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ABSTRACT

X-ray bursts are the most frequent thermonuclear explosions occurring in the universe

and represent one of the sources of heavier element nucleosynthesis. In order to determine

how much X-ray bursts influence the abundances of these heavier nuclei there is a need

for critical nuclear information such as: nuclear masses, β-decay rates and reaction rates.

Due to this need, the field of experimental nuclear physics has been focusing on de-

veloping unstable beams and new or improved indirect methods of studying nuclei and

reactions, as well as detection systems of higher capability.

In light of this perspective, the focus of this dissertation was twofold. One part involved

performing a low-cost, low-modification upgrade to the Oxford focal plane detector using

Micromegas technology. The upgrade was very successful in improving the total energy

loss resolution by as high as a factor of 3 and thus improving the particle identification

ability of the detector. This leads to an increase in the mass range of nuclei possible to

study from A=16 to A=32.

The other part of this dissertation project was aimed at studying the proton-capture

reaction 27Si(p, γ)28P using an experimental indirect method called the Asymptotic Nor-

malization Coefficient method. This reaction is part of the thermonuclear runaway network

of an X-ray burst suggested by the theoretical models. The spectroscopic factor of 28P was

evaluated for the first time in literature at S2s1/2 = 1.11±0.56. The direct capture reaction

rate was found to be in agreement with the theoretical predictions, and it was confirmed

experimentally that at astrophysical energies, the non-resonant component is overwhelmed

by the contributions of the resonances.
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1. INTRODUCTION

Nuclear astrophysics is the field of study focused on nuclear processes occurring under

stellar conditions and their influence on nucleosynthesis and energy production in stars and

stellar explosions [3]. As the name states, nuclear astrophysics relies heavily on the fields

of nuclear physics, astronomy and astrophysics.

Nuclear physics provides necessary information on isotopic abundances, masses, half-

lives and nuclear reaction cross-sections. The field of astronomy contributes with obser-

vational data related to the various celestial bodies, such as positions, luminosity, motion,

and radiation spectra. Last, but not least, astrophysics uses spectral measurements and

the laws of physics and chemistry to estimate elemental or isotopic abundances and to

formulate theories on stellar and galactic evolution [4].

The world around us is made of atoms. In turn, each atom consists of a nucleus, made

of neutrons and protons, surrounded by electrons. Atomic nuclei, or nuclides, are classified

in a two-dimensional chart according to the number of neutrons and protons. Figure 1.1

shows the chart of nuclides that have been observed until now [5].

Those nuclides that are naturally occurring in our universe were created through var-

ious processes of nucleosynthesis occurring during Big-Bang Nucleosynthesis (BBN), as

well as inside stars, on the surface of them or even in the regions between stars [6]. It is

important to understand these different processes and where they occur in order to inter-

pret correctly the nuclide abundances obtained through various sources including, but not

limited to, the observational data collected by the many detectors pointed at the sky.

For example, Figure 1.2 shows the distribution of abundances in the Solar System,

plotted as a function of the mass number. The data for this plot was obtained mostly

from observations of the solar photosphere and from the analysis of certain meteorites,
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Figure 1.1: The chart of nuclides. Stable nuclei are indicated in black. (print-screen taken from [5])

called CI carbonaceous chondrites. It can be seen that H and He are the most abundant

nuclides. In general, the behavior of the distribution is a decreasing one with increasing

mass number. But this is not smooth and there are a number of exceptions. Li, Be and B are

extremely under-abundant with respect to their neighbors, whereas the Fe region exhibits

a pronounced peak. Smaller peaks appear for A ≥ 100 in either the odd-A or even-A

distributions, or in both. This complicated pattern has generated a number of debates over

the years regarding its causes [7].

The current assumption is that the nuclides in these regions of maxima and minima can

be attributed to specific mechanisms of nucleosynthesis. As such, these abundances offer

powerful clues to stellar evolution, as well as the evolution of the Universe as a whole. It is

thought that all of the 1H and most of the 2H, 3He and 4He, were produced in the Big Bang.

Figure 1.3 shows the most important reactions involved in BBN. In addition to these four
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Figure 1.2: The distribution of nuclide abundances in the Solar System. [7]

isotopes, the reaction network of the Big Bang also produces 7Li. It is widely accepted

now that nuclei heavier than that are all produced in stars [8].

Following the Big Bang and an initial cooling stage, stars are born in large clouds of

interstellar gas through gravitational contraction. During this process, temperature and

density increase until they reach a critical point where thermonuclear fusion begins. A

star exists in thermodynamic equilibrium when the gravitational force is balanced by the

internal, thermal pressure generated by nuclear reactions occurring inside [7].

Thermonuclear fusion occurs in stages, called burning stages. In each stage, the lighter

nuclei fuse in order to produce heavier ones, thereby changing the composition of the gas.

When most of the initial ‘fuel’ is consumed gravitational contraction begins again, leading

to an increase in temperature and density. Once the critical values are reached, the next
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Figure 1.3: Diagram of the most important reactions occurring during BBN. (figure adapted from
Ref. [9])

burning stage begins, where the previously produced nuclei, the ‘ashes’, start fusing into

heavier ones. The number of burning stages, and shells, depends on the initial mass of

the star but the maximum possible number is 6: hydrogen, helium, carbon, neon, oxygen

and silicon burning. By the final stage of thermonuclear fusion, the star gains an ‘onion’

structure as shown in Figure 1.4.

The first stage, hydrogen burning, is the process in which four 1H nuclei fuse into one

4He nucleus. Each such transformation releases an energy of 26.7 MeV independent of

the details involved in the process. There are 2 main methods of production of 4He that

occur in this stage: the pp-chains and the CNO-cycles.

The three reaction chains referred to as pp-chains are shown in Figure 1.5, (a). Each

sequence starts from the same reaction, p(p, e+ν)d, and ends with the production of 4He.

The four sets of reactions called CNO cycles are shown in Figure 1.5, (b).

The rate of occurrence for each method depends on the temperature, T, of the stellar
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Figure 1.4: The ‘onion’ shell structure of a massive star. Top-left shows shell labels according to
their respective ‘ashes’. Bottom left shows the ‘fuel’ burning in each stage, i.e. H-B for hydrogen
burning. [8]

gas. The slowest reaction in the pp-chains is the weak interaction p(p, e+ν)d and its rate

is proportional to T4 [6]. In the CNO cycles, the slowest reaction is the electromagnetic

interaction 14N(p, γ)15O and its rate is proportional to T20 [6]. As such, stars like the Sun

(M ≈ 1.5 MSun) burn their hydrogen mainly through the pp-chains. Whereas, stars that

are heavier and have a higher core temperature will consume their hydrogen through the

CNO-cycles. In both cases, the temperature range is 0.015 GK ≤ T < 0.06 GK.

Theoretical predictions state that in order for a star to reach this first burning stage, its

initial mass must be at least 0.08 MSun. If the mass is lower than that then the star ends its

evolution as a brown dwarf, when electron degeneracy sets in balancing the gravitational

contraction. The ashes of the hydrogen burning stage consist mainly of helium. A star

that maintains hydrostatic equilibrium by burning hydrogen at its core is called a main-

sequence star [8].

When all the hydrogen fuel is consumed, gravitational contraction begins again, caus-
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(a)

(b)

Figure 1.5: (a) The pp-chains. (b) The CNO-cycles. [8]

ing an increase in temperature and density. If the initial mass of the star is less than 0.4

MSun, then the star eventually evolves into a red dwarf. If the initial mass is larger than

0.4 MSun, then the temperature and density can reach critical values of ∼0.1 GK and 103

g/cm3, respectively, and helium burning begins. Two sets of reactions dominate this stage

of stellar nucleosynthesis. The first is called the triple-α reaction because it converts 4He

into 12C:

4He+ 4He→ 8Be

8Be+ 4He→ 12C

This path proceeds through the unstable nucleus 8Be and is inhibited by the short life-

time of 8Be (∼10-16 s). Despite that, the temperature and density conditions allow for
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a small abundance of 8Be to build up and for the second reaction to occur. This set of

reactions is responsible for most of the 12C produced in the universe.

The second ‘set’ is actually the reaction 12C(α, γ)16O. Once the 12C nuclei start to

build up, this reaction starts to occur, further consuming 4He and competing with the

triple-α reaction. As such, the ashes of the helium burning stage consist mainly of 12C and

16O.

Further stellar evolution will depend again on the initial mass of the star. If it exceeds 9

MSun, the subsequent stage of gravitational contraction will lead to the initiation of carbon

burning and produce ashes consisting mainly of 20Ne. If the mass is insufficient, the star’s

evolution will end in a carbon-oxygen white dwarf. Similarly, in order for neon burning

to start, the initial mass of the star needs to be ∼11 MSun. If the mass is lower than

this threshold then the star will eventually become an oxygen-neon white dwarf and stop

evolving [8].

The result of the neon burning stage is the production of 16O and 24Mg which will

fuel oxygen burning. Theory predicts that a mass of ∼11 MSun is enough to complete this

stage as well, producing mainly 28Si, and even proceed to the last of the burning stages,

silicon burning. The 28Si nuclei are consumed mainly by (γ, α) and (α, γ) reactions. The

α-particles produced in the photo-nuclear process can then be captured by other silicon

nuclei to produce higher mass compounds. Other processes contribute to the complex

reaction network until the products reach the tightly-bound 56Fe and 64Ni, where higher

mass nucleosynthesis stops.

At the end of the Si-burning stage, the star has a core of iron and nickel nuclei and

there is no further thermonuclear fusion occurring as it produces no further energy. In that

situation, the thermodynamic equilibrium is broken and gravitational contraction restarts.

When it reaches a critical point, the star becomes unstable and the core starts to collapse.

As that happens, the iron nuclei are photo-disintegrated and electrons are removed from
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the gas through electron capture. Both processes speed up the collapse leading to a massive

explosion. The star is destroyed, leaving behind either a neutron star or a black hole [3].

Figure 1.6 summarizes the different evolutionary paths available to protostars depending

on their starting mass.

It can now be seen how the nuclear processes occurring inside stars take the basic

building blocks produced in the Big Bang and transform them into a range of heavier

nuclei that reach the iron region of the chart of nuclides. But there is still the question of

how, where and in what circumstances the species beyond iron are made.

The first theories regarding that were published in 1957 by Burbidge, Burbidge, Fowler

and Hoyle, who proposed a number of nuclear processes for heavy nucleosynthesis and

their potential locations [10]. These can be roughly split into two categories, those that

produce neutron-rich nuclei and those that produce proton-rich nuclei.

On the neutron-rich side of the nuclide chart, there are two processes that lead to

nuclei heavier than iron: the s-process (slow) and the r-process (rapid). Both involve the

capture of neutrons by preformed seed nuclei. The difference between the two processes

comes from the timing, slow or rapid, between successive captures relative to the typical

β-decay times of the nuclei involved. Due to this, the theorized sites of occurrence are

also different. The s-process is thought to take place during helium burning, in AGB

(asymptotic giant branch) stars. Whereas for the r-process there are two working models:

neutron star mergers and core-collapse supernovae [6].

In contrast, production of heavier nuclei on the proton side of the chart is governed by

two completely different processes: the rp-process and the γ-process. The rapid proton

(rp) process consists of successive proton capture reactions, interspersed with the occa-

sional β+-decays and e- captures. This method of synthesis takes place as long as the

Coulomb barrier of a nuclide allows the process to take place. When the barrier becomes

too high, synthesis stops. Or, if the temperature is high enough, the γ-process takes over.
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As the name indicates, the latter process consists of photo-nuclear reactions, such as

(γ, α) and (γ, n). In order for these processes to occur, they need a high-temperature,

hydrogen-rich environment like the ones created when matter accretes on the surface of a

(1) neutron star or a (2) white dwarf, as well as in (3) type I or II supernovae [6].

Of interest to the subject of this dissertation is the first case. In binary systems consist-

ing of a neutron star and a main sequence (MS) companion, matter transfers from the MS

star and accumulates on the surface of the neutron star. Due to the stage in evolution of the

companion, the transferred material usually consists of H, He or both. As this material is

gathered onto the neutron star, it is subjected to the star’s intense gravitational field. The

matter gradually becomes compressed, leading to an increase in both density and temper-

ature and consequently triggering a thermonuclear runaway. The culmination of this chain

of reactions is an explosive event called an X-Ray Burst (XRB) (Figure 1.7) [12].

Figure 1.7: An artist’s rendition of the X-Ray Burst phenomena. [13]
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The first XRB was observed, and identified as such, in 1975 by the Astronomiche

Nederlandse Satelliet [14]. Over the last 42 years, 108 burst sources have been identified

[15]. XRBs are classified into type I and type II bursts according to their characteristics, the

specific burst profile and the proposed mechanism of production. Type I bursts are thought

to be associated with thermonuclear instabilities and are currently the most numerous of

the two types. The profile of a type I XRB shows a rapid rise in luminosity followed by

a slow decline. The duration of the burst can be anywhere between ∼10 s and several

minutes, the frequency of occurrence can vary from hours to days and the energy released

can be on the order of 1039 ergs. Type II bursts are linked to accretion instabilities and are

much rarer to occur. The luminosity profile of a type II XRB shows a rapid rise as well

as a rapid decline, without a gradual decay from peak luminosity. This type of burst lasts

between ∼2 s and ∼700 s, with an interval from 7 s to 1 h between successive bursts [12].

Type I XRBs were first associated with thermonuclear runaways by Woosley and Taam,

in 1975. Their model, called the thermonuclear flash model, states that the matter from the

MS star is first heated to 0.1-0.2 GK by the impact with the surface of the neutron star [16].

Further accretion eventually leads to a critical level of temperature and density, at which

point the bottom layer of accreted matter becomes unstable and the thermonuclear runaway

is triggered. The maximum temperature and density that can be reached before the trigger

occurs are thought to be T ∼ 1-2 GK and ρ ∼ 106 g/cm3 [17]. Different accretion rates

lead to XRBs with different behavior and characteristics.

Creating accurate models of these bursts is particularly difficult. One part of the chal-

lenge comes from the necessity of detailed, computationally intensive hydrodynamic stud-

ies. Another part comes from the sheer extent of the nucleosynthesis simulations, which

involve complex reaction networks including several hundreds of isotopes and several

thousands of nuclear processes. And yet another contributor to the difficulty is the lack

of experimental nuclear physics information related to these reaction networks, such as
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Q-values, decay times and reaction rates [17].

There are different types of models according to how each deals with these issues. One

category of models relies on parametrized one-zone calculations and has been in use since

1981 [18]. These models use a set of parameters (T, ρ, X) to characterize a single layer

of the envelope, where T is the temperature, ρ is the density and X is a composition array

describing the fractional concentration of each isotope. The thermodynamic quantities

are usually determined through semi-analytical models, or are sometimes extracted from

1-D hydrodynamic models [12, 19]. These models have a very simplified perspective of

the physical conditions governing neutron star envelopes, but they reduce significantly the

computational time that other, more complex, models require.

Recently, advances in computer processing power have enabled researchers to rely

more on 1-D hydrodynamic models for XRB nucleosynthesis calculations. These models

work on the assumption that the bursts occur uniformly over a spherical shell and are

limited by their treatment of the manner in which thermonuclear runaways are initiated

(presumably as point-like ignitions) and propagate.

The relevant types of reaction sequences in XRBs have been discussed in various stud-

ies (see [18,20–24]). It was found that the main reactions are (p, γ), (α, γ) and (p, α). Just

as important are the β-decay rates between the valley of stability and the proton drip line.

These reaction rates are important up to the endpoint of the rp-process [25].

A point of intense debate has been identifying which reaction rates are critical in XRBs.

One method to determine this would be to test each of them one by one. However, that

would be extremely time consuming as there are a large number of permutations that would

need to be tested. Instead, different research groups used different methods of ‘guessing’.

Woosley et al. [26] changed groups of decay rates and narrowed the rates down to several

important candidates. Fisker et al. ( [27, 28]) relied on ‘inspired guesses’ and found indi-

vidual important rates. Amthor et al. [29] used a one-zone model and individually varied
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a large number of reaction rates with the intent of verifying ‘one-zone’-candidates with a

multi-zone model. Using Monte Carlo methods, L. F. Roberts varied random groups of

reaction rates and similarly identified the most significant candidates for later verification

with multi-zone models [25, 30]. However, to date, there have been no published nuclear

abundances predictions from multi-zone models.

The variety in the reactions proposed in these studies shows that it is very important to

reach an accurate definition of the astrophysics theory behind modeling the X-Ray Burst

phenomena, as different models yield different critical reactions. At the same time, these

reaction rates need to be determined with lower uncertainties in order to constrain the

model.

Determining such reaction rates experimentally has been a motivation for research

studies for quite some time. The main issue in this regard is that the nuclei involved in

XRBs are almost all unstable with short lifetimes. Some of the reactions can and have

been studied reliably through indirect methods with stable beams. Most of them, how-

ever, require the use of accelerated unstable beams. In light of this, a number of facilities

worldwide have started, and in some cases, completed upgrades to produce such beams. In

cases where these are unavailable, research groups have continued to use indirect methods

and/or are designing more efficient detection systems [31].

The Cyclotron Institute at Texas A&M University is part of this group of facilities. Its

currently in-progress T-REX (Texas Re-accelerated EXotics) upgrade will provide high-

quality re-accelerated secondary beams. In addition and because of the future availability

of such beams, many of groups at Cyclotron Institute have also started developing better

detection systems or making improvements to existing ones.

As such, the focus of this dissertation project was two-fold. The main part involved

performing an upgrade to the existing so-called Oxford focal plane detection system, in

use by the Nuclear Astrophysics group at Cyclotron Institute. The goal was to improve
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the energy loss resolution of the detector in order to expand its particle identification range

beyond the nuclide mass A=22. Using the increasingly popular Micromegas technology,

it was possible to achieve this aim at lower cost, faster and with minimal changes to the

existing detection components of the Oxford system.

The second part of this dissertation was focused on using the upgraded Oxford detector

to study an astrophysical test-case reaction. Given that one of the first unstable light beams

to be produced with the T-REX will be 27Si, the reaction that was chosen was 27Si(p, γ).

This proton-capture reaction was one of the reactions considered by various groups as

important in explosive nucleosynthesis. The reaction rate was first estimated by Wallace

and Woosley in 1981 [18], then by Wiescher et al. in 1986 [32]. In both studies, the

XRB models were run for a temperature range of 0.1-0.5 GK and density 5 × 103 g/cm3,

conditions required for nova explosions. The rates agreed at higher temperatures and both

papers concluded that, at its estimated rate, the reaction had a significant contribution to

the network flow [32] and recommended measurements with radioactive beams.

In 1999, Iliadis et al. used a method based on the reaction Q-value to find critical

reactions in XRBs. In their study, they performed a nuclear reaction network calculation

for explosive hydrogen burning. The result is shown in Figure 1.8, where the different

colors indicate short-lived nuclei with proton-capture reaction Q-values in different ranges.

The assumption with this method was that if the (p, γ) reaction has high enough Q-value

(> 2 MeV, green, blue and purple squares) then the level density in the compound nucleus

is high enough that the statistical model of nuclear reactions can be applied to estimate

stellar reaction rates, therefore bypassing the need for experimental data. If the Q-value is

very small (< 0.5 MeV, red squares) then the inverse (γ, p) reaction becomes important at

the high temperatures typical of explosive hydrogen burning [2].

In this situation, the nucleosynthesis path depends mainly on the ratio of forward (pro-

ton capture) to backward (photo-disintegration) reaction rates. This ratio is determined by
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the (p, γ) reaction Q-value and not by the particular reaction cross section [2].

Figure 1.8: Simulated nuclear reaction network for explosive hydrogen burning. Nuclides are
color coded according to proton capture Q-value: red(Q<0.5 MeV), yellow(0.5<Q<2 MeV),
green(2.5<Q<3.5 MeV), blue(3.5<Q<5.5 MeV) and purple(5.5<Q<7.5 MeV). Additionally, the
gray squares represent stable nuclei, while the whites ones indicate unstable nuclei. [2]

The remaining nuclei, indicated by the yellow squares, have (p, γ) Q-values between

0.5 MeV and 2 MeV. As such, the two assumptions mentioned above cannot be applied

here. These nuclei are 23Mg, 27Si, 31S, 35Ar, and 39Ca. Iliadis et al. focused their study

on estimating the proton capture reactions involving these nuclei and determining their

influence on the outcome of XRB nucleosynthesis. The 27Si(p, γ)28P reaction rate was

estimated using theoretical calculations and experimental information on the 28P energy
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levels. For T > 0.07 GK, the results agreed with the ones found by Wiescher et al., as can

be seen in Figure 1.9.

Figure 1.9: Ratio between rate found by Iliadis and rate found by Wiescher as a function of stellar
temperature (GK). [2]

This rate was used in an XRB model with temperature range of 0.2-1.5 GK and density

107 g/cm3. It was found that varying the rate within ±σ produced no noticeable effect on

the final XRB abundances. A much larger variation, of a factor of 10, produced a change

in the final abundances of less than 40%.

A later study by Parikh et al. used the same estimated reaction rate as above but

different burst models. They reached the same result regarding final abundances but found

that an increase in the 27Si(p, γ) rate by a factor of two did produce a corresponding change

in the overall nuclear energy production [33].

All the theoretical estimations of the 27Si(p, γ) rate, mentioned above, assumed that
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the non-resonant component of the reaction rate was negligible. As a 27Si beam is not

yet available, the resonant reaction rate could not be studied. Instead, the present study

was focused on providing an experimental determination of the direct capture rate for the

27Si(p, γ) reaction to compare with the theoretical predictions, and more importantly on

demonstrating that the upgraded detection system is capable of distinguishing nuclei of

masses 27 and 28.

This dissertation is structured in 6 chapters. Chapter 1 presents an introduction to the

astrophysical concepts in stellar nucleosynthesis and a summary of the current research

related to the topic of this study. Chapter 2 will provide the necessary theory regarding

nuclear reactions, the indirect experimental method used, called the Asymptotic Normal-

ization Coefficient (ANC) method, and the calculation models involved in obtaining the

results. Information on the experimental set-up and procedures will be presented in Chap-

ter 3. It will also include a detailed description of the upgrade of the detection system.

Chapter 4 will present the tests done for the upgrade and the corresponding results. The

analysis steps for the astrophysical study and the results of the ANC calculations will be

shown in Chapter 5. Last, chapter 6 will present the 27Si(p, γ) reaction rate results and

conclusions.
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2. THEORY

This chapter contains descriptions of the basic concepts in nuclear physics and related

formulas relevant to this study. Additionally, the last section of the chapter will present the

sequence of calculation steps taken to reach the final result.

2.1 Nuclear Reactions

A typical nuclear reaction, where the projectile a interacts with the target A to give

two products b and B, can be written as:

a+ A→ b+B , (2.1)

or in a shorter form as:

A(a, b)B . (2.2)

Most commonly, the notation (A, a) denotes the entrance channel of the reaction and

(b, B) the exit channel. For simplicity, in this chapter they will be denoted as α and β,

respectively.

2.1.1 Conservation laws and basic kinematics

There are several conservation laws that determine the exit channel of the reaction [34].

These laws are:

• Conservation of total energy:

EA +mAc
2 + Ea +mac

2 = Eb +mbc
2 + EB +mBc

2 , (2.3)

whereEi =
1
2
miv

2
i represents the non-relativistic kinetic energy andmic

2 represents
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the mass-energy. This equation can be rewritten as:

Eα +Q = Eβ . (2.4)

Here, Q is called the ‘Q-value’ of the reaction and is determined from the mass-

energies:

Q = (mA +ma −mb −mB)c
2 . (2.5)

If Q > 0 then the reaction is called exothermic and if Q < 0 then the reaction is

endothermic.

• Conservation of linear momentum:

∑
p⃗i =

∑
p⃗f . (2.6)

• Conservation of total angular momentum:

∑
J⃗i + J⃗rel,i =

∑
J⃗f + J⃗rel,f , (2.7)

where J⃗i and J⃗f represent the angular momenta of the initial and final nuclei and

J⃗rel,i and J⃗rel,f represent the relative angular momenta in the entrance and exit chan-

nels.

