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ABSTRACT

Distributed file systems enable the reliable storage of exabytes of information on thou-

sands of servers distributed throughout a network. These systems achieve reliability and

performance by storing three or more copies of data in different locations across the net-

work. The management of these copies of data is commonly handled by intermediate

servers that track and coordinate the placement of data in the network. This introduces

potential network bottlenecks, as multiple transfers to fast storage nodes can saturate the

network links connecting intermediate servers to the storage. The advent of open Network

Operating Systems presents an opportunity to alleviate this bottleneck, as it is now possi-

ble to treat network elements as intermediate nodes in this distributed file system and have

them perform the task of replicating data across storage nodes.

In this thesis, we propose a new design paradigm for distributed file systems, driven

by a new fundamental component of the system which runs on network elements such

as switches or routers. We describe the component’s architecture and how it can be in-

tegrated into existing distributed file systems to increase their performance. To measure

this performance increase over current approaches, we emulate a distributed file system

by creating a block-level storage array distributed across multiple iSCSI targets presented

in a network. Furthermore we emulate more complicated redundancy schemes likely to

be used in distributed file systems in the future to determine what effect this approach

may have on those systems and what benefits it offers. We find that this new component

offers a decrease in request latency proportional to the number of storage nodes involved

in the request. We also find that the benefits of this approach are limited by the ability of

switch hardware to process incoming data from the request, but that these limitations can

be surmounted through the proposed design paradigm.
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1. INTRODUCTION

Distributed File Systems have allowed for the reliable storage of exabytes of data on

hundreds or thousands of servers distributed throughout a network using inexpensive com-

modity hardware. These systems achieve reliability and performance by storing multiple

identical copies of data in three or more locations throughout the network, with the man-

agement of these copies of data being handled by intermediate servers that track and co-

ordinate the placement of this data. Individual files in these systems are expected to be

large (in the MB to GB range) and should be available to hundreds of simultaneous users.

Individual servers in the file system are divided into two classes: the “Data Nodes” which

store the data, and the “Name Nodes” which track where the data is stored and service the

read/write requests. A diagram of this architecture and the data flow between the Name

Nodes and Data Nodes in the Hadoop distributed file system is given in Figure 1.1 [3, 1].

This design introduces bottlenecks for specific loads. Fast storage devices can eas-

ily saturate the network links connecting Name Node servers to the Data Node servers

while servicing a single request [3]. Redundant write operations are often done simulta-

neously to all destination data nodes at once which saturates outbound links. If a Data

Node fails (which happens frequently [4, 5]) it must be rebuilt using a spare node, which

can consume the outbound link bandwidth of one or more other Data Nodes in the system.

Most distributed file systems are not aware of the network load at any given time. As a

result, large bandwidth operations such as node reconstruction and large data writes can

be routed through bottlenecked Name Node uplinks and inter-switch links (ISLs) in the

network. This can deny users service to data nodes that depend on those network links for

connection to Name Nodes [4].

Current solutions to these problems involve increasing the network link bandwidth of
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the intermediate Name Nodes or using more complicated network protocols such as layer

2/3 multicast. However, increasing network bandwidth involves increasing the port count

of hardware (which does not scale out well) or increasing the complexity of the network

hardware (which violates the “inexpensive and commodity hardware” requirement of these

systems). Multicasting is another option, however most network multicast protocols are

unidirectional and not particularly reliable [6]. Multicast domains do not scale out to

the thousands of simultaneous requests these systems usually require, and they offer no

opportunities for more advanced redundancy schemes (such parity checking across storage

nodes).

This thesis proposes a way to reduce these performance bottlenecks by offloading some

actions of distributed file systems onto network devices themselves, such as routers and

switches. Specifically, any action that involves the replication of data across many nodes

in the network or the processing of data from many nodes into a single stream of data

is offloaded to the network hardware. This better utilizes network hardware which can

have large amounts of bandwidth available to it and which can leverage its position in the

network topology to handle these requests.

The rest of the thesis is organized as follows. In section 2, we give additional details

about the operation of existing distributed file systems and some background information

needed for understanding of our experimental setup. Section 3 describes relevant previous

research into optimization of distributed file systems. Section 4 describes the proposed

solution in more theoretical detail. Section 5 describes an experimental system which was

built to test some of the advantages of the proposed system, and section 6 describes the

results from that experimental system.

