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ABSTRACT

We study computational theory and numerical methods for finding multiple unstable

solutions (saddle points) for two types of nonlinear variational functionals. The first type

consists of Gateaux differentiable (G-differentiable) M-type (focused) problems. Moti-

vated by quasilinear elliptic problems from physical applications, where energy function-

als are at most lower semi-continuous with blow-up singularities in the whole space and

G-differntiable in a subspace, and mathematical results and numerical methods for C1 or

nonsmooth/Lipschitz saddle points existing in the literature are not applicable, we establish

a new mathematical frame-work for a local minimax method and its numerical implemen-

tation for finding multiple G-saddle points with a new strong-weak topology approach.

Numerical implementation in a weak form of the algorithm is presented. Numerical ex-

amples are carried out to illustrate the method. The second type consists of C1 W-type

(defocused) problems. In many applications, finding saddles for W-type functionals is de-

sirable, but no mathematically validated numerical method for finding multiple solutions

exists in literature so far. In this dissertation, a new mathematical numerical method called

a local minmaxmin method (LMMM) is proposed and numerical examples are carried out

to illustrate the efficiency of this method. We also establish computational theory and

present the convergence results of LMMM under much weaker conditions. Furthermore,

we study this algorithm in depth for a typical W-type problem and analyze the instability

performances of saddles by LMMM as well.

ii



DEDICATION

To my mother, my father, my grandmother, and my grandfather.

iii



ACKNOWLEDGMENTS

Foremost, I would like to thank my thesis advisor, Dr. Jianxin Zhou, for choosing

a challenging while interesting topic that fits my background very well. Thanks for his

encouragement and guidance during my graduate study and in the preparation of this the-

sis. He is organized, supportive, knowledgeable, and considerable. He gave me numerous

lessons from which I benefited a lot and will continue to benefit in my life.

I would also thank the members of my advisory committee, Dr. Jay Walton, Dr.

Yalchin Efendiev and Dr. Michael Longnecker for their service on my oral examinations

and their useful comments, questions and advice on my thesis.

I would like to express my gratitude to Ms. Monique Stewart for her incredible pa-

tience and knowledge with the university administration. I also thank the students in the

Department of Mathematics for their kindness.

I owe my deep gratitude to the Department of Mathematics, Texas A&M University

as well. Without the generous financial support, I would have no chance to pursue my

doctorate degree here.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work is supported by a dissertation committee consisting of Professors Jianxin

Zhou, Jay Walton and Yalchin Efendiev from the Department of Mathematics and Profes-

sor Michael Longnecker from the Department of Statistics. .

The work conducted for the thesis was completed by the student independently under

the supervision of Professor Jianxin Zhou.

Funding Sources

Graduate study was supported by a fellowship and a teaching assistantship from Texas

A&M University.

v



NOMENCLATURE

LMM local minimax method

LMMM local minmaxmin method

LMO local min-⊥ method
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1. INTRODUCTION

In condensed matter physics, nonlinear optics, dynamics of biomolecules, etc, multi-

ple solutions with different performance and instability indices exist. For example, excited

states are of great interests in the study of self-guided light waves in nonlinear optics [38,

34, 37, 30, 35, 48]. All those excited states are unstable solutions. Stability is one of

the main concern in control theory and system design. However, the performance and

maneuverability are more desirable in many application such as system design and com-

bat machinery. Since for most nonlinear multiple solution problems, analytic solutions

are too difficult to find, development of numerical methods to compute multiple solutions

becomes especially important for providing choice or balance between stability and ma-

neuverability or performance.

Let H be a Hilbert space with its inner product 〈·, ·〉 and norm ‖ · ‖. Let J : H → R

be a C1 functional. A point u ∈ H is called a critical point of J if its Frechet derivative,

J ′(u) = 0. Critical points u that are not local extrema of J are called saddle points, or

saddles, i.e., in any neighborhood of u there are v, w such that J(v) < J(u) < J(w).

An index-k saddle point or k-saddle is a critical point that is a local maximum of J in a

k-dimensional subspace and a local minimum of J in the corresponding k-co-dimensional

subspace. Critical points correspond to local equilibrium states in a physical process. Thus

mathematically, a ground state as a stable local equilibrium is a local minimum point or

0-saddle, excited states, as unstable local equilibria, correspond to saddles and metastable

states are among the first few saddles. Comparing to a local minimum computation, nu-

merical search for saddles is much more challenging due to their nonlinearities, instabilites

and multiplicities.

When finding critical points for variational problems, we need to investigate differ-
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entiabilities and structures of energy functionals. For the differentiability, a functional

can be C1, locally Lipschitz continuous or others. For the structure, a functional can be

M-type (focused) or W-type (defocused), see Figure 1.1 below. The methods mentioned

in the survey below apply to M-type problems which are either C1 or locally Lipschitz

continuous.

In this thesis, however, we are interested in finding multiple unstable solutions for a

class of G-differential functionals with M-type structures and a class of C1 functionals

with W-type structures. We also study computational theory and instability analysis for

the relevant methods.

1.1 A Brief Survey on Methods for Solving Nonlinear PDEs

First, we give a brief review on critical point theory. Critical point theory is a classical

and still very active area in mathematics. There are numerous reference books and articles

on this topic. In the literature, critical points of a C1 functional are called smooth critical

points and critical points of a locally Lipschitz continuous functional are called nonsmooth

critical points. Algorithms such as the mountain pass method proposed by Choi-Mckenna

[24], the linking method by Ding-Costa-Chen [28] and the local minimax method by Li-

Zhou [39, 41, 45, 47, 51] were applied successfully for finding multiple smooth critical

points. By using the generalized gradient of Clarke [11] for a locally Lipschitz continuous

functional, nonsmooth critical points were first introduced by Chang [7] in 1981, and they

were further studied by Kourogenis-Papageorgious [36, 43, 29, 42, 46] and Yao [54, 46].

Assume J ∈ C2(H,R), J ′′(u∗):H → H is a self-adjoint Fredholm operator. Accord-

ing to the spectral theory, H has an orthogonal spectral decomposition

H = H− ⊕H0 ⊕H+,

where H−, H0, H+ are respectively the maximum negative definite, the null and the max-
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imum positive definite subspace of J ′′(u∗) in H with dim(H0) < ∞, and are invariant

under J ′′(u∗). By the Morse theory, we have Morse index MI(u∗) = dim(H−). We call

u∗ a non-degenerate critical point ifH0 = {0} and a degenerate critical point ifH0 6= {0}.

For any closed subspace W of H , let SW = {u | u ∈ W, ‖u‖ = 1} be the unit sphere in

W .

Definition 1.1. For a functional J ∈ C1(H,R), we call {un} a Palais-Smale (PS) sequence

if J(un) is bounded and J ′(un)→ 0.

Definition 1.2. A functional J ∈ C1(H,R) is said to satisfy the PS condition, if any PS

sequence has a convergent subsequence.

Definition 1.3. Let L be a closed subspace of H and L ⊕ L⊥ = H be the orthogonal

decomposition. Denote [L, v] = {tv + vL | t ∈ R, vL ∈ L} for each v ∈ SL⊥ . A set-

valued mapping P : SL⊥ → 2H is called the peak mapping of J w.r.t H = L⊕L⊥ if P (v)

is the set of all local maximum points of J on [L, v].

A single-valued mapping p: SL⊥ → H is called a peak selection of J w.r.t L if

p(v) ∈ P (v), ∀v ∈ SL⊥ . For a given v ∈ SL⊥ , if such p is locally defined in N (v) ∩ SL⊥ ,

where N (v) is a neighborhood of v, then p is called a local peak selection of J at v.

1.1.1 Some approaches in critical point theory

Because our objective is to find multiple critical points numerically, we select those

methods which provide information about locations or local structures of critical points.

Theorem 1.1. (Ljusternik-Schnireelmann) [17] If J ∈ C1(H,R) and J is even, then

J |Sm−1 has at least m distinct pairs of critical points.

Typically a minimax type critical point can be characterized by the Ljusternik-Schnirelman

principle (LSP) [16]

min
A∈A

max
u∈A

J(u),
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where A is a collection of certain compact sets A, e.g., a k-D simplex. Max and Min are

all in the global sense.

Theorem 1.2. (The Mountain Pass Lemma) [1] Let J ∈ C1(H,R) satisfy the PS condition.

Suppose that there exists r > 0 and p ∈ H with ‖p‖ > r such that

i) f(0) < a, f(p) < a, for some real number a,

ii) f(x) ≥ a for any x, ‖x‖ = r. Then

c = inf
f∈C([0,1]),f(0)=0,f(1)=p

max
t∈[0,1]

J(f(t))

is a critical value.

The Mountain Pass Lemma is a special case of LSP by using 1-D line segments as

compact sets in the inner level and a global minimization is still used in the outer level.

Theorem 1.3. (Saddle Point Theorem) [5] Let H = L ⊕ X , where X is a subspace of

H and L is a finite dimensional subspace. Assume that J ∈ C1(H,R) satisfies the PS

condition and

i) there is a constant α and a bounded neighborhood D of 0 in L such that J∂D ≤ α,

ii) there is a constant β > α such that J |X ≥ β, then

c = inf
h∈Γ

max
u∈D̄

J(h(u))

is a critical value, where Γ = {h ∈ C(D̄, H) | h|∂D = id}.

Theorem 1.4. (Linking Theorem) [5] Let H = L ⊕X , where X is a subspace of H and

L is a finite dimensional subspace. Suppose that J ∈ C1(H,R) satisfies the PS condition

and

i) there are constants ρ, α > 0 such that J |∂Bρ∩X ≥ α,
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ii) there is v ∈ X , ‖v‖ = 1 and R > ρ such that if Q = (B̄R ∩ L) ⊕ {rv | 0 < r < R},

then J |∂Q ≤ 0.

Then

c = inf
h∈Γ

max
u∈Q̄

J(h(u))

is a critical value, where

Γ = {h ∈ C(Q̄,H) | h|∂Q = id}.

Theorem 1.5. (Local Minimax Theorem) [39] Assume J : H → R is C1 and satisfies the

PS condition, and that L ⊂ H is a closed subspace with H = L
⊕

L⊥. If there exists a

peak selection p of J w.r.t. L such that

(i) c = infv∈O∩S
L⊥
J(p(v)) > −∞ for some open set O ⊂ H ,

(ii) infv∈∂O∩S
L⊥
J(p(v)) = b > c,

(iii) p(v) is continuous in Ō ∩ SL⊥ , and

(iv) d(p(v), L) ≥ α for some α > 0 and all v ∈ O ∩ SL⊥ ,

then c is a critical value, i.e, there exists v0 ∈ O ∩ SL⊥ such that

J ′(p(v0)) = 0, J(p(v0)) = c = min
v∈O∩S

L⊥
J(p(v)).

1.1.2 Some existing numerical methods to solve unstable solutions for nonlinear

PDEs

All numerical methods mentioned below apply to M-type functionals which are either

C1 or locally Lipschitz continuous.

From the algorithmic point of view, LSP is not applicable for a numerical implemen-

tation since both the maximization and minimization are in the global sense. Chio and
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McKenn partly overcame this difficulty by proposing a minimax algorithm [24]. Based on

the Mountain Pass Lemma and an idea from Aubin and Ekeland [14], Choi and McKenna

proposed a numerical minimax algorithm called a mountain pass method to solve for a

solution with MI = 1. Since a flow chart of the algorithm is not provided in [24], this

algorithm has been modified and further rewritten in [33] as the modified mountain pass

method.

Modified Mountain Pass Method [33]

Step 1. Given an initial v0 and ε. Let k = 0, compute uk = arg maxt>0 J(tu).

Step 2. Compute the steepest vector dk = −J ′(uk).

Step 3. If ‖dk‖ < ε, output uk, otherwise, continue.

Step 4. Solve for uk = arg mins>0 maxt>0 J(t(uk + sdk)). Update k = k + 1, then go to

Step 2.

The modified mountain pass method is a variational method which computes mountain

pass solutions with Morse index 1 of a functional J . The merits of this algorithm are that

(i) in the inner level, a maximization is taken over an affine line starting from 0 and (ii) to

use the steepest descent direction to search for a local minimum in the outer level.

High Linking Method [28]

A high linking method is proposed in [28] by Ding-Costa-Chen to solve for a sign-

changing solution. This method uses a constrained maximization in the first level and a

local minimization in the second level and it is the first algorithm in the literature to use

the idea of a "local link" to find solutions with MI = 2.

Step 1. Given an initial v0 ∈ H1
0 (Ω) s.t. v0 6= 0 and J(v0) ≤ 0.
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Step 2. Solve for a mountain pass solution u1 ∈ H1
0 (Ω), such that for w1, w2 ∈ H1

0 (Ω)

and 0 < |t| < δ,

J(u1 + tw1) < J(u1), J(u1 + tw2) > J(u1).

Step 3. Find t1, t2 and t3 s.t. J(u1 + t1w1) ≤ 0, J(u1 + t2w1) ≤ 0, and J(u1 + t3w2) ≤

J(u1). Set g1 = u1 + t1w1, g2 = u1 + t2w1 and g3 = u1 + t3w2.

Step 4. Construct a triangle ∆ ∈ H1
0 (Ω) by

∆ = {λ1g1 + λ2g2 + (1− λ1 − λ2)g3 | λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 ≤ 1},

solve for u∗ ∈ ∆ such that J(u∗) = maxg∈∆ J(g).

Step 5. If u∗ is an interior point of the triangle ∆, go to Step 6, otherwise, setw2 = u∗−u1

and go to Step 3.

Step 6. Set u2 = u∗, compute d = J ′(u2). If ‖d‖ < ε, output u2 and stop, otherwise, set

w2 = (−d+ u2)− u1 and continue.

Step 7. Repeat Steps 3-5 to update the triangle and find an updated interior point w∗ such

that J(u∗) = maxg∈∆ J(g).

Step 8. If J(u∗) < J(u2), go to Step 6, otherwise, set d = 0.5d, w2 = (−d + u2) − u1

and go to Step 7.

Local Minimax Method (LMM) [39]

Step 1. Given ε, λ > 0. Let n − 1 critical points w1, w2, · · · , wn−1 of J be previously

found and wn−1 has the highest critical value. Set L = [w1, w2, · · · , wn−1]. Let

v0 ∈ L⊥ be an ascent direction at wn−1.
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Step 2. Set k = 0, use v0 as an initial to solve for

wk = p(v0) = t0v0 + t1w1 + · · ·+ tk−1wk−1

= arg max{J(s0v0 + s1w1 + · · ·+ sk−1wk−1) | si ∈ R, i = 0, 1, · · · , n− 1}.

Step 3. Compute dk = J ′(wk). If ‖dk‖ < ε, output wn = wk, otherwise go to Step 4.

Step 4. Denote vk(s) =
vk + sdk
‖vk + sdk‖

for s > 0. Solve for

p(vk(s)) = arg max
{
J(s0vk(s) +

k−1∑
i=1

siwi) | si ∈ R, i = 0, 1, · · · , k − 1
}
,

then set wk+1 ≡ p(vk+1) ≡ p(vk(s
k)), where sk satisfies

sk = max{s =
λ

2m
| m ∈ N, J(p(vk(s)))− J(p(vk)) ≤ −

1

4
|t0|s‖dk‖2}.

Step 5. Update k = k + 1 and go to Step 3.

LMM is a two-level optimization method to solve for multiple solutions of nonlinear

PDEs in a variational order. It uses a local maximization in a subspace in the inner level

which makes the numerical implementation much easier, and with the stepsize rule, the

convergence of the algorithm can be established as well. The support subspace is used in

the method to determine the Morse index of a solution and separate a new solution from the

old ones. When the support subspace is set to be 0, LMM reduces to the modified mountain

pass method. To the best of our knowledge, LMM is the first mathematically justified

numerical method which can find multiple unstable critical points with high Morse index

(MI ≥ 2).
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Local Min-⊥Method (LMO)[45]

LMO generalizes the minimax principle which is the most popular approach in critical

point theory, and it plays a crucial role for the development of our new method in Chapter

3. LMO theorem was presented in [45] and will be restated in Chapter 3. Here we just

review the flow chart for it.

