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ABSTRACT 

 

Wind turbine maintenance is a major cost factor and key determinant of wind farm 

productivity. Many companies outsource critical maintenance procedures while others 

perform these tasks in-house, referred to as self-perform maintenance. While expected to 

reduce time to profit on asset investment, self-perform requires an efficient personnel 

deployment strategy to implement. In this thesis, a partial solution to the optimization of 

wind turbine maintenance personnel team assignment is presented. 

A holistic framework is established, through analysis of historical work orders, for 

defining metrics that evaluate the performance of technicians. These metrics are further 

transformed into interpretable proficiency coefficients to be incorporated into an 

application of the team assignment problem. 

A case study of a large wind farm owner and operator is presented to illustrate the 

potential benefits and caveats of the proposed metrics and evaluation strategy. 

Additionally, the practicality of the data-derived metrics and proficiencies is illustrated. 

Key improvement strategies in data quality and metric aggregation are detailed, as well as 

discussion of a potential formulation of the task-to-team assignment problem, to be 

modeled through a standard maximin approach and solved through an integer 

programming technique. 
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1. INTRODUCTION 

 

1.1 Problem Statement 

Electricity sourced from renewable forms of energy production, such as wind and 

solar energy, accounts for an ever-increasing proportion of consumer needs, both at a 

small and large scale. Technologies that harvest energy from responsible sources have 

become more widespread in the past decade as governments have clearly supported their 

development. In 2016 alone, renewable energy accounted for 59% ($10.9 billion) of the 

total energy-related tax preferences and has outpaced fossil fuel tax preferences since 

200840. Yet, even with such a sustained focus on subsidizing renewable forms of energy, 

growth must be supported with accompanying advancement in technology. 

Current renewable energy technologies are subject to the intermittent nature of the 

energy source itself. For example, wind turbines only capture energy when the wind 

source is consistently strong enough to rotate the blades. Therefore, focus must be placed 

on the efficient use of the technology so that, when conditions present themselves, the 

maximum amount of energy can be extracted.  

Over the previous decades of fervent deployment of wind turbines, there has been 

a significant shift in the perceived contribution of operations and maintenance to the value 

of an enterprise. Historically, it was believed that a majority of the value was attributed to 

the initial manufacturing and development of the wind turbines and that post-development 

value generation was relatively constant. Yet, as wind farms and technologies became 

more mature, the role of operations and maintenance has been shown to have an enormous 
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effect on the regularity of an asset’s profit generation. In the Winter 2008 volume of 

McKinsey & Company’s Electric Power and Natural Gas, they laid out the importance of 

comprehensive operations and maintenance practices. 

 

“Our research… suggests that operations and maintenance (O&M) can 

play an important role in maximizing the returns of existing assets and 

increasing revenues from existing wind farms. Depending on existing 

levels of performance, improved O&M could account for nearly a 20 

percent increase in the equity internal rate of return … Companies that 

identify and systematically capture this potential could then develop a key 

competitive advantage in the industry”86 

 

Operations and maintenance for a wind farm can be sub-divided into three main 

levers: availability, efficiency, and operations and maintenance costs. It must be noted that 

these three levers are not independent of one another. It can easily be shown that 

unavoidable events, such as inclement weather, can cause lapses in wind farm 

performance, thereby causing an increase in operations and maintenance costs to maintain 

specific levels of availability and efficiency. By understanding this connection between 

availability, efficiency, and operations and maintenance costs, certain inferences can be 

made about critical factors which have great effect on wind farm operations and 

maintenance practices. Most obvious of these critical factors is the effectiveness with 
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which maintenance practices tackle and solve issues affecting availability, efficiency, and 

operations and maintenance costs. 

To focus research on increasing the effectiveness of a wind farm’s maintenance 

practices, it becomes convenient to generalize to several major operations and 

maintenance policies. Such generalizations typically fall into three major categories: full-

service, self-perform, and hybrid. According to Martin, et al. 2008, a full-service 

maintenance policy is commonly contracted directly to the wind turbine original 

equipment manufacturer with some guaranteed level of performance. A self-perform 

maintenance policy is exactly the opposite, where the wind farm internally performs all 

maintenance activities on wind turbines with their own teams. A hybrid maintenance 

policy is a combination of full-service and self-perform models such that the wind farm 

owner and operator performs certain maintenance activities while contracting out others.86 

While the hybrid policies are currently the most commonly observed, certain wind 

farms are actively seeking to transition to the self-perform model. The self-perform 

maintenance policy enables a cost neutral point on an asset investment earlier in its life, 

thus shortening overall time to profit. Yet, self-perform maintenance transformations are 

incredibly complex and require highly coordinated implementation. This is chiefly due to 

two main issues which are often overlooked. 

Firstly, transitioning from a full-service (or hybrid) model to a self-perform model 

requires wholly transferring the skills and knowledge of the wind turbine original 

equipment manufacturer maintenance staff to the staff of the wind farm owner and 

operator. The nuances of this transfer are particularly complex. Many wind farms have a 
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variety of different wind turbine models which technicians must be proficient in servicing. 

Additionally, these various models of wind turbines are often subject to many different 

environmental conditions and factors, i.e. geography, climate, weather. Further 

compounding this complexity is the fact that there are a large multitude of different 

services and faults which must be performed. Thus, the amount of required historical and 

technical knowledge is vast. The most basic method of attaining this knowledge and 

experience is through a period of transition where wind farm technicians shadow and learn 

from original equipment manufacturer technicians. Even after this transitional period, 

however, continual communication is often required if new, unique, or difficult issues 

present themselves. 

While the transfer of knowledge is indeed a challenging issue to deal with, the fact 

that the pool of maintenance technicians at major wind farms contains a certain number 

of tenured technicians does help. These tenured technicians have backgrounds servicing a 

wide variety of different turbine models across different sites and for different types of 

service (in fact, tenured technicians are often former original equipment manufacturer 

technicians). By supplementing the presence of experienced technicians and their 

knowledge with formal training, the basic transfer of required maintenance knowledge can 

be fulfilled. 

Secondly, and of primary interest to this research, all assets must be managed and 

deployed in an efficient manner to realize true benefit. In this sense, benefit can be 

described as achieving the most efficient and highest quality (1) resolution of technical 

services and issues and (2) internal transfer of skills and experience among technicians. 
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The topic of efficiently managing and deploying wind turbine maintenance assets has been 

explored vigorously in previous research. As will be discussed in Section 2.3, previous 

focuses have centered around deployment of resources based upon failure-based, time-

based, and condition-based models, amongst others. However, as will be discussed, there 

is a significant gap in the understanding of the effect of maintenance team composition. 

To support a major wind farm owner and operator in their transformation from a full-

service or a hybrid to a self-perform maintenance policy, this gap will be explored and 

solutions will be proposed in this thesis. 

 

1.2 Research Objectives 

A pre-requisite of successful maintenance is a successful team of maintenance 

personnel. While most research in wind farm maintenance efficiency and deployment 

defines an effective and skilled team in terms of a successful operation, this proxy is 

insufficient. In truth, by treating maintenance teams as constants, a vast area of unexplored 

potential is being neglected. The aim of this research is to explore this area by treating the 

team of maintenance personnel as a dynamic composition from a pool of skilled workers. 

To accomplish this goal, a holistic framework is developed to enable the 

generation of technician performance metrics using historical work orders. An expert 

survey is carried out to define applicable performance metrics. Additionally, systematized 

work order grouping and work order filtering and data cleaning strategies are proposed. 

Metrics are calculated for each work order and then aggregated to the respective assigned 
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technicians. After aggregation and normalization of data, the performance metrics are 

organized into an easily interpretable format, dubbed the Technician Proficiency Matrix. 

Execution of these processes is illustrated in a case study of a large wind farm 

owner and operator from January 1, 2017 to March 15, 2018. Technician Proficiency 

Matrices are calculated for each technician and three (3) distinct use cases are illustrated. 

Through the evaluation of these use cases, the practicality of using a data-driven method 

of technician performance metrics and proficiencies is demonstrated. 

 

1.3 Organization of Thesis 

Following this introduction, a detailed literature review is presented in Chapter 2 

showing supporting evidence that the proposed research is indeed novel. In Chapter 3, a 

research methodology is established to provide a systematic framework for the reader to 

contextualize the performance metric development and calculation. A case study of a 

major wind farm owner and operator is conducted in Chapter 4 for illustration of 

performance metric applicability. A discussion is presented in Chapter 5 which illustrates 

key data quality and performance metric weighting strategies. Additional discussion is 

presented for technician assignment modeling proposals, supported by material in the 

corresponding appendices. Finally, conclusions to the Personnel Deployment Strategy are 

presented in Chapter 6. 
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2. LITERATURE REVIEW 

 

The following literature review was completed per three main stages: 1) input, 2) 

processing, and 3) output. Input is identified as the stage where all relevant literature is 

collected to form the Relevant Body of Knowledge. Processing is the stage where the 

collected literature is reviewed, parsed, and sorted based on themes relevant to the 

proposed research and their potential contribution. Output is the stage where the resulting 

themes and subsequent gaps are evaluated.82 

Inherent in the literature review process is the rise and fall of the quantity of 

publications of the Relevant Body of Knowledge. However, as the review progresses from 

the first to the last stage, the relevance of the publications to the proposed research 

objectives dramatically increases. An effective literature review will have 

comprehensively defined the Relevant Body of Knowledge such that a proposed research 

path addresses an absent or ill-defined area of knowledge or application, if such an area 

exists. 

For a detailed breakdown of individual literature review steps, see Appendix A.1 

for Input, A.2 for Processing, and A.3 for Output. 

 

2.1 Relevant Body of Knowledge 

The Relevant Body of Knowledge is visually represented in Figure 1. The visual 

depiction is useful in exhibiting inherent thematic divisions and allows one to quickly 
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identify absent or ill-defined areas of research. Notes meant as a primer in analyzing the 

visual depiction of the Relevant Body of Knowledge are detailed in Appendix A.4. 

The numbers after commas in the outer ring of each thematic division in Figure 1 

indicate the number of publications categorized into that thematic division. An important 

clarification is that the sum of publications over all thematic divisions does not equal 136 

(the total number of publications in the literature review). This discrepancy is due to 

certain publications containing information lending itself to multiple categorizations. 

Therefore, these publications are counted in multiple thematic divisions. The total sum of 

publications referenced over all thematic divisions is 153 but, by removing duplicate 

instances due to multiple categorizations, the total number of unique publications is 136. 

It can be seen in Figure 1 that there is relative saturation in performance 

measurement and management, maintenance modeling and management, and reliability 

analysis when considering the maintenance function in the wind industry. Yet, only one 

relevant publication, Bos and Chatterjee 201622, has been found in team optimization with 

respect to the maintenance function in the wind industry. This indicates that the proposed 

research, development of performance metrics for use in optimization of maintenance 

team composition in the wind industry, is indeed novel. As the proposed research path 

incorporates elements from all thematic groupings, what follows is a brief analysis of each 

major area. 

Additionally, a distribution of the different types of publications incorporated into 

the Relevant Body of Knowledge is provided in Figure 2, with a full breakdown listed in 
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Appendix A.6. The full listing of all publications respective to their thematic grouping has 

been provided in Appendix A.5. 

 

 

Figure 1: Relevant Body of Knowledge 
(Numbers indicate number of publications categorized into specific thematic division) 
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Figure 2: Summary of Literature Review Sources 
(Numbers indicate number of publications of that type in literature review) 

 

2.2 Performance Measurement and Management 

As with the understanding of the criticality of operations and maintenance, the 

perception of performance measurement and management (PM&M) has radically changed 

over the last two decades. A proclamation from the Harvard Business Review called for a 

shift “from treating financial figures as the foundation for performance measurement to 

treating them as one among a broader set of measures”.45 Since this manifesto, many 

different essential departments have developed and committed metrics to aid in holistic 

PM&M, prominently among them, the maintenance function within operations and 

maintenance. “For many asset-intensive industries, the maintenance costs are a significant 
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portion of the operational cost”.96 Even now, after decades of invested research, the role 

of the maintenance function in PM&M is still evolving with the emergence of the 

importance of big data and data management in decision making. “The ongoing industrial 

digitalization provides enormous capabilities for industry to collect vast amount[s] of data 

and information (i.e. industrial big data), from various processes and data sources such as 

operation, maintenance, and business processes.”69 To evaluate the holistic research of 

PM&M in the maintenance function, the continual development of performance indicators 

and performance management frameworks must be examined. 

A performance indicator is a metric which can compare actual performance with 

specific referenced or benchmarked performance. Consequently, when performance 

indicators are aggregated across various levels of an organization to present performance 

at a managerial level, it is designated a key performance indicator.95 However, proper 

performance management frameworks are needed when presenting key performance 

indicators to management. Per Parida, et al. 2015, performance management frameworks 

are typically categorized as one of the following: traditional accounting based, multi-

criteria frameworks, multi-criteria hierarchical, function specific, and business specific.96 

The benefit of having a rigorously vetted performance management framework is its ease 

of implementation in practical applications. 

Of utmost importance to the proposed research is to develop a methodology of 

translating maintenance team composition optimization results through key performance 

indicators to wind farm management. Initial review into performance management 

frameworks in the wind industry revealed a few examples of active research, chiefly 
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among them, a study of a balanced scorecard implementation at a wind farm by Schneider 

and Vieira 2010. Schneider and Vieira set out to “develop a suitable framework for 

establishing key performance indicators… to enable the company to compress and 

streamline management decision-making…”.105 While this research presented a relevant 

application, the developed key performance indicators were not specific enough to apply 

directly. Therefore, for the proposed research it was decided to constrain the performance 

management framework to the “function specific” category and create novel key 

performance indicators, i.e. performance metrics and proficiencies, to convey 

representative results. 

 

2.3 Maintenance Modeling and Management and Reliability Analysis 

Proper deployment of maintenance assets is critical to achieve minimal asset 

production costs and has been quite vigorously explored in the last two decades. This field 

of research, maintenance modeling and management (MMM), is distinctly structured in 

two major areas: 1) reliability analysis (RA) and 2) leveraging the reliability prediction. 

RA is mainly concerned with the development of “physics-based and data-

driven”61 tools and models to aid in turbine performance evaluation. As stated by He and 

Kusiak 2018, “Assessing performance of a wind turbine is difficult due to inherent 

nonlinearity between the input (wind speed) and the output (power generated). It is further 

complicated by the distribution of faults across the working envelope.”61 

Physics-based models have historically centered around the use of fatigue analysis. 

These models, somewhat specific to different turbine types, locations, and timeframes, use 
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component failure rates and probability distributions to inform maintenance decisions. 

While attractive because of their grounding in known systems and interactions, physics-

based models tend to succumb to the sheer complexity of competing factors present in 

wind turbines. 

Data-driven models are not as susceptible to the same restrictions that tend to 

plague physics-based models. “The data-driven approaches have been used to model 

different phenomena in wind turbines, including visualizing performance of wind turbines. 

Prediction of wind power is key to anticipating changes in performance of wind 

turbines.”61 Historical methods of data-driven turbine performance evaluation range from 

simple time series modeling to more complex machine learning algorithms such as neural 

networks and support vector machines, amongst others. Ding, et al. 2013 and He and 

Kusiak 2018 completed significant reviews of prevalent methods and models used in 

RA.42,61 Each details a sample of the many different approaches that can be used to deliver 

predictions of turbine performance and reliability. 

Complementing RA, leveraging the reliability prediction is concerned with the 

proper use of information from RA tools and models in developing maintenance asset 

deployment strategies. By “leveraging the reliability prediction, a maintenance program 

can be developed and implemented such that the system availability is guaranteed during 

[the] 20 [year] lifetime”.42 

In general, there are three broad categories of wind turbine maintenance: 

corrective, scheduled, and condition-based maintenance.101 However, a more specific and 

applicable categorization is failure-based, time-based, and condition-based.42 Failure-
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based maintenance is that which is completed based on faults and diagnostic reports 

confirming a failure has occurred. Time-based maintenance is that which is usually 

concerned with continual upkeep of the turbine and is performed at regularly scheduled 

intervals. Condition-based maintenance “is the most advanced maintenance scheme as the 

performance of components can be actively tracked based on the condition monitoring 

(CM) apparatus, hence an aging component can be pro-actively replaced prior to the 

occurrence of the failure.”42 While the vast amount of research in this field is continually 

evolving, most is in some way shaped from these three core maintenance practices. 

An emerging field of study is the role of opportunistic maintenance and grouping 

maintenance activities. Opportunistic maintenance simply entails parallel maintenance 

activities and is usually the combination of failure-based or condition-based with time-

based maintenance. “When a downtime opportunity is created by a faulty unit, 

maintenance team[s] [perform] preventative maintenance on other components that are 

still functional yet exceed a pre-degradation threshold. Consequently, substantial cost can 

be avoided as oppose[d] to separate maintenance actions.”42 Other important aspects of 

this field include the prevalence of research with respect to offshore wind turbines and the 

focus on optimizing maintenance assets against the stochastic nature of the environment, 

as noted by El-Thalji and Liyanage 2012.49 

The main application of this line of research is in building the knowledge of 

maintenance modeling and deployment strategies for wind turbines. By incorporating this 

knowledge, procedures can be created and enacted more efficiently. This understanding 

will come in especially useful when considering the generation of performance metrics 
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and in their application. This will require an understanding of likely-to-fail components 

and systems as well as of typical trade-off and risk balancing considerations. 