2



Figure 1.1: Common Distributed File System DataFlow[1]
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2. BACKGROUND

2.1 Distributed Storage

Distributed File Systems were developed to meet the increasing storage needs of large

companies attempting to serve petabytes of data to thousands of users simultaneously

[3, 1]. There have been numerous implementations of distributed file systems in recent

years to fill different storage requirements. However, all these systems attempt to provide

reliable storage by distributing multiple copies of data across multiple storage locations in

a network. They all attempt to make that data highly available by allowing users to access

those nodes simultaneously through intermediate servers. The intermediate servers are

responsible for servicing those requests while simultaneously keeping all storage nodes

in sync. Well known examples include the Apache Hadoop File System (HDFS) [1], the

Google File System (GFS) [3], the Gluster File System [7], and OpenStack’s Ceph Storage

system [8].

These systems all tend to operate by having daemons run on servers (or nodes) which

fulfill specific tasks such as the tracking and managing of data or the storing of data itself.

However, they differ in the granularity in which they do so. HDFS and GFS have two

classes of nodes: those which store data (Data Nodes) and those which track where the

data is stored and manage requests (Name Nodes). Ceph further divides the name nodes

into nodes which monitor storage node state, nodes which store metadata information

about the storage nodes, and nodes which act as gateways to expose the storage to clients

requesting data. However, in Ceph all these nodes are fully distributed and all three name

node daemons may run on the same physical server.
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2.2 Network Switch Hardware

Switch hardware today typically consists of two parts: a switching application-specific

integrated circuit (ASIC) and a control/management CPU or System on Chip (SoC). The

switching ASIC portion is connected to the external switch interfaces and is responsible

for forwarding packets from one interface to another. The control CPU is connected to the

external management interfaces and has an internal connection to the switching ASIC. A

diagram of this is given in figure 2.1. This control CPU is responsible for presenting a user

interface to the switching ASIC in the form of a Network Operating System (NOS). This

NOS usually runs on top of Linux and can be as simple as a Open VSwitch control plane

communicating to a dataplane running on the switch ASIC. Recently the “Open Network

Install Environment (ONIE)” initiative has produced bare-metal network hardware which

can run any NOS that a user chooses to install [9].

2.3 Open vSwitch

Open vSwitch is an open-source, multilayer switch that is widely used in OpenStack

deployments [10]. It is noted for being both production quality (with support for numer-

ous standardized protocols and technologies such as OpenFlow and VLANs) and for being

portable enough that it can be deployed on multiple different switch hardware platforms.

This thesis makes use of the switch’s robust OpenFlow support and its portability to mul-

tiple different hardware platforms. It also integrates well with the Linux kernel and allows

internal taps to be made between the Linux kernel and the switch dataplane.
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Figure 2.1: Common Network Switch Architecture [2]
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3. RELATED WORK

Howard et. al. identified the problems of performance when multiple users attempted

to access their early “Andrew” distributed file system simultaneously [11]. Their primary

solution to this was to have local caches of any file to reduce the number of accesses back

to the datastore. These conclusions were further studied by Muntz et. al [12]. However,

all of these early distributed file systems were only designed to handle thousands of users

and could not meet the demands of the growing internet age.

Google identified the problem with outgoing and incoming bandwidth from the “Name

Node” equivalent in the Google File system and proposed a divide and conquer approach

[3]. In their system the Name Node only pushes a copy of a new piece of data to a single

Data Node. That Data Node then pushes the data to the next node and so on until the

desired number of replicas is reached. Data Nodes report back to the Name Node once

all data has been written. This strategy was later used by the Hadoop HDFS [1]. These

two systems in particular address the question of physical locality of the different copies

of data and they go to great lengths to provide mechanisms to ensure that in the event

of rack or site failure users still have access to at least one copy of data. Determining

locality is largely done through IP address assignments, but is not dynamic. The question

of network bottlenecks between racks in the initial design paper is not addressed. Narayan

et al. explore the use of OpenFlow to analyze and streamline some Hadoop data operations

[13]. However, they do not propose reconstruction or mirroring of request at the network

nodes.

Few other file systems go into much detail about their actual internal data flow as it

is generally kept transparent from the client users. However, some performance measure-

ments of different DFS systems suggest that they are either transmitting data serially from
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the intermediate Name Nodes or following schemes similar to GFS and HDFS [14, 15].

