
A DATA DRIVEN MACHINE LEARNING APPROACH TO PREDICTION OF

STACKING FAULT ENERGY IN AUSTENITIC STEELS

A Thesis

by

NAYAN CHAUDHARY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Raymundo Arróyave
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ABSTRACT

The Material Genome Initiative (MGI) calls for establishing frameworks and

adopting methodologies to accelerate materials discovery and deployment. The In-

tegrated Computational Materials Engineering (ICME) approach and Materials In-

formatics leveraging materials data are two very important pillars to the initiative.

This research is a data driven materials informatics approach to enable an ICME

project on steel alloy design. For the alloy design problem there was a need to

predict Stacking Fault Energy (SFE) for any untested alloy composition. SFE is a

crucial parameter in determining different deformation regimes in austenitic steels.

The SFE itself is dependent on the chemical composition and temperature in steels.

There has been considerable study on determination of SFE in steels by experimental

and computational methods. While the experimental methods investigate an alloy

to find SFE, computational models have been constructed to predict SFE for a given

composition and temperature. However, it is shown in this thesis that there are

large inconsistencies in experimental data, as well as unavailability of robust compu-

tational models to predict SFE in truly multicomponent steel alloys. In this work,

a data-driven machine learning approach to mine the literature of SFE in steels

with the final aim of predicting deformation regimes for potentially unknown and

untested alloy compositions has been demonstrated. Algorithms at the fore-front of

Machine Learning have been used to visualize the SFE data and then construct clas-

sifiers to predict SFE regime in steels. This machine-learning modeling approach can

help accelerate alloy discovery of austenitic steels by linking composition to desired

mechanical behavior.
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NOMENCLATURE
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1. INTRODUCTION

1.1 Thesis Motivation

This thesis is a classic example of ”Necessity is the mother of invention”. So often

in science we start chasing a topic because we dearly need to solve it to help us tackle

larger problems. Here I briefly describe the ”larger problem” in the context of this

thesis. The ultimate objective of this larger problem can be analyzed on two fronts:

industry need and scientific merit of approach. The industry need was to design

cheaper alloy alternative to existing Ni-based superalloys used for high-temperature

applications in advanced ultra supercritical combustion coal-fired power plants. With

an aim to increase the cost efficiency of these plants, there was a need to design for

higher operating temperatures and pressure. Since the constraint of cost-efficiency

was key, stainless steels were identified as the target class of materials. However, to

design stainless steels for application at the needed operating environments was a

very challenging materials engineering problem. The scientific merit of this project is

the design methodology. A traditional experimental approach to designing an alloy

for a given application would have made the problem intractable, just by the sheer

number of trial and error iterations needed to find the right alloy in such a complex

design space. Hence an Intergrated Computational Materials Engineering(ICME)

approach was adopted which would significantly reduce the design space by efficient

computational search of composition given constraints established by the needs of

the material and operating environment.

The computational problem was established to design a class of advanced austenitic

stainless steels which would demonstrate ultrahigh strength, ductility, high-temperature

strength, creep and corrosion resistance. The strategy to achieve the above objectives

1



Figure 1.1: Computational design strategy for advanced austenitic stainless steel
design

was mapped out as forming alloys with completely austenitic phase, grain-boundary

engineering to achieve high density of low energy twin boundaries, precipitation

engineering to achieve high temperature intergranular carbides, nitrides for creep

resistance and finally alumina surface oxide instead of traditional chromia oxide for

enhanced performance in water-vapour environment. A summary of the design strat-

egy and available modeling techniques is shown in Fig. 1.1

As seen in the figure, different modeling techniques either existed or were devel-

oped separately for the computational alloy design work. However currently there

exists no robust models in the literature to map austenitic steel composition to

ease/propensity of twinning or deformation characteristics in general. Hence the

sole aim of this work was to develop a predictive model which could do the above

and hence aid in selection of compositions for a target deformation in austenitic

2



steels.

1.2 Stacking Fault Energy and Deformation Regimes

It is well established in literature that the secondary deformation mechanisms

in austenitic steels are primarily a function of their SFE in addition to other defor-

mation parameters like strain-rate. Many researchers have calculated different SFE

regimes correlated with different deformation behavior. With decreasing SFE, the

deformation mechanisms change from (i) dislocation glide to (ii) dislocation glide +

mechanical twinning to (iii) dislocation glide + martensitic transformation. Hence

being able to compute SFE for any given austenitic steel composition is extremely

crucial to steel alloy design since a certain desired mechanical deformation behavior

is one of the most important design criteria. Unfortunately, currently there doesn’t

exist a robust go-to equation in the literature that the authors know of which can

be used to compute the SFE or predict possible deformation behavior of an untested

austenitic steel composition.

1.3 MGI and Materials Informatics

The Materials Genome Initiative (MGI) [26] emphasizes on using new frame-

works and techniques to accelerate materials discovery. One of the pillars and new

paradigms of this initiative leading to rapid materials discovery is Materials Infor-

matics [72] and Materials Data Science [32]. Materials Data science and infor-

matics encapsulates Machine Learning/Statistical Learning/Data Mining or various

other interchangeably used terminologies which are being used in myriad disciplines

ranging from product-based fields like artificial intelligence, social media analytics,

decision making in enterprises to economics, bioinformatics, astronomy and other

scientific fields. The sole basis of these learning algorithms is that given some infor-

mation or data and an understanding of what that data means, an underlying pattern

3



Figure 1.2: Two competing approaches to predictive modeling of material properties
[72]

can be uncovered and ’learnt’ which can be used to predict outcomes for unseen sce-

narios. These powerful algorithms have immensely contributed to development and

success of the above discussed disciplines, specifically where the complexity of the

problems rendered theoretical modeling based on domain knowledge incredibly chal-

lenging. Materials Informatics is the paradigm which leverages these techniques on

top of the experimental and physics-based computational data in materials sciences

community to usher the field forward in a new era of accelerated materials discovery.
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1.4 This Work

Having provided the motivation and established the problem statement, a brief

summary of this thesis objective is provided below. As described above, for austenitic

steel design with a certain desired mechanical deformation behavior, SFE is the

crucial parameter. SFE itself is a predominantly a function of temperature and

composition. Therefore to design multicomponent austenitic steel, there needs to

be a model connecting composition and SFE. However as explained, there isn’t one

currently. In absence of a robust physics based model, we leverage machine learning

models to predict SFE regimes based off all the experimental data on calculation of

SFE for different austenitic steel compositions. Hence what we are doing is trying to

build a lower, workable representation of the composition-SFE relationship relying

on soft, statistical modeling because the true, higher representation is too expensive

to model or unrealistic to work out with the current knowledge.

Although the project motivation was to build a predictive model to predict

ease/propensity for twinning given austenitic steel composition, this work goes be-

yond that. It addresses the key problem of relating composition to SFE in austenitic

steels, albeit in a practical, inexpensive way that will enable alloy design. The other

merit of this work is that it is an apt showcase of the Materials Informatics approach.

A complete workflow is developed: (i) Collecting and curating materials data (ii) Us-

ing machine learning/ statistical modeling to mine the data (iii) Extract knowledge

from the data mining task

5



2. LITERATURE SURVEY

In this section we very briefly discuss the origin of stacking faults and SFE in

steels. Then a thorough description of the existing modeling techniques for SFE

prediction and their pitfalls have been discussed. Finally an exhaustive study of all

experimental research in SFE calculation of austenitic steels has been presented. As

pointed out earlier, there are large inconsistencies in the experimental SFE data. In

the study of experimental research, this aspect of SFE data is also discussed. The

inconsistencies provide a major impediment to SFE modeling and hence one of the

crucial merits of the approach in this work is handling these inconsistencies.

2.1 Stacking Fault Energy

Austenitic steels are steels with complete austenite phase at room temperature.

Since austenite is the face-centered cubic (fcc) allotrope of Fe, austenitic steels have

fcc structure at room temperature. In fcc structure, the close-packed {111} planes

are stacked in an ABCABCABC... sequence. Slip in fcc systems occurs on the

{111} planes in <110>direction. When a dislocation slips in this direction, it leaves

behind a perfect lattice in the same sequence and hence called perfect dislocations.

However it is sometimes more energetically favorable for the perfect dislocations

to dissociate into Shockley partials wherein the dislocation direction now changes

to <112>and these dissociated dislocations are called partial dislocations. These

partial dislocations change the local stacking of the crystal from ABCABCABC... to

ABCACABC.. This local change in stacking is called a stacking fault and the local

stacking is changed as if it is hcp ABABAB... This stacking fault is specifically called

an intrinsic stacking fault where the fault occurs as if one plane(B) was removed.

There is another kind of stacking fault called the extrinsic stacking fault where the

6



stacking changes from ABCABCABC.. to ABCACBCABC... This is as if an extra

plane(C) was added. However intrinsic faults are easier to form and most properties

depend on them. The discussion in this thesis has been hence limited to intrinsic

stacking faults and energy primarily. Now the width of the formed stacking fault

is dependent on the stacking fault energy. Higher stacking fault energy leads to

relatively narrower stacking faults and vice versa. Stacking fault energy primarily

depends on the composition of the material and temperature. Other effects like grain

size and processing are disputed to have effects[96, 19] however evidence is minimal

or the effects are insignificant and hence the discussion is limited to composition and

temperature.

2.1.1 Stacking Fault Energy and Deformation Mechanisms

The secondary deformation mechanisms in steels is primarily dependent on SFE.

There has been previous work in this direction by many researchers which establishes

that deformation mechanisms in Austenitic Steels are a function of SFE ’regimes’.

Fig. 2.1 shows different SFE regimes proposed in literature. Although the research

establishes different values for these regimes, they are close and there is a common

acceptance in literature. It is well accepted that an austenitic steel with SFE value

below 20 mJ/m2 deforms by martensitic transformation of TRIP-like behavior, with

SFE value in between 20 mJ/m2 and 45 mJ/m2 deforms primarily by deformation

twinning leading to a TWIP-like behavior while SFE values above 45 mJ/m2 deforms

majorly by slip. These regimes can be called Low, Medium and High respectively.

What also helps is that this mapping from SFE regime to deformation mechanism

is monotonic as well as one-to-one.

7
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Figure 2.1: Different boundary values in literature for SFE regimes

2.2 Theoretical Prediction of Stacking Fault Energy

There have been predominantly three approaches to predicting stacking fault en-

ergy for any given composition in austenitic steels. (i) First Principles/Ab-initio

Electronic Structure calculations, (ii) Thermodynamic Modeling and (iii) Linear Re-

gression. While the first two are physics based modeling paradigms, the latter is a

purely statistical approach. The modeling techniques and their issues are very briefly

discussed below.