 

2.4 Team Optimization 

In general, team optimization (TO) is not a novel concept and is considered an 

application of combinatorial optimization, mainly referred to by a well-known subset of 

problems called the Assignment Problem. “Assignment problems deal with the question 

of how to assign n items (jobs, students) to n other items (machines, tasks).”26 The 

assignment problem has an extensive research history in both theoretical development and 

practical applications. Specifically of interest to the proposed research is the integer 

program formulation, a sub-category of linear assignment problems. 

Applications of TO in combinatorial optimization are vast and include team 

formation for engineering projects66,67,140, sports4, military operations44, manufacturing112, 

and aircraft maintenance39, amongst many others. However, what is clear is that there is 

no definitive application of the assignment problem to maintenance personnel in the wind 

industry, especially with respect to using individual attributes or evaluating specific types 

of tasks. This oversight is partly due to the typical treatment of maintenance teams as 

constants in MMM. Most wind maintenance team applications treat all maintenance teams 

as interchangeable, with only slight thought to certification requirements. 

While the proposed application of the assignment problem appears to be 

completely novel, a relevant publication was identified. Bos and Chatterjee 2016 establish 

a framework for hiring suitable wind service technicians. Considerable criteria, including 
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knowledge, skill, ability, personality, physical attributes, and mental fitness, is obtained 

through various interviewing and testing methods.22 This research is relevant to the 

proposed research save a few major differences. 

Firstly, the authors focus on the hiring of wind service technicians rather than an 

already available pool from which to choose. This difference is significant in that 

technicians being considered for hiring are unlikely to have the significantly developed 

skills or certifications required to perform certain tasks that seasoned technicians will 

have. New technicians also do not usually have a historical record of work completed or 

available, rendering many performance metric calculations impossible. 

Secondly, the authors use Fuzzy Set Theory to define their attribute weighting 

system. “Fuzzy Set Theory is used to handle immeasurable or numerically inexpressible 

information and to make all information uniform.”22 In the proposed research, a concerted 

effort is made to use data-driven methods to derive attributes while limiting subjectivity. 
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3. METHODOLOGY 

 

To create a repeatable procedure for establishing a holistic framework for 

generation of the Technician Proficiency Matrix, the following actions were taken: 

 

1. An expert survey was coordinated and completed 

2. A work order grouping strategy was identified 

3. A work order filtering and data cleaning strategy was defined 

4. Results were used to generate performance sub-metric calculations for 

individual work orders and for technicians 

5. Work order metrics were isolated to technicians and aggregated into a 

Technician Proficiency Matrix 

 

Graphical representation of this process can be seen in Figure 3. 

The following methodology was developed in close collaboration with the large 

wind farm owner and operator for which the case study was completed. One item to note 

is that many of the specific terms for work order types, functional locations, databases, 

and data fields in the following sections refer to specific terms used by the large wind farm 

owner and operator for which the case study was completed. The reader should be aware 

that, given a different application of the Personnel Deployment Strategy, many of these 

specific terms drawn from the current application will be different. The application 

specific nomenclature is summarized in Appendix B.1. 



 

18 

 

 

Figure 3: Holistic Technician Performance Metric Generation Process 

 

3.1 Expert Survey & Results 

The first step in developing metrics for any industry specific application should 

almost always be to conduct a survey of experts in the relevant field. By consulting experts 

in the application for which the metrics are to be developed, a measure of fairness is 

achieved. As stated by Tsang 1998, “The adoption of fair processes is the key to successful 

alignment of these goals. It helps to harness the energy and creativity of committed 

managers and employees to drive the desired organizational transformations.”122 By 

involving technicians at different hierarchical levels in the organization in the 
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development of their own performance metrics, successful stakeholder involvement is 

achieved. To create technician performance metrics for a large wind farm owner and 

operator, a survey of 13 technicians, senior technicians, operations managers, and 

directors was completed. A series of 12 questions were posed to survey participants, 

shown in full in Appendix B.2. 

While all questions yielded contextual information important to grasp internal 

operations, protocols, and opinions on working conditions and policies, only the first 

question is considered when developing performance metric structures, repeated below, 

from Appendix B.2. 

 

What are the metrics by which you would rate a technician’s performance, 

given they were assigned: 1) a single task, 2) multiple tasks of the same 

turbine type, location, and weather conditions, and 3) multiple tasks of 

differing severity, turbine type, location, and weather conditions? 

 

This question relates directly to the goal of developing a consistent set of metrics 

by which to rate maintenance technicians in the wind farm application. It is important to 

note that many respondents offered multiple, independent statements in answering the first 

question, explaining the discrepancy between the number of responders and total 

“occurrence”, seen below in Figure 4. 

Some items to take note of in Figure 4 are with respect to safety, preparedness, 

completeness, productivity, consistency, and the human factor. Firstly, an overwhelming 
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number of participants mentioned that safety was extremely important and that it should 

not be sacrificed in any way for the sake of a quicker task completion. Safety itself is 

measured through other means outside of the scope of this research, and thus, will not be 

included. Secondly, preparedness, completeness, productivity, and consistency are 

conceptually contained within the quality and efficiency metrics. Thirdly, multiple 

participants viewed the effect of the human factor as extremely important. While the 

human factor is prevalent and always present, it will not be considered in the scope of this 

research due to the complexity it introduces. 

 

 

Figure 4: Expert Survey Performance Metric Results 
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The resulting metrics declaration of the expert survey is as follows: 

 

Declaration: Safety is our highest priority and shall not be sacrificed at the 

expense of any other performance metric 

 

Work Order Specific Performance Metrics 

1. Quality (Q) – defined as the consistent “right-first-time” completion of 

tasks 

2. Timeliness (T) – defined as the speed in “right-first-time” completion of 

tasks 

3. Efficiency (E) – defined as the best use of time spent in “right-first-time” 

completion of tasks 

4. Documentation (D) – defined as the consistent, correct, and complete 

submission of work order documentation 

 

Technician Specific Performance Metrics 

5. Task Completion Rate (TCR) – defined as the historical and recent “right-

first-time” completion of specific order types 

6. Task-Based Certification (TBC) – defined as the acquired knowledge and 

certification necessary to excel in Quality, Timeliness, Efficiency, and 

Documentation 
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3.2 Work Order Grouping Strategy 

An important factor to consider when creating fair technician metrics is the 

complexity and similarity of tasks being compared. Certain similarly categorized tasks 

may have completely different levels of complexity involved in achieving a solution. For 

example, even though two faults may technically be considered the same order type 

(“reactive”), the fault complexity of addressing a “yaw limit switch activated” may be 

completely different than that of a “pitch thyristor 3 fault”. In an ideal case, calculating 

metrics of the completion of one task should not be compared to metrics on the completion 

of the other task if their complexities are vastly different. Therefore, a discussion on the 

grouping of work orders to compare similar complexity work is required. 

In a theoretical sense, the best comparison method would be an exact like-for-like 

comparison of work orders. An example of this would be that metrics on the completion 

of a “gearbox oil overtemperature” fault in turbine Y at functional location “… – GBX”, 

where “GBX” designates “gearbox”, would only be compared to those metrics of other 

“gearbox oil overtemperature” faults completed on turbine Y at functional location “… – 

GBX”. However, the major issue with this approach is the size of the resulting data set. In 

data obtained from a major wind farm owner and operator, almost no cases exist where 

such a like-for-like comparison can be made, mostly due to inherently high availability of 

certain turbine models. 

To combat this issue, two distinct approaches could be used. On one hand, to find 

similar faults, generalizations on functional locations and/ or turbines must be made. On 

the other hand, to find more faults on the same functional locations and/ or turbines, 
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generalizations on faults must be made. To alleviate the issue of the resultant size of the 

data set and compare similar faults, a compromise is proposed. To increase the sample 

size of relevant work orders when calculating metrics, the hierarchical grouping strategy 

in Table 1 evaluated: 

In this strategy, work orders are first, categorized by their order type and second, 

grouped into their turbine specific functional locations. By this method, only work orders 

of the same order type in the same functional location will be compared with one another. 

 

Table 1: Work Order Grouping Strategy 

1st Level 2nd Level 

Order Type Functional Location 

ZPM0/6 

Large Corrective/ Refurbishment/ Improvement 

ELE 

Electrical 

ZPM1 

Reactive Maintenance 

FAC 

Structures and Facilities 

ZPM2/4 

Predictive Maintenance/ Inspections 

FND 

Foundation 

ZPM3 

Preventative Maintenance 

GBX 

Gearbox 

ZPM5 

Change Maintenance 

GEN 

Generator 

 HYD 

Hydraulic Units 

INS 

Instrumentation 

MCS 

Monitoring Communication Systems 

PCD 

Power Condition 

PTH 

Pitch System 

ROT 

Rotor 

XFR 

Transformer Center 

YAW 

Yaw System 
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A caveat must be mentioned relating to this work order grouping strategy. By 

aggregating all work orders at the lowest level to the functional location of a specific 

turbine, there is an inherent risk that work orders of a different fundamental nature will 

grouped together. To illustrate this potential, the following two work order grouping 

designations are extended to their maintenance activity type: ZPM1 → … – GBX – 

MAT100 and ZPM1 → … – GBX – MAT102. While the first work order is MAT100 

(operational) and the second is MAT102 (electrical), they are of the same order type and 

are servicing the same functional location. In the proposed grouping strategy, these two 

work orders are treated equally, while in reality they are potentially servicing different 

elements of the same functional location. As they are fundamentally different types of 

work, an argument could be made that they should not be grouped together. However, 

through practical observation and calculation, the risk this scenario poses to the accurate 

calculation of performance metrics is deemed minimal. 

By applying the proposed work order grouping strategy to data provided from a 

large wind farm owner and operator, sufficient sample sizes of relatively similar 

complexity and fundamentally related work orders are achieved for performance metric 

calculation. With a systematic work order grouping strategy, metrics can be calculated 

with relative confidence. 

 

3.3 Work Order Filtering and Data Cleaning Strategy 

In addition to creating an effective work order grouping strategy, an efficient data 

cleaning strategy must be established. Many of the issues that surround intuitive problem 
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solving involving data can be sourced to the lack of consistent and accurate data structure, 

content, and logic. To create a repeatable process for performance metric generation, the 

following data cleaning strategy is proposed. The proposed process has been briefly 

described for the generic application in Table 2, as well as for the case study of a large 

wind farm owner and operator in Chapter 4. 

 

Table 2: Work Order Filtering and Data Cleaning Strategy 

General Process Step Case Study Specific Steps 

Data collection SQL query & download of “Work Order Headers” database 

SQL query & download of “Notifications” database 

SQL query & download of “Work Order Operations” database 

Full join of databases on work order number (WO #) 

Irrelevant data removal Removal of irrelevant & duplicate data fields 

Removal of instances w/o designated WO # 

Removal of work orders w/o “Actual Hours Worked” 

Re-formatting Consistent formatting of remaining “Date” data fields 

Consistent formatting of remaining “Time” data fields 

Consistent formatting of remaining “Char” data fields 

Consistent formatting of remaining “Num” data fields 

Re-designation of “Order Type” to consistent format 

Re-distribution Re-distribution of general turbine work orders to 

individual functional locations 

Filtering Filter instances by region 

Filter instances by wind farm 

Filter instances by sub-wind farm 

Filter instances by turbine level work orders 

Filter instances by date range 

Grouping Grouping of individual operations to specific work order 

Final data field selection and ordering 

 

 Now that an effective work order grouping strategy and work order filtering and 

data cleaning strategy have been proposed, the derivation of individual work order level 

and technician level performance sub-metrics can be discussed. The following sections 

illustrate the methodology of calculation of historical technician performance sub-metrics 
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and includes: 1) Declaration of common indices, 2) Performance sub-metrics by individual 

work order, and 3) Performance sub-metrics by technician. 

 

3.4 Performance Sub-Metric Generation 

3.4.1 Declaration of Common Indices 

The following declares the common set of indices used in all derivations and 

calculations. 

 

i ≡ ith technician in technician availability pool for task team assignment, 

for i = 1, 2, …, I 

 

j ≡ jth order type of completed work order, 

for j = 1, 2, 3, 4, 5, where 

1 ≡ ZPM0/6, 

2 ≡ ZPM1, 

3 ≡ ZPM2/4, 

4 ≡ ZPM3, and 

5 ≡ ZPM5 

 

k ≡ kth attribute type calculated from completed work order, 

for k = 1, 2, 3, 4, 5, 6, where 

1 ≡ Quality (Q), 

2 ≡ Timeliness (T), 

3 ≡ Efficiency (E), 

4 ≡ Documentation (D), 

5 ≡ Task Completion Rate (TCR), and 

6 ≡ Task-Based Certification (TCR) 

 

m ≡ mth metric of the kth attribute type calculated for completed work order 

of jth order type, 

for m = 1, 2, …, Mjk 

 

n ≡ nth work order completed by ith technician in jth order type, 

for n = 1, 2, …, Nij 
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3.4.2 Performance Sub-Metrics by Individual Work Order 

 Quality, Timeliness, Efficiency, and Documentation performance sub-metrics are 

calculated for each individual work order. These metrics are awarded to each technician 

who worked on the team that completed that respective work order. Full mathematical 

descriptions, colloquial descriptions, examples, ranges, targets, and notes are given in 

Appendices B.3 for Quality (k = 1), B.4 for Timeliness (k = 2), B.5 for Efficiency (k = 3), 

and B.6 for Documentation (k = 4). 

Performance sub-metrics for individual work orders use the consistent form, kij
mn

, 

where i is the ith technician, j is the jth work order type, k is the kth attribute, m is mth 

performance sub-metric of the kth attribute and jth order type, and n is the nth work order, 

as notated in the declaration of common indices. Performance sub-metrics for individual 

work orders include: Q
ij

1n
(Th1), Q

ij

1n
(Th2), Q

ij

1n
(Th3), Q

ij

1n
(Th4), Q

ij

1n
(Th5), Q

ij

1n
(Th6), 

Q
ij

1n
(Th7), Q

i4

2n
, Tij

1n, Tij
2n, Tij

3n, Tij
4n, Eij

1n, Eij
2n, Eij

3n, Eij
4n, Eij

5n, Eij
6n, Eij

7n, Dij
1n, Dij

2n, and Dij
3n, 

where Th is the threshold by which the Q
ij

1n
 of a work order is compared against, as 

discussed in the notes of Table 7 in Appendix B.3. 

Summarized information is not shown for performance sub-metrics for individual 

work orders. Instead, Table 3 summarizes all aggregated performance sub-metrics over 

their respective Nij work orders. Detailed descriptions, units, ranges, and targets of the 

aggregated performance sub-metrics are identical to their respective individual work order 

performance sub-metrics. 
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3.4.3 Performance Sub-Metrics by Technician 

 The Quality, Timeliness, Efficiency, and Documentation performance sub-metrics 

calculated for each individual work order are aggregated to those technicians on the teams 

that completed them. Work order performance sub-metrics are averaged over the specific 

order types, as outlined in the previously mentioned Work Order Grouping Strategy. 

Therefore, each technician that has completed an evaluated work order can potentially 

have all previously mentioned performance sub-metrics, averaged over each j = 1, 2, 3, 4, 

and 5, respectively, provided data exists. 

Additionally, technician level metrics, Task Completion Rate and Task-Based 

Certification, are calculated for each technician. Full mathematical descriptions, 

colloquial descriptions, examples, ranges, targets, and notes are given in Appendices B.7 

for Task Completion Rate (k = 5) and B.8 for Task-Based Certification (k = 6). 