Some research has been done on the implementation of erasure codes in distributed

storage systems to minimize network bandwidth or storage overhead in distributed file

systems. Currently HDFS and Ceph both have options for Reed-Solomon based codes

similar to the RAID-5 codes used in this study. Huang et al. demonstrated the benefits

of parity based coding in Windows Azure Storage [16]. However, these implementations

are limited in scope to specific storage classes or use cases and do not involve calculating

erasure in the network devices as is proposed in this thesis.

Pamies-Juarez et al. successfully implemented a Minimum Storage Regenerating (MSR)

code on top of both Ceph and HDFS [17]. This paper demonstrated a sizeable benefit in

terms of storage overhead and network bandwidth over the Reed-Solomon based codes

currently implemented. However, they conclude from their work that to get the theoret-

ical expected repair performance requires careful implementation across all levels of the

distributed file system. And again, no erasure coding is used in the network elements to

achieve this benefit.

Dimakis et al. initially proposed using erasure coding for node regeneration and did

an analysis on its expected effects [4]. This work was largely theoretical and dealt with

more complicated erasure codes than the ones used in this thesis. It also did not have any

implementation details on the network protocol to be used to achieve its goals. However,

it is an indirect inspiration for this thesis.
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4. PROPOSED DESIGN

Our proposed solution to the problems of limited Name Node bandwidth and excessive

aggregate network usage is to create a new type of node, referred to as a Switch Node, that

runs on switch hardware itself. This node would take over the duties of replication during

write operations and of checking concurrency between different copies of data for reads.

Name Nodes would be responsible for controlling the new Switch Nodes and configuring

them to replicate data to and aggregate data from specific Data Nodes. Initially, this control

would involve communicating to an agent running in user space on the switch OS which

has direct input to the switch data plane. A diagram of this proposed architecture in a

single-switch configuration is given in figure 4.1.

4.1 Switch Nodes

The large bandwidth available to a network switch platform and its connection to mul-

tiple nodes in a rack make it an ideal place to do replication tasks. Data coming in from a

Name Node can be replicated by the switch hardware before being pushed out on switch

interfaces. As redundancy schemes get more complicated, any operation which requires

transmitting data from multiple nodes to decode the data needed by one node can be done

by the switch hardware. In this case, the Switch Nodes are responsible for collecting infor-

mation from the multiple Data Nodes, doing whatever erasure coding operation is possible

or necessary on the data it has collected, and forwarding the result on to the next Node in

the system.

Since this is critical data that is being replicated or modified, care must be taken to

ensure that the data is still transferred reliably. Also, the switch’s relatively weak CPU and

memory resources mean that such tasks should be kept as efficient as possible if they run

in the user space of the NOS.
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Figure 4.1: Proposed DFS Architecture

Many switch ASICs already do some replication tasks and have specialized hardware

paths to make this efficient. They also already have internal hardware paths to do quick

XOR operations as used in CRC checksums. These paths could be extended to support the

rebuild of failed nodes when said nodes are using erasure codes to maintain redundancy.

4.2 Advantages

Our approach has a few advantages over the current approaches. The first is that it

reduces the amount of aggregate bandwidth required to fulfill any individual request, sim-
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ilar to multicast. By passing information to the Switch Node and letting the Switch Node

replicate the requests the distributed file system can take better advantage of the internal

communication links between the network OS and the switch dataplane to replicate data.

These operations are also simple enough that they could be done by the switch dataplane

itself in the future using new transport layer protocols.

The second advantage is that this reduction in aggregate bandwidth also comes with a

theoretical reduction in overall request latency. In the current systems if a single outbound

write request saturates the network link it runs on then multiple simultaneous identical

requests will divide this bandwidth and cause all requests to take longer to complete. By

contrast, if write operations can be replicated simultaneously on all intended outbound

interfaces of a switch, the latency of the request is reduced to the time it takes to write a

request to the slowest storage node in the request instead of the combined latency of all

storage nodes in the request.

Finally, DFS systems are beginning to use parity checking to achieve better storage

density among their redundant copies (similar to the evolution from RAID-0 and 1 to

RAID-5) [16]. In our system, the Switch Node would also take over the calculation of par-

ity data. This would greatly increase the bandwidth efficiency of these parity calculations

and data reconstruction in the event of data node failure and recovery.

4.3 Switch Node Orchestration

Determining which switch node is the ideal place to do any particular operation is

largely dependent on the operation in question and the architecture of the network that it

is running upon. The number of source and destination nodes and their connections to

switches in the system should be taken into account for any individual request.