• Conservation of charge and neutron number: In purely nuclear reactions, this law

states that the total number of protons and neutrons in the entrance channel must

equal the total number of protons and neutrons in the exit channel.
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• Conservation of parity:

πA · πa · π(A,a) = πb · πB · π(b,B) . (2.8)

The kinematics of a nuclear reaction are determined by the first two laws mentioned

above, conservation of energy and conservation of momentum. Most often, the experimen-

tal results need to be compared to the theoretical calculations. However measurements are

done in the laboratory reference frame, while theory prefers the center-of-mass (C.M.)

frame which is fixed and as such more convenient. Kinematics can be used to convert re-

sults between the two systems. Figure 2.1 shows the reference frames side by side for the

case most commonly found in experiments, where the projectile is an accelerated nuclide

and the target is stationary.

Figure 2.1: Kinematics of nuclear reaction A(a, b)B, side by side comparison between the labo-
ratory and center-of-mass system. [8]
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To begin with, the velocity of the center of mass, V⃗CM , is defined as:

V⃗CM =
mav⃗a +mAv⃗A
ma +mA

=
ma

ma +mA

v⃗a . (2.9)

The relative velocity of a and A is:

v⃗ = v⃗a − v⃗A . (2.10)

As such, the energy in the C.M. frame can be written as:

E =
1

2
MV 2

CM +
1

2
µv2 , (2.11)

whereM = ma+mA is the total mass and µ = mamA

ma+mA
is called the reduced mass. Relating

Eq. 2.11 to the quantities expressed in Eq. 2.3 gives a conversion from laboratory kinetic

energy to the C.M. kinetic energy:

ECM =
mA

M
ELab

α . (2.12)

Many experiments involve measurements dependent in some manner on the angle of

interaction. Therefore, a conversion between laboratory and C.M. angles is also necessary.

This can be extracted from the geometry shown in Figure 2.1:

v′b cos θ
′ = vb cos θ − VCM (2.13)

v′b sin θ
′ = vb sin θ − 0 . (2.14)
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From the above two expressions, the relationship between laboratory angle and C.M.

angle is derived as:

cos θ =
γ + cos θ′√

1 + γ2 + 2γ cos θ′
, (2.15)

where γ =

√
mamb

mAmB

Ea

(1 +ma/mA)Q+ Ea

. (2.16)

2.1.2 Types of reactions

For an interaction defined by Eq. 2.1, the nuclei A and a are typically in their ground

states. Depending on the characteristics of b and B, reactions can belong to one of the

following categories.

1. Elastic scattering – is written as A(a, a)A. The nuclei remain in their ground

states but the angle between their outgoing velocities, called scattering angle θ, will

change.

2. Inelastic scattering – is written as A(a, a′)A∗. Either or both nuclei can be in an

excited state in the exit channel. The Q-value of the reaction is then given by the en-

ergy of excitation, Q = −ϵA for endothermic reactions and Q = ϵA for exothermic

reactions.

3. Transfer reaction – is written as Eq. 2.1 and can be of two types: pick-up and

stripping. In a pick-up reaction, the projectile receives one or more nucleons, x,

from the target such that A = B + x and b = a+ x. In a stripping reaction, particle

x leaves the projectile a and binds to the target nucleus A to form new nucleus B.

The outgoing particles may be in their ground states, or they can be in excited states.

The reaction Q-value is given by Sx
b = Sx

A +Q, where Sx
b and Sx

A are the separation

energies of particle x in b and A [35].
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4. Radiative capture – is written as A(a, γ)B. Nuclei a and A form a nucleus by γ

emission.

5. Photo-disintegration – is the reverse process of the one above.

6. Breakup reaction – is written as A(a, b + c)A. Nucleus a is broken up into two or

more fragments b and c.

In the scope of this thesis, types 1 to 4 are of interest and will be touched upon in more

detail.

2.1.3 Experimental cross-section

In a typical experiment, the target-beam interaction A + a is characterized by some

potential V (r). The projectile a comes in the form of a beam with an incident flux, j⃗.

Then the outgoing flux of particles b for a specific channel β is counted with a detection

setup. The probability of occurrence of this specific channel is described using the concept

of cross-section. In particular, the angular distribution of outgoing particles b is usually

described by the differential cross-section:

dσβ(Ω)

dΩ
=
Nβ(Ω,∆Ω)

∆Ω · n · j
, (2.17)

where n is the number of scattering centers in the target, ∆Ω is the solid angle and

Nβ(Ω,∆Ω) represents the number of ejectiles scattered inside ∆Ω. The total cross-section

can then be determined by integration over the angular range:

σβ =

∫
4π

dΩ

(
dσβ(Ω)

dΩ

)
. (2.18)

Given that σ is a measure of the total number of incident particles that are deflected by

target A, the frame of reference doesn’t matter. However, for the differential cross-section
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it is necessary to have a conversion between laboratory and C.M. This relation is given by

the formulas:

(dσ/dΩ)CM(θCM)

(dσ/dΩ)Lab(θLab)
=
d(cos θLab)

d(cos θCM)
=

1 + γ cos θCM

(1 + γ2 + 2γ cos θCM)3/2
, (2.19)

where γ is given by Eq. 2.16. For the data analysis done in Chapter 4, the necessary lab

to C.M. conversion factors where determined using a small FORTRAN program called

KINE.

2.2 Scattering Theory

In order to determine the cross-section for a reaction like Eq. 2.1, it is necessary to

solve the Schrödinger equation that describes the system and find the total wave function.

The non-relativistic motion of particle a is described by:

(H − E)Ψ = 0 . (2.20)

H is the total Hamiltonian and can be written to describe any channel:

H = Hα + Tα + Vα = Hβ + Tβ + Vβ = . . . (2.21)

Hα represents the sum of the intrinsic Hamiltonians for a and A, with:

(Ha − ϵa)Φa = 0

(HA − ϵA)ΦA = 0 ,

(2.22)

where ΦX denotes the eigenstates of the intrinsic Hamiltonians and ϵX , their respective

eigenvalues. Additionally, in Eq. 2.21, Tα is the kinetic energy of their relative motion

and Vα describes their mutual interaction. The intrinsic state of channel α is denoted by
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Φα = ΦaΦA and it satisfies the equation (Hα − ϵα)Φα = 0. Eq. 2.20 can be rewritten as:

(E −Hα − Tα)Ψα = VαΨα . (2.23)

If there is no mutual interaction, Vα = 0, then Eq. 2.23 becomes:

(E −Hα − Tα)ϕα = 0 . (2.24)

The solution to the equation above can be written in terms of the internal wave func-

tions from Eq. 2.22 and the eigenfunctions for the kinetic energy operator (which is a

plane wave):

ϕα = eik⃗α·r⃗αΦα , (2.25)

where r⃗α represents the relative coordinate between nuclei a andA and k⃗α is the wavenum-

ber corresponding to channel α:

r⃗α =
1

a

a∑
1

r⃗i −
1

A

A+a∑
a+1

r⃗i (2.26)

h2k2α/2µ = Eα = E − ϵα , (2.27)

where a and A in Eq. 2.26 represent the mass numbers of the nuclei with the same name.

In order to determine the component of Ψ corresponding to a reaction with an entrance

channel α and an exit channel β, Eq. 2.23 must be multiplied by Φβ and then integrated

over the internal coordinates:

(Eβ − Tβ)(Φβ,Ψα) = (Φβ, VβΨα) , (2.28)

where Eβ was defined in Eq. 2.27 and represents the kinetic energy of the relative mo-
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tion corresponding to the β channel and the bracket notation denotes integration over all

internal coordinates [36]:

(Φβ,Ψα) = (Φβ|Ψα) =

∫
Φ∗

βΨαd(internal coordinates) . (2.29)

Denoting the left side of the above equation as ψβ(r⃗β), Eq. 2.28 becomes:

(Eβ − Tβ)ψβ = (Φβ, VβΨα) . (2.30)

This equation can be transformed into a more useful form using Green’s function:

(Eβ − Tβ)G
0
β(r⃗β, r⃗

′
β) = δ(r⃗β − r⃗′β) . (2.31)

Substituting Eq. 2.31 into Eq. 2.30 leads to a solution for ψβ that can be written as:

ψβ(r⃗β) =

∫
G0

β(r⃗β, r⃗
′
β)(Φβ, VβΨα)dr⃗′β . (2.32)

Adding the plane-wave eigenfunctions of the kinetic energy operator (which were also

used in Eq. 2.25) leads to the general form:

ψβ(r⃗β) = eik⃗β ·r⃗β +

∫
G0

β(r⃗β, r⃗
′
β)(Φβ, VβΨα)dr⃗′β . (2.33)

Then from Eq. 2.31, one can obtain a solution for G0
β:

G
0(+)
β (r⃗, r⃗′) = − 2µβ

4πℏ2
exp (ikβ|r⃗ − r⃗′|)

|r⃗ − r⃗′|

−−−→
r→∞

−
(

2µβ

4πℏ2

)
exp (ikβr)

r
exp (−ik⃗′β · r⃗′) .

(2.34)
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Inserting this expression forG0
β into Eq. 2.33 and taking into account that for the stated

problem, a + A → b + B, there is no incoming wave in the β channel, one obtains the

desired solution for the scattered wave-function in the form of:

ψ
(+)
β (r⃗β) −−−−→

rβ→∞
−
( µβ

2πℏ2
) exp (ikβrβ)

rβ

∫
exp (−i⃗kβ · r⃗)(Φβ, VβΨ

(+)
α )dr⃗ . (2.35)

In the last two expressions, the (+) sign was used to show the outgoing direction of the

wave at r→ ∞. From Eq. 2.35, the scattering amplitude is found to be:

fβα(θ) = − µβ

2πℏ2

∫
exp (−i⃗kβ · r⃗)(Φβ, VβΨ

(+)
α )dr⃗ . (2.36)

Here, θ denotes the scattering angle, specifically the angle between k⃗β and k⃗α. A

concept often used instead of the scattering amplitude is the transition amplitude, T :

Tβα =
⟨
ϕβ|Vβ|Ψ(+)

α

⟩
, (2.37)

where the angle bracket notation has a similar definition to the one in Eq. 2.29, except the

integration is over all coordinates. The set of amplitudes that correspond to different α and

β is called the transition matrix, though the terms are often used interchangeably [36].

The scattering cross-section

Having determined an expression for the scattering amplitude, one can now use it to

calculate the differential cross-section defined in Eq. 2.17. The flux associated with the

wave-function ψ is given by:

j⃗ =
ℏ
2iµ

(ψ∗∇ψ − ψ∇ψ∗) . (2.38)

This equation can be used to determine the number of projectiles scattered inside the
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solid angle, ∆Ω:

Nβ(Ω,∆Ω) = j⃗β ·∆S⃗ = (∆Ωr2β)r̂β · j⃗β . (2.39)

At a large distance from the scattering site, the gradient reduces to only the radial

component. Using the asymptotic form for ψ at rβ → ∞, one obtains:

dσ =
µα

µβ

kβ
kα

|fβα(θ)|2dΩ . (2.40)

A similar formula can also be obtained in terms of the transition amplitude, T :

(
dσ

dΩ

)
βα

=
µαµβ

(2πℏ2)2
kβ
kα

|Tβα|2 . (2.41)

2.3 The Optical Model Potential

In Eq. 2.37, the transition amplitude has a general form and it depends on knowing,

exactly, the wave function Ψ
(+)
α . This means that it must contain a description of all

processes that can occur at a given projectile energy [36]. Such a complete description

is extremely difficult to obtain and therefore an approximation of the transition amplitude

is more useful.

To that end, it is helpful to introduce a potential U(rα), called optical model potential

(OMP), describing the relative motion in the entrance channel. Given that the nuclear

force has a short range, the nuclear part of this potential is expected to depend only on the

relative coordinate between nuclei a and A. The choice of U(rα) is usually a form that

best describes the elastic scattering. For the situation where the interaction between a and

A is solely described by U(rα), the optical-model Schrödinger equation is written as:

(Tα + Uα − Eα)χα(r⃗α) = 0 . (2.42)
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This is a direct result of substituting Ψ = Φαχα into Eq. 2.23, with χα denoting the

wave function describing the relative interaction. It should be noted that the number of

open exit channels for a reaction depends on the energy of the projectile. At very low

energies, only the elastic scattering channel is open. Conservation laws dictate that the

particle flux is conserved, which requires a real potential Uα. At higher projectile energies,

other exit channels open up (inelastic, transfer, etc...) and thus, some of the flux from the

scattering channel is absorbed [36].

As such, j⃗ is not conserved anymore, which implies a complex form for the optical

potential. Furthermore, using Eq. 2.42 and its conjugate, governing χ∗
α, one can find that:

ℏ∇ · j⃗ = 2χαχ
∗
α ImUα . (2.43)

This shows that in order to correctly characterize the elastic scattering when other

reaction channels are present, it is necessary to use a complex and negative optical model

potential. The equation below shows the general form for the OMP:

U(r) = V (r) + i[W (r) + US(r)] + USO(r) + UC(r) , (2.44)

where V (r) represents the real part of the potential. This describes the refraction of the

incident flux and thus is most important for elastic scattering. The imaginary part may

consist of a volume component, W (r), as well as a surface component, US(r). The third

term in Eq. 2.44, USO(r) represents the spin-orbit interaction and the last one stands for

the Coulomb potential which is included if there are charged particles involved.

However, using the complete formula means that the number of parameters that need

to be varied in order to match calculations to experimental data is much larger. This makes

the process significantly more complicated and time consuming. For elastic scattering,
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it’s often possible to neglect the surface and spin-orbit terms leaving only the real and

imaginary volume components.

Since the nuclear force is short range, the form of U(r) is generally chosen to be short

range and falling rapidly to zero near the surface of the nucleus, similar to the density

distribution. The form most commonly used is called the Woods-Saxon (WS) potential.

Another form that is frequently used is called the double folding (DF) potential. Both of

these potentials will be described in more detail in the next subsections. Beside these two,

other forms have been tried over the years but none were as successful as the WS and DF

over a wide range of scattering reactions.

The Woods-Saxon form

Typically, the Woods-Saxon potential is described by the equation shown below:

U(r) = −(V fV (r) + iWfW (r)) , (2.45)

where V and W represent the strengths, or depths, of the real and imaginary components

of the potential, respectively. The form factor fx(r) is given by:

fx(r) =
1

1 + e
r−Rx
ax

, (2.46)

where x = V,W , ax is called the diffuseness and Rx denotes the nuclear radius. The latter

is often parametrized as:

Rx = rx(a
1
3 + A

1
3 ) , (2.47)

where a and A indicate the number of nucleons in the projectile and target, respectively,

and rx ≈1.2 fm. Sometimes, particularly at low projectile energies, it is necessary to

take into account surface-peaked processes (for example, peripheral collisions resulting in
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particle transfers). In this situation, the surface term US(r) is added and expressed as:

US(r) = WS
dfW (r)

dr
. (2.48)

As mentioned before, when charged particles are involved, the Coulomb potential must

also be included. At large distances, the potential is the standard one between two point

charges. Near the target, however, the charge distribution between the two interacting

nuclei determines the potential affecting the charged projectile. The easiest assumption to

use is that of a uniform distribution. The Coulomb potential can then be written as:

UC(r) =


ZaZAe2

2RC

[
3−

(
r

RC

)2
]

r < RC

ZaZAe2

r
r > RC

(2.49)

If the Coulomb and surface are both included and independent geometries are used then

the OMP has 10 parameters that have to be varied in order to fit the data. This number is

not easy to work with and often the surface term is either neglected (if appropriate) or its

geometry is set identical to the imaginary volume one, reducing the number of variables

to 7 or 8, respectively.

A variation of the Woods-Saxon model that has also been used in this study is the

squared WS form, or WS2. This model is described by the equation below [37]:

U(r) = −(V f 2
V (r) + iWf 2

W (r)) , (2.50)
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The double-folding shape

A popular alternative method to obtain OMP parameters is to use double folding poten-

tials. With this method, the potential chosen is obtained using the double integral below:

Vfold(r) =

∫
dr⃗1

∫
dr⃗2ρ1(r1)ρ2(r2)veff (s⃗) . (2.51)

Here, ρ1(r1) and ρ2(r2) are the nuclear density distributions of the two nuclei. They

can be obtained from standard Hartree-Fock calculations [38]. s⃗ is the nucleon-nucleon

(NN) separation distance and is given by s⃗ = R⃗+ r⃗1− r⃗2, where R⃗ is the interaction radius.

veff is called the NN interaction potential and can have a number of forms corresponding

to the various interaction models that have been tried. Three will be described briefly here.

More detailed explanations can be found in Refs. [39] and [40].

The Jeukenne, Lejeune and Mahaux (JLM) [41] model is based on an effective inter-

action which is energy and density dependent. The NN interaction potential has both real

and imaginary parts and is written as:

v0(ρ,E) =
V0(ρ,E) + iW0(ρ,E)

ρ
. (2.52)

The OMP in Eq. 2.51 then becomes:

Vfold(R) =

∫
dr⃗1

∫
dr⃗2ρ1(r1)ρ2(r2)v0(ρ,E)δ(s⃗) . (2.53)

Two forms of JLM have been used to fit the data in this thesis, distinguished by the
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different approximations used for the local density, ρ [40]:

JLM1: ρ =

√
ρ1(r⃗1 +

s⃗

2
)ρ2(r⃗2 −

s⃗

2
) , (2.54)

JLM3: ρ =
1

2
(ρ1(r⃗1 +

s⃗

2
) + ρ2(r⃗2 −

s⃗

2
)) . (2.55)

It was shown ( [41], [42]) that the best results are obtained when the delta function in

Eq. 2.53 is approximated by a Gaussian with the shape:

g(s⃗) =

(
1

t
√
π

)3

e−
s⃗2

t2 , (2.56)

where t is a range parameter. The final expression for the JLM DF potential is then:

U(r) = NV Vfold(r, tv) + iNWWfold(r, tW ) . (2.57)

NV and NW are renormalization coefficients and are usually the only parameters to be

varied during the fitting procedure. The range parameters have optimum values at tV =1.2

fm and tW=1.75 fm [39], but if necessary, they can be varied as well. Even so, four

parameters is still less than the six required by the WS potential.

The M3Y model is based on the Paris NN interaction [43]. In this case the effective

potential is given by:

veff (r) = VD(r) + P ex
1,2Vex(r) , (2.58)

where D and ex indicate the direct and knock-on exchange components of the potential.

VD and Vex are averaged over spin-isospin states [39]. Two versions of this model were

used in this dissertation, labeled according to the form used for the knock-on exchange

component. M3YZR indicates that a zero range potential was used and M3YFR indicates

that a finite range potential was used. For the M3Y model, the final OMP was expressed
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as:

U(r) = (NV + iNW )Vfold(r) . (2.59)

2.4 Distorted-Wave Born Approximation

In the previous section, the OMP was introduced in order to characterize the elastic

scattering channel of a reaction. The other channels are weaker and in some cases can

be described successfully using approximations. Such is often the case for direct nuclear

reactions and the distorted-wave Born approximation (DWBA). The DWBA is an approxi-

mation applied to the transition amplitude in order to make the corresponding Shrödinger

equation solvable. This model relies on the weakness of the direct interaction, treating it

as a perturbation.

Therefore, in Eq. 2.30, if one subtracts the elastic contribution, by way of (Φβ, UβΨα),

one obtains the Shrödinger equation describing the perturbation:

(Eβ − Tβ − Uβ)ψβ = (Φβ, [Vβ − Uβ]Ψα) . (2.60)

Using Green’s function techniques similar to Eq. 2.31-2.34 one arrives at the solution

for the wave-function [36]:

ψβ → −
( µβ

2πℏ2
) exp (ikβrβ)

rβ

⟨
χ
(−)
β Φβ|Vβ − Uβ|Ψ(+)

α

⟩
, (2.61)

where χβ is the solution to Eq. 2.42 but for channel β. It has a plane wave term and

a spherical wave term. The (+) and (-) signs indicate outgoing and incoming spherical

waves, respectively. At Uβ → 0 the wave-function reduces to a plane wave. Therefore,

the matrix for the transition α→ β can be written as:

Tβα =
⟨
exp (ik⃗′α · r⃗α)|Uα|χ(+)

α

⟩
δβα +

⟨
χ
(−)
β Φβ|Vβ − Uβ|Ψ(+)

α

⟩
, (2.62)
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where the first term represents the elastic scattering and the second term denotes the

DWBA amplitude of the nuclear reaction, TDWBA
βα :

TDWBA
βα =

⟨
χ
(−)
β ΦbΦB|Vβ − Uβ|ΦaΦAχ

(+)
α

⟩
. (2.63)

Furthermore, in the DWBA model an assumption is made that the most important

contribution to the transition matrix comes from the direct reaction α → β and the others

can be neglected. This approximation is valid for reactions that are peripheral and allows

Eq. 2.63 to be rewritten as:

TDWBA
βα =

⟨
χ
(−)
β IAB (r⃗)|Vβ − Uβ|Iab (r⃗)χ(+)

α

⟩
, (2.64)

where IAB and Iab are overlap functions and will be discussed in more detail in the following

section.

2.5 Asymptotic Normalization Coefficient

For a direct transfer reaction as shown in Figure 2.2, the information related to the

nuclear structure and the relative motion in channels α and β is contained in the transition

amplitude, Eq. 2.63, presented in the previous section. Another quantity that is often used

to describe direct reactions is the spectroscopic factor, Snlj , which gives a measure of the

probability that a many-body system will be found in a specified configuration.

The spectroscopic factor depends on the overlap function and is given by the formula

below:

Snlj = N

∫ ∞

0

|Iabx(nlj)(r⃗)|2 r2dr , (2.65)
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Figure 2.2: Schematic drawing of a transfer reaction, where a is the projectile, A is the target and
x is the transferred nucleon.

where N denotes the antisymmetrization factor. In turn, the overlap function is given by:

Iabx(nlj)(r⃗bx) = ⟨Φb(ζb)Φx(ζx)|Φa(ζb, ζx; r⃗bx)⟩

=
∑

lamlajamja

⟨JbMbjamja|JaMa⟩ ⟨JxMxlamla|jamja⟩

× ilaYlamla
(r̂bx)I

a
bxlaja(rbx) ,

(2.66)

where Φa,x,b are the bound state wave-functions of nuclei a, x and b. The ζb,x terms repre-

sent the respective internal coordinates. r⃗bx is the relative coordinate for the center of mass

between b and x, with r̂ = r⃗/r. J and M are the spin and spin projection. ja and mja

represent the total angular momentum and its projection for particle x in nucleus a. Simi-

larly, la and mla represent the orbital angular momentum of the relative motion of b and x

and its projection. ⟨j1m1j2m2|j3m3⟩ is a Clebsch-Gordon coefficient. Lastly, Ylamla
(r̂bx)

is a spherical harmonic function and Iabxlaja(rbx) represents the radial overlap. It should be

noted that in the summation, la and ja take only the values allowed by parity and angular

momentum conservation laws for the virtual process a→ b+ x [44].

The radial overlap function is typically approximated using a model wave function of
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the bound state a as:

Iabxlaja(rbx) = S
1/2
bxlaja

Φnalaja(rbx) , (2.67)

where Φnalaja(rbx) denotes the bound state wave function describing the relative motion of

b and x and Sbxlaja is the spectroscopic factor corresponding to the configuration (bx) and

its related quantum numbers. The DWBA cross-section can then be expressed in terms of

the spectroscopic factors for the initial and final nuclei using the formula:

dσ

dΩ
=

∑
jajB

SbxlajaSAxlBjBσ
DWBA
lajalBjB

. (2.68)

This is how the experimental data are typically used to extract the spectroscopic fac-

tors which provide important information about the structure of the nuclear states involved.

However, it became clear that the actual results may depend strongly on the intrinsic struc-

ture a = b + x assumed and the WS parameters used. These parameters cannot be deter-

mined unambiguously.

It was then proposed and shown ( [44]) that for peripheral reactions, there is another

quantity that is more useful to extract. That quantity is the asymptotic normalization coef-

ficient (ANC) that defines the amplitude of the tail of Iabxlaja . This asymptotic behavior is

described by:

Iabxlaja(rbx)
rbx>RN−−−−→ Ca

bxlaja

W−ηa,la+1/2(2κbxrbx)

rbx
, (2.69)

where Ca
bxlaja

is the ANC; W−ηa,la+1/2(2κbxrbx) denotes the Whittaker function describing

the asymptotic behavior of the bound state wave function of two charged particles; κbx =

√
2µbxϵbx is the wave number of the bound state a with ϵbx being the nucleon separation

energy; and ηa = ZbZxµbx/κbx is the Sommerfeld parameter.