2.2.1 Physics Based Modeling

There is substantial work in the literature where material science fundamentals

have been used to predict SFE for alloy compositions. One very important formula-

tion is the thermodynamics or CALPHAD approach where the energy of the stacking

8



fault is modeled as a martensitic embryo or a hcp second phase with phase boundaries

lining the austenite or fcc phase on either sides. Another significant approach is using

first principles, ab-initio electronic structure modeling based on quantum mechanical

theory. Within first principles, the SFE is modeled using different approaches which

will be discussed briefly ahead.

2.2.1.1 First Principles Calculations

Calculation of SFE in steel alloy system by first principles, ab-initio electronic

structure modeling based on quantum mechanical theory can be realized by more

than one approach. However the choice of approach is eventually guided by computa-

tional cost and accuracy of method. Though these methods are essentially predicting

a composition-SFE relationship, there aren’t as many investigations as the limita-

tion is relatively straight-forward. With current computational resources it is almost

impossible to do first-principle calculations of SFE for multi-component steels with

many alloying additions which is a practical need in alloy design. In fact the most

complex chemistry for which the SFE has been modeled and predicted using ab-initio

approaches are quaternary steel alloys.[88, 53]

There are predominantly two approaches in the literature for calculating SFE

of Fe alloyed with other elements. One approach was first presented by Vitos and

co-authors[88] who calculated the intrinsic SFE in ternary and quaternary Fe alloys

by adopting a Axial Next Nearest Neighbor Interaction (ANNNI) model for ferrous

alloys. Another approach is the widely known calculation of Generalized Stacking

Fault Energy(GSFE) surface which claims to provide a complete description of the

stacking fault energy. Based on accuracy and computational cost, the approach from

Vitos seems to be the better atleast for the ferrous alloys or steel alloy system. A

high-level description of both approaches is explained next.
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The approach pioneered by Vitos is the ANNNI model which is an extension of

the ideas used to calculate SFE and explain interlayer interactions in SiC polytypes.

[11, 15]. For SiC these authors adopted the original Axial Next Nearest Neighbor

Ising model by replacing the Ising spin with interaction between layers, and hence

the name of Axial Next Nearest Neighbor Interaction model. In their paper[88],

Vitos formulates the formation energy of an intrinsic stacking fault in a fcc crystal

as the excess free energy per unit area:

γ =
FSF − F0

A2D

(2.1)

FSF is the free energy of the system with the stacking fault, F0 is the free energy

of system without stacking fault and A2D is the area of the stacking fault. With

the ANNNI model, the stacking sequence along a direction is represnted by Si’s, the

same formulation as Ising model but here they represent different layers rather than

spins. The excess free energy of a stacking sequence is then formulated in terms of

−ΣiΣjJnSiSi+n where Ji is the interaction parameter for the ith nearest neighbor.

Hence J1 is nearest neighbor, J2 is the next nearest neighbor and so on and so forth.

Using this representation, the energy of intrinsic SFE can be expressed and also for

periodic structures like fcc, hcp and dhcp. Based on these expressions:

FSF − F0 ≈ Fhcp + 2Fdhcp − Ffcc (2.2)

Here the reason for approximate symbol is since the expressions in terms of Ji

are truncated and only the first three or four interactions are taken. Although these

approximations have shown to be consistent and within the limits of experimental

error, for higher precision higher order terms need to be considered. The calculations

were then done based on the EMTO-CPA approach also devised by the same author.
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For a detailed description one can refer to their work.[88]

(a) (c)

(b)

Figure 2.2: a) Comparison of theoretical calculations of SFE by ANNNI model with
experimental values[88] b) Non-linear dependence of SFE on composition of Ni and
Cr [87] c) Non-linear dependence of SFE on composition of Mn based on host com-
position of Fe-Cr-Ni [53]

The authors have modeled ternaries like Fe-Cr-Ni[88, 87, 53] systems as well as

quaternaries like Fe-Cr-Ni-Mn[88, 53], Fe-Cr-Ni-Nb[88, 53] and Fe-Cr-Ni-Co[88, 53].

These results have been shown to be good agreement with the experimental values

keeping in the mind the inconsistencies and uncertainty of experiments. Fig2.2a

shows the comparison. The formulation has also and excellent description for the

temperature variance of SFE which has been modeled by magnetic contributions.

The biggest contribution of the above approach and research has been to explain

the nature of composition-SFE relationship. The authors have modeled over a range
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of compositions for the ternaries and quaternaries and have found highly non-linear

relationships[88, 87, 53]. They have shown that the effect of an alloying element

on SFE depends not only the element but also on the host composition, i.e the

values of other elements. Fig2.2b and Fig2.2c demonstrate these non-linear rela-

tionships. Thus the authors have claimed that it is impossible to derive universal

SFE-composition relationships for multi-component steel alloys.

The other approach is the widely used and known technique for calculating SFE

in elemental metals and alloys called the Generalized Stacking Fault Energy calcula-

tion which is a comprehensive definition of the stacking fault energy. In fcc system,

a single-layer of stacking fault can be generated by displacing the upper half of the

crystal relative to the lower half along <112>direction on the {111} planes. The

fault energy γ can be calculated as a function of this displacement, which will be

a curve representing energy of different sheared configurations resulting from differ-

ent values of displacement along <112>. There are some important characteristic

material properties which can be calculated based on the GSFE curve which have

been depicted in Fig.2.3. There are three main quantities i.e. the unstable fault en-

ergy, intrinsic fault energy and stable fault energy. The displacements which lead to

the structures corresponding to these energies are 0.5|bp|, |bp| and 2|bp| respectively

where |bp| = 1/6<112> is the Burger’s vector of the partial dislocation producing

the shear.
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(a)

(b)

Figure 2.3: a) A representation of different shear displacements to calculate
GSFE curve b) Schematic of a calculated GSFE curve with important quantities
indicated[34]

However the use of this approach has not yielded good quantitative results of

SFE in the Fe alloy system. The calculations using this approach for Fe alloy system

were first performed by Kibey and co-authors [34]. The authors modeled the Fe-

N binary and Fe-Mn-N ternary systems. The same approach has been adopted in

literature to model other alloying additions in iron system like Fe-Mn binary[16], Fe-C

binary[1], Fe-Cr-Ni ternary[52] , Fe-Mn-Al-C quaternary[55] and Fe-X binaries where

X=transition metals[51]. As mentioned earlier, the important note about all these

calculations is that they all severely underestimate intrinsic SFE compared to similar

experimental and theoretical (thermodynamic and other ab-initio approaches) data,

even taking into account that these are 0 K calculations. Hence most of these GSFE

calculations are restricted to explaining trends of SFE variation in particular alloy
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system.

In summary ab-initio electronic structure modeling is a fundamentally robust

approach to predicting SFE in steel alloys, specifically the ANNNI model has been

shown to have excellent agreement with experimental values. However due to compu-

tational cost and complexity, these calculations are impossible for multi-component

alloys with many alloying additions. They however provide crucial insights about

the nature of the composition-SFE relationship in the steel alloy system.

2.2.1.2 Thermodynamic Modeling

There have been many investigations into calculation of SFE using the thermo-

dynamics or CALPHAD approach where the energy of the stacking fault is modeled

as a martensitic embryo or a hcp second phase with phase boundaries lining the

austenite or fcc phase on either sides. The schematic of such a formulation has been

shown in Fig. 2.4. As shown the SFE can then be written out in terms of extra

energy needed to nucleate this stacking fault, which is the Gibbs Free energy to to

nucleate the locally hcp stacking fault i.e. ∆Gfcc→hcp, the strain energy due to the

stacking fault as a second phase in the fcc matrix and partial dislocations bounding

the stacking fault i.e. Estr
m and the interfacial energy on the hcp-fcc boundary i.e. σ.
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Figure 2.4: Schematic of thermodynamic formulation for SFE calculation

The Gibbs Free energy can be written out as a summation of ideal, excess, mag-

netic and other sources energetic considerations. Different researchers have modeled

various different Fe based systems using slightly varying formulations. For eg. the

stacking fault modeled as a hcp second phase can lead to different strain energies

based on the shape assumed for the stacking Fault. Olson [64] and Cotes [12] have

modeled the second phase as a spherical particle while Ferreira and Mullner [59]

model it as flattened plate-like particle. These lead to different strain energy contri-

butions although the energy value itself as well as the differences are low compared

to SFE values. However the biggest discrepancy in thermodynamic SFE modeling

is in the value of interfacial energy σ. In all research papers this is not physically

estimated, neither is there robust experimental data for it. Hence it is generally used

as a fitting parameter to make the thermodynamic calculation match experimental

SFE calculations. This leads to large discrepancies as the value of σ in literature

varies from 4-20 mJ/m2 [58, 95, 61, 31, 56, 3, 93, 66, 13, 18, 12, 64, 76] which leads

to even larger variations in SFE, thus highly depreciating the reliability of the ther-
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modynamic models and SFE prediction. Fig. 2.5 demonstrates such an example.

In their paper, Akbari and researchers [76] calculate SFE for Fe-Mn-C and other

systems. They construct composition-SFE maps choosing different values of σ given

in literature since there is no way to determine this as discussed earlier. We consider

2 random compositions on this map and show how the choice of different interfacial

energy values leads to a large range of possible SFE for a fixed composition.

Figure 2.5: An example of variation in SFE due to large uncertainty in interfacial
energy parameter [76]

Hence the compositions corresponding to the blue point and green point on the

composition-SFE map can have SFE values differing by 30 mJ/m2 depending on what

the interfacial energy parameter is chosen, and this is very unreliable prediction

for the purposes of alloy design. Many different papers show many other values

of interfacial energy. Also it has been discussed in literature how this value itself

is composition dependent and hence estimating it for one composition based on

experimental value and then using the same for all other compositions is not physical.
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This energy parameter than becomes essentially a fitting parameter that absorbs all

unexplained physics in one’s model.

To summarize, thermodynamics approach in theory is a good approach for multi-

component steels. However the problems lies with databases and energy parameters.

Modeling the Gibbs Free energy of fcc to hcp transition needs data for hcp state

in the databases for Fe alloys which is lacking. The other significant problem is

the interfacial energy parameters which are basically used as fitting parameters in

the model leading to high uncertainties and inconsistencies among models in the

literature. Sometimes the difference in interfacial energy parameters is so much so

that the difference in SFE more or less means an altogether different SFE regime

for the same composition. Hence the thermodynamic modeling approach is not as

robust as one would need for practical applications.

