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ABSTRACT

My thesis would focus on analyzing the estimation of node similarity in streaming bi-

partite graph. As an important model in many applications of data mining, the bipartite

graph represents the relationships between two sets of non-interconnected nodes, e.g. cus-

tomers and the products/services they buy, users and the events/groups they get involved

in, individuals and the diseases that they are subject to, etc. In most of these cases, data is

naturally streaming over time.

The node similarity in my thesis is mainly referred to neighborhood-based similarity,

i.e., Common Neighbors (CN) measure. We analyze the distributional properties of CN

in terms of the CN score, its dense ranks, in which equal weight objects receive the same

rank and ranks are consecutive, and its fraction in full projection graph, which is also

called similarity graph. We find that, in real-world dataset, the pairs of nodes with large

value of CN only constitute a relatively quite small fraction. With this property, real-world

streaming bipartite graph provide an opportunity for space saving by weighted sampling,

which can preferentially select high weighted edges.

Therefore, in this thesis, we propose a new one pass scheme for sampling the projection

graphs of streaming bipartite graph in fixed storage and providing unbiased estimates of

the CN similarity weights.
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NOMENCLATURE

CN Common Neighbors

G Bipartite graph

U, V Start and end node sets

u, v Individual start and end node

K Bipartite graph edge sets

k Individual bipartite edge

N(u) Neighbor node set of vertex u

d(u) Degree of node u

GU Similarity (projection) graph

C CN weight set

KU Similarity graph edge set
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1. INTRODUCTION

1.1 Background and Motivation

The analysis of massive streaming bipartite graphs has become important in many ap-

plications of data mining in business, science, and engineering. The bipartite graph repre-

sents the relationships between two sets of non-interconnected nodes, e.g. customers and

the products/services they buy, users and the events/groups they get involved in, individu-

als and the diseases that they are subject to, etc. In most of these cases, data is naturally

streaming over time. For example on Facebook, if we consider users and their posts as a

bipartite graph and the comments that users give to posts as the edges, there are more than

500,000 comments posted every minute [1]. The user-post bipartite graph for Facebook is

exploded over time and the huge size requires its analysis could only be done in the stream

way: it does not allow to memorize the whole stream nor to access the stream randomly, it

requires the single pass of the stream and the working memory is constrained to be small

compared to the size of the input stream.

Many applications of bipartite graphs focus on determining the similarity between

node pairs. In Collaborative Filtering, recommendations for customer purchases are pre-

dicted from the purchase histories of similar customers. These recommendations are

ranked by weights that indicate the similarity between customer pairs. Recently, simi-

larity measures also have been used in link prediction for bipartite graphs [2] [3].

However, computing node similarity is challenging because the number of similarity

relations amongst a partition with n nodes is O(n2). Although filtering some low degree

nodes could help us reduce the complexity, it is not applicable in stream graph since full

degrees are unknown until the end of the stream.

Sampling is another common method to save the space beside filtering. We now argue
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that the observed properties of neighborhood-based similarity scores in real-world graph

datasets provide an opportunity for space savings by sampling while providing an unbiased

estimate of similarity score.

We focus on the Common Neighbors (CN) measures, which has been used as similarity

scores alone or a part of other similarity scores such as Jaccard Similarity. The CN weight

(score) of two nodes x and y is the size C(x, y) = |N(x)
∩
N(y)|, which is the size of

the intersection of their neighbor sets N(x) and N(y). The non-zero C(x, y) define a

weighted graph with edges between node pairs x, y in either of the two nodes set. These

graphs are called projection or similarity graphs.

A real-world dataset named ‘rec-eachmovie’[4], whose edge denotes that an audience

gives a review of a movie and whose audience side similarity graph has 1.2M edges with

6979 extinct CN weights, is used to illustrate the CN property of real-world streaming

bipartite graph. We analyze the distributional properties of CN and plot out the CN weights

as the function of dense ranks (Figure1.1 left) and the cumulative fractions as the function

of dense ranks (Figure1.1 right). From the left plot of Figure1.1, 6000 out of 6979 dense

ranked edge weights are comparatively much larger than the remaining. From the right plot

of Figure1.1, 6000 out of 6979 dense ranks contain only 1% of total edges. Combination

of the two plots tells us that the high ranked edges which is much larger than the remaining

consist only a very small portion of the edge sets, which also means in similarity graph,

there is a huge tail of very small weighted edges, which actually could be ignored in

analysis. Most real-world bipartite streams, including the other two datasets in this thesis

named ‘rec-amazon-rating’ and ‘rec-amazon-rating’, also have the similar features in the

distribution of edge weights.

2



Figure 1.1: Similarity Edge Weight (left) and Cumulative Fraction (right) as function of
dense edge rank for ‘rec-eachmovie’ dataset

Based on the property we discussed above, a weighted sampling scheme like Priority

Sampling[5] that can select heavier weighted edges with a higher probability is the sam-

pling method we should apply to real-world streaming bipartite graph. This thesis aims

to provide such a sampling scheme to help us analyze the node similarity in real-world

streaming bipartite graph.

1.2 Contribution and Outline

In this thesis, we propose a new single pass scheme to sample the similarity graphs of

streaming bipartite graph with fixed storage and to provide unbiased estimates of the CN

similarity weights.

We describe the notations and the problems in Section 2. Our algorithm is introduced

in Section 3. Our algorithm is based on Priority Sampling which is to keep a reservoir of k

highest priorities during the stream and the priority for each item is its weight divided by

a random between 0 and 1. Our algorithm comprises two stages of Priority Sampling:

3



1. Bipartite Edge Sampling. We construct a fixed size reservoir for bipartite edge

stream. The weights for bipartite edges are determined by minimizing the estima-

tion variance of CN weights. We provide two choices for the weights: fixed weight

or adapted weight and compare the results.

2. Sample-Based Similarity Aggregation. Each new arriving bipartite edge would cause

an update to the CN weights of each similarity edge attached to its nodes. We also

construct a fixed size reservoir to sample the edges in similarity graph.

Then the detailed algorithm, data structure and time & space cost would be analyzed

in Section 4. In Section 5, we emphasize in the algorithm of SIMADAPT and prove its

properties. In Section 6 we evaluate our algorithm using three public bipartite graphs and

introduce some additional methods to control error. With 10% sampling rate for both

bipartite and similarity edges, the weights of edges with the top-100 dense ranks are es-

timated with the weighted relative error of around 10%, and the correlation between true

and estimated ranks is over 90%. We review related work in Section 7 and conclude in

Section 8.

4



2. OVERVIEW OF PROBLEM

2.1 Notation of Graph

Let G = (U, V,K) denote a bipartite graph with disjoint node sets U, V and un-

weighted and unrepeated edge set K. For each edge e ∈ K, it has an end point u(e) ∈ U

and another end point v(e) ∈ V . For a subset S ⊂ K of edges, we denote U(S) = {u(e) :

e ∈ S} and V (S) = {v(e) : e ∈ S} to be the corresponding sets of endpoints in two node

sets. N(u) = {v : (u, v) ∈ K} denotes the neighbor set of u in V and correspondingly

N(U ′) =
∪

u∈U ′ N(u) for U ′ ⊂ U . d(w) denotes the degree of any node w .