Similarly, the asymptotic behavior of the normalized single-particle bound state wave
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function Φnalaja is given by:

Φnalaja(rbx)
rbx>RN−−−−→ bbxlaja

W−ηa,la+1/2(2κbxrbx)

rbx
. (2.70)

Here, bbxlaja is called the single-particle ANC. Plugging Eq. 2.69 and Eq. 2.70 into

Eq. 2.67, one obtains the relationship between spectroscopic factor and ANC:

Sbxlaja =
(Ca

bxlaja
)2

(bbxlaja)
2
. (2.71)

Plugging Eq. 2.71 into 2.68, one obtains the cross-section in terms of the ANCs:

dσ

dΩ
=

∑
jajB

(Ca
bxlaja)

2(CB
AxlBjB

)2
σDWBA
lajalBjB

(bbxlaja)
2(bAxlBjB)

2
. (2.72)

Unlike the situation for the spectroscopic factors, the ratio between σDWBA
lajalBjB

and the

product of the single-particle ANCs is much less dependent on the geometry of the binding

potential due to the fact that the individual dependencies in the two terms largely cancel

each other. Therefore, with Eq. 2.72 it is possible to extract the ANC of the exit vertex,

CB
AxlBjB

, if the ANC of the entrance vertex, Ca
bxlaja

is known.

2.6 Astrophysical Reaction Rates

The rate of a nuclear reaction in stellar environments is defined as the number of reac-

tions per second and per unit volume per unit time for the particle pair, A+ x, involved in

the reaction. It can be calculated using the nuclear cross section, σv, of the reaction using

the formula:

R =
nAnx

1 + δAx

⟨σvv⟩ , (2.73)

where ni denotes the number density of particle i and the inclusion of the Kroenecker delta

is to account for the case where the particles are identical. Typically, nuclei in stars move
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non-relativistically and are nondegenerate and as such, their velocities can be described by

a Maxwell-Boltzmann probability distribution [8]:

P (v)dv =

(
µ

2πkBT

)3/2

e−µv2/(2kBT )4πv2dv . (2.74)

Calculating the average of σvv over this distribution results in the general form for

⟨σvv⟩:

⟨σvv⟩ =
(

8

πµ

)1/2
1

(kBT )3/2

∫ ∞

0

σ(E)Ee

(
− E

kBT

)
dE , (2.75)

where E = µv2/2 and kB is the Boltzmann constant. The standard practice is to use the

quantity NA ⟨σvv⟩ to present reaction rate results. NA denotes the Avogadro constant and

the units for the rate are cm3 mol-1 s-1 [45].

Reactions occurring in stars can be categorized in various ways. One method is to split

them into reactions involving charged particles (as target, projectile or both) and reactions

induced by neutral particles. Given the topic of this dissertation, the following discussion

will be focused on the former type, specifically proton capture reactions or (p, γ).

Furthermore, another classification that applies to not just capture reactions but other

types of reactions as well (elastic and inelastic scattering, transfer reactions,...) separates

reactions into non-resonant (where the cross-section varies smoothly with energy) and

resonant (where the cross-section varies strongly around a particular energy value). Most

often, the rate of a thermonuclear reaction will contain both of these contributions, there-

fore they will each be discussed below [8].

2.6.1 Non-resonant reaction

In a non-resonant proton capture reaction, the assumption is that the capture and photon

emission occur in one process without an intermediate stage, as shown in Figure 2.3. At

low energies, the cross-section is very low due to the Coulomb barrier and as such depends
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on the penetrability of the proton through the barrier:

σ(E) =
1

E
exp(−2πη)S(E) , (2.76)

where exp(−2πη) is called the Gamow factor and S(E) represents the astrophysical S-

factor. The nuclear contributions are thus strictly contained in S(E).

Figure 2.4, (top) contains a plot of Eq. 2.76 showing the cross-section dropping sharply

with decreasing energy E, for the range below the Coulomb energy EC . As σ(E) drops

towards zero, the intersect point between the cross-section curve and the energy axis gives

EL, the lowest energy at which experimental measurements can be made.

Figure 2.3: Schematic drawing of a direct capture reaction through a non-resonant process. A is
the target and x is the captured nucleon.
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Figure 2.4: (top) Non-resonant capture reaction cross-section, σ(E), as a function of the projectile
energy. (bottom) Astrophysical S-factor, S(E), as a function of energy. [3]

The bottom plot of Figure 2.4 shows S(E) varying smoothly with the energy and much

less than the cross-section [3]. Substituting Eq. 2.76 into Eq. 2.75 leads to an expression

for the reaction rate per particle pair in terms of the S-factor:

⟨σvv⟩ =
(

8

πµ

)1/2
1

(kBT )3/2

∫ ∞

0

S(E) exp

[
− E

kBT
− b

E1/2

]
dE , (2.77)

where b2 is called the Gamow energy, EG, and is given by b = (2µ)1/2πe2Z1Z2/ℏ. Given

that S(E) varies comparatively little with the energy, the exponential term in the integrand

is the one that governs the energy dependence of σvv. It is important to note that the

Coulomb barrier transmission is reflected in the term exp(−b/E1/2) = exp(−
√
EG/E)

which becomes small at low energies, whereas the Maxwell-Boltzmann distribution of the

available particles is reflected in the other term exp(−E/kBT ), which vanishes at high

energies.

Their product peaks in the region where both contributions are small and the shape of
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it can be approximated by a Gaussian. This energy range is called the Gamow window

and the Gaussian peak it contains is called the Gamow peak. This is illustrated in Figure

2.5.

Figure 2.5: Plot showing the two energy-dependent contributions to the non-resonant reaction rate:
the Maxwell-Boltzmann distribution and the Coulomb penetrability. Also shown is the Gamow peak
resulting from their product. [3]

The position and width of the Gamow peak are given by:

E0 =
bkBT

2

2/3

= 1.22(Z2
1Z

2
2µT

2
6 )

1/3 keV (2.78)

∆ =
4

31/2
(E0kBT )

1/2 = 0.749(Z2
1Z

2
2µT

5
6 )

1/6 keV . (2.79)

Therefore the exponential in the integral from Eq. 2.77 can be replaced by a Gaussian

with the shape:

exp

[
− E

kBT
− b

E1/2

]
= Imax exp

[
−
(
E − E0

∆/2

)2
]
, (2.80)
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where Imax = exp(−3E0/kBT ) represents the height of the Gamow peak and is given

numerically by the equation:

Imax = exp

[
−42.46

(
Z2

1Z
2
2µ

T6

)1/3
]
. (2.81)

From Eq. 2.80 and Eq. 2.81 one can infer that the reaction rate ⟨σvv⟩ depends strongly

on the Coulomb barrier. During each of the stellar burning phases described in chapter

1, the nuclei with the smallest barrier are consumed the most rapidly, whereas those with

higher Coulomb barriers do not have any significant contribution to the energy production.

If S(E) varies slowly with energy, E, then it can be expanded in a Taylor series around

the Gamow peak, E0 [3]:

Seff(E0) = S(0)

[
1 +

5

12τ
+
Ṡ(0)

S(0)

(
E0 +

35E0

12τ

)
+
S̈(0)

S(0)

(
E2

0 +
89E2

0

12τ

)
+ . . .

]
,

(2.82)

where τ is a dimensionless parameter that is numerically given by:

τ = 42.46

(
Z2

1Z
2
2µ

T6

)1/3

. (2.83)

Eq. 2.77 can now be rewritten using Eq. 2.82 as well as Eq. 2.78 and Eq. 2.79 to

obtain the reaction rate for a non-resonant process:

NA ⟨σvv⟩ = NA

(
2

µ

)1/2
∆

(kBT )3/2
Seff(E0) exp

(
− 3E0

kBT

)
. (2.84)

2.6.2 Resonant reaction

A resonant reaction is a two-step process in which the projectile and target first form

a compound nucleus in an excited state and then this excited state decays to a lower-
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lying state releasing a γ ray. Figure 2.6 shows the schematic of a resonant proton capture

reaction. In order for this process to occur the energy, Q + ER, of the entrance channel

must be same as Er, the energy of the excited state in the compound nucleus [3], i.e.:

Figure 2.6: Schematic representation of the two-step process involved in a resonant proton capture
reaction. [3]

ER = Er −Q . (2.85)

This is called a resonant process because the reaction can only occur when Eq. 2.85

is valid. Subsequently, ER is called the resonance energy. Unlike its non-resonant coun-

terpart, the resonant cross-section is determined mainly from the energy region around the

resonant state, provided it is within the Gamow window, and is obtained with the Breit-

Wigner equation [6]:

σ(E) =
λ2

4π

(2Jr + 1)

(2JA + 1)(2Jx + 1)

ΓxΓγ

(E − ER)2 + (Γ/2)2
, (2.86)

where Jx, JA and Jr are the angular momenta of the projectile, target and resonant state,

respectively. In order for the resonance to be formed parity and angular momentum con-
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servation laws must be obeyed, i.e. J⃗r = J⃗A+ J⃗x+ l⃗, where l⃗ is the relative orbital angular

momentum of A and x. The last fraction in Eq. 2.86 is called the resonance term and it

contains the characteristics of the resonance. The partial widths Γx and Γγ , respectively,

give a measure of the probability that the resonance will be formed and that the channel

of interest will be populated in the decay of the resonant state. Γ is the total width of the

resonance and is given by the sum of the partial widths of all the open decay channels.

And ER, as mentioned before, denotes the resonance energy.

Substituting Eq. 2.86 at E = ER into the general form of the stellar reaction rate per

particle pair (Eq. 2.75) gives:

⟨σvv⟩ =
(

2π

µkBT

)3/2

ℏ2(ωγ)R exp

(
− ER

(kBT )

)
, (2.87)

where (ωγ)R is called the strength of the resonance and is given by:

(ωγ)R =
(2Jr + 1)

(2JA + 1)(2Jx + 1)

ΓxΓγ

Γ
. (2.88)

The resonance strength depends significantly on the Coulomb barrier. As a specific

example, in the case of a (p, γ) reaction Γγ is typically, at most, on the order of a few

eV. On the other hand, at resonance energies in the region of the Coulomb barrier, Γp can

have values on the order of keV. If Γ = Γp + Γγ then under these conditions, Γ ≃ Γp and

ωγ ≃ ωΓγ . This indicates that near the Coulomb barrier, the resonance strengths depend

only on the γ-widths and are ≲1 eV.

Conversely, at resonance energies far below the Coulomb barrier, the penetration factor

makes the proton width Γp ≪ Γγ and the total width Γ ≃ Γγ . Therefore, the strength of a

very low-energy resonance depends only on the proton width, ωγ ≃ ωΓp, and this reduced

strength makes it very difficult to study these low lying resonances in the laboratory.
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2.7 Determining the Rate of the 27Si(p,γ) Reaction

27Si is an unstable nucleus and as such, the (p, γ) reaction cannot be studied directly

without access to a facility capable of accelerating unstable beams. Previous studies on

estimating this reaction rate indirectly were discussed in the previous chapter. The present

work employed similar methods. Specifically, the resonant contribution was estimated

empirically and the non-resonant contribution was determined experimentally using the

ANC method described above.

In order to determine the resonant contribution, it was necessary to have specific nu-

clear structure information, i.e. resonance energies, proton partial widths, γ-ray partial

widths and spectroscopic factors. Since this information is not available for the nucleus

28P, data from its mirror, 28Al, were used.

For the non-resonant component, the ANC method was used to study the mirror cap-

ture reaction, 27Al(n, γ)28Al, through the peripheral transfer reaction, 13C(27Al,28Al)12C.

A 13C target was preferred due to the fact that the virtual neutron capture 12C+n → 13C

has been studied before and the ANC of 13C is well known. For the first step, experi-

mental data were taken to obtain the differential cross-section distribution of the elastic

channel of 13C+27Al. Second, the OMP parameters were extracted from the model fits to

the data and were then used to calculate σDWBA for the transfer reaction. Third, an exper-

imental cross-section angular distribution was obtained for the neutron transfer channel of

13C+27Al. And then fourth, the DWBA calculations were used in Eq. 2.72 together with

the experimental data to obtain the ANC of 28Al.

Having this value, the ANC of 28P can be determined from the equality between spec-

troscopic factors of mirror nuclei. With this ANC, the reaction rate of 27Si(p, γ) can be

determined using a radiative capture code called RADCAP.

46



3. EXPERIMENTAL SETUP AND PROCEDURES

3.1 Experimental Setup

There were 6 experiments conducted specifically for this research project. Four of

them had the purpose of studying the reactions below:

1. 27Al(13C, 13C)27Al

2. 27Al(13C, 12C)28Al

3. 13C(27Al, 27Al)13C

4. 13C(27Al, 28Al)12C

The other two were focused on testing the upgrade of the detection setup. For this

purpose, additional results were obtained from experiments done with other aims, where

the opportunity was provided to take testing data. All of the experiments were done at

the Texas A&M University Cyclotron Institute. The beams were obtained from the K150

cyclotron and sent to the MDM beam-line in cave 3 (Figure 3.1).

3.1.1 The MDM Spectrometer

The MDM beam-line consists of a number of magnetic elements - dipoles and quadru-

poles - to transport and focus the beam followed by the target chamber, the collimator box,

the MDM spectrometer and ends with the Oxford detection system. The target chamber

is cylindrical in shape with a target ladder at the center. The standard targets used for this

project were 197Au, ∼200 µg/cm2 thick, and 13C, ∼100 µg/cm2 thick, but for the astro-

physical study Al targets of various thicknesses were used as well. Also placed in this

chamber was the Faraday Cup, which was used to measure the incoming beam charge, for

scattering angles larger than 5° (Figure 3.2).
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Figure 3.1: Schematic representation of the beam path from the K150 cyclotron to the MDM ex-
perimental area.

The collimator box, also called ‘slit-box’, is placed immediately after the target cham-

ber and contains three collimation masks with each, when chosen, sitting at a distance of

65.25 cm from the target. The ‘single slit’ mask (Figure 3.3, (a)) has a rectangular opening

of 0.1° (11.7 mm high and 1.6 mm wide). The ‘5-finger’ mask (Figure 3.3, (b)) has 5 rect-

angular openings of identical size to the single slit, placed at 0°, ±0.77° and ±1.53°. The

last mask is called the ‘wide’ or ‘4-by-1’ mask (Figure 3.3, (c)) because its rectangular

opening covers 4° by 1° (11.7 mm high and 45.5 mm wide). The masks are made of brass,

with a backing of lead to stop the particles that don’t go through the openings. They are

also used to measure the incoming beam charge at angles smaller than 5°.

The Multipole-Dipole-Multipole (MDM) Spectrometer was originally built for the Na-
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Figure 3.2: Photograph showing the Faraday Cup (on the right) mounted inside the target chamber.

(a) (b) (c)

Figure 3.3: Photographs showing the three collimation masks: (a) the Single Slit mask, (b) the
5-Finger mask and (c) the 4-by-1 mask.

tional Physics Laboratory at the University of Oxford. It became operational in early 1983

and was moved to Texas A&M University in the late 1990s. It has a maximum solid angle

of 8 msr and a focal plane that is perpendicular to the detector. The resolving power, E/dE,

of the spectrometer was observed to be ∼3000 for the center of the focal plane with a

deterioration of ∼30% at the edges. A schematic representation is shown in Figure 3.4.
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The layout of the spectrometer is as follows: entrance sextupole and multipole, gra-

dient field dipole and exit multipole. The dipole has a central radius of 160 cm, an angle

of deflection of 100° and a maximum field strength of 1.5 T. The original tests with a 27

MeV alpha particle beam scattered off a very thin gold foil showed an energy resolution

of 9 keV, corresponding to a position resolution of 0.6 mm [46].

The magnetic elements of the spectrometer were used at settings determined by the

RAYTRACE computer code [47]. With RAYTRACE it is possible to track the path of a

particle from beginning - at the target - to the end - at the focal plane of the spectrometer -

taking into account the effects of each element. An example of an input file can be found

in Appendix A.

One of the major advantages of the MDM is that the entire spectrometer sits on a

mobile platform. This allows it to be rotated around the target chamber in order to measure

reactions at different scattering angles, from a minimum of -50° (to the right of the incident

beam direction) to a maximum of 150° (to the left) (Figure 3.5).

Figure 3.5: Photograph showing the MDM spectrometer and mobile platform (in yellow).
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3.1.2 The focal plane detection system

At the back of the MDM spectrometer, we used a detection system, referred to below

as the Oxford detector, consisting of a gas section with wires and anode plate readouts and

a scintillator whose light output is read out with two phototubes.

‘Before’ the upgrade

The “Oxford” detector is called such because it arrived with the MDM spectrometer

from the University of Oxford. This detector is a gridded ionization chamber with 4 resis-

tive avalanche counters. The chamber is made of stainless steel in a rectangular shape, 77

cm by 60 cm by 31 cm (w x l x h). The walls are 1.27 cm thick attached between 2.54 cm

thick frames in a design meant to support the heavy weight. Inside, the detector compo-

nents and wiring are designed to be supported solely on the front flange (Figure 3.6, (a)).

This allows us to easily remove everything simply by unscrewing the flange and sliding it

out. A schematic of the longitudinal section is shown in Figure 3.6, (b).

The entrance and exit windows for the gas section are made of Aramica foil with

thicknesses of 25 µm and 50 µm, respectively. The height of each window is 6 cm and

the width is 30 cm. The geometry of the windows sets an upper limit of ∼150 Torr on the

gas pressure inside the chamber. Lower mass nuclei, like 6Li or 13C, can and have been

studied using pressures as high as 100 Torr ( [48–50]). Higher mass nuclei, like 22Ne or

26Mg, require pressures around 20-30 Torr.

The cathode and anode plates are made of aluminum with a gap between them of 12

cm. A grid of wires, called a Frisch Grid (FG), sits at 10.5 cm above the cathode and

consists of multiple Be-Cu wires fixed to a frame made of G10 fiber glass. The wires are

uniformly spaced, 40 cm in length and 80 µm in diameter, with a pitch of 1.5 mm [1].

In addition, there are fourteen banks of wires going around the detection area that are

connected electronically to a voltage divider setup in order to complete the Faraday cage
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(a)

(b)

Figure 3.6: (a) Photograph taken of the inside components of the Oxford detector. (b) Schematic
drawing taken from ref [1] and edited to show the current design. In both images, the orientation
is the same, with the particles going into the detector from the left.

and ensure field uniformity at the edges.

When a charged particle (usually a heavy ion) travels through the gas, it interacts with

the neutral gas molecules creating electron-ion pairs, also called primary pairs. The pos-
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itive ions move towards the cathode, while the electrons drift towards the anode where

they are eventually collected. The rapid motion of the electrons induces a fast signal. The

positive ions, being slower (µ− ∼1000 µ+), induce a signal on the anode with a longer

time. Due to these two contributions, the resulting charge pulse has a nonlinear response

to the corresponding energy loss.

The presence of the FG, just below the anode, can reduce and even eliminate the prob-

lem. The grid’s role is to screen the anode from the effects of the positive ions. The

quality of shielding is called ‘shielding inefficiency’ and is calculated with Bunemann’s

formula [51] below:

σ ≈
( p

2πA

)
log

( p

πd

)
. (3.1)

Here, A is the FG to anode distance, d is the wire diameter and p is the pitch. Given

the numbers presented above and A=1.5 cm, σ was found to be ≈2.8%. Additionally, the

same paper by Bunemann provided the transparency condition below:

EFG-Anode

ECath-FG
≥ 1 + πd/A

1− πd/A
. (3.2)

When this inequality is satisfied all the field lines pass from the active volume of the

detector through the FG and reach the anode. The right side was estimated as 1.03. For

the entirety of this study, the cathode was set at -800 V. The FG was part of the voltage

divider and as such had a voltage of approximately -170 V. With the anode at ground, the

resulting field ratio was 1.9 ensuring that the FG was transparent to electrons.

The resistive avalanche counters (called ACs or wires) are used to measure position

inside the detector. Each AC has a body (called ‘shell’) made of aluminum that is 40 cm in

length. Inside the shell, a wire made of a Ni-Cr alloy (StablOhm 675 from California Fine

Wire company) is soldered under tension to SHV connectors on each end. The voltage ap-
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plied to the wires is generally between +800 V and +1500 V. Exceeding the recommended

voltage can cause the wires to break. Such a circumstance necessitated the change of the

wires before the last of the experiments mentioned at the beginning of this chapter. The

‘old’ wires had a diameter of 17.7 µm, while the ‘new’ ones have a diameter of 12.5 µm.

With the shell typically biased at +100 V and a wire voltage of +1000 V, the electric

field produced is described by:

E =
1000− 100

rln(7/0.018)
≈ 150

r
[
V

m
] . (3.3)

Therefore, the field starts out small near the shell but gets much stronger towards the

wire. Electrons produced in the region below the ACs, drift through the FG and are

strongly accelerated by this field. When they are ∼10-20 µm from the wire, the elec-

trons have enough energy that in their collisions with neutral atoms in the gas they create

secondary electron-ion pairs, which in turn create more pairs leading to the formation of

an avalanche. Individual screening grids under each AC protect the Frisch Grid from the

high number of positive ions generated in the avalanche process.

According to Eq. 3.3, the electric field created varies from 15-20 kV/m, near the shell,

to 25-30 103 kV/m near the wire. Figure 3.7 shows the electric field variation with distance

from the anode within the boundaries stated. For pressures of 30-50 Torr and this voltage

range, gas multiplication factors are of the order 104-105 [52].

The production of the output signal is similar to the process previously described for

the ionization part of the detector. The signal has two components. One comes from the

charge induced by the drift motion of the electrons. The other is due to the charge induced

by the motion of the positive ions. The electron component is much smaller and generally

considered negligible. The charge induced due to the ions is then divided through the

wire resistance and sent towards the two ends of the wire. Since the resistance of the
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(a) (b)

Figure 3.7: Electric field strength variation with distance from the anode wire, for three values of
the voltage difference between the wire and shell. There are two ranges plotted: (a) from 0 to 7
mm, near the AC shell and (b) from 0 to 100 µm, the avalanche region.

wire depends on the length from the interaction to the end of the wire, each charge pulse

will be proportional to the resistance it encounters. Knowing that, we can determine the

interaction location from the charge,QL (left) andQR (right), at each end of the wire using

the formula

xR =
QL

QL +QR

D , (3.4)

where D is the total length of the wire, which is 40 cm as mentioned. The measured

positions along the 4 wires can then be used to determine the angle in the detector as long

as their placements with respect to each other are known. The first AC is 2 cm behind the

entrance window. The other three ACs are placed 15.1 cm, 31.4 cm and 47.7 cm behind

the first.

The actual detection region is 30 cm by 51 cm by 10.5 cm (w x l x h). The Oxford

detector is generally operated with pure isobutane gas at pressures ranging from 20 Torr

to 150 Torr, flowing at a constant rate (∼ 0.2–0.4 l/min) with the help of a MKS250

control unit through a specifically designed system with 6.35 mm diameter copper tubing.
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The pressure was monitored with a Barratron gauge. The appropriate gas ports for these

were placed in the front flange (Figure 3.10). The MKS flow control unit cannot ensure a

constant rate at pressures below 20 Torr which imposes this lower limit on the gas pressures

that can be used.

The scintillator (type BC-400) is attached to the frame of the exit window with two

wide clamps. An o-ring in the frame provides the seal needed to create a vacuum between

the two surfaces. The light produced inside the scintillator is collected with two Hama-

matsu photomultiplier tubes (Model Nr. H1949-50) coupled on the sides (see Figure 3.8).

There was no optical grease used because the design did not allow us to apply it with com-

plete certainty that there would not be imperfections. In order to minimize light impurities

we covered the two couplings and the entire back assembly with black cloth.

Figure 3.8: Photograph showing the back of the Oxford detector with the scintillator and 2 photo-
tubes.

The specific gas pressure and scintillator thickness are chosen such that the particles

of interest pass through the gas and are stopped in the scintillator. For these experiments,

we used a 6.35 mm thick scintillator and 4 different pressures - 30, 50, 85 and 100 Torr -

of isobutane.

