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ABSTRACT 

 

Cladding materials in next-generation fast reactors are expected to reach damage 

levels of 500 displacements per atom (dpa) or greater during the lifetime of the fuel.  

Austenitic stainless steel cladding showed excessive void swelling that limited the 

lifetime of the fuel, ultimately reducing the fuel economy.  Ferritic-martensitic steels 

have been shown to be more resistant to void swelling than their austenitic counterparts, 

swelling at a rate of 0.2%/dpa compared to 1%/dpa in the steady-state swelling regime.  

With few fast flux facilities capable of achieving 500 displacements per atom within a 

few decades, ion irradiation has been selected as a surrogate for neutron irradiation to 

quickly screen fuel cladding candidates. 

Ion irradiation, however, differs intrinsically from neutron irradiation and several 

of these differences dramatically impact the microstructural development under 

irradiation.  Before engaging in ultra-high damage level irradiations, an understanding of 

these neutron atypical phenomena is required.  In this work, three of the neutron atypical 

effects that influence the radiation response most strongly are investigated: defect 

imbalance, temporal damage rate gradients, and compositional modification by Coulomb 

drag induced via ion bombardment.  Although the defect imbalance effect is intrinsic to 

ion irradiation, using a static defocused beam and a specialized filtering system can 

reduce the effect that the latter two neutron atypical phenomena have on the 

microstructural development. 

At low damage levels (<100 dpa), structural engineering to produce fine-grained 

microstructures resulted superior radiation resistance.  There are no studies that have 

examined the response at high damage levels in order to determine the stability of the 

microstructure.  A ferritic/martensitic alloy, T91, and its variant subject to equal channel 

angular extrusion are irradiated to 1000 dpa and the radiation response of 

microstructures compared in order to evaluate the stability of features produced by 

severe deformation at damage levels expected in next-generation fast reactors.  
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1. INTRODUCTION 

 

For advanced nuclear reactor concepts, there is a critical need for structural 

materials that can withstand radiation damage levels that are much higher than can be 

reached by currently used austenitic steels.  In the 1970s to 1990s there were a number 

of national alloy development programs for liquid metal reactors that worked to extend 

the swelling resistance of austenitic alloys for fast reactor concepts. All programs 

                                                           
A part of this chapter is reprinted with permission from “Effect of defect imbalance on 

void swelling distributions produced in pure iron by 3.5 MeV self-ions”, Lin Shao, Cao-

Chen Wei, Jonathan G. Gigax, Assel Aitkaliyeva, Di Chen, Buelent H. Sencer, Frank A. 

Garner, Journal of Nuclear Materials 453 (2014) pp. 176-181, Copyright 2017 by 

Elsevier.  

A part of this chapter is reprinted with permission from “The influence of ion beam 

rastering on the swelling of self-ion irradiated pure iron at 450°C”, Jonathan G. Gigax, 

Eda Aydogan, Tianyi Chen, Di Chen, Lin Shao, Yuedong Wu, Wei-Yang Lo, Yong 

Yang, Frank A. Garner, Journal of Nuclear Materials 465 (2015) pp. 343-348, Copyright 

2017 by Elsevier. 

A part of this chapter is reprinted with permission from “Beam-contamination-induced 

compositional alteration and its neutron-atypical consequences in ion simulation of 

neutron-induced void swelling”, Jonathan G. Gigax, Hyosim Kim, Eda Aydogan, Stuart 

A. Maloy, Frank A. Garner, and Lin Shao, Material Research Letters (2017) pp. 1-8, 

available online at http://dx.doi.org/10.1080/21663831.2017.1323808.  Published by 

Informa UK Limited, trading as Taylor & Francis Group under Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0/). 

A part of this chapter is reprinted with permission from “Radiation response of alloy T91 

at damage levels up to 1000 peak dpa”, Jonathan G. Gigax, Tianyi Chen, Hyosim Kim, 

Jing Wang, Lloyd M. Price, Eda Aydogan, Stuart A. Maloy, Dan K. Schreiber, Mychailo 

Toloczko, Frank A. Garner, and Lin Shao, Journal of Nuclear Materials 482 (2016) pp. 

257-265, Copyright 2017 by Elsevier. 

A part of this chapter is reprinted with permission from “Radiation instability of equal 

channel angular extruded T91 at ultra-high damage levels”, Jonathan G. Gigax, Hyosim 

Kim, Tianyi Chen, Frank A. Garner, and Lin Shao, Acta Materialia 132 (2017) pp. 395-

404, Copyright 2017 by Elsevier. 

http://dx.doi.org/10.1080/21663831.2017.1323808


 

2 
 

 

eventually focused on the use of titanium-modified austenitic steels based on 316 

stainless with higher nickel levels, optimized minor element compositions, and improved 

fabrication procedures for use as fuel cladding and structural components [1,2]. It had 

been determined earlier, however, that these modified alloys and all austenitic steels 

would eventually swell at ~1%/dpa at all reactor-relevant temperatures after some 

incubation dose, with the largest observed incubation delay in the range of 100-150 dpa. 

It was also observed that alloy optimization would only delay, but not preclude the 

eventual onset of this higher swelling regime [3-6].  

Additionally, it was learned that at ~10% void swelling, austenitic stainless steels 

developed a new form of severe void-induced embrittlement that became the life-

limiting condition for its use as fuel cladding [7-9]. A consequence of this embrittlement 

was a limitation on fuel burn-up to 10-12%, far short of the ~30% burn-up limitation 

imposed by fission product accumulation, thereby strongly impacting the economics of 

power generation in fast reactors. In effect, the economics of power production were 

dictated by the cladding and not by the much more expensive fuel. To reach optimum 

higher burn-ups approaching 30% requires materials to be able to withstand 250-350 

dpa, depending on the reactor flux-spectra, while some other reactor concepts such as 

"traveling wave" or actinide "burners" envision doses as high as 400-600 dpa. 

It is recognized that one possible solution is to use ferritic or ferritic/martensitic 

alloys (F/M) which have been shown to swell much less than austenitic alloys during 

neutron irradiation [10].  In fact, simple body-centered cubic (bcc) iron-based alloys 

have longer swelling incubation periods and a lower swelling per dpa rate (~0.2%/dpa) 

in the steady-state void growth region than do simple face-centered cubic (fcc) iron-

based alloys (~1.0%/dpa) [10,11]. It was also observed that several commercial F/M 

alloys (HT9 and 9Cr-1Mo) also swelled at ~0.2%/dpa at very high neutron-induced dpa 

levels of 100-200 dpa. 

Odette suggested a number of factors that produce the superior swelling 

resistance of F/M alloys compared to austenitic alloys [12].  The first proposed 

mechanism is that the more open bcc lattice results in a lower interstitial bias to 
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dislocations, leading to a lower vacancy population. Additionally, the bcc lattice exists at 

a higher homologous temperature than the face centered cubic (fcc) lattice, reducing the 

vacancy supersaturation level that drives void nucleation.  Another mechanism 

postulated by Sniegowski and Wolfer argued the differences in formation and migration 

energies of vacancies and interstitials in the fcc and bcc iron-base systems might account 

for the differences in post-transient swelling rate [13].  Most interestingly, before 

experimental data were available, Sniegowski and Wolfer correctly predicted that bcc 

iron-base alloys would swell at a lower rate of ~0.2%/dpa compared to the ~1%/dpa 

characteristic of fcc iron-based alloys.  

Other factors have been proposed to account for the lower swelling rate of bcc 

iron-base alloys. Two prominent types of dislocation loops are observed in bcc iron 

systems consisting of a<100> and a/2<111> loops.  Since a<100> dislocation loops are 

stronger interstitial sinks compared to a/2<111> loops, which are neutral sinks for both 

interstitial and vacancy defects, the bias of interstitials to a<100> loops results in a larger 

removal of vacancies by the more dominant a/2<111> loops [14,15].  The unfaulting of 

sessile loops and dislocation mobility is also thought to strongly influence swelling 

behavior.  High swelling rates in the transient swelling regime are characterized by the 

movement of dislocation loops and formation of a complex dislocation network, with 

steady-state swelling observed afterwards. All of these factors have been proposed as 

mechanisms that contribute to the swelling resistance under both ion and neutron 

irradiation. 

Second, variations in minor solute concentrations have been observed to 

influence swelling in bcc iron-base alloys. Experimental studies have shown a strong 

effect of Cr concentration, with some suggesting that defect trapping by Cr atoms 

promotes defect recombination and strongly influenced subsequent swelling with the 

maximum suppression around 12 wt% Cr [16-19].  Minor solute elements, such as Si, 

Mo, Nb, V, Mn, Ni and C, are also observed to play a role in trapping point defects by 

producing solute-defect systems that enhance defect recombination [16,19].   
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In addition to alloying engineering, structural engineering through severe 

deformation has been a subject of great interest to improve radiation tolerance by 

formation of dense grain boundaries [21].  In particular, equal channel angular extrusion 

(ECAE) has been applied to complex alloys to introduce large strains in a material 

without a reduction in specimen size, offering a possibility for producing a fine grain 

structure [22-24].  Alloy processing by ECAE results in a large increase in dislocation 

and grain boundary density.  Grain boundaries are efficient sinks for interstitials, 

vacancies, and gas atoms, and have been shown to effectively suppress swelling in some 

studies [25,26].  A previous low damage level study of T91 refined by ECAE has shown 

the processed material to possess superior radiation resistance compared to an unrefined 

T91 specimen [27].  However, the damage level achieved in that study was far below the 

200-600 dpa required in next-generation reactor concepts.  Furthermore, neither 

specimen with and without grain refinement exhibited the 0.2%/dpa steady-state 

swelling rate observed in neutron irradiated Fe-Cr alloys [28].  From the previous data, it 

is difficult to evaluate the impact of ECAE-induced grain refinement on radiation 

resistance at higher reactor-relevant doses.   

The concern stems from the radiation instability of fine grain structures.  In both 

thin film and bulk nanocrystalline specimens, grain growth has been reported to occur 

under irradiation [29-32].  At present, the influence of a growing grain boundary on the 

defect population is currently unknown.  The limited information on the high damage 

level response naturally raises the question: How do optimized alloys and their 

structurally engineered counterparts behave at high damage levels?   

The solution, it would seem, is to simply irradiate these alloys to high damage 

levels to understand the microstructural evolution.  Neutron irradiation is the preferred 

choice.  However, the limited availability of facilities with sufficiently high fast flux to 

reach damage levels in excess of 500 dpa renders this choice unsuitable for studying the 

wide range of variations on a single alloy, much less several alloys and their variants.  

The best alternative to neutron irradiation has been the subject of debate for many 

decades, with heavy ion irradiation being accepted as a suitable surrogate and 
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successfully employed as tool for studying the radiation response of a wide range of 

materials.   

The purpose of this work is not to validate the use of ion irradiation as a tool to 

simulate neutron irradiation.  Rather, effort is invested into understanding the limitations 

of the tool and applying it to study the radiation stability at damage levels previously 

unachieved.  The significance of this work can be understood from the two main 

objectives.  First, while many acknowledge one or two of the phenomena that arise 

uniquely in ion irradiation, termed neutron atypical effects, very few are aware of or 

acknowledge the impact these effects have on the microstructural evolution when all are 

operating synergistically.  In order to utilize ion irradiation to effectively simulate 

neutron damage, understanding neutron atypical phenomena and the influence these 

have on the microstructural development is paramount.  Three neutron atypical effects 

are explored: 

1) The impact of the spatial heterogeneity of defects arising from ion interactions on 

the microstructure is examined.   

2) The differences between a pulsed and steady-state beam on the defect evolution 

are studied.   

3) A previously unreported phenomenon involving the influence of contaminants 

injected via Coulomb-drag effects on void swelling and radiation-induced 

precipitation is investigated. 

It is important to acknowledge that there are other neutron atypical effects not 

presented in this work.  The studied effects, however, are among those that impact 

microstructural evolution most strongly.  By identifying and understanding the impact 

these neutron atypical effects have on the microstructural development of ion irradiated 

alloys, a standard or procedure can be developed to minimize the influence of these 

effects. 

Second, many conclusions on the radiation resistance of engineered materials 

have been formed at low damage levels.  Although the validity of the results within the 

low damage level regime is not debated, the relevance to high damage levels is 
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questionable.  The second objective of this work is to utilize heavy ion irradiation, 

guided by the developed procedure and understanding of neutron atypical effects, to 

study the radiation response of a F/M alloy, T91, and evaluate the radiation stability of 

its structurally engineering variant to ultra-high damage levels. A study to investigate the 

stability of oxide dispersion strengthened alloys at high damage levels is currently 

ongoing. 

2. DEFECT IMBALANCE PHENOMENON 
 

When performing ion irradiation studies, there are generally two categories of 

ions for consideration.  Light ions, typically protons and helium ions, with energies of 

several MeV are widely employed due to their deep penetration depth and relatively flat 

damage profile in the near surface region.  These qualities are ideal for studying 

radiation effects on structures that span several micrometers in length (e.g. grain 

boundaries).  Due to their relatively strong Coulombic interactions, the heat generation 

per dpa limits the maximum damage rate that can be used to avoid overheating the 

specimen [33].  Thus, to achieve high damage levels via light ions requires careful 

control over long periods of time and is generally avoided. 

Heavy ions, however, have much shallower penetration depths with a much 

larger variation in dpa rate over the ion range.  However, the defect population produced 

by heavy ions are more similar to those produced by neutrons [33,34].  Furthermore, the 

lower heat generation rate enables the use of high dpa rates to achieve 100s of dpa in the 

span of a few days.  There are a number of neutron atypical processes that must be 

considered when performing heavy ion irradiations.  These include the effects from the 

influence of the surface (e.g. sputtering) and defect imbalances arising from forward 

scattering and the injected interstitial [35]. There are also effects from the large internal 

                                                           
Reprinted with permission from “Effect of defect imbalance on void swelling 

distributions produced in pure iron by 3.5 MeV self-ions”, Lin Shao, Cao-Chen Wei, 

Jonathan G. Gigax, Assel Aitkaliyeva, Di Chen, Buelent H. Sencer, Frank A. Garner, 

Journal of Nuclear Materials 453 (2014) pp. 176-181, Copyright 2017 by Elsevier. 
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dpa rate gradient, ion beam rastering, segregation along dpa gradients, and lack of 

concurrent hydrogen and helium generation [36-40].  Before examining the other 

neutron atypical effects, the primary effect (i.e. defect imbalance) will be examined first 

in this section. 

The defect imbalance effect is the spatial difference in interstitial and vacancy 

distributions caused by forward scattering (interstitials distributed deeper than vacancies) 

and the implanted ion (injected interstitial).   It is important to note that both correlated 

(defects created from knock-on collisions) and uncorrelated collisions (defects from 

different damage cascades or collision events) contribute to the defect imbalance effect.  