Table 3, given for reference, details all performance sub-metrics aggregated over 

all work orders and grouped by technician, provided data exists. Aggregated performance 

sub-metrics use the consistent form, kij
m

, where i is the ith technician, and j is the jth work 

order type, k is the kth attribute, and m is mth performance sub-metric of the kth attribute 

and jth order type, as notated in the declaration of common indices. The nth work order 

designation is no longer needed as these sub-metrics represent the aggregation over Nij 

work orders, as discussed in Section 3.5.1. 
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Table 3: Aggregated Performance Sub-Metrics 

Metric Sub-Metric Description Units Range Target 

k = 1 

Q
ij

1(Th1) Performance against threshold (Th) 1 – [0, 1] 1 

Q
ij

1(Th2) Performance against threshold (Th) 2 – [0, 1] 1 

Q
ij

1(Th3) Performance against threshold (Th) 3 – [0, 1] 1 

Q
ij

1(Th4) Performance against threshold (Th) 4 – [0, 1] 1 

Q
ij

1(Th5) Performance against threshold (Th) 5 – [0, 1] 1 

Q
ij

1(Th6) Performance against threshold (Th) 6 – [0, 1] 1 

Q
ij

1(Th7) Performance against threshold (Th) 7 – [0, 1] 1 

Q
ij

2  Events between services (j = 4) Events {0, 1, … } 0 

k = 2 

Tij
1 Hours worked – operational Hours [0, ∞] Min 

Tij
2 Finish date/ time vs deadline Hours [-∞, ∞] Max 

Tij
3 Hours worked – SAP Hours [0, ∞] Min 

Tij
4 Operational vs SAP hours worked Hours [0, ∞] 0 

k = 3 

Eij
1  Operational hours dedicated to SPD Hours [0, ∞] Min 

Eij
2  Operational hours dedicated to T Hours [0, ∞] Min 

Eij
3  Operational hours dedicated to TIS Hours [0, ∞] Max 

Eij
4  Operational hours dedicated to R1 Hours [0, ∞] Max 

Eij
5  Operational hours dedicated to R2 Hours [0, ∞] Max 

Eij
6  Indirect to direct operational hours worked – [0, ∞] Min 

Eij
7  Actual hours to expected hours worked – [0, ∞] Min 

k = 4 

Dij
1  Missing data in documentation – [0, 1] 0 

Dij
2  Logical inconsistency in documentation – [0, 1] 0 

Dij
3  Wrong data input in documentation – [0, 1] 0 

k = 5 
TCRij

1  Number of completed tasks Tasks {0, 1, …} Max 

TCRij
2  Number of completed tasks in last 1 year Tasks {0, 1, …} Max 

k = 6 

TBCij
1  Completion % of certification level 1 % [0, 1] 1 

TBCij
2  Completion % of certification level 2 % [0, 1] 1 

TBCij
3  Completion % of certification level 3 % [0, 1] 1 

 

3.5 Technician Proficiency Matrix 

 After performance sub-metrics for individual work orders and for technicians have 

been calculated, they must be aggregated. Through aggregation, the kth performance 

metric for the jth order type for the ith technician can be calculated and used to inform 

future decisions by way of the Technician Proficiency Matrix. The following are the 
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general steps in aggregating the previously mentioned performance sub-metrics to their 

respective kth performance metric. 

 

3.5.1 Performance Sub-Metric Aggregation 

 All calculated performance sub-metrics for each individual work order were 

grouped by the ith technician and the jth order type. The average of each performance sub-

metric was then found over all individual work order performance sub-metrics. This 

process is illustrated below for Q
ij

1(Th1): 

 

Q
ij

1(Th1) = 
1

Nij

∑ Q
ij

1n
(Th1)

Nij

n=1

 

 

for i = 1, 2, … I and j = 1, 2, 3, 4, and 5, where Nij is the number of work orders the ith 

technician completed in the jth order type for which Q
ij

1n
(Th1) was finite. 

This process was completed to find the following aggregated performance sub-

metrics: Q
ij

1
(Th1), Q

ij

1
(Th2), Q

ij

1
(Th3), Q

ij

1
(Th4), Q

ij

1
(Th5), Q

ij

1
(Th6), Q

ij

1
(Th7), Q

i4

2
, Tij

1 , Tij
2 , 

Tij
3 , Tij

4 , Eij
1 , Eij

2 , Eij
3 , Eij

4 , Eij
5 , Eij

6 , Eij
7 , Dij

1 , Dij
2 , and Dij

3 . Additionally, by definition, TCRij
1
, 

TCRij
2
, TBCij

1
, TBCij

2
, and TBCij

3
 are already effectively aggregated over the jth order type 

for the ith technician. 
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3.5.2 Quality Profile (QPij) and Q
ij

1
 

 As noted in Table 7 in Appendix B.3 when discussing the formulation of Q
ij

1n
, 

evaluation was conducted over multiple thresholds (Th): 

 

Th = [0  30  60  90  120  150  180] days 

 

where 180 days was chosen as the maximum Th because that is the typical interval 

between ZPM3 (preventative maintenance). This approach yielded Q
ij

1n(Th1), Q
ij

1n(Th2), 

Q
ij

1n(Th3), Q
ij

1n(Th4), Q
ij

1n(Th5), Q
ij

1n(Th6), and Q
ij

1n(Th7) at the individual work order 

level. 

 After aggregating over all work orders in the jth order type for the ith technician to 

achieve Q
ij

1
(Th1), Q

ij

1
(Th2), Q

ij

1
(Th3), Q

ij

1
(Th4), Q

ij

1
(Th5), Q

ij

1
(Th6), and Q

ij

1
(Th7), it is 

important to generate the technician Quality Profile (QPij) and Q
ij

1
. The QPij is the profile 

generated when the Q
ij

1
 at individual thresholds are connected and illustrates how a 

technician’s quality of a completed job changes with time. The Q
ij

1
 is the area under the 

curve of the QPij. The area under the curve is calculated through simple trapezoidal 

integration. This is illustrated in Figure 5. 

  In addition to its use in generating Q
ij

1
 using the area under the curve, the 

QPij has added practical use as a potential tool for technician performance evaluation. A 

performance manager could directly use the QPij to compare the lasting quality of two or 
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more technicians and draw useful insights from the relative shape comparisons of the 

profiles. Information could be attained that might be masked when the area under the curve 

is taken to generate Q
ij

1
. As such, in addition to the generation of Q

ij

1
, it is recommended to 

take note of the availability of the QPij for the ith technician in the jth order type. 

 

 

Figure 5: Quality Profile of Technicians A and B 

 

3.5.3 Normalization 

To compare different technicians using performance sub-metrics and metrics, 

normalization over all documented technicians must occur. This enables a relative 

comparison to the mean of the technician group to be created for each individual 

technician. 

Normalization is often preferred for two main reasons. The first reason is that it is 

usually more beneficial to evaluate technicians relative to their peers rather than a 

potentially subjective absolute benchmark. Through normalization, the best technician 
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will become the benchmark for performance evaluation. This enables a dynamic 

benchmark which evolves with changes to technician skills or technician pool 

composition. The second reason is that normalization has the benefit of scaling all sub-

metrics to a standard normal distribution, N(0,1). As all sub-metrics now follow the same 

distribution, they are easily added together to create their respective kth performance 

metric used in the Technician Proficiency Matrix. Without this scaling effect, addition in 

this way would not be possible. 

Each sub-metric mentioned previously is normalized over the documented 

technician pool. The technician pool average and standard deviation is found for each sub-

metric and the following formula, illustrated with the Q
ij

1
 sub-metric, is applied to 

normalize the ith technician’s aggregated sub-metric for the jth order type: 

 

Q
ij

1
  = 

Q
ij

1
 - Ave

St. Dev.
 ~ N(0,1) 

 

 A final note on normalization is with respect to the direction of improvement for 

each documented sub-metric. If the sub-metric direction of improvement is (+), then the 

normalization formula mentioned above is sufficient. However, if the sub-metric direction 

of improvement is (–), then the resulting normalized performance sub-metric must be 

multiplied by (–1), essentially changing the direction of improvement to (+). This ensures 

that when all sub-metrics are combined, they all represent the same direction of 

improvement. Table 4 illustrates the direction of improvement for each sub-metric. 
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Table 4: Performance Sub-Metric Direction of Improvement 

Sub-Metric 
Direction of 

Improvement 

Normalized Metric 

Multiplied by (–1) 

Q
ij
1  + NO 

Q
i4
2  – YES 

Tij
1 – YES 

Tij
2 + NO 

Tij
3 – YES 

Tij
4 – YES 

Eij
1  – YES 

Eij
2  – YES 

Eij
3  + NO 

Eij
4  + NO 

Eij
5  + NO 

Eij
6  – YES 

Eij
7  – YES 

Dij
1  – YES 

Dij
2  – YES 

Dij
3  – YES 

TCRij
1 + NO 

TCRij
2 + NO 

TBCij
1 + NO 

TBCij
2 + NO 

TBCij
3 + NO 

 

3.5.4 Weighted Average 

 The final calculation to the normalized sub-metrics to create the respective kth 

performance metric is an application of weighted averaging. Each group of sub-metrics is 

given a set of parameters for coefficients. These coefficients must sum to 1 for each group 

of sub-metrics. The parameter sets are as follows: 
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k = 1: q
ij
m for i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and m = 1 and 2, where 

∑ q
ij
m = 11

m=1  for j = 1, 2, 3, and 5, and 

∑ q
ij
m = 12

m=1  for j = 4 

 

k = 2: tij
m for i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and m = 1, 2, 3 and 4, where 

∑ tij
m4

m=1  = 1 for all j 

 

k = 3: eij
m for i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and m = 1, 2, 3, 4, 5, 6, and 7, where 

∑ eij
m7

m=1  = 1 for all j 

 

k = 4: dij
m

 for i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and m = 1, 2, and 3, where 

∑ dij
m3

m=1  = 1 for all j 

 

k = 5: tcrij
m for i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and m = 1 and 2, where 

∑ tcrij
m2

m=1  = 1 for all j 

 

k = 6: tbcij
m

for i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and m = 1, 2, and 3, where 

∑ tbcij
m3

m=1  = 1 for all j 

 

Therefore, the final performance metrics, Aijk, for i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and 

k = 1, 2, 3, 4, 5, and 6, are calculated as in Table 5. 

 In all applications of weighted averaging thus far, all weights within a sub-metric 

group have been equal. It is at the discretion of the operations director to set the weights. 

While equal weights may be a standard starting point, it is recognized that domain 

knowledge will likely allow specific manipulation of these weights to different values, 

provided they sum to 1 within the sub-metric group. More information on how to 

incorporate domain knowledge and preference weighting is contained in Section 5.2 and 

Appendix D.2 and D.2.1. 
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Table 5: kth Performance Metric Calculation 

Performance 

Metric 
Calculation Applicable j 

Aij1 q
ij
1Q

ij
1  j = 1, 2, 3, and 5 

Ai41 ∑ q
ij
mQ

ij
m

2

m=1
 j = 4 

Aij2 ∑ tij
mTij

m
4

m=1
 j = 1, 2, 3, 4, and 5 

Aij3 ∑ eij
mEij

m
7

m=1
 j = 1, 2, 3, 4, and 5 

Aij4 ∑ dij
m

Dij
m

3

m=1
 j = 1, 2, 3, 4, and 5 

Aij5 ∑ tcrij
mTCRij

m
2

m=1
 j = 1, 2, 3, 4, and 5 

Aij6 ∑ tbcij
m

TBCij
m

3

m=1
 j = 1, 2, 3, 4, and 5 

 

3.5.5 Technician Proficiency Matrix 

Once all calculations have been completed, the resulting performance metrics, of 

the form Aijk, are able to be used. Aijk represents the ith technician’s historical performance 

in the kth attribute and jth order type, relative to their peers. 

 To gain clearer insight to a technician’s performance in a certain order type or in 

a certain attribute type, aggregation of the Aijk of the specific jth order type or kth attribute 

type can be completed. While there are many different aggregation methods that can be 

used, such as data envelopment analysis or work order type frequency weighting, simple 

averaging has been proposed as a simple illustration of principle. Alternative aggregation 

methods are discussed in Section 5.2 and Appendix D.2 and D.2.1. 

Averaging Aijk over the jth order type has been designated as the technician work 

order proficiency, Bij. Averaging over the kth attribute type has been designated as the 
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technician attribute proficiency, Cik. It is noted that, in the proposed case study, equal 

weighting of all Aijk coefficients, aijk, is used in the calculation of each Bij and Cik. 

 Finally, again using simple averaging for illustration purposes, either group of 

proficiencies can be averaged to create the overall technician proficiency, Di. For this case 

study, it is noted that equal weighting of all Bij and Cik coefficients, bij and cik,  

respectively, is used in the calculation of Di. With simple, non-weighted averaging, 

1

6
∑ Cik

6
k=1  = 

1

5
∑ Bij

5
j=1 , but, if weights were applied to specific Bij or Cik, then this relation 

would likely not hold. 

 With the basic technician performance metrics, Aijk, the different technician 

proficiencies, Bij and Cik, and the overall technician proficiency, Di, the Technician 

Proficiency Matrix can be created, as seen in Figure 6. 

 With creation of the Technician Proficiency Matrix, many different analyses can 

be conducted. Individual technician performance metrics can be evaluated or compared 

with other available technicians. A technician’s jth work order proficiency could be 

compared to their (j+1)th work order proficiency. A technician’s kth attribute in the jth order 

type could be drilled down into sub-metrics to determine underlying trends. A single kth 

attribute could be compared across all documented technicians. All technicians could be 

evaluated on their overall technician proficiency as a site-wide proficiency check. The 

possibilities are nearly limitless. 
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Figure 6: Technician Proficiency Matrix 

 

From start to finish, the methodology to establish the holistic framework for 

generation of the Technician Proficiency Matrix has provided the following results: 

 

1. Expert survey 

2. Work order grouping strategy 

3. Work order filtering and data cleaning strategy 

4. Performance sub-metrics 

5. Technician Proficiency Matrix 

 

The uses for each piece of information individually and for all pieces holistically 

are varied and numerous. To illustrate some of these uses, Chapter 4 details a completed 

case study of a large wind farm owner and operator. Potential inferences that can be made 

from the results of the holistic Technician Proficiency Matrix framework are discussed. 
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4. CASE STUDY 

 

 The following case study of a large wind farm owner and operator details the 

holistic generation of the Technician Proficiency Matrix for a sub-farm with 10 

technicians. Once generated, three (3) different use cases detailing various inferences will 

be explained and discussed. The analysis of each distinct case uses all assumptions 

previously mentioned, as referenced in Figure 19 in Appendix C.1, with random seed 0 

for the basic illustration of the case study and random seeds 1, 37, and 48 for use cases 1, 

2, and 3, respectively. 

 Three important items must be discussed regarding the case study. Notes 1 – 3 are 

briefly defined below and then discussed in detail in Appendix C.2.1, C.2.2, and C.2.3, 

respectively: 

 

1. The large wind farm owner and operator does not currently record the individual 

technicians assigned to each work order. Technicians must be randomly generated. 

2. The large wind farm owner and operator does not currently have in place standard 

operation line item descriptions. Text search and pre-defined allocation 

distributions must be used. 

3. The large wind farm owner and operator designated the date range of post – 

January 1, 2017 as the case study range. 
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Of the five steps outlined in Chapter 3, the case study borrows exactly the 

procedures and results from the expert survey and the work order grouping strategy. The 

Work order filtering and data cleaning strategy is defined more specifically below. For 

brevity, the generation of the individual work order performance sub-metrics is not 

discussed. The performance sub-metrics attained after aggregation and normalization are 

illustrated. The Technician Proficiency Matrix for each technician is defined for this case 

study. Finally, three (3) distinct use cases are illustrated with conclusions drawn. 

 

4.1 Generation of Technician Proficiency Matrices 

Table 6: Case Study - Work Order Filtering and Data Cleaning 
Rows – resulting number of data frame rows and 

Cols – resulting number of data frame columns 

General Process 

Step 
Case Study Specific Step Rows Cols 

Data collection 

SQL download of “Work Order Headers” DB 77890 50 

SQL download of “Notifications” DB 72506 40 

SQL download of “Work Order Operations” DB 103743 33 

Full join of databases on work order (WO) # 167389 111 

Irrelevant data 

removal 

Removal of irrelevant & duplicate data fields 167389 59 

Removal of instances w/o designated WO # 151877 59 

Re-formatting 

Formatting of remaining “Date” data fields 151877 59 

Formatting of remaining “Time” data fields 151877 59 

Formatting of remaining “Char” data fields 151877 59 

Formatting of remaining “Num” data fields 151877 59 

Filtering 

Filter by region, wind farm, wind sub-farm 10230 59 

Filter by turbine level work orders 7005 59 

Filter by date range, post – 01/01/2017 1973 59 

Re-distribution 
Re-distribution of general turbine work orders to ALL 

individual functional locations 
9521 61 

Re-formatting 
Grouping of individual operations to specific work order 9521 61 

Final data field ordering 9521 61 

Filtering Removal of work orders w/o “Actual Hours Worked” 5895 61 

Re-formatting Re-designation of “Order Type” to consistent format 5895 61 
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 As can be seen in Table 6, iterative data selection, reformatting, and filtering 

enables radical data dimension reduction. The overall data set has been reduced from an 

initial full join of 167389 different work order and notification operations, each with at 

most 111 distinct data fields, to 5895 work order operations over 537 total work orders, 

each with only the most critical data fields. After data has been cleaned, random technician 

assignment must be completed, per note 1, above. Using 10 technicians, randomly 

sampled in sets of three without replacement for each of the 537 work orders, the 

distribution of work orders in Figure 7 is achieved, using random seed 0 as an example. 

The cleaned data for the wind sub-farm can now be used to generate performance sub-

metrics for quality, timeliness, efficiency, documentation, and task completion rate. 