In summary, the Oxford detector supplies us with 11 output signals. The ACs provide

us with 8, corresponding to the left and right charges collected from each wire. The plates
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between AC1 and AC3 give us one signal, called dE1, corresponding to the charge signal

created from the energy lost in that region of gas. Similarly, the plate between AC3 and

AC4 gives another energy loss signal called dE2. The energy lost by the particles as they

stop in the scintillator is detected by the phototubes as 2 separate signals, called PML and

PMR. The geometric average of the two is called Eres or PM.

For the internal components, the signals were guided through an electronic scheme

using wires, cables, resistors and capacitors as shown in Figure 3.9. To access the signals

from outside the chamber, we used two sets of feedthroughs placed on the front flange

(Figure 3.10).

‘After’ the upgrade

Usually, the relative energy resolutions of dE1 and dE2 were between 6% and 17%,

such that the lower the pressure, the poorer the resolution. Additionally, dE2 was con-

sistently worse than dE1 because the signal is smaller (shorter path of travel) and the

straggling effect from the particle passing through the previous sections becomes more

significant. For heavier particles, A > 22, if one wants to reliably measure reactions at

higher scattering angles (eg. larger than 10° lab) one would have to use gas pressures ≤

30 Torr. In this case, the dE2 signal tends to blend into the electronic noise and is thus

unusable. In cases like this, dE1 also tends to have poor enough resolution that particle

identification (PID) is difficult. As explained in chapter 1, the highest mass particle that

we tried to detect was 27Mg and Figure 3.11 shows the PID spectrum that we obtained.

The upgrade of the Oxford detector was focused on improving this by improving the

energy loss detection. When initial discussions about upgrading the detector started, we

had just finished designing and testing a new detection system, called AstroBox. Its pur-

pose was to detect low energy protons emitted during beta-delayed proton decay of nuclei

of astrophysical interest [3]. The design relied on using Micromegas, a relatively new de-
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Figure 3.9: Internal electronics scheme for the Oxford detector.

tector technology that operates as a two stage parallel plate avalanche chamber. It consists

of a small amplification gap (50-300 µm) and a much larger drift gap (on the order of cm)

separated by a thin metallic micromesh. This technology was shown to provide gains of

up to 105 [4].

With the right gas mix, pressure and field settings, AstroBox was capable of detecting

proton energies as low as ∼200 keV without being overwhelmed by the beta background.
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Figure 3.10: Photograph of the front flange of the Oxford detector showing the entrance window
and the feedthroughs.

Figure 3.11: Two-dimensional PID plot of dE1 vs PM energy obtained from a beam of 26Mg hitting
a 13C target. Reaction products are detected at an angle of 4° in the lab system. The Mg isotopes
are indicated in the ellipse.
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Moreover, during testing, we found that the Micromegas were also capable of detecting

heavier ions with very good separation of various ions, close to the mass region that we

use the Oxford detector for. Figure 3.12 shows a PID plot created with AstroBox, i.e.

a two-dimensional plot of the energy lost in two consecutive gas sections equipped with

Micromegas.

Figure 3.12: Two-dimensional plot of the energies deposited in the center vs exit pads of AstroBox
detector. Various species are clearly identified. Gas pressure was kept at p=800 torr.

Given these positive results and the relatively easy operation of the Micromegas, we

were leaning towards using this technology to upgrade the Oxford detector. Our first

concern about it was that such a detection scheme, combining Micromegas with a gridded

ionization chamber, had not been used before so we had no reference points. Our second

concern was that at that time there were no published works documenting the operation

of Micromegas detectors at the low pressures that we need to use in the Oxford detector.
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This was the first attempt to operate a focal plane detector with micro pattern technology

as far as we knew.

In light of the initial unknowns, we decided that the upgrade had to be reversible. If

the modifications were not successful we could revert to the original design without losing

significant time, while we determined what went wrong. The simplest method to achieve

this that we found was to replace the dE2 anode with a Micromegas anode of identical size

and shape (Figures 3.13 and 3.14).

Figure 3.13: Schematic drawing of the inside components of the Oxford detector showing the
position of the new Micromegas anode.

The components of the Micromegas plate about to be described are indicated in Figure

3.16 with capital letters. The new anode consists of a circuit board (Figure 3.16, A) printed

with gold-plated copper pads (Figure 3.16, B). The PCB has a thickness of 6 mm to allow

close to perfect planarity. It is made of multiple layers of circuit board, allowing for the

signals between the pads and the connectors to have no capacitive connections to other

pad-lines through the use of 6 grounded copper layers. Each pad is 32.5 mm high and 44

mm wide. The space between pads is ∼0.2 mm. There are 4 rows and 7 columns, 28 pads
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(a)

(b)

Figure 3.14: (a) Original dE1 anode. (b) Photograph of the MicroMegas anode showing the
detection pads. The distortion of the shape is an optical effect due to the camera used to take the
photograph.

total, forming a detection area of 13.5 cm by 30.9 cm.

In the final version the pads were polished to a mirror finish and Au coated. The inter-

pad spaces are filled with resin. Sitting below the pads is a micromesh made of stainless

steel inter-woven wires with diameter of 18 µm and a pitch of 63 µm (Figure 3.15, (b)).

The thickness of the mesh at the intersection of the wires is 30 µm. The space between

the pads and the mesh is called the amplification gap and is 256 µm thick (Figure 3.16,

D). The mesh is supported at that distance by numerous insulating resin pillars (Figure

3.16, C), with diameter of 0.4 mm and a pitch of 5 mm (Figure 3.15, (a)). They ensure

gap uniformity of the order of 1 to 2 microns. The 256 micron gap allows a relatively high

gain at low pressures by giving the electrons a longer path to develop the avalanche.

When it is mounted on the Oxford detector plate, the mesh creates a drift gap with the
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(a) (b)

Figure 3.15: Microscopic photographs taken in the clean room with the lenses focused on (a) the
resin pillars and (b) the micromesh.

cathode of 12 cm. Field uniformity in this region is ensured by the Oxford detector Faraday

cage. Just before the mesh, the field lines in the drift gap are compressed significantly

towards the center of the mesh openings transitioning to the density of field lines expected

in the amplification gap. Mesh transparency (opacity) to electrons (ions) depends on the

ratio between the amplification field and the drift field. A ratio > 50 ensures better than

95% transparency (opacity) [5].

As explained previously for the ACs, ionization electrons move along the drift field

lines toward the mesh and into the amplification gap. There, they are multiplied rapidly

and the charge created is collected by the anode pads (Figure 3.16). The positive ions

move in the opposite direction and most of them are collected by the mesh. Those that

aren’t move past the mesh and are collected by the FG. The signal obtained from each pad

is the sum of the signal induced by the electrons and the one induced by the ions. The rise

time is governed by the velocity of the ions in the gap, which in this case was ∼1 µs.
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Figure 3.16: Schematic of the Micromegas detector. Sizes are not to scale. The main components
of the Micromegas anode are indicated in capital letters: A - the PCB board, B - the gold-plated
copper pads, C - the resin support pillars and D - the micromesh.

Initially, we wanted a single large area of detection, like the previous anode. However,

in that case the capacitance would have been ∼2 nF, which would have given significant

noise problems. The current pad dimension is the largest that could be used while keeping

a reasonable signal to noise ratio (∼300:1). Another worry was that the charge created by

particles with high Z over the entire surface would be large enough, even at low voltages,

to trigger significant sparking and detector breakdown.

In line with the low-modification aim of this upgrade, the mounting of the Micromegas

anode involved minimal changes to the Oxford detector. The old anode and related ground-

ing cables were removed and the new anode was screwed in place. The sides signal which

can be seen in the schematics from Figure 3.9 was previously unused and thus could be

disconnected from the front flange. The corresponding feedthrough was then connected to

the mesh output on the Micromegas anode using a low-capacity coaxial cable. To create
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the necessary electric fields, the mesh was grounded using a 50 Ω BNC terminator.

Additionally, in order to control the strength of the drift field just below the mesh, the

40 MΩ resistor pair between the FG and ground was replaced with a ‘variable’ resistor.

This was done by connecting the FG to the feedthrough that was allocated as ‘FG signal’

(also previously unused) and using a resistor box outside the detector chamber. This al-

lowed easy access to the voltage divider without repeatedly opening the detector chamber.

Figure 3.17 shows the section of the electronics scheme from Figure 3.9 that was changed

and the modifications. The 28 individual signals are routed through the internal circuit of

Figure 3.17: Section of the internal electronics scheme of the Oxford detector showing the modifi-
cations needed to have the Micromegas anode set up correctly.

the PCB to two DSub-25 connectors (Figure 3.18,(a)), the top 2 rows going to one connec-
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tor and the bottom 2 going to the other (Figure 3.18,(b)). The printed circuit was designed

to minimize noise and cross-talk between pads. From the DSub-25 connectors, the sig-

(a)

(b)

Figure 3.18: (a) Photograph taken of the Micromegas anode after it was mounted on the Oxford
detector. (b) The printed circuit lines showing the mapping between pads and the connector pins
for the Micromegas.

nals are sent outside the Oxford chamber using two flat cables. In order to reduce the

noise from the cable length, we had to design and build a new mid-section for the detector

chamber, one that would have two flanges with DSub-25 feedthroughs right above the two

DSub-25 connectors. In this manner, the flat cables ended up being the shortest possible,

∼ 7 cm. Additionally, we did not want to have contamination from out-gassing of the

new materials, so the cable connectors were made of PEEK (polyetheretherketone) and

the wires were made of silver-plated copper with kapton insulation. Figure 3.19 shows

the technical design for the new section of the chamber in (a) and a photograph of the

complete chamber after mounting the Micromegas anode and before connecting the flat
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cables, in (b).

(a) (b)

Figure 3.19: (a) 3-D AutoCAD design of the Oxford chamber showing the new elements in color,
while the old components are in gray. (b) Photograph taken of the complete chamber after mount-
ing the Micromegas anode and before connecting the flat cables.

The electronic modules that were used and the manner in which they were connected

in order to guide the signals from the detector chamber to the acquisition computer will

be described in the next subsection. Throughout the rest of this chapter and the next, the

Micromegas energy will sometimes be referred to as ‘MuO Energy’ or EMuO in both the

text and related figures.

3.1.3 The DAQ system

The data acquisition system was set to monitor and record 39 signals from the Oxford

detector using preamplifiers, amplifiers, ADC modules and one VME electronics crate.

For the 8 signals from the ACs we used 8 Canberra 2004 preamplifiers and one CAEN

N568B 16-ch spectroscopy amplifier. In order to minimize noise, short SHV-SHV cables

(∼0.5 ns) were used from the feedthroughs to the preamplifier inputs and 8 ns BNC-BNC

cables from there to the amplifier. The position along each wire was calculated in the DAQ
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software with the formula:

POS = A
L

L+R
. (3.5)

Here, A is the number of channels in the POS histogram (specifically, 1024), while

L and R represent the charges induced at each end of a wire after ADC conversion. The

angle of the path inside the detector was also calculated by the software from the positions

along the first and last AC, using the formula:

ANG = POS1 − POS4 . (3.6)

Each AC wire was biased through the corresponding right preamplifier. The typical

operation voltages were: +100 V for the shells and +800-1000 V on the wires themselves.

Exact voltage settings were decided during each experiment in order to obtain the best

possible position and angle resolution.

The cathode was biased to ∼ -800 V. The dE1 signal was first processed with a Can-

berra 2004 preamplifier and then shaped with a second N568B module. Two other input

channels of this same module had the amplified (with a fast-timing amplifier) PM signals.

The phototubes were typically operated at voltages between -1600 V and -1800 V. The

resolution of dE1 depended on gas pressure, the energy and type of particle detected and

the electronic settings used.

For the Micromegas pad signals, each set of 14 was shaped and amplified first with

a Mesytec MPR16 preamplifier and then a Mesytec MSCF-16 amplifier. The Miromegas

anode was operated in the region 250-400 V. A scan of the bias was necessary at the

beginning of each experiment in order to determine the optimum voltage to use. More

details on this will be provided in Chapter 4, Section 1.

All the processed signals were digitized using two VME-ADC 32-channels modules.
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Figure 3.20 shows the schematic described above.

As the trigger for the acquisition, we decided to use the coincidence between the two

phototube signals because the scintillator response is faster than both the ACs and the

Micromegas .

Two anode outputs from the phototubes were filtered with a constant fraction discrim-

inator (CFD) and used as inputs for a LeCroy 622 coincidence module. Two outputs from

it were used for real time monitoring and counting purposes. A third output went into a

Philips coincidence module, along with the DAQ veto (dead-time) signal. One logic out-

put of this module was then used as the trigger for the acquisition. A second output was

used in an Ortec 8010 Gate and Delay Generator module to create the logic gates for the

ADC modules. This triggering scheme is also shown in Figure 3.20.

The FC placed inside the target chamber gave a signal that was measured with a

TAMVEC Current Integrator (Model Nr. 1000c). The total beam charge was counted

with an ORTEC 995 Counter using the formula

Q[nC] = Ibeam[nA] ·
FCCounts

1000
, (3.7)

where, Ibeam denotes the beam intensity expressed in nA units, FCCounts represents the

number shown by the digital display of the counter module and the number ‘1000’ in the

denominator represents the conversion factor of the integrator, in this case 1000 pulses/-

counts per second.

Data events were observed, recorded and analyzed with a software created in Linux,

using the C++ based ROOT framework [6].
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3.2 Experimental Procedures

3.2.1 Gain-matching the wires (ACs)

Before each experiment the ACs have to be gain-matched. This procedure involves

sending a charge pulse (from a pulser) through a 25 pF charge converter and then into the

detector input of each amplifier. For each AC we changed the gains in the CAEN shaper

to match the left and right pulses.

3.2.2 Beam energy determination

The energy of the primary beam is determined using the Single Slit mask and a 197Au

target of known thickness. The heavy target provides us with a secondary beam of mostly

elastically scattered particles. The collimated beam is then sent through the MDM spec-

trometer and into the detector. Changing the dipole field allows us to sweep the beam

across the detector. In this way, we can find the edges of the detector (specifically the B

field values) and thus the center. Knowing the rigidity, we can calculate the energy of the

central ray, which is also the energy of the secondary particles after the reaction on the

gold target.

Before the upgrade, we did this by looking at the signals of the phototubes. Every time

we reached an edge, the corresponding PM signal rate would decrease. After the upgrade,

we used the Micromegas anode. But instead of finding the edges of the detector, we looked

for the edges of the central column.

The accuracy of this estimation depends on a number of factors. One of them is the

primary beam alignment. Before an experiment starts, the beam obtained from the cy-

clotron has to be focused and centered on “target" using a viewer with markings. If the

beam is off-center or coming at an angle then the assumptions made about the kinematics

of the reaction taking place are incorrect.

Another factor is the beam dispersion at the scintillator. It is difficult to determine
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exactly when an edge is reached. However the biggest uncertainty comes from the target

thickness. In general, we assume that beam misalignment is nonexistent and that the

errors in estimating the edges of the scintillator are negligible. For the experiments done

in this study, the target used to estimate the beam energy was 197Au and its thickness was

determined as described in subsection 3.2.6.

Therefore, the adopted uncertainty for the beam energy was 3.6%. This value was used

in all the other error determinations were beam energy was a factor.

3.2.3 Position Calibration

As mentioned before, each AC provides two signals, left and right, which are used to

determine the position of the particle along the x axis at that particular depth in the detector.

These 4 positions can then be used to determine the angle of the path and to reconstruct

the focal plane. However, in order to do that correctly each AC must be calibrated such

that the raw measurements are converted to metric units. Specifically, for each AC, we

need to obtain a set of parameters pij , where i is the AC number, j=0,1,2 and:

PSCi[cm] = pi0 + pi1 · POSi[ch] + pi2 · POS2
i [ch] , (3.8)

where POSi is the raw position at each AC, as calculated with Eq. 3.7 and PSCi is the

calibrated position.

The procedure to determine these parameters involves scattering on a gold target at a

low angle where the cross-section is large enough for the calibration to be done quickly.

The secondary (scattered) beam is collimated using the 5-finger mask and the tracks of the

particles are observed for 4 or 5 different B field values. Figure 3.21 shows the typical

spectra obtained with AC1 for a 27Al beam and MDM angle of 4°. The small background

of events sitting to the left of the peaks in Figure 3.21, (c) denotes inelastic scattering off

the 197Au target (lower energy results in less rigidity and particles that aren’t bent as far

73



(a) (b)

(c)

Figure 3.21: Typical spectra obtained with the first avalanche counter for calibration purposes. (a)
Spectrum for the left signal. (b) Spectrum for the right signal. (c) Spectrum for the reconstructed
raw position.

away from the left end of the wire as the elastic events).

Figure 3.22 shows an example of calibration fits for the 4 wires.

The X-axis error bars represent statistical errors. For the Y-axis, the RAYTRACE

code does not give errors for the results it calculates. Instead, the uncertainties were

determined by considering the experimental variables that go into the input file: beam

energy and MDM magnetic field. The beam energy is used to determine the particle ve-

locity at the beginning of its path. Therefore, the associated uncertainty was found as

∆v/v = (1/2)∆E/E =1.8%. The MDM magnetic field has an error of 0.5 G that comes
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(a) (b)

(c) (d)

Figure 3.22: (a-d) Example of quadratic calibration fits for the avalanche counters. The error bars
are explained in the text.

from the precision of the electronic equipment used to set the field. But such a variation

did not produce a change in the RAYTRACE calculations and as such, this possible con-

tribution to the total uncertainty was neglected. The Y-axis error bars that appear in Figure

3.22 reflect only the 1.8% from the beam energy.

As can be seen, having data from a higher number of field values allows for a better fit

estimation, particularly when the focal plane is near one of the ACs (AC3 in the figure).

3.2.4 Angular Calibration

The purpose of the procedure of angular calibration is to find the target angle as a

function of the detector angle and is done solely using RAYTRACE simulations. The

angle of a particle track in the detector, θd, is determined from the positions along any two

wires. In order to determine the corresponding angle at the target, θt, we use RAYTRACE
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to simulate the tracks of particles with several different energies, at the same B field. For

each of these energies, we obtain a quadratic function relating θt to θd:

θt = A+Bθd + Cθ2d . (3.9)

An example of this type of fit is shown in Figure 3.23, (a). Since these data points were

solely generated with RAYTRACE the errors were the same, at 1.8%, for θt and θd.

(a) (b)

(c) (d)

Figure 3.23: (a) Example of a quadratic fit of the θt versus θd calculations for angular calibration.
(b-d) Quadratic fits of the calibration coefficients, A,B and C, as function of the position in the
focal plane. In all four plots error bars are included but too small to see.
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The coefficients A, B and C depend on the particle energy, which we don’t know.

However, particles with different energies have different positions in the focal plane,

PFP . The relationship between the A, B and C coefficients and PFP was found to

be described by the formulas below:

A = A1 + A2 ∗ PFP + A3 ∗ PFP 2

B = B1 +B2 ∗ PFP +B3 ∗ PFP 2 (3.10)

C = C1 + C2 ∗ PFP + C3 ∗ PFP 2 .

The coefficients A1, A2,...C3 are the final parameters required in the analysis. Figure

3.23, (b-d) shows the type of plots used in the calibration. The uncertainty of PFP was

1.8% while the errors of the A1,...C3 coefficients were determined using regression anal-

ysis. Using these quantities, the uncertainties for A, B and C were calculated with the

formula:

∆y =

√(
δy

δx1

)2

(∆x1)2 +

(
δy

δx2

)2

(∆x2)2 + · · · , (3.11)

where, y = f(x1, x2, · · · ), and found to be on average 2%, 0.2% and 0.2%, respectively.

These values were used to plot the Y-axis error bars in Figure 3.23, (b-d). For the angular

information in the experimental data, these uncertainties were calculated similarly, with

the exception that ∆PFP was given by the position resolution in the focal plane.

∆A, ∆B and ∆C were then used with Eq. 3.11 and Eq. 3.9 to determine the un-

certainty in the target angle, ∆θt. It should be noted that in this case the detector angle

uncertainty that was used, ∆θd, was found from the behavior of the detector at the time of

the experiment.

The angular calibration procedure was done for every MDM angle where data were

taken.
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3.2.5 Faraday Cup normalization

The last of the calibrations needed to be done at the beginning of an experiment is for

the Faraday Cup. In order to accurately count the number of particles in the beam it is

necessary to make sure that the FC works properly and if necessary determine a correction

factor. This check is done at small angles (≤6°) with a heavy target like gold where the

expectation is that the elastic scattering is of the Rutherford type.

In that situation, data are taken for a set number of counts on the beam current in-

tegrator (typically 200,000) with the 5-finger or 4-by-1 mask in order to obtain a set of

determinations that can be statistically averaged into a final result. The experimental

cross-section is then calculated with Eq. 5.4 using the set number and compared to the

theoretical Rutherford cross-section:

σRuth =

(
ZbeamZtarget e

2

4E

)2

sin(θ/2)−4 . (3.12)

An example is shown in Figure 3.24 for a beam of 13C scattered on a gold target and

measured at 6° using the 4-by-1 mask. The 4° acceptance range was split into 8 bins and

the 2 cross-sections were calculated for each bin.

The large angular resolution is thought to be partly due to the beam dispersion after

the cyclotron but mostly due to the effects of aging on the avalanche counters. Studies

have shown that long-term use of gas counters leads to ionization deposits on the anode

wire and such surface degradation. The effects of this degradation manifest as loss of

gas gain, worsened energy resolution, increased leakage current and increased chances of

breakdown.

The first and last points in Figure 3.24 show the typical under- and overestimation in

counting that occurs due to the edges of the 4-by-1 mask. The correction factor for the FC

was calculated using the formula below and averaged over the 6 values that align with the
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Figure 3.24: Comparison between experimental and Rutherford cross-section for FC calibration
purposes. The X-axis error bars are given by the detector angular resolution of 0.52° multiplied by
the statistical percentage error. The Y-axis error bars indicate the uncertainty in the experimental
cross-section which is dominated by the target thickness error.

Rutherford prediction:

f =
σexp
σRuth

. (3.13)

Therefore, the corrected number of counts measured by the FC that was later used in

the analysis in Eq. 5.4 is given by:

FCcorr = f · FCCounts . (3.14)

The FC normalization procedure is done for each specific experiment and must be done

with the FC at the position that is later used in taking reaction data.

3.2.6 Target thickness determination

The thickness of each target was determined by measuring the energy loss of charged

particles in each target. Specifically, there were two methods applied. The on-line method

used the projectile beam as a source of charged particles. The off-line method was done
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with alpha particles from an alpha source. Each method is described in more detail below.

The off-line method

The source mentioned above contained a mix of 4 alpha-emitting nuclei:148Gd, 239Pu,

241Am and 244Cm. In order to prevent errors in determination due to particles coming

at an angle (and passing through T/ cos θ instead of T ), the source was collimated by

placing a 2 mm thick Al mask over it, with a 1 mm diameter hole. The energy of the

alphas was measured with a small silicon detector. Charge pulses were converted first to

analog signals with a Mesytec charge preamplifier and then to digital signals with a pocket

multichannel analyzer (MCA). The MCA was connected to a computer and the spectra

were read and recorded with a software package called ADMCA. This setup is shown in

Figure 3.25.

Figure 3.25: Schematic of the setup arranged for source measurements. Figure adapted from
Ref. [53].

A target holder for the targets was placed between the source and the detector, as close

as possible to the source, and all three were placed in vacuum. A spectrum was first taken
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without any target in order to calibrate the detector and also to have a reference point for

the energy loss calculation. After that, alpha spectra were taken in turn for each of the

targets of interest. Figure 3.26 shows an example of the source spectrum overlapped with

the one for alphas passing through Al(#1). The shift in the energy peaks due to the energy

loss in the target is visible in the picture.

Figure 3.26: Overlapped alpha spectra when there is no target and with the target Al(#1) in the
holder. Green indicates the alphas coming directly from the source, while purple is for the alphas
that pass through the target.

Each of the four peaks was fitted with a Gaussian in order to obtain the centroid. The

results for the energy shifts due to the 4 targets measured with this method are shown in

Table 3.1. The reduction in energy measured by the detector without target is due to a

protective layer of Al (1.05 µm thick) covering the detector.