When examining the role of the defect imbalance effect, a model is proposed to calculate 

the zero-time point defect distributions.  Since point defects are difficult to see in 

conventional transmission electron microscopy (TEM) specimens, the principal goal of 

the experimental portion is to understand the impact on void swelling which is closely 

tied to the defect distributions.  In order to do so, the use of a pure Fe target and Fe ions 

are chosen to minimize secondary effects arising from chemistry changes during the 

course of ion irradiation. 

 

2.1 Modelling 

 

In order to see the differences in defect distribution, the model utilized must have 

a high accuracy.  The Boltzmann transport equation (BTE) is utilized to calculate the 

point defect distributions.  BTE is typically more accurate than binary Monte Carlo 

approaches due to the large statistical variations intrinsic to the technique.  Although 

Monte Carlo codes may produce high accuracy the results, the computational cost is 

quite high.  The steps of the BTE implantation are: 

1) The ion range is divided into fixed intervals. 

2) The electronic stopping loss is calculated when displaced atoms transition from 

one depth interval to the next.  The amount of energy loss is determined by the 

actual flight distance. 
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3) Within a single interval, the nuclear stopping loss from nuclei-nuclei is

calculated by:

'

( , ) ( ', ) ( ' ) ( , ) ( ')
( , )

cos cos

F z F z d F z d
N Q z

z

 

 

   
   
 
 


p p

p p p p p p p
p

    (1.1) 

where p  is momentum vector. z is depth. ( )F p is the atom number having momentump . 

( , )Q zp is a generation term describing recoil-created energetic target atoms having the 

same p . N is the atomic density of the substrate.   is the angle between momentum and 

z axis (normal to a sample surface). ( ')d p p is the differential cross section for 

momentum transition  of 'p p . ( ')d p p follows Lindhard format [41], which is 

given by 

2 1/ 2 3/ 21
( ) ( ) /

2
nd t a f t dt t      (1.2) 

 
1/ 2

2 / 3 2 / 3

0 1 20.8853a a Z Z


  (1.3) 

2 2

2 1 1 2[ /(4 )][ /( )]t TE M M a Z Z e    (1.4) 

where E  is the initial ion energy, T  is the energy transferred to target atoms, 1Z  and 2Z

are atomic numbers, 1M  and 2M  are atomic mass, for incident atoms and target atoms, 

respectively. 0 ( 0.0529 )a nm  is Bohr radius. The function 
1/2( )f t in Linhard format has 

various expressions, depending on the choice of interatomic potentials. The present study 

follows the one proposed by Wilson et al. [42], which is given by 

1/ 2 1 2 1( ) 1 (1 ) ln ( 2 )C C Cf t A X C X X X X           (1.5) 

where 

1/ 2 , 0.56258, 1.1776, 0.62680X Bt A B C   
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It is more reasonable to calculate atom flux changes from energy values instead 

of transitions between different momentum values.  Equation (1) is calculated for each 

allowed transition in the energy matrix.  Nuclei-nuclei scattering favors small energy 

transfers, leading to a non-uniform distribution in the flux distribution.  In order to better 

calculate the flux distribution after scattering events, the model utilizes an algorithm 

recently proposed to redistribute the scattered flux among neighboring energy states 

[43].  The resulting model provides fast and accurate defect distribution profiles. 

 

2.2 Experimental Procedure 

 

A high purity Fe bar (Alfa Aesar, 99.97%) was sectioned into 5 mm x 5 mm 

pieces with a thickness of 0.5 mm.  Specimens were mechanically polished using SiC 

abrasive discs to a grit of 4000.  Further polishing with a 0.05 um colloidal alumina 

solution was performed to achieve a flat and relatively damage-free surface.  Irradiation 

was performed using 3.5 MeV Fe2+ ions produced by the 1.7 MV tandem accelerator at 

the Ion Beam Laboratory at Texas A&M University to achieve peak damage levels of 

35, 70, 105 peak dpa, as calculated using the Kinchin-Pease option of the SRIM-2013 

code [44].  The Fe ion beam was partially defocused and then rastered over an area of 1 

cm x 1 cm to produce a uniform beam condition.  The specimens were heated to a 

temperature of 450 °C ± 10 °C during the irradiation. 

After irradiation, transmission electron microscopy (TEM) specimens were 

prepared using a focused ion beam (FIB) lift-out technique with a FEI Quanta 3D FEG 

dual beam SEM/FIB microscope.  Thick lamellae were first prepared by trenching the 

selected region with a 30 keV Ga+ beam.  Once the lamella was thinned to 

approximately 1.5 μm, a micro-post was placed near the lamella and attached via Pt 

deposition.  The lamella was then cut from the bulk of the sample, attached to a TEM 

grid, and thinned to 300 nm using a lower beam current.  Final thinning and polishing of 

the lamella to a thickness of ~100 nm was performed with a 5 keV Ga+ beam.  Scanning 

transmission electron microscopy (STEM), high angle annular dark-field (HAADF), and 
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bright field images of voids were obtained on an FEI Tecnai G20 Super Twin operated at 

200 kV.  The thicknesses of TEM lamellae were measured using a standard electron 

energy loss spectroscopy (EELS) technique. 

 

2.3 Results and Discussion 

 

Figure 2.1 shows the predicted depth distributions of interstitials, vacancies, and 

Fe implants for 3.5 MeV self-ion-irradiated Fe using the BTE model.  All values are 

normalized to a single incident Fe ion.  Fig. 2.1a shows the implanted Fe distribution 

with a peak near a depth of 1.03 um.  This is in close agreement with a SRIM calculated 

depth of 1.08 um.  Fig. 2.1b provides a plot of the depth distribution for both vacancies 

and interstitials.  Although the difference is quite small, the inset figures show that the 

distributions are, in fact, different.  It is important to note that the differences become 

quite large when the total ion fluence is accounted for.   

Fig. 2.1c plots the defect imbalance of the Fe ion irradiation by taking the 

difference of the vacancy density and the sum of the interstitial and injected Fe densities.  

Several prominent features are present in the figure.  A vacancy-rich region is observed 

near the surface and a deeper depth near the end of ion range.  An interstitial-rich region 

is present at a depth near the end of ion range, in line with expectations.  The defect 

imbalance shown in Fig. 2.1c arises from the depth distribution differences between 

vacancies and interstitials.  Since momentum transfer is favored along the incident ion 

direction, scattered atoms move deeper into the target and reside as interstitials, and 

vacancies populate shallower depths. 
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Figure 2.1 – (a) Predicted depth distribution of 3.5 MeV Fe implanted ions in pure Fe, 

(b) depth distributions of interstitial and vacancy concentrations, and (c) net vacancy 

concentration distribution (Cv-Ci-CFe). Reprinted with permission from [61] Copyright 

2017 by Elsevier. 
 
 
 

Figure 2.2 plots the distributions of vacancy-rich regions for Fe ions with 

energies of 0.5, 1, 2 MeV, and 3.5 MeV respectively.  At all energies, the vacancy 

concentration gradient is large, initially decreasing from the surface and then increasing 

deeper into the specimen.  The vacancy concentrations decrease sharply near the end of 

ion range.  Further, the gradient increases with decreasing ion energy.  This model is 

valid within the zero-time assumption.  The imbalance effect is much more complicated 

to model when defect migration and annealing is introduced.  Fig 2.1c shows an excess 
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vacancy peak at 0.8 m near the excess interstitial peak of 1.03 m.  With long range 

defect migration and annealing, it is expected that the interstitials will annihilate a large 

portion of the vacancies, resulting in both a lower excess vacancy concentration and a 

distribution peaked at a shallower depth.  It is further expected that in an experimental 

setting, the void swelling arising from vacancy agglomeration will appear at a depth 

between the surface and the excess vacancy peak.  Since the surface is an efficient defect 

sink, voids are not expected to form near the surface. 

 

 

 

 

Figure 2.2 – Predicted depth distributions of net vacancy concentrations in pure iron 

irradiated by 0.5 MeV, 1 MeV, 2 MeV, and 3.5 MeV Fe ions, respectively. Reprinted 

with permission from [61] Copyright 2017 by Elsevier. 
 
 
 

Fig. 2.3 provides TEM micrographs of the pure Fe specimens irradiated to 35, 

70, and 105 peak dpa.  The SRIM-calculated depth distributions for implanted Fe and 

dpa are superimposed in Fig. 2.3a.  With increasing damage level, the average void size 

increased with voids appearing progressively deeper into the specimen.  Even at the 

highest damage level, however, the void swelling was suppressed near the end of ion 

range.  
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Figure 2.3 – Typical bright field TEM micrographs of pure iron irradiated with 3.5 MeV 

Fe ions to damage levels of (a) 35, (b) 70, and (c) 105 peak dpa. Reprinted with 

permission from [61] Copyright 2017 by Elsevier. 
 
 
 

Fig. 2.4 provides the measured void swelling distribution for the Fe specimens 

irradiated to damage levels of 35, 70, and 105 peak dpa, respectively.  At 35 peak dpa, 

void swelling is peaked at a value of ~0.6% at 200 nm.  With increasing dose, void 

swelling increased monotonically accompanied by a broadening of the swelling 
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distribution, in good agreement with TEM observation in Fig. 3.  At the highest damage 

level of 105 peak dpa, the void swelling distribution has two notable features.  First, the 

development of a distribution with two peaks is observed.  Although statistical variations 

may induce such features, numerous voids were counted (>250) to reduce error on void 

swelling measurements.  The double peak feature, if real, requires further investigation 

to determine the underlying mechanism for its appearance. Second, void swelling is 

completely suppressed near the end of ion range.  This effect has been observed in many 

studies [16, 45-54].   

 

 

 

 

Figure 2.4 – Depth distributions of void swelling in pure Fe irradiated to damage levels 

of 35, 70, and 105 peak dpa, respectively.  SRIM calculated range and dpa curves are 

superimposed on the swelling graphs for comparison. Reprinted with permission from 

[61] Copyright 2017 by Elsevier. 
 
 
 

Fig. 2.5 plots the swelling as a function of the local dpa calculated by SRIM.  A 

tangential line to the curves is drawn on the plots to calculate the swelling rate.  The 

calculated swelling rate is ~0.26%/dpa and in good agreement with the measured 

swelling rate for irradiated bcc iron alloys [28].  
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Figure 2.5 – Plot of the void swelling as a function of local dpa for pure iron irradiated to 

35, 70, and 105 dpa, respectively.  A line denoting the estimated swelling rate of 

0.26%/dpa is shown in the figure. Reprinted with permission from [61] Copyright 2017 

by Elsevier. 
 
 
 

The present study presents some of the many possible pitfalls in accelerator-

based swelling experiments. The use of FIB to produce cross-sectional TEM lamella 

enables a unique understanding of the sensitivity of void swelling to depth from the ion 

incident surface and provides a more complete picture of the microstructural evolution. 

Without FIB, void swelling analysis is typically performed with planar TEM lamella.  

Although planar TEM specimens will reveal far more voids than cross-sectional lamella, 

care must be taken to select the correct depth.  If specimens are prepared at a very 

shallow depth, void swelling is reduced due to defect annihilation through the surface. 

On the other hand, if a region too close to the peak damage is selected, swelling will be 

suppressed as shown by deviation of void distributions from SRIM calculated dpa 

profile in the present study. This suggests that the defect imbalance may cause an 

0 25 50 75 100

0

2

4

6

 

 

 35   DPA

 70   DPA

 105 DPA

S
w

e
lli

n
g

 (
%

)

DPA 

0.26%/DPA



 

16 
 

 

erroneous calculation of void swelling, resulting in an over- or underestimation of the 

swelling compared to neutron irradiation in reactors. 

This study addressed the large role that differences in the depth distribution 

arising from ion irradiation play on the microstructural evolution.  While these effects 

are well known in the semiconductor industry, these differences are less known in void 

swelling studies in metals.  Using the BTE method, the depth dependent defect 

distribution for vacancies and interstitials were modeled.  Two vacancy-rich regions, 

near the surface and the end of ion range, were observed and noted to deviate from the 

expected dpa profile.  Cross-sectional TEM of ion irradiated pure Fe using 3.5 MeV self-

ions confirmed this prediction.  Voids appeared to develop first near the surface, 

followed by progressively deeper swelling at higher damage levels.  In the later chapters, 

many of the techniques and methods used in this study will be applied not only to 

provide a more consistent comparison between various alloys but also to avoid many of 

the issues arising from the defect imbalance effect. 
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3. TEMPORAL DOSE RATE GRADIENTS 
 

The discussion and findings in the previous section showed that microstructural 

changes induced by ion irradiation are subject to defect imbalance effects and large 

gradients in defect distributions.  The differences can also be framed in terms of dpa 

rates.  For neutron irradiation, there are essentially no spatial gradients in dpa rate over 

dimensions comparable to grain sizes in metals, but there are two primary temporal 

regimes of interest.  These are continuous, steady-state operation (i.e. fission reactors, 

Tokamak fusion reactors) and pulsed operation (i.e. inertial fusion reactors).  In ion 

irradiation, however, spatial gradients can be very strong, often on sizes smaller than a 

typical grain diameter, and ion irradiation can use either a continuous, defocused beam 

or a focused and scanned beam, the latter often referred to as "rastering". 

In order to irradiate a relatively large area compared to the ion beam diameter, 

beam rastering is often performed. However, ASTM E521-77 [47] strongly suggests 

using a defocused beam rather than a scanned beam to simulate void swelling arising 

from steady-state neutron irradiation.  A phenomenon, often referred to as void 

throttling, can occur at high temperatures whereby very small void nuclei formed at a 

given location during the beam-on period dissolve in the longer beam-off period before 

the beam returns.  This suggestion, however, is based on a limited set of early (1970's) 

experiments on pure nickel [56-58] and therefore requires additional investigation before 

accepting it as a universal proscription against ion beam rastering for simulation of 

neutron-induced void swelling behavior.   

It should be noted that void nucleation is known to be very sensitive to 

environmental variables such as rastering, much more so than radiation-induced 

segregation, changes in mechanical properties, and changes in various physical 

properties. Thus, the ASTM E521-77 recommendation to avoid ion beam rastering is not 

                                                           
Reprinted with permission from “The influence of ion beam rastering on the swelling of 

self-ion irradiated pure iron at 450°C”, Jonathan G. Gigax, Eda Aydogan, Tianyi Chen, 

Di Chen, Lin Shao, Yuedong Wu, Wei-Yang Lo, Yong Yang, Frank A. Garner, Journal 

of Nuclear Materials 465 (2015) pp. 343-348, Copyright 2017 by Elsevier. 
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necessarily meant to apply to any other property changes.  The current work addresses 

the impact of rastering at relatively low frequencies on void swelling in pure iron, which 

was used as a model surrogate material for more complex ferritic alloys to be studied in 

later irradiations.  In this experiment, a limited ranged of low rastering frequencies 

relevant to pulsed fusion devices was used to produce void swelling and the results were 

compared with that produced by a steady-state, non-rastered, defocused beam. 