2.2.2 Statistical Modeling

In addition to the theoretical computational formulations for describing SFE-

composition relationship, statistical technique of linear regression has been applied

on many small sets of experimental SFE data to describe a linear relationship be-

tween SFE and composition. Linear Regression is although much more powerful

than just modeling straight lines, none of the papers have tried to model non-linear

relationships. Table.2.1 has a list of all such linear regression equations in the litera-

ture, which have been formulated for different composition regimes in the austenitic

steel system. Most of these equations have been modeled based on the experiments

carried out in one research paper which is typically very less. Except for a couple of

papers which have either many experiments or took data from other papers, these

equations are very ”local” in the composition space.
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Reference Technique Year Regression Equation Notes

Schramm et al. [78] TEM 1975 γ = 4+1.8 (%Ni)−0.2 (%Cr)+410 (%C) C: 0.012 to 0.027 %

Schramm et al. [78] TEM 1975 γ = 34 + 1.4 (%Ni) − 1.1 (%Cr) −

77 (%N)

N: 0.004 to 0.044 %

Schramm et al. [78] TEM 1975 γ = 34 + 2.2 (%Ni) − 1.1 (%Cr) −

13 (%Si)

Si: 0.01 to 0.59 %

Schramm et al. [78] TEM 1975 γ = 32 + 2.4 (%Ni) − 1.2 (%Cr) −

1.2 (%Mn)

Mn: 0.001 to 1.56 %

Schramm et al. [78] TEM and

XRD

1975 γ = −53 + 6.2 (%Ni) + 0.7 (%Cr) +

3.2 (%Mn) + 9.3 (%Mo)

Excluding minor elements

Rhodes et al. [75] TEM 1977 γ = 17 + 2.29 (%Ni) − 0.9 (%Cr) Fe-Cr-Ni ternary, Low Cr

(<20% Cr)

Rhodes et al. [75] TEM 1977 γ = −26.6 + 0.73 (%Ni) + 2.26 (%Cr) Fe-Cr-Ni ternary, High Cr

(>20% Cr)

Rhodes et al. [75] TEM 1977 γ = 1.2 + 1.4 (%Ni) + 0.6 (%Cr) +

17.7 (%Mn) − 44.7 (%Si)

Commerical Austenitic al-

loys

Brofman et al. [10] TEM 1978 γ = 16.7 + 2.1 (%Ni) − 0.9 (%Cr) +

26 (%C)

5-20% Ni, 9-20% Cr

Yang et al. [94] XRD 1982 γ = −1 + 2.02 (%Ni) + 321 (%C) ∼18% Cr

Li et al. [48] TEM 2000 γ = 28.87 + 1.64 (%Ni) − 1.1 (%Cr) +

0.21 (%Mn) − 4.45 (%Si)

5-8% Ni, 7-10% Cr

Tian et al. [85] XRD 2009 γ = 17.53 − 1.30 (%Si) Fe-31Mn-(0.25-8.67)Si-

0.77C (at%)

Ojima et al. [63] TEM 2009 γ = 5.53 + 1.4 (%Ni) − 0.16 (%Cr) +

17 (%N)

10-25% Cr, 4-25% Ni

Lee et al. [45] XRD 2012 γ = −5.79 + 39.94 (%C +N) +

3.81 (%C/N)

Fe-18Cr-10Mn alloys

Jeong et al. [28] Neutron

Diffraction

2012 γ = 19 + 8.84 (%Al) Fe-18Mn-xAl-0.6C alloys

Yonezawa et al. [96] TEM 2013 γ = −7.1 + 2.8 (%Ni) + 0.49 (%Cr) +

2.0 (%Mo) − 2.0 (%Si) + 0.75 (%Mn) −

5.7 (%C) − 24 (%N)

Water cooled samples

Yonezawa et al. [96] TEM 2013 γ = −4.8 + 2.8 (%Ni) + 0.44 (%Cr) +

2.0 (%Mo) − 2.0 (%Si) + 0.75 (%Mn) −

2.1 (%C) − 17 (%N)

furnace cooled samples

Yonezawa et al. [96] TEM 2013 γ = −4 + 2.8 (%Ni) + 0.39 (%Cr) +

2.2 (%Mo) − 2.0 (%Si) + 0.75 (%Mn) −

0.47 (%C) − 12 (%N)

furnace cooled and aged

Lehnhoff et al. [47] TEM 2014 γ = k − 2.6 (%Si) + 4.9 (%Al) Fe-15Ni-11Cr-1Mn alloys

Pierce et al. [69] TEM 2014 γ = −133.4 + 6.26 (%Mn) Fe-xMn-2.7Al-2.9Si,

25<Mn<27.5%

Pierce et al. [69] TEM 2014 γ = 779.3 − 67.4 (%Mn) +

1.496
(
%Mn2

) Fe-xMn-2.7Al-2.9Si,

22<Mn<25%

Table 2.1: Linear regression equations for SFE-composition relationship

There are two major problems with the Linear Regression approaches in the

literature. First the amount of data used to create these regression models are

woefully small. In most cases the models have been built from the few experi-
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mental values in the paper, and hence cannot be extrapolated with any degree of

certainty. More importantly there has been ample discussion in the literature about

the composition-SFE relationship being non-linear and also the significant interac-

tion between amount of elements in alloy to affect the SFE. Hence there cannot be

universal regression equations as the effect of one element on SFE depends on the

values of other elements in the alloy system. When looking at all the above equations,

it is evident that all of them have linear relationships in composition-SFE which is

not the true case. These equations are essentially modeled in sections of the whole

composition-SFE space, keeping values of some elements constant.For eg, the effect

of Ni wt% on SFE is very different in all these equations and also SFE is linearly

related to SFE in all cases. As such all these equations cannot be considered as

universal compostion-SFE relationships. In order to do robust statistical modeling,

a much larger dataset is needed. Also the model should try to mimic the true re-

lationship, hence there is a need to consider non-linear higher order and interaction

terms.

2.3 Experimental Calculations of Stacking Fault Energy

Above we discuss the methods for prediction of SFE for untested Fe alloys. How-

ever these predictions have to matched against some true value to gauge their accu-

racy. The true value of SFE is measured by experimental techniques for certain alloy

compositions and then the computational theories leverage these for parameter fitting

or accuracy purposes. Typically it is difficult to compare values from computational

models to experimental observations due to some missing physics in the models,

sample preparation inconsistencies, experimental error and other reasons. However

the task becomes exponentially difficult when the experimental observations them-

selves are very uncertain and inconsistent, not only due to experimental error but
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the inherent technique of observation or calculation. This the biggest problem with

the SFE literature on austenitic steels.

SFE is an intrinsic material property depending on composition and temperature.

Although there have been a very few papers claiming grain size and processing effects,

the evidence is minimal or the effects are small which can be ignored. Despite being a

material property, there is no direct way to measure SFE. For example, the strength

of a material can directly be determined by a tensile test. There can be uncertainty

in the strength due to experimental error but not due to the method of measure-

ment itself. However in case of SFE, the value calculated is indirect. An observable

quantity of the material is theoretically related to the SFE of the material. In this

calculation there is then substitution of material constants, the observed property

and other material parameters. Hence there are multiple sources of uncertainty and

inconsistency. In general there can be error due to observed quantity not matching

the exact theoretical requirement to be used to calculate SFE, using averaged value

of material properties for multiple compositions, experimental error in the observed

quantity and finally the robustness of the underlying theory itself relating and ob-

served quantity to the SFE of material. This all leads to a very complex set of results

for SFE of austenitic steels making it very difficult to use for comparisons and trends

as well as matching against experimental predictions. Different techniques lead to

very different calculations of SFE for similar compositions.

We discuss the two major techniques and methods within them to experimentally

measure SFE in austenitic steels. The understanding of this is important as for our

modeling we eventually use all the experimental data available to do informatics.
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2.3.1 Transmission Electron Microscopy

The oldest and the first used technique for indirectly measuring SFE was using

transmission electron microscopy(TEM). Although this is referred to as the direct

method sometimes, it is essentially indirect as it related geometry of dislocations

and other defects to the SFE of the material. Many different geometries were earlier

related to SFE like extended dislocation nodes, extrinsic-intrinsic stacking fault pairs,

stacking fault tetrahedra and most recently partial dislocation separation. Over the

years extended dislocation nodes became the method of choice and currently due

to availability of better instrumentation and hence resolution, partial dislocation

separation is the most commonly used method. Theoretically it is the most simple

as the separation between the partial dislocations is the width of stacking fault

itself which can be directly related to energy. All other methods are geometrical

workarounds for calculating SFE. Fig. 2.6 shows the 2 most commonly imaged

geometries from a certain composition of steel.

Though the TEM technique is theoretically most reliable experimental method,

specially the partial dislocation separation, the problems arise due to experimental

measurement. For high SFE compositions, the partial dislocations are so close that

their separation distance calculation can have significant % error with only slight

changes in absolute measurement. Moreover one very seldom finds partial dislocation

parallel to each other, in reality there is curvature and kinks in the partial dislocation

arrangement. Thus the measurement of distance becomes confusing. The extended

dislocation node radii measurements have problems with the actual geometry not

allowing for proper radii measurements as circles cannot be exactly drawn. Added

to all this is the statistical scatter. Since with TEM imaging one can only image a few

regions and a few geometries, there is always a question of sample representation by
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these few observations. Microstructural effects and interstitials also affect dislocation

geometries and hence another criticism is that the geometries are not at equilibrium.

Given that SFE depends on temperature and TEM imaging leads to sample heating,

there is also scope of measuring SFE at temperatures higher then intended. Some

of the above listed error sources are quantifiable while others aren’t. Although some

papers report the quantifiable experimental error, many don’t. Thus all reported

values have inherently large scatter that one should be very conscious of before

attempting to use the values.

Figure 2.6: Example geometries of dislocations used to measure SFE experimentally
using TEM a)Extended dislocation nodes b)Partial dislocation separation [68]
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2.3.2 X-Ray Diffraction

TEM is a widely used and established direct method for experimental determi-

nation of SFEs. However it is a tedious method, strictly for low SFE materials

where dislocation pairs can be adequately resolved and with questionable statistical

significance due to very small percentage imaging volume of the total sample vol-

ume. Consequently indirect methods were suggested but the research from Reed and

Schramm [73] is the seminal work in using X Ray diffraction technique for calcula-

tion of SFEs. The authors established a relationship between SFE, stacking fault

probability and rms microstrain which made it possible to calculate SFE rather than

just reporting stacking fault probability as was done earlier. Based on the above

formulation, Schraam and Reed published the first work for calculation of SFE using

X Ray diffraction in commercial austenitic steels [78] and Fe-Ni alloys [79]. The

equation formulated by the authors is [73]:

γ =
K111ω0G(111)a0A

−0.37

π
√

3

ε250111
α

(2.3)

where γ = stacking fault energy

K111ω0 = proportionality constant

G(111) = shear modulus in the (111) fault plane

a0 = unit cell edge dimension

A = Zener elastic anisotropy

ε250111 = microstrain, averaged over 50 in the [111] direction

α = stacking fault probability
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There are many quantities in the equation. Some of them are values calculated

from the X Ray diffraction experiment while some are material constants which can

be taken either from literature or separate experiments/calculations can be done to

find them. A complete process chart for calculation of SFE using Eq.[2.3] is shown in

Fig.2.7. The section ahead is an elaborate literature review on the experimental de-

termination and literature for these quantities. After Schramm and Reed developed

and demonstrated the methodology for X-ray diffraction, researchers adopted the

same for neutron diffraction by establishing calculation of the quantities in Eq.[2.3]

for neutron diffraction profiles.