Given ε, λ > 0 and n previously found critical points u1, · · · , un of J . un has the

highest critical value. Let L = [u1, u2, · · · , un].

Step 1. Choose vk ∈ SL⊥ to be an ascent direction at un.

Step 2. Set k = 1. Use vk as an initial to solve for uk ≡ p(vk) ∈ [L, vk] \ L from

〈J ′(uk), vk〉 = 0, · · · , 〈J ′(uk), wj〉 = 0, j = 1, · · · , n.

Step 3. Compute the steepest descent gradient dk = −J ′(uk).

Step 4. If ‖dk‖ ≤ ε, then output un+1 = uk, stop, otherwise go to Step 5.

Step 5. Set vk(s) = vk+sdk

‖vk+sdk‖ , s = λ
2m

, m ∈ N and follow the same way in Step 2 to solve

for p(vk(s)). Let vk+1 = vk(sn+1), where sn+1 satisfies

sn+1 = max{s =
λ

2m
|m ∈ N, J(p(v(s)))− J(p(vk)) ≤ −

1

2
tks‖dk‖2}.

Step 6. Update k = k + 1, and go to Step 3.

Another popular numerical method in mathematics is a Newton method. A Newton

method requires a high differentiability of J and is blind to a variational structure or order.

It also depends strongly on an initial guess which significantly reduces its effectiveness in

finding multiple solutions. It is neither based on the min-max principle nor provides local

structures of saddle points, hence we do not state its algorithm here.
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1.2 Finding Multiple G-saddles

In Chapter 2, we modify LMM and study the computational theory for it in order to

find multiple unstable critical points for a variational functional which is G-differential at

regular points.

Consider a class of quasilinear Schrödinger equations of the form [44]

i
∂w

∂t
= −∆xw + V (x)w − f(|w|2)w − κ∆xh(|w|2)h′(|w|2)w, (1.1)

where V (x) is a potential density, κ is a physical constant, f and h are real functions of

essentially pure power forms. Eq. (1.1) appears naturally in mathematical physics, such as

in the superfluid film equation in plasma physics and fluid mechanics [8,12,4,3,2,32], in the

self-channeling of a high-power ultrashort laser in matter [20,21,23,26], in the theory of

Heisenberg ferromagnets and magnons [18,19,27,10, 9], in dissipative quantum mechanics

[6] and in condensed matter theory [15].

For simplicity, we choose f(|s|2)s = |s|p−1s, a widely used form in applications and

h(s) = s, a form used in the superfluid film equation in plasma physics [8]. However our

method presented in this thesis applies to more general cases.

To study solution patterns, stability and other properties, solitary wave (solition) solu-

tions of the form w(x, t) = u(x)e−iλt are investigated where λ is a wave frequency and

u(x) is a wave amplitude function. Thus finding soliton solutions to (1.1) leads us to solve

the following quasilinear elliptic equation [44]

−∆u(x) + V (x)u(x)− (∆(|u(x)|2))u(x) = r(x)|u(x)|p−1u(x), x ∈ Rn. (1.2)
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Its variational functional is

J(u) =

∫
Rn

1

2
[(1 + 2u2(x))|∇u(x)|2 + V (x)u2(x)]dx− 1

p+ 1

∫
Rn
r(x)|u(x)|p+1dx(1.3)

on the closed subspace

X = {u ∈ H1(Rn)|
∫
Rn
V (x)u2(x)dx <∞},

where for simplicity we assume that the potential V (x) ∈ C(Rn,R) satisfies infx∈RnV (x) =

1, and 2 < p ≤ 22∗, 2∗ = n+2
n−2

if n > 2 and 2∗ =∞ if n = 2. Different r(x) will be used

in our numerical computation.

For many applications, V (x) must be chosen to grow much fast than |x| → +∞ in

order to form a potential trap and thus causes a blow-up singularity. Such a singularity

can be easily handled analytically and numerically. However, the blow-up singularity due

to the quasilinear term u2(x)|∇u(x)|2 in J will cause the main difficulty in analysis and

numerical computation.

In the literature, only recently, some solution existence and other results for (1.2) are

established [44]. However, so far mathematically validated numerical methods for finding

multiple solutions to (1.2) are virtually none. In Chapter 2, our objective is numerically

solve this problem.

1.3 Finding Multiple K-saddles for W-type Problems

In Chapter 3, we study computational theory of a new numerical method for C1 W-type

functionals.

As a canonical model in physics, the nonlinear Schrödinger equation (NLS) is of the

form

i
∂w(x, t)

∂t
= −∆w(x, t) + v(x)w(x, t) + lf(x, |w(x, t)|)w(x, t). (1.4)
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Due to the localized property of the solutions for (1.4), finding soliton solutions of the

form w(x, t) = u(x)e−iλt under v(x) = 0, l > 0 (WLOG, l = 1) leads to

 −∆u(x)− λu(x) + f(x, u(x)) = 0, x ∈ Ω,

u|∂Ω = 0.
(1.5)

Its variational functional is

J(u) =

∫
Ω

[
1

2
(|∇u(x)|2 − λu2(x)) + F (x, u(x))]dx, (1.6)

where ∂
∂t
F (x, t) = f(x, t), u ∈ H1

0 (Ω) with norm ‖u‖ = (
∫

Ω
[|∇u|2 + u2]dx)

1
2 , and Ω

is bounded in RN . f(x, u) is selected to satisfy certain regularity conditions such that

J ∈ C1(H,R). In order to find solutions of the equation (1.5), we need to find critical

points of J in (1.6).

Let λ1 < λ2 < · · · be the eigenvalues of

 −∆u(x) = λu(x), x ∈ Ω,

u|∂Ω = 0,
(1.7)

and ϕ1, ϕ2, . . . be their corresponding eigenfunctions. It is clear that if λ < λ1, 0 is a local

minimum of J and limt→+∞ J(tu) = +∞ in any direction u. When λk < λ < λk+1 for

some k = 1, 2, · · · , ∀u ∈ [ϕ1, · · · , ϕk], there is tu > 0 such that tu = arg mint>0 J(tu).

Such a J is called a defocused W-type functional (DWF) in contrast to its counterpart,

focused M-type functional (with a mountain pass structure). Solutions of DWF are called

W-type solutions.

M-type functionals are numerically well-studied by LMM in documents [39, 41].

For a typical M-type functional, the functional is ∩−shape in [v1, · · · , vk], M-shape in
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[v1, · · · , vk]⊥. But for a typical DWF, the functional is ∪−shape in [v1, · · · , vk]⊥, W-

shape in [v1, · · · , vk]. See Figure 1.1. Due to the difference in space dimensions and

k-saddle

k-saddle

Figure 1.1: Left, M-type. ∩− shape in [v1, · · · , vk], M-shape in [v1, · · · , vk]⊥. Right,
W-type. ∪− shape in [v1, · · · , vk]⊥, W-shape in [v1, · · · , vk].

codim[v1, · · · , vk] = +∞, they are not upside-down to each other, then LMM cannot be

applied. A numerical method for finding multiple solutions of DWF is available for some

special cases in [53]. In Chapter 3, we propose a new method called local minmaxmin

method (LMMM) for general cases and numerical examples are carried out to illustrate

the efficiency of this method. We also establish mathematical validation and present con-

vergence results for LMMM under much weaker conditions. An application of LMMM

to the model problem (1.6) is studied in depth and we analyze instability performance of

saddles by LMMM as well.
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2. FINDING SADDLES FOR G-DIFFERENTIAL M -TYPE FUNCTIONALS ∗

2.1 Preliminaries

By observation, J in (1.3) is at most lower semi-continuous with blow-up singularities

in the whole space. In fact, under the growth condition of the nonlinearity, J is not even

defined in X . Thus the following change of variables is introduced [44],

dv =
√

1 + u2 du, v = h(u) =
1

2
u
√

1 + u2 +
1

2
ln(u+

√
1 + u2). (2.1)

Hence h′(u) =
√

1 + u2 > 0, h is strictly monotone and has an inverse u = f(v) =

h−1(v). It follows f ′(v) = 1
h′(u)

= 1√
1+u2

. Then J(u) can be rewritten as

I(v) = J(f(v)) =

∫
Rn

1

2
[|∇v(x)|2 + V (x)f 2(v(x))]dx− 1

p+ 1

∫
Rn
r(x)|f(v(x))|p+1dx.

(2.2)

I is defined on the space

H1
G = {v|

∫
Rn
|∇v(x)|2dx <∞,

∫
Rn
V (x)f 2(v(x))dx <∞}, (2.3)

with the norm

‖v‖G = ‖∇v‖L2(Rn) + |v|G, (2.4)

where

|v|G = inf
ξ>0

ξ

(
1 +

∫
R2

V (x)f 2(ξ−1v(x))

)
dx.

The following results are established in [44] and provide a foundation for us to design

∗Reprinted with permission from “Finding Gateaux-Saddles by a Local Minimax Method” by M. Li,
J. Zhou, 2017. Numerical Functional Analysis and Optimization, Vol. 38, p205-223, Copyright [2017] by
Taylor & Francis.
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a new mathematical frame-work for numerical algorithms, where and through out of the

thesis, we use “→” for strong convergence and “⇀” for weak convergence.

Proposition 2.1. ([44]) (1) I is well defined and continuous in H1
G.

(2) I is Gateaux (G)-differentiable, for each v ∈ H1
G, the G-derivative I ′(v) is a continuous

linear functional on H1
G, and I ′(v) is continuous in v in the strong-weak topology, i.e., if

vn → v in H1
G, then I ′(vn) ⇀ I ′(v). �

Let J : H → ±∞∪R be a functional. A point u∗ ∈ H is called a G-critical point of J

if its G-derivative J ′(u∗) = 0. A G-critical point u∗ that is not a local minimum/maximum

of J is called a G-saddle. An index-k G-saddle (k-G-saddle) is a G-critical point that is

a local maximum of J in a k-dimensional subspace of H and a local minimum of J in

the corresponding k-co-dimensional subspace of H . It is known that in a physical system,

critical points correspond to local equilibrium states. A local minimum is a stable local

equilibrium state and other saddles correspond to unstable local equilibrium states. It

is clear that the solutions of (1.2) can be obtained by finding G-critical points of J and

that the trivial solution u = 0 is the only local minimum of J among all regular points.

Thus all nontrivial solutions are unstable. We are interested in numerical algorithms for

finding multiple k-G-saddles in certain variational order. The quasilinearity and lack of

smoothness in J , and the multiplicity and instability of the solutions cause the following

difficulties.

• No numerical method exists in the literature for finding multiple G-saddles. Traditional

numerical methods assume J to be C1, focus on finding stable solutions and emphasize

solution uniqueness. One may think of a Newton method. It is well known that a Newton

method requires a higher differentiability of J that we do not have, is blind to a variational

structure or order, and depends strongly on an initial guess. This dependence is signifi-

cantly amplified and severely reduces its effectiveness in finding multiple solutions. Thus
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a Newton method will not be considered in this thesis.

• The G-derivative is a directional derivative defined by J ′(u)v = d
dt
|t=0J(u + tv) and

irrelevant to any norm on H . When in a Hilbert space H , 〈J ′(u), v〉 = d
dt
|t=0J(u + tv).

This is the equation for us to evaluate the G-derivative. Since the norm ‖·‖ cannot separate

regular points from singular ones, to treat the singularity in J , the authors of [44] introduce

a stronger norm ‖·‖G to construct a subspaceH1
G of regular points, which separates regular

points from singular ones, and then study the continuity of the G-derivative J ′ by the norm

‖ · ‖G in Proposition 2.1. This is a very clever idea in treating singular points in analysis.

Thus to avoid singular points, the problem has to be solved inside H1
G. But it involves an

implicit inverse transform f and a very complicated norm expression (2.4), which make

it too difficult for us to do numerical implementation. Also the norm ‖ · ‖G does not

have an associated inner product in H1
G. Without it we cannot evaluate the G-derivative.

While so far using the G-derivative as a search direction is the only hope for us to design a

numerical variational algorithm, if possible, for finding multiple G-saddles. Therefore the

case becomes very complicated. We must use 〈·, ·〉, ‖ · ‖, ‖ · ‖G to establish a mathematical

frame-work of an algorithm but use only 〈·, ·〉, ‖ · ‖ in its numerical implementation.

• Since all nontrivial solutions here are unstable and they are sensitive to numerical errors,

extra caution in error control must be taken in numerical computation.

Since the functional J defined in (1.3) has singularities even after an implicit inverse

transform f and by Proposition 2.1, the function I : H1
G → R is only G-differentiable but

not C1 or locally Lipschitz continuous, we conclude that mathematical results or numerical

methods for smooth/nonsmooth saddles in the literatures are not applicable here.

On the other hand, recently the authors in [52] numerically solved the same problem

for 1-saddles. They used the same implicit transformation u = f(v) to get the variational

functional I(v). Then they treated I(v) as C1 from H1(Rn) → R (refer (1.7) in [52]) and

applied the mountain pass lemma [1] where the min and max are actually in the global
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sense and the mountain pass algorithm [24], an early version of LMM of Li-Zhou with

k = 1 or L = {0}, where the min and max are in the local sense and is designed for

finding only 1-saddles of C1 functionals. But the functional I(v) as stated in [44] is merely

G-differentiable inH1
G in the sense of Proposition 2.1 and has singularities inH1(Rn)\H1

G.

Meanwhile the numerical results in [52] imply that the algorithm may still work for finding

1-G-saddles. Thus the mathematical validation of the numerical algorithm used in [52]

becomes an interesting question to investigate. Since we want to find multiple k-G-saddles,

k = 1, 2, ..., it becomes even more challenging.

As indicated, it was too difficult for us to use H1
G as a constraint subspace for our

numerical computation. On the other hand, the space H1(Rn) has a clear and simple

inner product with which we can compute G-derivatives. However, we have to deal with

singularity issues in H1(Rn) \ H1
G. We need to do more investigation on the singularity

involved. It is known that when 2 < p < 2∗, for each u ∈ H1(Rn), the last term of J

in (1.3) is well defined and under control, all other terms of J in (1.3) are nonnegative.

It turns out that the only possible singularity that J may have in H1(Rn) is of blow-

up type or J(u) = +∞ at a point u ∈ H1(Rn) \ H1
G. Thus the extended functional

J : H1(Rn) → {+∞} ∪ R is well defined. It is known that such a blow-up singularity

can be automatically avoided by any descent numerical algorithm starting from a regular

point. On the other hand, for each regular point u ∈ H1(Rn), we have J(u) < +∞ and

v = h(u) ∈ H1
G. Then I is G-differentiable at v and

〈I ′(v), w〉 = 〈J ′(f(v))f ′(v), w〉 = 〈J ′(u)
1√

1 + u2
, w〉, or J ′(u) =

√
1 + f 2(v)I ′(v).

In a numerical computation, “nice” functions are used to approximate a solution and in

H1(Rn), the inner product is clearly and simply defined, with which the G-derivative

J ′(u) can be evaluated at a regular point u. Also in a descent algorithm iteration, a “poor”
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search direct leading to a higher functional value will be automatically rejected. Thus we

expect that such a “natural selection” by a descent method be able to resolve the difficulty

caused by the blow-up singularity and a “poor” G-derivative.

The above observation provides us some motivation to find multiple k-G-saddles by

generalizing LMM, which is so far the only method in the literature to be able to numer-

ically find multiple smooth k-saddles. Meanwhile, we observe that the special properties

of LMM

min
v∈S

L⊥
max
u∈[L,v]

J(u)

imply that after a "nice" initial guess is selected, the inner level of LMM is a local max-

imization process above the energy level J(0), which will reject any regular or singular

points below the energy level J(0), and the outer level of LMM has a descent property in

J-value, which will select only a regular point for the next iteration. Such a combined nice

property of LMM will select points only between two regular energy levels and reject any

direction towards a singular point, thus can handle much more complicated singularities.