 

3.1 Experiment Procedure 

 

Specimen preparation was performed similarly to the study in the previous 

chapter.  Samples were sectioned from a pure iron bar (99.99%, Sigma-Aldrich) to 

produce disks of size 4 mm x 4 mm x 0.5 mm.  These disks were mechanically polished 

on a Dace Technologies Nano 2007 polisher using successive grits of 600, 800, and 

1200 silicon carbide paper.  The samples were further polished using 1 µm and 0.05 µm 

alumina solutions.  After mechanical polishing, the samples were electropolished using a 

6% perchloric and 94% acetic solution for 10 seconds to remove all residual surface 

damage arising from mechanical polishing.  The specimens were then inspected using a 

scanning electron microscope to ensure an undamaged surface.   

The specimens were mounted on an electrically-heated copper stage and good 

thermal contact was maintained using silver paste.  These specimens were brought to a 

temperature of 450°C measured using thermocouples mounted to the stage.  Independent 

measurements were performed to verify that the beam heating arising from either a 

defocused or a rastered beam was relatively low.   Since most published modeling 

studies on pulsing and rastering focus only on isothermal conditions, care was taken to 

separate temporal changes in dpa rate from concurrent changes in temperature during the 

beam-off and beam-on periods.  

The procedure used a FLIR infrared (IR) camera collecting data at 30 frames per 

second. Initial calibration of the sample emissivity involved matching the temperature of 

the stage, as measured by the thermocouple, was performed prior to commencing ion 
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bombardment.  The temperature was then monitored by the IR camera during ion 

bombardment and the beam heating calculated by taking the difference of the sample 

temperature before and during ion bombardment.  Thermally conductive samples (i.e. 

pure iron and graphite) exhibited a maximum temperature rise of 2-3°C for the 

defocused case and 4-6°C increase for the raster case. This demonstrates that the 

temperature rise from the two beam configurations is not substantial.  Additionally, the 

beam uniformity was assessed using the temperature map produced by the IR camera. 

When compared to previous results obtained using other conventional methods, such as 

an optical mapping from a scintillator and a low dose Kapton implantation, the IR-

derived temperature distribution shows good agreement with the uniformity established 

by these methods.  

Iron ion irradiation was performed by using a 1.7 MV tandem accelerator with an 

energy of 3.5 MeV, producing peak damage levels at 1000 nm below the surface of 50 

and 150 dpa, as calculated using the Kinchin-Pease option of the SRIM-2013 code [44] 

as recommended by Stoller and coworkers [59]. There was no gas co-injection employed 

in this study.   The beam current was limited to 200 nA over an area of 36 mm2
, yielding 

a time-averaged dpa rate of 1.74 x 10-3 dpa/s, varying less than 5% over the duration of 

the experiment. Beam conditions are listed in Table 3.1 for all four beam conditions. The 

beam spot size for the defocus case was chosen to be 6 mm x 6 mm.  The configuration 

for the defocus case involved using an electrostatic quadruple to produce a uniform 

beam over the desired area.  To simplify the analysis, the beam involved one-

dimensional rastering rather than the frequently used two-dimensional raster method. 
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Table 3.1 – Raster and defocused beam parameters including the duty factor, beam-on and 

beam-off times, and instantaneous and average dpa rates. Reprinted with permission from 

[66] Copyright 2017 by Elsevier. 

 Beam-On (s) Beam-Off (s) Duty Factor 

Instantaneous dpa 

rate when beam is 

on (dpa/s) 

Time-

averaged 

dpa rate 

through the 

whole 

irradiation 

(dpa/s) 

Raster 

15.63 Hz 0.018 0.046 

28% 6.26E-3 
1.74E-3 

1.95 Hz 0.142 0.370 

0.244 Hz 1.14 2.96 

Defocus - - 100% 1.74E-3 

 

 

 

The beam size for the raster case was 2.5 mm x 4 mm and was scanned over an 

area of 9 mm x 4 mm, larger than the specimen size to ensure that all areas were 

irradiated uniformly.  The ion beam was rastered using a Physicon Model RS1200 with a 

horizontal raster speed at 0.244, 1.93, and 15.625 Hz.    The irradiated samples were 

characterized by cross sectional transmission electron microscopy (TEM), with 

specimen preparation accomplished using the focused-ion-beam (FIB) based lift-out 

technique. Microstructural analysis was performed using a FEI Tecnai G2 F20 

instrument, operated at 200 kV.  

 

3.2 Results 

 

Figures 3.1(a-d) show TEM micrographs of 50 dpa (peak) specimens obtained 

with a rastering beam at frequencies of 15.63 Hz, 1.95 Hz, 0.244 Hz, and with a 

defocused beam, respectively. With decreasing rastering frequencies, void sizes tend to 

be smaller and densities higher. In comparison, defocusing results in larger voids. 

However, in all cases, voids formed with octahedral-like shapes as deduced from the 

observed square and hexagon shaped void projections predicted by the Wulff 

construction theory [60].  Figures 3.2(a-d) show TEM micrographs of 150 dpa 
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specimens. The observed trends in void density, sizes, and shapes at 150 dpa (peak) are 

consistent with observations from the 50 dpa experiments.  

 

 

 

 

Figure 3.1 – Micrographs of void swelling for irradiation to 50 dpa at peak maximum in 

pure iron for rastered beams at. (a) 15.63 Hz, (b) 1.95 Hz, (c) 0.244 Hz, and a (d) 

defocused beam. Length of the scale bar is 250 nm. Dashed lines mark the surface and 

the incident ion range with the incident ion direction normal to the surface. Reprinted 

with permission from [66] Copyright 2017 by Elsevier. 
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Figure 3.2 – Micrographs of void swelling for irradiation to 150 dpa at peak maximum in 

pure iron for rastered beams at (a) 15.63 Hz, (b) 1.95 Hz, (c) 0.244 Hz, and with a (d) 

defocused beam condition. Length of the scale bar is 250 nm. Reprinted with permission 

from [66] Copyright 2017 by Elsevier. 
 
 
 

For a better comparison of the void swelling at 50 dpa, depth-dependent void 

swelling profiles were divided into two groups. Figure 3.3 compares the 15.63 Hz and 

1.95 Hz rastering frequency, and Figure 3.4 compares 0.244 Hz raster and defocused beam 

conditions.  One general trend is that with decreasing frequencies, the void distributions 

reach deeper into the specimen. For the lowest frequency, 0.244 Hz, the void distribution 

extends beyond that produced by a defocused beam. The "spikeness" of the swelling vs. 

depth profiles is an artifact of the relatively low number of voids and the choice of 

sampling statistics. Note that only a few voids were found in the  50 dpa specimen beyond 

~650 nm depth in the defocus case, most likely resulting from the strong influence of the 

injected interstitial to suppress both void nucleation and subsequent growth [36,61]. In the 

rastered cases there is a progressive shortening of the voided region, moving back from 

1000 to 600 to 300 nm as the rastering frequency increases from 0.244 to 1.95 to 15.63 

Hz.  

 

 



 

23 
 

 

 

 

Figure 3.3 – Comparison of depth dependent swelling for 50 peak dpa irradiation with 

raster beam frequencies of 15.63 Hz and 1.95 Hz. Swelling data represented by each bar 

averaged over a 50 nm depth. Reprinted with permission from [66] Copyright 2017 by 

Elsevier. 
 

 

 

 

Figure 3.4 – Comparison of depth-dependent swelling for 50 peak dpa irradiation with 

defocused beam and raster beam frequency of 0.244 Hz. Swelling data represented by 

each bar averaged over a 100 nm depth. Reprinted with permission from [66] Copyright 

2017 by Elsevier. 
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Figures 3.5 and 3.6 show the depth profiles of void swelling for the defocused 

and 15.63 Hz cases for 50 dpa and 150 dpa, respectively. The void depth profiles are 

superimposed on the normalized SRIM-calculated dpa and injected interstitial profiles. 

Note that at 150 dpa, voids reach deeper into the sample compared to the 50 dpa case as 

void nucleation at the higher dose progressively overcomes the defect imbalance effect 

[61].  In both cases however, void swelling is suppressed in the peak dpa region. 

Figure 3.5 – Comparisons of depth-dependent swelling from a defocus beam for 50 and 

150 peak dpa. Profiles of dpa and Fe implanted ion distributions from SRIM calculation 

are plotted for comparison. Reprinted with permission from [66] Copyright 2017 by 

Elsevier. 

Also shown in Figures 3.5 and 3.6, there is a strong change in SRIM-calculated 

dose rate from the ion-incident surface to the peak dose position, increasing by a factor 

of ~3.7. In order to determine an unperturbed swelling rate between the 50 and 150 peak 

dpa cases without introducing differences in dpa rate, it is necessary select a depth for 

analysis that minimizes the influence of the specimen surface and also avoids the defect 

imbalance suppression zone. Therefore, swelling data was taken from the depth of 600 
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nm ± 100 nm, where the average dose is only ~63% of the peak value. Thus, data was 

actually measured at 32 and 96 dpa rather than at 50 and 150 dpa. The void 

characteristics and swelling are presented in Table 3.2. Although our studies are limited 

to two dpa values only and therefore preclude the possibility of observing non-linear 

swelling, the observed large differences in average swelling rate between the defocused 

and rastered cases are consistent. Clearly, rastering tends to suppress the void swelling 

rate, even when the injected interstitial effect is minimized. 

Figure 3.6 – Comparisons of depth-dependent swelling from a 15.63 Hz rastering beam 

for 50 and 150 peak dpa. Profiles of dpa and Fe implanted ion distributions from SRIM 

calculation are plotted for comparison. Reprinted with permission from [66] Copyright 

2017 by Elsevier. 

In Fig. 3.5, a peak swelling of ~12% at ~700 nm, along with a swelling of ~9% at 

a depth of 600 nm (corresponding to 96 dpa), was observed in the defocused irradiation, 

but the rastering-produced swelling levels are significantly lower at the same depths.  As 

shown in Fig. 3.6, the void densities at both 50 and 150 dpa irradiations are lowest for the 

15.63 Hz case, but all show a monotonic increase from 32 to 96 dpa.  Overall, the depth-

dependent swelling behaviors are complicated.  As shown in Figure 3.7, the highest 
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swelling rate of ~0.12% per dpa is obtained from a defocused beam, while all rastering 

cases lead to significantly lower swelling values, decreasing with increasing rastering 

frequency. Furthermore, rastering at relatively low frequencies decreases the swelling rate 

quickly, with a more gradual rate of decrease occurring beyond ~1 Hz. 

 

 

 

Table 3.2 - Void characteristics from the current study. Maximum void swelling and 

swelling at 600 nm ± 100 nm below the surface are provided for each set of samples. 

Reprinted with permission from [66] Copyright 2017 by Elsevier. 

  

50 peak DPA specimen 150 peak DPA specimen 

Maximum 

Void 

Swelling 

(%) 

Void 

Swelling 

at 600 nm 

(32 dpa) 

Void 

Density 

(1014/cm3) 

Average 

Radius 

(nm) 

Maximum 

Void 

Swelling (%) 

Void 

Swelling 

at 600 nm 

(96 dpa) 

Void 

Density 

(1014/cm3) 

Average 

Radius 

(nm) 

15.63 Hz 0.19 ± 0.02 
0.05 ± 

0.01 
4.79 14.2 ± 3.3 1.3 ± 0.2 1 ± 0.21 1.4 19.0 ± 6.1 

1.95 Hz 0.92 ± 0.12 0 0.02 
12.4 ± 

4.83 
5.5 ± 1.3 

2.06 ± 

1.25 
0.746 26.9 ± 6.83 

0.244 Hz 0.78 ± 0.05 
0.42 ± 

0.03 
496 6.5 ± 3.22 5.2 ± 0.24 

2.71 ± 

0.18 
10.9 17 ± 6.53 

Defocus 1.32 ± 0.06 
0.81 ± 

0.08 
42.5 

17.4 ± 

3.97 
12.0 ± 0.81 

8.62 ± 

0.85 
2.29 31.6 ± 10.2 

 

 

 

 

Figure 3.7 – Void swelling rates between 32 and 96 dpa as a function of rastering 

frequency. A frequency of zero corresponds to a defocused beam. Reprinted with 

permission from [66] Copyright 2017 by Elsevier. 
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3.3 Discussion 

 

There are two very significant observations resulting from this study. First, in 

pure iron there is a strong suppression of void nucleation and growth in the region where 

the peak dpa and the injected interstitial overlap. At higher doses the suppression effect 

is overridden somewhat but is never completely overcome. This behavior was observed 

not only in this study but in a previous study in the current experimental series [61].  

Both the present study and the previous work suggest that the swelling suppression 

effect requires that microstructural data be extracted from a depth removed as far as 

possible from the injection zone.  The defect imbalance effect [61], and previously 

reported injected interstitial effect [36, 45-54], are known to suppress both void 

nucleation and void growth near the end of the ion range.   

Our previous work has shown that the suppression effect arises from two 

contributions [61]. The first is that extra atoms are implanted into the material at the 

projected range, which increases the local interstitial population over that of the vacancy 

population.  The other contribution comes from the small spatial distribution difference 

between vacancies and interstitials produced during the knock-on process in ion 

irradiation using a collimated beam.  Although in damage cascade creation, the knock-on 

directions appear to be random, statistical analysis shows that, overall, the knock-on 

interactions favor momentum transfer in the forward direction, which leads to interstitial 

distributions slightly deeper than that of vacancies. This results in a vacancy-rich near-

surface region and an interstitial-rich region near the end of range. These differences in 

spatial distribution lead to a dramatic suppression of void swelling near the end of ion 

range.   As the accumulated dose increases, these influences are overcome somewhat and 

the void distribution pushes deeper but not completely into the full ion range.  This 

phenomenon was also observed in a study by Kuramoto and coworkers who showed that 

there was a strong but not total reduction of void swelling in pure iron close to the ion 

deposition range, with the complication that Kuramoto used nickel ions rather than iron 

ions, introducing some chemical alteration in the injected region [62].  
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Second, it is very clear that rastering decreases the average swelling rate over the 

32-96 dpa range, but there may be synergisms with other variables that were not 

revealed in this study. Such synergisms are suggested by the extension of the void range 

when going from defocused to 0.244 Hz, followed by a steady reduction in void range at 

higher rastering frequencies. Therefore it appears that the rastering and defect imbalance 

suppression effects may interact, suggesting the possibilities of more complicated 

dependencies at temperatures other than the 450°C employed in this study. 

To provide an explanation of the underlying phenomenon involved in rastering 

the treatment of Ghoniem and Kulcinski [63] and Simonen [64] is used and these studies 

showed a significant difference between pulsed beam parameters and the resultant void 

swelling. The modeling was based on the defect interactions with existing void nuclei. In 

metals, interstitials are faster diffusing than vacancies. Further, in pure Fe with large 

grains, vacancy recombination with interstitials is the dominant interaction mechanism. 

During pulsed irradiation, interstitials are initially the primary component of the defect 

flux migrating towards the void nuclei, and cause their shrinkage. After a majority of the 

interstitials have diffused, the remaining vacancies diffuse towards and into the nuclei 

and thereby cause their growth. If there is a long duration between pulses, then voids 

begin to shrink due to vacancy emission at the void surface.  Furthermore, if another 

pulse is introduced before significant vacancy diffusion occurs, the preexisting void 

nuclei will shrink further. This theory agrees with our observations that higher rastering 

frequencies lead to lower void swelling.  