𝜸 =
𝑲𝟏𝟏𝟏𝝎𝟎𝑨

−𝟎.𝟑𝟕𝑮 𝟏𝟏𝟏 𝒂𝟎

𝝅 𝟑

𝝐𝟓𝟎
𝟐

𝟏𝟏𝟏

𝜶

𝜸 =
𝐺 111 𝑏2 ∗ 𝑏3

2𝜋𝜂

𝐾111𝑎0

3𝑏2

𝜖50
2

111

𝛼

𝛾 =
𝐺 111 𝑏2 ∗ 𝑏3

2𝜋𝜂

1

𝑤

𝛼 =
𝜌𝑤𝑎0

3
, 𝜌 =

𝐾111 𝜖50
2

111

𝑏2

• 𝛼 = stacking fault probability

• 𝜌 = dislocation density 

• 𝑎0 = unit cell edge dimension

• 𝜖50
2

111 = rms microstrain in [111] direction

• 𝐾111 = constant

𝑤 =
3𝑏2

𝐾111𝑎0

𝛼

𝜖50
2

111

• 𝛾 = stacking fault energy

• 𝐺(111) = shear modulus in the (111) fault plane

• 𝑏2, 𝑏3 = Burgers vector of partial dislocations

• w = partial dislocation separation

• 𝜂 = 1 for screw dislocation, 1-𝜈 for edge 

dislocation, 𝜈 = Poisson’s ratio

FINAL EQUATION

𝜖50
2

111 = rms microstrain

averaged over 50Å in the 

[111] direction

Materials Constants : estimated, taken from
literature or computed
Experimental observations and calculations

Δ2𝜃 = 2𝜃200 − 2𝜃111 𝐶𝑊 − 2𝜃200 − 2𝜃111 𝐴𝑁𝑁

𝜸 =
𝐺 111 𝑏2 ∗ 𝑏3

2𝜋𝜂

1

𝑤
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• Δ2𝜃 = Difference in separation between (111) 

and (200) peak positions of cold-worked (CW) 

and annealed (ANN) specimens

• 𝜶 = stacking fault probability

𝐺(111) = 
1

3
𝑐44 + 𝑐11 − 𝑐12

𝐴 = 2𝑐44/(𝑐11 − 𝑐12)

• 𝐺(111) = shear modulus in the (111) fault plane

• 𝑐𝑖𝑗 = the elastic stiffness coefficients

• 𝐴 = Zener anisotropy 

𝜶

𝐾111𝑤0 = 6.6 

Determined by Schramm & Reed 

using different elements

Figure 2.7: Complete procedure for calculation of SFE using X-ray or neutron diffrac-
tion in austenitic steels
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2.3.2.1 Stacking Fault Probability

Stacking faults occur on the (111) close-packed planes in the fcc crystal and cause

shift in position of diffraction lines. Stacking fault probability can be calculated using

the angular displacements(shifts) of the of the diffraction peaks according to Warren’s

method of peak shift analysis.[90]. Comparison between annealed and deformed

specimens is typically used to measure the peak shift and get corresponding α. As

explained by Reed and Schramm[78], it is best to obtain the profile angular separation

of (111) and (200) rather than absolute 2θ positions to avoid diffractometer errors

and achieve better sensitivity. Thus the widely used [94, 44, 86, 84, 85, 30, 57, 29]

equation to calculate stacking fault probability as given in [78]

∆2θ = (2θ200 − 2θ111)CW − (2θ200 − 2θ111)ANN

= −45
√

3

π2

(
tan θ200 +

1

2
tan θ111

) (2.4)

This equation is derived for (111) and (200) reflections from the general equation

described by Warren [90]

∆2θ =
90
√

3α tan θ

π2h0
2 (u+ b)

∑
b

±L0 (2.5)

where
∑

b±L0/h0
2 (u+ b) is a constant specific to each hkl reflection. For austen-

ite 111, 200, 220, 311 and 222 reflections, the values are 1/4, -1/2, 1/4, -1/11 and

-1/8 respectively[90]. Using the above general form some researchers have calculated

α using a different set of reflections[33] or taken averages of α for different set of

reflections[46, 45]. To do away with the need of testing a stacking fault free annealed

sample for comparison, Talonen et al.[83] described a novel method which combined
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Warren’s treatment and Baragg’s law. By assuming no long range residual stresses

in powder sample, the peak positions are affected by lattice spacing and stacking

faults which leads to following equation with two unknown parameters (interplanar

spacing λ and stacking fault probability α)

2θhkl = 2arcsin

(
λ

2dhkl

)
+

90
√

3α tan θhkl

π2h0
2 (u+ b)

∑
b

±L0 (2.6)

Hence Eq.[4] can be used to obtain as many independent linear equations corre-

sponding to each representative hkl austenite reflection. These equations are sub-

sequently solved using linear regression method for α. Talonen et al.[83] and other

researchers[5, 54] have described the use of above method for calculation of stacking

fault probability in deformed sample eliminating the need of comparison with an

annealed sample.

2.3.2.2 RMS Microstrain

X Ray or Neutron Diffraction profile broadening of plastically deformed samples

can be caused due to various factors, but primarily due to powder size and strain,

hence the profiles can be analyzed for evaluating these 2 components. Various dif-

ferent approaches and software packages exist for the calculation of rms microstrain

from the broadening of diffraction profiles. Schramm and Reed[73, 78, 79] in their

seminal papers adopted the Warren-Averbach technique [89] in which the value of

rms microstrain ε2Lhkl can be expressed as

ε2Lhkl =
[lnAL (h1k1l1)− lnAL (h2k2l2)] a

2
0

2π2L2 [(h22 + k22 + l22)− (h21 + k21 + l21)]
(2.7)

where AL (h1k1l1) and AL (h2k2l2) are the coefficients of the cosine term with first

power in the Fourier series expression of diffraction profiles, L a length normal to

26



reflecting planes, a0 is the lattice parameter. Typically (h1k1l1) and (h2k2l2) are

(111) and (222) planes while as a matter of practice ε2Lhkl is averaged over 50Å in the

[111] direction. Instrumental broadening can be eliminated by comparing the profiles

for annealed and deformed samples for the same material. In addition to Schramm

and Reed many other researchers[94, 84, 85] have used the Warren-Averbach method

for calculating rms microstrain. Another widely used [97, 44, 30, 57, 29] method is

the Williamson-Hall plot [92] for XRD profiles. Citing probability of errors due to

neglecting dislocation density and arrangement effects, some researchers have used a

modified Williamson equation along with a modified Warren approach to calculate

rms microstrain [5, 54].
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3. METHODOLOGY

This work showcases a complete Materials Informatics workflow to solve prob-

lems in materials science. There are three integral parts: (i) Data collection and data

curation of all experimental calculations of SFE from literature (ii) Using data explo-

ration, visualization to analyze and machine learning algorithms to model the data

(iii) Extracting knowledge from the analysis. This chapter will focus on the problem

setup, and discuss the first two parts of the informatics workflow methodology.

3.1 Prediction Problem Setup and Uniqueness of Approach

The final objective of this work is to predict SFE for any given Austenitic Steel

composition based on just the chemical composition. One approach is to predict the

SFE value itself for a given composition. All theoretical physics based computational

models essentially do the same, albeit only for limited composition space - upto

4 or 5 different components. Linear Regression techniques applied to SFE data

allow for many components, however problems with work in this direction until now

have been discussed earlier. Given the high uncertainty in SFE determination, both

systemic and experimental, we thought of an approach which would suffice practical

needs of SFE determination and be more robust to underlying pattern of data, the

composition-SFE relationship.

SFE value is of prime importance in alloy design. Since the SFE value of

Austenitic steels drives different deformation mechanisms, for designing a steel with

certain grain structure and amenable to required deformation in process-use we need

to know the SFE for unknown compositions. However, we certainly do not need the

”exact” value or even precise values.

Based on this physical material behavior information, we can construct three
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”classes” of SFE or three regimes and can bin all our SFE numerical data to con-

vert it to categorical data. There are two major advantages of this approach: (i)

creating classes or regimes helps engulf the systemic and experimental uncertainty

associated with experimental SFE calculations. Now we can say that although the

SFE calculation may be uncertain numerically with some scatter, it most certainly

belongs to a certain regime (ii) the statistical models/machine learning algorithms

for modeling such a prediction problem are inherently. We’ll discuss more on this

in the subsequent sections. As described, once we construct this dataset as a set of

compositions and SFE regimes, our prediction problem is essentially a ’classification’

task as it is known in machine learning and data mining fields. Given a composition

we now want to classify whether the Austenitic Steel belongs to Low or Medium or

High SFE regime. This is practically applicable to an alloy design task where compo-

sitions can be checked using this classifier and predicted how they would potentially

deform which is what SFE is needed for.

3.2 Part I : Data Capture and Curation

A very extensive literature survey has been done to capture all the various exper-

iments done on different Fe alloy systems to build the best possible training dataset

for the prediction algorithms. The authors believe that this is the most exhaus-

tive dataset for experimental SFE calculations available to the community yet. The

process of data collection was conceived in a manner so that not only the data is

captured but also any description that adds information to the data is captured too.

Essentially then, metadata regarding the experimental technique, process and condi-

tions which can potentially inform more about the data itself were added too. These

data descriptors can help making selections for the training data set, understand

patterns on which experimental technique has larger uncertainties etc. and hence
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are very useful information.

The process of data collection is the first step but an even important step is data

curation. Data curation is the process which essentially enables reliable retrieval and

querying of data for future research and reuse. To make our data collection efforts

usable and available for the community, we decided to use Materials Data Curation

System(MDCS) which is an undertaking by NIST to promote efforts in MGI. Hence

we devised a schema for the passing the captured data to a repository in a systematic

manner such that the data is query-able as well as re-usable for the community at

large. We will release this experimental SFE data for steels repository in MDCS

soon after the publication.

3.2.1 Data

We have discussed how SFE is a function of composition and temperature and

these are the predictor variables or features which will help in predicting SFE.

