditions of various wind turbine control structures.

It should be noted that the proposed approach is not suitableitializing the wind
turbine generic models implemented in most commerciahso for power system electro-
mechanical simulations. In the generic models developethéyVestern Electricity Co-
ordinating Council (WECC) Renewable Energy Modeling TaskcE [75, 76], the de-
tailed DFIG electro-magnetic dynamic model is ignored aqplaced by a simplified gen-

erator/converter model. The steady-state operating tiondiof the simplified genera-
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tor/converter model can be obtained using existing in##ion techniques for transient

simulation software, without applying the proposed apphoa

5.4 Sensitivity-Based Analysis of Wind Farm Spatial Distrbution Impact on System
SSO

The multi-machine model proposed in the previous secticerilges a wind farm with
different types of wind turbines at different physical ldoas. This structure indicates an
heterogeneous and spatially-distributed wind farm. It inaye unique impact on system
SSO which cannot be fully revealed by single-machine or lggneous wind farm mod-
els. Specifically, the coupling relationship among spitidistributed wind turbines with
identical and different parameter settings may affect S8kabior of the nearby system.
In order to explore the coupling relationship among windioes, quantitative eigenvalue
sensitivity analysis with respect to the parameters of egald turbine as well as oper-
ating conditions of the wind farm is performed based on tloppsed heterogeneous and
spatially-distributed wind farm model. The following tesfue is adopted for the sensi-
tivity analysis:

Let A be annxn matrix, and let\ be eigenvalues ofl with corresponding right
eigenvectorr and left eigenvectoy. SupposeA is perturbed taA™™ = A + § A, and
consequenthy is perturbed to\"*” = A+ 0. If ||§A||2 = e is sufficiently small, then [77]

o\ = w + O(€%) (5.43)
y-x

The above equation provides information on sensitivitiesigenvalues of matrix4
with respect to small perturbations in the matrix elemehts. the analysis of wind farm
SSO, A is considered to be the linearized state matrix of dynanmsgatem described
by (5.13), which can be fully determined by system paramseded operating conditions

at a particular moment. Therefore, through perturbatiowiofl turbine parameters and
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operating conditions, the eigenvalue sensitivities gpoading to the perturbed parameter
or operating condition can be obtained.

In order to study the coupling relationship among wind taési with identical or dif-
ferent parameter settings, and explore its potential impasystem SSO, eigenvalue sen-
sitivities with respect to all the parameters for each tuelzre computed under a particular
operating condition. If there exists a particular SSO madeyse corresponding eigen-
value is highly sensitive to parameters of a group of windings, then this group of
turbines are expected to have strong coupling relationshithis SSO mode. If eigen-
value of certain SSO mode is highly sensitive to parametersalg one wind turbine, then

this turbine is expected to be weakly coupled with otherihgb in the system.
5.5 Case Studies and Discussions

The above modeling and analysis techniques are applie@ tmllowing test systems

in order to study the impact of wind farm spatial distribution system SSO.
5.5.1 Practical Two-Wind-Farm System Model

5.5.1.1 System Description

220KV
Substation 1 Series Compensation 1

Gt arm 13

Figure 5.5: Structure of wind energy integration in Chi@edPower Grid [3].

Substation

220 KV Series Compensation 2
Substation n
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This part of study is conducted on a two-wind-farm system ehattveloped from
practical wind-integrated power system in China Jibei Rrd@ed. Structure of the orig-
inal Jibei wind-integrated system is shown in Figure 5.5emmultiple wind farms are
connected to two remote bulk power systems through a treetated network with series
compensations on both 500kV transmission lines. Howelibie isystem is modeled in de-
tail with all the wind farms taken into consideration, tooehicomputational complexity
will be introduced due to increment of system dimension.rtteoto release computational
burden as well as study the impact of spatial distributiowiofd turbines with different
parameters, a model presented in Figure 5.6 is adoptedrieitiséy study. In the pro-
posed model, all the wind turbines with the same parametetaearby physical locations
are grouped together and represented by one integrated WiRkturbine model. Two
integrated wind farms are modeled with different paramséttings, and are connected to
two remote systems through transmission lines with diffelength. In the reduced model
shown in Figure 5.6, each wind farm model represents thgiaten of a certain number
of DFIG-based wind turbines of the same type (with exactysame parameters), and dif-
ferent wind farm models have different wind generator patems. Meanwhile, different
wind farm models also have different number of wind turbirigssides, two remote power
systems are modeled in the proposed system structure. lerglmw analysis, one of the
remote systems is modeled as slack bus, representing agrg@eioérating area, the other
one is modeled as PV bus with negative real power injectidheéametwork, representing
a remote loading area, and the wind farms are modeled as Rf3 with positive power
injections to the network, representing wind-integratedeagating area, which agree with
the typical operating condition settings in China Jibei Bowrid. In order to study the
impact of physical locations of compensation devices, #rees capacitor and shunt ca-
pacitor/inductor are modeled at both low-voltage side dgt-oltage side of the system.