In this system, replication should be done as close to the leaf nodes as possible to re-

duce aggregate bandwidth. For a write operation replicated to multiple nodes, a minimum
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spanning tree should be created with the source of the data as the head node and every

destination for the data is a leaf node. The tree’s head and leaves may only be attached to

switch nodes, and there must be one or more switch nodes in the tree. Any switch node

that has more than one connection to a lower level of the tree will be configured to do

replication (assuming that is possible). Read cases in existing replication systems usually

only involve a single storage node and the requester and thus there is no need to perform

optimization.

Data reconstruction or parity calculation, on the other hand, should be done as soon as

a node has access to all required data. The target node can be either the requesting client

or a storage node that is rebuilding or storing parity data. To simplify the operation, the

calculation should be done in as few locations in the network as possible. Ideally, parity

calculation would be done by a single network node. For a parity read case a minimum

spanning tree should be created with the requester at the tree’s head and all involved stor-

age nodes as leaves. The scheme used for the parity calculation will determine whether

recalculation can be done at any switch node (XOR parity) or just at a switch node that

has access to all data (more complicated parity schemes).

Control of the replication and parity calculations should be done by Name Node or

another agent that has an overview of the switch topology of the system. That way it can

choose the ideal places to do replication and parity calculation operations. Thus the Name

Node (or other entity controlling the Switch Nodes) must have knowledge of both the

network architecture and the storage node locations in the network in order to be effective.

4.3.1 Storage Tree Algorithm

To generate the various replication paths through the network systematically, an algo-

rithm is necessary to generate the trees by which data will be distributed to all the storage

nodes. These “replication trees” must have one Name Node N to act as the root node. The
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replication tree will also have a number of Data Nodes, D1, D2, . . . , Dk, at the leaves of

the tree. The number of Data Nodes in the tree, k, will depend on the copy requirement

of the distributed file system implementing it, but there must be at least two. Finally, the

replication tree will have a number of Switch Nodes S1, S2, . . . , Sn which may or may not

be in the resulting tree. The number of Switch Nodes can be as few as one or as many

as are in the entire Distributed File System’s network, n. There will also be a number of

links between nodes, C1, C2, . . . , Cl, which may or may not be under load at the time of

the write request. Data and Name Nodes may ONLY connect to Switch Nodes, but Switch

Nodes may connect to any node. In addition to these constraints on the number and con-

nections of Nodes, there may be upper limits on the amount of connections that a switch

can handle due to bandwidth constraints or processing power.

Given the original Name Node N , necessary Data Nodes D1, . . . , Dk, all Switch Nodes

in the network S1, . . . , Sn, all links in the network C1, . . . , Cl, we propose a general algo-

rithm to generate a desired replication tree T which can be used to replicate data from a

Name Node to two or more Data Nodes. This general algorithm examines the state of the

network when the request is made and determines which switch nodes in S1, . . . , Sn are

connected to the Name Node and the necessary Data Nodes. Let these nodes be considered

the set Sr. All S in Sr are required to be in the resulting replication tree T .

The algorithm then uses the Prim’s algorithm to build a minimum spanning tree that

connects nodes in Sr. Specifically, the algorithm initializes a tree T that initially includes

a node in Sr connected to N . The algorithm then adds a new Switch Node Sj that has the

least-utilized link between itself and a node in the current tree T . The algorithm proceeds

in a similar manner until all nodes in Sr are connected by T . Additionally, the algorithm

keeps track of the number of inbound or outbound links any given switch node can process.

If the new Node Sj is to be added via a link to an existing S in T which is over-utilized,

that link is moved to a secondary list and a new Sj is found. If T cannot be completed

13



without over-utilizing an S, links are used from the secondary list until a complete tree T

is found. Once the tree is completed, all leaf nodes which are not in the set Sr are removed

from T . The pseudo-code of this algorithm, referred to as Algorithm 1 is provided below.

Once the tree T has been generated, one can simply traverse the tree from the head

Name Node and set up replication for any switch node which has more than one child.

Flow table rules for intermediate Name Nodes which are not doing replication can also be

added if the network switch is controllable via OpenFlow. Figure 4.2 illustrates how one

of the replication trees may look in a simple 4-switch mesh network. All green links are

used by the tree to replicate the write request from the client to Block A to two data nodes

which are storing Block A. The switch in the upper-left quadrant of the mesh network is

responsible for replicating the copy and sending it to both the locally attached first data

node and the outbound link so it can be routed to the second data node.

Figure 4.2: A Replication Tree Configured to Replicate Data Block A

14



Note that there is a third data node in figure 4.2 which stores a copy of data Block A.