However throughout Chapter 2, we only consider finding k-G-saddles of the following

class of functionals.

Definition 2.1. Let H be a Hilbert space with an inner product 〈·, ·〉, its associated norm

‖ · ‖ and a stronger norm ‖ · ‖G, and J :H → {±∞} ∪ R be a functional. Assume HG =

{u ∈ H : ‖u‖G < ∞} is a subspace of regular points u of J in H , i.e., |J(u)| < +∞, J

is continuous at u in the ‖ · ‖G-norm and the G-derivative J ′(u) ∈ HG is continuous in u

in the ‖ · ‖G-weak topology, or, J ′(v) ⇀ J ′(u) if v → u in the ‖ · ‖G-norm.

2.2 A Generalized Local Minimax Method (LMM)

In this section, we establish a new mathematical frame-work of LMM, by using a

mixed strong-weak topology approach. First we verify a stepsize rule, then a local mini-

max characterization for a k-G-saddle of J in H and a descent property of LMM, which
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generalize the results in [39,41]

LetL be a finite-dimensional subspace ofH containing regular points. For each regular

point v, its local neighborhood is defined by the ‖·‖G-norm. We can define a local selection

p of J at a regular point v in the same way as in Chapter 1.

2.2.1 Computational theory

In LMM, L is spanned by previously found solutions which are regular points. The

introduction of a peak selection p is important in LMM for finding multiple saddles. It

separates previously found saddles spanning L from a new one to be found. We assume

that LMM starts at a regular point v with a regular p(v). If p(v) is not a G-critical point,

LMM should be able to follow certain stepsize rule to continue its iteration. It is known

that for an algorithm to be successful in convergence, a descent property in J-value alone

is not enough, it is important to have certain stepsize rule, such as the Armijo stepsize rule.

However since LMM is a two-level algorithm, its stepsize rule is much more complicated.

In proving the following stepsize rule, a linear approximation is used for C1 functionals in

[47,51] under the assumption that p is continuous. Since such an approach cannot be used

for G-saddles due to the lack of C1-smoothness in J , a new approach using mixed strong-

weak topology involving two norms and a weak form is developed and a new bounded

term w has to be introduced to LMM. It turns out that such a new approach enables us to

not only establish the stepsize rule, Lemma 2.1, but also relax the continuity condition on

p.

Lemma 2.1. (Stepsize Rule) Let p be a local peak selection of J w.r.t. L at a regular point

v ∈ SL⊥ s.t.

(1) p(v) = tvv + uv, uv ∈ L, |tv| > 0, is a regular point but not a G-critical point;

(2) p is weakly continuous at v in ‖.‖G-weak topology, or, p(u) ⇀ p(v) if ‖u− v‖G → 0.
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Then as s > 0 is sufficiently small, it holds

J(p(v(s)))− J(p(v)) < −1

4
s|tv|‖d‖‖w‖, (2.5)

where v(s) = v+sw
‖v+sw‖ ∈ SL⊥ , w = −sign(tv)

d
c
⊥[L, v], c = 1 if ‖d‖ ≤ 1 and c = ‖d‖

otherwise, and d = J ′(p(v)) ∈ H is the G-derivative with ‖d‖G < ∞. Furthermore

p(v(s)) is regular.

Proof. J is continuous at p(v) in ‖.‖G-norm and J ′ is continuous at p(v) in the ‖.‖G-weak

topology. Then there is a ‖.‖G-neighborhood N (p(v)) of p(v) s.t. every point in N (p(v))

is a regular point. Thus J ′ is continuous in N (p(v)) in the ‖.‖G-weak topology. We first

note that as s→ 0,

‖v(s)− v‖G = ‖ v − sw
‖v − sw‖

− v‖G = ‖v − ‖v − sw‖v
‖v − sw‖

− sw

‖v − sw‖
‖G

≤ ‖v‖G
|1− ‖v − sw‖|
‖v − sw‖

+
s‖w‖G
‖v − sw‖

→ 0,

since ‖v − sw‖ → 1 as s→ 0. Thus p(v(s)) is defined and by our assumption (2),

p(v(s)) =
t(s)v

‖v + sw‖
+ u(s) +

t(s)sw

‖v + sw‖
⇀ p(v) = tvv + uv (2.6)

for some t(s) → tv, u(s) ∈ L, u(s) ⇀ uv in L as s → 0. Since t(s) → tv in R and

u(s) ⇀ uv in L, a finite-dimensional subspace, we have u(s) → uv in ‖ · ‖G-norm and

consequently as s→ 0,

p(v(s)) =
t(s)v

‖v + sw‖
+ u(s) +

t(s)sw

‖v + sw‖
→ p(v) = tvv + uv in ‖ · ‖G-norm (2.7)

as well. Next for fixed v, t close to tv, u ∈ L close to uv in ‖ · ‖G-norm and s > 0
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sufficiently small such that tv
‖v+sw‖ + u and tv

‖v+sw‖ + u+ tsw
‖v+sw‖ are inN (p(v)), since the

G-derivative J ′ is continuous at tv
‖v+sw‖ + u in the ‖ · ‖G-weak topology, we consider the

variation in the direction tsw
‖v+sw‖ , i.e., we define

g(λ) = J(
tv

‖v + sw‖
+ u+ λ

tsw

‖v + sw‖
).

Then g(λ) is differentiable in (0, 1). Applying the mean-value theorem to g(λ), there is

some λs,t,u ∈ (0, 1) s.t.

st

‖v + sw‖
〈ds,t,u, w〉 = g′(λs,t,u) = g(1)− g(0)

= J(
tv

‖v + sw‖
+ u+

tsw

‖v + sw‖
)− J(

tv

‖v + sw‖
+ u),

where the G-derivative

ds,t,u = J ′(
tv

‖v + sw‖
+ u+ λs,t,u

stw

‖v + sw‖
).

Since p is a peak selection and tv
‖v+sw‖+u ∈ [L, v], tv

‖v+sw‖+u→ p(v) = tvv+uv in ‖·‖G-

norm, as t→ tv, u→ uv in ‖ · ‖G-norm and s→ 0, we have J(p(v)) ≥ J
(

tv
‖v+sw‖ + u

)
.

Hence

J(
tv

‖v + sw‖
+ u+

stw

‖v + sw‖
)− J(p(v)) ≤ st

‖v + sw‖
〈ds,t,u, w〉. (2.8)

Once the inequality (2.8) is established, we play a continuity approach in ‖ · ‖G-weak

topology. It is important to note that for t → tv, u → uv in ‖ · ‖G-norm and s → 0, we

have the uniform bound for λs,t,u ∈ (0, 1) and the ‖ · ‖G-norm convergence

tv

‖v + sw‖
+ u+ λs,t,u

stw

‖v + sw‖
→ p(v) = tvv + uv. (2.9)
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It leads to the weak convergence ds,t,u ⇀ d = J ′(p(v)) as , t→ tv, u→ uv in ‖ · ‖G-norm,

s→ 0. Thus

t〈ds,t,u, w〉 → tv〈d, w〉 = −|tv|‖d‖‖w‖ < 0

as t → tv, u → uv in ‖ · ‖G-norm, s → 0. By the inequality (2.8) and the ‖ · ‖G-norm

convergence (2.9), for u near uv in ‖·‖G-norm in L, t near tv and s > 0 near 0, we obtained

J
( tv

‖v + sw‖
+ u+

stw

‖v + sw‖

)
− J(p(v)) ≤ −1

2

s|t|
‖v + sw‖

‖d‖‖w‖.

Finally by (2.7) and ‖v + sw‖ → 1 as s→ 0, we conclude that

J(p(v(s)))− J(p(v)) < −1

4
s|tv|‖d‖‖w‖,

as s > 0 sufficiently small, and such a point p(v(s)) is regular.

Theorem 2.1. (Local Minimax Characterization) Let p be a local peak selection of J w.r.t.

L at v ∈ SL⊥ s.t.

(1) p is weakly continuous at v in the ‖ · ‖G-weak topology and dis(p(v), L) > 0,

(2) J(p(v)) = local min
u∈S

L⊥
J(p(u)) where p(v) is a strict local maximum of J on [v, L].

Then p(v) is a regular G-saddle of J .

Proof. By the condition (2), p(v) is a regular point. If p(v) is not a G-saddle point, since

p(v) is a strict local maximum of J on [v, L], p(v) cannot be a G-critical point of J either.

Then by Lemma 2.1, as s > 0 sufficiently small,

J(p(v(s)))− J(p(v)) < −1

4
s|tv|‖d‖‖w‖,
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where v(s) = v+sw
‖v+sw‖ , w = −sign(tv)

d
c
, c = 1 if ‖d‖ ≤ 1 and c = ‖d‖ otherwise, p(v) =

tvv + uv, uv ∈ L, |tv| > 0. It leads to a contradiction to assumption (2).

Remark 2.1. (1) Since Lemma 2.1 and Theorem 2.1 assume p to be only weakly contin-

uous, they strictly improved the corresponding results in [39,45,51];

(2) The inequality (2.5) is an important result which can be used to not only derive a local

minimax characterization of k-G-saddles as in Theorem 2.1 but also design a stepsize rule

for LMM, see Step 4 in the flow chart of the algorithm below. This inequality also indi-

cates that LMM is a strict descent method;

(3) By the characterization in Theorem 2.1, a k-G-saddle can be obtained by solving the

problem minv∈S
L⊥
J(p(v)), which leads to LMM presented previously. Note that we only

assume p to be weakly continuous. The composite function J(p(v)) is in general not even

continuous. Thus there is no way to establish a chain rule in the sense of G-derivative. In-

terestingly the results established in this thesis actually try to design a numerical algorithm

for finding k-G-saddles of such a functional by using the G-derivative. Such an algorithm

becomes possible only after we introduce the notion of a peak selection, an L-orthogonal

condition J ′(p(v))⊥[v, L];

(4) By Lemma 2.1, the local min in Theorem 2.1 is defined in ‖ · ‖G-norm. However due

to the descent property of LMM, in its numerical implementation, this is not necessary.

2.2.2 Algorithm flow chart

To fit for the mixed strong-weak topology approach presented previously, we modify

LMM in [39,41] by introducing a bounded term wnk and replacing the Frechet derivative

of J by the Gateaux derivative of J .

Let u1,...,uk−1 be k − 1 previously found saddles of J in H and L = [u1, ..., uk−1].

Given ε, λ > 0.

Step 1. Choose a regular point ū1
k = v1

k + vsk /∈ L where v1
k ∈ SL⊥ , vLk ∈ L.
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Step 2. Set n = 1. Use ū1
k as an initial to solve for

unk = p(vnk ) = tn0v
n
k + tn1u1 + · · ·+ tnk−1uk−1

= arg max{J(t0v
n
k + t1u1 + · · ·+ tk−1uk−1)|ti ∈ R, i = 0, 1, ..., n− 1}.

Step 3. Find a descent direction wnk = −sign(tn0 )
dnk
cnk

at unk , where dnk = J ′(unk), cnk = 1 if

‖dnk‖ ≤ 1 and cnk = ‖dnk‖ otherwise.

Step 4. Denote vnk (s) =
vnk + swnk
‖vnk + swnk‖

for s > 0. Use the initial point (tn0 , t
n
1 , ..., t

n
k−1) to

solve for

p(vnk (s)) = arg max
{
J(t0v

n
k (s) +

k−1∑
i=1

tiui)|ti ∈ R, i = 0, 1, ..., k − 1
}
,

then set un+1
k = p(vn+1

k ) = p(vnk (snk)) ≡ tn+1
0 vn+1

k +
∑k−1

i=1 t
n+1
i ui where snk satisfies

snk = max{s =
λ

2m
|m ∈ N, J(p(vnk (s)))− J(p(vnk )) ≤ −1

4
|tn0 |s‖dnk‖‖wnk‖}.

Step 5. If ‖snkwnk‖ < ε,then output un+1
k and stop, otherwise set n = n+ 1 and go to Step

3.

Remark 2.2. (1) LMM starts with k = 1 and L = {0} to a find u1, then LMM continues

with k = 2 and L = [u1] to find u2,..., etc. When multiple branches of solutions appear,

we should follow each branch and use LMM to solve for a new solution in this branch;

(2) It is important to use the assigned initial guess in Steps 2 and 4 to continuously trace a

peak selection;

(3) The G-derivative J ′(unk) is usually obtained by solving a linear PDE. This is where a

numerical solver, such as using a finite element method (FEM), a finite difference method

(FDM) or a boundary element method (BEM), etc., is used;
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2.2.3 Find G-derivative by a weak form

In the algorithm, we use inner product 〈u, v〉 =
∫

Ω
[∇u(x) ·∇v(x)+V (x)u(x)v(x)]dx.

Denote the residual of the equation (1.2) at a point w by

res(w)(x) = ∆w(x)− V (x)w(x) + (∆(|w(x)|2))w(x) + r(x)|w(x)|p−1w(x)

and denote

〈u, v〉 =

∫
Ω

[∇u(x) · ∇v(x) + V (x)u(x)v(x)]dx.

The G-derivative of J or the steepest descent direction d of J at a given regular point w

can be solved in weak form from a linear elliptic PDE

−∆d(x) + V (x)d(x) = res(w)(x), x ∈ Ω, d|∂Ω = 0. (2.10)

However many linear solvers require that the term res(w) is given as a function of x.

But we failed to do so, since the term res(w) contains quasilinear terms that cannot be

expressed as a function of x with piecewise linear elements. Thus to avoid using higher

order finite elements or losing accuracy in numerical computation, (2.10) has to be solved

in weak form

〈d,Φ〉 =

∫
Ω

res(w)(x)Φ(x)dx, ∀Φ ∈ H1
0 (Ω). (2.11)

Let ϕi(x), i = 1, ..., N be a nodal basis. Since G-saddles are unstable solutions and

sensitive to numerical errors, according to our numerical experience, extra caution must be

taken on error control in the weak form process, e.g., avoid using the numerical Laplacian

operator ∆ since it involves the second derivatives of a function expressed by piecewise

linear finite elements. The operator ∆ can be replaced by the divergence∇ with the weak-
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form and the Green’s identities. But the numerical divergence operation ∇ still causes

unwanted errors. To avoid such a numerical differentiation, we use its expression in the

divergence of the nodal basis, ∇ϕi’s. Such a treatment leads to a significant improvement

in error control. We denote

Φ(x) =
N∑
i=1

yiϕi(x) = [ϕ1(x), ..., ϕN(x)][y1, ..., yN ]T ,

d(x) =
N∑
i=1

xiϕi(x) = [ϕ1(x), ..., ϕN(x)][x1, ..., xN ]T ,

w(x) =
N∑
i=1

wiϕi(x) = [ϕ1(x), ..., ϕN(x)][w1, ..., wN ]T ,

∇Φ(x) =
N∑
i=1

yi∇ϕi(x) = [∇ϕ1(x), ...,∇ϕN(x)][y1, ..., yN ]T ,

∇d(x) =
N∑
i=1

xi∇ϕi(x) = [∇ϕ1(x), ...,∇ϕN(x)][x1, ..., xN ]T ,

∇w(x) =
N∑
i=1

wi∇ϕi(x) = [∇ϕ1(x), ...,∇ϕN(x)][w1, ..., wN ]T .

Let n1, n1, ..., nN be the nodes. We denote

Y = [y1, ..., yN ]T = [Φ(n1), ...,Φ(nN)]T ,

X = [x1, ..., xN ]T = [d(n1), ..., d(nN)]T ,

W = [w1, ..., wN ]T = [w(n1), ..., w(nN)]T ,

F = [r(n1)|w(n1)|p, ..., r(nn)|w(nN)|p]T ,

K =


∫

Ω
∇ϕ1(x)∇ϕ1(x) ...

∫
Ω
∇ϕ1(x)∇ϕN(x)

... ... ...∫
Ω
∇ϕN(x)∇ϕ1(x) ...

∫
Ω
∇ϕN(x)∇ϕN(x)

 , (2.12)
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M =


∫

Ω
V (x)ϕ1(x)ϕ1(x) ...