On the other hand, there is additional complexity which was not considered in 

the previous modeling studies. First, if stable void nuclei have already formed prior to 

pulsed irradiation, the effect will not be as pronounced.  The previous studies assumed 

the existence of void nuclei prior to the irradiation. Full scale modelling is required to 

account for the impact of pulsing on void nucleation.  Second, the existence of strong 

defect sinks, such as deformation-induced dislocation networks, high densities of 

precipitates or a high density of nanostructured grain boundaries, may alter the defect 

flux towards the voids, and subsequently affect the overall stability of void nuclei as a 
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result of competition with these other defect sinks. Third, when defect imbalance or 

injected interstitials are included into the picture, enhanced vacancy concentrations near 

the surface and enhanced interstitial concentrations near the projected range will further 

complicate the pulsing or rastering effect.   

Within the limited accuracy associated with only two data points, our observed 

swelling rate of ~0.12%/dpa for the defocused beam case for pure iron may or may not 

be consistent with the swelling rate of ~0.2%/dpa observed in neutron irradiated Fe-Cr 

binary alloys [10,11].  It is probably unrealistic, however, to expect that pure iron and 

iron-chromium alloys must exhibit the same swelling rate. Several neutron irradiation 

studies have shown that chromium additions to pure iron initially cause a strong decrease 

of swelling [16,18,19], and one study showed that cold-worked pure iron swelled ~6% at 

only 3 dpa [46], a swelling rate of ~0.5%/dpa.  In general, the available data shows that 

swelling in neutron irradiated pure iron is accelerated by cold-work and is also 

accelerated by irradiation at lower dpa rates [10,16,18,19,46]. For instance, Kuramoto 

notes that ~0.3% swelling was attained at ~1 dpa in the JMTR reactor at 450°C, but the 

rather large uncertainty on his quoted dose level precludes a confident statement that his 

swelling rate was 0.3%/dpa [62]. 

Finally, the applicability of our results to other irradiation conditions is 

constrained by two limitations. First irradiation was performed at only one temperature 

and the behavior might change at other temperatures. Simonen [64] notes that as the 

temperature is increased near the peak swelling temperature, the difference in void 

swelling for raster speeds becomes larger, decreasing at temperatures beyond the peak 

void swelling temperature.  Second, it should be noted that our studies utilized relatively 

low rastering frequencies characteristic of pulsed fusion devices.  However, many 

current ion irradiation facilities use rastering at frequencies ranging from 200 to 2500 

Hz. If the very slow rate of decline in swelling rate beyond ~1 Hz shown in Figure 3.7 is 

extrapolated to such high frequencies, it appears that the swelling rate might saturate at a 

rather low value.  
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Getto et. al. performed a raster-no raster comparison on HT9 at 440°C to 140 dpa 

that support the possibility of rastering-induced void suppression at higher frequencies 

[65]. Ion beam rastering was performed at 1061 Hz in the vertical direction and 255 Hz 

in the horizontal direction, with the results compared to those produced using a 

defocused non-rastered beam. No voids were seen in the rastered specimen with zero or 

10 appm helium preinjection, and a rather low density of small voids was seen with 100 

appm helium preinjection. However, in the no raster, defocused beam condition voids 

were seen at larger sizes and significant densities in the specimens with 0, 10 and 100 

appm helium preinjection levels, showing that, in the absence of helium, rastering 

completely suppresses void nucleation under these irradiation conditions. 

However, previous modelling [64] suggests that increasing the raster frequency 

to high speeds should result in void swelling similar to that of a non-rastered, defocused 

beam. As noted previously, however, the applicability of this model to experimental 

results is not clear.  At this time, however, we have no confidence that our results can be 

extrapolated to such higher frequencies. Additionally, at this time, our results are 

considered to be only applicable to pure iron and should not be extrapolated to more 

complex alloys. Further studies are required to explore such extrapolations. 

This study clearly shows that a significant effect of rastering frequency operates 

on void nucleation and growth in self-ion irradiated pure iron at 450°C, with rastering 

leading to reduction of swelling in comparison with irradiation using a defocused, static 

beam.  When compounded with the defect imbalance effect there is a significant 

suppression of swelling with the net effect varying with depth from the ion-incident 

surface. In order to confidently use ion bombardment as a surrogate technique to replace 

neutron irradiation, it appears that a defocused beam should be used.  The results of this 

study therefore support the no-raster recommendation of ASTM E521-77 in simulating 

neutron damage using ion bombardment 
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4. COMPOSITIONAL MODIFICATION VIA COULOMB DRAG 
 

As discussed in previous sections, the limited range of the bombarding ions and 

strong internal dpa rate gradients along the ion path give rise to a variety of neutron-

atypical effects [36-38,61,65].  Of these, an important neutron-atypical phenomenon 

involves compositional alteration along the ion path [67-69]. Furthermore, surface 

preparation becomes increasingly important for ion irradiation to ensure the near-surface 

region is reasonably free of defects and contaminants.   

Shao and coworkers have recently shown that negatively-charged species in the 

accelerator system can be entrained into the beam by Coulomb drag effects, delivering 

contaminants onto the ion-irradiated area [70].  The entrainment accumulates molecules 

along the entire beam line, regardless of whether the target chamber is under high 

vacuum (e.g. <10-7 torr) or not. Among various contaminating elements, carbon is the 

most crucial since carbon is known to strongly influence microstructural evolution and 

swelling in both austenitic and ferritic alloys [2,11].  Shao and coworkers developed and 

tested a filtering system for their 1.7 MV tandem accelerator comprised of three 

magnetic deflectors spaced ~1 m apart with liquid nitrogen cold traps located in the 

beam-line and target chamber [70].   

The effect of beam contamination on void swelling, however, was not 

investigated in the previous study. In the current study HT9, an F/M alloy, was selected 

due to its reported low void swelling [71-73].  Ion irradiation was performed both with 

and without the filtering system to evaluate the impact on both composition and 

microstructural evolution. The present study is important to establishing a standard 

                                                           
Reprinted from “Beam-contamination-induced compositional alteration and its neutron-

atypical consequences in ion simulation of neutron-induced void swelling”, Jonathan G. 

Gigax, Hyosim Kim, Eda Aydogan, Stuart A. Maloy, Frank A. Garner, and Lin Shao, 

Material Research Letters (2017) pp. 1-8, available online at 

http://dx.doi.org/10.1080/21663831.2017.1323808.  Published by Informa UK Limited, 

trading as Taylor & Francis Group under Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/). 

http://dx.doi.org/10.1080/21663831.2017.1323808
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procedure or set of best practices which impact a wide range of ion beam modification, 

characterization and irradiation studies. 

 

4.1 Experimental Procedure 

 

HT9 specimens with composition given in Table 4.1 were normalized at 1040 °C 

for 30 min and air cooled. They were tempered at 760 °C for 1 h, followed by air 

cooling.  Specimens were mechanically polished to 4000 grit SiC paper and jet 

electropolished using a solution of 5 vol.% perchloric acid and 95 vol.% methanol at -40 

°C and 20 V.  

Ion irradiation was performed using 3.5 MeV Fe2+ ions.  A defocused ion beam 

was utilized to produce a uniform beam with a time-averaged peak dpa rate of 1.74 × 10-

3 dpa/s maintained within ±5% over the duration of the irradiation [65,74].  Specimens 

were fixed to the stage using a carbon-free silver paste (Ted Pella, Inc. Product #16047). 

Two sets of ion irradiation were conducted.  The first set of specimens were 

irradiated to doses up to 600 peak dpa at 450 °C and did not utilize the ion beam filtering 

technique.  The second set utilized the filtering technique and achieved doses up to 800 

peak dpa at 450 °C [70].  

Transmission electron microscopy (TEM) specimens were prepared using a 

TESCAN Lyra focused ion beam mill [74].  Scanning transmission electron microscopy 

(STEM) high-angle annular dark-field (HAADF), and bright field images were obtained 

using an FEI Tecnai F20 Super Twin operated at 200 kV.  Secondary ion mass 

spectroscopy (SIMS) were obtained using a Physical Electronics Model 6600 SIMS 

System with a 4 keV Cs beam for depth profiling of elemental carbon, oxygen, and 

nitrogen. 
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Table 4.1 – Composition of HT9 (wt.%). Reprinted from [75] under Creative Commons 

Attribution License Copyright 2017. 

Fe C Cr Mo Si Mn Ni V W 

Bal. 0.21 12.5 1.10 0.29 0.41 0.60 0.30 0.51 

 

 

 

4.2 Chemistry modification via Coulomb drag 

 

Figure 4.1a compares SIMS carbon profiles before irradiation, and after 

irradiation to 600 peak dpa with and without beam filtering. The unirradiated HT9 

specimen shows a flat carbon profile with average concentration of 1.3 at.% C, in good 

agreement with the specified composition.  Without filtering, the carbon concentration 

after 600 peak dpa showed enhancement throughout the entire ion range, increasing to a 

maximum of ~7 at.% C at a depth of 600 nm, followed by a gradual decrease with 

increasing depth to the nominal concentration in the unirradiated region.  The carbon 

concentration averaged over the irradiated region was ~4 at.%.   

The filtered HT9 at 600 peak dpa exhibited a maximum of ~2 at.%, significantly 

less than the 7 at.% in the unfiltered HT9 specimen at the same depth. The carbon profile 

from the filtered irradiation showed a concentration dip below the background level at 

800-850 nm, a depth near the peak damage.  The average carbon concentration through 

the ion irradiated region is approximately 1.5 at.%, in close agreement with the 

unirradiated specimen, indicating that the contamination is greatly minimized by 

filtering.  

The oxygen and nitrogen profiles are provided in Figs. 4.1b and c, respectively. 

A thin oxide layer was observed after irradiation, but the filtered irradiation clearly 

showed lesser oxide growth, consistent with TEM characterization. Due to beam knock-

on effects during SIMS analysis, however, the tail regions cannot be used to estimate the 

oxide layer thickness.  The nitrogen distribution in the filtered sample shows little 

difference from the unirradiated sample. In contrast, the unfiltered sample has a 

significant nitrogen profile with its tail reaching ~1 m depth.  
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Figure 4.1 – SIMS profiles of (a) carbon, (b) oxygen, and (c) nitrogen in unirradiated 

and 600 peak dpa irradiated HT9, both with and without beam filtering. SRIM-

calculated depth profiles of dpa and injected ions are superimposed in Fig. 1a. Reprinted 

from [75] under Creative Commons Attribution License Copyright 2017. 

 

 

 

Carbon, oxygen and nitrogen possess different profiles since carbon atoms easily 

but strongly interact with defects, while oxygen tends to develop strong chemical 
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bonding with surface atoms resulting in a surface oxide layer or oxide particles.  

Nitrogen, however, does not interact as strongly with defects and diffuses easily. 

Overall, the filtering system significantly reduced or eliminated carbon, oxygen, and 

nitrogen contamination. 

 

4.3 Void Swelling and Precipitation 

 

The presence of beam-induced contaminants clearly suppresses void swelling. 

Figs. 4.2(a-c) compare STEM images of 200, 400, and 600 peak dpa samples without 

filtering. Only a few voids are observed. At doses of 200 and 400 peak dpa, the void 

swelling was less than 0.1% and was confined to the first 200 nm below the surface.  

The appearance of larger voids with ~0.5% swelling occurs at 600 peak dpa.  However, 

voids were not observed to extend beyond this depth.  A previous study has suggested 

that carbon atoms may alter the effective diffusivity of point defects, leading to dramatic 

changes in void swelling and void distribution [76]. If vacancy migration energy is 

slightly increased, void swelling shifts towards the surface.  Both the suppressed 

swelling and shallow void location are believed to be related to carbon content. 

Precipitates also play a key role in void swelling and, when present in high 

densities, can act as recombination sites and greatly suppress swelling [77-79].  Figs. 

4.2(d-f) show TEM dark-field images highlighting carbide precipitates that developed in 

unfiltered HT9 irradiated to 200, 400, and 600 peak dpa.  At 200 peak dpa, HT9 

developed small spherical precipitates ~10-15 nm in diameter distributed throughout the 

entire ion range. At 400 peak dpa, the precipitates increased in size and evolved into 

needle-like structures with a high aspect ratio (1:3.5) and a diameter of ~20 nm and 

length of 70 nm.  The density of carbides was measured to be 0.81 x 1015 cm-3 with a 

volume fraction of 0.05.  A further increase in carbide density to 1.4 x 1015 cm-3 was 

observed in the 600 peak dpa specimen where the carbide precipitates were found to 

comprise a significant volume fraction of 0.12 in the irradiated region. 

 

 



 

36 
 

 

 

 

Figure 4.2 – Typical STEM-HAADF (a-c) and dark-field (d-f) images of HT9 irradiated 

without filtering to 200, 400, and 600 peak dpa, respectively. A depth scale to 1200 nm 

below the surface is provided next to (a) and (d).  The g = <100> vector is labeled in the 

dark-field micrographs.  A black arrow in (c) marks an isolated large void in the 600 

peak dpa specimen. Reprinted from [75] under Creative Commons Attribution License 

Copyright 2017. 

 

 

 

The majority of the precipitates observed were M23C6, M7C3, and M3C Cr-rich 

carbides, and are clearly seen in Fig. 4.2f and Fig. 4.3a. Fig. 4.3b shows a typical high 

resolution TEM (HRTEM) image of an M23C6 carbide along the [112] zone axis of the 

particle.  These carbides were observed in the unirradiated specimen along lath 

boundaries in the tempered martensite phase.  After irradiation, a M23C6 carbides 

appeared within the grains, typically larger than other carbides observed.  Plate-like 

M7C3 and needle-like M3C carbides were observed after irradiation and comprised the 

remainder of precipitates formed as a result of radiation-induced precipitation 
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augmented by the introduction of additional carbon from the beam.  HRTEM images of 

the M3C precipitate along the [010] zone axis of the particle and M7C3 precipitate taken 

near the [5̅35] zone axis of the matrix are given in Fig. 4.3c and 4.3d, respectively.  

Several irradiations of HT9 and other F/M alloys at other accelerator facilities have also 

reported similar precipitation under irradiation and ascribed this to radiation-induced 

precipitation, contamination or a combination of both [80,81]. No previous study has 

attempted to identify and remove the source of the carbon causing the formation of the 

carbides.   