This third node is storing the result of and bitwise XOR operation on Data Block A and

Data Block B. This data node allows the system to regenerate either Data Block A or

Data Block B as necessary with additional bitwise XOR operation. Since there are three

copies of the Data Blocks A and B across all Data Nodes in the network, it also allows

the Name Node to report that it has three copies of Data Blocks A and B in the system.

In existing systems data from both Block A and Block B must be transferred to the Data

Node through its single switch link which will delay node updates.

However, the storage tree algorithm can also be used to generate trees for XOR parity

node regeneration. Instead of assigning the head of the tree to the Name Node, assign it

to the node which will hold the regenerated data. For the data nodes, choose one source

(preferably the least utilized) for each piece of data used in the parity calculation. After

the tree is generated, traverse the tree from the bottom up to determine what operations

need to be done on any given data node (or to combine different data nodes) before it gets

to the node under reconstruction. Care should be taken to ensure that no data corruption

occurs as a result of these operations and that the resultant data from any operation creates

a useable symbol for an erasure code. And example of the XOR parity recalculation tree

for Block A and Block B is given in figure 4.3.
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Algorithm 1 Storage Tree Algorithm
for all S in S1 . . . Sn do

Set S.numconnections = 0
if S is connected to N then

Set S.priority = 0 AND S.required = true AND S.parent = null
else if S is connected to any D in D1 . . . Dk then

Set S.priority = ∞ AND S.required = true
else

Set S.priority = ∞ AND S.required = false
end if

end for
Add S1 . . . Sn to a Queue Q1 sorted by S.priority
Create an empty Queue Q2
while Q1 is not empty OR All S.required are not in T do

Pop minimum S from Q1
Dequeue minimum parent from S.parentpriorityqueue
if parent.numconnections < parent.maxconnections then

Add S to RT
Add C connecting S to S.parent
for all C connected to S do

Given S2 which is the other Switch Node connected to C...
S2.parentpriorityqueue.push(S)
S2.priority = current link utilization of C

end for
else

If S doesn’t exist in Q2 then add it.
Find S in Q2 and add parent to S.parentqueue.
For S in Q1, set S.priorty = current link utilization of C connected to next
S.parentpriorityqueue
Enqueue S in Q1

end if
end while
while All S.required are not in T do

Pop minimum S from Q2
Dequeue minimum parent from S.parentqueue
Add S to RT
Add C connecting S to S.parent
for all C connected to S do

Given S2 which is the other Switch Node connected to C...
S2.parentpriorityqueue.push(S)
S2.priority = current link utilization of C

end for
end while
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Figure 4.3: A Parity Calculation Tree Configured to Reconstruct Data Block A+B
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5. EMULATION

In order to demonstrate the advantages of this system we built a small scale version of

a distributed file system that allowed for more granular control of the flow of data through

the network. This was done by using common open source utilities to emulate the behavior

of different pieces of the distributed file system. This allowed us to better measure and

track the flow of data throughout the DFS for the purposes of this paper. However, the

techniques described in the “Proposed Design” section should be applicable to any DFS

which uses intermediate nodes to track storage metadata.

5.1 Experimental System Design

In our proposed system there are three types of nodes: Data Nodes, Name Nodes, and

Switch Nodes. To emulate them, these can be run either as VMs in a hypervisor cluster

or as actual systems running on a network. Each node emulates the role and behavior of a

server on a network in a common Distributed File System deployment. They also provide

enough control that the behavior of the distributed file system can be changed easily.

5.1.1 Data Nodes

Each Data Node is a single server with a local storage device that it is presenting on the

network. It has a single network adapter attached to it and runs an open-source iSCSI target

implementation called LIO [18]. This target can use either the system’s RAM to emulate

a flash SSD storage device (otherwise known as a RAMDisk) or a locally attached hard

drive to represent the slower devices common in large DFS setups today. The system has

enough RAM to present a meaningful target (when emulating a flash SSD) and enough

CPU resources to ensure that the only bottleneck that can be introduced by the system is

due to the drive itself. This implementation was chosen because existing DFS systems are
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known to connect to iSCSI target devices [14].

5.1.2 Name Nodes

This node handles the end-user or mid-level storage system actions. It has one or more

network adapters and runs the open source open-iSCSI initiator software [19]. It also runs

the open source FIO [20] tester application which is responsible for all tests and simulated

workloads in the environment. It is allocated enough CPU and RAM in all tests to ensure

that there is no possibility of the system resources being a bottleneck in the test. However,

the network link is allowed to be a bottleneck in order to demonstrate the advantages of

the proposed solution.