Let GU = (U,KU , C) denote the similarity graph of G on U . The CN weight set is C

and C(u, u′) = |N(u)
∩
N(u′)|. The edge set in similarity graph is KU = (u, u′) : C(u, u′) > 0.

In the streaming bipartite graph model, the edges K arrive in a sequence. Let Kn to

denote the first n arriving edges, Gn = (Un, Vn, Kn) to be the sub graph of G, where

Un = U(Kn) and Vn = V (Kn), and Cn to be the corresponding similarity.

2.2 Problem Description

In this thesis, we address the following problem: for each n, compute in fixed storage

an unbiased estimate Ĉn of the similarity Cn of the sub graph Gn formed from its first n

edges.

5



3. BIPARTITE GPS FOR SIMILARITY ESTIMATION

Our approach combines two stages of sampling. First, we maintain a sample of edges

from the streaming bipartite graph using Graph Priority Sampling with fixed storage. The

sampled bipartite edges generate an unbiased estimator of the similarity graph. Second,

we employ a further sample based aggregation to accumulate an estimator of similarity

graph, also in fixed storage.

3.1 Bipartite Graph Priority Edge Sampling

The essence of our algorithm is from Priority Sampling[5]. It is concluded as follows:

For a stream of items with weights of w0, ..., wn−1, the priority for each item is calcu-

lated by ri = wi/πi, πi ∈ (0, 1] is an independent uniformly distributed random. Priority

Sampling maintains a dynamic sampling S of the k < n items with the highest priority. A

threshold z∗ is the (k + 1)th priority. The probability of each sampled item is:

p(k) = min{1, w(k)/z∗} (3.1)

According to the Horvitz-Thompson inverse probability estimator equation, the estimated

total weight for each sampled item i ∈ S is:

ŵi = w(k)/p(k) = max(wi, z
∗) (3.2)

For i /∈ S, ŵi = 0.

Priority Sampling is extended to be Graph Priority Sampling[6] to count triangles and

wedges in graph streams. [6] gives a clear proof of how to choose weight function for

graph edge to optimize subgraph variance and presents a scheme of in-stream estimation

6



which is far more accurate than post-stream estimation.

Algorithm 1 from [6] is the main algorithm of the family of in-stream graph prior-

ity sampling with the size of the reservoir m. When a new edge k arrives, procedure

GPSESTIMATE is first called to do the in-stream estimation. In [6], they did estimations

for triangle and wedge counts. In our problem, we would do the estimate updates for

similarity graph edges, then the second stage of sampling for the aggregation of simi-

larity edges. Secondly, procedure GPSUPDATE would be called to do priority sampling.

We assume a weight function for edge k as W (k, K̂). W (k, K̂) could include topology,

attributes or any information in the graph, for example in the problem of triangles and

wedges counting, it is set to be the number of triangles or wedges that contain edge k in

K̂. In this thesis, we take different weight into account and extend the weight from fixed

to be adaptive. The weight function in [6] is only related to edge k and the currently esti-

mated graph K̂. We propose a new adaptive weight which would be changed when edges

are streaming over time. Section 3.1.1 would fully discuss the selection of the weight

function. Once the weight w(k) is computed, a random parameter π(k) would be assigned

to edge k, so that we could get its priority by r(k) = w(k)/π(k). GPS maintains a priority

queue (heap) of m edges. If r(k) is smaller than the lowest priority in the heap, edge k

would be discarded. If edge k has a higher priority, the edge with the lowest priority would

be replaced by edge k. The threshold z∗ is always kept as the priority of the (m + 1)th

edge, which would be used to calculate the probability of each edge.

7



Algorithm 1 Family of Graph Priority Sampling Algorithms[6]
1: procedure GPS(m)
2: K̂ = ∅ ▷ Bipartite edge sample
3: z∗ = 0 ▷ Threshold
4: while new edge k do
5: GPSESTIMATE(k) ▷ In-stream estimation
6: GPSMAIN(k,m) ▷ Priority sampling
7: end while
8: end procedure
9:

10: procedure GPSESTIMATE(k)
11: In-stream estimation, like count triangle/wedge, or update similarity graph
12: end procedure
13:
14: procedure GPSMAIN(k,m)
15: π(k) = Uni(0, 1]
16: w(k) = W (k, K̂)
17: r(k) = w(k)/π(k) ▷ Priority of edge k
18: p(k) = 1 ▷ Probability of edge k
19: K̂ = K̂ ∪ k
20: if |K̂| ≤ m then
21: return
22: end if
23: k∗ = arg mink′∈K̂ r(k′) ▷ Lowest priority edge
24: z∗ = max{z∗, r(k∗)} ▷ New threshold
25: K̂ = K̂ \ {k∗} ▷ Remove lowest priority edge
26: Delete π(k∗), w(k∗), r(k∗), p(k∗)
27: end procedure

3.1.1 Edge Weight Function

We now specify the weight function used for edge selection. It was shown in [6], the

variance of the estimator of increment of the number of subgraphs caused by the addition

of an edge is minimized by using that increment as a weight for priority sampling. Let’s

say the total similarity of node u is the sum of the similarity of edges connected to node u
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in similarity graph GU .

C(u) =
∑
u′∈U

C(u, u′) =
∑

v∈N(u)

(|N(v)| − 1) (3.3)

When a new edge e = (u, v) comes, it brings a new neighbor node v to u, so brings an

increment of |N(v)| − 1 to C(u). At the same time, C(v) also increases by |N(u)| − 1.

Therefore, the overall similarity that edge e brings to its endpoints is |N(u)|+ |N(v)| − 2.

To avoid weight of 0, we will assign an edge (u, v) with the weight

w(u, v) = |N̂(u)|+ |N̂(v)| (3.4)

Actually, it is obvious that this kind of weight function is not fair for the early arrived

edges compared to late edges. Their weights would be comparatively smaller than the late

arrived edges since the degrees of nodes could increase during the stream. So we come

up with an idea of incremented weights, which allows edges arriving early in the stream

to acquire a greater weight as the topology develops. We also include uniform weight

w(u, v) = 1 for comparison as a baseline.

We propose two variants of edge weights:

1. Fixed Weights The weight of edge w(u, v) = |N̂(u)| + |N̂(v)| is determined from

the sample edge set K̂ upon arrival and is fixed thereafter.

2. Incremented Weights The weight of edge w(u, v) is incremented by 1 for each sub-

sequent edge arrival as long as they share the same node, such as e = (u, v′) or

e = (u′, v). The weight of an edge is not correspondingly decremented when ad-

joining edges are ejected from the sample. Once the weight of edge is incremented,

its priority would also increase r(k) = w(k)/π(k).
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3.1.2 In-stream Estimation of Similarity Graph

During the in-stream estimation, we calculate the similarity C between nodes from

the same node set. Actually the similarity between node u and u′ is equal to the number

of wedges between u and u′, to be denoted as C(u, u′) = {(u, v, u′) : v ∈ N(u) ∩

N(u′)}. Let’s assume Gn is a non-sampled graph, then the number of newly created

wedges in similarity graph on U side GU by edge en = (u, v) is equal to the number of

edges that are connected with node v. Consider Gn is sampled, so each update should take

the form of the Horvitz-Thompson inverse probability estimator, which is like equation

3.5. Correspondingly, the updates that edge en = (u, v) caused to similarity graph on V

side GV are another series of updates like equation 3.6.

