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ABSTRACT

Spin glasses are experiencing a revival due to applications in quantum information

theory. In particular, they are the archetypal native benchmark problem for quantum an-

nealing machines. Furthermore, they find applications in fields as diverse as satisfiability,

neural networks, and general combinatorial optimization problems. As such, developing

and improving algorithms and methods to study these computationally complex systems

is of paramount importance to many disciplines. This body of work attempts to attack

the problem of solving combinatorial optimization problems by simulating spin glasses

from three sides: classical algorithm development, suggestions for quantum annealing

device design, and improving measurements in realistic physical systems with inherent

noise. I begin with the introduction of a cluster algorithm based on Houdayer’s cluster al-

gorithm for two-dimensional Ising spin-glasses that is applicable to any space dimension

and speeds up thermalization by several orders of magnitude at low temperatures where

previous algorithms have difficulty. I show improvement for the D-Wave chimera topol-

ogy and the three-dimensional cubic lattice that increases with the size of the problem.

One consequence of adding cluster moves is that for problems with degenerate solutions,

ground-state sampling is improved. I demonstrate an ergodic algorithm to sample ground

states through the use of simple Monte Carlo with parallel tempering and cluster moves.

In addition, I present a non-ergodic algorithm to generate new solutions from a bank of

known solutions. I compare these results against results from quantum annealing utilizing

the D-Wave Inc. quantum annealing device. Finally, I present an algorithm for improving

the recovery of ground-state solutions from problems with noise by using thermal fluctua-

tions to infer the correct solution at the Nishimori temperature. While this method has been

demonstrated analytically and numerically for trivial ferromagnetic and Gaussian distribu-
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tions, a useful metric for more complex Gaussian distributions with added Gaussian noise

is unavailable. We show improved recovery of numerical solutions on the chimera graph

with a ferromagnetic distribution and added Gaussian noise. Next, I direct my focus to the

design of future generations of quantum annealers. The first design is the two-dimensional

square-lattice bimodal spin glass with next-nearest ferrromagnetic interactions proposed

by Lemke and Campbell claimed to exhibit a finite-temperature spin-glass state for a par-

ticular relative strength of the next-nearest to nearest neighbor interactions. Our results

from finite-temperature simulations show the system is in a paramagnetic state in the ther-

modynamic limit, thus not useful for quantum annealing device designs that would benefit

from a spin-glass phase transition. The second design is the diluted next-nearest neigh-

bor Ising spin-glass with Gaussian interactions in an attempt to improve the estimation

of critical parameter with smaller system sizes by implementing averaging of observables

over different graph dilutions. To date, this model has shown no improvement. Finally,

I make suggestions for the choice of distributions of interactions that are robust to noise

and present a method for using previously unaccessible continuous distributions. I begin

with showing the best-case performance of quantum annealing devices. I show results for

the resilience, the probability that the ground-state solution has changed due to inherent

analog noise in the device, and present strategies for developing robust instance classes.

The analog noise is also detrimental to interactions chosen from continuous distributions.

Using Gaussian quadratures, I present a method for discretizing continuous distributions

to reduce noise effects. Simulations on the D-Wave show that the average residual of

the ground-state energy with the true ground-state energy is calculated and shown to be

smaller in the case of the discrete distribution.
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NOMENCLATURE

E Internal energy

m Magnetization per spin

N Number of variables or spins

T Temperature

w Distribution of microstates

S Entropy

kB Boltzmann constant

β Inverse temperature 1/T

F Free energy

Z Partition function

Si Ising spin variable

d Dimension

L Linear dimension

H Hamiltonian function

S Configuration of variables Si

Jij Interaction between spin variables Si and Sj

hi Local magnetic field of a spin variable Si

z Coordination number

C Specific heat

M Magnetization
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χ Susceptibility

ξ Correlation length

Tc Curie temperature

〈· · ·〉 Ensemble average

[· · ·] Disorder average

t Deviation from the Curie temperature

g Binder cumulant

q Overlap

pc Percolation threshold

τeq Equilibration time

q` Link-overlap

MCMC Markov Chain Monte Carlo

PT Parallel Tempering

HCA Houdayer’s Cluster Algorithm

MCS Monte Carlo Sweeps

SA Simulated Annealing

QA Quantum Annealing

ICM Isoenergetic Cluster Algorithm

DW(2,2X,2000Q) D-Wave Inc.’s Quantum Annealing Device
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1. INTRODUCTION

Many research collaborations between government, industry, and academia are investi-

gating an optimization method named quantum annealing used by the D-Wave Inc. quan-

tum annealer [5], a commercially available device with a radically new architecture, in

order to determine its advantages over conventional optimization algorithms on classical

computers [6, 7, 8, 9]. It is believed that quantum fluctuations utilized by quantum an-

nealing machines can help solve these hard problems. However, conclusive evidence of

improved performance over classical algorithms used by traditional computers remains

elusive [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The desire for quick and ef-

ficient solutions of complex combinatorial optimization problems has inspired the design

of new algorithms and novel computing architectures to provide new insights into these

difficult optimization problems [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

The goal of this dissertation is to present novel research in the study of quantum an-

nealing from a classical, non-quantum, perspective by using knowledge gained from the

field of statistical physics. In other words, using traditional computers to; understand the

nature of complex problems, the physical and theoretical limitations of new quantum an-

nealing devices, and to improve the performance of classical algorithms, we can advance

capabilities of both quantum annealing devices and traditional computers to solve difficult

optimization problems.

This holistic approach to improving quantum annealing devices begins with an inti-

mate understanding of state-of-the-art classical algorithms in an effort to raise the perfor-

mance expectations of quantum annealers. The principal goal of a quantum annealer is to

find the minimum of a cost function [26]. The cost function is mapped on to a quadratic

unconstrained binary optimization problem, the type of problem the D-Wave quantum an-
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nealer is designed to optimize. This cost function can represent a plethora of different

applications of varying complexity such as number factorization, shortest path through a

set of nodes, and job sequencing [35]. A device tailored to solve these problems, such as

the D-Wave quantum annealer, could revolutionize optimization efforts.

In order to discover what simulations might reveal the advantages and help overcome

the limitations of quantum annealing, we turn our attention to physics. The Ising spin-

glass model, from the study of statistical mechanics, can be stated simply. Yet, it is the

hardest problem that can be mapped onto a quadratic unconstrained binary optimization

problem. Another advantage of studying this physics inspired model is that there is no

overhead which reduces the number of variables in the problem when compared to native

embedding on the D-Wave quantum annealer. Embedding overhead limits the size of

problems one would like to investigate in devices with fixed hardware graphs.

The current generation of quantum annealing devices are limited by analog noise and

hardware graph size and connectivity. One might ask, “How will classical simulations

help the study of a quantum optimization method?” The goal of classical simulations is

two-fold. The first is to benchmark quantum annealing versus other classical optimization

methods to determine if there truly is improvement. Second, the current generation of

quantum annealing device, the D-Wave quantum annealer, is designed to enable easier

embedding of difficult problems, however the current hardware graph design has flaws.

Classical simulations can help evaluate and guide graph designs in future devices.

In order to determine if quantum annealing shows improvement over classical algo-

rithms, one must compare it to state-of-the-art classical algorithms. Finding the minimum

of a cost function is the first metric of a new optimization method. In addition, for some

applications one would like multiple solutions to the problem. With this motivation, I co-

developed an algorithm with Zheng Zhu named the isoenergetic cluster algorithm which

allows a numerical simulation to more efficiently search the phase-space of a problem and,
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in some cases, reduce the effort to solve a problem by several orders of magnitude [1]. In

addition, this algorithm performs a more fair sampling of problem solutions [36]. There-

fore, if a problem has many solutions, they are all found with relatively equal probability.

This is not the case in quantum annealing, where some solutions require an exponential

amount of effort to be found [9, 2].

This novel algorithm has become the new state-of-the-art for classical simulations in

the study of quantum annealing [21, 19, 2, 37]. Due to the general applicability of the

algorithm, an implementation of this algorithm went on to win the 2016 MAX-SAT Eval-

uation [38]. A modified version of this algorithm also allows one to generate new solu-

tions to a problem given a bank of known solutions with effectively zero overhead. This

can overcome the problem of some solutions being exponentially suppressed by quantum

annealing. In addition, generating additional solutions can assist other optimization algo-

rithms such as machine learning and neural networks that require training on solutions in

order to categorize input data.

We know from the study of statistical-mechanics that at a spin-glass phase transition,

the energy barriers in this landscape diverge with the problem size. As a result, problems

with spin-glass phase transitions are exceptionally difficult for finite-temperature optimiza-

tion algorithms such as the Monte Carlo method at and below the critical temperature.

However, an optimization algorithm such as quantum annealing that takes advantage of

quantum fluctuations should be able to tunnel through tall energy barriers and efficiently

solve a problem. Thus, it would be advantageous to have a hardware graph that exhibits a

phase transition in order to aid benchmarking [10, 15].

With this motivation, we simulated two distinct graphs. First, we studied the two-

dimensional square-lattice bimodal spin glass with next-nearest ferromagnetic interactions

proposed by Lemke and Campbell [39] which was claimed to exhibit a finite-temperature

spin-glass state for a particular relative strength of the next-nearest to nearest neighbor
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interaction. An additional advantage of this model is that it has a planar topology that

can easily be constructed with current superconducting flux qubits found in the D-Wave

quantum annealer. Unfortunately, the model was found to be in a paramagnetic phase at

finite-temperatures for large enough system sizes where it is predicted to be a spin glass

[40]. Next, we studied the bond-diluted next-nearest-neighbor Ising spin-glass with Gaus-

sian distributed interactions. The goal of this simulation is to determine if averaging over

different graphs with site dilutions affects the corrections to scaling. A positive result

would imply that performing these graph disorder averages would allow better approx-

imation of critical phenomena with smaller system sizes like those found in the current

generation of quantum annealer.

In addition to graph limitations, analog quantum annealing machines will also suffer

from analog noise. Both the qubits and the couplers that form the interactions between the

qubits, experience this noise. If the noise is large enough, it can cause the device to solve

the incorrect problem. We introduced resilience as a measure of the success probability

that random field and random bond fluctuations of a problem do not affect the ground-state

solution [4]. This allows one to place a classical upper-bound on the performance of an

analog quantum annealing device based on the amount of noise and the number of qubits

and couplers. With this knowledge we also propose how to generate instance classes, or

sets of interactions, that are robust to noise.

Noise also affects the ability to encode continuous distributions onto couplers. As the

system size increases, the gap between coupler values becomes infinitely small and very

susceptible to noise. To overcome this limitation, we used the method of Gaussian quadra-

tures to discretize continuous distributions. This allows accurate reproduction of thermo-

dynamic variables, however the ground-state manifold becomes degenerate. More impor-

tantly, results from the D-Wave showed that the average of the residual of the ground-state

energy from the true-ground solution of the problem is lower for the discrete distribution.

4



This means the D-Wave found energies closer to the true solution.

Finally, in an effort to reduce the effects of noise, we introduce algorithms for improv-

ing the recovery of ground states from problems with noise by using thermal fluctuations

to infer the correct solution at the Nishimori temperature. The method, which was shown

analytically by Nishimori [41], proposes a “decoding” step in the simulation where one

takes a majority vote per spin, and if the spin was in the correct orientation most of the

time during the simulation the correct ground-state could be inferred. We show improve-

ment to solving a trivial ferromagnet with added Gaussian noise.

Using these different approaches, this dissertation contributes in the design of future

computing technologies as well as improvement to current state-of-the-art algorithms for

use in the simulation of spin-glasses and the optimization of numerically difficult combi-

natorial optimization problems. Chapter 2 introduces the necessary information regarding

complexity of combinatorial optimization problems and their relation to the Ising spin

glass. Next, Chapter 3 provides the numerical tools with which to study these hard prob-

lems. In Chapter 4, we develop novel algorithms to study spin glasses and their ground-

state manifolds that is the new state-of-the-art in classical algorithms in the simulation of

spin glasses. In addition, we introduce an algorithm based on analytical results to improve

the inference of ground states from problems affected by noise. In Chapter 5, we study the

thermodynamic properties of two potential hardware graphs to potentially discover future

designs that may yield optimization problems amenable to quantum annealing. Finally,

in Chapter 6, we focus on the problem of noise in current quantum annealing hardware

and describe general methods to calculate best case success probability as well as encode

previously unaccessible continuous distributions.
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2. PRELIMINARIES

The first commercial quantum annealing device that attempts to exploit the unique

power of quantum fluctuations is the D-Wave quantum annealing machine [5]. This de-

vice is designed to solve Quadratic Unconstrained Binary Optimization problems (QU-

BOs) [35], such as finding the ground state of a disordered Ising spin-glass Hamiltonian

[26]. Furthermore, though the Ising spin glass has its roots in statistical mechanics, many

complex problems can be mapped onto it. This chapter introduces the necessary informa-

tion about the complexity of these problems and their relation to spin glasses along with

an overview of spin-glass physics.

2.1 Complexity

Typical goals of an optimization problem are to compute an observable, for instance

the energy or magnetization of a spin glass, or minimize the cost function of a problem.

Some examples of optimization problems are satisfiability, number partitioning, vertex

cover, and traveling salesman problems [35]. In addition to minimizing the cost function,

one would like to do so quickly.

As a general rule of thumb, the time complexity of an algorithm is a function of the

number of variables. In a spin glass with N spins, finding a solution amounts to searching

for a configuration among 2N others that minimizes the energy. A desirable algorithm is

one that requires a number of calculations bounded by a sub-exponential function of the

size of the problem. For this type of problem, if the number of calculations grows expo-

nentially with the size of the problem, then the problem should be considered intractable.
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2.1.1 Complexity Classes

There is a veritable menagerie of complexity classes. However, I will restrict myself

to discussing the three most relevant.

P, or polynomial complexity, is the set of problems that can be solved deterministically

in an amount of time that is polynomial in the size of the input. For example, τ ∝ N2

in the case of Euclid’s algorithm to calculate the greatest common divisor of two or more

integers whereN is the average number of digits in those integers. NP or non-deterministic

polynomial-time complexity is the class of all decision problems for which a solution can

be verified as correct in polynomial time.

There exists a subclass of NP problems such that if one can solve one of these prob-

lems, then one can solve all NP problems [42]. This class of problems is named “NP-

complete” and it contains the hardest problems in NP. It includes many ‘classical’ prob-

lems in combinatorics such as the traveling salesman problem, graph coloring problem,

and all problems in the class that have been shown to be equivalent in the sense that if one

problem is tractable, they all are [43]. In addition to their hardness, NP-complete prob-

lems’ time complexity scales worse than any polynomial, i.e., τ ∝ 2N as in the non-planar

Ising spin glass.

One example of a problem where a quantum algorithm may be useful is integer fac-

torization, where the best published running time of the general number field sieve al-

gorithm is on the order of exp(64
9
b(log b)2)(1/3) for b-bit numbers [44]. However, for a

programmable quantum computer, there exists Shor’s algorithm which has a runtime on

the order of b3 thus solving the problem in polynomial time [45]. This is just one example

of the significant implications if quantum computation is possible.

All NP-complete class problems can be mapped onto the Ising spin-glass. For this

reason, we turn our attention to the statistical properties of spin glasses to introduce and
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better understand this fundamental example of an optimization problem. In addition, this is

the native problem that current quantum annealing machines, such as the D-Wave quantum

annealing device, are designed to solve. Thus, if one can improve the optimization of

spin glasses, this result will extend to many other combinatorial optimization problems.

Optimization methods relevant to this dissertation are discussed in Ch. 3.

2.2 The Ising Spin Glass

As mentioned in the previous section, the Ising spin glass is a QUBO problem, the type

of problem the current generation of quantum annealers are designed to solve. The Ising

spin glass is one of the simplest models to study among systems with many interacting

elements. In the special case of the ferromagnetic Ising model [46], it is also the only

model that is analytically solvable, while exhibiting nontrivial critical behavior in the form

of a phase transition [47]. Finally, it can be extended in such a plethora of ways that it is

often referred to as the “fruit fly” of statistical mechanics [48, 49, 50]. As such, it plays

an integral role in statistical physics and in our current study of benchmarking quantum

annealing.

2.2.1 Definition

The Ising spin glass is a collection of vertexes V of a simple undirected graph G with

edges E . At each vertex is a spin variable Si (i = 1, ..., N) with Si ∈ {±1}. A positive

value of Si is occasionally referred to as spin up, and a negative value is referred to as spin

down. A set of values {Si} specifies the configuration of the system, S. For any two sites

connected by an edge i, j, there is an interaction Jij . The energy of a given configuration

is

H = −
∑
〈i,j〉

JijSi Sj −
N∑
i=1

hiSi with Si ∈ {±1}, (2.1)
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with 〈i, j〉 representing a sum over the edges E , and hi, the value of a magnetic field if

present. Interactions are symmetric, in other words, Jij = Jji. Thus there are zN/2 terms

in the sum of Eq. 2.1,where z is the number of nearest neighbors or coordination number,

for example, z = 4 for the two-dimensional square lattice. For the remainder of this

dissertation I will focus on Ising spin glasses that are connected by nearest-neighbor and

next-nearest neighbor interactions.

2.2.2 Properties

The case Jij > 0 corresponds to ferromagnetism, an interesting phenomenon in solid

state physics where some fraction of spins become polarized in the same direction, result-

ing in a net magnetic moment. According to the Hamiltonian in Eq. (2.1), spins that are

aligned will minimize the energy. Similarly, Jij < 0 corresponds to antiferromagnetism,

where opposing neighbor spins minimize the energy.