In control tests this node will also run the software RAID manager known as “Multiple

Disk Administrator” or “MDADM” [21]. This software handles data replication, data

striping, parity calculation, and rebuilding in the event of node failure. It was chosen first

and foremost because it is a known enterprise-level that supports RAID 5 and 6.

5.1.3 Switch Nodes

This node is either a software-based network switch or an ONIE compatible switch.

The switch has a limited amount of CPU and Memory resources to emulate the actual

limitations of switch hardware available today and to better characterize the additional

hardware requirements that will be necessary to support this technology. There are also

one or more internal network taps that act as TCP endpoints within the switch. An LIO

target for upstream devices (either the client or upstream switches) will be presented on

one of these tap interfaces, and the switch will connect to downstream storage nodes via

these internal tap interfaces.

When running as a VM this node will have numerous NIC adapters attached to it which

act as the external facing network ports of a switch. These NIC adapters are attached to the

NIC adapters of storage nodes, the client VM, and other switch VMs through dedicated
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bridges on the hypervisor. Each hypervisor bridge has only two connections, one to a

single NIC on the switch VM and the other to another node in the system and thus acts as

a simple wire in the system. In this way, the client VM can only get data from the storage

VMs via their connections to and the operations done by the switch VMs. This also gives

us the ability to construct multiple network topologies by changing the way the Client,

Storage, and Switch VMs are all connected together.

5.2 Node Connections

As mentioned, all Data Nodes are configured to present a fixed size RAMDisk as an

iSCSI target. The Storage Orchestrator will send commands to the switch VMs which will

in turn use their iSCSI initiator instances to these presented disks for all locally attached

Storage VMs. The Storage Orchestrator will then direct the mdadm instance on the switch

VMs to combine the iSCSI drives into new disks (using pre-determined RAID schemes).

Lastly the orchestrator will direct switch VMs to present their new disks as iSCSI targets

on their internal interfaces. Upstream devices will then connect to these new disks and the

process will start again at the next highest level. This process repeats until you get to a

single presented disk that Name Nodes or clients can connect to in order to write to a set

of disks on the network.

5.3 Benchmarks

In order to determine the performance of the proposed system a number of benchmarks

were measured between a control configuration, where all replication and rebuilding is

done by the Name Node, and the proposed system’s configuration. This benchmarks will

include the amount of time taken to write increasing amounts data to the system, the time

taken to read data from the system, and the time it takes to rebuild a failed node in the

system. The read-write benchmarks are largely based on the work by Depardon et al. [14]

while the rebuild benchmark is a simple measure of the time it takes the system to rebuild
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a failed node.
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6. RESULTS

6.1 Experiment 1

The first experiment is done in a highly virtualized environment in order to prove

the feasibility of the system and determine its benefits to replication duties under ideal

conditions. A single Switch Node running Open VSwitch inside a VM is connected to

between 3 and 5 Data Nodes which are also running as VMs. The available bandwidth

between the Switch Node and the Data Nodes is kept quite high, but all traffic from the

Data Nodes is forced to run though the Switch Node. The NameNode runs on a separate

server connected to the switch VM via a single 1Gb link in order to present a possibly

bottlenecked Name Node link. The DFS configuration is shown in Figure 6.1.

For this experiment, only basic replication between the Data Nodes is done. For this

experiment, varying sizes of write operations are given to the system and the time it takes

them to complete is measured. These write operations were performed with a single-

thread, sequentially in 512k chunks with 16 IO operations allowed to be in-flight The

number of Data Nodes is then increased to measure the effect that additional nodes has

on the two systems. The results of these tests are in tables 6.1, 6.2, and 6.3. Each table

lists the time it takes to service the given size request when replication is being done at the

Switch as opposed to when it is being done by the NameNode.

The results show that when replication is done at the switch the amount of time it

takes to service any size request is severely reduced. This is because each Data Node

individually was capable of pushing line-rate traffic to the Name Node. So in this system

when replication is done by the Name Node the bandwidth available for replication is

divided equally to the number of Name Nodes and the request time increases accordingly.