{αn(u, u
′) = 1/pn−1,(u′,v) : u

′ ∈ N̂n−1(v)} (3.5)

{αn(v, v
′) = 1/pn−1,(u,v′) : v

′ ∈ N̂n−1(u)} (3.6)

As for the probability of each edge has the equation 3.7. Let’s assume the edge weight

is fixed, then equation 3.8 guarantee that zt+1 > zt. Then pt+1(k) < pt(k). Therefore, in

Algorithm 2 Procedure BGPSUPDATE(k), which is to update the probability of edge k, is

only needed to be called right before p(k) is used in similarity stream, since at that time

p(k) is the minimum value.

p(k) = min{1, wt(k)/z
∗
t : t is time sequence throughout the stream} (3.7)

zt+1 = max{zt, r(k∗
t )} (3.8)

However in the condition of adaptive weight, the weight of the edge could increase, so

the probability of the edge should always be updated every time the threshold is increased.
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In section 5.1, it is proved that we could simplify this procedure and also update the edge’s

probability when a new adjacent edge arrives.

Then, we could estimate the similarity edges by accumulating estimates of updates

that are generated by arrivals to the edge reservoir sample K̂n. Therefore, the GPSES-

TIMATE procedure in our algorithm is as below as BGPSESTIMATE. u, v indicates the

source and target node of edge k. GU , GV are similarity graphs and are initialized in the

main procedure. N(w) denotes neighbors of node w and would be maintained in main

procedure.

Algorithm 2 In-stream Similarity Updates Without Sampling

1: procedure BGPSESTIMATE(u, v,N(u), N(v), GU , GV )
2: for u′ ∈ N(v) do ▷ For every other neighbor node of v
3: BGPSUPDATE((u′, v), z∗) ▷ Update the probability of edge (u′, v)
4: if Similarity edge (u′, u) /∈ GU then
5: GU = GU ∪ (u′, u)
6: end if
7: C(u′, u)+ = 1/p(u′, v) ▷ Accumulate similarity
8: end for
9: for v′ ∈ N(u) do ▷ Same with GV

10: BGPSUPDATE((u, v′), z∗)
11: if Similarity edge (v′, v) /∈ GV then
12: GV = GV ∪ (v′, v)
13: end if
14: C(v′, v)+ = 1/p(u, v′)
15: end for
16: end procedure
17:
18: procedure BGPSUPDATE((k, z∗))
19: if z∗ > 0 then
20: p(k) = min{p(k), w(k)/z∗}
21: end if
22: end procedure

During the period of accumulating, to avoid allocating storage to an aggregate for
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every similarity edge, we use another sample-based approximation to provide unbiased

estimates of the aggregates in fixed storage, which is discussed in section 3.2.

3.2 Similarity Stream Aggregation

The sum of similarity stream
∑n

i=1 αi(w,w
′) is unbiased estimates of the true similar-

ity C(w,w′). However, aggregating these across all sampled node pairs in U or V would

require space equal to the cardinality of the edge pair of the sampled similarity graph.

Instead we will use a further reservoir sample-based aggregation of the stream of updates

α̂(w,w′). This yields an unbiased estimate of the true similarity in fixed storage. There

are several algorithms we could choose from, such as Adaptive Sample & Hold[7], Stream

VarOpt[8], Priority Sample and Hold[9]. In this thesis, we implement Priority Sample and

Hold (PrSH).

The process of PrSH is very similar to priority sampling. The only difference is the

calculation for the estimator. The estimator of weight for key k is X̂k is defined iteratively

by equations as below, assuming the arriving key is i, the reservoir sample is K̂:

X̂k,t =



X̂k,t−1 + x i ∈ K̂t−1 and i = k

X̂k,t−1 i ∈ K̂t−1 and i ̸= k

x i /∈ K̂t−1, i ∈ K̂t and i = k

X̂k,t−1qk,t−1/qk,t i /∈ K̂t−1, i ∈ K̂t and i ̸= k

(3.9)

The algorithm in [9] is shown as Alg.3. At the beginning, AGGREGATE.INITIALIZE is

called to create a reservoir of size m. Every time a similarity update is created, AGGRE-

GATE.ADD is called to add this update into the similarity stream. When all the process is

done, every similarity edge k needs to be updated for the last time, which means method

AGGREGATE.UPDATEALL would be called at the end of the whole algorithm. Then, we
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could get the estimators for the weights of similarity edges.

Algorithm 3 Similarity Stream Aggregation using PrSH [9]
1: class AGGREGATE

2: method INITIALIZE (m)
3: K ← ∅; z∗ ← 0; size← m
4: end method
5:
6: method ADD (k, α)
7: if k ∈ K then
8: Update(k)
9: a(k)+ = x; w(k)+ = x

10: return
11: end if
12: K = K ∪ {k};
13: π(k) = Uni(0, 1]; w(k) = x; p(k) = 1
14: r(k) = w(k)/π(k) ▷ Priority of edge k
15: a(k) = x ▷ Estimator of weight of edge k
16: if |K| ≤ size then
17: return
18: end if
19: k∗ = arg mink′∈K̂ r(k′)
20: z∗ = max{z∗, r(k∗)}
21: K̂ = K̂ \ {k∗} ▷ Remove lowest priority edge
22: Delete π(k∗), w(k∗), r(k∗), p(k∗), a(k∗)
23: end method
24: end class
25:
26: method UPDATE (k)
27: a(k) = a(k) ∗ q(k)
28: q(k) = min{q(k), w(k)/z∗}
29: a(k) = a(k)/q(k)
30: end method
31:
32: method UPDATEALL

33: for each similarity edge k ∈ K do
34: AGGREGATE.UPDATE(k)
35: end for
36: end method
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4. ALGORITHMS AND IMPLEMENTATION

4.1 Algorithm Details

In this thesis, we would continue to use the scheme in Algorithm 1. Algorithm 4

is the detailed algorithm to estimate nodes similarities in bipartite graphs with adaptive

weight and PrSH second stage sampling. Let’s specify this algorithm as SIMADPAT. The

algorithm with fixed weight would just remove the part of INCREASEWEIGHT (line 33),

and would be specified as SIMFIXED in the rest of the thesis. The algorithm without

second stage sampling would use procedure BGPSESTIMATE in Algorithm 2 instead of

BGPSESTIMATE here.

We focus on the similarity graph on the source U side here and omit the same process

for target V nodes set. The initialization of sampled bipartite graph and constructed sim-

ilarity graph take place (line 2-3). When a new edge (u, v) arrives, procedure BGPSES-

TIMATE would be called to construct similarity graph. In procedure BGPSESTIMATE, the

probability of each adjacent edge would be updated first (line 13). Then, similarity graph

update is generated and added to the second stage stream (line 14). If no sampling is ap-

plied, the inverse probability weight would be added directly to similarity C like line 7 in

Algorithm 2.