The Ising spin glass is the bond-disordered version of the Ising ferromagnet and can

be understood as a collection of random spin-spin interactions Jij [51]. The choice of

interactions depends on the type of problem. Typically, the disorder is either chosen from

a bimodal distribution or a Gaussian distribution with zero mean and standard deviation

unity. In all cases, when one wants to evaluate a physical quantity from the Hamiltonian,

one begins with a given fixed or quenched set of Jij , generated by a probability distribu-

tion.

P (Jij) = pδ(Jij − J) + (1− p)δ(Jij + J) (2.2)

P (Jij) =
1√

2πσ2
exp

{
− (Jij − µ)2

2σ2

}
(2.3)

9



?

Disorder

Frustration

Ferromagnet Spin Glass

Figure 2.1: Illustration of disorder and frustration in a spin glass. Interactions in black are
ferromagnetic and the interaction in red is antiferromagnetic. In a ferromagnet, the energy
is minimized when all spins are aligned in the same direction. In the spin glass plaquette
illustrated, no combination of spin directions can satisfy all interactions and the system is
considered to be frustrated.

Frustration, and hence glassy order, occurs when neighboring spins have combinations

of ferromagnetic and antiferromagnetic interactions such that the center spin has no pre-

ferred orientation that minimizes the energy which greatly increases the complexity of a

problem. For example, in the spin glass shown in Fig. 2.1, no assignment of the bottom-left

spin can satisfy the neighboring interactions.

2.2.3 Order Parameters

The general recipe of statistical mechanics is to calculate the thermal average 〈· · ·〉 of

a physical quantity O using the Gibbs distribution where S is a configuration of variables

and Z is the partition function.

〈O〉 =
∑
S

O(S)
1

Z e
−βH(S) with β =

1

kBT
(2.4)
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The usual quantity used to measure the macroscopic properties of the Ising model with

ferromagnetic (J > 0) interactions is the magnetization.

m =
1

N

〈
N∑
i=1

Si

〉
(2.5)

Magnetization is a typical example of an order parameter that measures the overall order-

ing in a macroscopic system. If equal numbers of spin up Si = 1 and spin down Si = −1

exist, the magnetization vanishes and no uniform ordered state exists. At low energies,

according to the Gibbs distribution, low energy states are preferred. The low-energy states

with h = 0 have all spins in the same directions. Thus, the magnetization m is likely very

close to 1 or −1. As the temperature increases, states with various energies appear with

similar probabilities. Here, Si changes frequently so that the system is disordered with

vanishing magnetization.

In the case of random Jij , the average magnetization 〈m〉 vanishes everywhere. Thus, a

new order parameter, overlap (q), is required. In addition to thermal averaging to measure

an observable, a disorder average denoted by [· · ·], is required for spin glasses. This is due

to the inability to simulate an infinite lattice and requires us to investigate small subsystems

with different interactions chosen from the same disorder distribution.

q =

[〈
N∑
i

Sαi S
β
i

〉]
, (2.6)

where α and β denote two different replicas of the same system. Two replicas are required

because in a spin glass, the frozen state and the unordered state are indistinguishable. By

simulating two replicas one can compare the two configurations to determine if the system

is frozen and 〈q〉 > 0 or the system is in the unordered phase and 〈q〉 = 0.

One advantage of studying spin glasses is that the energy landscape is much more
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complex. Instead of a singular valley, for a simple Jij > 0 Ising model, the new 2N

dimensional landscape is much more “rugged.” This additional complexity creates very

challenging problems for optimization algorithms as shown in Ch. 3.

In the ferromagnetic Ising model, there is a critical temperature or Curie temperature,

Tc for which |m| 6= 0 for T < Tc and, m = 0 for T > Tc. This phenomenon is called a

phase transition. The two-dimensional Ising model is one nontrivial example of a phase

transition that can be treated analytically [47]. The Ising spin glass can also have phase

transitions as we will see in Sec. 5.2. However, for simplicity we introduce the phase

transitions for the ferromagnetic Ising model first.

0
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|
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Figure 2.2: Numerical simulation of magnetization per spin (circles) as a function of tem-
perature T for the two-dimensional Ising model with N = 1024 spins. The solid line is
the analytical value of the magnetization for an infinite square lattice. Due to finite size
effects in the simulation, the phase transition of the magnetization is spread out instead of
becoming zero above the critical temperature.

2.2.4 Phase Transitions

A phase transition occurs when there is a singularity in the free energy or one of its

derivatives [52]. As described earlier, the order parameter in the Ising model is the mag-
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netization in a ferromagnetic system. The net magnetization’s direction is spontaneously

chosen when the system cools below the Curie temperature and the phase changes from

paramagnetic to ferromagnetic as shown in Fig. 2.2.

There are two types of phase transitions; first-order and second-order phase transitions.

A first-order transition is typically one with latent heat, while a second-order transition, or

“continuous” phase transition is one in which the second derivative of a thermodynamic

variable diverges. In the case of the two-dimensional ferromagnetic Ising model, at the

critical temperature, the magnetic susceptibility χm = ∂M/∂H will typically diverge as

shown in Fig. 2.3.
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Figure 2.3: Magnetic susceptibility as a function of temperature for the two-dimensional
Ising model with N = L2 spins. As the system size increases χm diverges which is a
signal of a phase transition.

In the case of the two-dimensional Ising model with periodic boundary conditions, in

the limit of N → ∞, the critical temperature and spontaneous magnetization for T < Tc
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can be calculated analytically [47].

Tc = 2/ ln(1 +
√

2) (2.7)

M =
[
1− sinh−4(2βJ)

]1/8 with β =
1

T
(2.8)

Here, the derivative of the magnetization M diverges at Tc indicating the phase transition

from paramagnetic to ferromagnetic.

A phase transition alone does not characterize a system. Tc depends sensitively on the

details of the interactions Jij . In order to understand the nature of a statistical system, it is

required to understand the critical exponents of the system.

2.2.5 Critical Exponents

It is important to understand the divergences in magnetic susceptibility and specific

heat. This will be used in Sec. 5.1 to determine if corrections to scaling can be improved.

First, we define a measure of the deviation in temperature from the critical temperature Tc.

t =
T − Tc
Tc

(2.9)

Then we define the critical exponent associated with a function f .

λ = lim
t→0

ln |f(t)|
ln |t| or f(t) ∼ |t|λ (2.10)

This implies that close to the transition, the quantity f is dominated by a non-analytic part

f(t) ∼ tλ for t→ 0. The importance in the critical exponents lies in the fact that while Tc

depends on inter-atomic interactions, the critical exponents are universal. A list of critical

exponents is given in Table 2.1. These critical exponents depend on spacial dimension d

and order parameter symmetry.
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Knowledge of the critical exponent of a simple model system can be used to obtain

critical exponents for all systems in a universality class. Critical exponents are related by

scaling relations. In most cases, only two exponents are necessary to fully characterize

the behavior of a model. If one determines the location of the critical temperature Tc and

two independent critical exponents, one can deduce the universality class of the model and

calculate all other critical exponents.

Zero-field specific heat C ∼ |t|−α
Zero-field magnetization M ∼ (−t)β
Zero-field isothermal susceptibility χT ∼ |t|−γ
Correlation length ξ ∼ |t|−ν

Table 2.1: Definitions of the most commonly used critical exponents for a magnetic sys-
tem. Adapted from Yeomans [52].

Unfortunately, it is difficult to obtain accurate critical exponents because there are

significant corrections to scaling. There exist long equilibration times in Monte Carlo

simulations that limit the available system sizes, and all quantities need to be averaged

over many disorder realizations in order to reduce error. A major problem with reducing

error bars in critical exponents is the presence of corrections to finite size scaling, which

means that the scaling expressions used to determine exponents do not work well for small

(finite) system sizes [3].

2.2.6 Finite Size Scaling Analysis

Suppose we would like to determine the critical exponents of an infinite system by

simulating finite lattices. As shown in Fig. 2.2, when the system is not infinitely large,

the critical behavior is smeared. However, one can show that the non-analytic part of
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a given observable can be described by a finite-size scaling form [53]. The finite-size

magnetization of an Ising model with Ld spins, where L is the linear dimension, close to

the transition and for large L, is given by

〈mL〉 ∼ Lβ/νM̃ [L1/ν(T − Tc)]. (2.11)

M̃ is an unknown scaling function. According to Eq. (2.11), the data for 〈mL〉 should

align in the large-L limit at T = Tc if we can determine β and ν correctly. There are

methods to approximate these but a simpler method is to use combined quantities that are

dimensionless, such as the Binder ratio or the Binder cumulant [54].

gm =
1

2

[
3− 〈m

4〉
〈m2〉2

]
∼ G̃[L1/ν(T − Tc)] (2.12)

The Binder ratio is a dimensionless quantity. Thus, data for multiple system sizes N will

cross at a transition. By approximating a correct value for the critical exponent ν, the data

falls onto a universal curve as shown in Fig. 2.4 and it is now possible to estimate both Tc

and ν.
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Figure 2.4: Left: Binder ratio as a function of temperature for the two-dimensional square
lattice J = 1 Ising model. The data approximately cross near the paramagnetic to fer-
romagnetic phase transition at Tc ≈ 2.269. Right: Finite-size scaling analysis with the
known values of ν and Tc. The data fall on a universal curve.
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3. NUMERICAL METHODS

As described in the previous section, the Ising spin glass is a QUBO problem native

to the current generation of quantum annealing hardware. There are many optimization

methods to choose from when trying to find the minimum of the Ising spin-glass Hamil-

tonian. This chapter provides a review of state-of-the-art numerical methods and relevant

optimization algorithms.

In the study of spin glasses from a physics perspective, one typically would like to

perform finite-temperature simulations in order to estimate observables in equilibrium with

a heat bath for which the partition function is defined. On the contrary, in optimization

problems, one simply requires the minimum of a cost function as quickly as possible.

Fortunately, our algorithms for studying physical quantities can also be modified to find

a solution quickly by simulating low-temperatures where the probability of being in the

ground state is most likely.

Calculating the sum over 2N terms of a partition function is usually very difficult. For

a simple 32 × 32 square lattice, there are approximately 10308 possible configurations of

spins. If one considers there are approximately 1080 atoms in the universe, it quickly

becomes apparent that even small system sizes are intractable for enumerative methods.

One approximate approach to overcome this limitation is the Monte Carlo method,

which is well suited for computers. The Monte Carlo method is particularly useful in gen-

erating draws from a probability distribution and for simulating systems such as disordered

materials and interacting particle systems.

We wish to compute the average of an observable O.

〈O〉 =

∑
S O(S)e−H(S)/kBT∑

S e
−H(S)/kBT

(3.1)
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If we extend this to a distribution P and use the Boltzmann distribution then we arrive at

an estimate for O where the states are selected according to a Boltzmann distribution.

〈O〉 =

∑
S[O(S)/P(S)]e−H(S)/kBT∑
S[1/P(S)]e−H(S)/kBT

(3.2)

〈O〉 =
1

N

N∑
i

O(Si) (3.3)

If we can sample O from the Boltzmann distribution using the Metropolis algorithm then

e−H(S)/kBT/P(S) = 1 and Eq. (3.2) reduces to Eq. (3.3).

3.1 Metropolis Algorithm

In simple Monte Carlo sampling, a random state (configuration) S is generated and

observables are measured. However, this can be computationally inefficient. Instead of a

random search, a Markov process is used to generate a new state from the previous state.

This is accomplished by using the Metropolis method to sample the Boltzmann distribu-

tion. It is possible to choose the transition probability T (Sn → Sn+1) such that it occurs

with a probability given by the Boltzmann distribution, Peq(S) = Z−1 exp[−H(S)/kBT ].

In the Markov process, the state S occurs with probability Pk(S) at the kth time step

described by the master equation, with the goal as k →∞, the probability Pk → Peq.

Pk+1(Sn+1) = Pk(Sn) +
∑
Sn+1

[T (Sn+1 → Sn)Pk(Sn+1)− T (Sn → Sn+1)Pk(Sn)] (3.4)

Transition probabilities T can be chosen so that Pk = Peq. This causes terms in the sum

to evaluate to zero and implies that, for all Sn and Sn+1, the detailed balance condition

holds.

T (Sn+1 → Sn)Peq(Sn+1) = T (Sn → Sn+1)Peq(Sn) (3.5)

Detailed balance is important because this ensures that the process is reversible. Further-
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more, when the system has assumed the equilibrium probabilities, the ratio of the transition

probabilities only depends on the change in energy

∆H(Sn,Sn+1) = H(Sn+1)−H(Sn), (3.6)

T (Sn → Sn+1)

T (Sn+1 → Sn)
= exp[−(H(Sn+1)−H(Sn)/kBT ] = exp[−∆H(Sn,Sn+1)/kbT ]. (3.7)

The Metropolis algorithm gives us a choice of T that satisfies Eq. (3.7). If the energy

is minimized, the new configuration is accepted with probability 1. However, if the energy

is not minimized, the new configuration is accepted with a probability that depends on the

change in energy, ∆H, and temperature T .

T (Sn → Sn+1) =


1, if ∆H ≤ 0

exp[−∆H(Sn,Sn+1)β], if ∆H ≥ 0

(3.8)

For Ising models with ferromagnetic interactions, i.e., Jij = 1, this works quite well.

However, at the transition temperature, Tc, the method fails due to critical slowing down

of dynamics. When disorder is added, simple Monte Carlo is insufficient. The energy

landscape transforms from one smooth valley into a very jagged and mountainous land-

scape with many metastable states. When attempting to flip a single spin, acceptance

probabilities are often exponentially small, rendering the method inefficient.

The Metropolis algorithm does not take into consideration that sometimes even a sim-

ple spin flip can produce a large change in the energy ∆H of the system. As shown in

Eq. (3.8), a large ∆H leads to an exponentially small transition probability and the sim-

ulation will stall. Complex systems such as spin glasses and neural networks have the

features of a rough energy landscape, i.e., different states in phase space are separated by

large energy gaps. For these systems at low temperatures, simple Monte Carlo methods
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diverge. Therefore, optimized sampling techniques are required. One can attempt to im-

prove the local updating technique by introducing artificial statistical ensembles such that

the time to climb over energy barriers or tunnel through is reduced.

3.1.1 Parallel Tempering

In order to efficiently overcome barriers, an acceleration of dynamics must be added

to Markov chain Monte Carlo (MCMC). The present research uses the Exchange Monte

Carlo method, also known as parallel tempering (PT), developed by Hukushima and Nemoto

[55]. If the change in energy when attempting to flip a spin is too large or the tempera-

ture T is too low, the probability to accept a Monte Carlo move and escape a metastable

state exponentially decreases. Parallel tempering accelerates thermalization by allowing

configurations to be heated and cooled throughout the simulation.As shown in Fig. 3.1, as

the simulation moves up in temperature space, the probability to accept Metropolis moves

increases, allowing the configuration to escape local minima in the energy landscape.

In this method, multiple non-interacting replicas are simulated at different tempera-

tures independently and simultaneously as a canonical ensemble. After a fixed number of

Monte Carlo sweeps, typically one sweep, two replicas at neighboring temperatures are

exchanged with a Metropolis acceptance probability:

P(Si → Sj) = min[1, exp (−∆β∆H)] (3.9)

The replica exchange is restricted to neighboring temperatures because the acceptance ra-

tio decreases exponentially with ∆β = βn+1 − βn. A careful design of the temperature

set being used is needed for the method to be efficient. However, many recipes are read-

ily available [56]. A replica will perform a random walk over temperature space to high

temperatures, where equilibration is rapid, and back to low temperatures, where there is

critical slowing down. Furthermore, the simulation of additional replicas to use paral-
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lel tempering does not increase overhead due to the desire to simulate observables as a

function of temperature.

Parallel tempering can be combined with other types of spin updates to improve ther-

malization time. It has also been used successfully in other fields of physics to simulate

biomolecules, determine x-ray structure, and study molecular dynamics [57].
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Figure 3.1: Illustration of parallel tempering in a rugged energy landscape in a spin glass
due to disorder and frustration. A Metropolis move from the initial (open circle) to final
state (closed circle) is unlikely if the size of the barrier ∆E is too large or if the temperature
is too low. A simple Monte Carlo simulation will be stuck in a local minimum. In the
illustration, parallel tempering (dotted line) allows the simulation to increase in energy as
the temperature increases, then cools to allow the simulation to reach a new minimum.

3.1.2 Houdayer’s Cluster Algorithm

Despite the improvement in thermalization gained from parallel tempering, it is still a

local update algorithm. One method to improve thermalization further is global updates

to the spin configuration, or cluster moves. Cluster algorithms offer an additional method

by which to increase mixing of configurations in spin glasses and speed up thermalization
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times at low temperatures or near phase transitions where simple Monte Carlo has diffi-

culties due to small spin-flip probabilities depending on temperature or large change in

energy respectively.

There are several well known cluster algorithms in the study of spin systems. For the

simple ferromagnetic Ising model, there exists the Wolff cluster algorithm that builds a

cluster according to a probability and always flips the cluster thus “teleporting” the system

to a different region of phase space [58]. For spin-glasses there is the Swensden-Wang

algorithm which reduces to parallel tempering from the previous subsection in dimensions

larger than two [59]. However, the aforementioned cluster algorithms, based on ideas from

percolation theory are limited to two-dimensions where the probability to have a cluster

that spans the system, or percolate, is below the site percolation threshold. Perhaps the

most useful cluster algorithm for the study of spin-glasses is Houdayer’s cluster algorithm

[60].