 

 

 

 

Figure 4.3 – (a) Bright-field TEM image of HT9 irradiated to 600 peak dpa without 

filtering, with HRTEM images of (b) M23C6, (c) M3C, and (d) M7C3 particles.  Indexed 

FFT images are inset in the respective figures. Reprinted from [75] under Creative 

Commons Attribution License Copyright 2017. 
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A second irradiation, employing beam filtering, was performed to reach damage 

levels of 200, 600, and 800 peak dpa.  STEM-HAADF micrographs in Figs. 4.4(a-c) 

show that the filtering system induced a significant increase in swelling with 

dramatically different carbide precipitation behavior in Figs. 4.4(d-f).  At 200 peak dpa, 

HT9 developed small spherical carbides of similar size and density, along with low 

swelling observed in the unfiltered counterpart.  At 600 peak dpa, a significant increase 

in the population of large voids and void density were observed.  Furthermore, Fig. 4.4e 

shows a dramatically lower carbide volume fraction of 0.014, nearly an order magnitude 

less than the unfiltered irradiated HT9 (Fig. 4.2f), without the development of needle-

like precipitates.  HT9 irradiated to 800 peak dpa exhibited further increases in void size 

and density with a shift in the peak swelling and a slight extension of void distribution to 

deeper depths.  Some needle-like carbides were observed to develop within 500 nm of 

the surface. 
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Figure 4.4 - STEM-HAADF (a-c) and dark-field (d-f) images of HT9 irradiated without 

a filter to 200, 400, and 800 peak dpa, respectively.  The g = <100> vector is labeled in 

the dark-field micrographs. Reprinted from [75] under Creative Commons Attribution 

License Copyright 2017. 

 

 

 

The differences in carbide precipitation and growth between unfiltered and 

filtered specimens are clearly seen in Figs. 4.5a and 4.5b.  While both specimens showed 

carbides throughout the irradiated region, the volume fraction for unfiltered irradiation is 

greater at all depths compared to the filtered irradiation, differing by a factor of 5 for the 

maximum volume fraction in the specimens at 600 peak dpa.  The volume fraction 

growth rate was calculated by averaging the carbide volume fraction plotted against the 

average dpa in the irradiated region.  Fig. 4.5c shows that in the unfiltered specimen, the 

growth rate is 3.6x10-4 volume fraction/dpa, nearly an order of magnitude greater than 

the rate of 4.7x10-5 volume fraction/dpa observed in the filtered specimen.  
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Figs. 4.5d and e provide a comparison of the swelling as a function of depth for 

unfiltered and filtered irradiations.  Void swelling in the filtered HT9 achieved a 

maximum swelling value ~6 times greater than the unfiltered HT9 and reached 100 nm 

deeper.  Since voids were observed to form only within 300 nm below the surface, 

comparisons of the void swelling in Fig. 4.5f are plotted from the average swelling 

within this region, corresponding to ~35% of the peak dpa.  The swelling rate in the 

filtered HT9 irradiation was calculated to be ~0.01%/dpa, approximately an order 

magnitude greater than the ~0.0011%/dpa measured in the unfiltered HT9. The filtered 

HT9 void swelling is in good agreement with swelling observed in HT9 after neutron 

irradiation in most cases [71,72]. That is, HT9 heats with 0.2 wt.% carbon exhibited 

similar swelling behavior to the filtered ion irradiated HT9. Despite the large variance in 

neutron-induced swelling, all void swelling and swelling rates are greater than the 

unfiltered ion irradiated HT9, with the swelling rate of the most swelling resistant HT9 

heat (0.17 wt.% carbon) approximately twice that of the unfiltered HT9.  Furthermore, 

since F/M alloys are expected to swell at 0.2% per dpa in the steady state growth stage, 

the observation of lower swelling rates suggests that swelling is still in the transition 

stage [10]. 
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Figure 4.5 – Carbide volume fraction distributions for (a) unfiltered and (b) filtered HT9 

irradiations, void swelling distributions for (d) unfiltered and (e) filtered HT9 

irradiations, (c) dose-dependent carbide growth rates, and (f) dose-dependent void 

swelling.  Neutron-induced swelling of various HT9 heats provided in (f) [71,72]. 

Reprinted from [75] under Creative Commons Attribution License Copyright 2017. 

 

 

 

This study shows that contamination induced by Coulomb interaction between 

the beam and residual contaminants plays a dramatic role in void swelling. Without 

beam filtering, a high density of precipitates was observed within the irradiated region 

and swelling was greatly suppressed. With beam filtering to avoid/minimize 
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contaminants, precipitate formation was suppressed and void swelling was significantly 

larger. We assert that swelling suppression arises from carbon and carbides which alter 

the defect clustering kinetics and act as defect sinks. The present study shows the 

feasibility of the proposed technique as the best practice to eliminate beam 

contamination.  When evaluating swelling data from previous studies, it will be 

necessary to assess the possible impact from beam contamination.  
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5. RADIATION RESPONSE OF T91 AT ULTRA-HIGH 

DAMAGE LEVELS 

 

The previous sections covered three neutron atypical effects that operate in a 

material under ion irradiation.  The spatial (defect imbalance) and temporal (rastering vs. 

non-rastering), and large compositional modification induced by Coulomb drag (light 

element contamination) were found to dramatically alter the microstructural evolution.  

From these previous studies, a generalized procedure can be developed to minimize 

those effects.  For the irradiations performed to ultra-high damage levels (>500 peak 

dpa), a static and defocused ion beam passed through the filtering system should be 

utilized to minimize the influence of otherwise avoidable influences.  With a better 

understanding of these neutron atypical effects, irradiations to ultra-high damage levels 

can be conducted with confidence. 

In the current study we focus on alloy T91, which is a ferritic/martensitic (F/M) 

steel that has been used extensively for non-nuclear applications in power plants, typically 

employed as tubing in boilers, super-heaters, or heat exchangers.  There are a handful of 

investigations using neutron irradiation that reported on the low void swelling behavior of 

T91 [71,82-85].  The highest reported dose for this alloy was achieved in the FFTF fast 

reactor at 208 dpa and yielded a range of void swelling of 2-3% at 400°C for a set of 

pressurized tubes, with swelling exhibiting some variability within and between individual 

tubes [85].  For ion-induced swelling tests on T91, the highest reported doses were 140 

and 150 dpa, yielding swelling over the range 0.04 to 0.5% in the various experiments [27 

,86].  In order to explore the suitability of T91 for advanced nuclear applications, it is 

necessary to explore its swelling behavior to damage levels approaching 500-600 dpa.  

                                                           
Reprinted from “Radiation response of alloy T91 at damage levels up to 1000 peak 

dpa”, Jonathan G. Gigax, Tianyi Chen, Hyosim Kim, Jing Wang, Lloyd M. Price, Eda 

Aydogan, Stuart A. Maloy, Dan K. Schreiber, Mychailo Toloczko, Frank A. Garner, and 

Lin Shao, Journal of Nuclear Materials 482 (2016) pp. 257-265, Copyright 2017 by 

Elsevier. 
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Since it is impractical to reach any significant fraction of this dose in a reactor, the 

approach used in this study is to employ self-ion irradiation and compare the results with 

neutron irradiated T91 and other alloys irradiated with ions under similar conditions. It is 

important to note, however, that for the extraction of neutron-relevant swelling data at 

500-600 dpa, it is necessary to reach peak ion-induced displacement levels of ~1000 dpa 

due to strong suppression of swelling induced by injected interstitials in the peak dpa 

region. 

 

5.1 Experimental Procedure 

 

The heat of alloy T91 used in this study contained 9.4 wt% Cr and minor 

alloying elements Mo, V, Si, Ni and Nb, with compositional details given in Table 5.1.  

The T91 alloy was normalized at 1038°C for 0.5 h, followed by tempering at 760 °C for 

0.5 h, with the specimen cooled in air after each step in the heat treatment [27].  The 

starting microstructure was composed primarily of a tempered martensite phase with 

grain sizes of ~3-5 µm and an average lath width of ~800 nm.  The tempered plate was 

sectioned into 0.5 mm thick pieces and mechanically ground using 600, 800, and 1200 

grit SiC paper.  The specimens were then polished further by a 0.05 µm alumina solution 

followed by electropolishing with a 45% ortho-phosphoric acid, 35% sulfuric acid, and 

20% de-ionized water solution for 20 s to remove the surface damage layer produced 

during mechanical cutting and polishing. 

The irradiation conditions were performed using 3.5 MeV self-ions to damage 

levels of 250, 750, and 1000 peak dpa, calculated using the same procedure in the 

previous sections. To avoid the effects of void swelling suppression known to be caused 

by ion beam rastering [55,74], a defocused ion beam was utilized [65]. The ion beam 

was defocused and limited to 200 nA over an area of 6 mm × 6 mm, yielding a time-

averaged peak dpa rate of 1.74 x 10-3 dpa/s and varying less than 5% over the duration of 

the experiment.  F/M steels have previously been irradiated by self-ions at temperatures 

between 440 °C to 480 °C, a range determined to achieve the maximum swelling for the 
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specimen [27,78,86,87].   In the current study, the specimens were heated to 475°C 

during ion irradiation by mounting the samples on a copper stage with a hydrocarbon-

free silver paste.  The beam heating component of the temperature was measured to be 

~4-5°C. The specimen temperature was kept to within ±5 °C during the irradiation.  No 

pre-implantation or co-implantation of helium and/or hydrogen was employed.  In 

addition to the FIB and TEM procedure given in the previous sections, additional 

analysis directed towards studying precipitates was also conducted. 

There is a possibility that the depth dependence of swelling may be influenced by 

segregation-induced compositional changes arising from interaction of solutes with the 

displacement gradients along the ion range. Therefore, two atom probe tomography 

(APT) specimens were prepared from the T91 specimen irradiated to 750 peak dpa via a 

standard lift-out procedure [88] with an FEI Quanta 3D FEG Focus Ion Beam (FIB).  

The specimen at this dose level was chosen to avoid a heavily voided microstructure 

while still capturing the impact of an ultra-high damage level.  APT specimen 

fabrication was controlled to a specific region that was within a depth region of 400-600 

nm below the ion incident surface, consistent with the depth of greatest interest in this 

study since the maximum amount of swelling will be shown to occur at this depth at the 

highest peak damage level of 1000 dpa.   

A final cleaning step using 2 kV Ga+ beam was carried out to reduce the FIB ion 

beam damage during specimen fabrication.  APT measurements were performed using a 

local electrode atom probe (LEAP 4000 XHR) at the Environmental and Molecular 

Sciences Laboratory at Pacific Northwest National Laboratory.  All data were collected 

under vacuum of 1×10-11 Torr at 40 K with a detection rate of 0.5 %, laser energy of 70 

pJ/pulse, and laser pulse frequency of 200 kHz. The Interactive Visualization and 

Analysis Software (IVAS) from CAMECA was used for data reconstruction and 

analysis. 
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Table 5.1 - Composition of T91 used in this study. Reprinted with permission from [74] 

Copyright 2017 by Elsevier. 

 Fe Cr Mo V Mn C Si Cu Ni Al Nb N P S 

wt% Balance 9.38 0.91 0.19 0.38 0.085 0.34 0.08 0.097 0.032 0.08 0.042 0.019 0.0008 

 

 

 

5.2 Void Swelling Analysis   

 

Fig. 5.1 (a-c) shows typical STEM-HAADF micrographs after irradiation to 250, 

750, and 1000 peak dpa, respectively. Voids were clearly observed in all specimens, but 

their sizes and distributions varied significantly. At the lowest dose (250 peak dpa), 

small voids were mainly located in the near surface region at a depth between 100-300 

nm where the local dose ranged from 80 to 100 dpa. At 750 peak dpa, the voids were 

larger and the void distribution was observed deeper into the specimen at 900-1000 nm 

where the dose ranged from 725 to 750 dpa. For the highest dose of 1000 peak dpa, 

larger voids up to ~110 nm in diameter were observed and the void distribution again 

reached to 900-1000 nm ranging from 950 to 1000 dpa. The average lath width of ~800 

nm and grain size of ~3-5 um observed in the unirradiated T91 was not changed 

significantly in the T91 specimens irradiated to 250 peak dpa.  At 750 and 1000 peak 

dpa, however, the lath width was observed to increase to ~1 um, coincident with a large 

increase in void swelling.  A summary of the void statistics averaged over the 400-600 

nm range is provided in Table 5.2. 
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Table 5.2 - Void characteristics from the current study.  Maximum void swelling and 

local swelling at the interval of 500 nm ± 100 nm below the surface are provided for 

each set of samples. The dpa level, void radius and void concentration are averaged 

within the interval. Reprinted with permission from [74] Copyright 2017 by Elsevier. 

Peak dpa Maximum void swelling (%) 

Void swelling 

at 400-600 

nm (%) 

Average void radius (nm) 

Average void 

concentration 

(1014/cm3) 

250 1.00 ± 0.06 0.04 ± 0.01 12.0 ± 4.79 0.68 ± 0.04 

750 6.20 ± 2.15 2.77 ± 0.96 17.3 ± 6.97 2.55 ± 0.27 

1000 22.5 ± 2.22 17.3 ± 1.86 37.8 ± 6.99 4.58 ± 0.05 

 

 

 

The expansion of the void distribution from the front near-surface region to a 

deeper depth with increasing dose has been observed previously [61,65,89] and can be 

explained by the concept of defect imbalance [61].  This phenomenon combines the effects 

of forward scattering of the incoming ion and that of the injected interstitial effect, both 

of which are neutron-atypical phenomena arising in self-ion irradiation.  Due to forward 

scattering of interstitials and the extra atoms introduced by ion irradiation, spatial 

differences arise in the local vacancy and interstitial distributions. The near-surface region 

is slightly vacancy-rich, while an interstitial-rich region is created near the peak damage 

region. Thus, void formation is promoted early at shallow depth, while being strongly 

suppressed in the peak damage region.  The highest swelling region eventually lies in-

between these two regions, shifting deeper from the surface with increasing damage, but 

eventually stopping at approximately half of the range of implanted Fe ions.  In general, 

this near-surface swelling behavior has been observed not only in our various studies, but 

also in those of other researchers [27,86].  
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Figure 5.1 - Typical STEM-HAADF micrographs of selected areas of T91 ion-irradiated 

to a peak dose of (a) 250, (b) 750, and (c) 1000 dpa.  An overlay of the SRIM-calculated 

ion range and damage distribution curves is provided in (a). Reprinted with permission 

from [74] Copyright 2017 by Elsevier. 
 
 

 

Fig. 5.2 compares the measured void swelling as a function of depth for all three 

damage levels. The SRIM-predicted Fe ion range and dpa profiles are also plotted for 

comparison. Initially, swelling occurred only within 300 nm of the surface, reaching a 

maximum of ~1% for the 250 peak dpa specimen.  At 750 peak dpa, the void swelling 
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reached a maximum of ~6.2% at an approximate depth of 700 nm and 740 local dpa.  At 

1000 peak dpa, the maximum swelling was ~22% at 550 dpa located between a depth of 

450 nm and 550 nm (475 to 625 local dpa), with large voids extending from a depth of 

300 nm to 900 nm (420 to 950 local dpa). 