14



Algorithm 4 In-stream Bipartite GPS with Adaptive Weight and PrSH
1: procedure BGPS(m)
2: K̂ = ∅, z∗ = 0
3: AGGREGATE.INITIALIZE(m)
4: while new edge (u, v) do
5: BGPSESTIMATE(u,N(v)) ▷ In-stream estimation
6: BGPSMAIN(u, v,m,N ) ▷ Priority sampling
7: end while
8: AGGREGATE.UPDATEALL
9: end procedure

10:
11: procedure BGPSESTIMATE(u,N(v))
12: for u′ ∈ N(v) do ▷ For every other neighbor node of v
13: BGPSUPDATE((u′, v), z∗) ▷ Probability update, in Alg.2
14: AGGREGATE.ADD((u, u′), 1/p(u′, v)) ▷ PrSH sampling
15: end for
16: end procedure
17:
18: procedure BGPSMAIN(u, v,m,N )
19: K̂ = K̂ ∪ k
20: N(u) = N(u) ∪ {v}, N(v) = N(v) ∪ {u}
21: π(u, v) = Uni(0, 1], p(k) = 1
22: w(u, v) = |N(u)|+ |N(v)|
23: r(u, v) = w(u, v)/π(u, v)

24: if |K̂| ≤ m then
25: return
26: end if
27: (u∗, v∗) = arg min(u′,v′)∈K̂ r(u′, v′) ▷ Lowest priority edge
28: z∗ = max{z∗, r(u∗, v∗)} ▷ New threshold
29: K̂ = K̂ \ {(u∗, v∗)} ▷ Remove lowest priority edge
30: N(u∗) = N(u∗) \ {v∗}, N(v∗) = N(v∗) \ {u∗}
31: Delete π(k∗), w(k∗), r(k∗), p(k∗)
32: if (u, v) ̸= (u∗, v∗) then ▷ In fixed weight, omit the following part
33: INCREASEWEIGHT(u, v,N(u), N(v))
34: end if
35: end procedure
36:
37: procedure INCREASEWEIGHT(u, v,N(u), N(v))
38: for u′ ∈ N(v) \ {u} do
39: BGPSUPDATE((u′, v), z∗)
40: w(u′, v) + + ▷ Increment edge weight
41: end for
42: for v′ ∈ N(u) \ {v} do
43: BGPSUPDATE((u, v′), z∗)
44: w(u, v′) + +
45: end for
46: end procedure

15



Procedure BGPSMAIN concerns updating the bipartite edge sample. Edges are main-

tained in a priority queue K based on increasing order of edge priority. When a new edge

arrives, the edge is inserted into the sample reservoir (line 19-20) first. This part happens

before the weight assignment to avoid the edge weight to be zero. Then the priority of

each (u, v) is computed as the quotient of the edge weight w(u, v) (the sum of the degrees

of u and v) and a permanent random number in (0, 1]. If there are fewer than or equal to

m edges in the current graph sample, just return. Otherwise, the edge of minimum prior-

ity is deleted (line 29-31). In SIMADAPT, the INCREASEWEIGHT procedure updates the

probability of all adjacent edge first, then increments the weight of all adjacent edge to

reflect the increased degree of their endpoints (line 40). This change may require updating

in their position in the priority queue.

4.2 Data Structure and Time Cost

A minimum heap is used to implement priority queue, where the root position is the

edge with the lowest priority. Therefore, access to the lowest priority edge is performed in

O(1). Insertions are O(logm) worst case.

However, heap is not a friendly structure for search, which takes O(m) in average. In

SIMADAPT, each insertion of an edge (u, v) increments the weights of its |N(u)|+ |N(v)|

neighboring edges. Each weight increment may change its edge’s priority, requiring its

position in the priority queue could be found out easily. So we use another map to store

the position of each item. When items in heap shift up or down, their positions information

in map also swap. Therefore, the complexity of search is reduced to O(1) and edge updates

becomes O(logm). While the worst case cost for the binary heap update is O(logm), the

average cost is O(1). Since the priority is incremented, an edge may be bubbled down

by exchanging with its lowest priority child if that has lower priority. Assuming uniform

distribution of initial position, the average cost is O(m−1
∑log2 m

h=0 2h(log2m− h) = O(1)
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where the sum is over levels h in the binary heap.

4.3 Space Cost

For SIMADAPT and SIMFIXED, we keep two reservoirs for two stages of sampling

and each of them has a space cost of O(m) and O(n), m is the edge reservoir capacity

and n the similarity reservoir capacity. Besides, we create two map structures to store

the neighbors of each node and they cost O(|Û |) and O(|V̂ |), |Û | and V̂ are the number

of nodes in the edge reservoir. The overall space requirement is O(|Û | + |V̂ | + m + n).

Actually, it is a trade-off between time and space. While we can abandon the neighbors

map and limit space cost to O(m + n), a pass over the reservoir is required to get the

degrees of endpoints, which would be O(m) in time cost. But if we maintain the neighbors

map and increase the space, we can achieve sub-linear time for edge updates.

For algorithms without second stage sampling, the size of their similarity graphs are

not under our control, which could be O(|Û |2) and O(|V̂ |2) in worst cases. So their overall

space cost would be O(|Û |+ |V̂ |+ |Û |2 + |V̂ |2) = O(|Û |2 + |V̂ |2).
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5. PROPERTIES AND PROOFS OF SIMADAPT

5.1 Deferred Estimate Update

When implementing SIMADAPT as just described in Algorithm 4, we face a challenge

in updating the probability of edge in an efficient way. Since we assume the edges are

unique, we could identify them with their arrival order i ∈ [|K|]. The probability that i is

in the sample at time t, t ≥ i is:

pi,t = P[i ∈ K̂t]

= P[ri,s > zs : s ∈ [i, t]]

= P[πi ≤ wi,s/zs : s ∈ [i, t]]

= P[πi ≤ min
s∈[i,t]

wi,s/zs]

= min{1, min
s∈[i,t]

wi,s/zs}

= min{pi,t−1, wi,t/zt}

(5.1)

Therefore, in principle it is necessary to update pi,t for each i and when t ≥ i.

For SIMFIXED, this turns out not necessary since wi,t = wi, then:

pi,t = min{1, min
s∈[i,t]

wi/zs}

= min{1, wi/max
s∈[i,t]

zs}
(5.2)

So we keep z∗t = maxs∈[i,t] zs and update it iteratively by z∗t = max{z∗t−1, zt}. And

18



probability becomes in SIMFIXED:

pi,t = min{1, wi/z
∗
t } (5.3)

For SIMADAPT, the weight of edge i would be incremented step by step. For time t,

let βi,t be the earliest time s at which wi,s held its current value, i.e.,

βi,t = min{s ≤ t : wi,s = wi,t} (5.4)

Assuming γi,t is the latest time s at which wi,s will hold its current value, which means

after γi,t, the weight of edge is incremented by 1, i.e.,

γi,t = max{s ≥ t : wi,s = wi,t} (5.5)

wi,γi,t+1 = wi,t + 1 (5.6)

We claim the following method of deferred updates gets the same probability through-

out the stream with equation 5.1.