∫
Ω
V (x)ϕ1(x)ϕN(x)

... ... ...∫
Ω
V (x)ϕN(x)ϕ1(x) ...

∫
Ω
V (x)ϕN(x)ϕN(x)

 , (2.13)

K1 =


∫

Ω
2w2(x)∇ϕ1(x)∇ϕ1(x) ...

∫
Ω

2w2(x)∇ϕ1(x)∇ϕN(x)

... ... ...∫
Ω

2w2(x)∇ϕN(x)∇ϕ1(x) ...
∫

Ω
2w2(x)∇ϕN(x)∇ϕN(x)

 , (2.14)

M1 =


∫

Ω
2|∇w(x)|2ϕ1(x)ϕ1(x) ...

∫
Ω

2|∇w(x)|2ϕ1(x)ϕN(x)

... ... ...∫
Ω

2|∇w(x)|2ϕN(x)ϕ1(x) ...
∫

Ω
2|∇w(x)|2ϕN(x)ϕN(x)

 , (2.15)

M2 =


∫

Ω
ϕ1(x)ϕ1(x) ...

∫
Ω
ϕ1(x)ϕN(x)

... ... ...∫
Ω
ϕN(x)ϕ1(x) ...

∫
Ω
ϕN(x)ϕN(x)

 , (2.16)

then (2.11) can be expressed as

Y TKX + Y TMX = −(Y T (K +M)W + Y T (K1 +M1)W − Y TM2F ), ∀Y ∈ RN .

Next we further denote A = K + M , A1 = K1 + M1, b = −(AW + A1W −M2F ).

Then, d(x) can be obtained by solving X from the linear matrix system Y TAX = Y T b,

whereA,A1,M2 are provided by the Matlab subroutine ASSEMPDE and other terms have

to be built ourselves. As predicted in analysis, our numerical computation went smoothly

without encountering any singularity difficulty.
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2.3 Numerical Results

By the analysis in the previous sections, we can numerically solve (1.2) for multiple

solutions simply in the space H1(Rn) whose inner product can be used to evaluat the G-

derivatives at a given regular point. The “natural selection” of LMM will automatically

resolve the singularity issue. The term V (x) in (1.2) is called a trapping potential, which

is an important step toward the goal of a controlled Bose-Einstein condensate or other

physical processes of excitation. In other words, for application purpose, V (x) has to be

properly selected so that a solution u(x) has a localized property, i.e., u(x) → 0 expo-

nentially or at least much faster than |x| → +∞. According to the literature, we choose

V (x) = e|x|
2 . Thus minx∈Rn V (x) = 1 and V (x) → +∞ exponentially as |x| → +∞.

Such a trapping potential V (x) causes singularities even for n = 2, 2∗ = +∞. How-

ever, such V (x) forms a trap for a function u ∈ H1(Rn) to be a solution, i.e., u has to

concentrate in a bounded ball centered at 0. Such a localized property enables people to

solve the original problem in Rn numerically in a large bounded domain Ω ⊂ Rn with a

zero Dirichlet boundary condition. However, as multiple solutions are concerned, people

are interested in observing the structures of different solutions, such as their symmetries,

peaks and peak locations, nodal lines, etc. If the domain is selected too large, under the

localized property, such structures cannot be clearly visualized from their solution profiles.

So by test-solving the problem on many domains of different sizes for multiple solutions,

we select the size of the domain so that both localized property and different solution

profiles can be clearly visualized.

On the other hand, as it has been physically observed and mathematically verified for

M-type semilinear elliptic equations (i.e., limt→+∞ J(tu) = −∞), such as the Henon

equation, the term r(x) = |x|m will cause a very different effect on a solution property.

The m-value can be viewed as a bifurcation parameter. When m < mc for certain value
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mc, the ground state is a unique positive solution and symmetric. However when m > mc,

the ground state bifurcates to positive asymmetric solutions whose peak locations move

away from 0. As m-value further increases, more positive solutions appear and their peaks

move further away from 0 if V (x) is a constant. Such a bifurcation process is called a sym-

metry breaking phenomenon which destroys the localized property. However if or not such

a phenomenon will take place for the quasilinear elliptic equation (1.2) is still unknown,

neither mathematically verified nor numerically observed. Actually, for (1.2), only the

existence of the ground state has been mathematically established [44] and numerically

computed [52]. As for the existence of other solutions, so far, it is neither mathematically

verified nor numerically observed. In particular, it is interesting to numerically investigate

the combined effect of the localize property and the symmetry breaking phenomenon, e.g.,

when V (x) = e|x|
2 and r(x) = |x|m are both symmetric.

In the following numerical examples, we take n = 2, p = 5,Ω = (−2.5, 2.5)2. The

finite elements are generated by Matlab subroutine INITMESH with piecewise linear ele-

ments.

We use gnorm = ‖d‖ = 〈d, d〉1/2 = (
∫

Ω
res(w)(x)d(x)dx)1/2 < ε = 10−4 to terminate

a numerical iteration for finding 1-saddles. This ε will be increased by a factor 2k−1 for

finding k-saddles as k increases to 2, 3, .... An initial guess u0 ∈ H1
0 (Ω) is obtained

flexibly from solving the equation −∆u(x) + V (x)u(x) = c(x) by calling the Matlab

subroutine ASSEMPDE, where c(x) = −1, 1, 0 according to the location(s) x where we

want u0 to have a positive peak, negative peak or just flat.

It is understood that due to the symmetry of the PDE (1.2), if Ω is a disk, then any

solution rotated by an angle of any degree is still a solution and thus is degenerate unless

it is radial symmetric; and if Ω is a square centered at 0, then any solution rotated by

π
2
, π or 3π

2
is still a solution. Thus we present only one representative solution from its

equivalent class. Due to the corner effect, some solutions such as u2 vs u3 and u5 vs u6

29



in Figure 2.1 seem to be different but actually belong to the same equivalent class when

Ω = R2. In order to plot the profile and contours of a solution in one figure, we have

translated the profile vertically. More numerical data can be found if one zooms in at the

up-right portion of each figure.
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Figure 2.1: Case 1. m = 0.4. No bifurcation takes place. There is only one positive
solution. Solutions u1, ..., u6 are found. The localized property is clearly visualized.
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Figure 2.2: Case 2. m = 6. Bifurcation takes place after m > 0.5. We present solutions
u1, ..., u7. Multiple positive solutions appeared. Thus symmetry breaking phenomenon is
clearly visualized. u5 is totally asymmetric.
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Figure 2.3: Case 3. m = 6. A ground state u1 with the same potential V (x) but different
Ω. Refer Figure 2.2 (u1) for Ω = (−2.5, 2.5)2. By comparison, it is clear that in the
appearance of both the potential V (x) and the symmetry breaking term r(x), the effect of
the trapping potential V (x) is decisive and the localized property is preserved.

2.4 Conclusion

In this chapter, to find G-saddles of a class of functionals J : H → {±∞}∪R that are

just G-differential at regular points, a mixed strong-weak topology approach is proposed

to establish a new mathematical frame-work and LMM is modified accordingly. The weak

format is used when solving the gradient involved in the algorithm due to the singularity

caused by the quasilinear term. The modified LMM is implemented successfully with

various numerical examples of multiple k-G-saddles presented. This project is finished

and the related paper is published [56]. No future work was planned.
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3. FINDING SADDLES FOR C1 W-TYPE NONLINEAR PDES

We investigate the boundary value problem (1.5) , which is also our model problem in

this chapter. We restate it here

 −∆u(x)− λu(x) + f(x, u(x)) = 0, x ∈ Ω,

u|∂Ω = 0.
(3.1)

Its variational functional is

J(u) =

∫
Ω

[
1

2
(|∇u(x)|2 − λu2(x)) + F (x, u(x))]dx, (3.2)

where ∂
∂t
F (x, t) = f(x, t), u ∈ H = H1

0 (Ω) with norm ‖u‖ = (
∫

Ω
[|∇u|2 + u2]dx)

1
2 , and

Ω is bounded in RN . f(x, u) is selected such that J ∈ C1(H,R). In order to find solutions

of the equation (3.1), we need to find critical points of J in (3.2).

As we stated previously in Chapter 1, we could not apply the numerical methods that

are designed only for solving M-type problems here since (3.2) has a W-type structure.

We propose a new numerical method, a local minmaxmin method (LMMM), and establish

its computational theory in this chapter.

3.1 Local Min-⊥Method under Weakened Conditions (LMO-W)

We generalize the previous definition of the unit sphere SW to develop computational

theory for the new method LMMM. In this chapter, we denote SW = {w ∈ W | ‖w‖ ≈ 1}

for any subspace W ⊂ H , we use ‖w‖ ≈ 1 instead of ‖w‖ = 1. Then we generalize the

definition of a L-⊥ selection accordingly and it is stated below.

Definition 3.1. Let L be a closed subspace of H and L ⊕ L⊥ = H be the orthogonal

decomposition. Let SL⊥ = {v ∈ L⊥ | ‖v‖ ≈ 1} and [L, v] = {tv + vL | t ∈ R, vL ∈ L}
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for each v ∈ SL⊥ . A set-valued mapping P : SL⊥ → 2H is called an L-⊥ mapping of J

w.r.t H = L⊕ L⊥ if

P (v) = {u ∈ [L, v] | J ′(u) ⊥ [L, v]},∀v ∈ SL⊥ . (3.3)

A single-valued mapping p: SL⊥ → H is called an L-⊥ selection of J if p(v) ∈ P (v),

∀v ∈ SL⊥ . For a given v ∈ SL⊥ , if such p is locally defined in N (v) ∩ SL⊥ , where N (v)

is a neighborhood of v, then p is called a local L-⊥ selection of J at v.

It is not hard to prove that if p(v) is a local maximum of J in [L, v], then such a p(v)

is also an L-⊥ point of J in [L, v] . Thus Definition 3.1 generalizes the notion of a peak

mapping in [39, 41].

Let us recall the local min-⊥ method (LMO) in [45].

Theorem 3.1. ( LMO Characterization of Saddle Points [45]) For any closed subspace

L ⊂ H , let v∗ ∈ SL⊥ = {v ∈ L⊥ | ‖v‖ = 1}, p is a local L-⊥ selection of J w.r.t. L at v∗,

i.e., p(v) ∈ [L, v], J ′(p(v)) ⊥ [L, v] for any v ∈ N (v∗). Assume (i) p(v∗) is continuous at

v∗, (ii) d(p(v∗), L) > α for some α > 0. If

v∗ = arg min
v∈N (v∗)∩S

L⊥
J(p(v)),

then u∗ = p(v∗) is a critical point of J , i.e., J ′(u∗) = 0.

LMO principle is now well-known in the literature. It has some very useful applica-

tions, such as the generalized Nehari manifold method, etc. Note that ‖v‖ = 1 was used

in the notation SL⊥ for the above LMO characterization and the condition (i) posed on p is

continuity, but p(v) is implicitly defined, it is very difficult to determine its continuity. We

hope we can weaken the condition (i) such that LMO can be applied to the case when p is

not continuous. By replacing ‖v‖ = 1 by ‖v‖ ≈ 1, we restudy LMO under a weakened
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condition of continuity and rename it by LMO-W, namely, a local min-⊥ method under a

weakened condition.

First we define a locally directional Lipschitz continuity.

Definition 3.2. For a map F : M → N , at a given m0 ∈ M , if for some m ∈ M , there is

a constant l0 depending on m0 and m, such for all s > 0 small, it holds

‖F (m0 + sm)− F (m0)‖ ≤ l0s‖m‖, (3.4)

F is said to be locally directional Lipschitz continuous at the given m0 in the direction m.

If for any m ∈M , there is a constant l0 depending on m0 and m, such for all s > 0 small,

(3.4) holds, we say F is locally directional Lipschitz continuous at the given m0.

Let p be a local L-⊥ selection. Note that if v ∈ SL⊥ is given, when s > 0 is small, we

have ‖v + sw‖ ≈ 1. For v(s) = v+sw
‖v+sw‖ , we have [L, v(s)] = [L, v + sw] and then

p(v(s)) = ts
v(s) + u(s)

‖v(s) + u(s)‖
= p(v + sw) = t(s)(v + sw + u′(s)),

where u(s) ∈ [L, v(s)], t(s) = ts
‖v+sw‖‖v(s)+u(s)‖ , u

′(s) = ts
t(s)

tsu(s)
‖v(s)+u(s)‖ .

By Definition 3.2, if a local L-⊥ selection p is locally directional Lipschitz continuous

at a given v ∈ SL⊥ , then for each w ∈ L⊥, there is a constant l0 depending on v and w,

such that for all s > 0 small, it holds

‖p(v + sw)− p(v)‖ ≤ l0s‖w‖,

where the term ‖w‖ can be removed since l0 depends on w. It implies

‖p(v(s))− p(v)‖ ≤ l0|s|‖w‖ = O(s).
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It is clear that a locally directional Lipschitz continuity at v implies a locally directional

continuity at v but not a necessary continuity at v. If the constant l0 does not depend

on w, p becomes locally Lipschitz continuous at v. If furthermore such a constant l0 is

independent of w and v, then p becomes locally lipschitz continuous.

Assume the G-derivative of p exists at v in a direction w and

lim
s→0

1

s
(p(v + sw)− p(v)) = δp(v;w) 6= 0,

where δp(v;αw) = αδp(v;w) for any scalar α, but not necessarily linear in w. Denote

l = 2
‖w‖ |δp(v;w)| > 0, then there is s0 > 0 such that when s0 > |s| > 0, it holds

‖p(v + sw)− p(v)‖ < l|s|‖w‖,

i.e., p is locally directional Lipschitz continuous at v in the direction w. In other words,

a nonzero G-derivative of p at v in w implies a locally directional continuity but not con-

tinuity. It is clear that a locally directional continuity does not indicate a weak-continuity

since the later implies a continuity in any finite-dimensional space.

With the above weakened condition on p, we are able to improve the computational

theory for LMO.

Lemma 3.1. (Stepsize Rule of LMO-W) For a given v ∈ SL⊥ , assume that p is a local L-⊥

selection at v s.t.

(i) p is locally directional Lipschitz continuous at v,

(ii) dis(p(v), L) > 0,

(iii) d = −J ′(p(v)) 6= 0.
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Then there is s0 > 0 such that when s0 > s > 0, we have

J(p(v(s)))− J(p(v)) < − 1

4C
tvs‖J ′(p(v))‖2, (3.5)

where v(s) = v+sw
‖v+sw‖ , w = d

C
, C = max{1, ‖d‖}, p(v) = tvv+uv, for tv > 0 and uv ∈ L.

Proof. If p is a local L-⊥ selection of J at v ∈ SL⊥ , then J ′(p(v)) ⊥ [L, v] by the

definition. Denote p(v(s)) = tsv(s) + u(s), p(v) = tvv + uv for tv, ts > 0, uv, u(s) ∈ L,

it is clear that ts → tv as s→ 0 and

p(v(s)) = p(v + sw).

Since p is locally directional Lipschitz continuous at v in w, there exists l > 0 depending

on v and w, s.t. ‖p(v + sw)− p(v)‖ < l|s|. So we have

J(p(v(s)))− J(p(v)) = 〈J ′(p(v)), p(v(s))− p(v)〉+ o(‖p(v(s))− p(v)‖)

= 〈J ′(p(v)), p(v(s))〉+ o(‖p(v + sw)− p(v)‖)

= 〈J ′(p(v)), ts
v + sw

‖v + sw‖
+ u(s)〉+ o(‖p(v + sw)− p(v)‖)

=
ts

‖v + sw‖
〈J ′(p(v)), v + sw〉+ o(‖p(v + sw)− p(v)‖)

=
tss

‖v + sw‖
〈J ′(p(v)), w〉+ o(‖p(v + sw)− p(v)‖)

= − tss

‖v + sw‖
‖J ′(p(v))‖2

C
+ o(s)

< − 1

4C
tvs‖J ′(p(v))‖2.

Then (3.5) holds.