 

 

 

 

Figure 5.2 – (a) Profiles of dpa and Fe implanted ion distributions from SRIM 

calculations plotted for a dose of 1000 peak dpa.  Arrows next to curves indicate the 

respective axes. (b) Void swelling as a function of depth for T91 specimens irradiated to 

peak dose of 250, 750, and 1000 dpa.  Local swelling levels were calculated for 100 nm 

intervals of depth. Reprinted with permission from [74] Copyright 2017 by Elsevier. 
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Depth-dependent swelling analysis provides additional insight into other possible 

mechanisms that can influence void swelling.  Although the aforementioned defect 

imbalance effect plays a large role in the observed swelling behavior of ion irradiated 

materials, there is another neutron-atypical effect that arises from the relatively large 

variation in the dpa rate over the ion range. Note in Fig. 5.2 that there is a factor of ~4 

increase in dpa rate from the ion-incident surface to the peak damage rate position. 

Garner and Guthrie [38] suggested that such a difference in dpa rate with depth 

constituted an "internal temperature shift" that could produce a variation in the duration 

of the transient regime and/or swelling rate as a function of depth from the surface.  It is 

known that the transient regime of neutron-induced void swelling in austenitic alloys is 

strongly dependent on dpa rate, increasing in magnitude with increasing dpa rate [1,2]. 

There is, however, only limited evidence that a similar dependence may occur in 

neutron-irradiated ferritic iron-base alloys [90].  Earlier studies using several ion-

induced damage rates have shown that a similar shift in the transient regime occurs 

during ion bombardment of austenitic alloys [91-93].  

The most dramatic feature of the swelling behavior with depth is the total 

absence of voids in the region of highest dpa levels. As the dose increases, it can be seen 

that the injected interstitial effect was gradually overcome, with swelling observed 

deeper in the foil. However, as the injected population increased more rapidly, voids 

could not nucleate beyond ~900 nm. Although this absence can be ascribed to the defect 

imbalance and dpa rate effects mentioned previously, this absence is primarily a 

consequence of the former on void nucleation, where the incident ion serves as one-half 

of a Frenkel pair without an accompanying vacancy [36,47-54]. While this slight 

imbalance might seem to be very small, it has been demonstrated theoretically to have a 

very strong impact on suppression of void nucleation [47].  

Fig. 5.3 provides void swelling values taken from selected depth intervals as a 

function of the average local damage level in that interval.  Swelling was measured from 
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sub-regions of 200-400, 300-500, 400-600, 500-700, and 600-800 nm, each with a 200 

nm thickness (compared to 100 nm in Fig. 2) and dose rates of 0.72x10-3, 0.83x10-3, 

0.96x10-3, 1.11x10-3, and 1.29x10-3 dpa/s, respectively.  First, it is clear that swelling at 

each depth range showed a transient incubation dose with low-rate swelling, followed 

thereafter by an acceleration in swelling. Second, void swelling, at all dose rates, 

exhibited an increasing incubation period at deeper depths due to combined effects from 

both higher local dpa rates and the growing injected interstitial effect. Similar dpa rate or 

flux effects have been observed previously in ion irradiation [94,95] and neutron 

irradiation studies [2,71,96,97].  

 

 

 

 

Figure 5.3 - Void swelling as a function of local damage level averaged over selected 

depth intervals of 200 nm thickness with swelling rates of 0.1 and 0.2%/dpa included on 

the figure for comparison. The transient period of swelling appears to increase with 

increasing dpa rate. Reprinted with permission from [74] Copyright 2017 by Elsevier. 
 
 
 

While it is problematic to establish a post-transient swelling rate from only three 

data points spanning both the transient and post-transient regimes, the highest measured 

ion-induced swelling rate between the last two high-dose data points is ~0.11%/dpa, 
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which is less than the ~0.2%/dpa rate observed for body-centered cubic (bcc) iron-base 

metals following neutron irradiation. Hence, even at the highest damage level of 1000 

peak dpa in this study, the swelling cannot be stated to have fully evolved into the 

steady-state void swelling stage. However, as shown in Fig. 5.4, the shift in transient 

duration with depth in T91 shown in Fig. 5.3 was also observed by Aydogan et al. in a 

ferritic alloy EK-181 along the ion path as the dpa rate increases [89]. In this case, the 

post-transient swelling rate was clearly observed to be ~0.2%/dpa.  Additionally, it 

should be noted that Aydogan's data in Fig. 5.4 also show a pronounced extension of the 

transient regime with increasing depth, arising from the combined influence of 

increasing dpa rate and increasing influence of the injected interstitial.  Our observation 

of an extension in transient duration with increasing depth and therefore increasing dpa 

rate was also provided by Whitley and coworkers who irradiated pure nickel with 14 

MeV Ni ions [93], providing additional confirmation of the "internal temperature shift" 

concept. 

 

 

 

 

 

 



 

53 
 

 

 
Figure – 5.4 Swelling of (a) annealed and (b) severely deformed EK-181 as a function of 

dpa but extracted from different depth regions. These irradiations were performed under 

conditions identical to that used for T91 in the current study. The tendency to approach a 

swelling rate of ~0.2%/dpa and also to exhibit longer transient duration before changing 

to the 0.2%/dpa rate with increasing depth are clearly shown. Data were provided by E. 

Aydogan in advance of publication [89]. Reprinted with permission from [74] Copyright 

2017 by Elsevier. 

 

 

 

Other non-rastered ion studies conducted on pure iron [65] and several ferritic-

martensitic alloys [87] were observed to develop a post-transient swelling rate of 

~0.2%/dpa, in agreement with the neutron-induced swelling rate. Two of these 

observations are shown in Fig 5.7. These observations of 0.2%/dpa were made on two 

different accelerators, operating at two different conditions of dpa rate and ion energy, 

one located in the Ukraine and the other in Texas, signaling the possible reproducibility 

of this swelling rate in both ion and neutron irradiations. 
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In a series of recent ion irradiations using rastered beams at the University of 

Michigan the swelling rates appear to be much lower, proceeding at rates of ~0.03%/dpa 

or less, possibly reflecting the raster-suppression effect on swelling [65,99]. Indeed, one 

study in this series involving a direct comparison between raster and no-raster irradiation 

showed very clearly the strong effect of rastering to suppress swelling at the scanning rates 

used in that study [65]. A similar study conducted on pure iron at much lower scanning 

rates also showed raster-suppression of swelling [66]. It is premature at this time, however, 

to directly ascribe the lower swelling rates only to rastering. Further investigation is 

required to confirm this possible linkage. 

As shown in Fig. 5.2 the highest local swelling for T91 in this experiment is ~22% 

at 500 nm depth with a local damage level of ~550 dpa, suggesting that T91 is a rather 

swelling-resistant alloy compared to other ferritic or ferritic-martensitic steels.  For later 

comparisons with neutron-irradiated T91 and other ion-irradiated alloys, the depth region 

from 400-600 nm was chosen to extract swelling data.  This depth region exhibited the 

most swelling, suggesting that it has the least influence from the surface effect and the 

injected interstitial suppression of void nucleation.   

Fig. 5.5 plots void sizes and void concentration changes as a function of local dpa 

values. The void statistics are obtained by averaging over the depth region of 400 to 600 

nm. Both void sizes and void concentration increase with increasing damage levels, 

without any indication of saturation. At the highest dose, average void diameters span 

from ~5 nm in the shallow depth region (<400 nm) to an average of ~35 nm at deeper 

depths (400 to 600 nm). While some large voids were observed within this region, on the 

order of 100 nm, several smaller voids (~10-20 nm) were also present.   
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Figure 5.5 - Plot of the average void radius and concentration as a function of local dpa 

for the depth region of 400 nm to 600 nm.  Arrows are shown to indicate corresponding 

axis. Reprinted with permission from [74] Copyright 2017 by Elsevier. 
 

 

 

Fig. 5.6 compares the swelling in the region of 400-600 nm with that observed in 

various neutron irradiation experiments [71,82-85]. Note that all ion-induced swelling 

points in Fig. 5.6 are plotted as a function of local dpa. For 250, 750 and 1000 peak dpa 

irradiation, the corresponding average dpa values in the void swelling analysis region are 

140, 410, and 550 dpa, respectively.  The comparison between neutron and ion data in 

Fig. 6 must recognize that there are variations in composition and fabrication of the 

various T91 heats for both ion and neutron irradiations.  Furthermore, a range of dpa 

rates from 10-8 – 10-6 dpa/s were reported for the neutron irradiated specimens depending 

on the sample position in the reactor core [95,96]. Ignoring differences in composition, 

however, ion irradiation at high dpa rates (1.7x10-3 dpa/s) appears to delay the onset of 

swelling compared to that under neutron irradiation, again suggesting the likelihood of 

the dependence of transient duration on dpa rate. As mentioned previously, various 

studies have shown that increases of dpa rate under both neutron and ion irradiation lead 

to an extension of the void swelling regime for austenitic alloys [1,2,91,95,96,100,101]. 
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There is one indication that a similar effect occurs in the Russian F/M alloy EP-450 [90], 

but there is insufficient data at present to ascribe the longer ion-induced transient of T91 

(as shown in Fig. 5.6) solely to the differences in dpa rate. 

 

 

 

 

Figure 5.6 – A comparison between the swelling behavior of various heats of T91 

irradiated in FFTF [71,82-85] and that of ion-irradiated T91 at a depth of 400-600 nm 

(present study). Reprinted with permission from [74] Copyright 2017 by Elsevier. 
 
 
 

Fig. 5.7 compares our results on T91 with various ion irradiated alloys, including 

one austenitic alloy (18Cr10NiTi) and two F/M alloys (duplex EP-450 and cold-worked 

HT-9). These three alloys were irradiated at Kharkov Institute of Physics and Technology 

in the Ukraine by 1.8 MeV Cr+ ions with a local dose rate of 1x10-2 dpa/s at comparable 

temperatures and also without helium implantation. The 18Cr10NiTi alloy exhibited a 

steady-state swelling rate of ~1%/dpa after a very short incubation period, in good 

agreement with neutron data [11,102,103]. 
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Figure 5.7 - Comparison of the void swelling in T91 with that of other ion-irradiated 

alloys. Reprinted with permission from [74] Copyright 2017 by Elsevier. 

 

 

 

Fig. 5.7 also shows that cold-worked HT-9 exhibited an incubation period of ~400 

dpa before accelerating to a swelling rate on the order of ~0.2%/dpa, in agreement with 

behavior expected for F/M alloys [10,87]. This ion-induced swelling rate was also 

observed in ion-irradiated ferrite grains of duplex alloy EP-450 in the range 150-300 dpa, 

although the swelling rate of tempered martensite grains was somewhat lower but still 

increasing at 300 dpa.  The swelling rate of T91 appears to be increasing at higher dose, 

but in this experiment had not yet convincingly approached the anticipated 0.2%/dpa 

swelling rate, reaching only a maximum of ~0.11%/dpa.  

 

 

5.3 Microchemical Evolution 

 

As addressed earlier, neutron-induced void swelling is sensitive to the overall 

starting composition and the details of distribution of individual elements. It is also 

known that radiation causes redistribution of the various elements in both bcc and fcc 
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iron-base alloys and often the redistribution precedes and accompanies the onset of void 

swelling [1,2]. Additionally, radiation-induced segregation and possible subsequent 

precipitation caused by ion-induced gradients in dpa levels with depth may modify the 

local composition vs. depth profiles, as theoretically modeled in several recent papers 

[104,105].  It should be noted that there is also a significant time-dependent alteration of 

the composition at the end of range due to the implanted Fe ions, an effect that becomes 

more pronounced at the high doses explored in this experiment, reaching double-digit 

concentration levels at 1000 dpa. 

Table 5.3 provides composition data obtained by APT analysis on T91 irradiated 

to 750 peak dpa taken at depths between 400-600 nm, corresponding to an average local 

dpa of 410 dpa.  For most solutes, there was notable depletion from the matrix compared 

with the nominal level expected for unirradiated T91, especially for Cr, Mn, and Si.  

Modelling studies indicate that Cr especially will be redistributed along the ion path 

[104,105]. Such a large reduction in Cr in the 400-600 nm region is currently thought to 

be primarily a consequence of the surface and dpa rate gradients, with a lesser influence 

of precipitation since no significant amount of radiation-altered precipitation was 

observed. This supposition requires further investigation, however. 

 

 

 

Table 5.3 - Composition of T91 obtained by APT at a depth from 400-600 nm.  The 

measured composition for unirradiated T91 for selected solutes is provided for 

comparison. Reprinted with permission from [74] Copyright 2017 by Elsevier. 

wt% Cr Mo Mn V Nb Ni Si Cu C  S 

Tip #1 2.62 1.41 0.05 0.23 0.00 0.10 0.01 0.05 0.00 0.005 

Tip #2 2.80 0.68 0.10 0.16 0.00 0.34 0.01 0.11 0.00 0.01 

Nominal 9.38 0.91 0.38 0.19 0.08 0.097 0.34 0.08 0.085 0.0008 

 

 

 

On average, both Cu, Mo, and Ni exhibited slight enrichment in this region along 

with an elevated presence of S.  The mechanism for the observed depletion and 

enrichment of the various solutes is thought to be due to a combination of inverse-
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Kirkendall and solute-drag effects produced by both the influence of the surface and the 

dpa rate gradients [104-107].  It can be reasoned from the earlier compositional studies 

on void swelling that this modification may result in slightly different void swelling 

behavior than that of the base alloy [17-20].  It is expected, then, that the void swelling 

at different depths will also respond differently to the evolving depth-dependent 

differences in composition as the ion irradiation proceeds. In this paper we present the 

first results that suggest that microchemical segregation arising from both dpa gradients 

and precipitation may play a role in the observed swelling vs. depth profiles. 

From Fig. 5.8, it can be readily seen that there are a few precipitates enriched in 

Si, Ni, Mn, and Cu within the analysis volume.  Differences in solute concentrations 

suggested that there are two kinds of precipitates.  The precipitates labeled A are 

primarily composed of Ni, Si, and Mn with a slight enrichment of S. It is possible that 

some of these precipitates may have formed during metallurgical production from the 

addition of Mn to remove S from the matrix during fabrication.  However, these 

precipitates have also been observed to form in T91 at low proton and self-ion doses 

[108], suggesting these to be primarily the result of irradiation. Precipitates labeled B are 

rich in Si, Ni, Mn, and Cu, enrichments similar to an intermetallic phase known as the 

G-phase that can form in both irradiated ferritic and austenitic alloys. 
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Figure 5.8 – Solute distribution obtained by APT from the first tip prepared from the 

T91 specimen irradiated to 750 peak dpa, showing two types of precipitates.  Note that 

the red border at the top indicates the ion-incident surface. The tip length shown above is 

approximately 95 nm. Reprinted with permission from [74] Copyright 2017 by Elsevier. 
 
 
 

Fig. 5.9 provides solute mapping similar to Fig. 5.7 on a second APT tip, but 

extends the analysis to both Cr and P.  There are two readily observed precipitate sizes 

seen in the reconstructed data.  The smaller precipitates were found to be similar in 

composition to those precipitates labeled A in Fig.8.  The larger precipitate was Cu-rich 

with an enrichment of Si, Ni, Mn, and Cr.  This precipitate featured a complex structure 

and showed Cu enrichment near its periphery with a Si and P-rich core.  Precipitates of 

this size and structure were notably absent in the first tip.  
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Figure 5.9 - Solute distribution obtained by APT from the second tip prepared from the 

T91 specimen irradiated to 750 peak dpa, showing two types of precipitates.  Note that 

the red border indicates the ion-incident surface. The tip length is approximately 40 nm. 