Though there has been some research on dependence of SFE on grain size, there

is very little evidence. Also most experimental research do not report this parameter

for the alloys when calculating SFE. Thus we have predominantly captured compo-

sition, temperature and SFE. All possible elements that have been used in alloying

in austenitic steel system have been considered. We have also discussed various

experimental techniques for SFE calculation and underlying reasons on how these

calculations can be uncertain. Hence capturing uncertainty in SFE data is crucial

and we have reported the spread in SFE values wherever available.

3.2.2 Metadata

In addition to the above mentioned data, descriptors that add meaning and con-

text to the data are equally important. These descriptors might not directly go into

the calculations or algorithms for prediction, but are essential for physical relations.
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As discussed earlier, there is considerable work in the literature that establishes SFE

as a function of processing due to alloying effects. Similarly there is available critique

in the literature on the accuracy and applicability of different SFE measurement tech-

niques as well as specific bodies of work. We can take all of these into account to

make selections on the complete SFE dataset to choose subsets which we think are

the best for a certain problem. However to be able to make these subsets, we need

the descriptors of the data - which is essentially the metadata. For the experimen-

tal SFE dataset the metadata is broadly bibliography, experimental technique and

processing. The bibliography maps observations to particular journal papers which

enables us to subset certain observations based on the community’s confidence and

critique of certain papers. Similarly experimental technique helps choose data only

from certain techniques which might be established to be more accurate while pro-

cessing helps identify differences in SFE measurements based on different process

routes.

3.2.3 SFE Dataset

We have a dataset of SFE calculations on various compositions at different tem-

perature conditions processed by different processing routes. This complete dataset

has 500 odd points. Table.3.1 is a list of all the papers in the SFE literature from

which experimental SFE data was recorded. This to the authors knowledge is the

most comprehensive SFE dataset and is exhaustive as far as experimental research

in SFE is concerned.

31



Reference Year Technique

Whelan et al. [91] 1959 TEM

Swann et al. [82], 1963 TEM

Dulieu et al. 1964 TEM

Douglas et al. [17] 1964 TEM

Silcock et al. 1966 TEM

Clement et al. 1967 TEM

Fawley et al. 1968 TEM

Thomas et al. 1969 TEM

Murr et al. [60] 1969 TEM

Latanision et al. [40] 1969 TEM

Gallagher et al. [21] 1970 TEM

Lecroisey et al. [43] 1970 TEM

Latanision et al. [41] 1971 TEM

Breedis et al. [9] 1971 TEM

Lecroisey et al. [42] 1972 TEM

Butakova et al. 1973 XRD

Abrassart et al. [2] 1973 TEM

Schramm et al. [78] 1975 XRD

Volosevich et al. 1976 TEM

Strife et al. [81] 1977 TEM

Remy et al. [74] 1977 TEM

Rhodes et al. [75] 1977 XRD

Brofman et al. [10] 1978 Literature Survey

Table 3.1: List of all the papers with experimental SFE calculations used to create
data repository
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Reference Year Technique

Bampton et al. [4] 1978 TEM

Stoltz et al. [80] 1980 TEM

Yang et al. [94] 1982 XRD

Oh et al. [62] 1995 TEM

Reick et al. 1996 TEM

Pontini et al. [70] 1997 TEM

Gavriljuk et al. [24] 1998 TEM

Li et al. [49] 1999 TEM

Gavriljuk et al. [23] 1999 TEM

Kireeva et al. [38] 2002 TEM

Petrov et al. [67] 2003 TEM

Gavriljuk et al. [22] 2006 TEM

Talonen et al. [83] 2007 XRD

Brackeet al. [7] 2007 TEM

Ojima et al. [63] 2009 TEM

Tian et al. [85] 2009 XRD

Tian et al. [85] 2009 XRD

Li et al. [50] 2009 TEM

Lee et al. [46] 2010 Neutron Diffraction

Idrissi et al. [27] 2010 TEM

Kim et al. [36] 2011 TEM

Kim et al. [35] 2011 TEM

Kim et al. 2011 TEM

Table 3.1 Continued

33



Reference Year Technique

Mujica et al. 2011 TEM

Behjati et al. [6] 2011 TEM

Jin et al. [30] 2012 XRD

Jeong et al. [28] 2012 Neutron Diffraction

Pierce et al. [68] 2012 TEM

Unfried-Silgado et al. [86] 2012 XRD

Kang et al. [33] 2012 Neutron Diffraction

Lee et al. [45] 2012 Neutron Diffraction

Yonezawa et al. 2013 TEM

Jeong et al. [29] 2013 XRD

Pierce et al. [69] 2014 TEM

Lehnhoff et al. [47] 2014 TEM

Rafaja et al. [71] 2014 XRD

Lee et al. [44] 2014 XRD

Lee et al. [44] 2014 Neutron Diffraction

Lee et al. [44] 2014 TEM

Hickel et al. [25] 2014 TEM

Barman et al. [5] 2014 XRD

Moallemi et al. [57] 2015 XRD

Kumar et al. [39] 2015 XRD

Mahato et al. [54] 2015 XRD

Kim et al. [37] 2016 Neutron Diffraction

Table 3.1 Continued
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As evident from the table, a large number of papers have been mined to collect

this data and build an exhaustive dataset. One merit of this work is the sheer

amount of data collected for this task compared to earlier regression approaches in

SFE prediction which had data from a maximum of 5 research papers, hence making

the data mining task unreliable.

3.3 Part II : Data Analysis and Modeling Techniques

In this section we briefly discuss the Machine Learning(ML) algorithms used in

this work on the SFE Dataset. All ML algos work with an input dataset which

has observations across various predictors or features. This dataset may or may

not have a target value for observations and depending on that an ML algorithm

can be classified as supervised or un-supervised. The objective and dataset at hand

leads to selection of which ML algorithm one uses with their dataset. Different ML

algorithms can be used at different points in a data mining workflow starting from (i)

dimensionality reduction which can be useful in working with very high-dimensional

data (large number of predictors) and hence capturing only the important ones to

reduce dataset size or where dimensionality of data makes it impossible to completely

visualize it in three dimensions and hence we reduce dimensions for the purpose of

visualization (ii) prediction which depends on our target output type - nominal or

categorical. Regression and classification algorithms are used to predict target output

based off the predictors/features in the dataset. We use the open source ML Library

Sci-Kit Learn [65] in this work.

3.3.1 Dimesionality Reduction and Visualization

The SFE Dataset has 9 predictors - the weight percentage of different alloying

elements. We cannot visualize the predictors and SFE value, an 10-dimensional data

at once. Hence we have to rely on dimensionality reduction algorithms to reduce
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the 10-d data to 2-d or 3-d such that minimal information is lost and we can search

for insights after visualizing the data. There can be various approaches to this task

and we use 3 different ones to visualize the SFE data. It is important to note that

these new dimensions in which we visualize our data might not have any physical

meaning or significance but nevertheless help us visualize underlying trends and

patterns in the data - if any which would be impossible to visualize in the higher

dimensions. The three techniques we use are (i) Principal Component Analysis (ii)

Multidimenstional Scaling (iii) Locally Linear Embedding. The common idea in

all dimensionality reduction algorithms is based on distance between data points in

euclidean space which statistically can be thought of as covariance between points

which is tried to be preserved when moving from the high-dimensional mapping to

a lower-dimensional representation.

3.3.2 Classification

As explained earlier, our problem definition is prediction of SFE regime or defor-

mation mechanism given a composition of austenitic steel. Hence our target output

are classes which are categorical. This problem is essentially a classification task

which is a very standard problem in the field of machine learning. It has been dis-

cussed in the SFE literature that the compositional dependence in elements space is

inherently non-linear. That was one of the main drawbacks of linear regression ap-

proaches. Although regression can be used to model non-linear higher order relation-

ships between predictor variables and output class, classification algorithms by virtue

of there design are robust to non-linearities and are able to learn faster compared

to regression approaches. The three techniques we used are: (i) Random Forests

(ii) Support Vector Machines (iii) Artificial Neural Networks The performance of

classification algorithms can be measured in different ways, the most common being
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using the algorithm on a hold-out test set. The hold-out test set is a subset of the

complete data collected which is not used for training or building the model. Hence

to the model, it is unseen data. Predicting outputs on inputs from this test set and

matching them against actual output is a common way of adjudging performance.
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4. RESULTS

Based on the informatics workflow discussed earlier, we delved into the SFE data

to look for insights, patterns and then eventually build a classification model. The

materials knowledge apriori known to us from literature can be used to support the

data analysis, empirical generalization about alloying behavior can be backed by

data and vice versa the inconsistencies in the literature can also be pointed other-

wise. In the methodology section we explained how we have built a dataset with all

experimental SFE data in the literature. The dataset has data for variation of SFE

with different alloying additions, however for some alloying elements the data is very

less. This makes it impossible to study trends and model SFE for such small sample

set of alloying additions.Table 4.1 lists the number of observations in the dataset

which have more than 0.05 wt% alloying addition and the highlighted elements have

been chosen for the analysis. Additionally only data points for which Fe is the major

alloying element have been retained.

Element Number of observation

Ni 300

Cr 332

Mn 217

Mo 133

Al 27

Si 120

C 98

Table 4.1: Number of data points in SFE literature for which given alloying element
has more than 0.05 wt%
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Element Number of observation

N 85

Cu 6

Co 3

Nb 2

Ti 0

V 0

Hf 0

P 7

S 1

Table 4.1 Continued

Also as discussed earlier, the way we are treating the outputs is by considering

SFE regimes or classes rather than the numerical values itself. Thus the SFE values

were converted to SFE regimes based on the most accepted values in literature : SFE

<20 mJ/m2 = Class 1 or Low, 20 mJ/m2 <SFE <45 mJ/m2 = Class2 or Medium

and SFE >45 mJ/m2 = Class 3 or High. A consistent color coding has been followed

throughout the results: Low is Blue, Medium is Red and High is Green.

4.1 Data Exploration

Visualizing data leads to many simple yet powerful observations. Just plotting

the data along various dimensions and exploring what you see is a very helpful tool

in data analysis. There have been many empirical observations and propositions

in SFE literature which material scientists use as rules of thumb in alloy design in

absence of concrete composition-SFE relationship. These can be useful, however the

39



generalizations need to be done over a lot of observations. Since we have at our

disposal an exhaustive dataset of SFE, we queried and explored the data for visual

trends which can be generalized or validate existing ones. We looked at scatterplot

matrices where we fixed x-axes as wt % of a particular element and varied other

alloying elements on y-axes in different matrices of the scatterplot. Since these are

2-d plots, there is no way to represent SFE numerically with 2 axes taken for wt

%. We represent this SFE value dimension by color coding points according to SFE

regimes (pointed out in figure labels). Hence while looking at the plots, one should be

eying for change in colors in regions which would correspond to certain compositional

range leading to a particular SFE regime. We also visualize scatterplots with explicit

SFE value vs wt % of certain element to see only the effect of that particular element.