Applying the proposed model in Figure 5.6, original mulird-farm model is reduced to
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a two-wind-farm model with integrated wind turbine paraenst while the tree structure
network is preserved. This approach keeps the model sinmplegh for implementation
and computation while still suitable for exploring the irghce of wind farm spatial distri-
bution, wind turbine parameter difference, and compeasatevice physical location on

analysis and control results of wind-induced SSO.

C6 R4 L4

— c2 R1 L1

— @

c1 R3 L3

— c4 R2 L2 c7 Rs LS
—

— %D%W s WY
E c3 =

Figure 5.6: Structure of proposed two-wind-farm system eh¢@l.

The proposed modeling and aggregation approach is geradskditowards other wind-
integrated systems with radial connection structuresoddn representing wind turbines
with different parameter settings via different aggredatedels, this modeling approach
does not need to assume that all the wind turbines in theestigjistem have identical
parameter settings, which would benefit detailed SSO aisalgs multi-machine wind

farms.
5.5.1.2 Parameter Sensitivity Analysis

Quantitative Parameter Sensitivity Analysis is conduaedhe proposed two-wind-
farm model. The following operating condition is studiegstem synchronous frequency
= 50 Hz; wind speed = 4 m/s; series compensation level on Wijage side = 50 %;
series compensation level on low-voltage side = 60 %; shomipensation rated reactive

power output on high-voltage side and low-voltage side =pi;lwind farm power factor
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Table IX: Complex Eigenvalues and Natural Frequencies af-Wind-Farm System [3]

Complex Natural Complex Natural
Eigenvalue Frequency|| Eigenvalue | Frequency
—150.56+£10266¢ | 1633.9 Hz|| —163.5+96267 | 1532.0 Hz
—59.1945817: 925.8 Hz || —12.274+46017 | 732.3 Hz
—12.1445229: 832.2Hz || —83.034£5190¢ | 826.0 Hz
—19.294549.9¢ 87.5Hz | —11.60+541.6: | 86.2 Hz
—11.77+536¢ 85.3Hz || —16.47+314.47 | 50.0 Hz
—3.43+314.5 50.1 Hz 0+314.2¢ 50.0 Hz
—18.64178.8: 125Hz 3.224+102.37 16.3Hz
—11.77+£92.33i 14.7Hz || —5.654+89.317 | 14.2 Hz
0.97+101.8¢ 16.2 Hz 0£6.29: 1.00 Hz
042.57i 0.41Hz

= 0.98. Under this operating condition, 19 oscillation modee found and listed in Table
IX, where 7 of them are within sub-synchronous frequencgeamrrom Table IX, it can be

seen that the 16.3 Hz and 16.2 Hz oscillation modes are unethmiph positive real parts

of the eigenvalues. Since their frequencies are withinrdgguency range of common wind
farm SSOs, this suggests that there could be potential S&Qsew this system under the
studied operating condition.

Eigenvalue sensitivities corresponding to the 16.3 Hz &h#@ Hz unstable oscillation
modes with respect to system parameters and inputs arenpedse Figure 5.7 and Figure
5.8, respectively. It could be seen that the 16.3 Hz osighainode is highly sensitive to
parameters of DFIG subsystem of the first wind farm, convextatroller subsystem of
the first wind farm, as well as network subsystem. Also, the Hz oscillation mode
is highly sensitive to parameters of DFIG subsystem of tloese wind farm, converter

controller subsystem of the second wind farm, as well asotaubsystem. Furthermore,
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Figure 5.7: Eigenvalue sensitivities of two-wind-farmtgys (16.3 Hz mode) [3].