Reprinted with permission from [74] Copyright 2017 by Elsevier. 
 
 
 

Both Figs. 5.8 and 5.9 clearly show radiation-induced precipitation occurring in 

T91 at a high damage level. While precipitation was observed in neutron-irradiated T91 

[84], the gradients of dpa rate in ion irradiations, the injection of ions, and the physical 

discontinuity at the surface may introduce three new modes of segregation that probably 

affect precipitation behavior. Ultimately, these segregation processes may synergistically 

influence swelling through interaction with other neutron-atypical processes, especially 

the strong influence of dpa rate differences and defect imbalance effects. 
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6. RADIATION RESPONSE OF STRUCTURALLY 

ENGINEERED T91 

 

The previous study on T91 provides a foundation on which to compare the 

radiation response of a structurally engineered variant of the F/M alloy.  The main 

objective of this study is to answer the question: Does the superior radiation resistance of 

T91 ECAE maintain, with respect to its unprocessed variant, at ultra-high damage 

levels?  Equipped with knowledge and proper techniques for performing and analyzing 

specimens after ultra-high damage level irradiations, an assessment of the 

microstructural evolution in T91 ECAE and its stability relative to an unprocessed T91 

alloy can be made.  In order to provide the most cogent comparison, T91 and T91 ECAE 

were subject to the same conditions to minimize potential variations in the resulting 

microstructure.  

 

6.1 Experimental Procedure 

 

The heat of alloy T91 used in this study contained 9.4 wt% Cr and major alloying 

elements Mo, V, Si, Ni and Nb, with compositional details given in Table 5.1.  The T91 

was normalized at 1038°C for 0.5 h, followed by tempering at 760 °C for 0.5 h, with the 

specimen cooled in air after each step in the heat treatment [27].   ECAE processing was 

used for the severe deformation of T91.  A fully tempered T91 bar was extruded at 300 

°C for two passes with 90 degree rotations between each pass.  Additional details on the 

technique can be found elsewhere [27,110].  The resulting material was cut into 4 mm × 

2 mm plates and mechanically ground to a thickness of 0.5 mm using SiC grit paper of 

600, 800, and 1200 grit.  Mechanical polishing using a 0.05 um alumina solution and 

                                                           
Reprinted with permission from “Radiation instability of equal channel angular 

extruded T91 at ultra-high damage levels”, Jonathan G. Gigax, Hyosim Kim, Tianyi 

Chen, Frank A. Garner, and Lin Shao, Acta Materialia 132 (2017) pp. 395-404, 

Copyright 2017 by Elsevier. 
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followed by electropolishing was used to remove the surface damage introduced by the 

grinding step.  Irradiation conditions were identical to those conditions used in the 

unprocessed T91 irradiation.  Post-irradiation characterization utilized identical 

equipment in the study of the previous section. 

To calculate grain boundary misorientation, more than 30 grains in each system 

were sampled resulting in more than 40 grain boundaries characterized.  Although more 

grains were measured, larger grains located partially in the irradiated region with the 

remainder in the unirradiated region were not considered. Bright-field TEM and 

diffraction patterns were utilized to obtain an orientation map of the grains in the 

irradiated region (<1.5 um below the surface).  The use of SEM electron backscatter 

diffraction was not chosen due to the heavy surface sputtering observed after irradiation. 

 

6.2 Void Swelling 

 

Figs. 6.1(a-c) show typical STEM micrographs obtained from coarse-grained 

T91 irradiated to 250, 750, and 1000 peak dpa, respectively.  Figs. 6.1(d-f) show typical 

STEM micrographs obtained from extruded T91 irradiated to 250, 750, and 1000 peak 

dpa, respectively.    At first glance, both coarse-grained (unextruded) and fine-grained 

(extruded) specimens appeared to behave similarly under ion irradiation.  For the 

specimens irradiated to 250 peak dpa, voids developed heterogeneously through the 

specimens and were found predominantly near the ion-incident surface.   With 

increasing damage level to 750 peak dpa, both void density and size increased, featuring 

similar heterogeneity as seen in the 250 peak dpa specimen.  At 1000 peak dpa, voids 

moved deeper into the specimen.  At this damage level, voids were more homogeneously 

distributed in both alloy variants. 
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Figure 6.1 – Typical STEM-HAADF micrographs of coarse-grained T91 irradiated to 

peak dpa of 250 (a), 750 (b), and 1000 (c) and extruded T91 irradiated to peak dpa of 

250 (d), 750 (e), and 1000 (f).  SRIM ion range and damage profiles are superimposed in 

(d). Reprinted with permission from [109] Copyright 2017 by Elsevier. 

 

 

 

Despite similar characteristics, a closer look reveals distinctly different swelling 

behaviors in the fine and coarse-grained specimens.  Void distributions were more 

heterogeneous in the fine-grained T91with a lower overall void density but larger void 

swelling at 250 dpa.  This heterogeneity is also seen at 750 peak dpa with the extruded 

T91 specimen exhibiting a significantly larger void growth than the control T91.  At 

1000 peak dpa, both coarse-grained T91 and extruded T91 exhibited more homogeneous 

void swelling, but the fine-grained T91 exhibited larger average void radius and 

shallower void distributions compared with the coarse-grained T91.   

Fig. 6.2a provides the void swelling distribution as a function of depth for the 

coarse-grained T91 [74].  Void swelling at 250 peak dpa is confined to a depth region 

less than 400 nm and reached ~1% swelling.  With increasing dose to 750 peak dpa, 

more significant swelling up to a maximum of ~6% developed and voids were found 



 

65 
 

 

within a depth of 1000 nm. At 1000 peak dpa, the swelling increased significantly with a 

maximum swelling of ~22% located at a depth of 500 nm, with voids observed to a 

depth of 1000 nm.   

 

 

 

 

Figure 6.2 - Void swelling as a function of depth for both (a) coarse-grained and (b) 

extruded T91 specimens irradiated to a peak dpa of 250, 750, and 1000.  SRIM dpa and 

Fe implant profiles are plotted for comparison. Reprinted with permission from [109] 

Copyright 2017 by Elsevier. 

 

 

 

Fig. 6.2b shows the void swelling distribution in the extruded T91. At the lowest 

damage level, the peak swelling reaches a value of 2.5% at depths between 600 to 800 

nm.  At 750 peak dpa, significant swelling occurs between 200 and 600 nm, with a 

maximum swelling of ~13% between 400 and 600 nm.  At 1000 peak dpa, the void 

swelling increases to a maximum value of ~37% at ~400 nm.  Swelling is greatly 

suppressed in the peak dpa region and no void swelling is observed at the ion projected 

range, with an exception at 1000 peak dpa in the extruded T91 where a few voids are 

observed near the end of ion range.  Although this observation may suggest that voids 

are beginning to form in the region at the end of ion range, we note that the static ion 

distribution predicted by SRIM that does not account for the changing density of the 
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material along the ion path, among several other factors [69].  Correcting for such 

changes to the density shifts the void swelling distribution towards the surface. 

The void swelling distribution can be understood by several underlying 

phenomena.  The first is the concept of "defect imbalance", which arises from a 

combination of the effects of forward recoil of target atoms and injection of extra atoms 

from implantation [61]. Since momentum transfer is along the forward directions, the 

depth profile of vacancies is slightly shallower than that of interstitials. Void formation 

is promoted at shallow depths due to excessive vacancies, but is greatly suppressed in 

the peak damage region due to excess interstitials. Considering the surface defect sink 

property for vacancy removal, the maximum swelling typically occurs at approximately 

half of the projected range of Fe implants [61].  

Fig. 6.3a compares void swelling profiles of both coarse-grained T91 and 

extruded T91 irradiated to 1000 peak dpa.  Fig. 6.3b compares their local swelling values 

taken from the depth from 300 to 500 nm. Note that the dpa values in Fig. 6.3b 

correspond to local dpa. We selected this depth region since it is less affected by both the 

surface and injected interstitial effects.  The maximum swelling in extruded T91, 

observed at about 400 nm, is ~1.6 times greater than that of control T91, observed at 

about 500 nm.   Furthermore, significant swelling of extruded T91 extends about 300 nm 

deeper than the control T91.   

Fig. 6.3b shows two notable features in the depth region selected.  First, the 

swelling rate estimated from the last two dose points in extruded T91 and coarse-grained 

T91 are 0.18%/dpa and 0.09%/dpa, respectively.  Previous studies have shown that the 

neutron-induced steady-state swelling rate is about 0.2%/dpa for ferrite systems [10,11].  

Similar swelling rates have been reached for some alloys using ion bombardment [74, 

89,102,103].  Fig. 6.3b suggests that the extruded T91 exhibited steady state swelling. 

However, the control T91 did not yet reach this stage at the current damage levels.  It 

can be concluded that the incubation swelling period of the extruded T91 is shorter than 

the coarse-grained T91. 

 



 

67 
 

 

 

 

 

Figure 6.3 - (a) Measured void swelling profile as a function of depth for T91 and T91 

ECAE at 1000 peak dpa, and  (b) local void swelling measured from 300 nm to 500 nm 

(marked by brackets in (a)) for T91 and T91 ECAE at 250, 750, and 1000 peak dpa, 

respectively.  SRIM ion range and damage curves are plotted in (a) for reference. 

Reprinted with permission from [109] Copyright 2017 by Elsevier. 

 

 

 

Figs. 6.4(a-c) show typical bright-field TEM micrographs of extruded T91 after 

irradiation to 250, 750, and 1000 peak dpa, respectively, with grain boundaries marked 

by dashed lines.  Void denuding near grain boundaries is observed for damage levels less 

than 1000 peak dpa.  As shown in Fig. 6.4a and b, the average distances of voids to their 

nearest grain boundaries decrease with increasing damage level.  At 1000 peak dpa, 

voids appear to intersect grain boundaries (Fig. 6.4c).  Since large voids are immobile, it 

is assumed that the grain boundaries have moved to intersect the voids.   
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Figure 6.4 – Typical TEM bright field micrographs of select regions outlining the grain 

boundaries (dashed red outline) of T91 ECAE irradiated to damage levels of (a) 250, (b) 

750, and (c) 1000 peak dpa, respectively. Reprinted with permission from [109] 

Copyright 2017 by Elsevier. 

 

 

 

Earlier studies have shown that severely-deformed alloys have better radiation 

tolerance, often reflected by suppressed void swelling [27,89,111]. The mechanism was 

explained in numerous modeling studies by the defect sink properties of grain 

boundaries, notably through the production of a void denuded zone near grain 

boundaries. The present study, however, shows that the swelling resistance of severely 

deformed T91 is contrary to previous observations.  That is, the deformed alloys have 

higher swelling despite the final grain sizes after coarsening remaining smaller than 

those in the control samples.  The results of the experiment provide evidence that new 

mechanisms are needed to explain this discrepancy. 

Fig. 6.5 provides a comparison of T91 irradiated in this study and dual-phase EP-

450 and fully martensitic HT9 irradiated at the ESUV-1 facility at the Kharkov Institute 

of Physics and Technology [102,103].  Swelling values for control T91 and extruded 

T91 are taken from a depth region between 300 nm and 500 nm, corresponding to local 

values of 120, 360, and 475 dpa, respectively.  Swelling data for EP-450 and HT9 are 

taken from a depth interval 100-200 nm below the ion-incident surface.  There are 

several notable observations in this comparison.  First, the incubation periods for 

swelling in extruded and coarse-grained variants of T91 are larger than the ferrite phase 
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in EP-450.  The lack of higher swelling data for tempered martensite in EP-450 

precludes a fair comparison against T91 and HT9.  However, the available data suggests 

that the incubation period for tempered martensite in EP-450 is lower than that of T91 

and HT9.  The steady-state swelling rate of extruded T91 closely matches that of cold-

worked HT9.  

 

 

 

 

Figure 6.5 – Comparison of swelling in T91 observed in this study with swelling 

observed in previous studies on HT9 and EP-450 [102,103]. Reprinted with permission 

from [109] Copyright 2017 by Elsevier. 

 

 

 

Fig. 6.6 compares the swelling in the region of 200-500 nm of the present study 

with that observed in various neutron irradiation experiments [71,82-85]. Note that all 

ion-induced swelling points in Fig. 6.6 are plotted as a function of local dpa.  The low 

dose swelling behavior in both ion irradiated T91 specimens is similar to that of the 

neutron irradiation data.  Ion irradiation at high dpa rates appears to slightly delay the 

onset of swelling compared to that under neutron irradiation, suggesting a dependence of 

the duration of the transient swelling regime on dpa rate.  
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Figure 6.6 – A comparison between the swelling behavior of various heats of T91 

irradiated in the Fast Flux Test Facility (FFTF) [71,82-85] and ion-irradiated variants of 

T91 from this study (data taken from a depth interval of 200-500 nm). Reprinted with 

permission from [109] Copyright 2017 by Elsevier. 

 

 

 

6.3 Grain Evolution 

 

Grain coarsening is an important structural evolution accompanying void 

swelling in this study.  Figs. 6.7(a-d) provide a cross-sectional STEM image comparison 

of extruded T91 with increasing dpa values. Prior to irradiation, grains are equiaxed and 

have an average size of ~300 nm.  Irradiation to 250, 750, and 1000 peak dpa produces a 

large degree of anisotropic grain growth, with grains growing preferentially along the 

ion incident direction.  The growth results in the formation of columnar-like grains 

spanning an average size of at least 500 nm and, in some cases, up to a maximum of 

~1000 nm. The lower dashed line in Fig. 6.7 marks the projected range of 3.5 MeV Fe 

ions. Significant grain growth occurs only within the irradiated region.   
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Figure 6.7 – Typical STEM images of an (a) unirradiated specimen, and specimens 

irradiated to (b) 250, (c) 750 peak dpa, (d) and 1000 peak dpa.  The ion irradiated region 

is enclosed by dashed white lines. Reprinted with permission from [109] Copyright 2017 

by Elsevier. 

 

 

 

In order to separate annealing effects from radiation effects, we analyzed the 

grain size changes in both the irradiated region and beyond the irradiated region to 

separate thermal annealing effects from radiation-induced effects. The dpa dependence 

of grain growth is plotted in Fig. 6.8. The comparison between the irradiated region and 

unirradiated region shows that the grain growth of the irradiated region has two distinct 

inflection points at which the grain growth rates increase. One increase appeared at ~250 

peak dpa, with another occurring at a much higher dose (>750 peak dpa).  By 

comparison, grain size changes in the unirradiated region maintain a relatively low and 

constant growth rate, with the increase approaching ~25% at the highest damage levels 

compared to ~175% for the irradiated region.  The unirradiated region is free from 

radiation damage and grain evolution is driven by thermal annealing only.  Thus, the 

dramatic grain growth observed in the irradiated region is enhanced significantly by 

athermal processes. 
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Figure 6.8 - Average grain size of irradiated T91 ECAE as a function of damage level 

for the irradiated and unirradiated regions.  The unirradiated region refers to depths well 

beyond the projected ion range. Reprinted with permission from [109] Copyright 2017 

by Elsevier. 