The proposed system has no such bottleneck.
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Figure 6.1: Data Flow for Experiment 1

In addition to writes, read performance was measured on the three-node system. It

should be noted that since the system only needs to read from a single copy that no benefit

to request times was expected from the proposed architecture. However, the delay intro-

duced by moving data to and from the userspace of the switch in the proposed system

could have had a measurable effect on reads. The results of this test are in table 6.4.

In fact, the opposite was observed. In almost all cases when reads were coalesced

by the Switch Node they arrived slightly faster. However this gain was almost negligible

and is likely due to the lack of link competition between Data Nodes when their reads are
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Size 256MB 512MB 1GB 2GB 4GB 8GB 16GB
Switch 2.334 4.785 9.536 19.937 37.66 81.27 175.55

NameNode 6.842 13.684 27.367 54.733 109.46 218.93 437.46

Table 6.1: Write completion time for increasing transfer sizes in seconds (3-copies)

Size 256MB 512MB 1GB 2GB 4GB 8GB 16GB
Switch 2.392 4.731 9.548 19.736 46.018 89.299 153.384

NameNode 9.124 18.256 36.505 73.011 146.358 291.988 583.484

Table 6.2: Write completion time for increasing transfer sizes in seconds (4-copies)

Size 256MB 512MB 1GB 2GB 4GB 8GB 16GB
Switch 2.308 4.571 9.155 18.717 37.208 73.637 146.779

NameNode 11.418 22.835 45.661 91.303 182.663 365.319 729.884

Table 6.3: Write completion time for increasing transfer sizes in seconds (5-copies)

Size 256MB 512MB 1GB 2GB 4GB 8GB 16GB
Switch 2.294 4.584 9.182 18.381 36.804 73.532 148.246

NameNode 2.380 4.774 9.428 18.949 36.926 73.789 147.363

Table 6.4: Read completion time for increasing transfer sizes in seconds (3-copies)
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coalesced by the Switch Node as opposed to being transmitted to the Name Node.

While single-threaded performance is a good starting point, modern DFS typically

service hundreds to thousands of users at once [3, 1] so Data Nodes should be prepared

to handle accesses from multiple users simultaneously. The added load of many different

users should not have an effect on the performance of such a system. To this end, two

multithreaded tests were performed. The first generated 8 threads which each wrote then

read 1GB of data apiece, again in 512k chunks. The results of this test with different nodes

is in table 6.5.

Copies 3 4 5
Switch 91.941 93.421 93.738

NameNode 194.565 255.464 317.214

Table 6.5: Total request completion time for 1GB RW from 8 simultaneous users (seconds)

To further stress the system, 256 threads were generated to read and write 16MB of

data apiece. This simulates the typical cycles of a DFS devoted to small file sharing (such

as Facebook’s image engine).[14] The results of this are in tables 6.6 and 6.7.

Copies 3 4 5
Switch 36.704 36.730 36.709

NameNode 36.540 36.554 36.528

Table 6.6: Total request completion time for 16MB Read from 256 simultaneous users
(seconds)

Note that 16MB requests from 256 simultaneous users generates 4GB of total re-

quested data. While the added load slowed down the overall system slightly, the system
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Copies 3 4 5
Switch 39.908 41.887 42.521

NameNode 109.781 146.509 182.978

Table 6.7: Total request completion time for 16MB Write from 256 simultaneous users
(seconds)

proved robust enough to handle the additional requests with minial slowdown, even in the

relatively restricted environment of the switch VM.

6.2 Experiment 2

For the next experiment, the environment from experiment 1 was reconfigured with 3,

4, and 5 Data Nodes. A RAID-5 array was then laid on top of the Data Nodes, so that

data was striped between them. interspersed with the data was a simple bitwise XOR of

the data from that same stripe from the other nodes, so that in the event of a single node’s

failure lost data could be regenerated with as simple an operation as possible. The DFS

configuration is shown in Figure 6.2.

A single disk was then removed from the array and a new disk added. This prompted

a rebuild operation by the NameNode, and the time it took to rebuild the 16GB node

was then measured. The results of this operation are in table 6.8. The results show that

the rebuild time is relatively constant for our proposed system while the time increases

linearly with the number of Data Nodes in use for the control system.

DataNodes 3 4 5
Switch 221 219 243

NameNode 295 440 586

Table 6.8: Time to rebuild a failed 16GB Data Node (seconds)
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Figure 6.2: Data Flow for Experiment 2

6.3 Experiment 3

For the third experiment, all virtualized components of the system are moved to phys-

ical machines. Data Nodes are low power servers with RAM-based disks. The single

Switch Node implementation is moved to an Altoline 6700 ONIE switch running the Pica8

Network OS in Open VSwitch mode. MDADM and target software was rewritten and re-

compiled to run on the Altoline switch since it ran in a different architecture than the switch

VM and had more limited resources. Only replication was implemented in the rewritten
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MDADM software. Links between all nodes were increased to 10Gb speed to hopefully

remove link speed as a bottleneck. The DFS configuration is shown in 6.3.