In this section I review Houdayer’s cluster algorithm which in the following chapter

will be the basis of a novel cluster algorithm I have co-developed.
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Figure 3.2: Illustration of a cluster move through the rugged energy landscape in a spin
glass due to disorder and frustration. Cluster moves introduce large rearrangements of
spins in one time step in order to “teleport” through barriers in energy that would be
difficult to overcome with simple Monte Carlo or parallel tempering.

In parallel tempering, configurations can move up and down in the energy landscape

by changing the simulation temperature dynamically. However, large rearrangements of

spins would allow the simulation to move through phase space at a much greater rate

as shown in Fig. 3.2. There are multiple cluster algorithms for dimension less than or

equal to two [59, 58, 60]. And yet, a cluster algorithm for Ising spin glasses with space

dimension greater than two is elusive. Jerome Houdayer proposed a cluster algorithm for

two-dimensional spin glasses [60]. By adding Houdayer’s cluster moves, configurations

can also “teleport horizontally” through the landscape while keeping the sum of energies

constant. This means the algorithm is rejection free, i.e., extremely efficient because there

is neither a need to calculate a probability of flipping the spin nor the need to generate and

compare it to random numbers. Since the system keeps the energy constant, configurations

randomize efficiently and barriers are overcome easily for two-dimensional systems.
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Monte Carlo Methods (Katzgraber)

How can order be quantified in a system that intrinsically does not have visible
spatial order? For this we need to first determine what differentiates a spin glass
at temperatures above the critical point Tc and below. Above the transition, like
for the regular Ising model, spins fluctuate and any given snapshot yields a random
configuration. Therefore, comparing a snapshot at time t and time t + δt yields
completely different results. Below the transition, (replica) symmetry is broken and
configurations freeze into place. Therefore, comparing a snapshot of the system at
time t and time t+ δt shows significant similarities. A natural choice thus is to define
an overlap function q which compares two copies of the system with the same disorder.

In simulations, it is less practical to compare two snapshots of the system at
different times. Therefore, for practical reasons two copies (called “replicas”) α and β
with the same disorder but different initial conditions and Markov chains are simulated
in parallel. The order parameter is then given by

q =
1

N

∑

i

Sα
i Sβ

i , (32)

and is illustrated graphically in Fig. 11. For temperatures below Tc, q tends to unity
whereas for T > Tc on average q → 0, similar to the magnetization for the Ising
ferromagnet. Analogous to the ferromagnetic case, we can define a Binder ratio g by
replacing the magnetization m with the spin overlap q to probe for the existence of a
spin-glass state.

!" " !

Figure 11: Graphical representation of the order parameter function q. Two
replicas of the system α and β with the same disorder are compared spin-by-spin.
The left set corresponds to a temperature T ≪ Tc where many spins agree and so
q → 1. The right set corresponds to T > Tc; the spins fluctuate due to thermal
fluctuations and so q < 1.

6 Parallel tempering Monte Carlo

As illustrated with the case of spin glasses in Sec. 5, the free energy landscape of
many-body systems with competing phases or interactions is generally characterized
by many local minima that are separated by entropic barriers. The simulation of these
systems with standard Monte Carlo [51, 46, 42] or molecular dynamics [22] methods

20

Monte Carlo Methods (Katzgraber)

How can order be quantified in a system that intrinsically does not have visible
spatial order? For this we need to first determine what differentiates a spin glass
at temperatures above the critical point Tc and below. Above the transition, like
for the regular Ising model, spins fluctuate and any given snapshot yields a random
configuration. Therefore, comparing a snapshot at time t and time t + δt yields
completely different results. Below the transition, (replica) symmetry is broken and
configurations freeze into place. Therefore, comparing a snapshot of the system at
time t and time t+ δt shows significant similarities. A natural choice thus is to define
an overlap function q which compares two copies of the system with the same disorder.

In simulations, it is less practical to compare two snapshots of the system at
different times. Therefore, for practical reasons two copies (called “replicas”) α and β
with the same disorder but different initial conditions and Markov chains are simulated
in parallel. The order parameter is then given by

q =
1

N

∑

i

Sα
i Sβ

i , (32)

and is illustrated graphically in Fig. 11. For temperatures below Tc, q tends to unity
whereas for T > Tc on average q → 0, similar to the magnetization for the Ising
ferromagnet. Analogous to the ferromagnetic case, we can define a Binder ratio g by
replacing the magnetization m with the spin overlap q to probe for the existence of a
spin-glass state.

!" " !

Figure 11: Graphical representation of the order parameter function q. Two
replicas of the system α and β with the same disorder are compared spin-by-spin.
The left set corresponds to a temperature T ≪ Tc where many spins agree and so
q → 1. The right set corresponds to T > Tc; the spins fluctuate due to thermal
fluctuations and so q < 1.

6 Parallel tempering Monte Carlo

As illustrated with the case of spin glasses in Sec. 5, the free energy landscape of
many-body systems with competing phases or interactions is generally characterized
by many local minima that are separated by entropic barriers. The simulation of these
systems with standard Monte Carlo [51, 46, 42] or molecular dynamics [22] methods

20

⇥

=

Monte Carlo Methods (Katzgraber)

How can order be quantified in a system that intrinsically does not have visible
spatial order? For this we need to first determine what differentiates a spin glass
at temperatures above the critical point Tc and below. Above the transition, like
for the regular Ising model, spins fluctuate and any given snapshot yields a random
configuration. Therefore, comparing a snapshot at time t and time t + δt yields
completely different results. Below the transition, (replica) symmetry is broken and
configurations freeze into place. Therefore, comparing a snapshot of the system at
time t and time t+ δt shows significant similarities. A natural choice thus is to define
an overlap function q which compares two copies of the system with the same disorder.

In simulations, it is less practical to compare two snapshots of the system at
different times. Therefore, for practical reasons two copies (called “replicas”) α and β
with the same disorder but different initial conditions and Markov chains are simulated
in parallel. The order parameter is then given by

q =
1

N

∑

i

Sα
i Sβ

i , (32)

and is illustrated graphically in Fig. 11. For temperatures below Tc, q tends to unity
whereas for T > Tc on average q → 0, similar to the magnetization for the Ising
ferromagnet. Analogous to the ferromagnetic case, we can define a Binder ratio g by
replacing the magnetization m with the spin overlap q to probe for the existence of a
spin-glass state.

!" " !

Figure 11: Graphical representation of the order parameter function q. Two
replicas of the system α and β with the same disorder are compared spin-by-spin.
The left set corresponds to a temperature T ≪ Tc where many spins agree and so
q → 1. The right set corresponds to T > Tc; the spins fluctuate due to thermal
fluctuations and so q < 1.

6 Parallel tempering Monte Carlo

As illustrated with the case of spin glasses in Sec. 5, the free energy landscape of
many-body systems with competing phases or interactions is generally characterized
by many local minima that are separated by entropic barriers. The simulation of these
systems with standard Monte Carlo [51, 46, 42] or molecular dynamics [22] methods

20

Monte Carlo Methods (Katzgraber)

How can order be quantified in a system that intrinsically does not have visible
spatial order? For this we need to first determine what differentiates a spin glass
at temperatures above the critical point Tc and below. Above the transition, like
for the regular Ising model, spins fluctuate and any given snapshot yields a random
configuration. Therefore, comparing a snapshot at time t and time t + δt yields
completely different results. Below the transition, (replica) symmetry is broken and
configurations freeze into place. Therefore, comparing a snapshot of the system at
time t and time t+ δt shows significant similarities. A natural choice thus is to define
an overlap function q which compares two copies of the system with the same disorder.

In simulations, it is less practical to compare two snapshots of the system at
different times. Therefore, for practical reasons two copies (called “replicas”) α and β
with the same disorder but different initial conditions and Markov chains are simulated
in parallel. The order parameter is then given by

q =
1

N

∑

i

Sα
i Sβ

i , (32)

and is illustrated graphically in Fig. 11. For temperatures below Tc, q tends to unity
whereas for T > Tc on average q → 0, similar to the magnetization for the Ising
ferromagnet. Analogous to the ferromagnetic case, we can define a Binder ratio g by
replacing the magnetization m with the spin overlap q to probe for the existence of a
spin-glass state.

!" " !

Figure 11: Graphical representation of the order parameter function q. Two
replicas of the system α and β with the same disorder are compared spin-by-spin.
The left set corresponds to a temperature T ≪ Tc where many spins agree and so
q → 1. The right set corresponds to T > Tc; the spins fluctuate due to thermal
fluctuations and so q < 1.

6 Parallel tempering Monte Carlo

As illustrated with the case of spin glasses in Sec. 5, the free energy landscape of
many-body systems with competing phases or interactions is generally characterized
by many local minima that are separated by entropic barriers. The simulation of these
systems with standard Monte Carlo [51, 46, 42] or molecular dynamics [22] methods

20

! !

↵ �

q

Monte Carlo Methods (Katzgraber)

How can order be quantified in a system that intrinsically does not have visible
spatial order? For this we need to first determine what differentiates a spin glass
at temperatures above the critical point Tc and below. Above the transition, like
for the regular Ising model, spins fluctuate and any given snapshot yields a random
configuration. Therefore, comparing a snapshot at time t and time t + δt yields
completely different results. Below the transition, (replica) symmetry is broken and
configurations freeze into place. Therefore, comparing a snapshot of the system at
time t and time t+ δt shows significant similarities. A natural choice thus is to define
an overlap function q which compares two copies of the system with the same disorder.

In simulations, it is less practical to compare two snapshots of the system at
different times. Therefore, for practical reasons two copies (called “replicas”) α and β
with the same disorder but different initial conditions and Markov chains are simulated
in parallel. The order parameter is then given by

q =
1

N

∑

i

Sα
i Sβ

i , (32)

and is illustrated graphically in Fig. 11. For temperatures below Tc, q tends to unity
whereas for T > Tc on average q → 0, similar to the magnetization for the Ising
ferromagnet. Analogous to the ferromagnetic case, we can define a Binder ratio g by
replacing the magnetization m with the spin overlap q to probe for the existence of a
spin-glass state.

!" " !

Figure 11: Graphical representation of the order parameter function q. Two
replicas of the system α and β with the same disorder are compared spin-by-spin.
The left set corresponds to a temperature T ≪ Tc where many spins agree and so
q → 1. The right set corresponds to T > Tc; the spins fluctuate due to thermal
fluctuations and so q < 1.

6 Parallel tempering Monte Carlo

As illustrated with the case of spin glasses in Sec. 5, the free energy landscape of
many-body systems with competing phases or interactions is generally characterized
by many local minima that are separated by entropic barriers. The simulation of these
systems with standard Monte Carlo [51, 46, 42] or molecular dynamics [22] methods

20

Figure 3.3: Illustration of a Houdayer cluster move. Spins with Si = 1 are drawn in white
and Si = −1 in black. The overlap of two replicas α and β at the same temperature is
calculated. A cluster of spins with qi = −1 is chosen (in red), and spins that make the
cluster are flipped in the α and β replicas resulting in two new configurations.

Consider a system of two independent replicas α and β at the same temperature. Within

this context a replica represents a copy of a system with the same disorder but a different

Markov chain. The local overlap at site i between the two replicas is defined by qi = Sαi S
β
i .

Within replica space, two domains can occur: one with qi = 1 and one with qi = −1. The

clusters are defined as the connected parts of these domains. The cluster step begins by

choosing one site at random for which qi = −1. Neighbors are added with probability

1 if and only if for a neighbor of spin i, qnb(i) = −1, until no more spins can be added

to the connected backbone of the cluster. Spins within both replicas that correspond to

cluster members are then flipped. An illustration of a Houdayer cluster move is shown in

25



Fig. 3.3. Note that this does not change the sum of the energies, i.e., ∆E = H(Sα) +

H(Sβ) = 0. Since the replicas are at the same temperature, the cluster move is accepted

with probability 1. To enforce ergodicity, the cluster move is combined with a standard

single-spin flip Monte Carlo move with the Metropolis acceptance probability. Using

additional replicas allows for much faster thermalization because the replicas are mixed

very quickly. Following the cluster update, a parallel tempering move is performed. The

resulting algorithm is very efficient because it is able to explore the energy landscape both

“vertically”, via parallel tempering, and “horizontally”, via Houdayer cluster moves.

To summarize, one simulation step of the simulation consists of the following steps:

• Perform one Monte Carlo sweep (N Metropolis updates) for each replica.

• Perform one Houdayer cluster move.

• Perform one parallel tempering update for a pair of neighboring temperatures.

Note that the last step is not necessary; however, the combination of the Houdayer cluster

moves and parallel tempering updates improves thermalization considerably and repre-

sents the standard modus operandi.
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Monte Carlo Methods (Katzgraber)

How can order be quantified in a system that intrinsically does not have visible
spatial order? For this we need to first determine what differentiates a spin glass
at temperatures above the critical point Tc and below. Above the transition, like
for the regular Ising model, spins fluctuate and any given snapshot yields a random
configuration. Therefore, comparing a snapshot at time t and time t + δt yields
completely different results. Below the transition, (replica) symmetry is broken and
configurations freeze into place. Therefore, comparing a snapshot of the system at
time t and time t+ δt shows significant similarities. A natural choice thus is to define
an overlap function q which compares two copies of the system with the same disorder.

In simulations, it is less practical to compare two snapshots of the system at
different times. Therefore, for practical reasons two copies (called “replicas”) α and β
with the same disorder but different initial conditions and Markov chains are simulated
in parallel. The order parameter is then given by

q =
1

N

∑

i

Sα
i Sβ

i , (32)

and is illustrated graphically in Fig. 11. For temperatures below Tc, q tends to unity
whereas for T > Tc on average q → 0, similar to the magnetization for the Ising
ferromagnet. Analogous to the ferromagnetic case, we can define a Binder ratio g by
replacing the magnetization m with the spin overlap q to probe for the existence of a
spin-glass state.
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Figure 11: Graphical representation of the order parameter function q. Two
replicas of the system α and β with the same disorder are compared spin-by-spin.
The left set corresponds to a temperature T ≪ Tc where many spins agree and so
q → 1. The right set corresponds to T > Tc; the spins fluctuate due to thermal
fluctuations and so q < 1.

6 Parallel tempering Monte Carlo

As illustrated with the case of spin glasses in Sec. 5, the free energy landscape of
many-body systems with competing phases or interactions is generally characterized
by many local minima that are separated by entropic barriers. The simulation of these
systems with standard Monte Carlo [51, 46, 42] or molecular dynamics [22] methods
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Figure 3.4: Illustration of a failed Houdayer cluster move. Spins with Si = 1 are drawn in
white and Si = −1 in black. The overlap of two replicas α and β at the same temperature
is calculated. A cluster of spins with qi = −1 is chosen (in red), and spins that make
the cluster are flipped in the α and β replicas resulting in no new configurations. Due to
the percolating cluster that spans the system, performing a cluster move is equivalent to
exchanging the two replicas.

In principle, one could expect cluster algorithms to only work below the percolation

threshold where clusters do not span the whole system, i.e., flipping a cluster only glob-

ally affects the system but does not efficiently randomize the spin configurations. In fact,

Houdayer claims the problem is encountered as soon as the site percolation threshold is

less than 0.5 [60]. This causes two cluster to form with qi = 1 and qi = −1. Flipping one

of the large clusters becomes equivalent to exchanging the two configurations and no effi-

cient randomization occurs as shown in Fig. 3.4. In two space dimensions, the percolation
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threshold is pc ≈ 0.59 [61]. As such, the method works efficiently in this case. However,

as we shall see, the percolation threshold for three space dimensions (pc ≈ 0.3116) [62]

and the D-Wave Two quantum annealing machine’s Chimera [pc ≈ 0.3866] [1] topologies

are below 0.5 meaning the clusters are likely to percolate. In Sec. 4.1, we propose an

effective solution.

3.2 Equilibration Techniques

We wish to sample a distribution in thermal equilibrium. To do this, one should mon-

itor all observables as a function of time, O(τ). The time it takes for O(τ) to be constant

is the equilibration time. Because the initial configuration is random, some number of

algorithm steps are required to reach an appropriate estimate of any observable. The equi-

libration time has several important properties. τeq increases with system size, increases

with decreasing temperature, and is typically measured in Monte Carlo sweeps (MCS) or

N spin update attempts.
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Figure 3.5: Energy per spin as a function of time in Monte Carlo sweeps for the two-
dimensional Ising model with N = 1024 spins via simple Metropolis Monte Carlo at
T ∼ 0.1Tc. The solution of the two-dimensional ferromagnetic Ising model isE/N = −2.
After approximately 600 sweeps the system fluctuates near the ground state.
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In Fig. 3.5, the simulation begins in a random configuration that has an energy close to

zero. Very quickly, the simulation reaches a metastable state where two domain of spins

exist. The boundary between these two domains or, domain wall, increases the energy of

the system. However, after some amount of time, the system is able to push out the domain

wall and, in this case, fluctuate around the ground state energy.

In the particular case of the Ising spin glass with normally-distributed disorder, one

can use an exact relationship between the energy and link overlap q`.

q` =
1

dN

∑
〈i,j〉

Sαi S
α
j S

β
i S

β
j (3.10)

The link overlap measures the average length of the boundary of a flipped domain. The

internal energy per spin u is given by

u = − 1

N

∑
〈i,j〉

[Jij〈SiSj〉] (3.11)

It is possible to perform an integration by parts of Jij to relate u to the link overlap [63].