Deferred Updates: Every time when the weight of edge i is about to increment, update

its probability, i.e.,

qi,γi,t = min{qi,βi,t−1, wi,γi,t/z
∗
γi,t
} (5.7)

Then at time βi,t ≤ t ≤ γi,t, probability of edge i is:

qi,t = min{qi,βi,t−1, wi,t/z
∗
t } (5.8)

Proof. We would prove in iteration. Let’s assume qi,βi,t−1 = pi,βi,t−1, and to prove qi,t =

pi,t.
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When βi,t ≤ t ≤ γi,t, its probability meets the equation of 5.9. Since the weight during

this time stays the same, so it becomes the equation of 5.10.

pi,t = min{pi,βi,t−1, min
s∈[βi,t,t]

wi,s/zs}

= min{qi,βi,t−1, min
s∈[βi,t,t]

wi,s/zs}
(5.9)

pi,t = min{qi,βi,t−1, wi,t/ max
s∈[βi,t,t]

zs} (5.10)

We know that z∗t ≥ maxs∈[βi,t,t] zs. In the case of z∗t = maxs∈[βi,t,t] zs, we have:

pi,t = min{qi,βi,t−1, wi,t/z
∗
t } = qi,t (5.11)

In the case of z∗t > maxs∈[βi,t,t] zs, then z∗t = z∗βi,t−1, then we have:

wi,t

maxs∈[βi,t,t] zs
>

wi,t

z∗t
=

wi,t

z∗βi,t−1

>
wi,βi,t−1

z∗βi,t−1

(5.12)

If qi,βi,t−1 iteratively updates from the former probability by equation 5.8, then we have:

wi,βi,t−1

z∗βi,t−1

≥ qi,βi,t−1 (5.13)

Therefore, the result of equation 5.10 is pi,t = qi,βi,t−1.

In both of the conditions, we all get pi,t = min{qi,βi,t−1, wi,t/z
∗
t } = qi,t. Therefore,

in SIMADAPT, the minimum probability of the edge could be maintained by updates right

before the increments of its weight.

5.2 Unbiased Estimation

In this section, we establish that the similarity estimators of SIMADAPT are unbiased,

i.e., for each n, the similarity estimator Ĉn produced by the first n arrivals is an unbiased
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estimator of the true similarity Cn of the graph formed by these arrivals.

The proof is accomplished in three stages. First, we establish unbiasedness of estima-

tors of edge counts arising from an algorithm for general time-dependent weights that is

similar to SIMADAPT with general weights. Second, we establish that these algorithms

coincide the case of nondecreasing weights, which includes the weights of SIMADAPT as

a special case. Finally, we show that the similarity estimators Ĉn can be written as a sum

of edge count estimators, whose expectation is the true wedge count Cn.

The edge indicator Si,t which take the value 1 if t ≥ i and 0 otherwise indicates

whether each i has arrived by time t. We will construct unbiased edge estimators Ŝi,t

which are nonnegative random variables that E[Ŝi,t] = Si,t. Thus by linearity, for any

J ⊂ [|K|], SJ,t =
∑

i∈J Si,t will be an unbiased estimator of the number of edges in J that

have arrived by time t. Let K̂ ′
t denote the edge reservoir after edge t has been processed

but before the smallest priority edge is removed, and K̂t denote the edge reservoir right

after the smallest priority edge is removed. Therefore, zt = mini∈K̂′
t
ri,t.

Theorem 1. Ŝi,t = I(i ∈ K̂t)/qi,t is an unbiased estimator of Si,t

Proof. When t ≥ i, from the proof in section 5.1, we know that our probability qi,t is

exactly equal to the true probability pi,t for any i and t, i.e.,

qi,t = pi,t = P[i ∈ K̂t] (5.14)

Then E[I(i ∈ K̂t)] = 1 ∗ P[i ∈ K̂T ] + 0 ∗ P[i /∈ K̂t] = P[i ∈ K̂t] = qi,t, we have:

E[Ŝi,t] = E[I(i ∈ K̂t)]/qi,t = 1 = Si,t (5.15)

For t < i, Ŝi,t = 0 = Si,t. The proof is complete.

Then let’s discuss the similarity update stream estimation. Consider first generation
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of the exact similarity Cn from the truncated stream Kn. Each arriving each en = (u, v)

contributes to C(u,′ u) through wedges (u, v, u′) for v ∈ N(u) ∩N(v). Thus to compute

C(u, u′) we count the number of such wedges occurring up to time n, i.e.,

Cn(u, u
′) =

n∑
i=1

∑
v∈N(u)∩N(u′)

(
I(u(ei) = u))Si−1,(u′,v) + I(u(ei) = u′))Si−1,(u,v)

)

We replace the Si−1,(u,v) by their estimates Ŝi−1,(u,v) and, by linearity, obtain an unbi-

ased estimate of Cn.

Ĉn(u, u
′) =

n∑
i=1

∑
v∈N(u)∩N(u′)

(
I(u(ei) = u))Ŝi−1,(u′,v) + I(u(ei) = u′))Ŝi−1,(u,v)

)
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6. EXPERIMENTS AND EVALUATIONS

Our experiments use three datasets comprising bipartite graphs drawn from real-world

applications, and they are publicly available at Network Repository [4]. Their basic prop-

erties are listed in Table 6.1. In the bipartite graph G = (U, V,K), |U |+ |V | is the number

of nodes in both partitions, |K| is the number of edges, dmax the maximum degree and davg

the average degree. |KU | is the number of edges on the source side of the similarity graph

and |RU | the number of dense ranks, i.e. the number of distinct weight values.

1. RATING: the dataset rec-amazon-ratings. The source vertex is an Amazon user and

the target vertex is an Amazon product. An edge denotes that a user rated a product.

There are 2, 146, 058 users, 1, 230, 917 products, and 5, 838, 043 ratings.

2. MOVIE: the dataset rec-each-movie. The source vertex is an audience member and

a target vertex is a movie. An edge denotes that an audience gives a review of a

movie. There are overall 1, 623 audience members, 61, 265 movies and 2, 811, 717

reviews. The maximum and average node degrees are both much larger than the

other two datasets.

3. GITHUB: the dataset rec-github. The source vertex is a GitHub user and the target

vertex is a GitHub project. An edge denotes that a user is a member of a project.

Bipartite Similarity
dataset |U |+ |V | |K| dmax davg |KU | |RU |
RATING 2M 6M 12K 5 204M 203
MOVIE 62K 3M 33K 90 1.2M 6,797
GITHUB 122K 440K 4K 7 22.3M 156

Table 6.1: Datasets and characteristics. Bipartite graph: |U |+ |V |: #nodes, |K|: #edges,
dmax: max. degree, davg: average degree. Similarity graph: |KU |: #edges in source
similarity, |RU | # dense ranks = #distinct weights in source similarity graph.
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There are 56, 519 users, 120, 867 projects and 440, 237 membership relations.