 

 

 

Irradiation studies on deformed ferritic-martensitic alloys have shown 

comparatively good grain stability during thermal annealing [27,89,111].  Under 

irradiation, however, several studies on various nano-grained specimens, primarily pure 

metals, have reported large grain growth after irradiation [29-32].  In the grain growth 

model proposed by Kaoumi et al., grain growth occurs when thermal spikes from 

damage cascades, produced by collision atoms near grain boundaries, thermally excite 

atoms locally [32].  The net direction of atom migration is determined by the driving 

forces for grain growth (e.g. grain boundary curvature, solute concentration gradients), 

which leads to a net curvature reduction in the grain boundary, thereby driving grain 

growth.  

The thermal spike model may describe the grain evolution at low doses in our 

system.  The athermal grain growth mechanism in this model requires damage cascade 

creation near grain boundaries.  For small grains, the likelihood of a damage cascade 

near grain boundaries is high and is coupled with a strong driving force for grain growth 

via grain boundary curvature reduction.  With increasing grain sizes, this effect becomes 
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weaker. The thermal spike model, however, cannot explain the rapid growth at damage 

levels beyond 750 peak dpa, an observation that must involve a different athermal 

mechanism.  

In order to understand the source of the increasing grain growth rate beyond 750 

peak dpa, we examined the grain size changes in the coarse-grained T91 as well.  Fig. 

6.9 compares the average grain size in the irradiated regions of both coarse and fine-

grained T91.  At low doses from 0 to 250 peak dpa, the grain size in coarse-grained T91 

does not exhibit similar grain size growth as observed in the extruded T91.  Both 

specimens, however, exhibit rapid growth beyond 750 peak dpa.  The similarity in grain 

growth suggests that the mechanism responsible is independent of grain size.  Instead, 

the increase in grain size occurring at 750 peak dpa correlates to a common change in 

the microstructure: void swelling.  Fig. 6.3b shows that around 750 peak dpa, both the 

coarse and fine-grained samples exhibited a large increase in the swelling rate (at a depth 

between 300-500 nm, corresponding to a 360 local dpa), with the void swelling 

increasing by an additional ~9% and ~18% from 750 to 1000 peak dpa (360 to 475 local 

dpa), respectively.  The potential coupling of grain growth and void swelling is further 

examined in the discussion section.  
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Figure 6.9 - Average grain sizes of irradiated coarse-grained and extruded T91 as a 

function of peak damage level. Data are taken only from the irradiated regions. 

Reprinted with permission from [109] Copyright 2017 by Elsevier. 

 

 

 

6.4 Radiation-induced Precipitation 

 

Fig. 6.10 shows EFTEM images of coarse-grained and fine-grained T91 with 

grain boundaries and precipitates annotated in the figure.  A Cr jump map was chosen to 

show the difference in solute concentrations between the fine and coarse grain samples 

at 250 peak dpa.  Mn, Ni, and Cu jump maps were also obtained to verify solute 

behavior.  After irradiation to 250 peak dpa, T91 shows the precipitation of Cr-rich 

precipitates in grains, with a few located on grain boundaries.  These precipitates appear 

throughout the irradiated region but do not appear beyond the ion range, indicating that 

the precipitation results from irradiation.   
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Figure 6.10 – Typical bright field and energy filtered TEM micrographs of select regions 

in coarse-grained and extruded T91 irradiated to 250 peak dpa.  Grain boundaries are 

marked by dashed lines and solutes are encircled by solid lines.  Arrows indicate Cr-rich 

precipitates in the Cr jump map. Reprinted with permission from [109] Copyright 2017 

by Elsevier. 

 

 

 

A comparison to the fine-grained T91 reveals a striking difference.  The Cr-rich 

precipitates are only observed on grain boundaries with no presence within grains, 

suggesting that solutes are largely depleted within grains.  Furthermore, the Cr-rich 

precipitates are larger in size than those in coarse-grained T91.  These observations are 

not unexpected as the ECAE process relies heavily on the formation of precipitates to 

pin dislocations and grain boundaries to produce a fine grain structure.  We note that the 

lack of radiation-induced precipitation in nano-grained specimens was also observed in 

fine-grained SS304 subject to similar ECAE processing and heavy ion irradiation [111]. 
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6.5 Correlation of Void Swelling and Grain Growth 

 

The void swelling behavior at high doses of the coarse-grained and extruded T91 

differs greatly from much of the lower dose irradiations in fine-grained systems studied 

to date.  We attribute some of these differences to several possible phenomena.  First, 

T91 contains a number of minor solutes that have been added to achieve a range of 

desired properties.  These solutes have been observed to influence the void swelling 

behavior of steels, serving to suppress void swelling at low doses [16,19].  For severe 

deformation processes, interstitial solutes play a key role in achieving a fine grain 

structure [112].  Large solute-rich precipitates were observed on grain boundaries of the 

extruded T91 with densities higher than that of the control sample. This solute 

precipitation is expected to alter the microscopic composition within grains.  Since both 

variants have similar compositions, the lower concentration of solutes within grains of 

the extruded T91 compared to the unprocessed variant suggests that the different void 

swelling behaviors may arise from this difference. 

Second, previous studies showed that cold-working promoted swelling at 

elevated temperatures for some soft alloys that had difficulty establishing a stable 

radiation-induced dislocation network, with cold-working and subsequent thermal aging 

producing even larger increases in void swelling [6,10].  The effect is present at two 

stages.  Prior to irradiation, the dislocation network from cold-working promotes void 

nucleation in dislocation-free regions through biased interstitial absorption.  The onset of 

steady-state void swelling observed at higher damage levels is accompanied by the 

production of a dense dislocation network.  The movement and subsequent pile-up of 

dislocations at grain boundaries at these doses act as a biased defect sink for interstitials 

and the effect further compounds on the pre-existing interstitial defect biases.  Cold-

working does not appear to influence the steady-state swelling rate significantly, 

implying the strongest effect is on the incubation period of swelling.  The swelling rate 

for extruded T91 nearly reaches the 0.2%/dpa steady-state swelling rate expected for bcc 

F/M alloys, while the coarse-grained T91 has reached only half of the steady-state rate.  
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The fact that the control T91 does not reach the expected steady state swelling rate 

suggests that it is still in its transient swelling stage.  From Fig. 3b, the incubation period 

for attaining the steady-state swelling is ~100 dpa less for the extruded T91 than the 

coarse-grained T91. 

It is important to note that creep may also play a role in the observed void 

swelling behavior.  It is well known that void swelling can enhance creep through biased 

defect migration towards different defect sinks: vacancies to voids and interstitials to 

dislocations [113]. The present study shows different but similar biased defect-sink 

interactions: vacancies to voids and interstitials to growing grain boundaries. Both the 

current and previous study showcase the complexity of correlated microstructural 

evolution under extreme radiation conditions. 

The previously discussed phenomena do not address the grain instability in T91 

ECAE and its impact on void swelling.  Our discussion focuses on the following 

phenomena, followed by our hypothesis and explanation: 

1) Although the grain sizes in extruded T91 are smaller than the grains in coarse-

grained T91 at all doses, extruded T91 has higher swelling than control T91. This 

cannot be explained by a simple treatment of boundary sink strength, which is 

proportional to 1/d, where d is the grain diameter [114]. The discrepancy 

suggests that additional complexity from grain boundary structural changes must 

be considered.     

2) At peak dpa >750, rapid grain growth starts for both coarse and fine-grained T91. 

At the same damage levels, more rapid void swelling starts for both specimens. 

The rapid grain growth at high damage level is closely correlated to swelling, 

regardless of the grain sizes.  

The grain instability observed in this study is accompanied with a significant 

reduction in the sink strength or sink neutrality of the growing grain boundaries in the 

irradiated region due to a combination of the lowering of the grain boundary 

misorientation angles and the buildup of defects on the grain boundary itself. Fig. 6.11 

plots the misorientation angles of grains in unirradiated T91 ECAE and T91 ECAE 



 

78 
 

 

irradiated to 250 peak dpa.  Both specimens are populated with a larger fraction of low 

angle grain boundaries than high angle grain boundaries.  However, the low angle grain 

boundary fraction appears to enrich after irradiation to 250 peak dpa with an 

accompanying drop in high angle grain boundaries.  The average misorientation angle 

measured after 250 peak dpa was found to be ~11°.  The ratio of low angle to high angle 

grain boundaries was found to be 2 in the irradiated region.  By comparison, the average 

misorientation angle in the unirradiated specimen is measured to be ~17° with a ratio of 

only ~1.2.  It is important to note that low angle grain boundaries are typically 

characterized by a collection of dislocations, while high angle grain boundaries feature a 

unique atomic structure from the matrix [115,116].  Careful attention must be paid with 

regards to the grain boundary structure as the sink strength shows a large disparity 

between different misorientation angles and grain boundary types [26,117,118].  Chen et 

al. showed that when the misorientation angle becomes lower, the areal density of defect 

formation energy minima on a grain boundary is reduced, leading to reduced defect 

loading paths.  This results in lower sink strength for low angle grain boundaries 

compared to high angle boundaries, suggesting that the overall sink strength of the grain 

boundaries in the irradiated system decreases from structural changes. 
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Figure 6.11 – Misorientation angle distribution measured in the unirradiated fine-grained 

T91 and extruded T91 irradiated to 250 peak dpa.  Misorientation angles averaged into 

5° bins. Reprinted with permission from [109] Copyright 2017 by Elsevier. 

 

 

 

For the grain growth at a high damage level (>750 peak dpa), a new mechanism 

is needed to explain the correlation with void swelling. Significant void growth results 

from void nucleation and subsequent net vacancy absorption. Based on a simple 

argument involving point defect balance, a biased interstitial flux towards grain 

boundaries must exist. Although grain boundaries are often treated as neutral defect 

sinks for both interstitials and vacancies, nothing is known about a growing grain 

boundary. Previous studies suggest the possibility of a changing defect bias for a grain 

boundary under irradiation [21,119-123].  A recent study by Dey et al. showed 

irradiation can induce grain growth in nanocrystalline zirconia, and that grain growth 

cannot be avoided even with adding dopants to grain boundaries to reduce boundary 

energies [124].  It was argued by Dey et al. that a growth mechanism different from 

thermally activated boundary movement must be involved under heavy ion irradiation 

and that a reduction in grain boundary energy leads to a lower grain boundary sink 

strength. This is in agreement with the results in the present study showing the 

complexity of grain boundary sink property changes. The experimental evidence 
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presented suggests that the defect sink property of a growing boundary is different from 

that of a static grain boundary. Since the correlation of grain growth and void swelling is 

observed in both extruded T91 and coarse grain T91, the biased defect sink property 

must occur independently of both grain boundary densities and boundary misorientation 

angles.   

The major microstructural changes that occur in the fine-grained T91 are 

illustrated in Fig. 6.12 and can be summarized as follows: 

1) At low doses, ion irradiation produces defects that are removed efficiently by the 

dense grain boundaries shown in Fig. 6.12a.  However, the grains are observed to 

grow significantly, with grain boundaries undergoing structural changes arising 

from both grain growth and defect loading.  

2) Additional irradiation to higher doses (750 peak dpa) results in the formation of 

voids, a complex dislocation network that piles up near grain boundaries at the 

end of ion range, and slight increases to grain size (Fig. 6.12b).  Due to the defect 

imbalance effect, the near surface regions are vacancy-rich while the deeper 

depths near the end of ion range are interstitial-rich, leading to the appearance of 

small voids in the near surface region.  The grain growth at lower doses is 

correlated to significantly more swelling in the fine-grained T91 than in the 

coarse-grained counterpart, with this behavior continuing to higher doses.    

3) A second large increase in grain size is observed at ultra-high doses of 1000 peak 

dpa (Fig. 6.12c).  Significant void swelling was observed for both fine and 

coarse-grained T91, with the fine-grained specimen approaching the expected 

steady-state swelling rate of bcc steels.  The correlated increase in void swelling 

and grain growth, observed in both fine and coarse-grained T91, arises primarily 

from voids acting as biased vacancy defect sinks, resulting in a large interstitial 

flux to the growing grain boundaries.  
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Figure 6.12 – Illustration of the microstructural evolution of extruded T91 irradiated to 

(a) 250, (b) 750, and (c) 1000 peak dpa. Reprinted with permission from [109] Copyright 

2017 by Elsevier. 

 

 

   

The present study points to the importance of ultra-high dpa testing of candidate 

alloys. Conclusions from low dpa testing cannot be extended to high dpa performance 

when features introduced by composition engineering or structural engineering may 

evolve under ion irradiation. The study also shows that grain boundary density is not the 

only parameter determining the defect removal capability of boundaries, but also by 

other important factors such as the misorientation angle. It is beyond the scope of the 

present study to explain how a growing grain boundary can absorb interstitials as a 

biased sink, or how a biased interstitial loading can promote grain growth.  Additional 

atomic scale modelling is needed to reveal the fundamental processes.  
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7. CONCLUSIONS 

 

In the present work, three effects that operate strongly on the void swelling 

response of the system were investigated.  Defect imbalance is an intrinsic phenomenon 

that arises from the use of an ion to introduce damage in the system.  The irradiation 

revealed that voids form between the surface and the end of the implanted ion range.  

Future void swelling analysis should then focus on this region.  The effect of rastering or 

pulsing an ion beam was shown to dramatically suppress swelling with increasing 

rastering speed.  Since the swelling rate from the static, defocused beam best matched 

the expected 0.2%/dpa stead-state swelling rate, a static beam is strongly recommended 

for neutron simulation of damage. Third, it was observed that without filtering 

techniques ion irradiated HT9 developed carbides and an elevated carbon concentration 

in the near surface region after irradiation.  This was found to suppress swelling 

dramatically.  After employing a filtering system, the carbon in the near surface was 

found to be similar to the unirradited sample and void swelling better matched neutron 

swelling behavior in HT9.  By addressing each of these neutron-atypical effects, the 

impact these have on the microstructural evolution under irradiation can be minimized 

enabling a more meaningful exploration of irradiation effects at high damage levels. 

In addition to the studies on neutron atypical effects, two studies investigating the 

response of a compositionally engineered material, T91, and its structurally engineered 

variant were performed.  The results show that T91 behaves similarly to the low damage 

level neutron behavior and possess good swelling resistance.  However, the structurally 

engineered variant possessed poorer swelling resistance than its unprocessed 

counterpart, developing more severe microstructural changes at ultra-high damage 

levels.  This is in direct contrast to previously published low damage level studies, 

implying the importance of high damage level irradiations to fully understand 

microstructural evolution under irradiation. 
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