[〈q`〉] = 1 +
Tu

d
(3.12)

By beginning the simulation with a random spin configuration, the measure of q` will be

small in magnitude and the initial energy will will be higher as it would not be in thermal

equilibrium. Thus the two sides of Eq. (3.12) will approach equilibrium from opposite

directions, as shown in Fig. 3.6.
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Figure 3.6: A measure of low-temperature, T ∼ 0.2Tc, equilibration for the two-
dimensional Ising spin-glass with N = 1024 spins and Gaussian distributed interactions.
When the two quantities agree, the system is said to be in thermal equilibrium.

Checking when a simulation is in equilibrium is an important part of transitioning from

learning about the physical characteristics of a system to developing optimizers based on

these finite-temperature simulation techniques. As shown in Fig. 3.5, if one can thermalize

the system at a low enough temperature, one can reach a solution more quickly due to the

higher probability of being in a ground state.

3.3 Optimization

Optimization is the process of minimizing (or maximizing) a mathematical function

by choosing input values from a set and computing the function. The optimization of

spin glasses provides a large test bed of problems for benchmarking algorithms and novel

computing designs due to their NP-complete complexity. A number of heuristics, as well

as exhaustive search methods, have been designed and developed to minimize spin-glass

Hamiltonians as efficiently as possible. There exists exact methods such as “branch and

cut” which will find the true optimum. However, these tend to be slow [64]. My focus

is on heuristic methods, which includes simulated annealing, parallel tempering, popula-
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tion annealing, genetic algorithms, and evolutionary algorithms [65, 66]. In the last two

decades, quantum heuristics have been proposed as an alternative to classical heuristics,

due to their potential to exploit quantum superposition and quantum tunneling effects. This

section introduces the most generic optimization algorithm, simulated annealing, followed

by an optimization method used by current quantum annealing devices, and finally parallel

tempering as an optimizer.

3.3.1 Simulated Annealing

Simulated annealing (SA) is the most generic of optimization algorithms inspired by

the cooling of a crystal to avoid defects. One stochastically samples the cost function

H(S) at finite temperature via simple Monte Carlo to obtain a stationary state described

by the Boltzmann distribution. Once the system is in thermal equilibrium, we reduce

the temperature and equilibrate again [67, 68]. It was proven by Geman and Geman that

infinitely slow cooling will find the true optimum of the cost function [69]. Simulated

annealing is a sequential optimization algorithm because the temperature of the system

can only decrease, unlike parallel tempering. If the energy landscape is rough, it is likely

unable to escape metastable states. To overcome this problem, one can perform many rapid

quenches of the temperature and repeat the sampling many times to try many paths through

the energy landscape and find the true optimum. An example of simulated annealing

pseudo-code is given in Alg. 1.

3.3.2 Quantum Annealing

Similar to simulated annealing, quantum annealing (QA) uses quantum tunneling and

quantum fluctuations instead of thermal fluctuations to overcome energy barriers. Due to

recent production of quantum annealing hardware, there is an incredible interest in the

study of Ising spin-glasses [26, 30, 31, 70, 24, 25, 71, 27, 28, 29, 23, 32, 33, 34]. Instead

of quenching the temperature, one quenches quantum fluctuations. Quantum annealing is
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Algorithm 1 Simulated Annealing
begin
choose start configuration S
for t = 1, ..., tmax do

begin
set temperature T = T (t)
Monte Carlo(NMCS, T ) at temperature T with NMCS sweeps
end

end

not limited to a local search via Monte Carlo. The strength of the fluctuations determines

the length of tunneling in phase space. Tall barriers in the energy landscape, which can be

difficult for thermal fluctuations to overcome, can now be tunneled through if their widths

are small enough.

In quantum annealing, one modifies a classical Ising Hamiltonian by using Pauli spin

matrices and adding a kinetic term for the quantum fluctuations;

H = −
∑
〈i,j〉

JijS
z
i S

z
j −D

∑
i

Sxi , (3.13)

where Jij is the interaction between two spins andD, the strength of quantum fluctuations.

Note that the spin matrices do not commute, e.g., [Szi , S
x
i ] 6= 0.

In order to minimize the Hamiltonian, one starts at zero temperature and a large value

of D to randomize the configuration via quantum fluctuations alone. Then, one succes-

sively reduces the transverse field D via an annealing protocol, D(t), until the system

reaches the equilibrium state at D = 0. Again, if one reduces the quantum fluctuations

infinitely slowly, the method will converge to the true optimum [70].

The latest D-Wave 2000Q quantum annealing device operates at a temperature of

1.5mK. This finite temperature might assist quantum annealers in finding optimal so-

lutions through the use of both quantum and thermal fluctuations [72, 73]. We explore the
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effects of finite-temperature fluctuations in Sec. 4.3. An example of quantum annealing

pseudo-code is given in Alg. 2.

Algorithm 2 Quantum Annealing
begin
choose start configuration S
for t = 1, ..., tmax do

set fluctuation strength D = D(t)

end
readout

3.3.3 Parallel Tempering as an Optimizer

Simple Monte Carlo combined with parallel tempering has, until recently, been the

state-of-the-art algorithm for finding the ground-state configuration of an Ising spin-glass

Hamiltonian [74, 75, 76]. For low enough temperatures, the ground state E0 is the most

probable state for the system. By implementing temperatures high enough to ensure proper

mixing of configurations and low enough for simple Monte Carlo to likely dip into the

ground state, one can create an optimization algorithm to find the minimum of a cost

function. A general conclusion is that Monte Carlo heuristics based on thermal annealing

are enhanced by mechanisms that improve thermalization at every temperature. In parallel

tempering this mechanism is replica exchange [59, 77, 55].

Parallel tempering has proven to be a versatile optimizer in many research fields such

as physics, chemistry, and biology [57]. An application of Parallel Tempering won the

2016 Max-SAT competition in several problem categories [38].

Parallel tempering is still a local update optimizer, meaning spins are flipped one at a

time. In Ch. 4, we introduce a cluster algorithm that allows for large rearrangements of
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Algorithm 3 Parallel Tempering
begin
choose start configuration S1 and S2
for t = 1, ..., tmax do

begin
Monte Carlo(NMCS, T1) for system 1
Monte Carlo(NMCS, T2) for system 2
∆E = H(S2)−H(S1)
if ∆E > 0 then

accept [S1 S2]→ [S2 S1]
else

begin
w = exp(−(β1 − β2)∆E)
generate uniform random number x ∈ [0, 1]
if x < w then

accept [S1 S2]→ [S2 S1]
end

end
end

spins to effectively “teleport” through tall energy barriers to improve parallel tempering.

An example of parallel tempering pseudo-code is given in Alg. 3.
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4. BENCHMARKING OF NOVEL CLASSICAL ALGORITHMS*

The best benchmark to test the performance of an optimization algorithm is a spin

glass [78]. Both the disorder and frustration produce a complex energy landscape that is

difficult for optimization algorithms. As such, all current benchmarks of quantum anneal-

ing machines attempt to find the ground state of an Ising spin glass. Due to diverging

equilibration times in Monte Carlo simulations of spin glasses at low temperatures, it is

important to use fast algorithms in order to probe the ground-state manifold. In this chap-

ter, we introduce a novel algorithm for improving equilibration time through the use of

Houdayer-like cluster moves that was extended from two-dimensions to any space dimen-

sion [60]. In addition, this algorithm also improves sampling of ground states in problems

with degenerate solutions. Houdayer’s cluster moves do not change the total energy of a

system of two replicas. Thus, if both replicas are in the minimum-energy state are sub-

ject to a Houdayer cluster move, their energies can not change and two new solutions are

generated. This method is exploited to produce a new algorithm that improves sampling

of ground states from solutions produced by quantum annealing devices which are known

to have biased solutions [2]. Finally, we introduce an algorithm to improve the recovery

of ground-state solutions from simulations affected by analog-noise based on analytical

results by Nishimori [41].

4.1 A Cluster Algorithm for Non-Planar Ising Spin Glasses

As explained in Ch. 3, spin systems with disorder and frustration are difficult to study 

both analytically and numerically. Simulations on ferromagnetic models with Jij = 1 

benefit g reatly f rom c luster a lgorithms s uch a s t he Wolff c luster a lgorithm [ 58]. How-

ever, a cluster algorithm for generic spin-glass systems remained elusive. Presented here

*Part of this section is reprinted from Ref. [1]. Copyright 2015 by the American Physical Society.
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is an algorithm based on the Houdayer cluster algorithm [60], from Sec. 3.1.2, for two-

dimensional spin glasses, that leads to a speedup over conventional state-of-the-art meth-

ods that improves with system size.

The method updates large patches of spins at once, effectively randomizing the con-

figurations and efficiently overcoming large barriers in the free-energy landscape. Fur-

thermore, the energy of the system remains unchanged when performing a cluster move.

This means that the numerical overhead is very small because the rejection rate is zero and

there is no need to, for example, compute any random numbers for a cluster update. The

use of cluster moves makes it possible to obtain a speedup of several orders of magnitude

in two-dimensional systems, allowing one to simulate considerably larger system sizes.

In this section, we show that Houdayer-like cluster moves can be applied to spin sys-

tems on topologies where the percolation threshold is below 50% provided that the inter-

play of temperature and frustration prevents clusters from spanning the whole system by

restricting the temperatures where cluster moves are performed. The inherent frustration

present in the spin-glass Hamiltonian prevents clusters from spanning the whole system

for temperatures below the characteristic energy scale of the problem.

4.1.1 Models and Observables

The Hamiltonian of a generic Ising spin glass without a field is defined by

H =
∑
〈i,j〉

JijSiSj with Si ∈ ±1. (4.1)

The interactions Jij are chosen from a normal Gaussian distribution shown in Eq. (2.3)

with mean µ = 0 and variance σ2 = 1. In order to determine if thermalization is improved,

we follow the recipe of Sec. 3.2 and record the average energy [〈E〉] and link overlap q`

from Eq. (3.10). Recall that one can equate the internal energy per spin to the internal
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energy computed from the link overlap [63].

E(q`) = −σ
2

T

Nb

N
(1− q`) (4.2)

whereN is the number of spins, andNb is the number of interactions between spins. Thus,

to test that the system is thermalized we study the time dependent behavior of

∆ = [〈E(q`)〉 −
〈E〉
N

] (4.3)

When ∆ → 0, the bulk of the disorder instances are thermalized [79]. Simulation param-

eters are listed in Table 4.1.

Table 4.1: Parameters of the simulation of isoenergetic cluster moves in two space di-
mensions (2D), three space dimensions (3D), and on the chimera (Ch) topology. For each
topology simulated and system sizes N , we compute Nsa disorder instances and measure
over 2b Monte Carlo sweeps (and isoenergetic cluster moves) for each of the 2NT repli-
cas. Tmin [Tmax] is the lowest [highest] temperature simulated, and NT is the total number
of temperatures used in the parallel tempering Monte Carlo method. Isoenergetic cluster
moves only occur for the lowest Nc temperatures simulated (determined from Fig. 4.2).

N Nsa b Tmin Tmax NT Nc

2D 256, 576, 1024 104 22 0.2120 1.6325 30 30
Ch 128, 288, 512, 800, 1152 104 22 0.2120 1.6325 30 19
3D 64, 216, 512, 1000, 1728 1.5× 104 23 0.4200 1.8000 26 13
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Glassy Chimeras could be blind to quantum speedup:
Designing better benchmarks for quantum annealing machines
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Recently, a programmable quantum annealing machine has been built that minimizes the cost function of hard
optimization problems by adiabatically quenching quantum fluctuations. Tests performed by different research
teams have shown that, indeed, the machine seems to exploit quantum effects. However experiments on a class
of random-bond instances have not yet demonstrated an advantage over classical optimization algorithms on
traditional computer hardware. Here we present evidence as to why this might be the case. These engineered
quantum annealing machines effectively operate coupled to a decohering thermal bath. Therefore, we study
the finite-temperature critical behavior of the standard benchmark problem used to assess the computational
capabilities of these complex machines. We simulate both random-bond Ising models and spin glasses with
bimodal and Gaussian disorder on the D-Wave Chimera topology. Our results show that while the worst-
case complexity of finding a ground state of an Ising spin glass on the Chimera graph is not polynomial, the
finite-temperature phase space is likely rather simple: Spin glasses on Chimera have only a zero-temperature
transition. This means that benchmarking classical and quantum optimization methods using spin glasses on
the Chimera graph might not be the best benchmark problems to test quantum speedup. We propose alternative
benchmarks by embedding potentially harder problems on the Chimera topology. Finally, we also study the
(reentrant) disorder–temperature phase diagram of the random-bond Ising model on the Chimera graph and
show that a finite-temperature ferromagnetic phase is stable up to 19.85(15)% antiferromagnetic bonds. Beyond
this threshold the system only displays a zero-temperature spin-glass phase. Our results therefore show that a
careful design of the hardware architecture and benchmark problems is key when building quantum annealing
machines.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 03.67.Lx

Quantum devices are gaining an increasing importance in
everyday technology: They find applications in different tech-
nological areas such as (true) quantum random number gen-
erators, as well as quantum encryption systems for data trans-
mission. The holy grail is to build a programmable quantum
simulator with capabilities exceeding “traditional” computer
hardware based on classical bits. The first programmable
commercial device to exploit the unique power of quantum
mechanics to perform computations is the D-Wave One quan-
tum annealer [1]. In analogy to simulated annealing [2] where
thermal fluctuations are adiabatically quenched to minimize a
cost function, this machine is based on the quantum anneal-
ing optimization method [3–11] where quantum fluctuations
replace thermal ones.

Tests by different research teams have shown that, indeed,
the D-Wave quantum annealer optimizes using quantum ef-
fects [12–16]. Although it has been shown theoretically [17],
as well as with numerical experiments [8] that quantum an-
nealing should, in principle, outperform classical (thermal)
optimization algorithms (such as simulated annealing [2]) on
an algorithmic level, when applied to a class of random edge-
weight instances, the quantum annealing machine has not yet
shown a speedup over classical optimization methods [13]. In
this work we present evidence why this might be the case: The
D-Wave One and Two quantum annealing machines use a re-
strictive “Chimera” topology (see Fig. 1 for an example with
128 quantum bits) imposed due to fabrication constraints of
the solid-state quantum bits.

FIG. 1: Example Chimera graph with M2 = 16 blocks of 8 qubits
(black dots). This means the system has N = 128 qubits and an
effective linear size L =

√
N =

√
128. The high connectivity

between the spins within each block effectively renders the model
quasi-two-dimensional. Note that the graph is not planar.

Probably the best benchmark problem to test the efficiency
of optimization algorithms is a spin glass [18]. Both the dis-
order and frustration present produce a complex energy land-
scape that challenges optimization algorithms. As such, all
current benchmarks of the quantum annealing machine at-
tempt to find the ground state of a certain class of Ising spin

Figure 4.1: Chimera topology with N = 128 sites [10]. The circles denote spins and lines
between circles denote interactions.

4.1.2 Algorithm

We introduce the isoenergetic cluster algorithm (ICA) for spin-glass Hamiltonians in

any space dimension [1]. These rejection-free cluster moves accelerate thermalization

by several orders of magnitude, even for systems with space dimensions larger than two

dimensions such as the three-dimensional cubic lattice and the Chimera lattice shown in

Fig. 4.1. The interplay of temperature and frustration prevents clusters from spanning the

entire system despite having percolation thresholds below p = 0.5. In Fig. 4.2, we see

that clusters can remain below the percolation threshold at approximately T ∼ J , where
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J is the energy scale of the associated problem. We can exploit this feature and restrict

Houdayer cluster moves to the temperature region where they will be most efficient.

One simulation step using isoenergetic cluster moves follows:

• Perform one Monte Carlo sweep (N Metropolis updates) for each replica.

• If the cluster size is greater than half the spins, that all of the spins in that configura-

tion are flipped thus reducing the cluster size while leaving the energy unchanged.

• Perform one Houdayer cluster move for all temperatures T ≤ J .

• Perform one parallel tempering update for a pair of neighboring temperatures.

It is important to reiterate, the main difference lies in applying the cluster moves to only

the temperatures where the isoenergetic cluster moves are efficient and reducing the cluster

size to reduce numerical overhead.

Simulations on the chimera lattice show the overhead of ICA over PT is approximately

25% and is roughly independent of the system size for the studied N . However, the over-

head for the HCA over PT is at least 50% and grows with increasing system size.
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Figure 4.2: (Top panel) Fraction of spins p of potential cluster sites as a function of tem-
perature T for different system sizes N in the two-dimensional square lattice. The hor-
izontal line represents the percolation threshold of a two-dimensional square lattice, i.e.,
pc ≈ 0.592 [61]. Because p → 0.5 for T →∞, for all T clusters do not percolate, which
is why the ICA is efficient in two-dimensional planar geometries. (Center panel) p as a
function of temperature T for different system sizes N on the chimera topology. The hori-
zontal line represents the percolation threshold of the non-planar chimera topology shown
in Fig. 4.1, namely pc ≈ 0.387 [80]. For T & J = 1 clusters percolate and cluster updates
provide no gain. (Bottom panel) p as a function of temperature T for different system sizes
N in three space dimensions (3D). The horizontal line represents the percolation threshold
of the three-dimensional cubic lattice (pc ≈ 0.311 [62]). For T & J = 1 clusters percolate.
In all panels, error bars are computed via a jackknife analysis over configurations and are
smaller than the symbols.