In this paper, we report experimental results concerning estimation of the similarities

of pairs of source nodes in the graph.

Finally, for these experiments, we used a 64-bit desktop equipped with an Intelő Core

i7 Processor with 4 cores running at 3.6 GHz.

6.1 Accuracy Metrics

Since applications such as recommendation systems rank recommendation based on

similarity, our metrics focus on accuracy in determining higher similarities that dominate

recommendations, and exploit in part metrics that have been used in the literature; see e.g.,

[10].

6.1.1 Weighted Relative Error.

A standard measure of the accuracy of a point estimate Ĉ(e) relative to the true value

C(e) for a single similarity edge e, is the relative error RE(e) = |Ĉ(e)−C(e)|/C(e). For

ranking applications, there is greater interest in the accuracy of higher weight edges. For

this reason, we summarize the set of relative errors with an average that is weighted by the

true edge weight. Specifically, for each k we compute the top-k dense ranked weighted

relative error.

WRE(k) =
∑

e∈K̂U,k

|Ĉ(e)− C(e)|
C(e)

C(e)∑
e∈K̂U,k

C(e)

=

∑
e∈K̂U,k

|Ĉ(e)− C(e)|∑
e∈K̂U,k

C(e)

(6.1)

6.1.2 Dense Rankings and their Correlation.

We compare estimated and true rankings of similarity edge weights. We first reduce

non-integer noise by using the floor of the estimated edge weight, and then rank them with
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dense ranking, in which edges with the same weight values have the same rank, and ranks

are consecutive. Dense ranking is insensitive to random permutations of equal weight

edges and reduces estimation noise.

To assess the linear relationship between the true and estimated ranks we use Spear-

man’s rank correlation on top-k estimated ranks. For each similarity edge e in the sampled

similarity graph ĜU , let re and r̂e denote dense ranks of C(e) and ⌊Ĉ(e)⌋ respectively. The

top-k rank correlation over pairs {(re, r̂e) : e ∈ K̂U,k} with K̂U,k = {e ∈ K̂k : r̂e ≤ k} is

Cor(k) = Cov(r, r̂)/
√

Var(r)Var(r̂) (6.2)

6.1.3 Precision and Recall.

We evaluate accuracy of rank prediction using prediction and recall for top-k dense

ranks:

Prec(k) =
KUk
∩ K̂U,k

K̂U,k

, Rec(k) =
KUk
∩ K̂U,k

KU,k

(6.3)

A standard summary ranking statistic from applications in Recommender Systems is the

Area under the Recall curve ATOP [11], defined up to rank k as

ATOP(k) =
1

k

k∑
i=1

Rec(i) (6.4)

6.2 Experiment Description

6.2.1 Data Preparation

The datasets were originally presented in source node order. We rearranged edges in a

random order and eliminated any duplicate edges.
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6.2.2 Sampling Rates

We applied the SIMADAPT and SIMFIXED to each dataset, with the edge sample reser-

voir size m equal to fractions fm of the total bipartite edges, and the second stage sample

aggregation reservoir size n equal to fractions fn of the cardinality of the actual projection

graph without sampling.

For the first stage, sampling fractions were fm ∈ [5%, 10%, 15%, 20%, 25%, 30%].

The second stage sampling fractions were fn ∈ [5%, 10%, 15%, 100%], where 100% reser-

voir means aggregation without sampling was used in the second stage.

6.2.3 Error Control

We use two forms of noise reduction that can be regarded as an enhancement to the

algorithm. The first form is simple averaging. We ran five separate instances of the al-

gorithm on each data stream (with the same randomized input data) and averaged the

resulting similarity estimates.

The second form of error control method is filtering by update count, which comprises

eliminating all similarity edges for which the number of updates is less than a specified

threshold. The motivation here is estimates comprising a small number of updates may be

subject to relatively large noise due to the 1/p form of the inverse probability estimators,

which means a single extremely small p could result in huge similarity weight. In other

words, we would like to remain the heavy similarity edges due to large numbers of updates

but not due to few times extreme random updates. On the other hand, estimates with a

larger count benefit more from statistical averaging.

In our experiments, we explored the benefits of threshold filter counts of [1,5,10,15]

and 0 (i.e., no filtering). We note that filtering incurs an implementation cost of maintain-

ing an additional counter per aggregate.

26



6.3 Experiment Results

In this section we report results concerning the error/accuracy metrics described above

(WRE, Cor, Prec, Rec, ATOP) for the different algorithms (SIMFIXED and SIMADAPT)

across a range of edge and similarity sampling rates, applied with various filter thresholds

to the three datasets (RATING, MOVIE, GITHUB). Firstly, we narrow the scope of explo-

ration of these parameters by establishing common filtering thresholds across the datasets.

Then we study the effect of second stage similarity sampling and find out the ideal sam-

pling rate. Next, we apply this count filters and PrSH rate to all the experiments and

compared the results from different algorithms (SIMFIXED and SIMADAPT). In the end,

we compare the results of our algorithms with other methods, including simple uniform

sampling and common neighbors method in [12].

6.3.1 Filtering Analysis

We would first discuss the effect of count filters in data analysis. Figure 6.1 gives you

a straightforward understanding how a filter works here.
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Figure 6.1: Error reduction with filtering. Top: no filtering. Bottom: count filter 10.
Dataset GITHUB, Alg. SIMADAPT, edge sample 10%, no PrSH, top 100 dense ranks

Figure 6.1 is experiment result from GITHUB dataset with SIMADAPT algorithm. The

top three plots are original similarity graph data without filtering and the bottom three plots

are results after filtering with the count filter of 10. We selected the top 100 dense ranked

edges from forecast graph and found out their true weight and rank in actual graph.

The left column displays the comparison of actual and forecast weight of these approx-

imately 1000 edges. The reduced number of edges in bottom plot reflects the number of

filtered out edges. With no filtering, the noise in the actual weight curve corresponds to a

relatively small proportion of similarity edges whose estimated weight greatly exceeds the

true weight due to estimation noise. The count filter deleted most of those edges with over

exaggerated weight in forecast graph.
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The middle column shows a scatter plot of the actual vs. forecast dense ranks for the

same edges. It shows clearly that the edges with both top ranks in the forecast and actual

graphs were not affected by the filtering, but a cluster of edges with top forecast rank but

lower true rank (i.e. lower true weight) are removed by filtering.

The right column shows a scatter of precision vs. recall for top-n queries for n from

1 to 100, where the color density of points increases with n. Note how filtering improves

precision.