Theorem 3.2. (LMO-W Characterization) For any closed subspace L ⊂ H and a given

v∗ ∈ SL⊥ , let p be a local L-⊥ selection at v∗. Assume
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(i) p is locally directional Lipschitz continuous at v∗,

(ii) p(v∗) /∈ L,

(iii) v∗ = arg minv∈N (v∗)∩S
L⊥
J(p(v)), where N (v∗) is a neighborhood of v∗.

Then u∗ ≡ p(v∗) is a critical point of J , i.e., J ′(u∗) = 0.

Proof. Denote p(v∗) = tv∗v
∗ + uv∗ with tv∗ > 0, u∗ ∈ L. If d = −J ′(p(v∗)) 6= 0,

set w = d
C

where C = max{1, ‖d‖} and v(s) = v∗+sw
‖v∗+sw‖ , then by the Stepsize Rule of

LMO-W, for s > 0 sufficiently small, we have

J(p(v(s)))− J(p(v∗)) < − 1

4C
tv∗s‖d‖2,

which contradicts assumption (iii). Therefore p(v∗) is a critical point of J .

The analysis of LMO-W above provides us a mathematical support for the numerical

method LMMM we will discuss below.

3.2 Local Minmaxmin Method (LMMM)

As stated before, λ1 < λ2 < · · · are the eigenvalues of −∆u(x) = λu(x) with

the same zero boundary condition and ϕ1, ϕ2, . . . are the corresponding eigenfunctions.

Notice that J in (3.2) is bounded from below, and if λ < λ1, 0 is a local minimum of J

and limt→+∞ J(tu) = +∞ in any direction u. When λk < λ < λk+1, there is tu > 0 such

that tu = arg mint>0 J(tu) for ∀u ∈ [ϕ1, · · · , ϕk]. Motivated by LMO-W, we propose

LMMM for W-type problems,

min
v∈L⊥

max
u∈[L,v],‖u‖≈1

J(tuu), (3.6)
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where tu = arg mint>0 J(tu), and (3.6) can be rewritten as

min
v∈S

L⊥
max

u∈[L,v],‖u‖≈1
min
t>0

J(tu). (3.7)

Define
p(v) = arg max

u∈[L,v],‖u‖≈1
min
t>0

J(tu), (3.8)

T (u) = tuu, (3.9)

then p(v) = tuu = T (u) ∈ [L, v] for some u ∈ [L, v] with ‖u‖ ≈ 1, and it holds

J(p(v)) = max
u∈[L,v],‖u‖≈1

min
t>0

J(tu). (3.10)

Consequently we can state LMMM as

min
v∈S

L⊥
J(p(v)) ≡ min

v∈S
L⊥

max
u∈[L,v],‖u‖≈1

J(T (u)) ≡ min
v∈S

L⊥
max

u∈[L,v],‖u‖≈1
min
t>0

J(tu). (3.11)

Now we are able to verify the following property for p locally defined in (3.8) under

the weakened condition, i.e. locally directional Lipschitz continuity on T .

Lemma 3.2. (L-⊥ Property) T is defined as in (3.9), p(v) is locally defined as in (3.8)

with p(v) = tuu for some u ∈ [L, v], ‖u‖ ≈ 1. Assume T is locally directional Lipschitz

continuous at such u, then J ′(p(v)) ⊥ [L, v].

Proof. Since p(v) = tuu for some u ∈ [L, v], ‖u‖ ≈ 1, it follows that J ′(p(v)) ⊥ u.

Suppose J ′(p(v)) ⊥ [L, v] does not hold, we define

u(s) =
u+ sw

‖u+ sw‖
∈ S[L,v], s > 0, (3.12)
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where w = J ′(p(v))[L,v] 6= 0 is the projection of J ′(p(v)) onto the closed subspace [L, v].

Denote T (u(s)) = tsu(s), it is clear that when s > 0 is small, we have

tsu(s) = T (u(s)) = T (u+ sw) = t′s(u+ sw),

where t′s = ts
‖u+sw‖ . Since J ′(p(v)) ⊥ u,u ∈ [L, v], and J ′(p(v))− J ′(p(v))[L,v] ∈ [L, v]⊥,

we get 〈J ′(p(v))[L,v], u〉 = 〈J ′(p(v)), u〉 − 〈J ′(p(v)) − J ′(p(v))[L,v], u〉 = 0, namely,

J ′(p(v))[L,v] ⊥ u. By the assumption, T is locally directional Lipschitz continuous at u in

w, then there is l1 > 0 depending on u and w such that when |s| is small, it holds

‖T (u+ sw)− T (u)‖ < l1|s|.

It is clear that T (u(s))→ T (u) as s→ 0. Then when s0 > s > 0, we get

J(T (u(s)))− J(T (u)) = 〈J ′(T (u)), T (u(s))− T (u)〉+ o(‖T (u(s))− T (u)‖)

= 〈J ′(p(v)), T (u(s))〉 − 〈J ′(p(v)), T (u)〉+ o(‖T (u+ sw)− T (u)‖)

= 〈J ′(p(v)), T (u(s))〉+ o(‖T (u+ sw)− T (u)‖)

=
ts

‖u+ sw‖
(〈J ′(p(v)), u〉+ s〈J ′(p(v)), w〉) + o(‖T (u+ sw)− T (u)‖)

=
tss

‖u+ sw‖
〈w + J ′(tuu)[L,v]⊥ , w〉+ o(‖tsu(s)− tuu‖)

=
tss

‖u+ sw‖
‖w‖2 + o(|s|)

>
tus

2
‖w‖2 > 0.

That is to say, if ‖J ′(p(v))[L,v]‖ 6= 0, we always can find s > 0, T (u(s)) ∈ S[L,v], such that

J(T (u(s))) > J(p(v)) + tus
2
‖w‖2, which contradicts (3.10). Consequently J ′(p(v)) ⊥

[L, v].
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LMMM seems to be a three-level algorithm, but in many problems, tu can be expressed

as a real functional of u and J(tuu) has an explicit expression. Then it becomes a two-

level algorithm. Furthermore if we denote R(t, u) = 〈J ′(tu), u〉, by the implicit function

theorem, when

R′t = 〈J ′′(tuu), u〉 6= 0,

t′(u) = T ′(u) is locally continuous at u and thus T (·) is locally directional Lipschitz

continuous at u. Therefore the assumption on T in Lemma 3.2 makes sense.

Note that proof process of Lemma 3.2 suggest a stepsize rule for approximating p(v)

defined in (3.8).

3.2.1 Computational theory for LMMM

According to Lemma 3.2, clearly, if p(v) is locally defined as in (3.8), then p is a local

L-⊥ selection. Therefore, LMMM is within LMO-W frame-work, but with a clearer struc-

ture p(v) = arg maxu∈[L,v],‖u‖≈1 mint>0 J(tu). Hence we can establish the computational

theory for LMMM in a similar way. All the proofs can be obtained in the same ways.

Lemma 3.3. (LMMM Stepsize Rule) For v ∈ SL⊥ , assume p is locally defined as in (3.8)

and

(i) p is locally directional Lipschitz continuous at v,

(ii) dis(p(v), L) > 0,

(iii) d = −J ′(p(v)) 6= 0.

Then there is s0 > 0 such that when s0 > s > 0, we have

J(p(v(s)))− J(p(v)) < − 1

4C
tvs‖J ′(p(v))‖2, (3.13)
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where v(s) = v+sw
‖v+sw‖ , w = d

C
, C = max{1, ‖d‖}, p(v) = tvv+uv, for tv > 0 and uv ∈ L.

Lemma 3.3 can be used to not only derive a local characterization of a saddle point

as stated in Theorem 3.1 but also that the inequality (3.13) designs a stepsize rule for the

main algorithm of LMMM.

Theorem 3.3. (LMMM Characterization) For any closed subspace L ⊂ H , let v∗ ∈ SL⊥

and p be locally defined at v∗ as in (3.8). Assume

1. p is locally directional Lipschitz continuous at v∗,

2. p(v∗) /∈ L,

3. v∗ = arg minv∈N (v∗)∩S
L⊥
J(p(v)), where N (v∗) is a neighborhood of v∗.

Then u∗ = p(v∗) is a critical point of J , i.e., J ′(u∗) = 0.

3.2.2 Algorithm flow chart

Now we are able to design the algorithm for LMMM in the following way.

Given ε, λ > 0 and n previously found critical points u1, · · · , un of J , of which un has

the highest critical value. Let L = [u1, u2, · · · , un].

Step One. Choose vk ∈ SL⊥ to be an ascent direction at un.

Step Two. Set k = 1. Use vk as an initial to solve for ukn+1 ≡ p(vk) ∈ [L, vk] \ L and

p(vk) ≡ tkn+1ũ
k
n+1, where ũkn+1 ∈ [L, vk].

The following algorithm is for this step only.

Given ε0 > 0, λ0 > 0, wk0 = vk.

Step 1. Takewk0 ∈ [L, vk] as an initial, set k0 = 1, compute tk0u = arg(local)t>0J(twk0)

to get pk0(vk) = tk0u w
k0 .
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Step 2. Compute the steepest descent direction dk0= J ′(tk0u w
k0) of J at pk0(vk) =

tk0u w
k0 , and compute

pdk0 ≡ (dk0)[L,vk],

which is the projection of dk0 onto [L, vk].

Step 3. If ‖pdk0‖ < ε0, output p(vk) ≡ pk0(vk) = tk0u w
k0 , and tkn+1 ≡ tk0u , ũkn+1 =

wk0 . Otherwise, continue.

Step 4. Set wk0(s) = wk0+s(pdk0 )

‖wk0+s(pdk0 )‖ ∈ [L, vk], s = 1
2n

, n ∈ N, and solve for tk0u (s) =

argt>0 J(twk0(s)). Set wk0+1 = wk0(sk0), tk0+1
u = tk0u (sk0), where sk0 satisfies

sk0 = max{s =
λ

2n
|n ∈ N, J(tk0u (s)wk0(s))− J(tk0u w

k0) ≥ 1

2
tk0u s‖pdk0‖2}.

Let pk0+1(vk) = tk0+1
u wk0+1.

Step 5. Update k0 = k0 + 1 and go to step 2.

Step Three. Compute the steepest descent vector dkn+1 = −J ′(ukn+1) = −J ′(tkn+1ũ
k
n+1).

Step Four. If ‖dk‖ ≤ ε, then output un+1 = ukn+1, stop, otherwise go to Step Five.

Step Five. Set vk(s) = vk+sdk

‖vk+sdk‖ , s = λ
2m

, m ∈ N and solve for p(vk(s)) using the method

in Step Two. Then let vk+1 = vk(sn+1), where sn+1 satisfies

sn+1 = max{s =
λ

2m
|m ∈ N, J(p(vk(s)))− J(p(vk)) ≤ −1

2
tkn+1s‖dk‖2}.

Denote uk+1
n+1 = p(vk+1) = tk+1

n+1ũ
k+1
n+1.

Step Six. Update k = k + 1, and go to Step Three.
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Figure 3.1: Left, main algorithm of LMMM. Right, an algorithm for finding p(v).

3.3 Numerical Results

3.3.1 Tests on finite-dimensional benchmark problems

Example 3.1. Consider finding 1-saddles of a W-type problem

J(x, y) = (1− x2 − y2)2 + y2/(x2 + y2). (3.14)

It is known that it has two local minima ul = (−1, 0) and ur = (1, 0), two 1 −

saddles (0, 1) and (0,−1), and a local maximum (0, 0). The graph and the contour of

J are shown in Figure 3.2. Both the local minima and maxima can be obtained by the

Matlab subroutine FMINCON or some other numerical methods such as the steepest

descent method. When using the newly introduced LMMM above in order to find 1-

saddles, we choose a point in the upper half plane as an initial to find (0, 1), and choose

a point in the lower half plane as an initial to find (0,−1). The numerical results are

displayed as in Table 3.1.

Example 3.2. Find 1-saddle points of a W-type function with a triple-well potential func-
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Figure 3.2: Example 3.1. Two local minima (�) at (1, 0), (−1, 0), two 1-saddles (∗) at
(0, 1), (0,−1) and one local maximum at (0, 0).

Saddles Energy ‖J ′(.)‖ Itn
(0.000000006639, 1.000006922069) 1.000000000192 0.00006 3

(-0.000000104723, -1.000006922069) 1.000000000192 0.00006 3

Table 3.1: Numerical results for Example 3.1 by LMMM.

tion

J(x, y) = 3e−x
2−(y− 1

3
)2−3e−x

2−(y− 5
3

)2−5e−(x−1)2−y2−5e−(x+1)2−y2+0.2x4+0.2(y−1

3
)4.

J has a local maximum at (x0, y0) = (4.94e − 07, 0.5191867342). Note that for the

innermost level of LMMM, we need mint>0 J(tu) for a fixed u ∈ [L, v]. However, for this

function, since (0, 0) is not a local maximum, we could not guarantee that a local minimum

along the direction u can be achieved. Therefore, we make a shift J(x, y) → J̃(x, y) =

J(x + x0, y + y0) such that (0, 0) is a local maximum for the new function J̃ . Apply

LMMM to J̃ to find its critical point (x, y), then (x + x0, y + y0) is the corresponding

critical point for J(x, y).

In Table 3.2, the critical points of J are displayed.
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Figure 3.3: Example 3.2. Three local minima (�), one local maximum (+) and three
1-saddles (∗).

Critical Points ‖J ′(.)‖ Itn
Local Min (-4.94e-07, 0.5191867339) 0.00009 12
Local Min (1.048054981, -0.0420936579) 0.00001 4
Local Min (-1.0480549862, -0.0420936639) 0.00001 4
1-Saddle (0.000000016, -0.31585285080) 0.00009 4
1-Saddle (0.617273599, 1.1027353229) 0.00007 10
1-Saddle (-0.6172852270, 1.1027945720) 0.00007 4

Table 3.2: Numerical results for Example 3.2 by LMMM.

Example 3.3. We compute 1-saddles of the Muller function. Muller function is not a

W-type function, but it has local W-type structures near its saddle points.

J(x, y) =
4∑
i=1

Kie
[ai(x−x0i )2+bi(x−x0i )(y−y0i )+ci(y−y0i )2],

where the vectorsK = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6),

c = (−10,−10,−6.5, 0.7), x0 = (1, 0,−0.5,−1), and y0 = (0, 0.5, 1.5, 1).

By viewing the graph and the contour of J in Figure 3.3, we have an intuition that it is
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Figure 3.4: Example 3.3. Three local minima A,B,C and two 1-saddles SP1, SP2.

harder to find 1-saddles compared with the previous two benchmark problems since there

is no symmetrical property. By LMMM, we get three local minima A,B,C and the first

1-saddle SP1 which are displayed in Table 3.3. For the second 1-saddle SP2, similar with

Example 3.2, we shift J to J̃ such that we can get a local minimum along the positive

direction of u ∈ [L, v]. Here we select (x0, y0) = (−0.4, 0.95), make a shift J(x, y) →

J̃(x, y) ≡ J(x+x0, y+y0), then apply LMMM to J̃ . By using an initial point (−0.4,−0.5)

in LMMM for J̃ , we get one 1-saddle of J̃ and shift it back to get the corresponding 1-

saddle SP2=(−0.821999939540670, 0.624313366549593) of J .

Critical points Initial Energy ‖J ′(.)‖ Itn
Local Min (-0.5582, 1.4417) (-0.5,1.5) -146.70 0.00008 15
Local Min (0.6235, 0.0280) (0.5,0.05) -108.17 0.00005 15
Local Min (-0.0500, 0.4700) (-0.1, 0.5) -80.77 0.00005 14

1-Saddle SP1 (0.2125, 0.2930) (0.1, 0.15) -72.25 0.00179 8
1-Saddle SP2 (-0.8220, 0.6243) (-0.4,-0.5) -40.66 0.00097 6

Table 3.3: Numerical results for Example 3.3 by LMMM.
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Remark 3.1. For the above three benchmark problems, they are in a finite dimensional

space (actually 2 dimensions). According to our algorithm experience, when finding 1-

saddles for functionals with W-type structures (finite dimension or infinite dimension), we

let L = [u0], where u0 is a local minimum with MI = 0. Therefore, LMMM becomes

two-level optimization when being applied to the above benchmark problems,

J(u∗) = max
u∈[L,v],‖u‖≈1

min
t>0

J(tu),

where u∗ is the critical points of J and J(p(v)) = J(u∗). Meanwhile, in the main algo-

rithm of LMMM, we use J ′(p(v)) ⊥ [L, v] to terminate Step Two in the flow-chart to solve

for p(v), then we just need to judge whether J ′(p(v)) = 0 or not since the dimension is

two, and the algorithm becomes much simpler.