4.1.3 Effects of Percolation on Cluster Moves

Figure 4.2 shows the fraction of potential cluster members as a function of temperature

T for different system sizes with N spins and for three different topologies. The top panel
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of Fig. 4.2 shows data for a two-dimensional square lattice where the percolation threshold

is known to be pc ≈ 0.592 [61]. Thus, for all temperatures simulated, the fraction of cluster

sites is below the percolation threshold and saturates at 50% for T →∞. This means that

cluster updates are efficient for all temperatures because the clusters never percolate. One

would expect the clusters to percolate in higher dimensions as connectivity is increased.

However, in spin glasses this is not the case due to the frustration present as shown in the

second and third panel in Fig 4.2. For the chimera topology and in the three-dimensional

cubic lattice, for increasing system size the fraction of cluster sites converges to a limiting

curve that crosses the percolation threshold at approximately T ≈ J = 1. This means

that, for all T ≥ J , clusters percolate and cluster updates are simply numerical overhead.

However, for T ≤ J , the fraction of cluster sites is below the percolation threshold and

cluster moves in this temperature regime should improve thermalization.

When the interactions Jij are drawn from a normal Gaussian distribution, the ground

state is unique. There is only one configuration S that minimizes the Hamiltonian. In

Fig. 4.2 the fraction of spins potentially in a cluster also approaches zero for T → 0.

Therefore, a cluster is composed of no sites, or the entire lattice. In the case of disorder

distributions that yield highly degenerate ground states, such as the bimodal distribution

in Eq. (2.2), it is possible to continue to have clusters at zero temperature. Thus, it is

possible to hop around the ground state manifold by only applying cluster moves at zero

temperature. An interesting application of this feature is to “fix” the poor sampling of

the D-Wave device by repeatedly performing cluster moves on the configuration results to

produce new solutions shown in 4.2.5.
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Figure 4.3: (Top panel) ∆ [Eq. (4.3)] as a function of simulation time t = 2b measured in
Monte Carlo sweeps in two space dimensions (2D) for N = 1024 and T = 0.212. Sim-
ulations using vanilla PT thermalize at at least 225 Monte Carlo sweeps, whereas with the
addition of ICA, thermalization is reduced to approximately 216 Monte Carlo sweeps. This
means approximately 2 orders of magnitude improvement. (Center panel) ∆ as a function
of simulation time t = 2b measured in Monte Carlo sweeps for an Ising spin glass on
chimera with N = 1152 spins at T = 0.212. Simulations using PT thermalize at approx-
imately 225 Monte Carlo sweeps, whereas the addition of ICA reduces thermalization to
218 Monte Carlo sweeps. Again, approximately 2 orders of magnitude speedup. (Bottom
panel) ∆ as a function of simulation time t = 2b measured in Monte Carlo sweeps in three
space dimensions (3D) for N = 1728 and T = 0.42 ∼ 0.43Tc. Using standard PT, the
system thermalizes approximately after 223 Monte Carlo sweeps. This time is reduced to
∼ 220 Monte Carlo sweeps when ICA is added. In all panels, error bars are computed via
a jackknife analysis over configurations.

4.1.4 Results

We compare the thermalization time of parallel tempering Monte Carlo with the Isoen-

ergetic Cluster Algorithm at the lowest temperature of the simulation where, in principle,
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thermalization is most difficult.

Figure 4.3 shows ∆ as a function of Monte Carlo time measured in lattice sweeps

t = 2b. The first panel shows data in two space dimensions for simulations using ICA and

simple parallel tempering Monte Carlo for N = 1024 spins at T = 0.212. Clearly the

inclusion of cluster moves show an improved thermalization as can be expected from the

simpler Houdayer’s cluster algorithm. The second panel shows data on the chimera topol-

ogy with N = 1152 spins and T = 0.212, where the HCA is not expected to show any

improvement due to the percolation threshold pc < 0.5. ICA clearly improves thermal-

ization in comparison to PT by at least two orders of magnitude, an amount that increases

with system size. Finally, the last panel shows ∆ as a function of simulation time in three

space dimensions with N = 1728 spins and T = 0.42� Tc. The data show a speedup of

approximately one order of magnitude that again grows with increasing system size.

Figure 4.4 shows the ratio of thermalization time using PT and using PT with ICA for

different topologies at the lowest simulation temperature as a function of system size. In

all cases, the speedup increases with increasing system size.
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Figure 4.4: Ratio between the approximate average thermalization time of PT and
PT+ICM for different topologies at the lowest simulation temperature (see Table 4.1) as a
function of system size N . In all cases the speedup increases with increasing system size.
Note that thermalization times have been determined by eye.

4.1.5 Summary and Applications

I have presented a rejection free cluster algorithm for spin glasses in any space di-

mension that greatly improves thermalization. By restricting Houdayer cluster moves to

temperatures where cluster percolation is hampered by the interplay of frustration and tem-

perature, we are able to extend the Houdayer cluster algorithm for two-dimensional spin

glasses to any topology or space dimension. This implementation of the cluster updates

represents only a minor overhead compared to the thermalization time speedup, that im-

proves with system size, obtained from the isonenergetic cluster algorithm. This algorithm

represents a new state-of-the-art in the benchmarking of quantum annealing devices [37].

Isoenergetic cluster moves have been used in studies of new benchmark problems [19, 37],

the basis of a new algorithm for satisfiability problems [38], ground state sampling studies

[36, 2], and studies of the effects of noise on analog quantum devices [4].
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4.2 Improving Fair Sampling in Non-Planar Topologies

The thermalization of a spin glass represents a first stringent metric when evaluating the

quality of a novel optimization approach. However, verifying that an optimizer can sam-

ple all solutions that minimize the Hamiltonian is a far more stringent test for any newly

developed algorithm. Many different algorithms have been proposed to solve this opti-

mization problem is quantum annealing [26], simulated annealing [67], parallel tempering

[74, 75], and population annealing [81, 76]. In addition, uniform sampling of ground states

is imperative for other combinatorial optimization problems in computer science such as

propositional model counting (#SAT) [82], knapsack solution problem counting [83], and

satisfiability-based set membership filters [84].

In previous work by Moreno et al., parallel tempering was shown to be more effi-

cient than simulated annealing at finding spin glass ground-state configurations with near

equal probability [74]. In more recent work by Matsuda et al., simulated quantum an-

nealing was shown to perform worse than simulated annealing with certain ground state

solutions being exponentially suppressed [9]. In addition, work by Wang et al. shows

that population annealing is comparable to parallel tempering [85]. This theory is later

experimentally demonstrated on the D-Wave 2X quantum annealer [86]. More complex

driving Hamiltonians, which introduce quantum transitions between all states with equal

weights, are proposed for future quantum annealing machines to ensure a fair sampling of

the ground-states.

The newly developed ICA, explained in detail in the previous section, which combines

parallel tempering with isoenergetic cluster moves allows for a wide-spread sampling of

search space. Here, ICA is shown to improve the equal sampling of ground state configu-

rations for the Chimera topology.
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4.2.1 Model

We begin with an Ising spin glass model on the non-planar Chimera graph shown

in Fig. 4.1. Its non-planar topology makes finding ground states of the Ising spin glass

defined on a Chimera graph a worst-case NP-hard problem. The Hamiltonian for this spin

glass model is given by

H =
∑
〈i,j〉

JijSiSj with Si ∈ ±1. (4.4)

The coupling constants, Jij ∈ {±1,±2,±4} are selected based on the range of ground-

state degeneracy our high-performance computing cluster can store during a simulation.

For example, the simplest choice of Jij ∈ {±1} has ground state degeneracies of the

order of 106 to 109 which requires a significant amount of simulation memory. Adding

the additional values of ±2 and ±4 reduces the degeneracy to something tractable on the

order of 102 to 105.

4.2.2 Metric for Improvement

To illustrate improvement of sampling we must first define a metric for evaluating the

quality of sampling. Suppose n is the total number of times that ground states are found for

an instance with ground-state degeneracy G. The probability distribution for finding any

particular ground-state configuration is a binomial distribution. In the case of theoretically

perfect sampling, if p = 1/G and q = 1 − p is the probability of failure in a binomial

trial, then the expected number of successes in n trials is e = np and the variance of the

binomial distribution is σ2 = npq. Thus, the theoretical relative standard deviation Qth, is

Qth = σ/e =
√

(1− p)/np =
√

(G− 1)/n. (4.5)
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The algorithm is optimal if the numerical relative standard deviation of the frequency

of ground state configurations, Qnum, is close or equal to the theoretical value, or if

Qnum/Qth = 1. In practice, Qnum for any algorithm is greater than the theoretical value

Qth due to finite computational resources.

Table 4.2: Parameters of the simulation for fair sampling of ground states using isoener-
getic cluster moves. For each instance class and system sizeN , we computeNsa instances.
Nsw = 2b is the total number of Monte Carlo sweeps for each of the 4NT replicas for a
single instance, Tmin [Tmax] is the lowest [highest] temperature simulated, andNT andNhc

are the number of temperatures used in the parallel tempering method and in the isoener-
getic cluster algorithm, respectively.

Topology N Nsa b Tmin Tmax NT Nhc

2D 144 360 24 0.0500 3.0500 35 35

2D 256 360 24 0.0500 3.0500 35 35

2D 576 322 24 0.0500 3.0500 35 35

2D 784 232 24 0.0500 3.0500 35 35

2D 1024 370 24 0.0500 3.0500 35 35

Chimera 128 360 24 0.0500 3.0500 35 20

Chimera 288 360 24 0.0500 3.0500 35 20

Chimera 512 360 24 0.0500 3.0500 35 20

Chimera 800 360 24 0.0500 3.0500 35 20

Chimera 1152 223 24 0.0500 3.0500 35 20

4.2.3 Isoenergetic Cluster Algorithm as a Solver

To determine if we have found the ground state solution of a system, we randomly

initialize four replicas with the same disorder and keep track of the lowest energies of each
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individual replica at the lowest temperature. If after the first half of the simulation, Nsw/2,

the lowest found energies of the replicas are equivalent, we are confident the ground-state

energy has been found and we record the frequency of ground states for the remaining half

of the simulation. We choose to make sure that each configuration is recorded a minimum

number of 50 times in order to increase our confidence that all accessible ground states

have been found. The simulation parameters are shown in Table 4.2.

4.2.4 Results

Figure 4.5 showsQnum

√
n as a function of ground-state degeneracyG−1 for different

spin-glass instances on a chimera graph. The algorithm is claimed to be optimal if the data

points from the numerical relative standard deviation are close to the theoretical line. It is

clear that the data for ICA are closer to the theoretical dotted line than the data points from

PT and this discrepancy increases as the system size increases.

In Fig. 4.6 we plot the median ratio of Qnum/Qth over different instances as a function

of the system size N. Qnum/Qth → 1 implies optimal sampling. The data show that ICA

performs better than PT and the improvement is more significant with increasing system

size. Large median ratios Qnum/Qth for smaller system sizes are due to the choice of

temperature set which has been specifically optimized for N = 1152. Note that statistical

error bars are determined by a bootstrap analysis.
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Figure 4.5: Scatter plot of quantitiesQnum

√
n as a function of the ground-state degeneracy

G− 1 for different spin glass instances with different system sizes N on a Chimera graph.
The data points for ICA (blue color) are closer to the theoretical limit than those for the PT
(red color), and this improvement gets better as the system size increases. The dotted line
represents ideal uniform sampling of ground-state configurations, i.e., Qnum/Qth = 1.
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Figure 4.6: Median ratio Qnum/Qth over different spin glass instances as a function of
the system size N on a Chimera graph. The data points show that ICA (blue color) per-
forms better than PT (red color) for all system sizes and the gain is more significant with
increasing system size. Note that the statistical error bars are determined by a bootstrap
analysis.

In addition to the system size, we also investigate how the quality of fair sampling

is related to ground-state degeneracy and plot Qnum/Qth as a function of ground-state

degeneracy with the same system size N = 800. Figure 4.7 suggests that with more

ground-state configurations, it is easier to sample those configurations with near-equal

probabilities. Furthermore, careful examination of instances with the same system size

and ground-state degeneracy suggests that Qnum/Qth is closely related to the Hamming

distances between ground state configurations.
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Figure 4.7: Scatter plot of ratio Qnum/Qth as a function of ground-state degeneracy G for
different spin glass instances with system size N = 800 on Chimera graph. Both data
for PT and ICA suggest that the more ground-state configurations, the easier to sample all
ground-state configurations with near-equal probabilities.

Figure 4.8 shows that instances with large Hamming distances between the ground-

state configurations have a higher Qnum/Qth due to having to flip a large number of

spins in order to completely explore the ground state manifold. To visualize this, Fig. 4.9

shows two examples of ground-state configurations with different hamming distances on a

Chimera graph with N = 128. In the ball-like ground-state manifold, exploration is easy

with simple Monte Carlo because all the ground-state configurations are related by single

spin flips. The square-like ground-state manifold benefits from the large rearrangements

of spins provided by ICA to efficiently hop between the clusters of configurations related

by single spin flips.

As the system size increases, ICA improves the sampling by having Qnum/Qth ap-

proach 1. This is a great improvement over quantum annealing, in which some solutions

are exponentially suppressed, in other words, would require an exponential amount of time
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to find that particular suppressed solution [9]. This is an important issue for the design of

quantum annealing architectures.
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Figure 4.8: Median ratio Qnum/Qth as a function of Hamming distance for different spin
glass instances with system size N = 128 and degeneracy G = 4 on Chimera graph. Data
from ICA suggest that the smaller Hamming distance between ground-state configurations,
the easier to sample all ground-state configurations with near-equal probabilities. Note that
bar chart represents median ratios Qnum/Qth between Hamming distance 1-2, 2-4, 4-8, 8-
16, 16-32 and 32-64, respectively. The statistical error bars are determined by a bootstrap
analysis.
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Figure 4.9: Two examples of ground-state configurations with different Hamming dis-
tances on a Chimera graph for system size N = 128. The Hamming distance denotes the
difference between two binary strings (ground-state configurations). Each dot in the figure
represents a ground-state configuration, black lines are 1-bit differences, red lines are 2-bit
differences, and anything that is a light color or blue is an even greater difference. In the
example on the top, all ground-state configurations are related by 1-bit differences, while
the example on the bottom shows that Hamming distances between certain ground-state
configurations can be large—which means that it will take longer for the system to move
from one ground-state configuration to another and this will cause larger fluctuations in
the ground-state frequency.

4.2.5 Generating New Solutions from Known Results

An alternative algorithm to improve the sampling of biased optimization schemes is to

begin with a bank of known solutions, such as those found by quantum annealing. One

can then perform only cluster moves without simple Monte Carlo or parallel tempering

to potentially generate new ground-states at very little computational cost. Due to the

change in energy of the Houdayer cluster moves ∆E = 0 this means that ∆E2 = −∆E1.

However, because both configurations are already minimum energy solutions, this implies

∆E1 = 0, thus ∆E2 = 0 and the two new states are also minimum energy solutions.

Due to the lack of Monte Carlo and parallel tempering, it should be noted, this method
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is non-ergodic, meaning it will not find all the potential ground state configurations. The

algorithm will simply generate more solutions if there are more to be found based on what

is contained in the initial bank of solutions.

A description of the algorithm follows:

• Randomly choose two configurations from the bank of known solutions and compute

the q-space configuration.

• Identify all clusters with qi = −1.

• Flip a cluster in their original configurations to potentially generate two new solu-

tions and add them to the bank.

• Repeat for the remaining identified clusters.

Initial configurations are chosen randomly because for some highly degenerate disorder

distributions, the number of degenerate ground-state configurations, G, can be larger than

106 as in the case of the Jij ∈ {±1} bimodal disorder.

4.2.6 Results

We apply the algorithm to a class of problems with well controlled degeneracy used

to study exponentially-biased sampling of quantum annealing devices, in this case, the D-

Wave 2X quantum annealer [2]. Interactions of this instance class, Jij ∈ {±5,±6,±7},

are chosen to limit the ground state degeneracy. Due to imperfections of the physical

chimera graph and choice of interactions, instances typically have degeneracy of G =

3× 2k and those that fall outside this sequence are discarded. Table 4.3 gives the number

of instances for each system size and total number of ground states of the simulation.
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Table 4.3: Number of disorder instances from Mandrà et. al sorted by system size and
number of ground states [2].

N G = 24 G = 48 G = 96 G = 192 G = 384 G = 768 Total

512 63 51 48 26 0 0 188

648 70 56 59 75 0 0 260

800 28 52 32 59 38 6 215

968 22 15 31 30 28 21 147

Figure 4.10 shows results for different chimera subgraphs of the full N = 1152

chimera graph. The number of initial configurations Nin given by the results of the D-

Wave simulation are read into the algorithm and pairs of solutions are randomly chosen in

order to discover new solutions. For some instances, as few as Nin = 10 solutions are in-

put and more than 100 solutions, Nout, are output. Points to the left of the Nout = Nin line

show significant improvement to the number of solutions produced by the D-Wave quan-

tum annealer. In many cases for smaller system sizes, the algorithm can find the remaining

solutions to an instance not found by the D-Wave quantum annealer.
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Figure 4.10: The number of solutions given by using only cluster moves, Nout, as a func-
tion of solutions given by the results of a D-Wave 2X quantum annealer simulation, Nin.
Each point represents an individual instance with different disorder interactions. Points to
the left of the Nout = Nin solid line imply new solutions are found.