For brevity and simplicity, the calculation of individual work order performance 

sub-metrics is not detailed. Instead, the case study performance sub-metrics are shown 

below after aggregation over all individual work orders and normalized over all 

documented technicians. The performance sub-metrics detail Q
ij

1
 (after area under the QPij 

has been calculated), Q
i4

2
, Tij

1 , Tij
2 , Tij

3 , Tij
4 , Eij

1 , Eij
2 , Eij

3 , Eij
4 , Eij

5 , Eij
6 , Eij

7 , Dij
1 , Dij

2 , Dij
3 , TCRij

1
 

and TCRij
2
 for technicians 1 through 10 for order types ZPM0/6, ZPM1, ZPM2/4, and 

ZPM3. Three items must be noted, below: 

 

- TBCij
1
, TBCij

2
, and TBCij

3
 are #N/A in the following calculation as the structure 

needed to calculate these metrics was not currently in place when the case study 

was executed. 
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- ZPM0/6 is #N/A for all performance sub-metrics for all technicians due to lack of 

applicable work orders. As can be seen from Figure 7, there was only one 

applicable ZPM0/6 work order, assigned to technicians 3, 4, and 5. Because of lack 

of data, i.e. less than 2 work orders for calculation, no performance sub-metrics 

could be calculated. 

- As with ZPM0/6, ZPM5 is #N/A for all performance sub-metrics for all 

technicians due to lack of applicable work orders. As can be seen from Figure 7, 

there were no applicable ZPM5 work orders. 

 

 

Figure 7: Technician Work Order Distribution by Order Type 
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All performance sub-metrics are aggregated over all work orders for each 

technician and have been normalized according to a N(0,1) distribution. Additionally, it 

can be seen that TBCij
1
, TBCij

2
, and TBCij

3
 are not calculated, ZPM0/6 is included for 

technicians 3, 4, and 5, but are #N/A for all performance sub-metrics, and no technician 

has a calculated performance sub-metric (including #N/A) registered for ZPM5. 

Aggregated and normalized performance sub-metrics for all technicians may be seen in 

Figure 20, in Appendix C.3. 

 Each performance sub-metric is aggregated through weighted average (equal 

weights in all cases for this case study) to create the respective kth performance metric in 

the jth order type for each technician, Aijk. Additionally, performance metrics are 

aggregated through simple averaging to create the technician work order proficiencies, Bij, 

technician attribute proficiencies, Cik, and overall technician proficiencies, Di. The final 

Technician Proficiency Matrix, using the example of the 5th technician, can be seen below: 

 

 

Figure 8: Technician Proficiency Matrix, Technician #5 (i = 5) 
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Graphics illustrating all technician performance metrics, Aijk in Figure 21, work 

order proficiencies, Bij in Figure 22, and attribute proficiencies, Cik in Figure 23, may be 

viewed in Appendices C.4, C.5, and C.6, respectively. The ith technician’s overall 

proficiency, Di, can also be seen on each graphic as the black points connected by a dashed 

line. 

 

4.2 Use Cases 

 To illustrate different examples of the holistic generation of the Technician 

Proficiency Matrix, the following three use cases offer critical evaluation of distinct 

scenarios. In each case, the random seed for technician-to-work-order assignment was 

varied and the resulting scenarios were analyzed. Details drawn from the different use 

cases range from simple observations in some cases to complex inferences in other cases.  

Therefore, all following use cases represent scenarios that initiate at the point 

where an operations manager has completed calculation of technician performance 

metrics, Aijk, work order proficiencies, Bij, attribute proficiencies, Cik, and overall 

proficiencies, Di. The operations manager, having evaluated all Aijk, Bij, Cik, and Di for 

technicians 1 through 10 over all work order and attribute types, inputs the raw data into 

a graphical template. From the graphical template, they can visually inspect relative 

technician performance against their peers and determine any interesting phenomena. The 

operations manager must now provide evaluation inferences to the operations director to 

potentially inform future decisions. 
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4.2.1 Use Case 1 

 In Use Case 1, random seed 1, the operations manager draws two important 

conclusions from the graphical representation of the technician performance metrics and 

overall proficiencies, Aijk and Di, in Figure 9: 1) Different compositions in individual 

technician performance metrics can yield similar overall proficiencies and 2) new hires 

can still perform comparatively well to their peers. This is illustrated through the following 

scenario. 

The operations manager wants to provide a recommendation on how to improve 

the 7th technician’s quality attribute proficiency as that of Technician 7 is significantly 

lower than that of other technicians. The operations manager sees that Technicians 1, 2, 

and 8 have the highest overall proficiency scores, which are all relatively similar. 

However, to choose which of the technicians to pair with the 7th technician, the operations 

manager evaluates the individual performance metrics and distributions of performance 

metrics for these technicians. They find the following: 

 

- Technician 1 has an un-skewed distribution with an almost equal number of 

performance metrics better than or worse than their overall proficiency. Their 

quality attribute proficiency is relatively average. 

- Technician 2 has a negatively skewed distribution mainly because of one quality 

performance metric radically worse than the average technician. Like Technician 

1, the 2nd technician’s quality attribute proficiency is relatively average. 
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- Technician 3 has a positively skewed distribution mainly because of one quality 

and one task completion rate performance metric radically better than the average 

technician. The 8th technician has a very high quality attribute proficiency. 

 

 

Figure 9: Technician Performance Metrics 

 

From these observations, the operations manager clearly recognized that, although 

different technicians can have very different strengths and weaknesses, they can yield the 

same overall proficiencies. Therefore, to increase the quality attribute proficiency of the 

7th technician, it was recommended they be paired with technician 8. Technician 8 was 
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chosen as they have a high quality attribute proficiency. This is preferable to arbitrarily 

picking a technician among 1, 2, and 8 because they all share very similar overall 

proficiencies. 

 Additionally, the operations manager was asked to identify why Technician 6 has 

a lower overall proficiency than their peers. In evaluating individual performance metrics 

of the 6th technician, the operations manager identifies that the 6th technician must be either 

a new hire or a relatively inexperienced technician as they have a very low task completion 

rate attribute proficiency. Therefore, the operations manager can observe that, given the 

technician’s inexperience, the technician is performing close to or better than their peers 

in most major attribute categories. In this case, it would be wise to monitor the 

inexperienced technician to determine if they continue to excel as they complete more 

tasks or if they regress back to the average technician’s performance. 

 

4.2.2 Use Case 2 

 In Use Case 2, random seed 37, the operations manager draws two important 

conclusions from the graphical representation of the technician work order proficiencies 

and overall proficiencies, Bij and Di, in Figure 10: 1) An individual technician can be 

extremely consistent across all work order types and 2) technician pools can be highly 

interchangeable. This is illustrated through the following scenario. 

 The operations manager has been tasked with determining whether Technician 2, 

who primarily completes ZPM2/4 work orders, can be reliably placed on teams handling 
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ZPM1 or ZPM3 work orders. The operations manager evaluates the individual work order 

proficiencies and their distributions and finds the following: 

 

- Technician 2 is above the average technician’s performance on all work order 

types 

- Technician 2 has extremely consistent work order proficiency across all work 

order types, where data is present. 

 

 

Figure 10: Technician Work Order Proficiency 
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From these conclusions, it is clear that the individual technician performs relatively 

well against the average technician with respect to all work order types. It is also clear that 

there is no significant difference in their individual performance across different work 

order types. Therefore, the operations manager can safely recommend that technician 2 

may switch from ZPM2/4 work orders to either ZPM1 or ZPM3 work orders without a 

significant change in the performance outcome of the completed work order. 

 Additionally, the operations manager is asked to make a recommendation on which 

technicians may be considered interchangeable to this sub-farm. This is desired as this 

particular sub-farm experiences a low level of technician availability. Technicians are 

often pulled from this sub-farm to attend to complex tasks at other, less equipped farms. 

By evaluating the distribution of work order proficiencies of each technician and 

comparing them to each other, the operations manager makes the following conclusions: 

 

- All technicians’ overall proficiencies are within 0.5 standard deviations of each 

other 

- The range of all technicians’ work order proficiencies is less than 0.5 standard 

deviations 

 

By these conclusions, all technicians are very close to one another in overall 

proficiencies and are consistent across multiple work order types. Therefore, the 

operations manager can safely recommend that almost any technician may be assigned to 

those tasks for which a regularly assigned technician is absent. This will result in a 
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negligible difference to the overall outcome of the task completion in terms of 

performance metrics. 

 

4.2.3 Use Case 3 

 In Use Case 3, random seed 48, the operations manager draws one important 

conclusion from the graphical representation of the technician performance metrics and 

overall proficiencies, Aijk and Di, in Figure 11: Both generalists and specialists can exist 

in the same pool of technicians. This is illustrated through the following scenario. 

  The operations manager has been tasked with defining a technician assignment 

strategy to build the capabilities of Technician 10. To do so, the operations manager is 

concerned with building capabilities by two methods: 1) Cross learning from specialists 

and 2) cross learning from generalists. With respect to specialty, Technician 10 needs 

assistance in the ZPM2/4 quality performance metric and in timeliness attribute 

proficiency. With respect to generality, Technician 10 needs a positive shift to overall 

proficiency. 

For specialists, the operations manager is concerned with those technicians who 

have high proficiencies in the areas in which Technician 10 performs poorly. Pairing 

Technician 10 with a specialist will, theoretically, increase their performance metrics with 

respect to the specialized skill. For generalists, the operations manager is concerned with 

those technicians who have a very consistent distribution of performance metrics. Pairing 

Technician 10 with a generalist will, theoretically, holistically improve their overall set of 

performance metrics. 



 

51 

 

 

 

Figure 11: Technician Performance Metrics 

 

The operations manager evaluates the individual performance metrics and 

respective distributions of all technicians and identifies the following conclusions: 

 

- Technician 4 has the highest ZPM2/4 quality performance metric 

- Technician 6 has the highest and most consistent timeliness attribute proficiency 

- Technicians 2 and 3 have very consistent performance metrics across all work 

order and attribute types 
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Therefore, Technician 4 is labeled as a ZPM2/4 quality specialist, Technician 6 is 

labeled as a timeliness attribute proficiency specialist, and Technicians 2 and 3 are 

designated as generalists. Technician 4 is paired with Technician 10 on ZPM2/4 work 

orders as often as available to increase Technician 10’s ZPM2/4 quality performance 

metric. Technician 6 is paired with Technician 10 as often as available to increase 

Technician 10’s timeliness attribute proficiency. Technicians 2 and 3 are paired with 

Technician 10 as often as available to holistically improve and tighten the distribution of 

performance metrics of Technician 10. 
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5. DISCUSSION 

 

In generating the framework for holistic performance metric generation, as 

detailed in the Chapter 3, and illustrated in Chapter 4, many observations were identified 

and refined. In the following sections, key insights derived from development of 

performance metrics and completion of the case study of a large wind farm owner and 

operator are discussed. 

Briefly mentioned are recommendations on excellence in data quality, differing 

aggregation techniques for performance metrics and proficiencies, and a proposed integer 

programming modeling framework for task-to-team assignment. Expanded discussion and 

analysis for data quality, performance metric aggregation techniques, and integer 

programming modeling is contained within Appendices D.1, D.2, and D.3, respectively. 

 

5.1 Excellence in Data Quality 

 In establishing a data-driven methodology for generation of technician 

performance metrics and proficiencies, four key elements of data quality were identified: 

 

1. Consistent and accurate data entry (D.1.1) 

2. Database consistency (D.1.2) 

3. Technician recording (D.1.3) 

4. Operation description consistency (D.1.4) 

 



 

54 

 

Consistent and accurate data entry must enable the user to consistently enter 

accurate information, enter information that matches the intended meaning of the data 

field, and avoid data entry mistakes due to confusion. Database consistency is concerned 

with design of appropriately similar and/ or dissimilar data fields across multiple databases 

to aid the user in inferring the intended meaning of specific data fields. Technician 

recording on individual work orders must be incorporated such that user input error is 

avoided. Finally, operation description consistency is required to simplify the calculation 

process of Efficiency and Documentation performance sub-metrics and eliminate the use 

of text-based searching methods and pre-defined work order hours allocation. 

In developing robustness against these four data quality measures, the results of 

the individual Technician Proficiency Matrices will be more easily trusted and interpreted. 

Once robustness in data quality is achieved, strategic decisions may be confidently made 

upon the results of technician performance metrics and proficiencies. 

 

5.2 Performance Metrics Aggregation Techniques 

 In calculating performance sub-metrics by work order and by technician, 

aggregated performance metrics, and attribute, work order, and overall technician 

proficiencies, there is ample opportunity to incorporate domain knowledge. This specific 

information may be included through the manipulation of different aggregation 

techniques. While there are advanced aggregation techniques such as data envelopment 

analysis and work order frequency weighting, these are considered out-of-scope for 

discussion. Therefore, the opportunity to affect change to the calculation of metrics and 
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proficiencies is best realized through adjustment of calculation coefficients, i.e. simple 

weighting. 

 It is assumed that the discerning manager or executive will not want to manipulate 

results at such a granular level as the calculation of performance sub-metrics. Therefore, 

it is recommended that changing coefficient weights to represent domain knowledge be 

restricted to the calculation of technician performance metrics and proficiencies. The only 

caveat for changing calculation coefficients is that the sum of coefficients over the 

calculation must remain equal to 1. Further colloquial and mathematical explanations may 

be found in Appendix D.2 and D.2.1. 

 

5.3 Task-to-Team Assignment Integer Programming Formulation 

Once data-driven calculation of technician performance metrics and proficiencies 

has been completed, it becomes possible to construct an optimization program to assign 

technicians to pending maintenance tasks. However, when considering assignment, it is 

important to ensure that no one team suffers greatly for the benefit of another team in 

terms of overall performance metric or proficiency aggregates or scores. Therefore, it is 

proposed to use the maximin approach for the task-to-technician assignment integer 

program. Further exposition and assumptions, as well as the proposed model itself, is 

included in Appendix D.3 for elaboration. 

When considering the task-to-team assignment integer program, certain scenarios 

must be considered for their impact: 
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1. Technician assignment restrictions and task prioritizations (D.3.3.1) 

2. Basic certification requirements (D.3.3.2) 

3. Work Order, Attribute, and Overall Proficiency Requirements (D.3.3.3) 

4. Minimum Ability Spread Cross Learning and Assignment Mixing (D.3.3.4) 

5. Emergency Planning & Manager Discretion (D.3.3.5) 

 

Critical evaluation of these different scenarios for their impact to the assumptions, 

objectives, decision variables, and constraints of the proposed task-to-team assignment 

integer program, will yield a robust assignment model. Further, by incorporating the 

previous suggestions with regards to excellence in data quality and performance metrics 

aggregation techniques, the foundation for a holistic packaging of the Personnel 

Deployment Strategy may be achieved. 
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6. CONCLUSION 

Throughout the course of this thesis, an extensive literature review was conducted, 

an extensive technician performance metric and proficiency generation methodology was 

defined, a thorough and in-depth case study was completed, and critical and expansive 

topics were provided and discussed. 

In the literature review, the proposed research aims were critically evaluated 

against the thematic areas of performance measurement and management, maintenance 

modeling and management, reliability analysis, and team optimization. The proposed 

research direction was established as novel in the application of maintenance in the wind 

industry and an analysis of each major thematic area was conducted and expanded upon. 

In the methodology, expansive processes and examples were detailed to establish 

the application independent development of the Technician Proficiency Matrix and 

associated information. Frameworks were identified and proposed for the incorporation of 

expert surveys, work order grouping strategies, and work order filtering and data cleaning 

strategies. Relationships were defined for calculation of technician performance sub-

metrics and technician performance metric aggregation and normalization strategies were 

illustrated. Detailed explanation and development were provided for the creation of 

technician attribute, work order, and overall proficiencies with their potential uses 

highlighted. Finally, a framework was provided for conveniently locating all information 

in the Technician Proficiency Matrix. 

In the case study of a large wind farm owner and operator, a detailed example of 

the holistic generation of the Technician Proficiency Matrices for a pool of technicians 
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(randomly generated by uniform distribution without replacement, see Appendix C.2.1) 

was illustrated. Real work order data was provided over the entire life-span of all wind 

farms and wind sub-farms of the large wind farm owner and operator. This data was used 

to exemplify the creation of Technician Proficiency Matrices on a single wind sub-farm 

using work orders from January 1st, 2017 to March 15th, 2018. Three distinct use cases and 

resulting actions were presented through the perspective of an operations manager refining 

decisions for an operations director. 

In the discussion of the different research aims of the Personnel Deployment 

Strategy, critical insights into proposals for excellent data quality were identified through 

development of the methodology and execution of the case study. Implementation 

strategies for consistent and accurate data entry, database consistency, technician 

recording, and operation description consistency were provided. A detailed explanation of 

the potential inclusion of domain knowledge and weighting preferences in performance 

metrics and proficiencies was offered. Finally, the proposed model for the task-to-team 

assignment integer program with critical consideration of specialty constraints and 

scenarios was offered. 

As stated previously, the transition from a full-service (or hybrid) to a self-perform 

maintenance policy requires two major initiatives. The first, wholly transferring the skills 

and knowledge of the wind turbine original equipment manufacturer maintenance staff to 

the staff of the wind farm owner and operator, may be accomplished through strategic 

decision making, as illustrated in the use cases presented in Section 4.2. The second, 

efficient management and deployment of all operations and maintenance assets, may be 
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accomplished through refinement and implementation of the task-to-team assignment 

integer programming formulation, as discussed in Section 5.3 and Appendix D.3. 

Holistically, the development of technician performance metrics and proficiencies, 

grouped with key insights into establishing excellent data quality practices and the 

proposal of a task-to-team assignment integer programming formulation, lays a firm 

foundation for facilitating a successful transition to a self-perform maintenance policy. 