3.3.2 Apply LMMM to infinite-dimensional W-type problems

As stated previously in Chapter 1, for a typical M-type functional, the functional is ∩-

shape in [v1, · · · , vk], M-shape in [v1, · · · , vk]⊥, and saddle points appear in the M-shape .

But for a typical W-type functional, it is ∪-shape in [v1, · · · , vk]⊥, W-shape in [v1, · · · , vk],

and we need to find saddle points from the W-shape . Due to the finite dimension of the

W-shape space , the algorithm is very sensitive when searching for critical points since

it may go out the scope of W-shape and enter the ∪-shape. On the other hand, even

though the innermost level of LMMM is a local minimization, it is very easy that the local

maximization in the middle level will pull local minima back to "0", then we will get the

trivial solution "0" and the algorithm stops. So how to keep the searching for saddle points

strictly inside W-shape and away from "0" becomes important and we will discuss how to

overcome such difficulties in Section 3.5. In this section, we only present the numerical

results.

When Ω = [−1, 1] × [−1, 1], compute the eignevalues λ1 < λ2 < · · · and their
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corresponding eigenfunctions ϕ1, ϕ2, · · · of (1.7) to get

(a) λ1 = 4.9348, ϕ1 = cos(πx
2

)cos(πy
2

). (b) λ2 = 12.3370, ϕ2 = sin(πx)cos(πy
2

).

(c) λ3 = 12.3370, ϕ3 = cos(πx
2

)sin(πy). (d) λ4 = 19.7392, ϕ4 = sin(πx)sin(πy).

(e) λ5 = 24.6740, ϕ5 = cos(3πx
2

)cos(πy
2

). (f) λ6 = 24.6740, ϕ6 = cos(πx
2

)cos(3πy
2

).

For all the following numerical examples, we use the above eigenfunctions or combina-

tions of them as initial guesses when finding multiple W-type critical points.

3.3.2.1 Apply LMMM to the model (typical W-type) problem, case 1

Now return to our model problem (3.1) in this chapter. We typically select f(x, u(x)) =

|u(x)|p−1u(x) and get the following BVP

 −∆u(x)− λu(x) + |u(x)|p−1u(x) = 0, x ∈ Ω,

u|∂Ω = 0.
(3.15)

The corresponding energy function is a W-type functional,

J(u) =

∫
Ω

(
1

2
|∇u(x)|2 − λu2(x))dx+

1

p+ 1

∫
Ω

|u(x)|p+1dx.

We select p = 3 and Ω = [−1, 1] × [−1, 1] when solving for numerical solutions for it.

As computed previously, the eigenvalues for the Laplacian operator based on the same

domain are: 4.9348, 12.3370, 12.3370, 19.7392, 24.6740, 24.6740, 32.0762, 32.0762, · · · .

In literature [17, 31], it has been proved that when λn < λ < λn+1, there are at least n

different solutions for (3.15).

Theoretically there are at least six different solutions when λ = 28 and there are at

least four different solutions when λ = 20. By LMMM, we find the following numerical

solutions from (u1) to (u10) when λ = 28, which are displayed in Table 3.4 and Figure 3.5
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& 3.6, and multiple critical points from (ū1) to (ū6) when λ = 20, which are displayed in

Table 3.5 and Figure 3.7.

nth Figure MI Support Energy ‖J ′(.)‖ errmax Itn
1 (u1) 0 NA -313.4176 0.0002 0.0044 8
2 (u2) 1 1 -126.9724 0.0007 0.0052 10
3 (u3) 1 1 -126.9722 0.0004 0.0053 8
4 (u4) 1 1 -109.1923 0.0052 0.0296 9
5 (u5) 1 1 -109.1914 0.006 0.0719 6
6 (u6) 2 [1,2] -31.7034 0.001 0.0075 7
7 (u7) 3 [1,2,6] -5.1074 0.0029 0.0457 5
8 (u8) 3 [1,2,6] -5.1073 0.0014 0.0304 6
9 (u9) 3 [1,2,4] -4.2985 0.001 0.0215 4

10 (u10) 3 [1,2,4] -4.2607 0.0011 0.0709 5

Table 3.4: Numerical values of W-type solutions of (3.15) when λ = 28.
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Figure 3.5: W-type solutions of (3.15) when λ = 28. (u1)− (u4)
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nth Figure MI Support Energy ‖J ′(.)‖ errmax Itn
1 (ū1) 0 NA -125.7075 0.0009 0.0114 8
2 (ū2) 1 1 -28.5324 0.0008 0.0075 5
3 (ū3) 1 1 -28.5321 0.0007 0.0068 5
4 (ū4) 1 1 -24.3427 0.0025 0.0263 5
5 (ū5) 1 1 -24.3426 0.0019 0.0177 6
6 (ū6) 2 [1,2] -0.0303 0.0005 0.0099 2

Table 3.5: Numerical values of W-type solutions of (3.15) when λ = 20.
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Figure 3.7: W-type solutions of (3.15) when λ = 20.

Notice that for the numerical solutions above, in the case when λ = 28, we can treat

u2, u3 as the same solution since one can be obtained by rotating the other one. In this
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sense, u4, u5 are the same solution, and so are u7, u8. Then we found seven different nu-

merical solutions by LMMM. Similarly, in the case when λ = 20, we found four different

numerical solutions which is consistent with λ4 < 20 < λ5.

3.3.2.2 Apply LMMM to the model problem, case 2

For the model problem (3.1), if we select f(x, u(x)) = k|x|r|u(x)|p−1u(x), then we

get the following BVP

 −∆u(x)− λu(x) + k|x|r|u(x)|p−1u(x) = 0, x ∈ Ω,

u|∂Ω = 0.
(3.16)

The corresponding energy function is

J(u) =

∫
Ω

[
1

2
(|∇u(x)|2 − λu2(x)) +

k

p+ 1
|x|r|u(x)|p+1]dx.

This is a more general case of W-type problem. When taking r = 0 and k = 1, it becomes

the typical W-type problem case 1. We select p = 3, k = 1, λ = 20, Ω = [−1, 1]× [−1, 1]

and r = 1 when applying LMMM to compute the multiple saddle points. The results are

shown below.

nth Figure MI Support Energy ‖J ′(.)‖ errmax Itn
1 (i) 0 NA -295.4434 0.0008 0.0158 15
2 (ii)-1 1 1 -48.7262 0.0015 0.0255 6
3 (ii)-2 1 1 -48.7260 0.0012 0.0251 5
4 (iii)-1 1 1 -41.9065 0.0027 0.0266 5
5 (iii)-2 1 1 -41.9064 0.0019 0.0277 6
6 (iv) 2 [1,2] -0.0420 0.0010 0.0205 3

Table 3.6: Numerical values of W-type solutions of (3.16).
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Figure 3.8: W-type solutions of (3.16).

3.3.2.3 Apply LMMM to a M-type problem with a locally W-type structure (W-M type)

In this section, we apply LMMM to the following concave-convex elliptic problem,

 −∆u(x) = a(x)|u(x)|q−1u(x) + |u(x)|p−1u(x), x ∈ Ω,

u|∂Ω = 0,
(3.17)

where u ∈ H = H1
0 (Ω), Ω ⊂ RN is open bounded, 0 < q < 1 < p < 2∗, 2∗ = N+2

N−2

if N ≥ 3, 2∗ = ∞ if N = 1, 2. a(x) is a nonnegative function in Ω. Its corresponding

energy function is

J(u) =

∫
Ω

[
1

2
|∇u(x)|2 − a(x)

q + 1
|u(x)|q+1 − 1

p+ 1
|u(x)|p+1]dx. (3.18)
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This problem has a combined effect of concave and convex nonlinearities [25]. It has

various applications in mathematical physics and population dynamics [49]. The sublinear

and superlinear terms together make (3.18) be a combination of focused and defocused

system. It has a structure in the Figure 3.9. It is clear that it is a M-type problem but with

a locally W-type structure.

Figure 3.9: M-type with a locally W-type structure.

For the above problem, we can apply LMM to find critical points with positive energies

(M-type critical points), hence they are not our interest in this thesis. We are interested

in finding critical points with negative energies (W-type critical points). We select p = 4,

q = 0.05, a(x) = 1.4 and Ω = [−1, 1]× [−1, 1] when applying LMMM to (3.18) and get

the numerical solutions displayed in Table 3.7 and Figure 3.10 & 3.11.
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nth Figure MI Support Energy ‖J ′(.)‖ umax umax at Itn
1 (a) 0 NA -0.4314 0.0002 0.3898 (-0.0005, -0.0032) 6
2 (b1) 1 1 -0.1589 0.0006 0.1426 (0.5003, 0.0031) 7
3 (b2) 1 1 -0.1589 0.0009 0.1428 (-0.0035, 0.4980) 7
4 (c1) 1 1 -0.1445 0.0008 0.1481 (0.3944, 0.3906) 8
5 (c2) 1 1 -0.1445 0.0006 0.1480 (-0.3909, 0.3912) 8
6 (d) 2 [1,2] -0.0930 0.0008 0.0902 (-0.5012, 0.4955) 9
7 (e1) 3 [1,2,6] -0.0756 0.0008 0.0660 (-0.0057, -0.0003) 11
8 (e2) 3 [1,2,6] -0.0756 0.0008 0.0659 (-0.6659, 0.0042) 11
9 (f) 3 [1,4,5] -0.0671 0.0017 0.0716 (0.0024, 0.6072) 10

10 (g) 3 [1,4,5] -0.0732 0.0013 0.1026 (-0.0005, -0.0032) 11

Table 3.7: Numerical values of W-type solutions of (3.17).

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(a) (b1)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

−1 −0.5 0 0.5 1

−1

0

1
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(b2) (c1)

Figure 3.10: W-type solutions of (3.17). (a)− (c1)
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Figure 3.11: W-type solutions of (3.17). (c2)− (f)
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3.4 Convergence Analysis for LMMM

In order to establish a convergence result for LMMM, we need PS condition as well as

an uniform stepsize rule. PS condition is define as in (1.2) in Chapter 1, and the uniform

stepsize rule is presented below.

Lemma 3.4. (Uniform Stepsize Rule) Let p be locally defined as in (3.8) at v0 ∈ SL⊥ with

d0 = −J ′(p(v0)) 6= 0. Assume (1) p is locally directional Lipschitz continuous at v0, (2) p

is continuous near v0, (3) p(v0) = t0v0 + vL0 /∈ L. Then there are δ > 0, s0 > 0, s.t. when

‖v − v0‖ < δ, 0 < s < s0, we have

J(p(v(s)))− J(p(v)) < − 1

4C
t0s‖J ′(p(v))‖2,

where v(s) = v+sw
‖v+sw‖ ∈ SL⊥ , w = −J ′(p(v))

C
, C = max{1, ‖J ′(p(v))‖}.

Now we present a convergence result for LMMM.

Theorem 3.4. (Convergence) Let p(v) be defined as in (3.8), {vk} and {ukn+1} be se-

quences generated by LMMM. Assume J satisfies PS condition. If (a) p is locally direc-

tional continuous and continuous, (b) dist(L, ukn+1) > α > 0 for ∀k = 0, 1, 2, · · · , (c)

infv∈S
L⊥
J(p(v)) > −∞. Then

(a) there is {vki} ⊂ {vk} s.t. vki → v∗, u∗ = p(v∗), J ′(u∗) = 0,

(b) if u∗ is isolated then vk → v∗.

The proofs for Lemma 3.4 and Theorem 3.4 are similar with the proofs in [57].

3.5 Algorithm Analysis in Applications

In this section, we analyze the algorithm LMMM when it is applied to the model

problem (3.1), which we restate here
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 −∆u(x)− λu(x) + f(x, u(x)) = 0, x ∈ Ω,

u|∂Ω = 0.
(3.19)

Its variational functional is

J(u) =

∫
Ω

[
1

2
(|∇u(x)|2 − λu2(x)) + F (x, u(x))]dx, (3.20)

where Ω is bounded in RN , u ∈ H1
0 (Ω) with norm ‖u‖ = (

∫
Ω

[|∇u|2 + u2]dx)
1
2 and

∂
∂t
F (x, t) = f(x, t). Solutions of (3.19) correspond to critical points of J in (3.20).

In this section, we always suppose f(x, ξ) satisfies the following hypothesis.

(f1) f(x, ξ) is locally Lipschitz on Ω̄× R.

(f2) There are positive constants a1 and a2 s.t

|f(x, ξ)| ≤ a1 + a2|ξ|s, (3.21)

where 0 ≤ s < N+2
N−2

for n > 2. If n = 2,

|f(x, ξ)| ≤ a1exp(φ(ξ)), (3.22)

where φ(ξ)ξ−2 →∞.

(f3) f(x, ξ) = o(|ξ|) as ξ → 0, and f(x, ξ)ξ > 0 when xξ 6= 0. Note that (f3) implies

that for some δ small, there exist c > 0 and m > 1, s.t. for all x ∈ Ω̄ and |ξ| < δ,

|f(x, ξ)| < c|ξ|m, (3.23)
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and there exists d > 0, s.t. for all x ∈ Ω̄ and |ξ| < δ,

|F (x, ξ)| < d|ξ|m+1. (3.24)

(f4) There are constants µ > 2 and r ≥ 0 s.t. for ξ ≥ r,

0 < µF (x, ξ) ≤ ξf(x, ξ), (3.25)

where F (x, ξ) =
∫ ξ

0
f(x, t)dt. Notice that (f4) implies that there exist positive

numbers a3 and a4 s.t. for all x ∈ Ω̄, ξ ∈ R,

F (x, ξ) ≥ a3|ξ|µ − a4, (3.26)

and there exists positive numbers a5 and a6 s.t. for all x ∈ Ω̄ and ξ ∈ R,

|f(x, ξ)| ≥ a5|ξ|µ−1 − a6. (3.27)

(f5) f(x,ξ)
|ξ| is strictly increasing w. r. t. ξ.

When we establish the convergence result for LMMM, we assume that J satisfies PS

condition. The following lemma indicates that J in (3.20) indeed satisfies PS condition.

Lemma 3.5. J in (3.20) satisfies PS condition.

In order to prove it, we need to use Proposition 3.1 [17] and Rellich Embedding The-

orem [50].

Proposition 3.1. let Ω ⊂ RN be a bounded domain and let g satisfies

(g1) g ∈ C(Ω̄× R,R),
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(g2) There are constants r, t ≥ 1 and a1 ≥ 0, a2 ≥ 0 such that

|g(x, ξ)| ≤ a1 + a2|ξ|
r
t ,

for all x ∈ Ω̄, ξ ∈ R.

Then the map ϕ(x)→ g(x, ϕ(x)) belongs to C(Lr(Ω), Lt(Ω)).

Rellich Embedding Theorem. If |Ω| <∞, the following embedding are compact

H1
0 (Ω) ↪→ Lp(Ω), 1 ≤ p < 2∗,

where 2∗ =∞ when N = 1, 2, 2∗ = 2N
N−2

when N ≥ 3.

Now we are able to prove Lemma 3.5.