DFIG rotor speed, which has one-to-one relationship withdaspeed, has a significant
impact on both oscillation modes. Parameters with the Higkensitivity lies in DFIG
converter controllers of the two wind farms. The shunt conga¢ion is shown not to have

a significant influence on this oscillation mode comparedh wiher network parameters.
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Figure 5.8: Eigenvalue sensitivities of two-wind-farmtgys (16.2 Hz mode) [3].

Although different parameters are assigned to the wind$aB880 modes of the two wind

farms tend to be similar. Moreover, according to the sensitresults, no SSO mode is

shown to have strong correlation with both wind farms, iatlieg weak coupling among

spatially-distributed wind turbines when they have d#farsets of parameters. On the
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other hand, network components located close to wind fammsshigher impact on the
unstable oscillation modes compared with those locatefidar the wind farms.

The above sensitivity results are verified through a paransgtjustment process. The
converter controller gain&’,, and K4, of the first wind farm are both tuned from 0.002
to 0.001, and controller gain&,. and K4 of the second wind farm are both tuned
from 0.02 to 0.01. Simulation and FFT results are presemedggure 5.9 and Figure
5.10, which show that both unstable oscillations are affelst damped out after control.
It can be seen from Figure 5.9 and Figure 5.10, that althobgttoupling among wind
farms with different parameters tends to be weak on the st 5O modes, the two wind
farm with different parameters still behave coherently othbun-damped and damped
SSO. These phenomena could be caused by the similar dsailfegquencies of the two
unstable SSO modes in the studied system. Although the gtessnof the two wind
farms are different, under the same operating conditiolugieg wind speed condition,
the two unstable oscillation modes have very similar asedh frequencies. Besides, it
has been shown in [56, 59] that the damping of SSO modes andyhiglated to wind
speed, which can be directly mapped to DFIG rotor speed, tanasi been observed in
China Jibei Power Grid that the wind farm SSO tends to hapmpeleruparticular wind
speed condition, therefore, it is reasonable when both fanus experience the same
wind speed, the oscillation phenomena of both wind farmd terbehave coherently with

very similar oscillation frequencies and different ostilbn magnitudes.
5.5.2 Practical Five-Wind-Farm System Model

In order to further study the coupling relationship amongadviurbines with the same
or different parameters, the above two-wind-farm modekierded to a five-wind-farm
model with five integrated wind farm models connected toesecompensated transmis-

sion lines. Modal analysis is performed on the following tse@narios: 1) the five wind
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3].

farms have different parameters and number of wind turb@)ethe five wind farms have

the same parameters and number of wind turbines. Under tve aliuations, eigenvalues

corresponding to the five unstable SSO modes are shown ia Xadnhd Table Xl, respec-

tively. The participation factors of wind farm state vatigbto the five unstable oscillation
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Table X: Unstable SSO Modes of Five-Wind-Farm Model with T™&me Wind Farm
Parameters [3]

Complex Natural Complex Natural

Eigenvalue | Frequency| Eigenvalue | Frequency
10.67+100.78i | 16.04 Hz || 10.674+100.78: | 16.04 Hz
10.67+100.78i | 16.04 Hz || 10.67+100.78: | 16.04 Hz
10.67+100.78i | 16.04 Hz

Table Xl: Unstable SSO Modes of Five-Wind-Farm Model withff®ient Wind Farm
Parameters [3]

Complex Natural Complex Natural

Eigenvalue | Frequency| Eigenvalue | Frequency
25.92493.60¢ | 14.90Hz || 51.644+82.02¢ | 13.05Hz
38.70+87.62 | 13.94Hz || 10.67+100.77: | 16.04 Hz
12.88+98.03 | 15.60 Hz

modes are presented in Figure 5.11 and Figure 5.12, regplgcthe modal analysis re-
sults are summarized as follows: i) in the test case whetbeallind farms have different
parameters, the five unstable oscillation modes have sioslkllation frequencies, each
mode is highly relevant to state variables of one wind faijinithe test case where all the
wind farms have the same parameters, the five unstableatsmilimodes have the same
oscillation frequencies, each mode is highly relevant ébesvariables of more than one
wind farm. This indicates that when the wind farms have déifi parameters, their cou-
pling on the studied sub-synchronous modes tends to be walle, when the wind farm
have the same parameters, their coupling on the studiedysutironous modes tends to
be strong.