Here the color is a redundant value since SFE value is the y-axes, however it helps

eyeballing fraction of data in a regime for a particular element.The following is the

data exploration analysis with SFE dataset. The salient feature about all the plots

is that there really aren’t standout patterns and in general the SFE data is very

complex with many interplaying factors. Most scatterplot matrices have a mixture

of SFE regimes all over the compositions and not much can be said about rules

that can explain the data. when looking at scatter plots of SFE value vs wt %

alloying element, a given wt % of alloying element exhibits a large range of SFE

values practically spanning the whole low-high regime. One can try to look at mean

SFE value and look for trends, but that isn’t a good approach given this scatter is

due to interplay of other elements and averaging will filter that out which beats the

purpose. Nevertheless certain elements do show some pattern even with the scatter

intact. We look at individual elements next to make specific comments.
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Figure 4.1: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of Cr and other alloying elements (b)Variation of absolute SFE values
with weight percent Cr
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Figure 4.2: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of Ni and other alloying elements (b)Variation of absolute SFE values
with weight percent Ni
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Figure 4.3: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of Mn and other alloying elements (b)Variation of absolute SFE values
with weight percent Mn
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Figure 4.4: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of Al and other alloying elements (b)Variation of absolute SFE values
with weight percent Al
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Figure 4.5: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of Mo and other alloying elements (b)Variation of absolute SFE values
with weight percent Mo
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Figure 4.6: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of Si and other alloying elements (b)Variation of absolute SFE values
with weight percent Si
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Figure 4.7: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of C and other alloying elements (b)Variation of absolute SFE values
with weight percent C
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Figure 4.8: (a)SFE data scattermatrix with variation of SFE regimes plotted against
weight percent of N and other alloying elements (b)Variation of absolute SFE values
with weight percent N
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In Fig 4.1 we examine effect of Cr. From Fig 4.1a we can see no outstanding

pattern of SFE regime based on interaction of Cr and any other elements. All

regimes are mixed and based on wt % of Cr and another element, nothing can be

predicted about the possible SFE regime. Examining Fig 4.1b we can see the there is

absolutely no relation between SFE and only wt % Cr. For a given Cr alloying, the

SFE varies from very low values to very high, thus showing no apparent trend with

wt %. Examining Ni, in Fig 4.2a we do see more green points at higher wt % Ni.

From Fig 4.2b we see although there is a scatter of SFE values, there is still a clear

increasing trend. This is a good validation of the fact in literature that Ni increase

SFE. For Mn, from Fig 4.3 again not much can be said about interactions or trends.

However it so seems that adding higher amounts of Mn will have very high chances

of SFE being in the low and medium regimes as seen by the major absence of high

SFE regimes with increasing Mn content except a couple of compositions. In case

of Al, the number of observations is very less to make generalizations. From Fig 4.4

we can see there exists no discernible pattern. However in al tested compositions,

only 2 observations have led to high SFE regimes in alloys where Al is added. Thus

it seems that adding small amounts of Al ( ≤ 4 wt%) doesn’t bump up the SFE too

high. Like Cr, looking into Fig 4.5 for Mo does not offer any information. Si is a

case where like Ni, a pattern can be deduced. In Fig 4.6b, there is a decreasing SFE

trend with increasing Cr even after taking the scatter into account. Fig 4.6a shows

more and more low SFE regime towards higher Si content than lower Si contents,

thus Si may help reduce SFE if that is the goal. C and N offer not many insights as

seen if Figs 4.7 and 4.8.

To summarize, by visual exploration some observations clearly stand out about

the SFE dataset that can be related to existing discussion in the literature regarding

SFE-composition relationships.
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(i) As seen in the plots, the pattern of points going from blue to green (representing

increase in SFE) is not monotonic across any dimension and infact highly mixed.

Hence this clearly brings out the dependence of composition-SFE relationship of any

element on other elements in the system verifying the first-principles calculations

regarding non-linear dependencies.

(ii) These plots also clearly thwarts all linear regression equations in the literature

listed out earlier as clearly there is no linear relationship between any element and

SFE. As emphasized above, there is strong interactions between elements’ effects on

SFE.

(iii) Not many rules of thumb, generalizations could be processed which might aid in

composition tinkering for alloy design. Infact given the non-linearities, it wouldn’t

be advisable to look for simple rules in composition-SFE relationships.

4.2 Data Visualization

As shown above, visualization can be simple yet powerful technique to look for

patterns and know more about the dataset as well underlying relations. However in

above data exploration tasks, we were only able to visualize only part of the features

of the data at once. Thus we were losing crucial insights about the true nature of

SFE dependence on composition. If we could visualize all changing parameters at

once and SFE dependence on these parameters, we would essentially know every-

thing. However when the data is higher dimensional than what our viewing permits,

complete data visualization becomes increasingly difficult. Here we have to take help

of ML algorithms discussed earlier in the thesis. The idea in this section is to com-

press the 9 dimensional composition space to 2 or 3 dimensions with minimal loss

of actual information. We look at the results of three algorithms explained in the

methodology.
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4.2.1 Principal Component Analysis

As discussed earlier, PCA is a linear dimensionality reduction algorithm. We

performed PCA on the SFE dataset and retained the first three components to

visualize it in 3 dimensions. Fig 4.9 is the plot of first 3 components of PCA on SFE

data.

Figure 4.9: Principal component analysis of SFE dataset

The algorithm compresses the 9 dimensional data to 3 dimensional data with

80.5% retention of variance which can be intuitively imagined as the measure of

information recovered in this compression. There are no clear regions or clusters

of a particular SFE class. To aid in visualization, we take projections of this 3
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components to visualize in 2 dimensions. In Fig 4.10 we plot 1st PCA component

against the 2nd and 1st against the 3rd. Hence one is the top view and another is the

front view of the 3 dimensional plot. Although there still aren’t any clear regions

corresponding to a specific SFE class. we can use parts of information hidden in

these plots to help in our data analysis and modeling.

Figure 4.10: Using patterns in PCA to detect unreliable, erroneous and outlier ob-
servations

After careful observation we can draw linear boundaries in the projections that

has knowledge. For both plots one can see that for PC1 >0.1 approximately, there

are almost no observations which fall in low SFE regime. Similarly, for PC <-0.2

approximately, there are almost no observations that fall in high SFE regime. This

is a pattern, very simple rules that it in itself can act as a classification rule. If
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a new point falls in one one these regions of the plot after transformation, we can

say with some certainty what SFE regime it cannot exhibit. However this is not

complete information neither the degree of certainty can be quantitatively calculated.

Nevertheless we can leverage this pattern to do other analysis of the data. For

instance we can look at the very few points which do not follow our proposed pattern

and examine the reasoning in the data. Looking for low SFE or blue points in the

region PC1 >0.1, we find 3 instances labeled point 1 to 3 in Fig 4.10. Point 1 is

a data point from the author Ojima[63]. When we look at compositions very close

to this value, we find that there are many observations for SFE regime medium.

This is evidence of an unreliable data point in literature to which we can attribute

low confidence or choose not to include it while modeling the data. Point 2 is an

interesting case. We checked the data for this observation and found out that we

had erroneously entered the wrong SFE value while building the dataset from this

paper. This point actually corresponds to a point which has an SFE value in the

medium regime. Point 3 is an outlier from the general dataset. This has been taken

from the author Kireeva[38]. In this paper very small amount of changes in N have

been shown to cause very large changes in SFE. Thus this does not fit the proposed

pattern, but the accuracy of this calculation cannot be commented on as there are

no benchmark observations for comparison. Similarly points which do not follow the

other proposed pattern have been labeled from 4 to 6 in Fig 4.10. Point 4 is from

the paper by Oh [62]. It’s value is on the boundary of changing from medium regime

to high regime and since the error is not reported, this pattern is a good reason for

considering it in medium regime. Point 5 is from Hickel [25]. This paper studies

variation in SFE from processing and temperature. For the same composition, the

authors report quite a difference in SFE for very close temperature. And again the

SFE value is on the boundary, thus giving a good reason to leverage the pattern and

53



assign medium regime to this observation. Point 6 is a data observation from author

Tian [84]. This is similar to point 3 as the author shows really high jump in SFE

value from relatively small increase in Al content. Thus there is a high non-linear

effect that PCA cannot accomodate. However in general both proposed patterns

follow the data excellently can be used to remove and edit observations as discussed

above.

4.2.2 Multidimensional Scaling

Visualizing the SFE dataset after applying multidimensional scaling (MDS) al-

gorithm to reduce dimensions, we can observe the lower dimensional mapping in

Fig4.11. The idea was to use a non-linear dimensionality reduction algorithm which

potentially might bring out any structure, pattern in the data which can provide

information about the composition-SFE relationship. However by looking at Fig4.11

in both dimensions, we see no good pattern or clusters of single SFE regime which

can aid in classification.

Figure 4.11: Multidimensional Scaling to map SFE data to 3 dimensions(left) and 2
dimensions(right)
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Next we try to use this visualization for other analysis as performed with the

PCA. Fig4.12 represents the projections of 3 dimensional MDS (Fig4.11), the left

plot being the top view and right plot being the front view. Like we did for the

PCA projections, here we can draw boundaries in the 2 plots and propose patterns.

Quite similar to the PCA patterns, here the region to the right of the boundary

is representing space where we should not find low SFE regime compositions and

the region to the left of the boundary is representing space where we should not

find high SFE regime compositions. When we investigate further outliers to these

proposed patterns, we find the exact same data points as in the PCA analysis. Hence

our proposed patterns from the data visualizations stand good and can be used as

explained in detail in PCA section.

Figure 4.12: Top view (left) and front view (right) of the MDS on SFE data in 3
dimensions
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4.2.3 Locally Linear Embedding

We use another nonlinear dimensionality reduction algorithm in the pursuit to

find lower dimensional representation which might inform us more about the under-

lying patterns in the SFE dataset. As mentioned earlier, Locally Linear Embedding

algorithm (LLE) tries to search for linear sections in the higher dimensional space

and then cuts and pastes those sections in the 2 dimensional space. Fig4.13 shows

the application of LLE on SFE dataset. We can observe that in the LLE repre-

sentation the complete SFE data lies on a shape very close to a V or a Y with a

very small vertical base. The most interesting feature of this representation is that

each of the arms of this Y has a physical SFE regime correlation. This is precisely

what LLE is used for in pattern recognition. As discussed earlier, in a very ideal

case different classes separate out on the LLE representation enabling classification

from this representation. In the LLE representation of SFE data in Fig4.13 , we

can see the left arm (highlighted in yellow) has very less green points or high SFE

compositions while the right arm (highlighted in orange) has almost negligible blue

points or low SFE compositions. In the earlier 2 visualizations using PCA and MDS

we were able to propose similar patterns. However there were no clear boundaries in

those representations where we can assert that the pattern exists. LLE helps bring

out the pattern explicitly with compositions along the two arms mapped to absence

of a particular regime.
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Figure 4.13: Locally Linear Embedding representation of the SFE dataset in two
dimensions closely resembling a Y . Left arm highlighted in yellow and right arm
highlighted in orange.