Tables 3.2 through 3.5 show the energy loss in each target, labeled ∆E, and the corre-

sponding thickness as determined with the LISE++ software [54]. It can be seen that

the theoretical model used by LISE++ for particle transport through matter does not work

well for the 3.2 MeV energy line as those results are in large disagreement with the other
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Alpha Energy after
Energy no 197Au 27Al (#1) 27Al (#2) 27Al (#3)
[MeV] target
3.183 2.955 2.873 2.852 2.727 2.017
5.157 5.002 4.935 4.928 4.843 4.365
5.486 5.336 5.277 5.270 5.184 4.731
5.805 5.662 5.601 5.598 5.514 5.074

Table 3.1: Changes in each alpha energy according to the target measured.

Alpha Target 197Au
Energy ∆E T Tavg ∆T ∆T/Tavg

[keV] [keV] [µg/cm2] [µg/cm2] [µg/cm2]
3182.69 77.5 271.2
5156.59 49.1 210.4 200.1 16.6 8.3%
5485.56 41.9 185.2
5804.77 44.8 204.7

Table 3.2: Energy loss and corresponding thickness for the 197Au target.

Alpha Target 27Al (#1)
Energy ∆E T Tavg ∆T ∆T/Tavg

[keV] [keV] [µg/cm2] [µg/cm2] [µg/cm2]
3182.69 97.6 122.5
5156.59 56.3 93.1 88.3 6.8 7.7%
5485.56 49.0 84.6
5804.77 48.3 87.3

Table 3.3: Energy loss and corresponding thickness for the 27Al (#1) target.

Alpha Target 27Al (#2)
Energy ∆E T Tavg ∆T ∆T/Tavg

[keV] [keV] [µg/cm2] [µg/cm2] [µg/cm2]
3182.69 217.2 269.4
5156.59 140.9 231.6 231.3 18.5 8.0%
5485.56 133.4 229.1
5804.77 129.6 233.1

Table 3.4: Energy loss and corresponding thickness for the 27Al (#2) target.
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Alpha Target 27Al (#3)
Energy ∆E T Tavg ∆T ∆T/Tavg

[keV] [keV] [µg/cm2] [µg/cm2] [µg/cm2]
3182.69 894.3 1044.0
5156.59 605.4 976.7 974.2 81.8 8.4%
5485.56 578.6 968.8
5804.77 560.2 977.1

Table 3.5: Energy loss and corresponding thickness for the 27Al (#3) target.

three. A check with the stopping range code SRIM [55] revealed the same disagreement

between the 3.2 MeV determination and the 5-6 MeV ones. As such, the final thickness

result shown in column 4 of each table was determined as an average of only the 3 num-

bers corresponding to the 5-6 MeV energies. The error of the mean was calculated with

the standard method for small data sets, using the formula below:

∆T̄avg =
Tmax − Tmin

2
√
N(= 3)

. (3.15)

To this error, an uncertainty of 2% was added to account for the statistical errors,

as well as 7% for target non-uniformities and 1.5% for uncertainties due to the model of

energy loss in matter. Straggling was also accounted for, based on each energy. Columns 5

and 6 in each table reflect the total uncertainty (absolute and percent) for the corresponding

target.

The on-line method

The in-beam method is also sometimes called the ‘double-target’ method. In this case,

the first step was to have the projectile beam pass through a gold target and record a

spectrum of the focal plane. Figure 3.27, (a), shows one such plot for a beam of 13C. The

elastic scattering peak present was fitted with a Gaussian shape to obtain the centroid. The

second step was to place the target of interest in front of the gold target and have the beam
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pass through both of them. The peak in the focal plane spectrum showed a shift reflecting

the energy lost by the beam in the target needed to be measured, as illustrated in Figure

3.27, (b).

(a) (b)

Figure 3.27: Focal plane spectra for target thickness determination with 13C beam. (a) Spectrum
corresponding to the gold target on its own. (b) Overlapped spectra showing the shift in energy
due to the presence of an aluminum target (red) in front of the gold one (blue).

The linear dependence of the beam energy on the focal plane position was determined

with RAYTRACE. The ∆E obtained was then used with LISE++ to determine the thick-

ness of the target. This method was applied to the 3 targets listed in table 3.6. For the

13C target, the procedure worked as expected and the result is presented in the table. A

test of uniformity was performed as well for this target, by putting the beam through a

spot above the center and then below the center. This test revealed an uncertainty in the

thickness determination due to non-uniformity of ∼7%. This uncertainty has been ap-

plied to all thickness determinations where the test wasn’t done to account for possible

non-uniformities in each target.

For both 27Al targets, there were some issues with the data. Specifically, when the

beam was sent through both Al and Au foils it seemed to produce a secondary peak and
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not just the expected shift in the elastic peak. Figure 3.28 shows this phenomenon for the

27Al (#2) target. The plot on left, (a), shows the data in focal plane position versus target

angle with a second band corresponding to the second peak visible at the larger angles.

The slight bend to the lines is an artifact of the RAYTRACE reconstruction. The plot on

the right, (b), is a closer view of the red spectrum from Figure 3.27, (b), showing the tail

trailing towards the lower positions corresponding to the second peak.

(a) (b)

Figure 3.28: (a) Spectrum showing data in a focal plane position versus target angle plot corre-
sponding to the beam passing through the 27Al (#2) target and scattering off the gold foil behind it.
(b) Focal plane position spectrum showing the data in (a) projected on the Y-axis, with the second
band appearing as a tail of the main peak.

It is uncertain where this second peak comes from. The fact that it appeared after the

Al target was set in front of the Au foil suggests that the peak might be caused by scattering

off of an impurity in the target. A rough estimation of the contamination percentage gives

the value of 0.2% which disagrees with the material specifications of the Al sheet that

the target was made of. Another possibility is that the distance between the Al and Au

foils was large enough for the 12C reaction product off of 27Al to cause its own Rutherford
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Target Projectile ∆E Tavg ∆T ∆T/Tavg

Name Beam [keV] [µg/cm2] [µg/cm2]
13C 27Al 508.9 91.8 6.9 7.5%

27Al (#2) 13C 320.2 266.9 20.8 7.8%
27Al (#3) 13C 1053.3 983.9 69.4 7.1%

Table 3.6: Results for target thicknesses determined with a beam of projectiles.

Target Online [µg/cm2] Offline [µg/cm2] Weighted Average [µg/cm2]
13C 91.8 ±6.9 not measured 91.8 ±6.9

27Al (#1) not measured 88.3 ±6.8 88.3 ±6.8
27Al (#2) 266.9 ±20.8 231.3 ±18.5 247.0 ±13.8
27Al (#3) 983.9 ±69.4 974.2 ±81.8 979.8 ±52.9

197Au not measured 200.1 ±16.6 200.1 ±16.6

Table 3.7: Summary of the target thicknesses measurements results.

scattering on gold. However, RAYTRACE calculations disprove this theory.

Unable to determine the cause of this second peak, it was decided to proceed with the

target thickness determination by only considering the main peak. The angular range was

divided into 8 bins that were used to obtain 8 independent evaluations of the thickness.

The average result is presented in Table 3.6 along with similar results for the other two

targets.

Table 3.7 shows a summary of the results obtained with both methods used to deter-

mine a target’s thickness. It can be seen that the on-line and off-line values for 27Al (#2)

are rather different, even though they agree within the error ranges. It is very likely that

the source of the double-peak phenomenon is responsible for that. However this discrep-

ancy didn’t occur for the 27Al (#3) target, a fact that is inconsistent with this assumption.

Therefore, this discrepancy in thickness evaluations was kept in mind as a possible source

of similar discrepancies in the reaction data.
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3.2.7 Particle identification

There are three types of figures that can be used to identify the particles of interest.

The first is a plot of the energy lost as the particles travel through the detector gas versus

the stopping energy left in the scintillator (PM). Figure 3.29 shows an example of such a

particle identification (PID) plot, where the energy loss data come from the dE1 signal.

Figure 3.29: Particle identification plot of the dE-PM type. The data in this figure come from a 28Si
beam on a 13C target. The energy loss information is given by the dE1 signal. The different black
dashed lines indicate isotopes of different Z with the topmost line being Z=14.

The resolution of dE1 in this example, 28Si beam on a 13C target, isn’t very good

but it can still be seen that nuclei with the same proton number (Z) form bands roughly

parallel to the horizontal axis. The topmost Z-band most often corresponds to the primary

beam. Figure 3.30 shows two other examples of this type of plot. In (a), the energy

loss information comes from the Micromegas anode signal (EMuO), while in (b) the Y-axis
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indicates the sum of the dE1 and EMuO signals.

(a) (b)

Figure 3.30: Particle identification plots of the dE-PM type with data from a 28Si beam on a 13C
target. (a) Micromegas energy versus PM energy. (b) Sum of dE1 and Micromegas energy signals
versus PM energy.

The second method to determine the type of particles detected involves plotting the

data in a 2-D histogram of position in the focal plane versus energy. The energy infor-

mation can come from a ∆E energy loss signal (dE1, EMuO, dE1+EMuO or even the wire

energy) or the stopping energy (PM). Figure 3.31 shows an example of this type of plot

using the sum of the dE1 and EMuO signals. Here, the roughly vertical bands correspond to

specific nuclides and the horizontal bands correspond to excitation states in those nuclides.

It can be seen that the data that overlap in ∆E become separated due to the added position

criteria.

Usually, the analysis procedure involves using a first gate on the Z-band of interest

in the ∆E-PM figure. The data inside that gate are then plotted in a position versus ∆E
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Figure 3.31: Particle identification plot of the PosFP-E type. The data in this figure come from the
same 28Si beam on a 13C target as before. The energy information on the X-axis is given by the
sum of the dE1 and Micromegas energy signals. The Y-axis shows the position of each particle in
the focal plane.

histogram. This allows us to choose the specific isotope we need. However, the specifics

of each PID selection used for analysis will be presented in chapter 5.
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4. OXFORD DETECTOR UPGRADE TESTING AND RESULTS

In order to characterize the new Micromegas component, it was necessary to study the

performance of the upgraded detector under different experimental conditions, as well as

determine the limits of operation. In particular, it was important to determine the gain

and energy resolution of the Micromegas and evaluate these parameters in relation to the

original detector performance.

The gain of the Micromegas is given by the ratio between the number of electrons col-

lected and the number of electrons produced in the initial gas ionization process. The gain

depends on various factors that affect these two numbers, like gas mixture, gas pressure,

energy and type of ionizing particle, amplification field and amplification gap.

The intrinsic energy resolution is a measure of the fluctuations in the number of sec-

ondary electrons created. It provides a way to characterize how precisely the detector can

determine the energy deposited by the ionizing particle.

As mentioned in the previous chapter, the Oxford detector upgrade was tested off-

line, as well as on-line with a variety of beams. Specifically, there were 7 beams used,

16O, 22Ne, 26Mg, 27Al, 28Si and 32S. In each case, the beam energy was approximately 12

MeV/A and the main target was 197Au. The gas mixture used was isobutane and remained

unchanged throughout the testing. Additionally, the amplification gap in the Micromegas

was not changed from 256 µm.

The elastically scattered beam was collimated with the single slit corresponding to an

opening angle of 0.1°. The Micromegas response was plotted in individual pad histograms

containing the raw data (Figure 4.1, a-d), as well as a 2D histogram called ‘Micromegas

Hitmap’ showing the particle track through that gas region of the detector (Figure 4.2).

From these histograms, others were derived as necessary and will be explained as they
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(a) (b)

(c) (d)

Figure 4.1: (a-d) Individual raw histograms for the Micromegas pads in column 4.

appear in the text. Throughout this chapter, individual pads will be referred to according

to their row and column, for ex. R1-C1 represents the pad in row 1 and column 1.
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Figure 4.2: 3-D map of the column 4 pads ‘hit’ as a 16O beam passes through the gas.

Throughout the following analysis, the pressure values mentioned are actually assumed

values. The pressure gauge used in the experiments suffered a change in calibration that

occurred very slowly over a period of years and was only discovered very recently. The

true values are off by ≈ -15 Torr. However, the assumed values have been kept in the

analysis as they don’t affect the relative response of the Micromegas outside the breakdown

region (which is around 5-10 Torr).

4.1 Off-line Tests

The electronic noise was one of the main points of concern and focus in the pre-

experiment setup and testing. At the design level, the connections between the pads and

the preamplifiers were made as short as possible in order to minimize noise pick-up in

connector cables.

With the Oxford detector connected to the beam-line and the magnets powered on,

there was a noise level between 10-50 mV, at minimal electronic gain. This showed up

in the pad histograms as a pedestal at ∼100 channels. In the beginning of the testing,
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the noise was sometimes up to 400 mV. The source in those cases was bad shielding or

terminations that were not properly grounded.

Additionally, it was observed that grounding the mesh with a terminator that had even

50 Ω of resistance would add to the noise as well as affect the pad signals. Specifically, a

pad ‘hit’ signal would produce reflected signals in all the other pads of amplitude ∼1/20 of

the original. This was not an outcome that could be tolerated as it significantly affected the

reconstruction process in the case of charge sharing between pads. But this phenomenon

will be explained in more detail later in this chapter.

4.1.1 Electronic chain calibration

It is important to know the gas gains that the Micromegas pads can provide. However,

it is impossible to determine an absolute measure of the charge created in the amplification

process. So instead, the gain of each pad was estimated based on an off-line procedure that

attempted to obtain a correlation between an ‘ionization event’ and the system response to

it. This calibration was obtained using a series of pulser signals of different amplitudes sent

through a 25 pF capacitor (with 10% tolerance) into the mesh. As the detector-electronics

system responds differently to the pulser and the actual ionization process, this provides

only a relative calibration. An example of the pad histograms obtained with this procedure

is shown in Figure 4.3.

Each of the peaks was fit with a Gaussian and the position in channels was recorded.

This was done for all the pads. Figure 4.4 shows the calibration plots for the 4 pads in the

central column as they will be the most significant in the later analysis results.

This calibration was done for the case where the electronic shaper gain was 2. Figure

4.5 shows a similar calibration done for shaper gain 8. These plots will be the only ones

included here as they were the only amplifier settings used in these experiments.
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Figure 4.3: Pulser data recorded by pad R1-C4. Amplifier settings were CG=2, FG=1.

Figure 4.4: Calibration plot showing the pulser data for the central pads and the respective linear
calibrations when the shaper gain is 2. The X-axis error bars indicate statistical uncertainties.
There is a vertical scale uncertainty of 10% due to the capacitor tolerance.

4.1.2 Source test

The first test with particles was done using a mixed alpha source containing the decay-

ing nuclei 148Gd, 239Pu, 241Am and 244Cm. Due to the design of the Oxford detector, the
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Figure 4.5: Calibration plot showing the pulser data for the central pads and the respective linear
calibrations when the shaper gain is 8. The X-axis error bars indicate statistical uncertainties.
There is a vertical scale uncertainty of 10% due to the capacitor tolerance.

source could not be used to thoroughly test every pad as there was no location inside the

detector where it could be safely mounted. The closest possible position was at the rear of

the chamber but even there, the back bank of wires that are part of the Faraday cage made

it such that the source was still ∼4 cm from the edge of row 4 of pads.

Therefore, the source was used to see if the Micromegas anode would work at a min-

imal level under the conditions required for beam testing. The Oxford detector was filled

with isobutane gas at 100 Torr, the starting pressure for the on-line testing. The alpha par-

ticles emitted by the source have energies between 3 and 6 MeV, leading to energy losses

in the pad region, from 0 to 3 MeV, similar to what is expected with the beams. The source

was placed in a central position vertically, as well as horizontally, and was collimated with

a 2 mm (diameter) circular opening.

The cathode was biased to -1000 V. As part of the voltage divider, the FG received a

voltage of ∼300 V, creating a drift field just below the mesh of ∼200 V/cm. The shaper

gain was set to 2 and the electronic shaping time was 1 µs. The response of pad R4-C4
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with increasing bias is shown in Figure 4.6. It can be seen that avalanches start forming in

the amplification gap around 250 V – 270 V.

Figure 4.6: Plot showing the variation of the electronic shaper output signal with anode bias for
pad R4-C4.

The final voltage on the pads was +400 V and the amplification field was ∼16 kV/cm.

Figure 4.7 shows the Hitmap histogram after ∼30 minutes of data acquisition, as well as

an approximate position of the source (indicated in gray). The asymmetry in the pads

response indicates that pad R3-C5 may not be working properly.

It can be seen that the alpha particles lose their energy before reaching row 1 and only

the ones traveling the shortest path reach row 2 (only those along column 4). Calculations

done with SRIM for the 4 main peaks agree with this finding. Specifically, Figure 4.8

shows the corresponding plots for the energy lost at each depth in the detector, beginning

with the dead region between the source and the active Micromegas area and ending with

row 1.

96



Figure 4.7: 2-D histogram showing the pads that detect alpha particles as well as an approximate
position of the source.

The dashed lines in these plots denote the borders between regions for a path that is

perpendicular to the rows. However, particles are emitted in a ∼30° cone. Consequently,

for each alpha particle energy there will be a range of path lengths in each pad that is ‘hit’.

Figure 4.9 illustrates this phenomenon more clearly. The four different colors, black,

green, orange and blue, correspond to the four most intense alpha particle lines. Each of

the arcs indicates the stopping range for its respective energy, for the angular opening of

the collimator.

The 5.8 MeV (black) alpha particles that reach row 2 lose energies between 0 and 1

MeV in that region of the gas. For row 3, the range is 2.1 – 2.5 MeV and for row 4, it

is 1.4 – 1.8 MeV. These ranges are similar for the 5.5 MeV and 5.2 MeV alpha particles

as well. The 3.2 MeV decays from 148Gd barely reach row 4 as can be seen in Figure

4.8 (a) and Figure 4.9. Having these calculations helps us better understand the individual

pad histograms obtained. Specifically, for pad R3-C4 (Figure 4.10, (a)), where most alpha

particles stop, this variation in path length results in a tail on the low energy side for each
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(a) (b)

(c) (d)

Figure 4.8: (a-d) SRIM simulations of energy loss in the Micromegas anode for the 4 alpha energies
needed. The X-axis denotes the depth inside the detector. The Y-axis indicates the energy lost by
the time particles reach each depth point.

peak. For pad R4-C4 (Figure 4.10, (b)), where the higher energy alpha particles (5-6

MeV) pass through without exception, the peaks are close together and overlap. On the

other hand, the 3.2 MeV alphas appear as a trail in the low channel region.

In order to minimize this effect, a gate can be set in the analysis software to contain

only ‘events’ with multiplicity 1 per row. These are the particles that leave energy only

in one pad as they cross a row. Figure 4.11 shows the histogram for pad R3-C4 with this

condition.
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Figure 4.9: Schematic drawing of the source position with respect to the central pads showing the
paths of the alpha particles. The circular arcs indicate the stopping range for the different energies
as indicated in the color legend.

(a) (b)

Figure 4.10: (a) Raw energy loss data collected by the pad R3-C4. (b) Raw energy loss data
collected by the pad R4-C4.
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Figure 4.11: Pad R3-C4 histogram after setting a condition for multiplicity=1.

4.2 On-line Tests

The signal induced on the Micromegas pads has two components, the ion and elec-

tron signals. The main contribution comes from the drifting motion of the positive ions

towards the micromesh in the amplification gap. Looking at the signal through the charge

preamplifier (MPR-16, 12 ns rise time) we found that the rise time for the gas signal is

∼100–150 ns, as expected for isobutane and a 256 µm gap. Further shaping with a charge

amplifier (1 µs) gave signals as in Figure 4.12. The output signals from each of the two

amplifiers used are shown in cyan and green. An example of the distributions produced

after the analog-to-digital conversion is shown in Figure 4.13. Each histogram shows the

response of pad R1-C4 to different ionizing particles. The specific voltage and gas settings

in each case are indicated in their picture.

It can be seen that histograms (a) and (b) show peaks that can be fit very well with a

Gaussian distribution. On the other hand histograms (c) and (d) show peaks with a tail on
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Figure 4.12: Oscilloscope screenshot taken on-line (from a 28Si beam) showing an example of the
two output signals from the two charge amplifiers, specifically representing pads R1-C4 and R4-C4.

the low energy side. This could be a sign of incomplete charge collection which could be

due to recombination or a consequence of the support pillars placed between the mesh and

the anode pads.

However, since the Micromegas anode plate used in all the experiments was the same

and the top two histograms in Figure 4.13 do not show a tail, the pillars can be excluded

as the cause. By process of elimination, the only difference found between the four setups

was the bottle of isobutane gas used and the time available to outgas the Oxford chamber

prior to the experiment. Therefore, the low-energy tail is most likely an effect of recombi-

nation due to a larger amount of oxygen contaminating the gas.

For reference purposes in the remaining results section, Table 4.1 contains the average

energy lost per pad in the gas area of the Micromegas by every beam used according to the

pressure conditions. These values were obtained with LISE and they take into account the

energy lost in the Oxford detector elements that precede the Micromegas.
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Pressure [Torr]
Beam 30 50 70 85 100

Energy loss [MeV]
16O - - - - 3.82
22Ne 1.52 2.64 3.88 4.92 6.16
26Mg 2.19 - - - -
27Al - 4.51 - - -
28Si 2.92 - 8.09 - -
32S 3.91 6.72 - - -

Table 4.1: Average energy loss per pad in the Micromegas section for the different test beams used
and the different pressure conditions.

4.2.1 Efficiency

The detection efficiency was evaluated as the ratio between the counts recorded by

the Micromegas pads and the counts detected by dE1 (the ionization detection region of

the Oxford detector). Noise related counts are excluded. This ratio can be seen as a

relative efficiency since it depends on the performance of the dE1 component of the Oxford

detector.

Figure 4.14 shows the efficiency of pad R1-C4 as a function of the bias voltage for two

different situations, elastically scattered 16O particles passing through isobutane at 100

Torr and 28Si particles passing through isobutane at 70 Torr. It can be seen that the effi-

ciency is close to 100% for the large range of 100–300 V, independent of the gas pressure.

The Y-axis error bars indicate statistical uncertainties. When the error bars are positive

and the efficiency exceeds 100%, it can indicate a situation where dE1 is less efficient than

the Micromegas pads.

4.2.2 Uniformity

The uniformity of the detector response across the Micromegas anode was done by

sweeping the beam: changing the magnetic field from higher values to lower values such
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(a) (b)

(c) (d)

Figure 4.13: R1-C4 pad response for different ionizing particles and different pressures.

that the collimated beam would pass through the gas region corresponding to a single

column at a time. For each of the 4 rows, the peak position in each of the 7 pads was
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Figure 4.14: Detection efficiency of pad R1-C4 depending on bias voltage for 2 different cases, 16O
particles in isobutane at 100 Torr and 28Si particles in isobutane at 70 Torr. The Y-axis error bars
indicate statistical uncertainties.

recorded and compared to the central pad in the respective row. Figure 4.15 below shows

a plot of the differences in individual pad responses for the beams 16O, 22Ne, 27Al and

28Si. The variations in response from pad to pad in each row are within ±8% relative

to the center pad for the respective row and could indicate a number of non-uniformity

sources. One possibility is that the amplification gap is not constant across the anode

leading to variations in the gas gain. Related to that, the gain fluctuations could also be a

consequence of incomplete charge collection due to the support pillars. The discrepancies

could also be due to slight differences in the chain of electronics from one pad/channel to

another.

The least likely source is the gas pressure, as it was constantly monitored during the

testing and the fluctuations never exceeded ±0.5 Torr. Moreover, the fluctuations would

have affected all the pads across the anode in a consistent manner. Most likely, it is a

combination of the other three factors mentioned with gap non-uniformity playing the

major role. Since a variation of ±8% can have a significant impact on the resolution of

the energy peak corresponding to the entire anode, it is important to correct for this in the
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acquisition software. Therefore, the beam sweep is a necessary step in the preliminary

stage of an experiment.

4.2.3 Linearity

In order to observe the linearity of the Micromegas response, it was necessary to have

different amounts of the energy deposited in the gas. The method used to study this charac-

teristic involved impacting the beam on a 13C target. The result was a cocktail of reaction

products, as can be seen in Figure 4.16. The left picture shows a 2-D histogram with row

2 response on the Y-axis and residual energy (detected with the photomultipliers) on the

X-axis. The right picture shows another 2-D identification plot with row 2 response on the

X-axis and position of particle in the focal plane on the Y-axis.