Figure 4.11 shows the ratio of improvement of instances sorted by total number of

ground states G. The improvement increases with the total number of ground states and

with system size. This is remarkable because in the original D-Wave quantum annealing

simulation, the D-Wave produced 105 readouts. In other words, out of the 105 configura-

tions output by the D-Wave only a few readouts were solutions and these solutions were

biased to even fewer ground-state configurations. The ability of this algorithm to recover

the remaining solutions will be useful in future studies requiring degenerate solutions.
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Figure 4.11: The average ratio of improvement of instances by number of ground states
G for different chimera subgraphs. The improvement increases for the number of ground
states and the system size. The crossing of N = 800 and N = 968 is likely due to the
limited numbers of instances for these numbers of ground states.

Finding multiple solutions to a problem has many benefits in model counting [87]

and SAT filter development [84, 88]. Multiple solutions may help hidden properties or

relations of the problem being studied. For some real-world applications, there may be

factors that are difficult to model mathematically. Additional solutions will allow decision

makers to have more options for consideration of similar quality with factors that are not

captured in simulations.

4.2.7 Summary

I presented two novel cluster algorithms for sampling ground-state configurations of

spin glasses on a chimera graph as well as on a two-dimensional square lattice. Paral-

lel tempering updates combined with rejection-free isoenergetic cluster moves create a

robust ensemble that is able to sample both low and high-energy configurations and al-
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low global moves through the rough energy landscape. A more equiprobable sampling

of ground-state configurations has been achieved, which ensures all ground-state config-

urations for benchmarks can be found. We also found that degeneracy and Hamming

distances between different ground-state configurations are closely related to the relative

standard deviation of frequency with which the ground states are found. Ground states

with large degeneracy and small Hamming distances have a lower relative standard devi-

ation of frequency. In addition, I also present an algorithm for traversing the ground-state

manifold to generate new solutions from a bank of known solutions. The average ratio

of improvement increases with the total number of ground states of the system and the

system size. This will be useful when algorithms known to be biased, such as quantum

annealing, produce solutions and other solutions can be potentially deduced with minimal

computational effort.

4.3 An Algorithm for Finite-Temperature Decoding

Current quantum annealing devices operate at a low finite temperature, about 15 mil-

likelvin in the case of the D-Wave 2000Q, to facilitate coherence between the quantum flux 

qubits that act as spins in the quantum Ising Hamiltonian. Thermal fluctuations play an 

important role in the simulation of spin glasses and it is not immediately clear if the finite 

temperature of a quantum annealer aids in finding the ground state solution by exploiting 

thermal fluctuations to escape local minima in the energy landscape or i f the finite tem-

perature is more likely to remove a system from the ground state. In Ref. [89], Pál Ruján 

first examined the correspondence between error-correcting convolution codes and gauge 

invariant spin-glass models to show that the optimal way to recover an original message is 

by decoding the message at a finite temperature TN (q) >  0, where q  is the strength of the 

channel noise, and TN is the Nishimori temperature.
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The Nishimori temperature is the temperature at which for a given amount of disorder

in a problem, average values of certain observables such as the internal energy of a system

may be computed exactly. It comes from the study of gauge theory on finite-dimensional

spin glasses which uses the symmetry of the system to derive a number of rigorous and

exact results. For the case of Gaussian disorder, the Nishimori temperature is defined as

σ2/µ, where µ is the mean and σ2 is the variance of the distribution.

Suppose the information to be sent is a configuration of Ising spins {Si = ±1}i=1,...,N .

A simple way to send the information is to send the encoded interactions, Jij = SiSj .

The receiver receives noisy interactions and then finds the ground state of the disordered

Ising model Hamiltonian. It is important to note that even if a small percentage q of

the interactions are incorrect, it is still possible to retrieve the true configuration as long

as errors are isolated from each other because isolated frustration does not change the

ground-state configuration. Ruján’s result was rigorously proven by Nishimori via gauge

transformation [41]. More recently the idea was extended to the Chimera graph with

ferromagnetic interactions [90].

Preliminary results from K. Nishimura using transfer-matrix methods on the triangular

ladder model suggest that the correct ground state configuration is optimally retrieved at

the Nishimori temperature for simple systems [72].

4.3.1 Model

Here, we introduce a Hamiltonian with Gaussian distributed interactions and added

bond noise ζ also chosen from a Gaussian distribution,

H = −
∑
〈i,j〉

(Jij + ζij)SiSj with Si ∈ {±1}. (4.6)
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where

P (Jij) ∝ exp

(
− (Jij − µ)2

2σ2

)
and P (ζij) ∝ exp

(
− ζ2ij

2γ2

)
. (4.7)

The Nishimori temperature for this model with Gaussian disorder and additional Gaussian

noise is the sum of the two variances, σ2 +γ2, divided by the sum of the two means, µ+0,

TN =
σ2 + γ2

µ
. (4.8)

Figure 4.12 shows the phase diagram of the two-dimensional Ising model with Gaus-

sian disorder. The Nishimori line, from which the Nishimori temperatureNT can be calcu-

lated is shown in red [91]. At this temperature, it is more likely to improve the inference of

solution to a simulation with added noise than at higher temperatures where due to thermal

fluctuations, averages of observables 〈O〉 → 0, or too low temperatures where spins are

frozen in incorrect orientations.

T
/J

�2/µ

0

0.5

1

1.5

0.9 0.92 0.94 0.96 0.98 1

Ferromagnet

Paramagnet

Figure 4.12: Illustration of the phase diagram of the two-dimensional random-bond Ising
model with Gaussian disorder. The red line is the Nishimori line, from which one can
determine the temperature given some amount of disorder. The boundary shown between
these two regions is a guide to the eye. Adapted from Ref. [92].
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4.3.2 Algorithm

To measure improved decoding, we measure the overlap of the sign of the average

value of each spin of the noisy Hamiltonian with the ground state configuration S(0)
i of the

noise-less Hamiltonian (ζij = 0).

M(T ) = [S
(0)
i · sign〈S(γ)

i 〉T ]σ,γ (4.9)

M/N → 1 for N →∞ implies perfect decoding.

When σ = 0 the Hamiltonian represents the ferromagnetic Ising model. Then S(0)
i = 1

and the overlap M(T ) is identical to that of the previous analytical results of Nishimori

[41]. It is known in this case that the overlap takes a maximum value at TN = γ2. It

is difficult to apply the same theory to the case where σ 6= 0 due to the lack of proper

symmetry. The ground-state configuration is no longer uniform.
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Figure 4.13: Results of finite-temperature decoding for the N = 3872 Chimera graph with
σ = 0 and γ = 1.4. The data show a clear peak at the Nishimori temperature, NT = 1.96
signifying improved decoding.
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Figure 4.14: Null results of finite-temperature decoding for sizes of chimera graph with
µ = 1,σ = 1, and γ = 0.5. The data do not show improvement at the Nishimori tempera-
ture, NT = 1.25.

4.3.3 Results

Preliminary results shown in Fig. 4.13 for the Chimera topology with N = 3872 spins

with σ = 0 and γ = 1.4 show a clear improvement in decoding at the Nishimori tem-

perature. This is in agreement with Nishimori’s analytic results for improved decoding.

However, when σ 6= 0 as in Fig. 4.14, this observable is no longer useful when using

Monte Carlo simulations due to spin reversal symmetries and optimization methods that

use multiple replicas and random initial configurations. Attempts at finding a metric in

this regard were unfruitful. A brief description of the pitfalls of this metric for non-trivial

ground states follows.

We begin by considering the simple ferromagnetic Ising model. Typical simulations

using simple Monte Carlo with parallel tempering begin by initializing the replicas at each

temperature with random configuration states. When the simulation is allowed to equili-
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brate, one finds that due to each replica’s path through phase space, each replica can be in

either the all Si = 1 or all Si = −1 configuration that both minimize the Hamiltonian. One

should take care when measuring 〈Si〉 when using parallel tempering because neighboring

temperatures with opposite configurations will cause 〈Si〉 → 0. To fix this issue, in the

case of the ferromagnetic Ising model, one can measure the magnetization of a replica and

make a choice of ground state solution before recording Si as a method of determining

whether to record Si or the opposite, −Si, according to the sign of the magnetization as

shown in Fig. 4.13.

Unfortunately, this fix no longer applies to the case when the ground state is not uni-

form. Spin-glass states are indistinguishable from random configurations, thus any at-

tempts to record Si or the opposite −Si result in biasing all spins and yield M(T )/N = 1

as T →∞ which is an absurdity. An alternative method to fix this problem is to calculate

the overlap with the known ground state and “flip” the configuration accordingly depend-

ing on the sign of the overlap. However, this method does not yield any signs of improved

decoding as shown in Fig. 4.14.

4.3.4 Summary

Finite temperature decoding presents an opportunity to use thermal fluctuations to help

improve the ability to infer better solutions in problems affected by noise. I presented re-

sults for a trivial ferromagnetic distribution with Gaussian noise that agrees with analytical

results. However, a metric for improved decoding for more complicated distributions re-

mains to be discovered. Due to the non-trivial nature of spin-glass benchmarks, the current

metric is not useful. This idea has recently been extended to finite quantum fluctuations in

the quantum Ising Hamiltonian [73]. Any analog quantum device is affected by inherent

noise and this noise can lead to minimizing the incorrect Hamiltonian as shown in Sec. 6.1
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5. A SEARCH FOR NEW HARDWARE GRAPHS

The advent of analog quantum annealing machines and in particular the D-Wave quan-

tum annealer has sparked a new interest in the study of non-planar Ising spin glasses.

While there have been multiple attempts to discern if the D-Wave quantum annealers dis-

play an advantage over conventional technologies, to date there are only a few “success

stories” where analog quantum optimizers show an advantage over current conventional

silicon based computers [15, 21]. Recent results suggest that problems with a more com-

plex energy landscape are needed to discern if quantum annealers can outperform current

digital computers [10, 15]. In particular, the search for salient features in the energy land-

scape, the careful construction of problems with particular features, as well as the attempt

to induce a finite-temperature spin-glass transition for lattices restricted to the quasi-two-

dimension topologies of the quantum chips have gained considerable attention [93]. In this

chapter, we explore two models, the first to reduce the error in finite-size-scaling estima-

tion of critical exponents, and the second to induce a finite-temperature phase transition.

The current generation of quantum annealers is currently limited in the number of

qubits with the most recent device, the D-Wave 2000Q, having a maximum of N = 2048.

However, the estimation of critical exponents requires large systems due to finite-size-

scaling effects. One possible method to reduce these scaling corrections is to perform an

additional average over graph disorder in addition to the thermal and disorder averaging

done in typical estimations of an observable. With this goal, I introduce the bond-diluted

next-nearest-neighbor Ising spin-glass. With random dilutions of the graph, a graph disor-

der average can be performed in an attempt to reduce finite-size-scaling effects.

The quest for a finite-temperature spin-glass transition in quasi-two-dimensional topolo-

gies stems from the interest in creating an energy landscape that becomes more complex
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and rugged at finite temperatures, such that thermal simulated annealing has a harder time

in determining the optimal solution to an Ising-spin-glass-like optimization problem [67].

On the other hand, quantum annealing should, in principle, be able to tunnel through bar-

riers if they are thin enough.

5.1 Scaling Corrections in the Bond-Diluted Next-Nearest-Neighbor Ising Spin Glass

For spin glasses, calculating accurate critical exponents is difficult due to significant

corrections to scaling and long equilibration times in Monte Carlo simulations that limit

numerical studies to small system sizes. Current quantum annealing devices such as the

D-Wave 2 (N = 512) and 2X (N = 1152) are plagued by the small number of qubits in

their respective topologies. In order to study the critical phenomena of such small systems

requires a good control of the scaling corrections as emphasized in the work of Hasenbusch

et al. [94] and Katzgraber et al. [3].

One way to reducing finite-size effects in spin glasses is to introduce periodic boundary

conditions. Unfortunately, current machines have a fixed connectivity which does not

allow open boundaries. The effect of having free boundary conditions is that the edge

spins in a topology do not behave like the spins in the bulk. One possible method available

to devices with a fixed connectivity is to dilute the bond lattice.

Figure 5.1: Illustration of the two-dimensional next-nearest-neighbor graph. The blue
lines are the typical nearest-neighbor interactions. The red lines denote next-nearest-
neighbor interactions.
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5.1.1 Model

We simulate the three-dimensional next-nearest-neighbor Ising spin glass with coordi-

nation number z = 18 and Gaussian disorder. Figure 5.1 can be imagined as once slice

through the center of a 3× 3 cubic lattice. By removing bonds such that each of the spins

in the system has an average connectivity of z = 6, the same connectivity of the regu-

lar three-dimensional cubic lattice, finite size effects should be reduced. Fortunately, a

bond-diluted Ising spin glass will share the same universality class with the standard three

dimensional cubic lattice [3]. Thus, a comparison of the two models can be performed.

Our Hamiltonian is the usual one without a field term;

H =
∑
〈i,j〉

JijSiSj with Si ∈ {±1} (5.1)

In order to measure corrections to scaling, we measure the Binder cumulant of the overlap

and the finite size correlation length respectively,

gq =
1

2

[
3− 〈q

4〉
〈q2〉2

]
(5.2)

ξL =
1

2 sin(kmin/2)

[
χSG(0)

χSG(kmin)

]
(5.3)

where

χSG =
1

N

∑
i,j

[〈SiSj〉2]eik·(Ri−Rj) (5.4)

and kmin = (2π/L, 0, 0), the smallest non-zero wave vector.
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5.1.2 Scaling and Corrections

Using the Binder cumulant and correlation length one can approximate the critical

exponent ν via

g = G̃(L1/ν [β − βc]) (5.5)

ξL
L

= X̃(L1/ν [β − βc]) (5.6)

The spin-glass susceptibility χSG allows one to estimate the critical exponent η via a

knowledge of ν and

χSG = L2−ηC̃(L1/ν [β − βc]). (5.7)

With these scaling equations, all data should fall onto a single curve as shown in Fig. 2.4.

Unfortunately, sometimes corrections to scaling are required.

g = G̃(L1/ν [β − βc])[1 + cL−ω + ...] (5.8)

ξ

L
= ξ̃(L1/ν [β − βc])[1 + cL−ω + ...] (5.9)

Corrections to scaling are asymptotically dominated by the leading correction to scaling

exponent ω and vanish in the thermodynamic limit. Simulation parameters are listed in

Table 5.1.
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Table 5.1: Parameters of the simulation of the bond-dilute next-nearest-neighbor Ising
spin glass. For system size N , we compute Nsa instances. Nsw = 2b is the total num-
ber of Monte Carlo sweeps for each of the NT replicas for a single instance, Tmin [Tmax]
is the lowest [highest] temperature simulated, and NT and Nhc are the number of tem-
peratures used in the parallel tempering method and in the isoenergetic cluster algorithm,
respectively.

Topology N Nsa b Tmin Tmax NT Nhc

3D 64 6000 21 0.700 1.300 13 7

3D 216 6000 21 0.700 1.300 13 7

3D 512 6000 21 0.700 1.300 13 7

3D 1728 3000 21 0.700 1.300 13 7

5.1.3 Results

We compare results from the nearest-neighbor three-dimensional Ising spin glass to

the bond-diluted next-nearest-neighbor three-dimensional Ising spin glass. Figures 5.2 and

5.3 show the Binder cumulant and correlation length and their finite-size scaling analysis

respectively. Estimates of νg = 4.2(6) and νξ = 2.82(9) are obtained. For comparison,

νg = 2.67(17) and νξ = 2.44(9) for the three-dimensional nearest-neighbor Ising spin

glass. νξ 6≈ νg implies large corrections to scaling.

After calculating ξL/L and g as a function of temperature, we find that it is also useful

to plot them as a function of each other. Using Eqs. (5.8) and (5.9), one can write g =

Ĝ(ξL/L) where Ĝ is also a universal scaling function. With this metric, data for all models

should collapse onto a single curve. We see in Fig. 5.4 that corrections to scaling are

required in order for the data to fall on the same universal curve as the nearest-neighbor

data shown in black obtained from Ref. [3].
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Figure 5.2: Data for the Binder cumulant gq and its finite-size scaling analysis are shown
for the bond-diluted three-dimensional next-nearest-neighbor Ising spin glass. In the
finite-size scaling analysis, ν = 4.2(6) and Tc = 1.27(5). For comparison, νg = 2.67(17)
for the three-dimensional nearest-neighbor Ising spin glass.
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Figure 5.3: Correlation length ξL and its finite-size scaling analysis are shown for the
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5.1.4 Summary

By studying the bond-diluted next-nearest-neighbor three-dimensional Ising spin glass

we determined this model suffers from large corrections to scaling. This result generates

more questions than it answers. The addition of next-nearest-neighbor interactions should

not affect the universality [3], however, diluting this next-nearest-neighbor graph produces

different critical exponents. It was previously shown by Jörg that the bond-diluted three-

dimensional spin glass with Gaussian distributed interactions suffers from large correc-

tions to scaling [95]. There is likely some interplay between the addition of bonds and

their random dilution that has not been fully explored.
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5.2 Lack of a Finite Temperature Spin-Glass Phase in the Two-Dimensional Ran-

domly Coupled Ferromagnet

The search for problems where quantum annealing might excel over classical opti-

mization techniques has sparked a recent interest in inducing a finite-temperature spin-

glass transition in quasi-planar topologies. We study the model of Lemke and Campbell

[96], later analyzed in much detail in Refs. [97, 39, 98], that may have the desired finite-

temperature spin-glass transition and be of a planar topology that can be easily constructed

with current superconducting flux qubits. Unfortunately, our analysis show that for large

enough system sizes the model is in a paramagnetic phase at finite temperatures for a

parameter range where it is predicted to be a spin glass.