A critical belief in the continuing development of the Personnel Deployment 

Strategy is that a technician may distinguish themselves through their own performance. 

Yet, the question remains as to whether the capability to distinguish one’s self stems from 

inherent ability or from opportunity. Are some technician’s inherently better at certain 

tasks or is it strictly related to the developed experience through the opportunities afforded 

them? Can the performance of a technician who has little experience challenge that of 

those who have much? Certainly, it is possible to find concrete examples of both, inherent 

ability over experience and experience over inherent ability, which may sway 

methodology creation.  

However, it is the personal choice of the author to assume a growth mindset and 

dictate that, no matter a technician’s inherent ability, improvement is always a possibility 

through being afforded the opportunity to hone their skills. This is the thought process that 

is at the core of the Personnel Deployment Strategy, a chance to identify and decidedly 

help improve, in the most efficient manner, the abilities of every technician. 
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 APPENDIX A 

EXPANSION OF LITERATURE REVIEW 

 

As discussed by Levy and Ellis 2006 in their approach to a systematic literature 

review, “an effective literature review should include the following characteristics: a) 

methodologically analyze and synthesize quality literature, b) provide a firm foundation 

to a research topic, c) provide a firm foundation to the selection of research methodology, 

and d) demonstrate that the proposed research contributes something new to the overall 

body of knowledge or advances the research field’s knowledgebase.”82 In this spirit, a 

systematic literature review has been completed to provide the bedrock for the 

development of a comprehensive research methodology for defining an optimal Personnel 

Deployment Strategy. The following appendices detail the individual steps conducted in 

this literature review. 
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A.1 Input 

Input collection for the literature review includes four distinct, iterative search 

methods: 1) generic keyword search, 2) targeted keyword search, 3) publication citation 

search, and 4) author publication history search. 

 

1. In the 1st round of the input stage, “generic keyword search”, three keywords were 

developed which were aligned with the proposed research direction: “performance 

measurement and management”, “team optimization”, and “deployment 

optimization”. 

2. In the 2nd round of the input stage, key words were chosen from every relevant 

publication and reduced to create a set of targeted keywords. 

3. In the 3rd round of the input stage, relevant citations were chosen from every 

publication selected from the 1st and 2nd round. 

4. In the 4th and final round of the input stage, the entire publication history of every 

author sourced from the 1st, 2nd, and 3rd rounds of the input stage were reviewed. 

 

*Initial key words were cross-referenced with “maintenance”, “wind”, and “wind farm” 

to trend search results, although no relevant results from other applications or industries 

were excluded  

 

After completion of the four rounds of the input stage, a final cursory check against 

iteratively new keywords, citations, and authors was conducted to ensure no dramatic gaps 
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in the comprehensiveness of the Relevant Body of Knowledge. While not every 

publication thematically relevant to the proposed research direction was recorded, a 

comprehensive picture of the state of the field was reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

76 

 

A.2 Processing 

Themes were developed to compare the publications obtained in the input stage to 

the proposed research direction. The processing stage categorizes the publications 

according to the following themes: 

 

Performance Measurement and Management (PM&M) 

- Literature focused on understanding the importance of performance measurement 

and concerned with development of practical tools to adequately capture and 

manage it 

Maintenance Modeling and Management (MMM) 

- Literature focused on the development of optimized maintenance asset deployment 

strategies by leveraging reliability analysis and its predictions 

Reliability Analysis (RA) 

- Literature focused on the development of physics-based and data-driven modeling 

for turbine performance evaluation and fault detection 

Team Optimization (TO) 

- Literature focused on the development of optimization techniques and algorithms 

to yield the most optimal team composition for a specific application 

 

Additionally, literature deemed relevant, but not adhering to one of the previous four 

themes was given the designation “Other” (OTH). 
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A.3 Output 

The results shown in the output stage of the literature review contain two distinct 

items: 1) the Relevant Body of Knowledge with an overview of the resulting literature and 

2) a thematic analysis. 
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A.4 Interpretation of the Relevant Body of Knowledge 

- The first, second, and third circles represent hierarchical levels of thematic 

categorization for a publication, e.g. “PM&M” (1st) → “W” (2nd) → “M” (3rd) 

- Lighter area coloring indicates publications are relevant to the author proposed 

research path while darker area colors indicate non-relevant publications 

- The notation for the 3rd thematic categorization contains the number of 

publications existing in that thematic path, e.g. “RA” → “W” → “M 25” indicates 

25 relevant publications in the maintenance function in the wind-industry w.r.t. 

Reliability Analysis 

- A single publication may have multiple 1st level thematic categorizations, e.g. a 

publication may offer a fault prediction tool (Reliability Analysis) and recommend 

an optimized maintenance strategy (Maintenance Modeling and Management) 

based on the tool output 

- Assuming an acceptably comprehensive literature search, missing and/ or small, 

lightly colored sections of the Relevant Body of Knowledge usually indicate an 

area where novel research may be applied 

 

 

 

 

 

 



 

79 

 

A.5 Thematic Groupings 

 

Figure 12: Thematic Grouping 
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A.6 Publications Referenced 

 

Figure 13: Referenced Publications 
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APPENDIX B 

METHODOLOGY 

 

B.1 Application Specific Nomenclature 

Order Type: 

“Order Type”, “Large Corrective”, “Refurbishment”, “Improvement”, “ZPM0/6”, 

“Reactive Maintenance”, ZPM1”, “Predictive Maintenance”, “Inspections”, “ZPM2/4”, 

“Preventative Maintenance”, “ZPM3”, “Change Maintenance”, “ZPM5” 

 

Functional Location: 

“Functional Location”, “Electrical”, “ELE”, “Structure and Facilities”, “FAC”, 

“Foundation”, “FND”, “Gearbox”, “GBX”, “Generator”, GEN”, “Hydraulic Units”, 

“HYD”, “Instrumentation”, “INS”, “Monitoring Communication Systems”, “MCS”, 

“Power Condition”, “PCD”, “Pitch System”, “PTH”, “Rotor”, “ROT”, “Transformer 

Center”, “XFR”, “Yaw System”, “YAW” 

 

Databases: 

“Work Order Headers”, “Notifications”, “Work Order Operations”, “Work Order 

Number”, “Actual Hours Worked”, “Order Type” 

 

Data Fields: 

“Actual Hours Worked”, “Malfunction End Date”, “Malfunction End Time”, 

“Actual Finish Date”, “Actual Finish Time”, “Actual Finish Execution Date”, “Actual 

Finish Execution Time”, “Basic Finish Date”, “Malfunction Start Date”, “Malfunction 

Start Time”, “Actual Start Date”, “Actual Start Time”, “Actual Start Execution Date”, 

“Actual Start Execution Time”, Basic Start Date” 
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B.2 Expert Survey Questions 

1. What are the metrics by which you would rate a technician’s performance, given 

they were assigned 

a. a single task 

b. multiple tasks of the same turbine type, location, and weather conditions 

c. multiple tasks of differing severity, turbine type, location, and weather 

conditions 

2. Are there other major potential variants that could affect a technician’s 

performance other than task severity, turbine type, turbine location, or weather 

conditions? 

3. Are differences in skill expected to properly complete preventative vs reactive 

maintenance? i.e. should a technician be expected to perform each type of 

maintenance task equally well? 

4. Are there major task types other than preventative and reactive maintenance? 

5. Is there an effect on technician performance or productivity based on who his/ her 

teammates are? Who their team leader is? Who their site manager is? 

6. Is proper safety procedure potentially hindering any previously mentioned 

performance metric? For example, does it take longer to complete a task when 

following proper safety procedures? 

7. How, in a measurable way, can a technician champion safety? i.e. should there be 

a separate performance metric for safety or should it be assumed that all work is 

done with complete safety procedure adherence? 
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8. Is there variation in the task preparedness of each service center that would affect 

performance metrics? Should all service center preparedness be standardized? 

9. Should proper work order documentation or completion be considered a 

performance metric? What additional work order fields would you consider to be 

most useful? 

10. How do you think employee satisfaction plays a role in technician performance? 

How would you monitor technician satisfaction and how often? Are there any 

concerns from technicians that you are currently aware of? 

11. What are the major levels of key performance indicator hierarchy that you are 

aware of? e.g. portfolio level, wind farm level, etc. Should we add any more under 

the change umbrella of self-perform? 

12. Are there any other thoughts you have? 
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B.3 Quality (k = 1, Q) by Individual Work Order 

To evaluate the quality associated with a work order (k = 1), two (2) distinct sub-

metrics of form Q
ij

mn
 must be calculated for each work order. The calculation of the first 

sub-metric, Q
ij

1n
, is not specific to any order type while that of the second, Q

ij

2n
, is specific 

to order type ZPM3 (j = 4). 

 

Q
ij

1n
 

Q
ij

1n
 is defined as the 1st quality sub-metric (m = 1) for the nth work order in the jth 

order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Q
ij

1n
 is the evaluation of the elapsed time (Δt) from documented close of the 

nth work order to the next immediate event in that specific work order grouping against 4 

different cases, as summarized below: 

 

Case 1 (Current Calculation) 

The next immediate event is the date/ time associated with the performance metric 

calculation. As performance metric calculation was initiated before Δt could encounter 

another immediate event, no conclusion can be drawn about the quality of the nth work 

order in the work order group. 
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Case 2 (Threshold) 

The next immediate event is the date/ time associated with a designated quality 

Threshold (Th) target. As Δt has reached or surpassed the associated Th, quality of the nth 

work order in the work order group has achieved the desired value. 

 

Case 3 (ZPM0/6, ZPM1, ZPM2/4, or ZPM5) 

The next immediate event is the date/ time associated with an occurring ZPM0/6, 

ZPM1, ZPM2/4, or ZPM5 work order. As Δt has not reached or surpassed the associated 

Th before the (n+1)th work order was triggered, quality of the nth work order in the work 

order group has not achieved the desired value. 

 

Case 4 (ZPM3) 

The next immediate event is the date/ time associated with an occurring ZPM3 

work order. A ZPM3 (Preventative Maintenance) conceptually resets the specific 

functional location in which the nth work order occurred, rendering the quality evaluation 

inconclusive. As a ZPM3 has occurred before Δt could encounter another immediate 

event, no conclusion can be drawn about the quality of the nth work order in the work order 

group. 
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Figure 14: Visual Illustration, 1st Quality Sub-Metric 

 

Q
i4

2n
 

Q
i4

2n
 is defined as the 2nd quality sub-metric (m = 2) for the nth work order in the 4th 

order type for the ith technician, for i = 1, 2, …, I, j = 4, and n = 1, 2, …, Ni4. Specifically, 

Q
i4

2n
 is the number of ZPM0/6, ZPM1, ZPM2/4, and ZPM5 work orders between the nth 

and (n+1)th work order of type j = 4 in the work order group, as illustrated below: 

 

 

Figure 15: Visual Illustration, 2nd Quality Sub-Metric 
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The following table illustrates the range, target, and notes summary for Q
ij

1n
 and 

Q
ij

2n
 at the individual work order level. 

 

Table 7: Quality Metric Summary 

Quality 

Metric Range Target 

Q
ij
1n [0,1] 11,2 

Q
i4
2n {0, 1, … } 0 

NOTES: 
1 One difficulty in calculating Q

ij
1n is in choosing an appropriate value of the target 

Threshold, Th. Inherent in this choice is a degree of subjectivity. If Th is too small, the ith 

technician’s Q
ij
1n will be much higher as the threshold will be much easier to satisfy. Likewise, 

if Th is too large, the ith technician’s Q
ij
1n will be much lower as the threshold will be much more 

difficult to satisfy. 
 To combat both these issues, it was decided to apply the logic of Case 1, 2, 3, and 4 to 

a range of Th, specifically the following: 

 

Th = [0  30  60  90  120  150  180] days 

 

where 180 days was chosen as the maximum Th because that is the typical interval between 

ZPM3 (preventative maintenance). Q
ij
1n was then calculated for the range of thresholds, i.e. 

Q
ij
1n(Th1), Q

ij
1n(Th2), Q

ij
1n(Th3), Q

ij
1n(Th4), Q

ij
1n(Th5), Q

ij
1n(Th6), and Q

ij
1n(Th7) at the individual 

work order level. 
 When aggregating at the technician level, the ith technician’s Quality Profile (QPij) for 

the nth work order in the work order group can be determined, i.e. how the quality of their work 

changes with time. The individual elements of the QPij can be aggregated over all work orders 

of the jth type and the area under the curve can be calculated for the technician’s average Q
ij
1n. 

2 In defining a threshold, Th, for Q
ij
1n it is important to note the difference between the 

quality threshold and the idea of a mechanical fatigue threshold. Establishment of a quality 

threshold is meant as an evaluation of a technician’s work order completion. Mechanical design 

limits or fatigue thresholds, however, are different and are related to initial and remaining life 

of components/ systems. This research uses the idea that a technician’s completed work imparts 

additional life to the component and/ or system if it is being properly fixed and new life if it is 

being properly replaced. It is noted that the resulting component life after completion of work 

will be different depending on if the component and/ or system is repaired vs replaced. This 

nuance is not captured in this initial stage of research and should be considered a target area for 

refinement, perhaps in conjunction with some condition-based maintenance models. 
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B.4 Timeliness (k = 2, T) by Individual Work Order 

To evaluate the timeliness associated with a work order (k = 2), four (4) distinct 

sub-metrics of form Tij
mn must be calculated for each work order. The calculation of sub-

metrics Tij
1n, Tij

2n, Tij
3n, and  Tij

4n is not specific to any order type. 

 

Tij
1n 

Tij
1n is defined as the 1st timeliness sub-metric (m = 1) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Tij
1n is the number of hours worked over all operations in the nth work order 

in the work order group as illustrated below: 

 

Table 8: Tabular Illustration, 1st Timeliness Sub-Metric 

Operation Line 

Item Number 

Operation Description Actual Hours 

Worked 

10 Safety/ Preparation/ Documentation 2 

20 Travel 1 

30 Troubleshooting/ Inspection/ Service 5 

40 Repair 15 

50 Replace 5 

 

Tij
1n = 28hrs 

 

Tij
2n 

Tij
2n is defined as the 2nd timeliness sub-metric (m = 2) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 
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Specifically, Tij
2n is the number of hours difference between completion of the nth work 

order in the work order group and its respective required deadline, as illustrated below: 

 

 

Figure 16: Visual Illustration, 2nd Timeliness Sub-Metric 

 

Tij
3n 

Tij
3n is defined as the 3rd timeliness sub-metric (m = 3) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Tij
3n is the number of hours the nth work order in the work order group was 

active, i.e. Δt from work order start to work order completion as documented in the work 

order management system (typically SAP or a similar system), as illustrated below: 
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Figure 17: Visual Illustration, 3rd Timeliness Sub-Metric 

 

Tij
4n 

Tij
4n is defined as the 4th timeliness sub-metric (m = 4) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Tij
4n is the deviation of the number of actual hours worked in the nth work 

order of the work order group to the number of hours the work order was active, Δt from 

work order start to work order completion as documented in the work order management 

system (typically SAP or a similar system). Colloquially, Tij
4n is a function of Tij

1n and Tij
3n, 

as illustrated below: 

 

Tij
4n = ABS(Tij

1n - Tij
3n) 

 

The following table illustrates the range, target, and notes summary for Tij
1n, Tij

2n, 

Tij
3n, and Tij

4n at the individual work order level. 
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Table 9: Timeliness Metric Summary 

Timeliness 

Metric Range Target 

Tij
1n [0, ∞] Minimize1 

Tij
2n [-∞, ∞]2,3 Maximize 

Tij
3n [0, ∞] Minimize1 

Tij
4n [0, ∞] 04 

NOTES: 
1 While the stated target for Tij

1n and Tij
3n is to be minimized, it is unrealistic to assume 

that this value will ever reach 0 as any work order that is completed should also include an 

amount of work completed, excluding errors in documentation. In most cases, the realistic target 

for Tij
3n is to be better than the normalized average over all technicians. 

2 +∞ is limited to the elapsed Δt between the official work order start date/ time and the 

required end date/ time 
3 In a few cases, the designated required end date was deemed illogical, e.g. a blanket 

input of 20 years out from start of work. In these cases, a logical proxy for the required end date 

was found and used. 
4 Tij

4n targeting a value of zero places an emphasis on importance in data quality. In this 

regard, the actual hours worked should be as close as possible to the hours the work order has 

been active. A high deviation potentially indicates that some amount of work was completed 

and not recorded, hence leaving the work order open longer. Conversely, if the deviation is 

relatively small, this indicates that the actual hours worked is a close representation to the 

totality of work completed on a work order. 
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B.5 Efficiency (k = 3, E) by Individual Work Order 

To evaluate the efficiency associated with a work order (k = 3), seven (7) distinct 

sub-metrics of form Eij
mn must be calculated for each work order. The calculation of sub-

metrics Eij
1n, Eij

2n, Eij
3n, Eij

4n , Eij
5n, Eij

6n, and Eij
7n is not specific to any order type. 

 

Eij
1n 

Eij
1n is defined as the 1st efficiency sub-metric (m = 1) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Eij
1n is the number of actual hours worked recorded relating to Safety, 

Preparedness, and Documentation (SPD) in the nth work order of the work order group. 