(a) (b)

Figure 4.16: (a) Micromegas row 2 energy versus residual energy. (b) Particle position in the focal
plane versus particle energy detected with Micromegas row 2.
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The primary beam in this specific case was 22Ne and the gas pressure was 30 Torr. The

various reaction products are indicated in the pictures. Each circle of events was separated

with a software gate and fit with a Gaussian distribution. Those data were then plotted

versus position in the focal plane. Specific excitation states were then determined leading

to an estimation of energy loss in MeV. In each case, the response of the Micromegas was

also determined in channels by fitting the corresponding peaks.

Figure 4.17 shows the theoretically estimated (using the LISE++ software) energy loss

on the Y-axis and the response of Row 2 of the new anode on the X-axis. It can be seen

that the Micromegas linearity is quite good across the range.

Figure 4.17: Linearity plot for the total energy loss in Row 2. The X-axis error bars indicate
statistical uncertainties. The Y-axis error bars indicate the uncertainty in the LISE method of
energy loss estimation.
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4.2.4 Gain variation with amplification field, pressure and particle type

As mentioned previously, the detector gain is defined by the formula below:

Gain =
N [total electrons]

N [ionization electrons]
. (4.1)

The average number of electrons produced in the initial ionization process is given by

the ratio between the energy lost to the gas and the effective ionization potential, w, of the

gas as shown in the equation:

N [ionization electrons] =
E[eV ]

w
. (4.2)

This number represents a rough estimate as it is possible that not all of the ion-

ization energy produces ion-pairs. The effective ionization potential of isobutane is 23

eV/electron-ion pair and takes into account the fact that some pairs recombine. This means

that an energy of 23 eV is required to produce one electron-ion pair. The total number of

electrons collected by the anode was calculated with the formula below:

N [total electrons] =
Q[pad]
e

. (4.3)

Here,Q[pad] represents the charge induced on each pad and is estimated using the cali-

bration shown in subsection 4.1 and the peak position in the corresponding pad histogram.

The amplification field was varied by changing the Micromegas anode bias, from 0

to Vmax. The maximum voltage that could be applied depended on the energy loss of the

ionizing particle. In all cases, the ADC range limit was reached before the gas breakdown

limit. Figure 4.18 shows an example of the gain variation with amplification field. The

beam was 27Al and the gas pressure was 50 Torr. The four colors of data points correspond
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to the 4 pads in the central column.

Figure 4.18: Estimated gain of the Micromegas for 27Al particles and 50 Torr pressure. The Y-axis
error bars indicate statistical uncertainties.

The procedure above was repeated for the different beams mentioned in the beginning

of this chapter, as well as different pressures. Specifically, the collimated beam of elas-

tically scattered 22Ne particles was observed for 5 different gas pressures. Figure 4.19

shows the data curves obtained. The trend indicates an increase in gain with decreasing

pressure for the same amplification field. It agrees with the expected theoretical behavior.

Data from different ionizing particles was then compiled for a comparative study of

the variation of gain with Z number and amplification field. Figure 4.20 shows the curves

obtained for 22Ne, 26Mg, 28Si and 32S. The gas pressure in all 4 cases was 30 Torr and the

electronic gain was at minimum. All else being approximately equal, it was expected that

the gain would be independent of the type of ionizing particle. Figure 4.20 shows that the

experimental data confirms that. Furthermore, Figure 4.21 summarizes the total testing

data regarding the Micromegas performance in terms of gain.
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Figure 4.19: Estimated gain of the Micromegas for 22Ne particles and its variation with pressure.
The Y-axis error bars indicate statistical uncertainties but are too small to be visible.

While factors greater than 103 are desirable in other cases, for the Oxford detector and

its experimental purpose, the gain results that have been obtained are very good.

4.2.5 Energy resolution variation with gain, pressure and particle type

The energy resolution for each pad was calculated with the formula below:

RPad[%] =
FWHM
Position

. (4.4)

The FWHM and position parameters were determined from fitting the energy peak in

each pad with a Gaussian fit. The data used for these calculations were taken in the beam

sweep procedure described above.

As an example, Figure 4.22 (a) shows the energy resolution variation with gain (or

anode voltage) for the 27Al beam (same data as shown in Figure 4.18). Figure 4.22 (b)

shows the observed pulse amplitude for the different bias settings. Both plots exhibit the
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Figure 4.20: Estimated gain of the Micromegas for different ionizing particles at the same gas
pressure of 30 Torr. The Y-axis error bars indicate statistical uncertainties but are too small to be
visible.

threshold region between proportionality and amplification.

The data points begin at 170 V because the steps before that had signals that were

below the ADC threshold. Similarly, there are no points above 300 V because those signals

registered partially or totally in the overflow region. From the top plot, for this particular

beam, it was decided that the best setting to run at was 280 V. For this bias voltage, Figure

4.23 shows the individual resolutions of all 28 pads.

The pads in row 1 generally have better resolution then the ones in the other rows. This

is due to the fact that beam straggling is less in the gas region of that row than in the later

ones. Straggling is also affected by gas pressure and Figure 4.24 shows how the resolution

of pad R1-C4 varies for the case of 22Ne, for 5 different pressures.

As expected, the resolution becomes worse when the pressure decreases and the energy

straggling increases. For a fixed pressure of 30 Torr, but different ionizing particles, the
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Figure 4.21: Micromegas gain curves for all the ionizing particles used in the testing. The different
gas pressures are color coded (Torr): red=30, green=50, yellow=70, purple=85 and blue=100.
The Y-axis error bars indicate statistical uncertainties but are too small to be visible.

(a) (b)

Figure 4.22: (a) Resolution variation with gain for 27Al at 50 Torr pressure. The Y-axis error bars
indicate statistical uncertainties. (b) Shaper output amplitude for different bias voltages for pad
R1-C4.

results are presented in Figure 4.25. In the left plot, the data were recorded with preampli-

fier gain 5 while the data in the right plot had gain 1. It can be seen that in each case, the
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Figure 4.23: Individual pad resolutions for 27Al at 50 Torr pressure.

(a) (b)

Figure 4.24: Resolution variation with micromegas bias for pad R1-C4 for (a) pressures of 85, 70,
50 and 30 Torr and shaper gain 2, and (b) pressures of 100 and 85 Torr at gain 8.

resolution worsens with increasing Z.

The resolution varies only slightly with biasing voltage for 26Mg and 32S. However,

there is a significant improvement with higher bias for 22Ne than 28Si. The overall range
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(a) (b)

Figure 4.25: Resolution variation with estimated gain for pad R1-C4 for 4 different ionizing parti-
cles, when gain is (a) 5, (b) 1.

of values is 6-11%. Compared to the dE1 resolutions of 13-20% for the original detector

that are typical at this pressure, the Micromegas is definitely the better option.

4.3 Charge Sharing

When the beam is tightly collimated, it is simple to make sure that only one column

of pads detects the particles. Typically, for nuclear physics experiments, the collimation

mask is much wider, specifically the ‘4 by 1’ mask described in the previous chapter.

Additionally, the targets used produce a variety of reaction products. As such, the particle

paths cover the entire focal plane.

For the Micromegas anode, specifically, this means that often ionization occurs in such

a way that the resulting avalanche cloud is split between adjacent pads. Figure 4.26 shows

an example of charge sharing, where a beam of 22Ne particles was guided through the gas

region between columns 3 and 4. The histogram at the bottom-left is the 3-D hitmap of

the Micromegas anode showing which pads detect a signal. The histogram at the top-right

shows the charge sharing pads in the first row, with R1-C3 on the Y-axis and R1-C4 on the

X-axis. The remaining histograms were placed next to their respective axes to show the
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individual pad responses.

In order to obtain an accurate measure of the energy loss of the ionizing particle, the

amplified charge needs to be reconstructed properly from these separate individual signals.

However, there are two issues that complicate the reconstruction process. The first is that,

as shown in the previous subsection, the gain is not uniform across all the pads. The second

problem is the danger of losing part of the signal. For example, if the charge sharing is

largely uneven, it is possible that one part of the signal is so small as to register below the

ADC threshold. In that case, the reconstructed signal amplitude is smaller than it should

be and could lead to misinterpretation of the obtained data.

The first issue can be solved by gain-matching the pads. This procedure involves

sweeping the beam across the anode as explained in the previous sections. The tightly

collimated beam loses approximately the same energy in each column and can be used to

relate the pads to each other in each row. Any differences in path length due to the entrance

angle into the detector are small enough to be negligible.

The second issue is more difficult to resolve. The biggest obstacle is the electronic

noise. In order to reduce the amount of signal lost, the system noise must be as small as

possible. Unfortunately, as explained above, some of the noise contributions come from

the elements in the beam-line, like the power supplies for the magnets and the vibrations

caused by the vacuum cryo-pumps. It is not possible to fully isolate the detector from that.

However, if the noise can be minimized the effects of the lost data are less pronounced.

Furthermore, for the purpose of particle identification the significant improvement in res-

olution compensates for these defects in reconstruction. This can also be helped by setting

the dipole magnet such that most, if not all, the particles of interest go through a single

column, thereby avoiding the issue altogether.

Taking all this into account, an example of the quality/efficiency of the reconstruc-

tion process can be seen in Figure 4.27. The top plots show the response of pads R1-C3
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(a) (b)

(c) (d)

Figure 4.26: (a) Histogram showing raw data for pad R1-C3. (b) 2-D histogram showing data
from R1-C3 on Y-axis and data from R1-C4 on X-axis. (c) 3-D hitmap showing the path of the
beam. (d) Histogram showing raw data for pad R1-C4.

(resolution ≈ 6.2%) and R1-C4 (resolution ≈ 6.4%), when there is no charge sharing.

The bottom-left histogram shows the reconstructed peak when the beam passes be-

tween the two pads. As expected, the energy resolution is slightly worse, at 6.9%, and the
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(a) (b)

(c) (d)

Figure 4.27: (a,b) Energy histograms for pads R1-C3 and R1-C4. (c) Histogram showing the
reconstructed energy. (d) Histogram showing energy loss in the ionization chamber.

peak exhibits a small tail on the high energy side. The bottom-right histogram shows the

ionization chamber response which is similar in shape but the resolution is significantly
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worse, at 11.4%. The number of counts under these two peaks differs by less than 0.1%.

As such, the reconstruction method was considered successful and was used throughout

the analysis.

4.4 Calculating the Total Anode Energy

The first step in obtaining the total Micromegas anode energy is to gain-match the pads

as explained above. The second step is to determine the multiplicity of an event for each

row. Since a particle can either ‘hit’ one pad or ‘hit’ between two neighboring pads, the

multiplicity per row should only be 1 or 2. All other events are excluded.

Under these circumstances, the energy detected by each row is determined from the

sum of the individual, gain-matched, responses of the pads in each row. The final step in

obtaining the total energy is to calculate the average of the 4 rows. During the course of

testing, several different methods were tried for ‘summing’ the 4 row energies. The first

was a standard sum which didn’t produce any improvement over the single pad resolution.

Averaging was attempted next, starting with an arithmetic mean, followed by a weighted

arithmetic mean and lastly a geometric mean.

An example of such a comparative analysis can be found in Table 4.2 for some of the

scattered beams used, specifically those that were tested at an assumed pressure of 30 Torr.

The various notations are defined below:

SumR = ER1 + ER2 + ER3 + ER4 (4.5)

AvgR =
ER1 + ER2 + ER3 + ER4

4
(4.6)

WAvg =
w1ER1 + w2ER2 + w3ER3 + w4ER4

w1 + w2 + w3 + w4

(4.7)

EMuO = 4
√
ER1 · ER2 · ER3 · ER4 (4.8)

dEtot = dE1 + EMuO . (4.9)
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Beam R[dE1] R[Row] R[SumR] R[AvgR] R[WAvg] R[EMuO] R[dEtot]
22Ne 12.2% 7.4% 5.0% 5.1% 5.2% 4.7% 6.1%
26Mg 7.5% 7.7% 5.1% 5.0% 4.9% 4.4% 4.3%
28Si 7.9% 8.8% 6.5% 6.4% 6.4% 6.1% 4.6%
32S 14.9% 11.0% 7.2% 7.2% 7.1% 6.9% 7.0%

Table 4.2: Energy loss resolutions for different combinations of the detection elements and for the
different test beams used.

It can be seen that the weighted arithmetic and geometric means give similar results, best

among the 4 ‘summation’ methods. In the end, the geometric average was chosen over

the other, because it shortened the analysis time by bypassing the need to determine the

‘weight’ of each row energy.

Figure 4.28: Total energy resolution for different bias voltages and 3 different pressures (colors
labeled in the legend).

It can also be seen from the table that being able to multi-sample the energy in this way

allows for significant improvements in the energy resolution. Figure 4.28 shows the total
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Micromegas energy (called henceforth EMuO) resolution for different bias voltages and

pressures. Comparing these with the numbers in Figure 4.23 shows that the improvement

in resolution by a factor of ∼2 due to multi-sampling affects a wide range of bias voltages.

This in turn means that the choice of bias doesn’t affect the total anode energy as much as

much as it does, individual pads, therefore allowing a larger optimal operational range for

the Micromegas.

Moreover, as shown with the last column in Table 4.2, adding the Micromegas energy

with the dE1 energy results in another significant improvement in the overall energy loss

resolution of the Oxford detector.
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5. ASTROPHYSICAL DATA ANALYSIS AND RESULTS

In order to determine the rate of occurrence of a reaction, we need to know the cross-

section of that reaction. This was defined in Chapter 2, Eq. 2.17, as the ratio between the

outgoing flux and the incoming flux. In particular, in an experiment it is useful to deter-

mine the differential cross-section for outgoing angles. For an incident beam of particles

impacting a target, the cross-section can be calculated with the following formula:

dσ

dΩ
(θ) =

Y (θ)

Nbeam ·Ntarget ·∆Ω(θ)
. (5.1)

Y (θ) is called the yield and it represents the number of outgoing particles detected

at angle θ ± ∆θ/2. In this study, ∆θ was chosen as 0.25° for smaller reaction angles,

where counting statistics were high. At larger angles, ∆θ was chosen as 0.5°or even 1°(if

counting statistics were particularly low). Nbeam refers to the number of incident particles

and is determined from the total beam charge (which is calculated with Eq.3.3).

Nbeam =
Qbeam

Ze
=
Ibeam ∗ FCcorr

Ze
, (5.2)

where FCcorr represents the number of counts measured by the Faraday Cup after calibra-

tion (see section 3.2.5) and dead time corrections. Similarly, Ntarget represents the number

of atoms per area in the target. Since the differential cross-section is generally expressed

in millibarns per steradian (1 mb/sr = 10-27 cm2), Ntarget is expressed with the formula:

Ntarget =
Thickness[mg/cm2]

Atarget · a.m.u[mg]
. (5.3)

Here, Atarget is the target mass number and a.m.u is the atomic mass unit. The last
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Target 13C 27Al (#1) 27Al (#2) 27Al (#3) 197Au
Thickness [µg/cm2] 91.8 88.3 247.0 979.8 200.1

Absolute error [µg/cm2] 6.9 6.8 13.8 52.9 16.6
Percentage error 7.5% 7.7% 5.6% 5.4% 8.3%

Table 5.1: Adopted thicknesses of the targets used for the experiments in this study.

element in the denominator of Eq. 5.1, ∆Ω(θ), refers to the solid angle containing the

particles counted in Y (θ). Data for the cross-section angular distribution was taken with

the ‘wide’ or ‘4-by-1’ mask. This aperture subtends a solid angle of 1.25 msr, but was

later divided by 16, 8 or 4 according the choice of ∆θ explained above. Taking all this

into account, the final formula that was used in the determination of the differential cross-

section was:

dσ

dΩ
(θ)

[
mb

sr

]
=

Y (θ)[cts]

3.76 · Ibeam[pC] · FCcorr
Z

·
(

T [mg/cm2]
AT

)
·∆Ω(θ)[sr]

. (5.4)

The thickness of each target used was determined either on-line (with beam), off-line

(with alpha source) or both, using the procedures described in the previous chapter (Sec-

tion 3.2.6). The values obtained are shown in Table 3.7. The values adopted throughout the

following analysis are presented in the table below along with the corresponding absolute

and percentage uncertainties.

5.1 The 27Al(13C, 12C)28Al Experiment

The reaction was measured in 2 experiments. A beam of 13C was accelerated to ELab

≈ 11.8 MeV/A and impinged on a target of 27Al. Targets of three thicknesses were used,

as presented in Table 5.1. The increase in thickness was intended to help with the low

statistics expected at larger reaction angles. A target of 197Au was also used, but only for

calibration purposes following the procedures outlined in sections 3.2.3 and 3.2.5 for po-
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sition calibration and FC normalization. The results of the position and angle calibrations

can be seen in Figure 5.1. On the left, (a), is a histogram of the reconstructed focal plane

showing the elastic scattering peak in the center where it was expected to be. On the right,

(b), is a histogram of the target angle showing the 5 fingers corresponding to the slits in

the 5-finger mask.

(a) (b)

Figure 5.1: Spectra showing calibration data from the scattering of the 13C beam on 197Au at 6°
lab. (a) Histogram of the reconstructed focal plane. (b) Histogram of the target angle showing the
5 fingers corresponding to the slits in the 5-finger mask.

The resolution of the position peak was ∼7 mm (equivalent to ∼600 keV) and the res-

olution in angle was 0.35°-0.65° over the measured angular range. The FC normalization

factor was obtained with the procedure from section 3.2.5, using the data in Figure 5.1, (b),

and found to be ≈0.8. Figure 5.2 shows the calculated and experimental Rutherford cross-

sections obtained at 6°, as well as the renormalized data to account for the FC correction.
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Figure 5.2: Comparison between scattering data and Rutherford calculations for 13C on 197Au.
Black dots represent cross-section estimations with a 1.0 normalization factor. The blue line shows
the Rutherford curve. Red squares show the data renormalized to fit the curve. The X-axis er-
ror bars in the experimental data are given by the detector angular resolution multiplied by the
statistical percentage error. The Y-axis error bars indicate the uncertainty in the experimental
cross-section which is dominated by the target thickness error.

The resolutions for energy loss in the gas and stopping energy were extracted from

the same data. For the ionization chamber, dE1, the resolution was ≈ 10.8%. For the

avalanche counters, only wires 1 and 4 were included in the calculation of the total wire

energy, TwireE, and its resolution was found to be ≈ 12%. For the residual energy, PM, the

resolution was ≈ 13.5%. The total energy loss, dEtot, was calculated as well by summing

arithmetically dE1 and TWireE and its resolution was found to be ≈ 8%.
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5.1.1 The elastic scattering data

The data for the elastic cross-section distribution were obtained over an angular range

of 4°-38° in the laboratory system, equivalent to 6°-54° in center of mass. Up to an angle

of 20° lab, there was an overlap of 1 or 2° between each two consecutive MDM angles

to ensure consistency. At larger angles, it was not possible to have this check due to time

constraints and reduced cross-sections. The data analysis consisted of three major steps

that were followed for each MDM angle.

The first step was the PID, i.e. isolating the data representing only elastic and inelastic

scattering on 27Al. This involved 2 analysis gates placed as shown in Figure 5.3. Specif-

ically, the first gate was placed in the dEtot–PM histogram shown on the left (Figure 5.3,

(a)) around the Z=6 line, corresponding to C isotopes. The second gate was placed in the

PosFP–dEtot histogram shown on the right (Figure 5.3, (b)) around the 13C events.

In order to make sure that the identification was correct, RAYTRACE was used to

estimate the expected position of the elastic scattering peak in the focal plane, as well

as possible inelastic states. For the MDM at 6°, the position of the ground state of 13C

was at ≈15 mm. Figures 5.4, (a) and (b) agree with this prediction. In Figure 5.4, (a)

this state shows as a horizontal band of high statistics. In Figure 5.4, (b) one can see the

expected Gaussian peak in the focal plane spectrum. Figure 5.4, (c) shows calibrated target

angle information. All three plots display only the data included in the two gates described

above. Given the low statistics for inelastic contributions, Figure 5.4, (c) can be considered

a rough preview of the cross-section distribution for this angular region, showing a clear

dip in the distribution.

Having separated the events of interest from the rest, the second step in the analysis

was to put angular gates (or conditions) of specific width on the target angle. This was

similar to drawing vertical lines in Figure 5.4, (c) to further separate the data, only in
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(a) (b)

Figure 5.3: 2-D particle identification spectra for 27Al(13C,13C)27Al at 4°-8° in the lab frame. (a)
Ungated data plotted in a dEtot versus PM energy histogram showing the first gate that is to be
placed for analysis. (b) Data from the gate in spectrum (a) plotted in a Position versus dEtot
histogram showing the second gate that is to be used for analysis.

angular bins now. The chosen bin width was 0.5° and the data in each bin were plotted by

position in the focal plane. The final step in extracting the cross-section distribution was to

determine the number of events in the elastic peak present in each angular bin spectrum.

The full results can be seen in Figure 5.5, which shows the angular distribution of the

differential cross-section, color-coded by MDM angle. Some of the points corresponding

to the edges of the 4° angular opening had to be excluded due to underestimation or over-

estimation of the number of elastic events. In general, where there was overlap between

MDM angles, the cross-section was averaged. Figure 5.6 shows the final experimental

angular distribution for the elastic scattering data.

The uncertainties of the cross-section distribution points shown in Figures 5.5 and

5.6 were given by: statistical uncertainties (0.6%-20%), the target thickness uncertainty
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(a)

(b) (c)

Figure 5.4: Gated spectra for 27Al(13C,13C)27Al at 4°-8° in the lab frame. (a) 2-D histogram
showing data by position in the focal plane versus calibrated target angle. (b) 1-D spectrum
showing the position of elastic and inelastic events in the focal plane. (c) 1-D spectrum showing
the calibrated target angle of elastic and inelastic events.

(7.7%), the FC normalization error (1.3%) and the uncertainty in the estimation of inelastic

and impurities contamination (4%).
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Figure 5.5: Experimental angular distribution for the elastic cross-section. The MDM angles are
denoted by different colors as indicated in the chart legend. The X-axis error bars are given by the
detector angular resolution multiplied by the statistical percentage error. The Y-axis error bars are
explained in the text.

Figure 5.6: Experimental angular distribution for the elastic cross-section of 13C on 27Al target.
Cross-section values are C.M. and normalized to the Rutherford cross-section. Error bars are in-
cluded and explained in the text. The X-axis error bars are given by the detector angular resolution
multiplied by the statistical percentage error. The Y-axis error bars are explained in the text.
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5.1.2 The optical model parameters

The elastic channel of the 13C+27Al reaction was measured in order to determine the

corresponding optical model parameters. In order to find these parameters, the data shown

in Figure 5.6 was fitted with a Wood-Saxon form, a squared WS form as well as with 2

of the double-folding shapes described in section 2.3. The Wood-Saxon fit was performed

using the codes OPTIMINIX [56] and PTOLEMY [57]. The code FRESCO [58] was also

used as an extra check. The quality of each fit was determined by χ2 as defined below:

χ2 =
1

N − f

∑
i

(σexp(θi)− σfit(θi))
2

(∆σexp(θi))2
, (5.5)

where N is the number of points involved in the calculation (N = 48), f is the number

of free parameters and ∆σexp(θi) represents the individual uncertainties estimated as de-

scribed in the previous subsection. The lowest χ2 dictated the best fits. The first step in

the fitting process was to perform a grid search for the real potential, V . Both codes have

the option to read in the experimental data in center of mass (angle, cross-section) pairs

and the corresponding uncertainties. The codes then find the closest matching distribution

by varying the parameters chosen by the user.

During the grid search, V was varied from 2 MeV to 300 MeV in steps of 2 MeV. The

fitting code was ran for each step, with the real depth fixed, while the other 5 parameters

were varied to obtain the lowest χ2 possible under these condition. The Coulomb contri-

bution was accounted for using an uniform charge distribution as shown in Eq. 2.49, with

rC = 1.0 fm. Figure 5.7 shows the results of the grid searches for the WS model (in (a))

and for the WS2 model (in (b)), zoomed around the unique minima that were found in each

case and showing an unusual lack of the typical ambiguities associated with optical model

analysis. For those values, the fitting code was run again but with all 6 parameters free.