Back to the metrics we introduced above, we plot Figure 6.2, which displays WRE

(left), Cor (center) and ATOP (right). In order to make lines in three plots with consis-

tent order, we plots (1 − Cor) and (1 − ATOP) in center and right figures. Similarly to

SIMADAPT count filtering also works well in SIMFIXED. We analyze the top 100 edges

from the same dataset GITHUB without PrSH, but with SIMFIXED algorithm. From left

and center plots, we could see that filtering can provide magnitude reduction in WRE and

(1−Cor) across sampling rates smaller than 20%. When the probability is larger or equal

to 20%, the precisions of estimations without filter have already been very high, so we

could not see big differences in top 100 edges. However, when we enlarge the analysis set

to be top 150 dense ranked edges, count filters bring significant improvement all across

the sampling rates, which is shown in Figure 6.3.
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Figure 6.2: Error reduction with filtering. Dataset GITHUB, Alg. SIMFIXED, no PrSH,
top 100 dense ranks

Figure 6.3: Error reduction with filtering. Dataset GITHUB, Alg. SIMFIXED, no PrSH,
top 150 dense ranks

We got the similar results with dataset MOVIE and RATING. The results of RATING

are shown in Figure 6.4. Sum up the results of three datasets with several algorithms, we

found that filtering at a value of 10 to be most effective. Since there is no cost in accuracy

in setting the threshold beyond the point of “diminishing returns” we recommend and

adopt a filtering threshold of 10. All the results in the rest of thesis are applied with a filter
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of 10 except special notations.

Figure 6.4: Error reduction with filtering. Dataset RATING, Alg. SIMADAPT, no PrSH,
top 150 dense ranks

6.3.2 Second Stage PrSH Sampling

In all our datasets we found that PrSH second stage has little effect in accuracy for

sampling rates down to about 10% (and less in some cases) under a wide variety of con-

ditions. This is illustrated in Figure 6.5 for the example of MOVIE for SIMFIXED at edge

sampling fraction fm = 10% and PrSH sampling rates of 5%, 10%,15% and 100%(i.e. no

PrSH sampling), which displays error matrics for edges with the top-k dense ranks, as a

function of k. For k up to several hundred, even 5% PrSH sampling has little or no effect,

while errors roughly double when all ranks are included.
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Figure 6.5: Second Stage Sampling with PrSH at 5%, 10%, 15% and none, as function of
top n ranks. Dataset MOVIE, Alg. SIMFIXED, 10% edge sampling

Figure 6.6: Second Stage Sampling with PrSH at 5%, 10%, 15% and none, as function of
top n ranks. Dataset MOVIE, Alg. SIMFIXED, 30% edge sampling

However, when we increase the first stage sampling rate, the performance difference

between sampling rates occurs at a much lower rank, just as shown in Figure 6.6. When

the edge sampling fraction is fm = 30%, the performance of PrSH5 becomes much worse

than others at rank 200, which happened at rank 1600 when fm = 10%. It reveals the

fact that when second stage sampling is involved, the larger edge sampling rate could not
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guarantee better performance as usual. A large first stage sampling with a small PrSH

sampling may perform worse than a small first stage sampling. Figure 6.7 shows this

feature clearly with MOVIE dataset and top 800 dense ranked edges. As the edge sampling

rate increases larger than 15%, the error metrics for algorithms with PrSH process become

larger while error metrics for those without PrSH process are still going down as usual.

We also observed similar behaviors in other two datasets, such as GITHUB with top 150

dense ranks in Figure 6.8.

Figure 6.7: Effect of Second Stage Sampling. Dataset MOVIE, top 800 dense ranks

Figure 6.8: Effect of Second Stage Sampling. Dataset GITHUB, top 150 dense ranks
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Therefore, our strategy for choosing PrSH sampling rate is when the rank of esti-

mated edges is comparatively low, we choose a smaller first stage sampling fraction with

a smaller PrSH sampling rate, oppositely when the rank of estimated edges is higher, we

choose a larger first stage sampling fraction with a larger PrSH sampling rate.

6.3.3 Different Weights Functions

6.3.3.1 Adaptive and Fixed Weights

We now examine the accuracy benefits of SIMADAPT as compare with SIMFIXED.

We illustrate these differences in Figure 6.9 for the MOVIE dataset using top 100 dense

estimated rank. Each of these figures includes four conditions: SIMADAPT without second

stage sampling (i.e. 100% sampling rate in PrSH), SIMADAPT with 5% second stage

sampling with PrSH, SIMFIXED without and with 5% PrSH. We could notice that two

SIMADAPT lines are below the lines of SIMFIXED across the sample sizes in all the plots,

which means the benefits of adaptive weights are really large compared to the benefits of

no sampling in the second stage. When the edge sample rate fm is extremely small at 1%,

the results of these four algorithms are similar. With the increase of the first stage sample

fraction, the benefits of adaptive weight are enlarged.

Figure 6.9: Algorithm Comparison. SIMADAPT & SIMFIXED without PrSH and with 5%
PrSH. Dataset MOVIE, top 100 dense ranks
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Similar benefits of SIMADAPT algorithm is also shown clearly in other two datasets

in Figure 6.10 and Figure 6.11. Therefore, we could conclude that the adaptive weight

algorithm did a much more accurate estimation than fixed weight algorithm no matter

whether the second stage sampling is applied or not.

Figure 6.10: Algorithm Comparison. SIMADAPT & SIMFIXED without PrSH and with
5% PrSH. Dataset GITHUB, top 100 dense ranks

Figure 6.11: Algorithm Comparison. SIMADAPT & SIMFIXED without PrSH and with
5% PrSH. Dataset RATING, top 100 dense ranks
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6.3.3.2 Adaptive, Fixed and Uniform Weights

Now, we add another uniform weight function. We change the weight in our algorithm

to be 1 for all bipartite edges regardless of their nodes degrees, which means all bipartite

edges have the same probability to be sampled. We just need to change line 22 in Algo-

rithm 4 to be w(u, v) = 1. This is a baseline to see the effect of our weighted sampling

process in SIMADAPT and SIMFIXED.

Figure 6.12 and Figure 6.13 are the comparison results of dataset RATING without sec-

ond stage sampling and with PrSH rate equal to 5%. ‘Unweighted’ in these plots indicates

the condition of the in-stream scheme with uniform weight. Compared to ‘Unweighted’,

SIMFIXED shows a little bit improvement but SIMADAPT shows great improvement in

error metrics.

Figure 6.12: Algorithm Comparison. Unweighted, SIMFIXED, SIMADAPT without PrSH.
Dataset RATING, top 100 dense ranks
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Figure 6.13: Algorithm Comparison. Unweighted, SIMFIXED, SIMADAPT with PrSH
5%. Dataset RATING, top 100 dense ranks

6.3.4 Comparison with Other Methods

6.3.4.1 Simple Uniform Sampling

Simple uniform sampling is designed as adopting the most simple uniform edge sam-

pling at the same fractions of fm = [5%, 10%, 15%, 20%, 25%, 30%] at first stage, then

constructing similarity graphs according to these sampled edges, during which every sim-

ilarity update has the weight of w(u, u′) = 1/(p(u, v) ∗ p(u′, v) = 1/(fm)
2. It is used as a

baseline to show the benefits of our overall scheme, including priority sampling, in-stream

similarity updates, count filters etc.