Operation line item descriptions were text searched (case insensitive) against the 

following terms: “SPD”, “safety”, “prep”, “docum”, and “assist”. An illustration is shown 

below: 

 

Table 10: Tabular Illustration, 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th Efficiency Sub-Metrics 

Operation Line 

Item Number 

Operation Actual Hours 

Worked 

Expected Hours 

Worked 

10 SPD 2 2 

20 T 1 0.5 

30 TIS 5 2 

40 R1 15 12 

50 R2 5 8 

 

Eij
1n = 2hrs 
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Eij
2n 

Eij
2n is defined as the 2nd efficiency sub-metric (m = 2) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Eij
2n is the number of actual hours worked recorded relating to Travel (T) to 

and from the turbine in the nth work order of the work order group. Operation line item 

descriptions were text searched (case insensitive) against the following terms: “T” and 

“travel”. An illustration is shown in Table 10 and below: 

 

Eij
2n = 1hrs 

 

Eij
3n 

Eij
3n is defined as the 3rd efficiency sub-metric (m = 3) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Eij
3n is the number of actual hours worked recorded relating to 

Troubleshooting, Inspections, and Services (TIS) in the nth work order of the work order 

group. Operation line item descriptions were text searched (case insensitive) against the 

following terms: “trouble”, “inspect”, “invest”, “maint”, “service”, and “checklist”. An 

illustration is shown in Table 10 and below: 

 

Eij
3n = 5hrs 
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Eij
4n 

Eij
4n is defined as the 4th efficiency sub-metric (m = 4) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Eij
4n is the number of actual hours worked recorded relating to Repair (R1) in 

the nth work order of the work order group. Operation line item descriptions were text 

searched (case insensitive) against the following terms: “repair”. An illustration is shown 

in Table 10 and below: 

 

Eij
4n = 15hrs 

 

Eij
5n 

Eij
5n is defined as the 5th efficiency sub-metric (m = 5) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Eij
5n is the number of actual hours worked recorded relating to Replace (R2) 

in the nth work order of the work order group. Operation line item descriptions were text 

searched (case insensitive) against the following terms: “replace”. An illustration is shown 

in Table 10 and below: 

 

Eij
5n = 5hrs 
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Eij
6n 

Eij
6n ≡ the 6th efficiency sub-metric (m = 6) for the nth work order in the jth order 

type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. Specifically, 

Eij
6n is the ratio of hours worked in SPD and T to the hours worked in TIS, R1, and R2 in 

the nth work order of the work order group, as illustrated in Table 10 and below: 

 

Eij
6n = {

Eij
1n + Eij

2n

Eij
3n + Eij

4n + Eij
5n

}  = {
2 + 1

5 + 15 + 5
}  = 0.15 

 

Eij
7n 

Eij
7n is defined as the 7th efficiency sub-metric (m = 7) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Eij
7n is the ratio of actual hours worked to the expected number of hours 

worked in the nth work order of the work order group, as illustrated in Table 10 and below: 

 

Expected Hours Worked = (2 + 0.5 + 2 + 12 + 8) = 24.5hrs 

 

Eij
7n = {

Actual Hours Worked

Expected Hours Worked
}  = {

23hrs

24.5hrs
}  = 0.939 

 

The following table illustrates the range, target, and notes summary for Eij
1n, Eij

2n, 

Eij
3n, Eij

4n, Eij
5n, Eij

6n, and Eij
7n at the individual work order level. 
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Table 11: Efficiency Metric Summary 

Efficiency 

Metric Range Target 

Eij
1n [0, ∞] Minimize1,4,7 

Eij
2n [0, ∞] Minimize2,4,7 

Eij
3n [0, ∞] Maximize3,4,7,9 

Eij
4n [0, ∞] Maximize3,4,7,9 

Eij
5n [0, ∞] Maximize3,4,7,9 

Eij
6n [0, ∞] Minimize5,7 

Eij
7n [0, ∞] Minimize6,7,8 

NOTES: 
1 While the stated target of Eij

1n is to be minimized, the standards of safety, preparedness, 

and documentation shall not be sacrificed. 
2 While the stated target of Eij

1n is to be minimized, the standards of safety in travel shall 

not be sacrificed. 
3 While the stated target of Eij

3n, Eij
4n, and Eij

5n is to be minimized, no quality should be 

sacrificed to achieve this aim. 
4 Eij

1n, Eij
2n, Eij

3n, Eij
4n, and Eij

5n represent the relative use of time in the nth work order for 

specific operation types. It is beneficial to account for these outside of Eij
6n as it allows specific 

operational efficiency comparisons between technicians. 
5 While it is apparent that Eij

6n is a function of Eij
1n, Eij

2n, Eij
3n, Eij

4n, and Eij
5n, it serves a 

different fundamental purpose. Eij
6n is concerned with the comparison of indirect to direct work. 

While SPD and T are important, they are not directly addressing the turbine fault, as are TIS, 

R1, and R2. This indirect-to-direct ratio is important in determining how the technician’s 

operation hours are spent in service of the fault to which they are assigned. 
6 Eij

7n is compared to a pre-populated value for expected hours worked, dependent on 

work order type. Due to varying degrees of complexity, expected hours worked may not always 

be a completely fair comparison. Eij
7n is a sub-metric where future refinements may be applied. 

7 Many operations in the case study used non-standard designations, so extensive text 

search was used to identify appropriate categories. If a category was not identified for an 

operation in the nth work order, operation hours were distributed according to pre-selected ratios 

(SPD = 0.05, T = 0.05, TIS = 0.25, R1 = 0.35, R2 = 0.35). It is noted that this occurrence will 

trend certain calculations to this pre-selected distribution. 
8 Many work orders did not have expected hours worked. Therefore, Eij

7n = #N/A 
9 While it could be argued that a technician should minimize the time spent on all tasks, 

given a specific level of quality, it was deemed that operations relating to TIS, R1, and R2 

should not be rushed in any sense. By stating that the target is to be maximized, it assumes that 

the operation takes just long enough to ensure complete quality and that a longer time somewhat 

relates to higher quality. While this may not necessarily be true, for an initial case study it was 

feasible. In any case, the comparison of direct vs indirect hours is handled in Eij
6n whose target 

is to be minimized. 
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B.6 Documentation (k = 4, D) by Individual Work Order 

To evaluate the documentation associated with a work order (k = 4), three (3) 

distinct sub-metrics of form Dij
mn must be calculated for each work order. The calculation 

of sub-metrics Dij
1n, Dij

2n, and Dij
3n is not specific to any order type. 

 

Dij
1n 

Dij
1n is defined as the 1st efficiency sub-metric (m = 1) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Dij
1n is categorically concerned with missing data. It is the number of critical 

fields which are blank or #N/A, averaged over all operations in the nth work order of the 

work order group. If a field is blank or #N/A, then a 1 is recorded. If a field is NOT blank 

or #N/A, then a 0 is recorded. An illustration can be seen below: 

 

Table 12: Tabular Illustration, 1st Documentation Sub-Metric 

Field 

Designation 

Op10 

SPD 

Op20 

T 

Op30 

TIS 

Op40 

R1 

Op50 

R2 

Critical Field Blank 5 0 2 0 8 

Critical Field #N/A 4 3 1 5 0 

Missing Score 0.1411 0.047 0.047 0.078 0.125 

Dij
1n 0.0876 

NOTES: 
1 In this application there were 64 designated critical fields. The 

sum of all missing critical fields for a single operation was divided by 

64. Subsequently, scores for each operation were then averaged for Dij
1n 
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Dij
2n 

Dij
2n is defined as the 2nd efficiency sub-metric (m = 2) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Dij
2n is categorically concerned with logical inconsistencies. It is the average 

number of instances of anachronism between designated critical dates and times 

associated with operation line items in the nth work order of the work order group. If an 

anachronism is detected, a 1 is recorded. If no anachronism is detected, a 0 is recorded. 

Inconsistencies were evaluated over the following cases, with an illustration below: 

 

Table 13: Logical Inconsistency Cases, 2nd Documentation Sub-Metric 

Case Date/ Time Test Date/ Time 

1 Malfunction End Date BEFORE Malfunction Start Date 

2 Malfunction End Time BEFORE Malfunction Start Time 

3 Actual Finish Date BEFORE Actual Start Date 

4 Actual Finish Time BEFORE Actual Start Time 

5 Actual Finish Execution Date BEFORE Actual Start Execution Date 

6 Actual Finish Execution Time BEFORE Actual Start Execution Time 

7 Basic Finish Date BEFORE Basic Start Date 

 

Table 14: Tabular Illustration, 2nd Documentation Sub-Metric 

Designation Op10 Op20 Op30 Op40 Op50 

Case 1 0 0 0 0 0 

Case 2 0 0 0 0 0 

Case 3 1 1 1 0 0 

Case 4 0 0 0 0 0 

Case 5 1 0 0 1 1 

Case 6 1 0 1 1 1 

Case 7 1 1 1 1 1 

Logical Score 0.571 0.286 0.429 0.429 0.429 

Dij
2n 0.429 
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Dij
3n 

Dij
3n is defined as the 3rd efficiency sub-metric (m = 3) for the nth work order in the 

jth order type for the ith technician, for i = 1, 2, …, I, j = 1, 2, 3, 4, 5, and n = 1, 2, …, Nij. 

Specifically, Dij
3n is categorically concerned with wrong input to critical fields. Dij

3n 

evaluates individual operation line items in the nth work order of the work order group 

over the following three cases, with an illustration below: 

 

Case 1 (Number of distinct operations) 

 Consistency in operational line items is extremely important for the calculation of 

multiple metrics, specifically for Efficiency. Therefore, it is ideal for each work order in 

the work order group to have five (5) distinct operations: SPD, T, TIS, R1, and R2. Case 

1 is concerned with the number of distinct operations in the nth work order. If the nth work 

order does not have five unique operations, then it receives a score of 1 for Case 1. If the 

nth work order does have five unique operations, then it receives a score of 0 for Case 1. 

 

Case 2 (Population of actual work hours) 

 In addition to consistency in operation line items, it is important for each operation 

to correctly record its associated hours, Actual Hours Worked in this instance. If the 

specific operation line item in the nth work order does not have any registered Actual Work 

Hours, it receives a 1 for Case 2. If the specific operation line item in the nth work order 

does have registered Actual Work Hours, it receives a 0 for Case 2. 
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Case 3 (Correct operation line items) 

 Much like Case 1, Case 3 is concerned with consistency in operation line items. 

However, Case 3 is specifically interested in whether each operation line item corresponds 

to a standard operation, i.e. SPD, T, TIS, R1, or R2. If the specific operation line item 

description in the nth work order does not belong to any of the specified categories, it 

receives a 1 for Case 3. If the specific operation line item description in the nth work order 

does belong to one of the specified categories, it receives a 0 for Case 3. 

 

Table 15: Tabular Illustration, 3rd Documentation Sub-Metric 

WO100001579 

Operation Number Operation Description Actual Hours Worked 

10 Crew mobilization 0 

20 Root cause of core and disposal 0 

30 Freight for gearbox 0 

40 Installation services 0 

50 Crane services 0 

60 Tower cleaning from oil spill 0 

70 Standby charges 0 

 

Table 16: Tabular Illustration Continued, 3rd Documentation Sub-Metric 

Case Op10 Op20 Op30 Op40 Op50 Op60 Op70 Score 

Case 1 1 1 

Case 2 1 1 1 1 1 1 1 1 

Case 3 1 1 1 01 01 1 1 0.714 

Dij
3n 0.905 

NOTES: 
1 Even though Op40 and 50 did not register as SPD, T, TIS, R1, or R2, the term 

“service” did register with the standard TIS designation by the text search used across 

Efficiency and Documentation metrics. 
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The following table illustrates the range, target, and notes summary for Dij
1n, Dij

2n, 

and Dij
3n at the individual work order level. 

 

Table 17: Documentation Metric Summary 

Documentation 

Metric Range Target 

Dij
1n [0, 1]1 0 

Dij
2n [0, 1] 02 

Dij
3n [0, 1] 03 

NOTES: 
1 It was found that many work orders had the same critical fields which were designated 

blank or #N/A. It is expected, therefore, that there is some level of correlation between Dij
1n of 

different work orders 
2 It was found that very few work orders suffered from a significant number of logical 

inconsistencies in dates and times, i.e. anachronisms 
3 Many operations used non-standard designations, so extensive text search was used to 

identify whether the appropriate categories were or were not satisfied. In the ideal case, 

operation line item description would simply be selected from a pulldown list of standard items. 
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B.7 Task Completion Rate (k = 5, TCR) by Technician 

To evaluate the task completion rate associated with a technician (k = 5), two (2) 

distinct sub-metrics of form TCRij
m

 must be calculated for each technician. The calculation 

of sub-metrics TCRij
1
 and TCRij

2
 is not specific to any order type. 

 

TCRij
1
 

TCRij
1
 is defined as the 1st task completion rate sub-metric (m = 1) in the jth order 

type for the ith technician, for i = 1, 2, …, I and j = 1, 2, 3, 4, 5. Specifically, TCRij
1
 is the 

number of work orders of the jth type the ith technician has completed over their entire 

history, as illustrated below: 

 

Table 18: Tabular Illustration, 1st Task Completion Rate Sub-Metric 

   Technician 

   AA BB CC DD EE 

   i = 1 i = 2 i = 3 i = 4 i = 5 

Order 

Type 

ZPM0/6 j = 1 2 1 5 0 1 

ZPM1 j = 2 15 10 4 20 10 

ZPM2/4 j = 3 5 12 7 9 15 

ZPM3 j = 4 7 5 1 8 3 

ZPM5 j = 5 3 1 5 2 4 
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Figure 18: Visual Illustration, 1st Task Completion Rate Sub-Metric 

 

TCRij
2
 

TCRij
2
 is defined as the 2nd task completion rate sub-metric (m = 2) in the jth order 

type for the ith technician, for i = 1, 2, …, I and j = 1, 2, 3, 4, 5. Specifically, TCRij
2
 is a 

sub-set of  TCRij
1
 and is the number of work orders of the jth type the ith technician has 

completed over the last 1 year.  

 

TCRij
2
 = TCRij

1

∈ Last 1 Year
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The following table illustrates the range, target, and notes summary for TCRij
1
 and 

TCRij
2
 at the technician level. 

 

Table 19: Task Completion Rate Metric Summary 

Task Completion Rate 

Metric Range Target 

TCRij
1 {0, 1, …} Maximize2 

TCRij
2 {0, 1, …}1 Maximize2 

NOTES: 
1 Recent relevant experience is likely to be just as important as a technician’s overall 

body of work as technical documentation and/ or best practices can continually evolve, amongst 

other changing aspects of maintenance. Additionally, the time period of 1 year is somewhat 

subjective based on the user and can be exchanged with a different time period if there is 

justification. 
2 It is noted that TCRij

1 will continuously increase, while TCRij
2 will either increase or 

decrease depending on a technician’s assignments over the past year. This gives rise to special 

uses of each sub-metric. For instance, TCRij
1 could give a good indication of a technician who 

may have a large history of in-depth troubleshooting experience over a large variety of turbine 

components and models. On the other hand, TCRij
2 could give a good indication of a technician 

who could potentially offer insight on an issue dealing with a recently developed component 

addition to a turbine. 
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B.8 Task-Based Certification (k = 6, TBC) by Technician 

 TBC is special in that it does not require information from a specific work order 

or group of work orders. TBC is calculated strictly based on the technician’s certification 

and training history and is proposed for two distinct uses: 1) relative comparison of basic 

technician aptitudes, marked by completion of certification and/ or training tasks, and 2) 

strict satisfaction of certification and/ or training requirements for specific work order 

types. 

To evaluate the task-based certification associated to a technician (k = 6), three (3) 

distinct sub-metrics of form TBCij
m

 must be calculated for each technician. By mapping 

specific certification and training tasks to their related work order types, potentially with 

weighting applied to certain tasks, task-based certification sub-metrics can be calculated 

for specific order types. The calculation of sub-metrics TBCij
1
,  TBCij

2
, and TBCij

3  is not 

specific to any order type. 

 It is important to note that, currently, the data infrastructure used to formulate 

Quality, Timeliness, Efficiency, Documentation, and Task Completion Rate metrics, 

provided by a large wind farm owner and operator, does not yet allow structuring and 

calculation of TBC. Therefore, the following derivations are strictly a proposed 

framework which is subject to change as more structure is defined. 

 

B.8.1 TBC Task Mapping 

 It is necessary to create a relation between the sets of certification and training 

tasks to the work order types which they enable the technician to properly complete. 
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Although the subject of the case study does not have the appropriate structure in place to 

support TBC calculation, their training and certification system will be used for high level 

illustration of how a task mapping may be applied. 