5.2.1 Model

Lemke and Campbell’s model is a two-dimensional square-lattice Ising spin glass with

uniform ferromagnetic next-nearest-neighbor interactions of strength J and random bi-

modal nearest-neighbor interactions of strength ±λJ . The Hamiltonian for this model

is

H = −
∑
〈i,j〉

JijSiSj − J
∑
〈〈i,j〉〉

SiSj with Si ∈ {±1}. (5.10)

In Eq. (5.10), J = 1 are ferromagnetic interactions between next-nearest-neighbors (de-

noted by 〈〈i, j〉〉) and Jij = ±λJ are nearest-neighbor bi-modally distributed spin-glass

interactions (denoted by 〈i, j〉). Depending on the value of λ, Ref. [96] states that a finite-

temperature spin-glass transition can be induced in two space dimensions. Extensive nu-

merical simulations by Parisi et al. [97] suggested the existence of a crossover in the

critical behavior for large enough system sizes. First, from a seemingly ordered state to

a spin-glass-like state, followed by a second crossover to a possibly paramagnetic state.

This means that true thermodynamic behavior can only be observed if the system sizes
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exceed a certain break up length.

However, a conclusive characterization of the critical behavior, as well as the λ-dependence

of the break up length ` were not discussed in detail until the extensive zero-temperature

study by Hartmann and Campbell [98]. By computing ground-state configurations for in-

termediate system sizes and estimating the stiffness exponent that describes the scaling

of energy excitations when a domain is introduced into the system, they argue—based on

zero-temperature estimates of the spin stiffness—that there should be a finite-temperature

spin-glass transition for certain values of λ and linear system sizes L that fulfill L > `.

In particular, they estimate that for λ > λ∞ = 0.27(8) no ferromagnetic order should be

present. Because the break up length ` is large for λ ∼ 0.5 (L & 45), Ref. [98] suggests

studying systems with λ = 0.7 where ` ≈ 10. On the other hand, for λ = 0.90, the

stiffness exponent θ = 0.09(5) is very close to zero. Therefore, in this work we focus on

the cases where (i) we can simulate system sizes L � ` and (ii) the stiffness exponent θ

is clearly positive, thus implying a finite-temperature phase, i.e., λ = 0.50 and 0.75. A

summary of the properties of the model for these values of λ, as well as the simulation

parameters are listed in Table 5.2.
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Table 5.2: Simulation parameters of the two-dimensional randomly coupled ferromagnet
and estimates of the stiffness exponent θ and break up length ` for different values of
λ. For both values of λ we studied different system sizes L using parallel tempering
Monte Carlo. The lowest [highest] temperature simulated is Tmin = 0.4 [Tmax = 2.8]
with NT = 50 temperature steps. Thermalization is tested by a logarithmic binning; once
the last three bins agree within error bars we deem the system to be thermalized. For all
systems, this was the case afterNsw = 222 Monte Carlo sweeps. Furthermore,Nsa samples
were computed for each parameter combination. Note that the estimate of θ for λ = 0.50
is taken from Ref. [98], whereas the value for λ = 0.75 is estimated from the published
data (see text for details).

λ θ ` L Nsw Tmin Tmax NT Nsa

0.50 0.59(8) 45 48 222 0.4 2.8 50 104

64 222 0.4 2.8 50 104

96 222 0.4 2.8 50 104

128 222 0.4 2.8 50 104

0.75 0.23(1) 9 24 222 0.4 2.8 50 104

32 222 0.4 2.8 50 104

48 222 0.4 2.8 50 104

64 222 0.4 2.8 50 104

The simulations were performed using parallel tempering Monte Carlo [55] combined

with isoenergetic cluster updates [1]. Note that we determine the estimated value of θ for

λ = 0.75 by performing a linear fit to the data of Ref. [98] (quality of fit ∼ 0.58 [99]) and

estimate θ(λ) ≈ 1.083(3) − 1.12(4)λ, valid in the window λ ∈ [0.5, 1.1]. Furthermore,

by inspecting Fig. 7 in Ref. [98], we estimate that the break up length for λ = 0.75 is

approximately ` ≈ 9.

To detect the existence of a spin-glass transition, we measure the Binder cumulant g
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[54] of the spin-glass order parameter q via

gq =
1

2

(
3− [〈q4〉]avg

[〈q2〉]2avg

)
with q =

1

N

N∑
i=1

Sαi S
β
i , (5.11)

where α and β represent two copies of the system with the same disorder. The overlap is

measured after each Monte Carlo sweep (N spin updates). 〈...〉 denotes a thermal average.

[...] denote a disorder average over the instances used in the study. The Binder cumulant is

dimensionless and scales as gq = G[L1/ν(T − Tc)]. If T = Tc, then data for different sys-

tem sizes cross. If there is no transition, the data does not cross. To rule out a transition at a

temperature not simulated a finite-size scaling of the data can be used. To determine what

type of phase the simulation is in, we measure the average square of the magnetization

m2 ≡ [〈m2〉]avg with m =
1

N

N∑
i=1

Sαi . (5.12)

5.2.2 Results

We have performed large-scale classical Monte-Carlo simulations for system sizes

L � ` and λ = 0.50 and 0.75. The results for the Binder cumulant which should dis-

play a crossing if there is a finite-temperature transition are summarized in Fig. 5.5. the

Binder cumulant for the spin-glass order parameter gq does not show a crossing down to

low temperatures for both values of λ studied. In addition, a finite-size scaling of the data

for λ = 0.75 (inset) strongly suggests that Tc = 0. Furthermore, the magnetization m2 as

a function of the temperature T decreases with increasing system sizes for both values of

λ studied. Based on these results, we conclude that the system is in a paramagnetic state

for both values of λ in the thermodynamic limit.
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temperature T for the model described in Ref. [96] with λ = 0.50 (top) and λ = 0.75
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temperature studied, thus suggesting that there is no finite-temperature spin-glass phase.
The insets to both panels show that the magnetizationm2 decreases with increasing system
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finite-size scaling of the data for λ = 0.75 that implies Tc = 0.

5.2.3 Summary

The results show that the model introduced in Ref. [96] and studied in detail in subse-

quent publications [97, 39, 98], does not exhibit a finite-temperature spin-glass transition

in the thermodynamic limit for values of the parameter λwhere it is expected to show such

behavior. As suggested in Ref. [97], for large system sizes, the model is in the paramag-

netic phase. While Ref. [97] only finds “strong evidence” for the second crossover from

spin glass to paramagnet, here we show that the thermodynamic limit is a paramagnetic

phase at finite temperature.

Given recent interest in inducing finite-temperature spin-glass transitions in quasi-

planar topologies such as the Chimera graph [15], we conjecture that adding any set of

interactions that do not grow with the system size to a nearest-neighbor lattice will likely

not result in a finite-temperature spin-glass transition [40]. With this in mind, very recent

work by Katzgraber et al. suggests adding small-world interactions [100] to a chimera
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graph, yields a finite-temperature phase transition [101].
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6. MITIGATING THE EFFECTS OF NOISE THROUGH CAREFUL CHOICE OF

INTERACTIONS*

Despite evidence that the D-Wave quantum annealer indeed runs quantum mechani-

cally, there remain open problems before the device becomes practically useful. One of

these problems is the control error, i.e., imperfections in the setting of parameter values of

the Ising Hamiltonian in the device [102, 4]. Because it is difficult to set the interactions

and local fields of the Hamiltonian with high precision, the device might be attempting

to find the ground state of the wrong Hamiltonian, thus compromising the reliability of

the final output. This phenomenon arises in any analog device like the D-Wave quan-

tum annealer and it is crucial to devise and implement ingenious methods to mitigate the

influence of control errors.

There exist two methods to remedy control errors. First is the reduction of noise on

individual qubits and interactions. This has been implemented on the hardware level by

D-Wave Inc. for each generation of their quantum annealer. A second method is to per-

form error-corrected quantum annealing that treats several physical qubits as one logical

qubit [103, 104, 105]. However, this method creates overhead by reducing the number of

variables in the problem Hamiltonian.

In this section, instead of attempting to correct control errors, I focus directly on work-

ing within the noise constraints of analog devices using general methods that can be ap-

plied to present and future analog quantum annealers. We present results from classi-

cal parallel-tempering Monte Carlo simulations combined with isoenergetic cluster moves

from Sec. 4.1 using realistic uncorrelated noise models to study the best-case resilience,

i.e., the probability that the ground-state configuration is not affected by random fields

and random-bond fluctuations found on the chip. We thus compute classical upper-bound
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success probabilities.

In addition, we study the discretization of continuous distributions in order to make

continuous distributions available to quantum annealing devices with analog noise. The

benefits of discretizing continuous distributions extends to special purpose machines such

as field programmable gate arrays or FPGAs which have limited memory.

6.1 Benchmarking Resilience to Noise

The recent interest in the D-Wave quantum annealer has sparked a small computing

revolution in recent years.1 In order to discern a quantum advantage to classical algo-

rithms, recent work by Katzgraber et al. suggests that tunable hard benchmark problems

within the constraints of the D-Wave device is an improvement over spin glasses with

uniformly-distributed disorder on the Chimera graph [15]. This work studies the interplay

between the generation of hard benchmark instance with the design of problems suitable

for the D-Wave device that are robust to noise.

Spin-glasses are incredibly fragile when subjected to small perturbations, also known

as chaotic effects, to either couplers (bond chaos), qubits via longitudinal fields (field

chaos), or both couplers and qubits by thermal fluctuations (temperature chaos) [106, 107].

We define resilience, the probability that the ground-state configuration is not affected

by random fields and random-bond fluctuations found on the D-Wave chip for different

benchmark instance classes by using realistic uncorrelated noise models for the D-Wave

Two quantum annealer. Note that this methodology is generic, i.e., it can be applied to any

architecture or noisy black-box optimization device.

6.1.1 Instance Classes

We define a new Hamiltonian on the chimera topology to optimize,
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H = −
∑
〈i,j〉

JijSiSj −
∑
〈i〉

Sihi with Si ∈ {±1}. (6.1)

The disorder distributions are chosen within the hardware constraints of the D-Wave Two

architecture. To emulate the effects of thermal noise we perturb the discrete values of the

couplers Jij by a random amount ∆Jij drawn from a Gaussian distribution with mean zero

and standard deviation ∆J . We choose the uncorrelated quenched random fields h in the

same manner.

We follow the recipe of Ref. [15] to carefully choose interactions between the spins

to determine the hardness and robustness of the instance classes. The ideal benchmark

instance is robust to noise, has a unique ground state, and many metastable states. We

define a quantity named yield, Y = Nunique/Ntotal. Given Ntotal randomly generated

instances, the yield is the ratio of instances with a unique ground state, Nunique. We focus

our study on the following distributions of interactions which we call instance classes;

• U1 ∈ {±1}

• U4 ∈ {±1,±2,±3,±4}

• U5,6,7 ∈ {±5,±6,±7}

• S28 ∈ {±8,±13,±19,±28}.

The U5,6,7 and S28 instance classes are Sidon sets [108] and reduce the degeneracy of

ground states by design, and thus increase yield. Sidon sets are sets of numbers such

that all pairwise sums are unique which reduces the chance of having a zero-local field

resulting in a “free” spin that increases the degeneracy.

To quantify robustness to noise we define the resilienceR of an individual instance in

an instance class to beR = Nsame/Ntrials whereNsame is the number of trials with different
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random noise perturbations that do not change the original ground-state configurations.

The simulation performs Ntrials = 10 trials to compute R. Simulation parameters are

given in Table 6.1.

Table 6.1: Simulation parameters for benchmarking resilience to noise. For each instance
class and system size N , we compute Nsa instances. Nsw = 2b is the total number of
Monte Carlo sweeps for each of the 4NT replicas for a single instance, Tmin [Tmax] is the
lowest [highest] temperature simulated, and NT is the number of temperatures used in the
parallel tempering method. For the lowest Nicm temperatures isoenergetic cluster moves
are applied.

Class N Nsa b Tmin Tmax NT Nicm

U1 512 900 19 0.150 3.050 30 13

U4 512 900 19 0.150 3.000 30 14

U5,6,7 128 900 19 0.150 3.000 30 14

U5,6,7 288 900 19 0.150 3.000 30 14

U5,6,7 512 900 19 0.150 3.000 30 14

U5,6,7 800 900 19 0.150 3.000 30 14

U5,6,7 1152 900 19 0.150 3.000 30 14

S28 512 900 19 0.150 3.000 30 14

6.1.2 Results

We apply the method of fair sampling in Sec. 4.2 to record the configurations that

minimize the Hamiltonian and thus, estimate the degeneracy distribution of the ground

state. It is important to note that this study only focuses on the resilience of the exact

ground state. For the D-Wave Two architecture with 512 qubits, yield is strongly dependent

on instance class. U1 and U4 have a Y = 0. The yields for U5,6,7 and S28 are 4.5(4)% and
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20.0(6)% respectively.

Figure 6.1 shows the resilience to random-field and random-coupler noise for the dif-

ferent instance classes. As the strength of the noise increases the resilience decreases due

to a high probability of level crossing. Instances with smaller energy gaps, have a lower

resilience, again due to an increased chance of level crossing when perturbed by noise.

Recalling that the ideal instance that has a unique ground state, is hard, and robust to

noise, some compromise has to be made for the D-Wave Two. Due to the low yield U1

and U4 are not useful. S28 is too susceptible to noise, while U5,6,7 has a non-zero yield

and is reasonably robust to noise. The other important conclusion of this work is that

the coupler noise has a greater effect on resilience than field noise. In the specific case

of U5,6,7, Fig. 6.2 shows a dramatic drop in resilience as the system size increases. This

means that to scale up the system size of the D-Wave, or any other quantum annealing

device, a much more precise control over the device’s noise and/or the implementation of

error correction schemes [109, 104, 110].
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Figure 6.1: Resilience (R) of different instance classes for a N = 512 qubit system on the
Chimera graph as a function of Gaussian random field strength h (top) and bond fluctuation
∆J (bottom). Instance classes are less resilient to noise with increasing field strength
(bond fluctuation) and decreasing classical energy gap. The shaded line represents the
current field (bond fluctuation) noise strength of approximately 5% (3.5%). Note that
bond noise has a stronger effect than field noise.
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Figure 6.2: Resilience R of the U5,6,7 instance class as a function of the bond fluctuation
strength (∆J) for different system sizesN on the Chimera topology. The resilience clearly
decreases for increasing noise and system size. The shaded vertical line represents the
current bond-noise strength in the D-Wave Two system, approximately 3.5%.

Figure 6.3 shows the resilienceR of the U5,6,7 instance class as a function of the degen-

eracy of the first excited state on the Chimera topology with N = 512 spins. The higher

the degeneracy of the first excited state, the lower the resilience. This can be explained

by the increased probability of level crossing. The heat map represents the number of in-

stances that had a given degeneracy N1 of the first excited state out of the 900 simulated.

In this case, the bulk of the instances have between 4 and 8 degenerate first excited states.

This results in a reduction of the resilience, compared to instances that contain only one

or two first excited states.
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Figure 6.3: ResilienceR as a function of the number of first excited statesN1 forN = 512
spins on the Chimera lattice. The data are for the U5,6,7 instance class. The color bar shows
approximately how often a given number of first excited states occurs for the 900 instances
studied. In this case, between four and eight first excited states are most common.

6.1.3 Summary

In order to develop both hard and robust benchmark instances, we tested different in-

stance classes by computing their yield and resilience to noise fluctuations. Ideally, hard

instances with a high yield and high resilience are optimal for benchmarking purposes.

Both yield and resilience can be tuned by a careful design of the instance classes within

the hardware restrictions of the machine followed by a mining of the data. Although the

numerical effort to do such mining is non-negligible, this is a key ingredient in designing

good benchmarks for quantum annealing devices, as wells as any other computing archi-

tectures. It seems that both resilience and yield for the Chimera topology are slightly anti-

correlated. A good compromise is thus the U5,6,7 instance class where Ji,j ∈ ±5,±6,±7

that has a good resilience to both field and coupler noise, as wells as a nonzero yield of

unique ground states, with a small number of first excited states.
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These results for resilience represent a “best-case scenario” for any quantum annealing

machine. Any other source of error can only decrease the success probabilities further.

However, it could be that carefully crafted correlations between bond and field noise might

reduce the error and increase the resilience. Bond noise is the most limiting issue for the

D-Wave devices and is highly dependent on the connectivity of the graph. While it is

desirable to have a high connectivity to be able to embed interesting problems on any

architecture, one has to also keep in mind that noise levels should be far lower than in the

current D-Wave machine.

This classical study of both resilience and yield plays an important role in the design of

future adjacency matrices for quantum annealing machines, as well as the study of strate-

gies to reduce noise in quantum annealers. The results and methods can easily be general-

ized to other systems and thus should be of general interest when designing hard instance

problems that attempt to circumvent the limitations of current hardware. Calibration of

future generations of the D-Wave device should be improved to allow for the encoding of

more complex Sidon sets and thus the design of harder benchmark problems. Similarly,

although the main goal of this work is to produce problems robust to noise, the method-

ology can be used to design instances that are particularly sensitive to noise. This could

play an important role when designing approaches to better calibrate devices, as done in

Ref. [111]. Finally, if either noise is large or the instances produced are too difficult to

minimize, a relaxed resilience that includes low-lying excited states can be defined.