Figure 6.14 and 6.15 illustrates the results of simple uniform sampling with our SIMADAPT

and SIMFIXED. They are results from different datasets and different dense ranks, but

they all show that both the WRE and rank correlation have a great improvement in our

algorithm. ‘Unweighted’ (our algorithm with edge weight equal to 1) is also included to

reflect the advantage of the in-stream scheme. Both of ‘Uniform’ and ‘Unweighted’ are

unweighted sampling, but with the in-stream scheme, ‘Unweighted’ performs much better.
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Figure 6.14: Algorithm Comparison. Uniform Sampling, Unweighted, SIMFIXED &
SIMADAPT . Dataset GITHUB, top 50 dense ranks

Figure 6.15: Algorithm Comparison. Uniform Sampling, Unweighted, SIMFIXED &
SIMADAPT . Dataset MOVIE, top 200 dense ranks

6.3.4.2 Common Neighbors Method

Sampling for link prediction in non-bipartite graph streams has been proposed in [12].

That work used a separate reservoir of edges for each graph node, with hashing to coordi-

nate sampling across different reservoirs to promote selection of common neighbors, and

states the form of estimators for common neighbors and other similarity scores. Although
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the setting and applications are different to ours, there are very few papers and algorithms

that we could choose from to deal with a streaming graph data. Therefore we did an exper-

imental comparison with common neighbors method in [12]. And the detailed algorithm

in [12] is as Alg. 5. To reduce the space for random variable of vertex v ∈ V , they create

a random hash function G : v ∈ V → (0, 1).

Algorithm 5 Vertex-biased Sampling Graph Sketches [12]
1: procedure COMMONNEIGHBORS(L)
2: for vertex u ∈ G do
3: η̄(u) = η(u) = 1, S(u) = ∅ ▷ Initialization
4: end for
5: end procedure
6: for a new edge (u, v) ∈ G do ▷ Sampling Process
7: if v /∈ S(u) then
8: if |S(u)| < L then
9: S(u) = S(u) ∪ {v}

10: else
11: if G(v) ≤ η(u) then
12: k ← argmaxw∈S(u) G(w)
13: S(u)← S(u) \ {k}
14: S(u)← S(u) ∪ {v}
15: η̄(u)← G(k)
16: k∗ ← argmaxw∈S(u) G(w)
17: η(u)← G(k∗)
18: end if
19: end if
20: end if
21: end for
22: for any node pair (u, u′)inS do ▷ Construct Similarity Graph
23: η(u) = (η̄(u) + η(u))/2
24: η(u′) = (η̄(u′) + η(u′))/2

25: C(u, v) = S(u)∩S(u′)
max{η(u),η(u′)}

26: end for

We calculated the theoretic space consumption in two algorithms and compared the
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fm 5% 10% 15% 20% 25% 30%

MOVIE 864 1730 2596 3463 4329 5195
GITHUB 2 6 10 14 17 21

Table 6.2: Values of L in Alg. Common Neighbors in datasets MOVIE and GITHUB

corresponding to edge sampling rates fm

results with the same space cost. For example, in our algorithm, the overall space cost

for edge sampling is 10m = 10fmMb, where m is the size of the edge reservoir, Mb is

the total number of edges in the bipartite graph. In COMMONNEIGHBORS procedure, the

space cost is Nu(L + 2), Nu is the number of nodes in source side. To make them equal,

we have:

10fmMb = Nu(L+ 2)

L =
10fmMb

Nu

− 2
(6.5)

Let Mb and Nu to be the exact numbers in each datasets, we calculated the correspond-

ing L for each fm in [5%, 10%, 15%, 20%, 25%, 30%] in Table 6.2.

The comparison results are in Figure 6.16 and Figure 6.17. In dataset GITHUB, WRE

improves a little bit compared to Uniform Sampling but rank correlation is worse than Uni-

form Sampling. And all metrics are much worse than our algorithms. In dataset MOVIE,

all metrics are worse than Uniform Sampling and our algorithms.
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Figure 6.16: Algorithm Comparison. Common Neighbors, Uniform Sampling, SIMFIXED

& SIMADAPT . Dataset GITHUB, top 100 dense ranks

Figure 6.17: Algorithm Comparison. Common Neighbors, Uniform Sampling, SIMFIXED

& SIMADAPT . Dataset MOVIE, top 400 dense ranks

I think the reason of the bad performance of Common Neighbors Alg. is it is very

average among its nodes that it treats all nodes the same and could not reflect the huge

degree differences between them in the real-world data. It may be not suitable for the

application of top similarities. And another reason is that many of the reservoirs actually

are not full so that the actual space cost of Common Neighbors are much smaller than the
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fm 5% 10% 15% 20% 25% 30%

L 864 1730 2596 3463 4329 5195
Actual/Theoretic 0.51 0.39 0.32 0.27 0.24 0.22

Table 6.3: Actual space cost in Alg. Common Neighbors in dataset MOVIE

fm 5% 10% 15% 20% 25% 30%

L 2 6 10 14 17 21
Actual/Theoretic 0.79 0.47 0.36 0.30 0.26 0.23

Table 6.4: Actual space cost in Alg. Common Neighbors in dataset GITHUB

theoretic space cost. In other words, Common Neighbors Alg. has little control on its

space consumption. The proportions of actual space cost to theoretic space cost are shown

in Table 6.3 and Table 6.4, which is only from 0.22 to 0.79.
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7. RELATED WORKS

Bipartite graphs. Recently a number of problems specific to bipartite graphs have

attracted attention in the streaming or semi-streaming context. The classic problem of

bipartite matching has been considered for semi-streaming [13] and streaming [14] data.

Another popular problem in bipartite graph is link prediction [15], which is applied in

many areas such as social networks analysis [16], recommendation system [17], or side

effect prediction [18]. However few of them could enlarge their dataset to be in the form

of data stream.

Graph streams. In the last few years, great interest has been raised in processing

large graphs in the model of data stream, which is motivated by the fact that the massive

dynamic graphs in the real world could not fit in any main memory or disks of a single ma-

chine. [19] concludes all the popular problems and promising research directions in graph

streams, which includes connectivity properties, graph distances, approximate matching,

frequencies of subgraphs etc. Challenges in graph streams mainly come from the trade-off

between time and space cost and the accuracy of online approximate estimation.

Top k queries. The problem of identifying top-k queries in graphs streams has been

studied in [20],[21]. The Incremental Threshold (IT) algorithm [22] was the first one to in-

troduce continuous top-k queries with sliding information expiration windows to account

for information recency. Many other algorithms such as Adaptive spatial-textual Parti-

tion Trees [23] were developed later to efficiently serve spatial-keyword subscriptions in

location-aware publish/subscribe applications.
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8. CONCLUSION

This thesis has proposed a sample-based approach to estimating the similarity (or pro-

jection graph) induced by a bipartite edge stream. The statistical properties of real-world

bipartite graphs provide an opportunity for weighted sampling that devotes resources to

nodes with high similarity edges in the projected graph.

Our proposed algorithms SIMADAPT and SIMFIXED provide unbiased estimates of

similarity graph edges in fixed storage, that in evaluation incurs weighted relative errors as

low as 10% with rank correlation larger than 90% in a 10% edge sample. Our algorithms

are also compared with others to show their great advantages in weight and rank accuracy.

In future work we plan to explore other instances of our framework with edge weights

tunes to optimize estimation of other neighborhood based similarity metrics and their ap-

plications.
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