 Task mapping, at its highest level, relates completion of a certification or training 

tasks towards credit in the appropriate TBC metric for the specific work order types to 

which they apply. As an example, the following certification task mapping with three (3) 

certification levels is illustrated below. A task is mapped with a 1 if it is related to or a 0 

if it is not related to the appropriate work order type, respectively: 

 

Table 20: Tabular Illustration, Task-Based Certification Mapping 

Cert 

Level 
Cert/ Task ZPM0/6 ZPM1 ZPM2/4 ZPM3 ZPM5 

1 

1 1 1 1 1 1 

2 1 1 1 1 1 

3 1 0 0 1 0 

4 1 0 0 1 0 

2 

1 0 1 0 1 0 

2 1 1 1 1 0 

3 0 0 1 1 1 

3 

1 1 0 1 0 1 

2 1 0 0 0 1 

3 0 1 0 0 1 

4 0 1 1 0 1 

5 1 1 1 1 0 

 

 Therefore, when calculating TBCij
1
, TBCij

2
, and/ or TBCij

3
 with respect to specific 

order types (j = 1, 2, 3, 4, or 5), only those tasks which have been mapped with a 1 to that 

order type will be considered. Additionally, depending on the necessity or relative 
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importance of a certain task, non-similar weights may be utilized to make a specific task 

worth more to the overall calculation of TBCij
1
, TBCij

2
, and/ or TBCij

3
. 

 An added benefit of using a holistic task mapping system is the ability to use drill 

down mechanisms when analyzing a specific TBCij
m

. For instance, if the ith technician was 

up for consideration for a ZPM0/6 work order (j = 1), a director may need to check the 

technician’s basic certifications for access to working with the appropriate equipment. 

They would isolate the appropriate TBCij
m

 and drill down within that metric structure to 

determine which of the individual tasks mapped with a 1 have been completed by the 

technician. If they have completed the requisite tasks, they may be assigned. 

 Task mapping forms the very basic structure for calculation of TBCij
1
, TBCij

2
, and 

TBCij
3
. However, additional structure must be put in place to allow automatic and timely 

updating of the database or documentation detailing those training and/ or certification 

tasks which the technicians have completed. The mapping is only fully useful when 

applied to the technician’s history of completed certification and/ or training tasks. 

What follows is the detailed calculation of the proposed TBCij
1
, TBCij

2
, and TBCij

3
 

with reference to Table 20 for illustration. As stated earlier, these calculations are derived 

with respect to the inherent structure of training and certification tasks at a large wind farm 

owner and operator and can differ depending on application. 

 

TBCij
1
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TBCij
1
 is defined as the 1st task-based certification sub-metric (m = 1) in the jth 

order type for the ith technician, for i = 1, 2, …, I and j = 1, 2, 3, 4, 5. Specifically, TBCij
1
 

is the completion percentage of the 1st level of technician certification tasks, as illustrated 

in Table 20 and below: 

 

Table 21: Tabular Illustration, 1st Task-Based Certification Sub-Metric 

Cert 

Level 
Cert/ Task 

Tech. Status 

(1 = Complete, 0 = Incomplete) 

1 

1 1 

2 1 

3 1 

4 0 

 

Therefore, by multiplying the Technician Status with its respective mapping in 

Table 20, the appropriate TBCij
1
 for the ith technician is calculated. The calculation result 

is one of four cases, as shown below, aided with illustration: 

 

Case 1 (Technician status = 1, Mapping = 1) 

- The ith technician is credited with a completed task 

- The completed task is mapped to the jth order type 

- The completed task is counted toward the ith technician’s completion percentage 

in the jth order type 

 

Case 2 (Technician status = 1, Mapping = 0) 

- The ith technician is credited with a completed task 
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- The completed task is not mapped to the jth order type 

- The completed task is not counted toward the ith technician’s completion 

percentage in the jth order type 

 

Case 3 (Technician status = 0, Mapping = 1) 

- The ith technician is credited with a non-completed task 

- The non-completed task is mapped to the jth order type 

- The non-completed task is counted toward the ith technician’s completion 

percentage in the jth order type 

 

Case 4 (Technician status = 0, Mapping = 0) 

- The ith technician is credited with a non-completed task 

- The non-completed task is not mapped to the jth order type 

- The non-completed task is not counted toward the ith technician’s completion 

percentage in the jth order type 

 

Table 22: Tabular Illustration Continued, 1st Task-Based Certification Sub-Metric 

Cert 

Level 
Cert/ Task 

ith Tech. 

Status 

ZPM0/6 

j = 1 

ZPM1 

j = 2 

ZPM2/4 

j = 3 

ZPM3 

j = 4 

ZPM5 

j = 5 

1 

1 1 1 1 1 1 1 

2 1 1 1 1 1 1 

3 1 1 0 0 1 0 

4 0 1 0 0 1 0 

TBCij
1 0.75 1.00 1.00 0.75 1.00 

 

TBCij
2
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TBCij
2
 is defined as the 2nd task-based certification sub-metric (m = 2) in the jth 

order type for the ith technician, for i = 1, 2, …, I and j = 1, 2, 3, 4, 5. Specifically, TBCij
2
 

is the completion percentage (%) of the 2nd level of technician certification tasks, as 

illustrated in Table 20 and below, similarly to TBCij
1
: 

 

Table 23: Tabular Illustration, 2nd Task-Based Certification Sub-Metric 

Cert 

Level 
Cert/ Task 

ith Tech. 

Status 

ZPM0/6 

j = 1 

ZPM1 

j = 2 

ZPM2/4 

j = 3 

ZPM3 

j = 4 

ZPM5 

j = 5 

2 

1 0 0 1 0 1 0 

2 1 1 1 1 1 0 

3 0 0 0 1 1 1 

TBCij
2 1.0 0.50 0.50 0.33 0.00 

 

TBCij
3
 

TBCij
3
 is defined as the 3rd task-based certification sub-metric (m = 3) in the jth 

order type for the ith technician, for i = 1, 2, …, I and j = 1, 2, 3, 4, 5. Specifically, TBCij
3
 

is the completion percentage (%) of the 3rd level of technician certification tasks, as 

illustrated in Table 20 and below, similarly to TBCij
1
: 

 

Table 24: Tabular Illustration, 3rd Task-Based Certification Sub-Metric 

Cert 

Level 
Cert/ Task 

ith Tech. 

Status 

ZPM0/6 

j = 1 

ZPM1 

j = 2 

ZPM2/4 

j = 3 

ZPM3 

j = 4 

ZPM5 

j = 5 

3 

1 1 1 0 1 0 1 

2 1 1 0 0 0 1 

3 0 0 1 0 0 1 

4 1 0 1 1 0 1 

5 0 1 1 1 1 0 

TBCij
3 0.67 0.33 0.67 0.00 0.75 

 



 

112 

 

 

 

 

The following table illustrates the range, target, and notes summary for TBCij
1
, 

TBCij
2
, and TBCij

3  at the technician level. 

 

Table 25: Task-Based Certification Metric Summary 

Task-Based Certification 

Metric Range Target 

TBCij
1 [0, 1]1,2,3 1 

TBCij
2 [0, 1]1,2,3 1 

TBCij
3 [0, 1]1,2,3 1 

NOTES: 
1 It is important to restate that the task-based certification performance metrics may only 

be accomplished if there is a robust internal structure to support data collection and 

manipulation of a technician’s historical training and/ or certification. Ideally, a linked DB such 

as MySQL would have records of technician training and/ or certification and would be linked 

to whichever online service or manual service administers and proctors the training. 
2 It is up to the user to determine whether specific weights will be applied to certain tasks 

within a certification level. However, all weights must add to the value 1 over all tasks within 

the certification level to have the desired effect. 
3 TBCij

1, TBCij
2, and TBCij

3 all may be used in the eventual formulation of the IP assigning 

technicians to tasks based on their performance metrics. In fact, the task-based certification 

metrics may be best suited to form “hard” constraints which require definite certification levels 

to be considered for assignment to certain tasks. 
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APPENDIX C 

CASE STUDY 

 

C.1 Case Study & Use Case Methodology 

 

Figure 19: Case Study & Use Case Methodology 
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C.2 Case Study Notes 

C.2.1 Note 1: Technician Recording 

The large wind farm owner and operator does not currently record the individual 

technicians assigned to each work order. While this functionality is currently being 

addressed, it was not available at the time of data evaluation. To simulate this data, 10 

technicians were created and randomly assigned in teams of 3 to each work order 

according to a uniform distribution, without replacement. While the assignment of 

technicians to work orders was not representative of reality, the completed work orders 

and respective sub-metrics to which the analytically generated technicians were assigned 

was representative of reality. Therefore, the conclusions drawn at the end of the case study 

on the generated metrics are valid if the wind farm had randomly assigned their 10 

technicians to all work orders. Obviously, this would not have realistically been the case, 

but is a plausible situation for results demonstration. 

 

C.2.2 Note 2: Operation Description Consistency 

The large wind farm owner and operator does not currently have in place standard 

operation line item descriptions. The proposal for individual operation line item 

descriptors in Appendix B.5 is to be one of SPD, T, TIS, R1, and R2. If the operation line 

item descriptor in the actual work order is significantly different than these pre-defined 

terms, it becomes extremely difficult to categorize the operation. If the operation cannot 

be categorized into one of the previously defined descriptors, either by direct matching or 

through relevant text search, then the operation’s hours worked were accumulated and 
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distributed to pre-defined operations based on a user selected distribution. The current 

distribution is as follows: SPD = 0.05, T = 0.05, TIS = 0.20, R1 = 0.35, and R2 = 0.35. 

While it is recognized that this is not ideal and will trend the Efficiency sub-metrics toward 

this distribution and its respective Eij
6n ratio, the scenario is plausible for results 

demonstration. 

 

C.2.3 Note 3: Applicable Dates 

The large wind farm owner and operator designated the date range of post – 

January 1, 2017 as the case study range. This date range was selected as they had made a 

significant shift in policy to place greater emphasis on data quality at this time. While the 

holistic generation of the Technician Proficiency Matrix has been proven to execute over 

the entire history of all of their wind farms and wind sub-farms, the case study was 

restricted to only those work orders which started or finished from January 1, 2017 to 

March 15, 2018, the date on which the case study was completed. 

 

 

 



 

116 

 

C.3 Performance Sub-Metrics (Aggregated & Normalized)

 

Figure 20: Performance Sub-Metrics (Aggregated & Normalized) 
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C.4 Technician Performance Metrics 

 

Figure 21: Technician Performance Metrics 
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C.5 Technician Work Order Proficiency 

 

Figure 22: Technician Work Order Proficiency 
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C.6 Technician Attribute Proficiency 

 

Figure 23: Technician Attribute Proficiency 
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APPENDIX D 

DISCUSSION 

 

D.1 Excellence in Data Quality 

 To generate performance metrics for use in informing decisions without attempt at 

enabling excellence in data quality is counterintuitive. In general, poor quality input begets 

poor quality output. Heinrich, et al. 2018 effectively conveyed the importance of data 

quality with their opening statement: 

 

“Due to rapid technological development, companies increasingly rely on 

data to support decision making and to gain a competitive advantage. To 

make informed and effective decisions, it is crucial to assess and ensure 

the quality of the underlying data.”62 

 

Following this opening declaration, there are many cited figures which illustrate 

the uncertainty in executive management decisions that poor data quality inspires. In 

addition to eliciting ill-conceived decisions and general distrust in data, poor data quality 

can also have disastrous measurable effects on business outcomes. According to a 2017 

Gartner article on establishing a business case for data quality improvement, “poor data 

quality destroys business value. Recent Gartner research indicates that the average 

financial impact of poor data quality on organizations is $9.7 million per year.”89 With 
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such a prevalent effect on high profile business decisions, it is important to ensure that any 

metrics which influence decisions are based on high quality data. 

 In derivation and evaluation of the technician performance metrics for a large wind 

farm owner and operator, four (4) critical elements were identified which must be 

addressed for quality, informed decisions to be made. While inaction on any of these items 

does not invalidate resulting performance metrics, it allows a specter of uncertainty to 

pervade potential decisions. The following four critical elements must eventually be 

addressed to fully actualize the potential of the holistic generation of technician 

performance metrics: 

 

1. Consistent and accurate data entry 

2. Database consistency 

3. Technician recording 

4. Operation description consistency 

 

While not an exhaustive list, if addressed, these four key data quality issues will 

eliminate many of the complications and complexities of performance metric calculation. 

What follows is a critical discussion and recommendation on each of these key data quality 

issues. 
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D.1.1 Consistent and Accurate Data Entry 

 Among the 3 databases, 111 data fields, and 1 to sometimes 5 or greater number 

of operations per work order or notification specific to this case study, it is easy to see how 

individual pieces of information may be incorrectly input. Yet, individual pieces of 

inconsistent or incorrect information can aggregate to an almost incoherent set of 

operations, a notification, or a work order. A simple illustration of this phenomena is when 

a technician records all information in each operation for a work order, except the “actual 

hours worked” field, which they leave blank (resulting in 0s and #N/As). This simple 

exclusion of one data field from 61 designated critical fields completely renders the 

efficiency performance sub-metric useless and compromises the integrity of the 

documentation performance sub-metric. Additionally, after aggregation and calculations, 

the performance metrics and proficiencies are now of suspect quality. To combat this very 

prevalent issue, a set of precautions in the relational work order system and/ or database 

structure is the simplest form of response. 

Perhaps the greatest source of input inconsistency and inaccuracy observed in the 

case study of a large wind farm owner and operator stems from the use of free-form input 

fields. A free-form input field is one that accepts any user input, i.e. characters, numbers, 

dates, times, etc. Free-form input is extremely difficult to incorporate into repeatable 

performance metric calculations. To combat this issue, it is proposed that each user input 

data field be categorized into appropriate forms of input and its respective input be 

restricted based on categorization. Some examples of appropriate forms of input are pre-

defined input, class restrictions, and logical input checks, amongst others. 
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An example of a pre-defined input to consider is that of the designated critical data 

field, “operation line item description”, as mentioned previously in Appendix B.5. It was 

previously proposed that each operation be designated as one of five pre-defined 

operations: SPD, T, TIS, R1, or R2. In practice, when the technician or manager enters 

operational information into the relation work order system, often SAP or some similar 

software, they would only be able to choose from among pre-defined operation 

descriptions in a pull-down list. 

Similar in restricting user input, class restrictions allow only input of specific 

classes, i.e. only text in designated character fields, integers in designated integer fields, 

etc. Class restrictions are also especially effective when used in conjunction with logical 

input checks. Logical input checks could be extremely useful in date and/ or time input, 

not allowing the user to input data that falls outside logical ranges. Additionally, they 

could be used as a Boolean test to register whether input has been recorded, as in the case 

of “actual hours worked” for the case study. 

By allowing users to only input from pre-defined items, specific classes, or within 

logical boundaries, much confusion and complexity in downstream calculation and 

inference can be eliminated. It is incumbent upon the operations manager or database 

engineer to evaluate closely the input needed for complete performance metric calculation. 

Through this evaluation, they may then enact restrictions of user input freedom to avoid 

inconsistent and/ or inaccurate input. 
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D.1.2 Database Consistency 

 Often, the operations manager may need to use information from multiple 

databases. In the case study, for example, three distinct databases were queried and 

downloaded, one each for work orders, notifications, and operations. As separate 

databases may carry similar or identical data fields, often used as keys when joining, it is 

important to maintain the integrity of individual data fields throughout operation. 

 This is especially important when joining databases. Typically, when joining 

databases, the user defines the data fields which act as keys, i.e. data fields present in 

multiple databases used for matching instances. When choosing keys, the user must be 

diligent in determining that the data fields are indeed identical across databases and not 

just similar. It is important to distinguish identical data fields from those which may appear 

to be identical by title/ header, but actually carry distinct information. This meticulousness 

is important because, if not scrutinized, operations with multiple databases can actually 

mask and/ or distort much of the data which may be needed for performance metric 

calculation. 

 Diligence must also be given to input in similar data fields across multiple 

databases. It is a fairly common mistake for a user to input the exact same data in two or 

more data fields with similar meanings when, in fact, those data fields served distinct 

purposes. Because of these types of errors, potentially critical data may not be captured 

because the user misunderstood the intended meaning of the data field. This effect is 

compounded when input is required across multiple databases or data forms. 
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 It is therefore recommended that any database or set of databases used for 

performance metric calculations be evaluated for identical and distinct data fields. The 

following cases should be easily distinguishable through examination of the title/ header 

of the data field or its description or key: 

 

- Multiple data fields in a single database or in multiple databases are identical in 

meaning and purpose 

- Multiple data fields in a single database or in multiple databases are distinct in 

meaning and purpose 

 

If data fields are considered distinct, yet have identical information, this is likely an 

indication of confusion on the part of the user which should be remedied through data field 

re-branding or usage training. 

 

D.1.3 Technician Recording 

 As mentioned in Note 1 of the case study of a large wind farm owner and operator, 

there is currently no recorded identification of technicians which complete a work order. 

This does not affect the physical recording of individual work order data or calculation of 

individual work order performance sub-metrics, but it does make it impossible to 

aggregate performance metrics and create proficiencies. Because of this, the effectiveness 

of the Personnel Deployment Strategy is greatly diminished as there is no avenue to 
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develop the technician specific performance metrics which act as input to the proposed 

task-to-team assignment integer program, discussed later. 

 As such, it is recommended to create a new data field(s) or repurpose a non-critical 

data field(s) to act as input for those technicians which completed specific work orders. 