Proof. We use an equivalent norm ‖u‖ =
∫

Ω
u(x)2dx here. Let {un} be a PS sequence,

i.e. J(un) is bounded and J ′(un) → 0, by (f4) we get F (x, un(x)) ≥ a|un(x)|µ − b, for

some µ > 2, a > 0, b > 0. Denote Ω1 = {x ∈ Ω | |un(x)|µ−2 ≥ 1
2a
λ}, then when

x ∈ Ω1, a|un(x)|µ − b ≥ 1
2
λun(x)2 − b. Denote G(u) = 1

2
λ
∫

Ω
u2dx −

∫
Ω
F (x, u(x))dx,

then J(u) = 1
2
‖u‖2 −G(u) and we have

G(un) =
1

2
λ

∫
Ω

u2
ndx−

∫
Ω

F (x, un(x))dx

=

∫
Ω1

(
1

2
λu2

n − F (x, un(x))dx+

∫
Ω/Ω1

(
1

2
λu2

n − F (x, un(x))dx

≤
∫

Ω1

(
1

2
λu2

n − (a|un(x)|µ − b)) + C0

≤
∫

Ω1

(
1

2
λu2

n − (
1

2
λu2

n − b)) + C0

≤ C.
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Since there exists a constant M such that J(un) < M , it follows that 1
2
‖un‖2 = J(un) +

G(un) ≤ M + C. That means {un} is bounded in H = H1
0 (Ω). Consequently there must

exist one subsequence of {un}, denoted by {un} again, such that un ⇀ u ∈ H . By the

Rellich Embedding Theorem, un → u in Lp(Ω). Meanwhile we have

〈J ′(un)− J ′(u), un − u〉 = 〈J ′(un), un − u〉 − 〈J ′(u), un − u〉

=

∫
Ω

(−∆un)(un − u)dx−
∫

Ω

(−∆u)(un − u)dx− λ
∫

Ω

un(un − u)dx+ λ

∫
Ω

u(un − u)dx

+

∫
Ω

f(x, un)(un − u)dx−
∫

Ω

f(x, u)(un − u)dx

=

∫
Ω

−∆(un − u)(un − u)dx− λ
∫

Ω

(un − u)2dx+

∫
Ω

(f(x, un)− f(x, u)(un − u))dx

= ‖un − u‖2 − λ
∫

Ω

(un − u)2dx+

∫
Ω

(f(x, un)− f(x, u)(un − u))dx.

Isolate ‖un − u‖2 to the left side to get

‖un−u‖2 = 〈J ′(un)−J ′(u), un−u〉+λ
∫

Ω

(un−u)2dx+

∫
Ω

(f(x, un)−f(x, u)(un−u))dx.

Now we discuss each term from the right side of the above equation separately.

(i) Since un ⇀ u,〈J ′(u), un − u〉 → 0. Besides, |〈J ′(un), un − u〉| ≤ ‖J ′(un)‖L2‖un −

u‖ → 0. So 〈J ′(un)− J ′(u), un − u〉 → 0 as n→∞.

(ii)
∫

Ω
(un − u)2dx→ 0 by Rellich Embedding Theorem.

(iii) We have s + 1 < 2N
N−2

by (f2) and un → u in Ls+1(Ω) by Rellich Embedding

Theorem. Let r = s+ 1, t = s+1
s

in Proposition 3.1, then f(x, un)→ f(x, u) in Lt.

On the other hand, by the Hölder inequality,

|
∫

Ω

(f(x, un)− f(x, u)(un − u))dx| ≤ ‖f(x, un)− f(x, u)‖Lt‖un − u‖Ls+1 → 0.
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In view of (i), (ii),(iii), we get ‖un − u‖ → 0, which means that any PS sequence has one

convergent subsequence, so J in (3.20) satisfies PS condition.

In the previous sections, we denoted the eigenvalues of (1.7) by λ1 ≤ λ2 ≤ · · · ≤

λk ≤ · · · and the corresponding eigenfuncitons by {ϕi}. In this section, we use the same

notations but assume {ϕi} are orthonormal and we always take λ in (3.19 ) such that

λk < λ < λk+1. Now we can prove the following lemma.

Lemma 3.6. For each w ∈ X ⊂ [ϕ1, ϕ2, · · · , ϕk] with ‖w‖ = 1, there exists tw > 0 such

that tw = arg mint>0 J(tw). Furthermore, if we denote γv0 = {tww|w ∈ X, ‖w‖ = 1},

then there exists δ > 0, such that γv0 ∩B(0, δ) = ∅.

Proof. For ∀ w ∈ X with ‖w‖ = 1, w can be written as w =
∑k

i=1 aiϕi, where
∑k

i=1 a
2
i =

1, then it follows that

∫
Ω

(|∇w|2 − λw2)dx

=

∫
Ω

(−∆w − λw)wdx

=

∫
Ω

[(−
k∑
i=1

ai∆ϕi +
k∑
i=1

aiϕi)− (λ+ 1)
k∑
i=1

aiϕi](
k∑
i=1

aiϕi)dx

=
k∑
i=1

a2
i − (λ+ 1)

∫
Ω

(
k∑
i=1

aiϕi)(
k∑
i=1

aiϕi)

=
k∑
i=1

a2
i − (λ+ 1)

∫
Ω

[
k∑
i=1

ai(
λi

λi + 1
ϕi +

1

λi + 1
ϕi)](

k∑
i=1

aiϕi)

=
k∑
i=1

a2
i − (λ+ 1)

∫
Ω

[
k∑
i=1

ai(
−∆ϕi
λi + 1

+
1

λi + 1
ϕi)](

k∑
i=1

aiϕi)

=
k∑
i=1

a2
i − (λ+ 1)

k∑
i=1

a2
i

λi + 1

=
k∑
i=1

(1− λ+ 1

λi + 1
)a2
i < 0.

63



It is very clear that for ∀ w ∈ X with ‖w‖ = 1, t > 0, we have

J(tw) =

∫
Ω

[
t2

2
(|∇w(x)|2 − λw2(x)) + F (x, tw(x))]dx.

On one hand, F (x, tw) ≥ a3|tw|µ − a4 by (3.26), then for any fixed w, J(tw) → +∞

as t → ∞. On the other hand, |F (x, tw)| < d|tw|m+1 by (3.24), then J(tw) < 0 for

sufficiently small t > 0. As a result, there must exist at least one local minimum tw > 0

such that tw = arg mint>0 J(tw).

If J obtains its local minimum at tw for any w ∈ X , we have dJ(tw)
dt
|t=tw = 0, i.e.

dJ(tw)

dt
= t

∫
Ω

(|∇w|2 − λw2)dx+

∫
Ω

f(x, tw)wdx

= t[

∫
Ω

(|∇w|2 − λw2)dx+

∫
Ω

f(x, tw)

t
wdx]

= 0.

Since tw > 0, we get
∫

Ω
(|∇w|2−λw2)dx+

∫
Ω
f(x,tww)

tw
wdx = 0. If γv0 ∩B(0, δ) = ∅ does

not hold for any δ > 0, then there exist {twnwn} ⊂ γv0 such that twnwn → 0, so twn → 0

as n→∞. For each wn, we have twn > 0, it it clear that

∫
Ω

(|∇wn|2 − λw2
n)dx+

∫
Ω

f(x, twnwn)

twn
wndx = 0. (3.28)

By (3.23), when n is large enough, |f(x, twnwn)| < c|twn|m|wn(x)|m for all x ∈ Ω̄. Then

f(x, twnwn)

twn
wn =

|f(x, twnwn)|
twn

|wn| ≤ c|twn|m−1|wn(x)|m+1. (3.29)
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Since m+ 1 > 2,

∫
Ω

|wn(x)|m+1dx ≤ C

∫
Ω

|wn(x)|2dx ≤ C. (3.30)

In view of (3.29), (3.30), we can get

∫
Ω

f(x, twnwn)

twn
wndx ≤ C1|twn|m−1 → 0, n→∞.

Since (3.28) holds, then

∫
Ω

(|∇wn|2 − λw2
n)dx→ 0, n→∞. (3.31)

However, if we denote wn =
∑k

i=1 a
(n)
i ϕi, where

∑k
i=1(a

(n)
i )2 = 1, we can compute

∫
Ω

(|∇wn|2 − λw2
n)dx =

k∑
i=1

(1− λ+ 1

λi + 1
)(a

(n)
i )2.

In view of (3.31), since 1− λ+1
λi+1

< 0 for all i = 1, · · · , k, we get

(a
(n)
i )2 → 0, n→∞,

which is in contradiction with
∑k

i=1(a
(n)
i )2 = 1. So there must exist δ > 0, such that

γv0 ∩B(0, δ) = ∅.

Lemma 3.6 is helpful in several ways. First, at the beginning of this chapter, we pointed

out that the model problem (3.1) has a W-type structure since it is W-shape in a finite

dimensional subspace V = [v1, · · · , vk], but we don’t know which space V is. This lemma

indicates that such a subspace exists and we can find it, namely, it is the eigenfunction

space E = [ϕ1, ϕ2, · · · , ϕk] of (1.7). The dimension of E depends on the value of λ in
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(3.20). Second, when we compute numerical solutions for W-type problems in infinitely

dimensional space, we need to keep the search for critical points (SCP) inside the W-shape

and away from "0". This lemma indicates that we can keep SCP inside the W-shape and

away from "0" if we search critical points inside E. Unfortunately, our problems are not

so easy. J is W-shape in E does not mean that multiple saddle points are in E. For some

w ∈ H \ E , J(tw) can also obtain its local minimum and it is W-shape in the direction

w. The innermost minimization of LMMM searches all local minima for all directions

u ∈ [L, v], and those u’s are often not in E. However, Lemma 3.6 provides us hints to

select appropriate initial guesses which should be from E, and our numerical examples

showed an efficiency of such selections.

Lemma 3.7. For a fixed u ∈ H with ‖u‖ = 1, regard the function J(tu) in (3.20) as

a function of t ≥ 0, then J(tu) satisfies either (i) J(tu) is increasing on [0,∞) with

J(tu) = 0 if and only if t = 0, or (ii) J(tu) has an unique local minimum at tu > 0 such

that J(tuu) < 0, where tu = arg mint>0 J(tu).

Proof. Given u ∈ SH , J(tu) =
∫

Ω
[ t

2

2
(|∇u(x)|2 − λu2(x)) + F (x, tu(x))]dx,

dJ(tu)

dt
= t

∫
Ω

(|∇u|2 − λu2)dx+

∫
Ω

f(x, tu)udx. (3.32)

We can separate our discussion into two cases.

(i) Case 1,
∫

Ω
(|∇u|2 − λu2)dx ≥ 0. In this case,

∫
Ω
f(x, tu)udx ≥ 0 by (f3), hence

dJ(tu)
dt
≥ 0 for all t > 0, i.e. J(tu) is increasing on [0,∞).

Suppose there is another t1 > 0 such that J(t1u) = 0. By the increasing property of

J(tu), we have J(tu) = 0 for all t ∈ (0, t1) and dJ(tu)
dt

= 0 as well. Look at (3.32), we

must have
∫

Ω
(|∇u|2−λu2)dx = 0 and

∫
Ω
f(x, tu)udx = 0. By (f3), f(x, tu)u = 0 almost

everywhere in Ω, then u(x) = 0 almost everywhere and hence
∫

Ω
|∇u|2dx = 0. But it is
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impossible since ‖u‖ = 1. As a result, J(tu) = 0 if and only if t = 0.

(ii) Case 2,
∫

Ω
(|∇u|2 − λu2)dx < 0. In this case, it is clear that J(tu) < 0 for

sufficiently small t and J(tu) → ∞ when t → ∞. Then J(tu) has at lease one local

minimum, denoted by tu > 0, then dJ(tu)
dt
|t=tu = 0, i.e

tu

∫
Ω

(|∇u|2 − λu2)dx+

∫
Ω

f(x, tuu)udx = 0.

Divide both sides of the above equation by tu, we get

∫
Ω

(|∇u|2 − λu2)dx = −
∫

Ω

f(x, tuu)

tu
udx. (3.33)

Let Ω0 = {x ∈ Ω|u(x) = 0}, Ω− = {x ∈ Ω|u(x) < 0} and Ω+ = {x ∈ Ω|u(x) > 0}, we

can write

∫
Ω

f(x, tuu)

tu
udx =

∫
Ω0

f(x, tuu)

tu
udx+

∫
Ω−

f(x, tuu)

tuu
u2dx+

∫
Ω+

f(x, tuu)

tuu
u2dx.

Suppose there is another t′u s.t dJ(tu)
dt
|t=t′u = 0, then (3.33) holds as well. W.L.O.G., assume

t′u > tu. By (f3), f(x, 0) = 0, then
∫

Ω0

f(x,tuu)
tu

udx = 0. By (f5),

f(x, tuu)

tuu
<
f(x, t′uu)

t′uu
,∀x ∈ Ω+.

When x ∈ Ω−, t′uu < tuu. By (f5) again, we get

f(x, t′uu)

t′uu
= −f(x, t′uu)

|t′uu|
> −f(x, tuu)

|tuu|
=
f(x, tuu)

tuu
.

As a result,
∫

Ω
f(x,tuu)

tu
udx <

∫
Ω
f(x,t′uu)

t′u
udx. However, the left side of (3.33) is fixed,

which leads to a contradiction, so tu is unique.
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Let’s recall LMMM as minv∈S
L⊥

maxu∈[L,v],‖u‖≈1 mint>0 J(tu), and we used (1) ‖v‖ ≈

1 in the notation SL⊥ rather than ‖v‖ = 1, (2) ‖u‖ ≈ 1 rather than ‖u‖ = 1 in the middle-

level optimization when developing the computational theory under the weakened condi-

tions. So the middle level of LMMM is a local maximization over {u ∈ [L, v] | ‖u‖ ≈ 1}

and the outermost level is a local minimization over {v ∈ L⊥ | ‖v‖ ≈ 1}. In fact, for any

fixed v ∈ H ,

max
u∈[L,v],‖u‖≈1

min
t>0

J(tu) = max
u∈[L,v],‖u‖=1

min
t>0

J(tu),

since arg mint>0 J(tu) is the same no matter whether ‖u‖ ≈ 1 or ‖u‖ = 1. Then we have

min
v∈L⊥,‖v‖≈1

max
u∈[L,v],‖u‖≈1

min
t>0

J(tu) = min
v∈L⊥,‖v‖≈1

max
u∈[L,v],‖u‖=1

min
t>0

J(tu).

Meanwhile [L, v] = [L, cv] for any constant c, so it follows that

min
v∈L⊥,‖v‖≈1

max
u∈[L,v],‖u‖=1

min
t>0

J(tu) = min
v∈L⊥,‖v‖=1

max
u∈[L,v],‖u‖=1

min
t>0

J(tu).

To sum up, LMMM is equivalent to

min
v∈L⊥,‖v‖=1

max
u∈[L,v],‖u‖=1

min
t>0

J(tu).

From this point to the end of this chapter, we treat LMMM as

min
v∈S

L⊥
max

u∈[L,v],‖u‖=1
min
t>0

J(tu),

and SW is defined as the unit sphere SW = {w ∈ W | ‖w‖ = 1} for any subspace

W ⊂ H .

For a fixed u ∈ S[L,v], consider the performance of J(tu) in t on the interval [0,∞).

by Lemma 3.7, we have either (i)
∫

Ω
(|∇u|2 − λu2)dx ≥ 0, J(tu) ≥ 0 for all t > 0 and the
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equality holds if and only if t = 0, J is ∪− shape in this case, or (ii)
∫

Ω
(|∇u|2−λu2)dx <

0, J(tu) can achieve the unique minimum at tu > 0 and J(tuu) < 0, J is W-shape in this

case. We are interested at those u’s such that
∫

Ω
(|∇u|2 − λu2)dx < 0 since our objective

is to search for multiple solutions of J in W-shape, not in ∪− shape. Now we can define

Definition 3.3. Lv = {u | u ∈ S[L,v],
∫

Ω
(|∇u|2 − λu2)dx < 0}.

Definition 3.4. γv = {tuu | u ∈ Lv, tu = arg mint>0 J(tu)}.

The following corollary follows immediately by Lemma 3.7.

Corollary 3.1. For a given w ∈ [L, v], if J(w) ≤ 0 and w 6= 0, then w
‖w‖ ∈ Lv.