The two OMP sets are presented in Table 5.2.
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Figure 5.7: Plots showing the grid searches done for the strength of the real component of the (a)
Woods-Saxon optical potential model and (b) Woods-Saxon2 optical potential model.

It can be seen that the parameters for the two models are roughly similar, with weak real

and imaginary potentials. The range and diffuseness parameters are slightly more different

but the relationship between each pair is consistent for both parameter sets, rV < rW and

aV > aW . Also included in the table and calculated by the fitting code are the root mean

square radii of the real and imaginary potentials, RV and RW , as well as the respective

volume integrals per nucleon pair, JV and JW , which were calculated with the formula

below. JW has the same value for the two parameter sets, indicating that the absorption

component does not depend on the characteristics of the real part of the OMP.

J = JV + iJW = − 4π

ApAt

∫ ∞

0

(V (r) + iW (r))r2dr . (5.6)

The two Woods-Saxon type fits are shown in Figure 5.8 along with the experimental
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Figure 5.8: Plot showing the experimental cross-section angular distribution of reaction
27Al(13C,13C)27Al normalized to the Rutherford cross-section fitted with the optical model po-
tentials (a) WS and (b) WS2. The empty (full) circles indicate the experimental data multiplied
(divided) by a factor of 50 for easier comparison. The red lines denote the OMP fits. Near and Far
components are also indicated, in green and blue, respectively.

data for comparison. It can be seen that the fits seem to describe the general shape of

the cross-section distribution well. However, there are sections where the discrepancies

between theory and experiment do not fall within the uncertainty range. The cause of this

is difficult to determine. Part of it could be attributed to normalization errors, like mis-
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determined beam charge or incorrect target thickness. However, that is not likely the case

as some data points that are in disagreement with the fits were determined under the same

conditions (target and beam normalization) as points that do agree with the models.

Another potential cause could be the inaccurate estimation of inelastic contributions

from the first (1/2+, 843.8 keV) and second (3/2+, 1014.6 keV) excited states in 27Al and/or

scattering off impurities. In particular, it should be noted that scattering off elements with a

smaller Z than aluminum (like carbon or oxygen) would be basically impossible to account

for. This is because the corresponding band would be tilted downwards in a histogram like

Figure 5.4, (a), and as such easy to mistake for inelastic contribution. From Figure 5.8,

it can be seen that some of the more significant discrepancies occur at forward angles,

where the scattering off impurities is also more likely to happen. In addition to that, there

is a slight shift in angle between the model and the experimental data. Both could be

consequences of inaccurate estimations.

Last, but not least, it is possible that the optical model is failing to correctly describe

the physics of the elastic interaction between 13C and 27Al. To test that, the experimental

distribution was also fitted with double-folding models, specifically JLM1 and JLM3. The

DF grid searches showed a similar lack of ambiguous solutions to the WS. Each search

produced only a pair of potential solutions and the corresponding fitting parameters are

presented in Table 5.3. It can be seen from the χ2 values that the double-folding models

are even less successful than the WS ones in describing the cross-section distribution.

Figure 5.9 shows the DF fits along with the experimental distribution. The normaliza-

tion factor and range for the real part of the potential in each case are roughly close to the

standard values mentioned in Ref. [39]. However, the imaginary renormalization factor

and range are significantly lower, suggesting that the DF models might not be calculating

correctly the imaginary component of the effective interaction and its density dependence.

All the fitting plots include a decomposition of each fit into near-side and far-side
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Figure 5.9: Plot showing the experimental cross-section angular distribution of reaction
27Al(13C,13C)27Al normalized to the Rutherford cross-section fitted with the double folding po-
tentials (a) JLM1 and (b) JLM3. The empty (full) circles indicate the experimental data multiplied
(divided) by a factor of 50 for easier comparison. The red lines denote the OMP fits. Near and Far
components are also indicated, in green and blue, respectively.

components of the angular distribution using:

f(θ) = f+(θ) + f−(θ) , (5.7)

with f−(θ) = f+(−θ). f−(θ) indicates the near-side component and f+(θ) the far-side

component. The WS fits shown in Figures 5.8 present a very weak far-side component

indicating that the reaction is indeed peripheral.
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5.1.3 The neutron transfer data and the ANC determination

In addition to the elastic channel, data were also taken for the neutron transfer from 13C

to 27Al. However the statistics were very limited and only a small number of data points

were obtained. The overall angular range measured was 6°-36° in the C.M. system. The

analysis procedure was similar to the one used for the elastic data, with the exception of

the angular bin widths. Given the low statistics at larger angles, 2° and 4° bins were used.

Figure 5.10 shows an example of the particle identification procedure done for the data

taken at 6° in the lab. The histogram in (a) shows the dEtot–PM 2D spectrum with the

first gate placed around the Z=6 line, corresponding to C isotopes. The data in this gate

are shown in the PosFP–dEtot histogram on the right (Figure 5.10, (b)) with a second gate

around the 12C events.

(a) (b)

Figure 5.10: 2-D particle identification spectra for 27Al(13C,12C)28Al at 4°-8° in the lab frame. (a)
Ungated data plotted in a dEtot versus PM energy histogram showing the first gate that is to be
placed around the C isotopes. (b) Data from the gate in spectrum (a) plotted in a Position versus
dEtot histogram showing the second gate that is placed around the 12C particles for the analysis
of the transfer channel.
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The data inside the two gates can be seen in Figure 5.11 plotted in a focal plane position

histogram with the various peaks identified. It can be seen that the position resolution of

the detector was good enough to clearly identify the second (0+, 972 keV) and third (3+,

1014 keV) excited states grouping in 28Al, but it was impossible to estimate the population

of the first (2+, 30 keV) excited state in the same nucleus.

Figure 5.11: Gated 1-D spectrum showing the position of elastic and inelastic states in 12C and
28Al at 4°-8° in the lab.

Eight similar histograms were produced by placing angular gates of 0.5° width on

the data in Figure 5.11 and were used in the analysis. These steps were performed over

the angular range mentioned above at each MDM angle where the data were sufficient.

The final cross-section distribution obtained for the ground-state in 28Al (Jπ=3+) can be

seen in Figure 5.12. The uncertainties in the transfer cross-section estimations were given

by: statistical uncertainties (6%-20%), the target thickness uncertainty (7.7%), the FC
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normalization error (1%) and the uncertainty in the estimation of inelastic contributions

(1%).

The theoretical distribution was obtained using PTOLEMY’s DWBA procedure. The

calculations were performed using the best OMP parameters from Tables 5.2 and 5.3,

specifically WS, WS2 and JLM1 (JV=63). For each OMP set, the same parameters were

used in both the entrance and exit channels, as we could not obtain the elastic OMP pa-

rameters for the exit channel. The geometry of the neutron-binding potential was given by

r = 1.15 fm and a = 0.60 fm. The normalized DWBA distributions can be seen in Figure

5.12 along with the experimental data.

Figure 5.12: Experimental angular distribution for the cross-section of the one-neutron transfer
reaction channel of 13C on 27Al target. The X-axis error bars are given by the detector angular
resolution multiplied by the statistical percentage error. The Y-axis error bars are explained in the
text. DWBA calculations are also plotted for different OMP parameters color-coded as shown in
the legend.

It can be seen that all the calculated distributions are similar around the first peak. At
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larger angles, the WS-based distributions continue to be similar, while the DF-based shows

more pronounced oscillations. However, neither of the distributions manages to describe

the transfer data beyond the first 4-5 points. Therefore only these points were used in the

ANC determination, along with all three DWBA theoretical distributions. A closer view

of this region of the distribution can be seen in Figure 5.13.

Figure 5.13: A closer view of the 6°-18° region of the transfer cross-section distribution obtained
with 13C on 27Al. The DWBA calculations are also plotted for different OMP parameters as shown
in the legend. The X-axis error bars are given by the detector angular resolution multiplied by the
statistical percentage error. The Y-axis error bars are explained in the text.

Having the calculated and experimental cross-sections, the other parameters that are

needed to obtain the ANC of 28Al are the ANC of 13C and the single-particle ANCs, b(13C)

and b(28Al). The single-particle ANCs were determined using Eq. 2.70, using PTOLEMY

to calculate the bound-state wave-functions and a short FORTRAN code that calculated

the ratio of the Whittaker function to the radius. It should be noted that the code takes into

account the transferred particle being a neutron and uses the Hankel function instead of

Whittaker.
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(a) (b)

Figure 5.14: (a) Plot showing the bound-state wave-function (red), Whittaker-to-r ratio (yellow)
and single-particle ANC (blue) for 13C. (b) Plot showing the bound-state wave-function (red),
Whittaker-to-r ratio (yellow) and single-particle ANC (blue) for 28Al.

For the capture of a neutron into the 1p1/2 ground state of 13C, l=1 and the Sommerfeld

parameter is 0. The wave-function calculated by PTOLEMY can be seen in Figure 5.14,

(a) drawn in red. The Whittaker-to-r function can also be seen in (a) drawn in yellow.

The ratio between the two functions gives the single-particle ANC and is plotted in (a) in

blue. b(13C) was extracted from the asymptotic region as 1.66 fm−1/2. For the capture

of a neutron into the 2s1/2 ground state of 28Al, l=0 and the Sommerfeld parameter is 0.

Figure 5.14, (b) shows the similarly calculated bound-state wave-function, Whittaker-to-r

ratio and single-particle ANC for 28Al. b(28Al) was extracted from the asymptotic region

as 7.36 fm−1/2. The ANC of 13C, C2
1p1/2

= 2.31 ±0.08 fm−1, was taken from Ref. [40].

The extracted values for the S2s1/2 and C2
2s1/2

using each DWBA calculation can be

seen in Table 5.4. The sources of uncertainty in each case include: the uncertainties of

the experimental cross-sections, the geometry of the neutron binding potential used in the

DWBA calculations (1.5%) and the normalization between the measured and the calcu-

lated cross sections (5-10%).
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S2s1/2 ∆S C2
2s1/2

[fm−1] ∆C2

WS 0.19 0.01 10.22 0.75
WS2 0.16 0.01 8.76 0.59

JLM1 (JV =65) 0.10 0.01 5.19 0.57
Average 0.18 0.01 9.46 0.47

Table 5.4: Spectroscopic factors and ANCs for 28Al, obtained from a 13C beam on a 27Al target.

The final value for each S2s1/2 and C2
2s1/2

was determined using an average of the first 2

determinations weighted by their uncertainties. The ANC value extracted using the JLM1-

DWBA calculations was too far off from the results obtained with the Woods-Saxon type

DWBA models and therefore, it was excluded from the average.

5.2 The 13C(27Al, 28Al)12C Experiment

There were two aims behind the measurement of the reaction 13C(27Al, 28Al)12C. The

first was to provide further proof of the success of the Oxford detector upgrade and its new

capability to identify nuclei heavier than A = 26. The second purpose was to extract the

ANC of the ground state of 28Al, and use it to determine the ANC of the mirror state in

28P. The data analysis procedure follows the same steps that were presented in the previous

section. An average of the two final values obtained for the ANC will be used in the

determination of the astrophysical rate which will be presented in chapter 6.

The experiment was performed using a beam of 27Al at ELab ≈11.8 MeV/A. There were

only two targets used, 197Au for calibration and 13C for reaction data, with the thicknesses

listed in Table 5.1. The Oxford detector was filled with isobutane at 50 Torr pressure. The

calibrations in position and angle were done with the MDM at 4° following the procedures

described in sections 3.2.3 and 3.2.4. Figure 5.15, (a) shows the calibrated focal plane po-

sition spectrum for scattering on the gold target through the 5-finger mask. The resolution

of the position peak was ≈4 mm. From the same data, Figure 5.15, (b) shows the cali-
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brated target angle. The detector angular resolution was extracted from this spectrum and

found ≈0.3°.

(a) (b)

Figure 5.15: Spectra showing calibration data from the scattering of the 27Al beam on a gold target
at 4° lab. (a) Histogram of the reconstructed focal plane. (b) Histogram of the target angle showing
the 5 fingers corresponding to the slits in the 5-finger mask.

Also from this spectrum, the peaks were integrated and used to find the FC normal-

ization. Figure 5.16 shows the experimental scattering cross-section on gold fitted with

a Rutherford curve. From the five points showed, the normalization factor was found as

≈0.54.

Resolutions of the various energy detection elements were estimated by fitting the

corresponding scattering peaks and applying Eq. 4.4. For the ionization chamber, the

resolution was ≈ 5.3%. The Micromegas resolution was found to be ≈ 5%. For the

residual energy, the resolution was ≈ 13%. The total energy loss was calculated as well

141



Figure 5.16: Comparison between scattering data and Rutherford calculations for 27Al on 197Au.
Black dots represent cross-section estimations with a 1.0 normalization factor. The blue line shows
the Rutherford curve. Red squares show the data renormalized to fit the curve.The X-axis error bars
in the experimental data are given by the detector angular resolution multiplied by the statistical
percentage error. The Y-axis error bars indicate the uncertainty in the experimental cross-section
which is dominated by the target thickness error.

by summing arithmetically dE1 and EMuO and its resolution was found as ≈ 3.53%.

5.2.1 The elastic scattering data

The differential cross-section for elastic scattering on 13C was measured at 4 different

MDM angles: 4°, 7°, 10° and 13°. Using the ‘4 by 1’ mask, the angular range covered was

2°–15° in the laboratory frame and ≈7°–47° in the center of mass frame, with 1° of overlap

for consistency checks. In order to obtain the elastic cross-section, it was necessary to first

isolate the 27Al data points from the rest. The steps taken for that are similar to those

described in the previous section, but will still be presented in a summary here.

Figure 5.17 shows a 2-D (dEtot vs PM) identification spectrum with the various nuclei

produced in the different reaction channels that occur. The topmost ‘line’ corresponds to

the primary beam and related isotopes (Z=13). Each of the lines below, with lower dEtot,

142



represents species with increasingly smaller Z number.

Figure 5.17: 2-D particle identification spectrum for 27Al + 13C at 2°-6° in the lab frame. Dotted
lines indicate particles with the same Z. The closed ellipse indicates the software gate placed to
isolate the Al nuclei.

Putting a snug gate around the nuclei of interest, in this case Al, and plotting the data in

a focal plane position vs residual energy plot gives the distribution shown in Figure 5.18.

The different colors of the ellipses indicate different isotopes of Al. Drawing another gate

around the data indicated by the black ellipse will isolate the 27Al events.

Figure 5.19 shows the data that is valid under these 2 gating conditions. The horizontal

bands correspond to the ground state and first inelastic state (1/2+, 843.8 keV) in 27Al. As

seen in the figure, at 2°-4° lab angles, the data around the ground state is contaminated

by scattering off impurities (the slanted bands). Analysis with RAYTRACE identified the

main contributors as 56Fe and 28Si. It can also be seen that the ground state and first excited

state bands overlap. The position resolution of 4 mm mentioned before is equivalent to

∼700 keV, which is very close to the energy gap between the two states. Unfortunately,
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Figure 5.18: 2-D spectrum for 27Al + 13C showing the data inside the gate on Z=13. The red
ellipse indicates data points corresponding to 28Al, while black is for 27Al.

this is due to the limited resolution of the avalanche counters and could not be improved

any further.

Figure 5.19: Plot of the gated data in focal plane position versus reconstructed target angle. Im-
purities are identified, as well as the elastic scattering state.
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Figure 5.20 shows the data from Figure 5.19 projected on the X and Y axis, with (a)

showing the position in the focal plane spectrum and (b) showing the target angle spec-

trum. In order to resolve the contribution of the impurities, the corresponding scattering

was assumed to be Rutherford (up to ≈9° in C.M. for Fe and ≈6° for Si).

(a) (b)

Figure 5.20: Elastic scattering data plotted in (a) the focal plane spectrum and (b) the target angle
spectrum.

The experimental cross-sections for the two nuclei were calculated in the lab range

4°-6° and fitted with corresponding Rutherford curves. The normalization was then used

to estimate the impurities’ contribution to the angular range of 2°-4°. For this, as well as

the elastic cross-section determination, the 4° angular range of the mask was divided into

8 bins of 0.5° width each. Figure 5.21 shows the normalization to Rutherford for Si (red)

and Fe (blue). It appears that the contamination in the target is approximately 2% for the

former and 0.4% for the latter.
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Figure 5.21: Normalization to Rutherford for the calculation of contamination by impurities: Si
(red) and Fe (blue). Symbols indicate experimental data and the continuous lines indicate the
Rutherford cross-section calculation. The X-axis error bars in the experimental data are given by
the detector angular resolution multiplied by the statistical percentage error. The Y-axis error bars
are explained in more detail in the text.

At higher angles, the impurities were well separated from the elastics data in the focal

plane and they were ignored. The measured elastic cross-section is shown in Figure 5.22.

The data points come from 2 separate experiments and they represent the average between

the two values for each angle. The different colors indicate the MDM angle for which

those specific data points were taken. It should be noted that there are no data points for

13° as the statistics at that angle were not sufficient.

Where there was overlap of data points from different MDM angles, the cross-sections

were averaged into one result per angle. In one cases, the data point was removed from

the distribution because it belonged to an angle close to the edge of the collimation mask

where overestimation or underestimation of the cross-section can occur. Figure 5.23 shows

the final distribution of the elastic cross-section. The uncertainties of the cross-section

distribution points shown in Figures 5.22 and 5.23 were given by: statistical uncertainties

(0.5%-10%), the target thickness uncertainty (7.5%), the FC normalization error (1.1%)
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Figure 5.22: Experimental angular distribution for the elastic cross-section. The MDM angles are
denoted by different colors: blue for 4°, red for 7° and yellow for 10°. The X-axis error bars are
given by the detector angular resolution multiplied by the statistical percentage error. The Y-axis
error bars are explained in the text.

and the uncertainty in the estimation of inelastic and impurities contamination (5%).

5.2.2 The optical model parameters

As with the direct kinematics reaction, the elastic scattering data were fit using the

Wood-Saxon model, a squared WS form, as well as double-folding shapes using the same

computer codes. The grid search for the strength of the real component of the WS potential

is shown in Figure 5.24. It can be seen that the region below ≈150 MeV has the minimum

χ2 but does not give a discrete set of potentials to try. Above ≈150 MeV there are three

distinct minima but the corresponding χ2 is larger. Six values of V were chosen for the

fitting procedure: 10 MeV, 30 MeV, 70 MeV, 170 MeV, 230 MeV and 270 MeV. The 3 best

results and the corresponding parameters are shown in Table 5.5. The table also includes

the results of the fitting analysis done with the squared form of WS. Figure 5.25 shows the
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Figure 5.23: Experimental angular distribution for the elastic cross-section of 27Al+13C normal-
ized to the Rutherford cross-section. The X-axis error bars are given by the detector angular
resolution multiplied by the statistical percentage error. The Y-axis error bars are explained in the
text.

experimental data and the fits with the lowest χ2. As can be seen, the agreement between

the theory and the experiment is excellent.

As mentioned, the data was also fitted with the double-folding form-factors described

in Chapter 2. The M3Y model was more successful at describing the elastic cross-section

than the JLM interaction, but neither worked as well as the Woods-Saxon OMP. It should

be noted that the fitting procedure required the data to be normalized by a factor of 0.57,

irrespective of the computer code used or the OMP model. It is uncertain where the dis-

crepancy comes from, but most likely from the FC correction. The parameters obtained

for the double-folding fits are shown in Table 5.6, while the fits themselves can be seen in

Figure 5.26.
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Figure 5.24: Grid search for the strength of the real component of the Woods-Saxon optical poten-
tial.

Figure 5.25: Plot showing the experimental cross-section distribution of 27Al+13C normalized to
the Rutherford cross-section fitted with the optical potentials WS(A), blue continuous line, and
WS2, black dashed line.
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(a) (b)

Figure 5.26: Plot showing the experimental cross-section distribution of 27Al+13C normalized to
the Rutherford cross-section fitted with the double folding potentials (a) M3Y(ZR and FR) and (b)
JLM (1 and 3). The empty circles indicate experimental data and the red lines denotes the OMP
fits. The black circles indicate the same data but divided by a factor of 100 for easier comparison.
Near and Far components are also indicated, in green and blue, respectively.

5.2.3 The neutron transfer data and the ANC determination

The neutron transfer reaction was measured at the same MDM angles as the elastic

scattering, but the very low reaction cross-section at 10° and 13° meant that there was

little to no statistics collected for the transfer channel. As such, the angular range covered

in C.M. for this channel was 6°-26°. Figure 5.27 shows the PID process for the transfer

data collected at 4°. Plotted in (a) is the position versus total energy loss histogram after
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a first gate (not shown here) on the Al events. That data in the black gate from (a) were

plotted in (b) in a focal plane position histogram.

(a) (b)

Figure 5.27: 2-D particle identification spectra for 13C(27Al,28Al)12C at 4°-8° in the lab frame.
(a) Aluminum events plotted in a Position versus dEtot histogram showing the second gate that is
placed around the 28Al particles for the analysis of the transfer channel. (b) Data from the gate in
spectrum (a) plotted in a focal plane position histogram.

Angular cuts of 0.5° width were made on the data in Figure 5.27, (b). The resulting

8 position histograms each had to be fitted with a sum of Gaussian functions in order

to properly account for the overlap between the 3+ ground state in 28Al and the second

excited state (0+, 972 keV). The first excited state, 2+ at 30 keV, could not be clearly

identified and it is unknown if it was significantly populated in this experiment.

Figure 5.28 shows the experimental distribution obtained for the ground-state of 28Al.

The uncertainties of the transfer cross-section points were given by: statistical uncertain-

ties (3%-20%), the target thickness uncertainty (7.5%), the FC normalization error (1.1%)

and the uncertainty in the estimation of inelastic and impurities contamination (5%).
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Figure 5.28: Experimental angular distribution for the cross-section of the one-neutron transfer
reaction channel of 27Al on 13C target. The DWBA calculations obtained with the WS (JV =63)
OMP parameters are also shown, with the red line. The X-axis error bars are given by the de-
tector angular resolution multiplied by the statistical percentage error. The Y-axis error bars are
explained in the text.

The theoretical angular distribution was obtained using PTOLEMY’s DWBA proce-

dure. The calculations were performed using the best OMP parameters from Tables 5.5

and 5.6, specifically WS (JV =63). As for the direct kinematics reaction, these parameters

were used in both the entrance and exit channels. The geometry of the neutron-binding

potential was given by r = 1.15 fm and a = 0.60 fm. The normalized DWBA distribution

can be seen in Figure 5.28 along with the experimental data, showing excellent agreement.

In order to obtain the ANC, C2
2s1/2

, it was only necessary to apply Eq. 2.72 since the

other parameters were already calculated in the direct kinematics section. The spectro-

scopic factor was found to be S2s1/2 = 1.64, while the ANC was C2
2s1/2

= 89.00 fm−1. The

sources of uncertainty here included: the uncertainties of the experimental cross-sections
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as explained above, the geometry of the neutron binding potential used in the DWBA cal-

culations (1.5%) and the normalization between the measured and the calculated cross

sections (2-10%). All these lead to an uncertainty of 6.3%. Therefore the final results for

the inverse kinematics study are S2s1/2 = 1.64 ±0.10 and C2
2s1/2

= 89.00 ±5.61 fm−1.

5.3 Comparison of the Analysis Results

As shown so far, the focus of this project was such that it allowed the study of the

reaction, 13C + 27Al, in direct as well as inverse kinematics. In each case, the center-of-

mass energy of the system was ECM ≈ 104 MeV and as such, the theory states that the

cross-section distributions should be identical in the C.M. system. In general, a reaction

is rarely studied in both types of kinematics with such similar C.M. conditions so this

presents a rare opportunity for comparison.

Figure 5.29 shows the experimentally determined direct and inverse cross-section dis-

tributions for the elastic channel.

Unfortunately, as the figure shows, the two distribution do not agree with each other

except for a very small angular region where they intersect. The reasons for this disagree-

ment are not known presently. However, there are various possibilities. For both sets of

data, incorrect estimations of the inelastic and impurities contributions could lead to such

discrepancies in the results.