Ideally, the data field(s) would be specific to each work order operation or notification 

operation as this would allow the most flexibility in aggregation techniques. It is important 

to consider the recommendations in the discussion on consistent and accurate data entry 

regarding pre-defined data input. Ideally, when a user is inputting the one or more 

technicians who completed the work order, they would select the technicians from a pre-

defined list of technician identifiers. 

 

D.1.4 Operation Description Consistency 

 There is currently no pre-defined list of standard operation line item descriptors 

for individual work order or notification operations. Because of this, the user has complete 

free-form input for the operation line item description. This introduces considerable 

complexity in allocating actual hours worked for individual operations, among other 

related data fields. 

 Therefore, as mentioned in Appendix B.5, it is proposed that operation line item 

descriptors be selected from one of a pre-defined list: SPD, T, TIS, R1, and R2. By 

selecting from a pre-defined list, much potential confusion and complexity is avoided. 

Additionally, calculating efficiency and documentation performance sub-metrics from 
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operations wholly contained within a pre-defined list avoids the necessity of detailed text 

search and pre-defined allocation distributions. 

 It should be mentioned that the proposed list of pre-defined operational descriptors, 

SPD, T, TIS, R1, and R2, was defined through extensive survey and consultation. These 

descriptors may differ based on the current application of the Personnel Deployment 

Strategy. The implications and implementation of operation description consistency, 

however, remains the same. 

 

D.2 Performance Metrics Aggregation Techniques 

 In development of the Technician Proficiency Matrix, a discussion is necessary on 

where the inclusion of domain knowledge and weighting preferences is appropriate. 

Throughout the Technician Proficiency Matrix calculation, there were multiple instances 

of aggregation identified where these preferences could be applied. The following six (6) 

aggregation processes were identified: 

 

1. Technician performance sub-metrics from individual work order performance sub-

metrics 

2. Normalized technician performance sub-metrics from non-normalized technician 

performance sub-metrics 

3. Normalized technician performance metrics from normalized technician 

performance sub-metrics 
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4. Normalized technician work order proficiencies from normalized technician 

performance metrics 

5. Normalized technician attribute proficiencies from normalized technician 

performance metrics 

6. Normalized technician overall proficiencies from normalized technician 

performance metrics 

 

While it is understood that processes 1 and 2, currently calculated through simple 

averaging and standardization, have the capability of allowing for user specific 

preferences, these adjustments are considered out of scope for this research. Additionally, 

it is believed that an operations manager and/ or director would not want to affect 

calculation at such a granular level. As such, potential refinements to the remaining 

processes with regards to weights are discussed below. 

It must be noted that the following discussion of simple weighting is one of many 

different alternate aggregation techniques which may be used. Two of these additional 

techniques that may be applicable are frequency weighting and data envelopment analysis. 

Frequency weighting would mainly be used to give more prevalence to technician 

performance metrics on those work order types they complete with a higher frequency. 

Data envelopment analysis would mainly be used to give more prevalence to a 

technician’s best performance metrics for calculation of relative metrics and proficiencies. 

While each of these two methods may hold potential in refining the performance metric 

and technician proficiency calculation, they are considered out of scope for this research. 
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D.2.1 Simple Weighting 

 Simple weighting adjustment, as proposed for this research, is described as a re-

distribution of metric aggregation coefficients to give greater impact to one or more 

metrics over others, provided the sum of the respective coefficients remains equal to 1. An 

example of this adjustment can be seen in process 3. The normalized technician 

performance metric Aij2 is calculated according to the following equation: 

 

Aij2 = ∑ tij
mTij

m4
m=1  for j = 1, 2, 3, 4, and 5 and i = 1, 2, … I 

This calculation currently assumes the following: tij
1  = tij

2 = tij
3  = tij

4 and ∑ tij
m4

m=1 =1. 

If, however, the operations manager knows that Tij
2  is much more important than Tij

1  in 

determining a technician’s timeliness performance metric, they may make the following 

adjustment: tij
1  = 0.1, tij

2 = 0.4, tij
3  = 0.25, and tij

4  = 0.25 where ∑ tij
m4

m=1  = 1. Even further 

modification may be made by specifying different weights depending on the jth work order 

type. 

 For processes 3 through 6, the following simple weighting adjustments may be 

made to incorporate domain knowledge and/ or specific user preferences: 

 

3. Adjustment of individual q
ij
m, tij

m, eij
m, dij

m
, tcrij

m, and/ or tbcij
m

 such that, for j = 1, 2, 

3, and 5, ∑ q
ij
m1

m=1 = ∑ tij
m4

m=1 = ∑ eij
m7

m=1 = ∑ dij
m4

m=1 = ∑ tcrij
m2

m=1 = ∑ tbcij
m3

m=1 =1 and 

for j = 4, ∑ q
ij
m2

m=1 = ∑ tij
m4

m=1 = ∑ eij
m7

m=1 = ∑ dij
m4

m=1 = ∑ tcrij
m2

m=1 = ∑ tbcij
m3

m=1 =1. 
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4. Adjustment of individual aij1, aij2, aij3, aij4, aij5, and aij6 such that ∑ aijk
6
k=1 =1 for j 

= 1, 2, 3, 4, and 5. 

5. Adjustment of individual ai1k, ai2k, ai3k, ai4k, and ai5k such that ∑ aijk
5
j=1 =1 for k = 

1, 2, 3, 4, 5, and 6. 

6. If calculating Di from Bi1, Bi2, Bi3, Bi4, and Bi5, then adjustment of individual bi1, 

bi2, bi3, bi4, and/ or bi5 such that ∑ bij
5
j=1 =1. If calculating Di from Ci1, Ci2, Ci3, 

Ci4, Ci5 and Ci6, then adjustment of individual ci1, ci2, ci3, ci4, ci5, and/ or ci6 such 

that ∑ cik
6
k=1 =1 

 

D.3 Task-to-Team Assignment Integer Programming Formulation 

 With sufficiently comprehensive data quality practices in place and generated 

technician performance metrics and proficiencies, the development of a task-to-team 

assignment integer program may be attempted. The goal of the proposed integer program 

is to optimize the overall performance of all teams against the tasks they are assigned to 

complete. By using technician performance metrics as parameter input, it may be inferred 

that the goal is to maximize the total performance aggregate of individual assigned teams. 

This, however, is not a simple matter of assigning technicians to teams and 

maximizing the team performance for a given task. If this were the case, there would be 

nothing to prevent one team from having a relatively high team value, i.e. the best 

technicians, and another team having a relatively low team value, i.e. the worst 

technicians. When creating the task-to-team assignment integer program, the generated 
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solution should not yield teams that significantly suffer due to the goal of maximizing 

team performance. Therefore, the maximin programming technique is introduced. 

Per Shogan 1988, “We illustrate one last “trick” for converting an apparently 

nonlinear problem into an LP [linear program]. In particular, we consider a decision 

problem with a maximin objective function – that is, an objective function involving the 

maximization of the minimum of several linear functions.”111 In using maximin 

programming, generally, the integer program can be manipulated in such a way as to 

maximize the minimum team performance among all assigned teams. This creates the 

situation in which no one team is disproportionately worse than any other team in terms 

of the performance aggregate. This procedure does, however, have a potential downside. 

Usage of the maximin programming approach often results in relatively 

homogenous output. This outcome on its own is not necessarily disadvantageous. But, by 

creating a homogenous set of assigned teams, it potentially precludes the generation of 

extremely gifted teams. Given the alternative, however, relatively consistent team 

performance aggregates are a satisfactory outcome. 

An additional benefit of maximizing the minimum assigned team performance is 

in inspiring cross learning of performance metrics and attribute and work order 

proficiencies. It is projected that there will be many situations where technicians deficient 

in one area will be assigned to a team with technicians that are proficient in the same area. 

Simply put, when a technician with a poor performance metric or attribute and/ or work 

order proficiency is assigned to a team, another technician must be assigned to balance 



 

132 

 

out that respective area as the objective is to maximize the minimum team performance 

aggregate. 

The following sections illustrate the most basic formulation of the proposed task-

to-team assignment integer program. The standard modeling approach is illustrated in 

detailing the modeling assumptions, objective statement, parameters, decision variables, 

and basic constraints. Appended to the formulation is a discussion of more complicated 

constraints and scenarios to consider in the future.  

 

D.3.1 Assumptions 

1. All technicians must be assigned to at least one task 

2. Assigned tasks must have a team of 2 or 3 technicians 

3. All technicians have applicable Aijk for all j = 1, 2, 3, 4, and 5 and k = 1, 2, 3, 4, 

5, and 6 

4. All technicians have applicable Bij for all j = 1, 2, 3, 4, and 5 

5. All technicians have applicable Cik for all k = 1, 2, 3, 4, 5, and 6 

6. All technicians have applicable Di 

 

One item of note is about the data required for the task-to-team assignment integer 

program. There are only two separate pieces of data required: 1) holistically generated 

Technician Proficiency Matrices for each technician (Aijk, Bij, Cik, and Di) and 2) an 

applicable task list with categorization of work order type (En). It is assumed that each of 

these is available for execution of the integer program. 
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With respect to individual data fields in the ith technician’s Technician Proficiency 

Matrix, the integer program should interpret #N/As values as 0 values. This essentially 

means that, if a technician has a #N/A performance metric or proficiency, it is interpreted 

as the average of all technicians for that respective metric or proficiency. For example, if 

the ith technician’s Ai55 is #N/A, the integer program will interpret this value as 0, i.e. the 

average technician’s performance metric of the 5th attribute type and 5th work order type. 

Consequently, this has a marginalizing effect in the integer program as that technician is 

seen as no better and no worse than any other technician for that performance metric or 

proficiency, as they do not have the data to support either conclusion. 

 

D.3.2 Proposed Model 

Objective Statement 

max 
1

6
∑ Sp

6
p = 1  

 

Parameters 

Aijk ≡ performance metric for the kth attribute and jth order type for the ith technician, 

where i = 1, 2, …, I, j = 1, 2, 3, 4, and 5, and k = 1, 2, 3, 4, 5, and 6 

Bij ≡ work order proficiency for the jth order type for the ith technician, 

where i = 1, 2, …, I and j = 1, 2, 3, 4, and 5 

Cik ≡ attribute proficiency for the kth attribute for the ith technician, 

where i = 1, 2, …, I and k = 1, 2, 3, 4, 5, and 6 

Di ≡ overall proficiency for the ith technician, 
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where i = 1, 2, …, I 

En ≡ order type of the nth work order to be scheduled 

 where n = 1, 2, …, N 

 

Decision Variables 

Tin= { 1 if the i
th

 technician is assigned to the nth work order

 0 otherwise
 

 

Basic Constraints 

(min technicians) ∑ Tin ≥ 2I
i=1  for n = 1, 2, …, N 

(max technicians) ∑ Tin ≤ 3I
i=1  for n = 1, 2, …, N 

(min tech assign) ∑ Tin ≥ 1N
n=1  for i = 1, 2, …, I 

(min team Q)  S1 ≤ ∑ AiEn1Tin
I
i=1  for n = 1, 2, …, N 

(min team T)  S2 ≤ ∑ AiEn2Tin
I
i=1  for n = 1, 2, …, N 

(min team E)  S3 ≤ ∑ AiEn3Tin
I
i=1  for n = 1, 2, …, N 

(min team D)  S4 ≤ ∑ AiEn4Tin
I
i=1  for n = 1, 2, …, N 

(min team TCR) S5 ≤ ∑ AiEn5Tin
I
i=1  for n = 1, 2, …, N 

(min team TBC) S6 ≤ ∑ AiEn6Tin
I
i=1  for n = 1, 2, …, N 
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D.3.3 Consideration of Specialty Constraints & Scenarios 

D.3.3.1 Technician Assignment Restrictions and Task Prioritization 

In the basic formulation of the task-to-team assignment integer program above, all 

tasks are assigned teams regardless of technician availability. It may, eventually, become 

necessary to restrict the total amount of assignments per technician due to concerns of 

daily availability, fatigue/ overwork, and/ or vacation or paid time off. Caution must be 

taken with this approach, however, as restricting the total number of technician 

assignments may lead to infeasible solutions. If the number of total technician assignments 

required is greater than the total number of technician assignments available, infeasibility 

will occur. The model may need to be adjusted to allow for some tasks to remain 

unassigned. 

 In discussion of allowing some tasks to remain unassigned, how to select these 

tasks must be addressed. A practical solution may be to first expose the applicable task list 

to a prioritization heuristic which evaluates risk, cost, and/ or inconvenience of not 

assigning a task for completion. By prioritizing and eliminating non-critical tasks from the 

task list, the task-to-team assignment integer program may still be applicable as is, i.e. 

assign teams to all tasks rather than limit technician assignments. Yet, complications may 

still exist if there are many more critical tasks than available technicians. 

 

D.3.3.2 Basic Certification Requirements 

 An addition to the basic constraints listed above may be the inclusion of 

assignment restrictions based on certification status. Certification status, as briefly 
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mentioned in Appendix B.8, may be approximated with the ith technician’s TBC 

performance sub-metrics and metrics. It is easy to create constraints in which a technician 

that has not achieved a TBC performance sub-metric or metric threshold would be barred 

from assignment to the respective work order type. 

However, to restrict technician assignment based on specific training/ certification 

task completion requires further development of the task tracking methodology. Currently, 

when the TBC performance sub-metrics and metrics are calculated, they become blind to 

which specific tasks have been completed. Effectively, this information is lost when 

calculation is complete. Therefore, to expand certification restriction to individual 

training/ certification tasks, the links between performance sub-metrics and metrics to the 

respective completed training/ certification tasks must be refined. 

  

D.3.3.3 Work Order, Attribute, and Overall Proficiency Requirements 

 It may become desirable to include additional constraints which restrict task-to-

team assignment based on minimum required team proficiencies. In effect, each team 

would have a minimum required work order, attribute, and/ or overall proficiency 

aggregate. These requirements could function either as simple constraints or could replace 

the individual performance metrics as the maximin focus (i.e. maximize the minimum of 

proficiencies instead of performance metrics). The latter scenario may become particularly 

useful if the operations manager or director incorporates domain knowledge and/ or 

weighting preferences in the creation of work order, attribute, and/ or overall proficiencies. 

In this situation, the proficiencies would closer resemble a technician’s relative 
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performance than their individual performance metrics. Therefore, the proficiencies would 

become a more accurate system of coefficients to the task-to-team assignment integer 

program and would be desirable as the focus of the maximin approach. 

 

D.3.3.4 Minimum Ability Spread Cross Learning and Assignment Mixing 

 An inherent goal of the Personnel Deployment Strategy is cross learning of specific 

attribute and/ or work order metrics and/ or proficiencies from technician team 

assignments. Ideally, when a team of technicians is assigned a task, those weak in an 

attribute and/ or work order metric and/ or proficiency will learn from partners who are 

strong in that respective area. 

To encourage this phenomena more directly, it may be desired to include a system 

of constraints which require a minimum difference in relative performance, respective to 

certain metrics or proficiencies. As an example, the operations manager or director may 

dictate cross learning of quality as critically important. They then might include a 

constraint requiring team assignments be composed of technicians whose total range of 

quality attribute proficiency is least 1 standard deviation of the relative technician 

performance. This particular example is easily expanded to include any individual 

performance metrics and/ or proficiencies and can easily be specified to the individual 

work order type of the task assigned. Caution must be taken, however, as it is easy to see 

that restricting assignments to such a degree may yield infeasibility. 

Rather than enforcing minimum performance metric and/ or proficiency ranges for 

an assignment, it may be preferable to incorporate a technician’s assignment history and 
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develop a system of assignment mixing constraints. Effectively, these constraints would 

enforce relatively unique team compositions by using parameters detailing information on 

historical assignments. For example, if the ith technician was previously assigned a task of 

the jth order type with the (i+1)th technician, the next assignment might encourage the ith 

technician be paired with the (i+2)th technician for the next task of the jth order type. While 

brief in description, it is easy to see how this technique might be expanded and morphed 

into a system which inspires regular uniqueness in team composition. However, it is 

important to note that this system of constraints may not be completely compatible with 

other proposed constraints and modeling techniques and must be carefully constructed. 

 

D.3.3.5 Emergency Planning & Manager Discretion 

 An inevitable occurrence when completing assigned tasks is the manifestation of 

an emergency task. If an emergency occurs while technicians are completing tasks, the 

focus shifts to how resources should be re-allocated to address the emergency. In this 

situation, it would be wise to consider physical data such as geographical distance between 

individual teams and the emergency, as well as the relative priority of the tasks being 

completed by individual teams and the number of technicians on those teams. In reality, 

the act of emergency planning is viewed as out of scope of this research and would best 

be immediately handled by the responsible site manager. 

 Regarding the individual site manager, it is the view of this research that, while the 

outcome of the task-to-team assignment integer program might be an “optimal” solution, 

managers should always have the discretion to override these assignments. This capability 
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takes advantage of the individual manager’s inherent domain knowledge and experience 

with their teams and technicians. As such, the task-to-team assignment integer program 

may be viewed more accurately as a decision assistance tool to the site manager in 

assigning individual technicians to task teams. 

 