Since the classes do not separate out or cluster in regions on the LLE repre-

sentation, we cannot use this visualization to extract all knowledge about the SFE

dependence on composition. However we can again look for exceptions to our pro-

posed pattern visible in the plot to learn more about the data itself. Doing an

analysis similar to one discussed above in the PCA section, we find Point 1 and 2 are

exceptions to the pattern for the right arm (highlighted in orange). On examining

point 1 is the same data point as point 3 discussed in PCA section and point 2 is

the same data point as point 1 in PCA section. The reasonings for both these points

makes the pattern completely reliable. Now examining exceptions to the pattern on
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the left arm (highlighted in yellow), consider points 3, 5 and 7. These are the same

as points 6, 4 and 5 from our discussion in PCA section. The reasoning for these

exceptions and knowledge gained from them have been explained above. Next we

look at the large cluster of points named C+N. All these points are observations

from papers by Gavriljuk and Petrov [24, 67, 23, 22]. The common link among them

is that these are observations to measure effect of C and N alloying in steels and as

discussed earlier as well, the effect of C and N seems to be very significant. According

to experiments, small additions lead to large changes. Hence although two compo-

sitions can be really close in the LLE embedding due to only a small difference in C

or N alloying, they might have very different SFE regimes. Hence all observations

measuring effects of interstitials like C and N will most certainly not follow mappings

from dimensionality reduction algorithms as is the case here. Looking at remaining

exceptions on the left arm, point 4 is an observation from Stoltz [80]. We find that

this is an unreliable observation with the calculated SFE quite different from the

ones with very similar composition. Given that our proposed pattern seems to be

accurate, we can change the regime for this from high to medium SFE. Similarly

point 6 is an observation from Schramm [78] and comparing similar compositions,

we recommend to change its SFE regime as well.

To summarize, we used various dimensionality reduction algorithms to view the

complete SFE data in 2 or 3 dimensions by doing certain transformations. Important

learnings from the task are :

(i)We observe the classes are highly mixed in the composition space and there are

no regions or cluster for single classes.Had there been any clusters forming or clear

boundaries forming, boundaries could have been derived as to what compositions

relates to what SFE class. This reinforces the underlying non-linearity and complex-

ity in the data and also draws merit to the use of classification algorithms to link
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composition and SFE.

(ii) Nevertheless we could identify 2 patterns in the PCA and MDS representations,

regions of absence of compositions with high and low SFE regime. This pattern was

identified more concretely with well defined boundary in the LLE representation with

the SFE data lying along a Y like shape and each arm corresponding to non-existence

of compositions with a certain regime.

(iii) Exceptions to the above proposed pattern were examined. They were either

unreliable observations in the literature or outliers. Unreliable observations were

recommended to be modified which would help in increasing reliability of data mod-

els while outliers were explained as the effects of C and N alloying. Thus this is an

excellent showcase of what visual representations can be leveraged for and at the

same time their limitations.

4.3 Classification

With the complexity in composition-SFE relationship discussed extensively upto

this point, we applied powerful classification algorithms to uncover or ”learn” this

underlying relationship. Although these classification models are not as intuitively

explainable as linear regression which means one cannot write down a final expression

relating composition to SFE, it is the price to attain higher accuracy than any existing

models. These algorithms can essentially be thus treated as black boxes which when

given an input composition, will output the SFE regime or class that the composition

belongs to.

The procedure to fit a model to given data was discussed in detail in methodology.

We split the SFE dataset randomly into two sets - training set and hold-out test set.

We chose a train-test split approach as there has been previous research reported by

Braga-Neto and Dougherty [8] which demonstrates that cross-validation method for
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estimating performance metrics of classification algorithms can lead to errors in small

sample cases. Although the dataset in our case is not as small as what the above

paper considers as cases, this method is more robust than cross-validation for small

samples. The downside is that we lose some data and hence important information

in model training. The proportion decided was 4:1, i.e. 4 parts of data for training

set and 1 part for hold-out test set which was split randomly. As mentioned we have

applied k-fold cross-validation on our training to train the hyper-parameters of our

model and choose the best parameters. The hold-out test set was finally used to

compare this best-parametrized models from different algorithms. The comparison

metric traditionally used for multi-class classification is accuracy. We report other

metrics like precision, recall and false positive rate and then explain why we chose

false positive rate as the performance criteria. In addition to this traditional metric

we have used another custom metric taking into account the nature of our data and

needs of the problem which we discuss later.

The description and results using that is discussed in the next section. Below are

the results from the three algorithms we implemented to model SFE data. The golden

rule of machine learning, the Occam’s razor has been used wherever a parsimonious

model had equal or comparable performance to a more complex model.

4.3.1 Support Vector Machines

Support Vector Machines(SVM) are very rich classifiers because of the various

types of kernels which can be used to fit the data. The most commonly used ker-

nels which have been proven to give good results are linear, polynomial and radial

basis function(rbf) or gaussian. In addition to the kernel, there are two crucial hy-

perparameters to select in SVMs, C and gamma. C is a parameter that acts as a

regularizing coefficient balancing misclassifications and simplicity of decision surface.

60



Hence it is the term which controls overfitting in SVMs. gamma is a parameter whose

purpose is the same, though it is imagined as the degree of influence of one data point

on another. The interplay between these 2 parameters hugely affects SVM perfor-

mance. For choosing the best parameters and kernel function we did a grid search

over combination of parameters and function. The function we chose were the same

as listed above and for the parameters we did a logarithmic sweep. K-fold cross-

validation accuracy score was the metric for choosing the best parameters. Since

the influence of parameters in SVM can vary a lot and the grid has many options,

we did cross-validation with large K=30. Since our dataset is small and sparsely

sampled in composition space, there can be large variations in training data with a

large K. Hence to ensure consistency in training and then compare parameters, we

chose such a large K. K-fold cross-validation is known to underestimate accuracy or

overestimate errors, but we only use that to choose best parameters. The metric to

compare different algorithms is based on the performance of the best-parametrized

model on the hold-out or validation set. Fig 4.14 shows the confusion matrix on the

validation set from the best SVM model, along with key metrics.
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Figure 4.14: Confusion matrix of performance of SVM on validation set

4.3.2 Artifical Neural Networks

Artificial Neural Networks(ANN) are very powerful because of the sheer com-

putational complexity. Given enough parameters, neural networks can learn almost

any function irrespective of how non-linear it is. However this can act as a problem

since neural networks can easily overfit to the training data leading to poor general-

ization. Hence sometimes lower models are preferred at the cost of accuracy. ANNs

can have many hidden layers and each layer can have many units. The number of

layers and units are essentially hyper parameters to the ANN model which decide

shape of decision boundary in higher dimension. The activation function in the

units of the hidden layer can also be changed but we used a sigmoid function which

has been demonstrated to have good performance. There are other parameters like

learning rate and number of iterations for searching minima of cost function, but

they typically do not affect performance of ANN on unseen data. However they are

essential to training performance and minima search. Given the size of our data, we

implemented only a 1 hidden layer ANN. The number of units in this hidden layer
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and number of iterations were the hyper parameters which we searched for using

grid search. Again accuracy score from K-fold cross-validation was used to compare

different hyper-parameters. Fig 4.15 shows the confusion matrix on the validation

set from the best ANN model, along with key metrics.

Figure 4.15: Confusion matrix of performance of ANN on validation set

4.3.3 Random Forests

Random Forests (RF) are one of the most popular ensemble machine learning

algorithms. They are essentially a collection of many decision trees, but each de-

cision tree in the ensemble is trained differently leading to the ’randomness’. The

performance of random forests has been attributed to two key parameters in the lit-

erature. First is the number of decision trees used to train the model which leads to

many random samples getting selected from the training set since each tree is fit to

a bootstrapped sample of the training set. Second is the number of predictors con-

sidered at every node to obtain the best split. These 2 hyperparameters essentially

control the performance of random forests. We again used K-fold cross-validation
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accuracy score as the metric for choosing these hyperparameters. Fig 4.16 shows the

confusion matrix on the validation set from the best random forests model, along

with key metrics.

Figure 4.16: Confusion matrix of performance of RF on validation set

4.3.4 Discussion on Performance

As evident from the metrics, all the models have very similar and comparable

performance. Each algorithm has an accuracy of about 85% on the validation set.

The macro scores of precision and recall are very similar too. We have taken macro

scores since all classes are equally important to us and hence no weighting has been

provided to better performance over one of the classes. There is a small difference

in false positive rate (FPR) which is lower for random forests. This metric is as

of now the most important to us as we want this to be as low as possible. Also it

has been discussed by Dougherty and coworkers how classification accuracy can vary

when the population distributions of the classes are unknown and random sampling

cannot be ensured for the training set [20]. Since in this case there is no way to
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ensure that all the experimental SFE data collected was randomly sampled, infact

there is reason to believe the choice of experiments was dictated by application of

alloying systems. Therefore using accuracy as a performance metric is not ideal and

we rely on false positive rate which is independent of population distributions and

sampling. Thus RF with lowest false positive rate is the model of choice. From

the confusion matrices, our learning from data visualization are further emphasized.

As can be seen, misclassifications are almost always among Low and Medium or

High and Medium classes. There is at maximum 1 misclassification across all models

betweem Low and High classes. Thus as evident in the LLE embedding, there is a

relatively simple decision boundary separating the Low and High classes. However

the boundary between the Medium class and other 2 classes is comparatively fuzzy

which can be attributed to lack of data as well as uncertainty in SFE data itself.

From the perspective of alloy design and end goal of uncovering composition to

deformation regime relationship, we look into another metric to choose make our

predictions more reliable and the model more robust.

4.4 Custom Metric for Model Selection

Engineering design is always accompanied by a known factor of safety. Many

times better performance is compromised for a more reliable and robust design.

With the same principle and philosophy as motivation, we discuss the choice of clas-

sification algorithm. We have discussed how this model can be used for alloy design.

In alloy design it costlier to make misclassifications then not adding information.