Another, very strong, possibility is that in inverse kinematics, the vertical dispersion

of the scattered beam is much larger than expected. In this situation, a significant number

of particles would not be able to reach the scintillator at the back of the detector. The

acquisition system would not be triggered and data would be lost. This effect would be

increasingly more significant at larger angles and could account for the sharp drop in the

inverse distribution, as well as for the shift in angle.

On the other hand, the OMP analysis would suggest that instead, the problem lies with
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Figure 5.29: Comparison between the elastic cross-section distributions obtained in direct and
inverse kinematics for 13C + 27Al.

the direct kinematics distribution. The above mentioned dispersion effect would not be a

significant issue with the lighter 13C as a projectile. However, this leaves a big question

mark as to the reason behind the disagreement and possible contamination as the main

possibility.

In a similar comparison, Figure 5.30 shows the experimentally determined direct and

inverse cross-section distributions for the transfer channel.

Once again, the plot shows disagreement between the two sets of data, especially at

very forward angles. However, the pattern of differences seems consistent with the one

visible in Figure 5.29. This would suggest that there is a systematic effect at work. A

more detailed investigation of this issue was outside the scope of this dissertation, but it

is recommended that a similar study, involving both direct and kinematics measurements
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Figure 5.30: Comparison between the transfer cross-section distributions obtained in direct and
inverse kinematics for 13C + 27Al.

of the same reaction be performed in the future aimed at identifying the cause of these

disagreements.

It is particularly important to determine if the underlying issues lie with the theory.

DWBA models are sensitive not just to the choice of optical potential but also to the reac-

tion mechanisms used in the models. Some of them have been developed for lighter ions

but could be applied to slightly heavier ones as well. It is possible that 27,28Al is outside

the range of nuclei to which these models can be applied.

Given the future plans to expand the ANC studies into the mass region beyond A=28,

this issue will need to be understood properly.
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S2s1/2(
28Al) C2

2s1/2
(28Al) [fm−1]

Direct Kine 0.18 ±0.01 9.46 ±0.47
Inverse Kine 1.64 ±0.10 89.00 ±5.61

Table 5.7: Spectroscopic factors and ANCs for 28Al.

5.4 Extracting the ANC and Spectroscopic Factor of 28P

The final spectroscopic factor and ANC values for 28Al obtained in the two previous

sections are summarized in Table 5.7. It can be seen that the values obtained in direct kine-

matics are approximately a factor of 10 smaller than the results from inverse kinematics.

The possible reasons behind this difference in results have already been discussed in

the previous section. In addition to those, it is important to remember that ANCs, as well

as spectroscopic factors, depend significantly on the goodness of the agreement between

OMP fits and the elastic angular distribution. The elastic and transfer distributions ob-

tained in inverse kinematics agree very well with the theory, which is not the case with

the direct kinematics data where the inaccurate OMP parameters throw off the DWBA

analysis.

For this reason, the values adopted for use in the next steps of the analysis were chosen

as C2
2s1/2

= 60. ±30. fm−1 and S2s1/2 = 1.11 ±0.56. An uncertainty of 50% was necessary

to account for the systematic effects that are producing the discrepancies in the data and

in the results of the DWBA analysis.

Having the spectroscopic factor and ANC of 28Al, the same parameters could be ex-

tracted for the mirror nucleus, 28P, using the following equality relations for mirror nuclei.

S2s1/2(
28P ) = S2s1/2(

28Al) = 1.11± 0.56 (5.8)

C2
2s1/2

b22s1/2
(28P ) =

C2
2s1/2

b22s1/2
(28Al) (5.9)
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The single-particle ANC, b22s1/2(
28P ), was determined from Eq. 2.70 following the

procedure described previously for b22s1/2(
13C). The code PTOLEMY was used to generate

the bound-state wave-function for a proton captured in a Woods-Saxon potential with the

same parameters used for the neutron captured in 28Al. The sole exception was the strength

of the central potential, which was adjusted to reproduce the experimental proton binding

energy in 28P, Ep = 2.0523 MeV. The parameters, l=0, η=1.518 and κ=0.30933 were used

in the Whittaker code to calculate the Whittaker-to-r function.

Figure 5.31: Plot showing the bound-state wave-function (red), Whittaker-to-r ratio (yellow) and
single-particle ANC (blue) for 28P.

Figure 5.31 shows the plots of the wave-function, the Whittaker-to-r function and the

single-particle ANC. b2s1/2(
28P ) was extracted from the asymptotic region of the plot,

where the value has stabilized at 22.85 fm−1/2. Plugging this number in Eq. 5.9 leads to
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the ANC of 28P, C2
2s1/2

(28P )=(5.8 ±2.9) × 102 fm−1. An uncertainty of 3% was added to

account for possible charge-symmetry breaking effects [59].

The ANC and the spectroscopic factor will be used in Chapter 6 in the determination

of the astrophysical proton capture rate.

159



6. THE ASTROPHYSICAL REACTION RATE AND CONCLUSIONS

6.1 The 27Si(p, γ)28P Reaction Rate

The total astrophysical rate of the 27Si(p, γ)28P reaction is given by the sum of the

direct capture component and the resonant component. The direct capture reaction rate is

given by Eq. 2.84 and requires knowledge of the effective astrophysical S-factor. Seff(E)

was determined with the computer code RADCAP [60].

The FORTRAN program has 5 modules to calculate potentials (1), bound state en-

ergies (2), transition probabilities (3), phase-shifts (4), photo-dissociation cross-sections

and astrophysical S-factors (5). Module 2 was used first to generate the ground-state

wave-function file GSWF.INP based on the specific geometry of the potential requested

by the user. In this case, the parameters described the proton binding Woods-Saxon po-

tential used to calculate the single-particle ANC in the previous chapter. The depth of the

central potential was adjusted to reproduce the proton binding energy to the ground-state

of 28P. Module 5 was then used to calculate the direct capture rate and the astrophysical

S-factor for an energy range from 0.01 MeV to 2.0 MeV. Since RADCAP assumes that

the spectroscopic factor of the capture reaction is 1.0, the results were multiplied by the

experimentally-determined factor, S2s1/2(28P) = 1.11 ±0.56. A plot of the astrophysical

S-factor as a function of energy can be seen in Figure 6.1.

The points were fitted with a second degree polynomial function as drawn in Figure 6.1

with a red dashed line. The corresponding equation is shown in the figure. The coefficients

represent the S-factor, its first derivative and its second derivative and can be found in

Table 6.1 along with similar values estimated theoretically by Iliadis et al.. It can be seen

that the value for S(0) is almost in agreement with the theoretical prediction.

These coefficients in Table 6.1 were then used in Eq. 2.82 to determine Seff(E). The
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Figure 6.1: Plot showing the calculated S-factor for the reaction 27Si(p, γ)28P (blue squares) fitted
with a polynomial function (red dashed line). The gray band above and below the calculations
represents the uncertainty region and is given by the error of the spectroscopic factor.

conversion to T9 was done based on Eq. 2.78 and Seff(T9) was plotted in 6.2, (a). Having

the effective astrophysical S-factor, the direct capture reaction rate per particle pair was

calculated with Eq. 2.84 and plotted in 6.2, (b).

Since this rate has not been presented numerically in past literature, the direct capture

rate was compared with the resonance rate as determined by Iliadis et al. in Ref. [2]. These

points are shown in red in Figure 6.2, (b). It can be seen that the presently determined rate

is ∼5 orders of magnitude lower than the resonance rate and therefore, does not have a

significant effect on the total rate of the 27Si(p, γ)28P reaction. This result is in agreement

with the most recent evaluations of this reaction [61].
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S(0) [MeV · b] S’(0) [b] S"(0) [b/MeV]
Present Work 4.75 ±2.38 × 10−2 -5.66 ±2.83 × 10−3 2.46 ±1.23 × 10−3

Previous Work [2] 7.87 × 10−2 -1.54 × 10−2 1.00 × 10−2

Table 6.1: Expansion coefficients of the total S-factor obtained in this work compared with previ-
ously determined values. The gray band above and below the calculations represents the uncer-
tainty region and is given by the error of the spectroscopic factor.

(a) (b)

Figure 6.2: (a) Plot showing the effective S-factor as a function of temperature for the region of
interest, T9 ≤ 1. The Y-axis error bars are given by the error of the spectroscopic factor. (b) Plot
showing the direct capture reaction rate estimated in the present work (magenta) and the resonant
reaction rate estimated theoretically by Iliadis et al. in Ref. [2] (red). The Y-axis error bars are
given by the error of the spectroscopic factor.

6.2 Conclusions

A two-part study has been completed, aimed at contributing to future studies in the

fields of unstable beams and X-ray bursts nucleosynthesis.

The first part involved the upgrade of the Texas A&M Oxford focal-plane detector, an

essential component of experiments focused on particle transfer reactions and the Asymp-

totic Normalization Coefficient method. The addition of Micromegas technology to the
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Oxford detector was quick, low-cost and low-risk and was proven to be very successful.

The resolution of energy loss in the detector was improved by a factor of ∼5 for low mass

nuclei (A≤16) and ∼3 for higher mass nuclei (A≥28).

This result opens the way for ANC studies of higher mass nuclei of interest in X-ray

bursts nucleosynthesis, such as 32Cl and 36K. Additionally, the success of this upgrade

provides a different direction for the use of Micromegas technology, i.e. its addition to an

existing detection system in lieu of building a new one, which is a more time-consuming

and more complicated project.

The second part of the present work involved the use of the upgraded Oxford detector

to study a reaction relevant to XRB nucleosynthesis. The direct capture reaction rate of

27Si(p, γ)28P was determined using the spectroscopic information extracted from the mir-

ror reaction, 27Al(n, γ)28Al. The neutron capture itself was studied through the peripheral

neutron transfer, 27Al(13C,12C)28Al, using the proven ANC indirect method.

The spectroscopic factor and ANC of 28P were estimated experimentally for the first

time as S2s1/2(28P) = 1.11 ±0.56 and C2
2s1/2

(28P) = (5.8 ±2.9) × 102 fm−1. The theoretical

predictions for the non-resonant reaction rate were confirmed as significantly lower than

the resonant contribution.

A study of the resonances populated during the proton capture on 27Si is the next step

for future studies in order determine more accurately the effect of the reaction rate of

27Si(p, γ) on the outcome of an X-ray burst.
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APPENDIX A

COMPUTER CODES

This Appendix contains sample input files for the different codes that were used in the

analysis of this study.

A.1 The RAYTRACE Code

MDM 13C+27 Al @6. 0 deg B h a l l =6205.5 R10−14 t r a n s f e r c h a n n e l

RAYTRACE

7 206 1 2 3 0 0

153 .65 2 . 0 0 . 12 .001 6 .

DRIF

5 7 . 0

COLL

0 . 0 0 . 0 0 . 0 3 . 3 .

DRIF

18 .075

POLE i n p u t m u l t i p o l e ( use Bronson c a l i b r a t i o n o f B h a l l )

1 . 3 . 1 .

1 . 925 113 .2 2 6 . 6 . 5

−0.33290 0 .02477 0 .0182 −0.01462 −0.0124 Bq=

6 2 0 5 . 5 * 1 . 0 3 4

2 0 . −10. −10. 2 0 .

. 112 2 6 .2671 −1.4982 3 .5882 −2.1209 1 .723

.1122 6 .2671 −1.4982 3 .5882 −2.1209 1 .723
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1 . 1 . 1 . 1 . 1 . 1 .

1 . 1 .

DIPO ( Bd=1.034* Bnmr Bnmr= B h a l l )

1 . 6 . 1 . 1 . 3 . 6 0 .

0 .

2 6 . 32 .55 1 1 . 5 1 6 0 . 0 .64165

1 0 0 . 0 . 0 .

0 .191 −0.04 0 . 0 .

4 6 . −33. −23. 5 0 .

. 0 4 8 3 . 7 0 .0125 −.299 . 0 1 6 . 0 2 0

J e f f s f r n g 800amp

. 0 4 8 3 . 7 0 .0125 −.299 . 0 1 6 . 0 2 0

J e f f s f r n g 800amp

0 . 0 . 0 . 0 . 0 . 0 .

0 . 0 .

1 .242 −3.11 4 .142 −1.06 0 . 0 .

0 . Drawing e n t

−1.579 1 .719 −13.43 −24.58 779 .35 821 .26

−21410. Drawing E x i t

MULT ( L=35 cm 9 / 7 / 9 3 )

1 . 2 . 0 .

0 . 2 1 . 5 3 5 . 0 6 0 . 9 . 6 1 . 0

−32.5 3 2 . 5

0 . 0 . 0 . 0 0 . 0 0 . 0 .

0 . 1 . 1 .
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COLL

0 . −0.08 0 . 29 .61 20 .21

DRIF

6 3 . 0

SENT

6 . 0 0 0 . 000 13 .003 26 .9815 2 .779 0 .0000

7 .

3 . 0 0 4 . 4 7 5 .235 6 . 0 0 6 .765 7 . 5 3 9 . 0 0

A.2 The OPTIMINIX Code

Fitting the elastic distribution

0 0 0 7 1 0 ! i t e r , ism , i p o t , n i t e r , i o r d i n , i m i n i

1 3 . 6 . ! p r o j mass and c h a r g e

2 7 . 1 3 . ! t a r g mass and c h a r g e

1 5 4 . ! Elab

1 2 0 . ! Lmax

0 . 1 2 5 1 . ! H, NPTS1

0 . 0 0 0 . 00 0 0 . 0 0 ! V, Rv , Av

0 . 0 0 0 . 00 0 0 . 0 0 ! W, Rw,Aw

1 .000 ! Rc

0 . ! a b s o l u t e c s v a l u e s

4 8 . ! Ex1 nr o f p o i n t s

1 . ! P r o c e n t (=0 a b s o l u t e e r r o r s )

* d a t a f o l l o w b e l l ow i n 3 columns :

a n g l e c r o s s−s e c t i o n e r r o r
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Plotting the elastic distribution

1 0 0 0 3 1 ! i t e r , ism , i p o t , n i t e r , i o r d i n , i m i n i

2 7 . 1 3 . ! p r o j mass and c h a r g e

1 3 . 6 . ! t a r g mass and c h a r g e

318 .77 ! Elab

1 2 0 . ! Lmax

0 . 1 2 5 1 . ! H, NPTS1

27 .00 0 .9783 1 .0068 ! V, Rv , Av

23 .72 1 .1039 0 .6958 ! W, Rw,Aw

1 .000 ! Rc

1 . ! R a t i o t o R u t h e r f o r d

0 . ! Ex1 − nr o f d a t a p o i n t s

1 . 0 . 1 430 ! ang0 s t e p n r a n g s

0 . ! P r o c e n t (=0 a b s o l u t e e r r o r s )

A.3 The PTOLEMY Code

Calculating wave-functions

HEADER bound s t a t e s c a l c . f o r 27 Al+n −>28Al 2 s1 / 2 r a d i a l

wf .

CHANNEL: N + 27AL = 28AL

L=0 NODES=1 JP =1/2 SP =1/2

V=55 R0=1.15 VSO=4.65 A=0.60 RC0=1.2

ASYMPTOPIA=50

BOUNDSTATE
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;

WRITESTEP=0.1

PRINTWAV

WRITENS PHI1

RETURN

DWBA calculations

HEADER: 27AL(13C, 1 2C) 28AL f o r Run0313 exp 13C on 27AL 12

MeV/ n

REACTION 27AL(13C, 1 2C) 28AL ELAB=154.15

PARAMETERSET ALPHA2

USEPROJECTILE

LMIN=0

TARGET L=0 NODES=1 JP =1/2 SP =1/2

V=55 R0 =1.15 VSO=4.65 A=0.60 RC0=1.2

ASYMPTOPIA=20

WRITESTEP= 0 . 1

;

PROJECTILE L=1 NODES=0 JP =1/2 SP =1/2

V=55 R0 =1.15 VSO=4.65 A=0.60 RC0=1.2

ASYMPTOPIA=20

;
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INCOMING

V=106.0 R0=0.8457 A=0.4791 VI =10.49 RI0 =1.3223 AI =0.8347 ;

OUTGOING

V=106.0 R0=0.8457 A=0.4791 VI =10.49 RI0 =1.3223 AI =0.8347 ;

ANGLEMIN=0 ANGLEMAX=60 ANGLESTEP=0.25

;

WRITENS CROSSSEC

RETURN

A.4 The RADCAP Code

Module 2:EIGEN

********************************************************

* ******** I n p u t o f s u b r o u t i n e EIGEN *******

*

* ******* 28P 2 s1 / 2 h e r e ******

*

* IOPT = o p t i o n f o r p o t e n t i a l s : 1 ( 2 ) f o r Woods−Saxon (M3Y

)

* NPNTS = no . o f i n t e g r a t i o n p o i n t s i n r a d i a l c o o r d i n a t e (

< 10000)

* RMAX = maximum r a d i u s s i z e ( < 250 fm ) .

*

* IOPT NPTS RMAX

*
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1 9999 2 5 0 .

*

* N_0 = nodes o f t h e Wave F u n c t i o n ( e x c l u d e o r i g i n )

* J0 = s i n g l e −p a r t i c l e a n g u l a r momentum

* L0 = o r b i t a l a n g u l a r momentum

*

* N_0 J_0 L_0

*

1 0 . 5 0

*

* I f IOPT = 1 , e n t e r :

* V0 = d e p t h o f c e n t r a l p o t .

* VS0 = d e p t h o f sp in−o r b i t p o t e n t i a l

* R0 = r a d i u s o f t h e p o t e n t i a l

* AA = d i f f u s e n e s s o f t h e p o t .

* RS0 = r a d i u s o f t h e sp in−o r b i t p o t .

* AAS = d i f f u s e n e s s o f t h e sp in−o r b i t p o t .

* RC = Coulomb r a d i u s ( u s u a l l y , RC = R0 )

*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

* WS = V_0 f ( r , R0 ,AA) − V_S0 ( l . s ) ( r_0 ^ 2 / r ) d / d r f ( r , RS0

,AAS)

*

* f ( r , R0 , a ) = [ 1 + exp ( ( r−R_0 ) / a ) ]^( −1)

*

* r_0 = 1 .4138 fm i s t h e Compton w a v e l e n g t h o f t h e p ion .
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*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

* V0 R0 AA VS0 RS0 AAS RC

*

−55.949 3 . 4 5 0 . 6 0 −4.65 3 . 4 5 0 . 6 0 3 . 6

*

* I f IOPT = 2 , o r e l s e ( b u t n o t 1 ) , e n t e r FC , FSO and RC:

* ( i n t h i s case , i n s e r t a ’* ’ s i g n i n above row , o r

d e l e t e i t )

* FC = m u l t i p l i c a t i v e f a c t o r o f c e n t r a l p a r t o f M3Y

p o t e n t i a l

* FSO = m u l t i p l i c a t . f a c t o r o f sp in−o r b i t p a r t o f M3Y

p o t e n t i a l

* RC = Coulomb r a d i u s

*

* FC FSO RC

* 1 . 5 0 . 2 2 .391

*

* Z1 , Z2 = c h a r g e s o f t h e n u c l e i

* A1 , A2 = masses o f t h e n u c l e i ( i n n u c l e o n mass u n i t s )

*

* Z1 A1 Z2 A2

*

1 . 1 . 1 4 . 2 7 .

*

***************************************************
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Module 5:DICAP

***************************************************

* ******** I n p u t o f program DICAP ****

* ***** 27 s i +p=28P *****

*

* IOPT = o p t i o n f o r p o t e n t i a l s : 1 ( 2 ) f o r Woods−Saxon (

M3Y)

* NPNTS = no . o f i n t e g r a t i o n p o i n t s i n r a d i a l c o o r d i n a t e (

< 10000)

* RMAX = maximum r a d i u s s i z e ( < 250 fm ) .

* NEPTS = number o f p o i n t s i n e ne rg y ( < 1000)

*

* IOPT NPNTS RMAX NEPTS

*

1 9999 2 5 0 . 199

*

* N_0 = nodes o f t h e G. S . wave f u n c t i o n

* AIA = s p i n o f t h e p a r t i c l e A ( c o r e )

* AIB = i n t r i n s i c s p i n o f t h e p a r t i c l e B

* AIC = t o t a l a n g u l a r momentum of t h e ground s t a t e o f C =

A + B − ( c h a n n e l s p i n )

* J0 = s i n g l e −p a r t i c l e a n g u l a r momentum

* L0 = o r b i t a l a n g u l a r momentum

* EBOUND = b i n d i n g e ne rg y of t h e ground s t a t e ( a b s o l u t e

v a l u e )
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*

* N_0 AIA AIB AIC AJ0 L_0 EBOUND

*

1 2 . 5 0 . 5 3 0 . 5 0 2 .052

*

* JOPT = 1 ( 0 ) i f f i n a l s t a t e ang . mom. , AICF , i s ( i s n o t )

t o be

* summed ove r a l l p o s s i b l e v a l u e s . I f JOPT=1 , AICF

can be

* e n t e r e d as any v a l u e .

* AICF = s p i n o f t h e e x c i t e d s t a t e a f t e r a l l ang . mom.

c o u p l i n g

*

* JOPT AICF

*

1 1 .

*

* Z1 , Z2 = c h a r g e s o f t h e n u c l e i

* A1 , A2 = masses o f t h e n u c l e i ( i n n u c l e o n mass u n i t s )

*

* Z1 A1 Z2 A2

*

1 . 1 . 1 4 . 2 7 .

*

* V0 = d e p t h o f c e n t r a l p o t e n t i a l
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* R0 = r a d i u s o f t h e c e n t r a l p o t e n t i a l

* AA = d i f f u s e n e s s o f t h e c e n t r a l p o t e n t i a l

* VS0 = d e p t h o f sp in−o r b i t p o t e n t i a l

* RS0 = r a d i u s o f t h e sp in−o r b i t p o t e n t i a l

* AAS = d i f f u s e n e s s o f t h e sp in−o r b i t p o t e n t i a l

* RC = Coulomb r a d i u s ( u s u a l l y , RC = R0 )

*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

* WS = V_0 f ( r , R0 ,AA) − V_S0 ( l . s ) ( r_0 ^ 2 / r ) d / d r f ( r ,

RS0 , AAS)

*

* f ( r , R0 , a ) = [ 1 + exp ( ( r−R_0 ) / a ) ]^( −1)

*

* r_0 = 1 .4138 fm i s t h e Compton w a v e l e n g t h o f t h e p ion .

*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

* V0 R0 AA VS0 RS0 AAS RC

*

−55.949 3 . 4 5 0 . 6 0 −4.65 3 . 4 5 0 . 6 0 3 . 6

*

* I f IOPT = 2 , o r e l s e ( b u t n o t 1 ) , e n t e r FC , FSO and RC:

* ( i n t h i s case , i n s e r t a ’* ’ s i g n i n above row , o r

d e l e t e i t )

* FC = m u l t i p l i c a t i v e f a c t o r o f c e n t r a l p a r t o f M3Y

p o t e n t i a l

* FSO = m u l t i p l i c a t . f a c t o r o f sp in−o r b i t p a r t o f M3Y

p o t e n t i a l
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* RC = Coulomb r a d i u s

*

* FC FSO RC

* 1 . 5 0 . 2 2 .391

*

* EI , EF = i n i t i a l r e l a t i v e energy , f i n a l r e l a t i v e en e r g y

*

* EI EF

*

0 . 0 1 2 . 0

*

* NS1 , NP1 , NP3 , ND3, ND5, NF5 , NF7 = ( 1 ) [ 0 ] f o r i n c l u s i o n [ no

i n c l u s i o n ]

* o f s1 / 2 , p1 / 2 , p3 / 2 , d3 / 2 , d5 / 2 , f5 / 2 , and f7 / 2

p a r t i a l waves

*

* NS NP1 NP3 ND3 ND5 NF5 NF7

*

0 1 1 0 0 1 1

*

* MP = m u l t i p o l a r i t y : 0 (M1) , 1 ( E1 ) , 2 ( E2 )

* SF = S p e c t r o s c o p i c f a c t o r

*

* MP SF

*
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1 1 .

*

* GA = m a g n e t i c moment ( i n u n i t s o f t h e n u c l e a r magneton )

o f

* p a r t i c l e A ( c o r e )

* GB = m a g n e t i c moment o f p a r t i c l e B ( p ro ton , n e u t r o n ,

a lpha , e t c . )

*

* GA GB

*

−1.7 5 . 5 8

*

*****************************************************
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