Figure 6.3: Data Flow for Experiment 3

The result of writes to a 4 data-node array set up only to do replication in experiment

3 is given in table 6.9

The first thing to note is that the throughput of the baseline data indicates this en-

vironment is still somewhat limited by the available network bandwidth. Testing of the
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Size 256MB 512MB 1GB 2GB 4GB 8GB 16GB
Switch 0.513 1.078 2.198 4.314 8.437 17.619 34.498

NameNode 1.304 2.798 5.945 15.042 41.271 63.939 110.956

Table 6.9: Write completion time in a physical environment (4-copies)

individual disks show that each one is capable of about 7Gbps of bandwidth while the

baseline reaches its maximum at 2.2 Gbps. While the data does show a decrease in com-

pletion time when replication is done at the switch (and a decrease in time overall due to

the higher link speed), this decrease is not as drastic as seen in experiment one. Bandwidth

for replication at the switch was never measured to be higher than about 5Gbps from the

Name Node. After obtaining technical drawings of the design of the Altoline 6700 switch,

it was found that the switch could only support about 20Gbps of traffic between the switch

ASIC and the user-space CPU where my replication software was running. While other

switch designs (including the Intel design mentioned earlier) could handle more traffic,

this did present an opportunity to test the storage orchestrator algorithm of the proposed

design.

6.4 Experiment 4

For this experiment, a basic tree hierarchy was set up as shown in figure 6.4 with the

Name Node and Client at the head of the tree and Data Nodes at the leaves of the tree.

The storage orchestrator software was then configured to examine the given network and

attempt to build a storage replicating tree given knowledge of the topology. The orchestra-

tor algorithm connected to agents running on the switch which manually examined switch

counters to determine the current bandwidth through the individual links of the switch. Af-

ter it determined the desired topology, it contacted those same agents to further build the

replication tree though multiple nodes. Traffic was then run from the Name Node through

the replication tree and the results in table 6.10 were obtained.
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Figure 6.4: Network Topology for Experiment 4

Size 256MB 512MB 1GB 2GB 4GB 8GB 16GB
Switch 0.403 0.736 1.453 3.033 5.862 12.355 25.598

NameNode 1.282 2.764 5.747 11.885 25.344 52.618 108.716

Table 6.10: Write completion time in a tree topology (4-copies)
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These results show that the 4-node tree was able to write at close to the maximum band-

width of the 4 Data Nodes simultaneously by distributing the replication duties across the

network. The network was able to do this reliably through protocols and implementations

which are already used in DFS systems in the industry.
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7. CONCLUSION AND FUTURE WORK

In this these, we proposed a new node and system architecture to solve the problems

of limited name node bandwidth and high node reconstruction bandwidth in distributed

filesystems. We described the new “Switch” Node in detail and detailed how it could be

integrated with existing distributed file systems. We discussed the benefits of having this

Switch Node do data replication and reconstruction operations. We described how Name

Nodes could use knowledge of the network topology to configure them efficiently using a

”storage tree algorithm".

We then emulated a distributed file system and demonstrated the improved request

latency and bandwidth utilization that could be achieved with our proposed system in a

congested distributed file system doing only basic replication. We then implemented a

basic XOR parity scheme in the system and demonstrated that rebuild times were signif-

icantly reduced when using our proposed system. Next, we implemented our proposed

Switch Node on actual switch hardware and measured the effect that limited switch re-

sources had on the proposed system. Finally, we demonstrated how our proposed storage

tree algorithm could surmount the problems of limited switch bandwidth by increasing the

number of network switches in the DFS and dividing replication duties among them.

For future experiments, the proposed system applied to an existing distributed file sys-

tem such as Ceph or Hadoop to show its benefits in those systems. There is also a lot of op-

portunity in moving the actual replication and recombination duties from the switch CPU

into the switch dataplane ASIC itself in order to reduce switch CPU overhead, though care

must be taken to ensure that this is done in a reliable fashion. Optimizing switch ASICs to

handle these kinds of loads without impacting normal traffic would also be an interesting

area of research.
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