6.2 Approximating Continuous Distributions Using Gaussian Quadratures

Special purpose computers, such as the D-Wave 2X quantum annealer or the FPGA-

based Janus Computer, are typically restricted by memory constraints, limited precision,

or analog noise. This means that the study of problems with interactions drawn from

continuous distributions can be difficult on these types of devices. Here we extend the
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approach introduced by Leuzzi et al. [112] to approximate a continuous Gaussian dis-

tribution by using quadratures. Our approach allows us to approximate any continuous

distribution using only a few discrete weights. From a classical point of view, this reduces

the simulation’s memory footprint of continuous problems drastically, as well as the sim-

ulation time, because multiple quantities and expensive operations, such as exponentials,

can be precomputed and tabulated. For quantum annealing architectures this means that

problems that require continuous distributions can be encoded within the restrictions of

finite precision and analog noise on these devices.

There are numerous real-world applications which have memory constraints such as

the 4-bit precision of the D-Wave Two quantum annealer couplers, as well as special-

purpose field programmable gate arrays (FPGAs) utilized in the Janus computer [113].

With the ability to simulate a true Gaussian distribution with a small finite number of

discrete values, it is possible to apply more complex algorithms such as the massively

parallel population annealing Monte Carlo on memory limited machines such as FPGAs.

When calculating the probability to flip a spin in Eq. (3.8), using discretized values of Jij

in the Hamiltonian H allows one to store all the possible values of the update probability

in a small memory footprint.

This method was first introduced by Leuzzi et al. in Ref. [112], followed by Baity-Jesi

et al. in Ref. [114] who used the method to discretize the local fields on spins for use in

the Janus computer that cannot handle non-integer arithmetic efficiently.

6.2.1 Gauss-Hermite Quadrature

In order to verify thermodynamic quantities we begin with a three-dimensional Ising

spin glass with interactions chosen from the continuous normal Gaussian distribution. We

then use Gauss-Hermite quadrature [115] to discretize the interactions. Gauss-Hermite
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quadrature is useful for approximating integrals of the following kind,

∫ +∞

−∞
e−x

2

f(x)dx ≈
n∑
i=1

wif(xi) (6.2)

where n is the number of nodes used in the discretization and xi are the roots of the

Hermite polynomial with weights wi given by

wi(n) =
22n−1(2n)!

√
π

(2n)2H2n−1(xi)2
with H2n(xi) = 0. (6.3)

Now, consider a function f(y) where the variable y is normally distributed. The ex-

pectation value of f corresponds to the following integral:

〈f(y)〉 =

∫ +∞

−∞

1√
2π

exp

(
− y2

2

)
f(y)dy. (6.4)

As this does not correspond to Eq. (6.2), one performs a change of variable y =
√

2x and

Eq. (6.4) becomes

〈f(y)〉 =

∫ +∞

−∞

1√
π

exp(−x2)f(
√

2x)dx ≈ 1√
π

n∑
i=1

wif(
√

2xi). (6.5)

Thus, there are normalization constants π−
1
2 on wi and

√
2 on xi. Simulation parameters

are given in Table 6.2.

6.2.2 Chebychev-Gauss Quadrature

The method can also be extended to other distributions. One potentially useful distri-

bution is the arcsine distribution, due to its similarities to the bimodal Jij ∈ ±1 however

with added weight in the center. The recipe for producing nodes and weights is similar

however instead of using Hermite polynomials which are useful for approximating inte-
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Table 6.2: Parameters of the simulation for approximating continuous distributions with
Gaussian quadratures. For each discretization m = 4, 6, 8 and 10, and for system size N ,
we compute Nsa instances. Nsw = 2b is the total number of Monte Carlo sweeps for each
of the NT replicas for a single instance, Tmin [Tmax] is the lowest [highest] temperature
simulated, and NT and Nhc are the number of temperatures used in the parallel tempering
method and in the isoenergetic cluster algorithm, respectively.

Topology N Nsa b Tmin Tmax NT Nhc

3D 216 1000 20 0.2120 1.6325 30 20
3D 512 1000 20 0.2120 1.6325 30 20
3D 1728 1000 20 0.2120 1.6325 30 20

grals of the form ex
2 , one uses Chebychev polynomials of the first kind for integrals of the

form (1− x2)−1/2. For y chosen from a uniform distribution,

〈f(y)〉 =

∫ +1

−1

1

π

f(x)√
1− x2

dy ≈
n∑
i=1

wif(xi) (6.6)

where wi = 1/n with the number of nodes in the discretization n and xi the zeros of the

Chebychev polynomials of the first kind [115]. This distribution is quite easy to simulate

due to the equal weights of the nodes. The method of using residuals to determine the

best approximation of the probability distribution no longer applies and one can simply

increase the number of nodes to improve accuracy.

6.2.3 Results from Classical Simulations

One can calculate the optimal number of nodes n that reproduces the probability distri-

bution and vary the amount of truncation m of that set of nodes. Figure 6.4 shows varying

amounts of discretization with the number of nodes. It is apparent that n = 2 is most likely

insufficient to accurately approximate the normal Gaussian distribution. As a first order

approximation, calculating the residual of the weights of each node and the continuous

normal probability distribution yields n = 20 as the optimum number of nodes to repro-
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duce the continuous normal Gaussian distribution. Because the probability of choosing

certain nodes falls well below the precision of standard double precision numbers several

nodes will simply never be chosen in practice. When considering that the most recent D-

Wave 2000Q quantum annealing device has on the order of 104 interactions, more nodes

can safely be truncated because the probability to choose them will be incredibly small.

Figure 6.5 shows the average energy per spin of the continuous Gaussian distribution

as well as its residual. m = 4 approximates the continuous Gaussian poorly and is omitted

from the plot of the residuals. The approximation improves as the truncation decreases.

Measuring the energy is a simple first metric to determine if we can reproduce thermo-

dynamic quantities of the continuous distribution. More sensitive metrics are the higher

moments of the spin-glass observable q. In Fig. 6.6, we see that the second moment of the

overlap per spin is also well approximated and improves with decreasing truncation.
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Figure 6.4: Continuous normal Gaussian distribution and different amounts of discretiza-
tion. The x-axis represents the value of the node in the discretization and the y-axis is the
weight or probability with which to choose a particular node. Low orders of discretization
greatly overestimate the normal Gaussian probability distribution function. Higher orders
of discretization give a very good approximation of the continuous distribution down to
10−30.
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of residuals due to having error an order of magnitude greater than the other values and is
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Figure 6.6: Second moment of the overlap its residual of the continuous normal Gaussian
distribution with n = 20 nodes of discretization that has been truncated to m values on a
three-dimensional cubic lattice with N = 1728. Note that m = 4 has been omitted from
the plot of residuals due to having error an order of magnitude greater than the other values
and is therefore not useful in practical simulations.

One caveat remains. Due to the discretization, the ground state manifold which only

consists of one solution for the continuous Gaussian distribution is now degenerate. Al-
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though the discretization may not influence the critical behavior of the system it will influ-

ence the low temperature behavior as evidenced by the degenerate ground state solution.

Figure 6.7 shows data for the average ground state energy for the continuous normal Gaus-

sian distribution with n = 20 nodes of discretization that has been truncated to m values.

Although the discretization has increased the degeneracy of the ground-state manifold,

the average ground-state energies agree. This is an important feature because discretized

distributions can be used to return a similar quality of solution to the cost function.

The same equilibration techniques from Sec. 3.2 are available to discrete Gaussian

distributed models. Figure 6.8 shows a measure of equilibration previously applied to

continuous Gaussian distributions is also useful for discrete Gaussian models.
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Figure 6.7: Data for the average ground state energy for the continuous normal Gaussian
distribution with n = 20 nodes of discretization that has been truncated to m values.
Although the discretization has increased the degeneracy of the ground-state manifold, the
average ground-state energies agree.
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equilibrium.

Figures 6.9 and 6.10 show measures of 〈E〉/N and 〈q2〉/N and their residuals respec-

tively. The approximations of the continuous arcsine distribution improve as the number

of nodes n increases.

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

〈E
〉/
N

T

Continuous

n = 8

n = 12

n = 16

n = 20

−0.0005

0

0.0005

0.001

0.0015

0.002

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(〈
E
〉
−
〈E

c
o
n
t
〉)
/N

T

n = 8
n = 12
n = 16
n = 20

Figure 6.9: Energy and residual energy of the arcsine distribution with n nodes of dis-
cretization on a three-dimensional cubic lattices with N = 1728.
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Figure 6.10: Second moment of the overlap its residual of the arcsine distribution with n
nodes of discretization on a three-dimensional cubic lattices with N = 1728.

6.2.4 Results from Quantum Annealing

Finally, we present results from the D-Wave 2000Q quantum annealing device. In or-

der to quantify improvement we calculate the residual energy ∆E, the difference between

the energy found by the D-Wave quantum annealer and the energy found by the isoener-

getic cluster algorithm. In Fig. 6.11, the disorder-averaged residual energy from instances

on the D-Wave 2000Q is plotted versus system size. For small system sizes the ener-

gies agree for both the continuous and Gauss-Hermite quadrature approximation likely

because the D-Wave was able to solve both classes of problems. However, for larger sys-

tem sizes, the Gauss-Hermite approximation produces a smaller residual energy, meaning

the interactions chosen from discrete nodes produce a solution closer to the true average

ground-state energy.
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Figure 6.11: Residual energy from simulations on the D-Wave 2000Q (N = 2048) quan-
tum annealing device. 100 instances were simulated with each system size and for each
instance the residual of the ground-state energy with the true ground-state energy is calcu-
lated. For small system sizes the energies agree for both the continuous and Gauss-Hermite
quadrature approximation. However, for larger system sizes, the Gauss-Hermite approxi-
mation produces a smaller residual energy, meaning the discrete nodes produce a solution
closer to the true solution.

6.2.5 Summary

In this section I showed that discretizing continuous distributions of interactions, in

this study, the normal Gaussian and arcsine distributions, leads to the same values of ther-

modynamic observables as the continuous distributions. This discretization allows devices

with limited memory such as FPGAs or analog noise such as the D-Wave to simulate pre-

viously unaccessible distributions. One side effect is the ground-state manifold is now

degenerate, however the average ground-state energy is equivalent within error-bars. This

implies solutions are roughly the same quality as those of continuous distributions. The

amount of discretization can be tuned and is useful to create instance classes that are more

resilient and less susceptible to noise.

The method of Gaussian quadratures can be applied to any distribution of interactions

with the careful choice of generating polynomial. This allows any continuous distribution
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to be utilized by devices with noise as in the D-Wave quantum annealer, and devices

with limited memory which normally would be unable to store transition probabilities

otherwise.
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7. CONCLUSIONS

7.1 General Summary

I studied several problems to improve the quality and direct the design of current and

future quantum annealing devices. In addition, these studies have improved the quality of

classical simulations of Ising spin glasses.

In Ch. 2, I introduce the importance of spin glasses in the simulation of complex com-

binatorial optimization problems such as number partitioning and traveling salesman prob-

lems. In addition, the Ising spin glass is the problem the current generation of quantum

annealer is designed to solve. With the focus now on spin-glasses, I introduce the neces-

sary physical concepts to understand these simple to state, yet difficult problems. In order

to simulate spin glasses, numerical heuristic methods are required due to to the size of

the phase space of these problems. In Ch. 3, I introduce the Monte Carlo method, paral-

lel tempering, as well Houdayer cluster moves, as well as a measure of equilibration of

spin glasses. An outline of the current relevant algorithms, simulated annealing, quantum

annealing, and parallel tempering is given.

After introducing the necessary concepts and methods, in Ch. 4, I present a novel clus-

ter algorithm named isoenergetic cluster algorithm to improve the thermalization of spin

glasses by restricting Houdayer cluster moves to temperatures below the energy scale of

the problem where the interplay of frustration and freezing temperature prevent clusters

from spanning the system and becoming inefficient. This algorithm is general in its appli-

cability and can be combined with other optimization methods. Thermalization times are

shown to be improved by several orders of magnitude. By including isoenergetic cluster

moves in an optimization algorithms, one can find solutions faster than previous state-of-

the-art algorithm, in some case by as much as 103. This improvement also increases with
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the size of the problem. This raises the bar for quantum annealing as an optimizer.

An additional feature of this cluster algorithm is the ability to more fairly sample

ground state solutions. I present an algorithm to take advantage of this improved sam-

pling to produce a finite-temperature optimizer that produces unbiased solutions of de-

generate problems. A second modification of the algorithm is made to improve generate

new solutions from a set of known solutions with little computational effort. One can

simply perform cluster moves without the use of Monte Carlo or parallel tempering on

known solutions to generate new solutions. This has significant implications in the studies

of problems that require many solutions such as satisfiability membership filters as well.

This method can also serve as post-processing on the D-Wave quantum annealing device’s

biased sampling to provide more unique solutions.

Finally we investigated the effect of thermal fluctuations on the ability to infer the

ground state in devices with analog noise by measuring the sign of the average spin vari-

able for all spins in a configuration. For system with trivial ferromagnetic solutions, the

method works as described by analytic results, however, for non-trivial distributions and

solutions, a useful metric for inferring the solution is unavailable. In Sec. 7.2, I describe a

possible solution to the problem of decoding spin configurations based on applying thresh-

olds to spin fluctuations.

In Ch. 5, I turn my attention to hardware graphs in order to improve the future design of

quantum annealing devices. I begin with the bond-diluted next-nearest-neighbor Ising spin

glass in an effort to reduce corrections to scaling by performing graph disorder averaging

in addition to thermal and bond-disorder averages. A reduction in corrections to scaling

would allow better approximation of critical exponents to characterize novel hardware

graphs despite having a smaller number of variables. Unfortunately, this model suffers

from large corrections to scaling and the benefits of graph disorder averaging are unclear.

Next I investigate a previously studied model, the two-dimensional randomly coupled
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ferromagnet, introduced by Lemke and Campbell [96]. Previous simulations by other

parties were uncertain if there exists a finite-temperature spin-glass phase transition for

this model. Using numerical values from previous studies, we simulate larger system sizes

in the regions of parameter space where a phase transition was thought to exist. However,

our results show that the phase transition is a paramagnetic one. Thus, this graph is not

useful for future quantum annealing devices that desire a spin-glass phase transition in

order to prepare difficult problems for classical simulations and present an opportunity for

quantum annealing to excel. However, adding interactions to graphs does show promise

as shown in very recent work by Katzgraber and Novotny [101]. In this work, the authors

use additional small world bonds to induce a spin-glass phase transition in the quasi-two-

dimensional chimera graph where one previously did not exist.

Finally in Ch. 6, I turn my attention to the effects of analog noise in quantum anneal-

ing devices. We introduce resilience as a measure of best-case success probability when

problem instances are affected by varying amounts of noise. The noise on interactions has

a greater effect on the resilience than the noise on the individual spins. With this knowl-

edge it is clear that future manufacturing of quantum annealing devices should prioritize

reducing analog noise on qubit interactions.

We also introduce suggestions for how to create classes of problem instances that are

robust to noise. These instance classes can be used to generate resilient instances which

are less susceptible to noise. It is important for future work to ensure that the desired

problem is being solved by the quantum annealer and not a different Hamiltonian due to

control errors.

Next we simulate previously unaccessible continuous distributions on systems affected

by analog noise. Results from classical simulations show that through the method of Gaus-

sian quadratures, it is possible to discretize continuous distributions, such as the normal

Gaussian and arcsine distributions, to reproduce thermodynamic results from the origi-
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nal continuous distribution. These discretizations allow special purpose machines such as

field programmable gate arrays or graphics processing units which have limited memory

to simulate spin-glasses with interactions chosen from continuous distributions.

Summarizing, this body of work focuses on the problem of solving combinatorial opti-

mization problems by simulating spin glasses from three sides: classical algorithm devel-

opment, suggestions for quantum annealing device design, and improving measurements

in realistic physical systems with inherent noise.

7.2 Future Work

Recent work by Karimi et. al [116] suggests that if all the solutions found by a heuris-

tic solver are aggregated into a sample, one could ask if there is any additional information

in this sample, aside from the solution with the best value. They proceed to develop a

method for fixing spins based on information about each spin from the sample and solve

the remaining problem which is usually smaller. It would be interesting to apply a similar

metric based on thresholds to determine if a spin is in the correct orientation as opposed

to a simple majority vote used in the study of finite temperature decoding from Sec. 4.3.

Another open question is if it is possible to manipulate the physical finite temperature of

quantum annealers in order to allow thermal fluctuations to play a larger role in optimiza-

tion. It was shown in Chapter 4 that combining sequential algorithms can be useful in

improving the thermalization of a simulation.

The overlap of two replicas in a simulation has been used as a measure of “hardness”

in developing designer spin-glass instances in order to discover a class of instances that

are difficult for classical heuristics due to diverging energy barriers while allowing quan-

tum algorithms to tunnel through these barriers and display remarkable improvements.

Katzgraber et. al [15] present a recipe for developing these instances through a process

of mining random instances. The assumption instances with a histogram of the overlap
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with weight near q = 0, imply that the two replicas spend their time far from each other

in phase space and as a result are more difficult. However, this metric does not provide

information as to where the configurations fluctuate. Could it be near or far from the true

ground state? I propose a slightly modified metric in which one of the configurations in the

overlap is the true ground state which is already known from the mining process. In this

case a histogram of the overlap with weight near q = 1 implies that the system fluctuates

near the ground state whereas weight away from q = 1 implies the simulation is far from

the ground state in configuration space but not necessarily in energy at low temperatures.

This metric could provide a useful determination of hardness for future instance classes.
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