The summarizing observation suggests that, for wind texbwiith identical set of pa-
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Participation Factor Analysis Results for Unstable Oscillation Modes
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different parameters (for 5-wind-farm system).Note: irs igure, States 1-16 belong to
Wind Farm No. 1; States 2-32 belong to Wind Farm No. 2; Stake48belong to Wind
Farm No. 3, States 48-64 belong to Wind Farm No. 4, State0dge®ng to Wind Farm
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rameters and identical operating condition, their SSO radeled to be strongly coupled
with each other; for wind turbines with different set of paters and identical operating
condition, their SSO modes tend to be weakly coupled witlh @dleer. In both situations,
all the wind turbines tend to oscillate in a coherent way wsithilar oscillation frequen-

cies.
5.6 Section Conclusion

This section proposes modal analysis as a means of inviastjghe impact of wind
farm spatial distribution on recently-discovered SSOdeaits in wind-integrated power
systems. Multi-machine wind farm models derived from pcattwind-integrated system
are proposed and integrated with the network model. Basdtiemtegrated model, a
thorough sensitivity analysis of SSO with respect to patarseof spatially-distributed
wind turbines, wind conditions, etc. is conducted. Groupgarameters (e.g., DFIG
controller parameters and network series compensatief) leve shown to have significant
impact on the occurrence of SSO. According to the analysissamulation results, for
wind turbines with identical set of parameters and idehtiparating condition, their SSO
modes tend to be strongly coupled with each other; for winbites with different set of
parameters and identical operating condition, their SS@aadend to be weakly coupled
with each other. In both situations, all the wind turbinexitéo oscillate in a coherent way
with similar oscillation frequencies.

Based on these findings, the system operators could inteochare robust system
standards when faced with many dispersed wind farms. Futoire could also be done in

designing countermeasures to mitigate such SSO in realderations.
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6. CONCLUSIONS

6.1 Summary

In this dissertation, a framework is proposed for the enbdipdanning and operations
of modern power systems in the data-rich environment. Mttt by the major challenges
involved in data collection and pre-processing, situaliawareness, decision making
process, as well as post-event analysis, this dissertatesents combined physics-based
and data-driven analytics to solve the problems in modemepsystem planning and
operations. The framework is introduced through a seriesotrete examples for solving
the above critical challenges using combined physicsebaise data-driven techniques. To
be specific, the following examples are presented to dermaiashe proposed frameworks:

1) A data collection and pre-processing platform: a purely data-driven approach
is proposed to detect bad metering data in the PMU monit@ysgems, and ensure the
overall PMU data quality.

2) A situational awareness platform:a physics-based voltage stability assessment is
presented to improve the situational awareness of systéageanstabilities.

3) A decision making platform: a combined physics-based and data-driven frame-
work is proposed to support the decision making process afBisised power plant model
validation.

4) A post-event analysis platform:a physics-based post-event analysis is presented
to identify the root causes of the sub-synchronous osicifiatinduced by wind farm inte-
grations.

The major contributions of this dissertation are suggeaseillows:

1. A framework is proposed for integrating dynamic data latge physical systems

modeled using differential-algebraic equations.
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2. A data-driven algorithm is developed for improving theéadquality of PMU mea-
surement systems.

3. A comprehensive approach is proposed for exploring thrmpdﬁéow solvability
problem for the purpose of strengthened voltage stabilibnitoring of modern power
grids.

4. A decision support framework is proposed for automathng éntire process of
PMU-based power plant model validation, with the capabditbatch power plant model
validation and automatic diagnosis of power plant modedingrs.

5. An enhanced analysis is presented for identifying thé caoses of the wind-farm-

induced sub-synchronous oscillations.
6.2 Future Work

In the future work, the following two areas would be explargéilapplying deep learn-
ing techniques for the feature extraction task of the PPMAgdosis framework; 2) im-
proving the power flow solution boundary visualization gsitlvanced optimization tech-
niques.

In the long run, the proposed framework would be expandedeénfollowing as-
pects: 1) applying data-driven approaches for improvire rial-time/predictive situa-
tional awareness of large-scale power systems; 2) devegogilvanced computational
tools for the security assessment of power systems with teegwable penetration; 3)

exploring modern optimization techniques for enhancirgaiectricity market operations.
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