For example, if we want to design a steel that exhibits significant twinning and our

classifier incorrectly tags a Low SFE composition as Medium in face of just minimal

evidence for Low over Medium, it is undesirable. However if the classifier outputs a

tag which says that for this composition there isn’t enough evidence to assign it to
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Low or Medium, we can also check for other compositions. In the process we might

lose some candidates, but if we can reduce the incorrect classifications this helps in

alloy design.

This evidence is essentially class probability. Most classification algorithms out-

put probabilities of the output being a certain class and then the class with maximum

probability is assigned as the output class. This might mean the probabilities be-

ing very similar in absolute terms but still having an output class. Though this

isn’t incorrect, specifically when there is large training data ; in our case with a

small dataset and sparse sampling in the composition space coupled with the cost of

misclassification, maximum probability isn’t robust enough. We need overwhelming

evidence of a composition’s mapping to a SFE regime. Hence we have to choose

a certain threshold probability only above which the model assigns a class, rest of

the time it shows that output is fuzzy. Since SVM do not a have a straightforward

way of calculating probabilities, we drop them as choice. Between ANN and RF, we

chose RF due to its slightly better performance based on false positive rate.

It has been discussed as to how the Low-Medium classes are closely entwined and

similarly Medium-High classes. There are two reasons to this. Mathematically due

to errors and uncertainty in experimental SFE calculations, for some compositions

whose true value lies on the border - there is data with both classes in training

set. Another reason is the lack of data as this is relatively a small dataset and hence

interpolations are sometimes uncertain. There is a physical materials behavior based

reasoning as well. Although there are truly 3 deformation regimes in steels, there is

a set of transitioning values between these regimes which has experimental evidence

for both regimes. Thus there are two fuzzy zones, one between Low and Medium

which we name as Fuzzy-LowMedium and one between Medium and High which

we name as Fuzzy-MediumHigh. We do not assign a value to these fuzzy zones as
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they are unknown. Mathematically all we can say is that they extend out from the

boundaries at 20 mJ/m2 and 45 mJ/m2

We decided we want to establish a threshold probability below which our classifier

should not assign any class membership. The choice of this probability will be

dictated by practical choices between reliability or safety and predictive ability. If

we take too stringent a probability we will output a lot of fuzzy choices which is very

safe but becomes less predictive as a lot of predictions will lie in the fuzzy zone. If we

choose too low, we are basically at the base model. We tried different probabilities

greater than 0.5 and below are the results for RF in Table 4.2. The reliability or

safety in this case is defined as follows. A prediction is safe if mathematically satisfies

the criteria. For instance, a class output of Fuzzy-LowMedium is reliable and safe if

the actual SFE is either Low or Medium. One has to realize the reliability is coming

from increasing threshold probability which is the gold standard for confidence on

an output.

Probability Reliability % Fuzzy Out-

puts

0.5 86% 3%

0.6 89% 20%

0.66 91% 23%

0.7 93% 35%

0.8 96% 48%

Table 4.2: Metrics for different choice of probabilities to choose output class from
RF model

One sees that the safety or reliability is increasing as the threshold probability is

increasing but so is the number of fuzzy outputs. The % fuzzy outputs take a huge
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jump after 0.5 tp 0.6 which means the base classifier was classifying a lot of points

within this range. This is non-ideal as we believe 0.5 isn’t high enough a probability

for our purposes. However looking for more reliability comes at cost of % fuzzy

outputs which if very high, decrease the decision making ability or predictive power

of the model. Thus based on above statistics, we choose a threshold probability of

0.66 below which the classifier would tag only fuzzy classes. This is a good enough

metric as it ensures the probability of chosen class is almost more than double the

probability of any other class. Also at this probability we are classifying about 20%

of the inputs fuzzy which we believe as a good price to pay for reliability.

Thus based on our above discussion, now our model outputs 5 classes: Low,

Medium, High, Fuzzy-LowMedium and Fuzzy-HighMedium.

4.5 Knowledge Acquisition from Informatics Workflow

In the above sections of the chapter, results at various steps of a Materials Infor-

matics workflow on the SFE dataset have been discussed. The final result of this task

was a model which can with good accuracy predict deformation regimes in austenitic

steels given composition while safely point out fuzzy zones thereby reducing misclas-

sification. In this section we discuss cases where we used our ML model or insights

from the data exploration , hence demonstrating knowledge acquisition from this

whole workflow.

4.5.1 Case I : Deformation Regime Prediction

The accuracy of the classification algorithms were adjudged based on the hold-

out validation set from the SFE dataset. That is a perfect measure of a model’s

performance in machine learning. Nevertheless we now wanted to randomly pick

some austenitic steel alloys in the literature for which deformation experiments have

been carried out and predict their possible deformation behavior from the classifier.
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This would be an ultimate litmus test for the model. Table.4.3 is a list of some

randomly chosen alloys from literature, their experimentally observed deformation

and the model’s prediction.

Alloy Composition Reference Experimental

Observation

Model Prediction

Fe-20.6Mn-0.0Al-0.07Si-

0.07C

Sato [77] ε martensite Low

Fe-19.1Mn-1.8Al-0.14Si-

0.07C

-above- Twinning Medium

Fe-19.4Mn-4.4Al-0.03Si-

0.05C

-above- Twinning Medium

Fe-31.3Mn-0.0Al-0.08Si-

0.07C

-above- Twinning Medium

Fe-29.1Mn-2.0Al-0.11Si-

0.07C

-above- Twinning Medium

Fe-29.2Mn-3.8Al-0.11Si-

0.06C

-above- Twinning Medium

Fe-28.8Mn-7.1Al-0.05Si-

0.07C

-above- Twinning Fuzzy-LowMedium

Fe40Mn40Co10Cr10 Deng [14] Twinning Fuzzy-LowMedium

Table 4.3: Scoring the ML model against experiments of deformation behavior

As can be seen from the table, the model performs exceptionally well. It was able

to predict the correct deformation behavior for most compositions. For the composi-
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tions it predicted fuzzy class, the experimental behavior is one of the expected from

that fuzzy class. Thus from a design perspective, the fact that the algorithm hasn’t

misclassified any composition is very crucial. Thus this model can now be used to

design alloys with great reliability compared to now when there is no robust model

with any defined error bounds. Note for the high entropy alloy the model does not

expect any Co input and thus only wt% from other elements were provided.

4.5.2 Case II : Informing Thermodynamic Calculations

We have discussed earlier thermodynamic calculations of SFE based on compo-

sition. However the biggest problem in these calculations is ascertaining interfacial

energy for which no reasonable estimates are known. Fig 4.17 (left) shows an com-

position SFE map computed by the Akbari and authors [76]. The colored lines

represent SFE = 20 mJ/m2 for different values of interfacial energy. The interfacial

energy is said to be between either of 2 ranges, 5-10 mJ/m2 and 13-20 mJ2. An

average value of 15 mJ/m2 has also been suggested. Now based on the choice of this

interfacial energy, a given composition on the left of the graph can exhibit SFE from

highly negative values to about 20 mJ/m2. Similarly a point on the right can ex-

hibit SFE values from 20mJ/m2 to more than 50 mJ/m2 thus jumping practical SFE

regimes. We ran a grid calculation of some compositions from the map and placed

their expected regimes on the plot. Here class 1 is Low, class 2 is Medium and class 4

is Fuzzy-LowMedium. As can be seen there is clear evidence of absence of one single

interfacial energy value which can describe all these predictions. This reinforces the

discussion in their paper where interfacial energy has been shown to be a function of

composition. Thus such a composition SFE map needs to be constructed taking into

account this dependence. Also the model helps predict practical SFE regimes unlike

the large ranges across SFE regimes predicted by the map which makes it unreliable
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from a design perspective.

Figure 4.17: Thermodynamic estimation of SFE and ML model predictions

4.5.3 Case III : Experimental Evidence of Computational Trends

As has been shown in the data exploration, we can leverage the exhaustiveness

of our experimental dataset to reinforce trends predicted in computational models

because more the data, more robust evidence - positive or negative. As discussed

earlier, Vitos [87] predicted non-linear relationship between SFE and Ni-Cr alloying

in steels. In Fig 4.18, on the left we see DFT predictions of this trend. On the

right is all experimental data on Ni and Cr alloying in Fe system and we see good

evidence for Vitos’ predicted trend. Please note the difference in axis, one is at%

and the other is wt%. There is obviously departure from the exact trend as other

alloying additions affect SFE. Nevertheless this is another example of how a Materials

71



Informatics workflow can help the community.

Figure 4.18: (Left)Ni-Cr behavior on SFE from DFT (right) experimental trends in
SFE with change in Ni and Cr
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5. SUMMARY

In this work we aim to solve the problem of relating composition to SFE in

austenitic steels. SFE is crucial to alloy design as it the most important factor which

dictates deformation regimes in steels as discussed in the literature. We discuss

existing techniques to predict SFE and discuss their pitfalls and lack of reliability. We

then propose to use a data driven machine learning approach to model composition

SFE relationship based on all experimental data in literature. This approach is

first of its kind applied to this particular problem. We setup the problem in a

novel way leveraging knowledge about the system. Since a range of SFE values is

essential to knowing the deformation regime and not exact SFE values itself, we setup

the problem statement as a classification task. We then implemented a complete

informatics workflow to solve the problem. As part of this informatics workflow,

we first did an exhaustive data curation task collecting and curating all SFE data

by reading the literature to form this most exhaustive SFE dataset for austenitic

steels known to us. We then applied tools like querying and data exploration to

understand simple patters in the data and relate them to literature. Next we applied

dimensionality reduction machine learning algorithms to uncover any visualizable

patterns. We found patterns in PCA, MDS and LLE representations of the data

which separated 2 classes. However the need of applying classification algorithms

was clear and we went ahead and modeled data using SVM, ANN and RF. Based on

testing with a hold-out test set, we achieved good accuracy of 85% and a good False

Positive Rate of 10% with RF . To make our classification prediction more robust, we

then do an analysis of choosing a high threshold probability to increase confidence

on our predictions. Where the probability output is less than this threshold, we say
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the output class is fuzzy. Thus the choice of probability is a balance between having

highly confident predictions and having too many fuzzy output classes. We choose a

threshold probability of 0.66 which ensures the predicted output class is atleast twice

as probable as any other class and this led to 90% safe predictions on our hold-out

test set with only 20% of them being classified as fuzzy. Thus we eventually have

a machine learning model that predicts Low, Medium or High SFE regimes with

high confidence and predicts fuzzy outputs where it is uncertain. Finally we did

various tasks to leverage our informatics workflow and showcase its potence. The

contribution of this work is that we now have a predictive model that predicts SFE

and consequently deformation regimes for untested compositions in austenitic steels

with high reliability and good accuracy.
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