Remark 3.2. Suppose Lv 6= ∅. For any u ∈ Lv, by Definition 3.3,
∫

Ω
(|∇u|2−λu2)dx < 0.

Let G(u) =
∫

Ω
(|∇u|2 − λu2)dx, since J(u) ∈ C1, then G(u) ∈ C1 hence it is continuous.

So there exists r0 > 0, such that
∫

Ω
(|∇u′|2 − λu′2)dx < 0 when u′ ∈ B(u, r0) ∩ S[L,v].

Therefore u′ ∈ Lu. That is to say, if Lv 6= ∅, Lv is either open in S[L,v] or Lu = S[L,v].

Let T be defined as in (3.9), i.e. T (u) = tuu with tu = arg mint>0 J(tu), and let T |Lv

be the same map T but restricted on Lv. If Lv = ∅, J is ∪-shape in [L, v]. If Lv 6= ∅, the

range of T |Lv is γv defined in Definition 3.4, and it is obvious that 0 /∈ γv.

Lemma 3.8. The map T |Lv : Lv → γv is one-to-one and continuous.

Proof. It is obvious that T |Lv is one-to-one. J ∈ C2 under the hypothesis. Denote

R(t, u) = 〈J ′(tu), u〉, by the implicit function theorem, when

R′t = 〈J ′′(tuu), u〉 6= 0,

t′(u) = T ′(u) is locally continuous at u hence T |Lv is continuous.
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Due to Lemma 3.8 and the three possibilities of Lv as in Remark 3.2, γv has three

possibilities as well. (i) γv is empty, corresponding to the ∪-shape of J in [L, v]. (ii) γv is

compact. In this case, it is defined for all u ∈ S[L,v], corresponding to the W-shape of J in

[L, v]. (iii) γv is not compact, and we will show γv approaches 0 later for this case.

Lemma 3.9. Assume Lv 6= 0, then Lv = S[L,v] if and only if B(0, δ) ∩ γv = ∅ for some

δ > 0.

Proof. (i) Suppose Lv = S[L,v], if B(0, δ) ∩ γv = ∅ does not hold for any δ > 0, then

there exist {tunun} ⊂ γv such that tunun → 0 as n → 0. Since Lu is compact, T |Lv is

continuous and one-to-one, γv must be compact as well. That means 0 ∈ γv, which is

impossible since 0 6∈ γv. So there exists δ > 0 such that B(0, δ) ∩ γv = {∅}.

(ii) Suppose B(0, δ)∩ γv = ∅ for some δ > 0. J ∈ C2 under the hypothesis, then there

exist d > 0 such that J(tuu) < −d for all tuu ∈ γv. If Lv = S[L,v] does not hold, then γv

is not compact by the analysis stated previously.

Let w 6∈ γv be any point satisfying tunun → w with tunun ∈ γv, then J(tunun) →

J(w). Since J(tunun) ≤ −d, then J(w) ≤ −d. By Corollary 3.1, w
‖w‖ ∈ Lv. Denote

w0 = w
‖w‖ , if we can prove that w = tw0w0, where tw0 = arg mint>0 J(tw0), then we can

get w ∈ γv, so it is a contradiction.

Now we prove w = tw0w0. Consider the Map H:v → v
‖v‖ → tvv, by Lemma 3.8, H is

continuous at w.

If tw0w0 6= w, denote ε = ‖w− tw0w0‖ > 0. Since tunun → w, then ∃N , when n > N

‖tunun − w‖ <
ε

3
. (3.34)
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For such n > N , notice that H(tunun) = tunun and H(w) = tw0w0 and we have

‖H(tunun)−H(w)‖ = ‖tunun − tw0w0‖ (3.35)

= ‖w − tw0w0 + tunun − w‖ (3.36)

≥ ‖w − tw0w0‖ − ‖tunun − w‖ (3.37)

>
2

3
ε. (3.38)

Since H is continuous, there exists δ > 0, for all w′ satisfying ‖w′−w‖ < δ, ‖H(w′)−

H(w)‖ < 1
3
ε. For such a δ, since tunun → w, then ∃ N0 big enough, such that when

n > N0, ‖tunun − w‖ < δ, and it holds that

‖tunun − tw0w0‖ <
1

3
ε. (3.39)

TakeN1 = max{N,N0}, both (3.38 ) and (3.39) hold, which is impossible. So tw0w0 = w.

Lemma 3.9 indicates that if γv 6= ∅ and is not defined for all u ∈ S[L,v], then for any

δ > 0, B(0, δ) ∩ γv 6= ∅, hence γv approaches 0. So far, we have very clear structure

for γv. When applying LMMM to W-type problems, we need to avoid γv = ∅ since J is

∪-shape. We also need to avoid case (iii) since we will find a trivial solution "0". We hope

we can keep SCP strictly inside W-shape and away from "0". Then a question arises, can

we find v such that Lv = S[L,v]?

Due to the multiplicities and instabilities of the saddles points, it is very hard for us

to discuss those saddles with high instability index. We research on saddle points with

MI = 1 by LMMM.

In our algorithm, L is usually spanned by the previously found critical points. This
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is very important since the separation condition d(L, p(v)) > α guarantees we can find

a new one. Note that when L = 0, LMMM finds a stable nontrivial critical point with

J < 0. How to find this critical point has been done before by many other methods, so is

not a main concern in our study. In the following paragraphs, we denote it by u0. λi, ϕi

are the same as the previous ones in this section.

Lemma 3.10. LetL = [u0], k ∈ N, k > 2, then we can find v ∈ SL⊥ such thatLv = [L, v].

Proof. Select v̄ =
∑k

i=1 aiϕi, consider the following linear system

 〈u0,
∑k

i=1 aiϕi〉 = 0,∫
Ω

(−∆u0 − λu0)(
∑k

i=1 aiϕi)dx = 0.
(3.40)

It is equivalent to

 〈u0, ϕ1〉a1 + · · ·+ 〈u0, ϕk〉ak = 0,∫
Ω

(−∆u0 − λu0)ϕ1)dxa1 + · · ·+
∫

Ω
(−∆u0 − λu0)ϕk)dxak = 0.

Since k > 2, the above linear system is homogeneously undetermined, then there must be

infinitely many nontrivial solutions.

Denote the solution space by Γ, and V0 = {
∑k

i=1 aiϕi|
∑k

i=1 a
2
i = 1, (a1, · · · , ak) ∈

Γ}. Now we prove that for any v ∈ V0, Lv = S[L,v].

If v ∈ V0, then ‖v‖ = 1 and v ∈ SL⊥ by the first equation of (3.40).

Since u0 is a global minimum of J with J(u0) < 0, we get u0
‖u0‖ ∈ Lv by Corollary 3.1

and
∫

Ω
(−∆u0−λu0)u0dx < 0 by Definition 3.3. We also have

∫
Ω

(−∆v−λv)vdx < 0 by

Lemma 3.6. Then ∀w ∈ S[L,v], w = au0 + bv, and by the second equation of the system,
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we get

∫
Ω

(−∆w − λw)wdx

=

∫
Ω

[(−∆au0 − λau0) + (−∆bv − λbv)](au0 + bv)dx

= a2

∫
Ω

[(−∆u0 − λu0)u0dx+ b2

∫
Ω

[(−∆v − λv)vdx < 0.

then we get w ∈ Lv, so Lv = S[L,v].

Remark 3.3. We know that when k = 1, J has only one nontrivial solution, which is

a global minimum and stable, so we will always assume k ≥ 2. Notice that if Ω is a

rectangle in R2, λ2 has multiplicity 2, so the above lemma holds as well.

Now we can establish the following theorem.

Theorem 3.5. Assume L = [u0], V0 is noted as in the proof of Lemma 3.10. For ∀v ∈ V0,

let Lv, γv be defined as in Definition 3.3, 3.4. then

A = max
u∈[L,v],‖u‖=1

min
t>0

J(tu)

can be achieved and A < 0.

Proof. Lemma 3.10 shows that Lv = S[L,v] for ∀v ∈ V0. By Lemma 3.9, there ex-

ist δ > 0 such that B(0, δ) ∩ γv = ∅. Since J ∈ C2, then J(γv) < −d for some

constant d > 0. It also holds that γv is compact since Lv is compact and T |Lv is a

continuous, one-to-one map. Then J must achieve the maximum in γv. Namely, A =

maxu∈[L,v],‖u‖=1 mint>0 J(tu) can be achieved and A < 0.

By the above theorem, we can intentionally select an initial v ∈ V0 ⊂ SL⊥ s.t.

J(p(v)) < −d for some constant d > 0. Simultaneously, the stepsize rule indicates
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the algorithm is decreasing, which means that SCP can be kept strictly inside W-shape and

away from "0", and the algorithm has to stop at somewhere since J is bounded below.

3.6 Instability Analysis of Saddles by LMMM

When multiple solutions exist in a nonlinear system, some of them are stable and

others are unstable. For those unstable solutions, their instability behaviors can be very

different. Stability/instability is one of main concern in system design and control theory.

The performance or maneuverability of saddles for W-type problems is desirable in many

applications .

Assume J ′′(u∗):H → H is a self-adjoint Fredholm operator with an orthogonal spec-

tral decomposition: H = H−⊕H0⊕H+. By the Morse theory [22], we have Morse index

MI(u∗) = dim(H−). If u∗ is a non-degenerate critical point, i.e, H0 = {0}, MI(u∗) = 0

implies that J is increasing in any direction at u∗, hence u∗ is a local minimum and a stable

solution of J . If MI(u∗) > 0, then in any neighborhood N (u∗) of u∗, ∃v, w ∈ N (u∗),

such that J(v) < J(u∗) < J(w)), so it is unstable and a saddle point.

For a non-degenerate critical point u∗, the value MI(u∗) can be used to measure its

local instability [13]. That is to say, MI(u∗) can be used as a local instability index. How-

ever, in order to get the local instability index, one usually need to go through two steps,

first to numerically compute the unstable solution u∗ and then to numerically solve for the

number of negative eigenvalues (counting multiplicity) of the linear operator J ′′(u∗). Such

a process to get MI(u∗) is always very expensive, which makes it not to be applicable.

Recently, for M-type problems, based on a local minimax characterization of sad-

dle points, several estimates of the Morse index were established in [40, 47] and a lo-

cal minimax index (MMI) which is closely related to the Morse index was proposed

therein to measure the local instability of saddle points not necessarily non-degenerate.

Later on, analogous instability analysis of unstable solutions based on LMO has been
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carried out. Unlike those early results, these new estimates can provide some guidance

in finding saddle points numerically with a prescribed Morse index [55]. However, to

the best of our knowledge, instable performance of saddles for DWF is not analyzed yet.

In this section, We mathematically analyze the Morse index of saddles for DWF to get

dim(L) ≤ MI(u∗) + dim(H0 ∩ [L, v∗]) ≤ dim(L) + 1. Narrowing the estimates is an

interesting topic for the future researchers.

Local instability index: For a critical point u∗ ∈ H of J in H , a vector v ∈ H is said

to be a decreasing (increasing) direction of J at u∗ if there exists t0 > 0, such that

J(u∗ + tv) < (>)J(u∗),∀t0 > t > 0.

In general, the set of all decreasing (or increasing) vectors of J at a critical point does

not form a linear vector space. The maximum dimension of a subspace of decreasing

directions of J at a critical point u∗ is called the local instability index.

For a functional with mountain pass structure, LMM works very well and the following

estimate of Morse index has been established.

Theorem 3.6. (Instability Analysis of Saddles by LMM [47]) Let v∗ ∈ SL⊥ . If J has a lo-

cal peak selection p at v∗ w.r.t. L such that p is continuous at v∗, v∗ = arg minv∈S
L⊥
J(p(v)),

and u∗ = p(v∗) /∈ L. Furthermore, assume p is differentialble at v∗, then u∗ is a critical

point with

dim(L) + 1 = MI(u∗) + dim(H0 ∩ [L, v∗]), (3.41)

where H0 is the null space of the linear operator J ′′(u∗) in H .

The following Lemma 3.11, Lemma 3.12, and Lemma 3.13 have very important roles

in our study of instabilities for DWF.
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Lemma 3.11. [55] Let v∗ ∈ SL⊥ , assume that there exists a neighborhood N (v∗) of

v∗ and a locally defined mapping p : N (v∗) ∩ SL⊥ → H , s.t. p(v) ∈ [L, v] for every

v ∈ N (v∗) ∩ SL⊥ , and in particular, p(v∗) = t0v
∗ + v∗L for some v∗L ∈ L. If p is

differentiable at v∗ and t0 6= 0, then

p′(v∗)([L, v∗]⊥)⊕ [L, v∗] = H. (3.42)

Lemma 3.12. Let v∗ = arg minv∈S
L⊥
J(p(v)), where p is a local L-⊥ selection of J and

differentiable at v∗. If u∗ = p(v∗) /∈ L, then u∗ is a critical point of J with

p′(v∗)([L, v∗]⊥) ∩ (H− ⊕ (H0 ∩ [L, v∗])) = 0. (3.43)

Proof. u∗ is a critical point follows immediately from Theorem 3.1. If (3.43) does not

hold, there exists w ∈ [L, v∗]⊥, such that 0 6= p′(v∗)(w) ∈ H− ⊕ (H0 ∩ [L, v∗]). Let

p′(v∗)(w) = h− + h0, where h− ∈ H− and h0 ∈ H0 ∩ [L, v∗]. By Lemma 3.11,

p′(v∗)([L, v∗]⊥)⊕ [L, v∗] = H , so p′(v∗)([L, v∗]⊥)
⋂

[L, v∗] = {0}. As a result, h− 6= 0.

The second Taylor expansion for J near u∗ = p(v∗) is

J(u) = J(u∗) +
1

2
〈J ′′(u∗)(u− u∗), u− u∗〉+ o(‖u− u∗‖2). (3.44)

Denote v∗(t) = v∗+tw
‖v∗+tw‖ , it is obvious that v∗(t) ∈ N(v∗) ∩ SL⊥ for |t| small, and

dv∗(t)
ds
|t=0 = w. We also have v∗(t) → v∗, and p(v∗(t)) → p(v∗) as t → 0. By the

first Taylor expansion for p as a function of t near t = 0, it then follows that

u(t) ≡ p(v∗(t)) = p(v∗) + tp′(v∗)(w) + o(|t|). (3.45)
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Since p′(v∗)(w) ∈ H− ⊕ (H0 ∩ [L, v∗]) with h− 6= 0, we have

〈J ′′(u∗)(p′(v∗)(w)), p′(v∗)(w)〉 < 0.

In view of (3.44) and (3.45), for |t| sufficiently small, we get

J(p(v∗(t))) = J(u∗) +
1

2
〈J ′′(u∗)(tp′(v∗)(w) + o(|t|)), tp′(v∗)(w)

+ o(|t|)〉+ o(‖tp′(v∗)(w) + o(|t|)‖2)

= J(u∗) +
t2

2
〈J ′′(u∗)(p′(v∗)(w)), p′(v∗)(w)〉+ o(|t|2)

< J(u∗),

which contradicts that v∗ is a local minimum of J(p(v)) for v ∈ SL⊥ , thus (3.43) holds.

Lemma 3.13. [55] Let L = [u1, u2, · · · , un], where {ui} ⊂ H are linearly independent.

Assume p is a local L-⊥ selection of J at v∗ ∈ SL⊥ , s.t. (a) p is continuous at v∗, (b)

u∗ = p(v∗) /∈ L, (c) v∗ = arg minv∈S
L⊥
J(p(v)). Let

Q =



〈J ′′(u∗)v∗, v∗〉 〈J ′′(u∗)u1, v
∗〉 · · · 〈J ′′(u∗)un, v∗〉

〈J ′′(u∗)v∗, u1〉 〈J ′′(u∗)u1, u1〉 · · · 〈J ′′(u∗)un, u1〉

· · · · · · · · · · · ·

〈J ′′(u∗)v∗, un〉 〈J ′′(u∗)u1, un〉 · · · 〈J ′′(u∗)un, un〉


,

(Note,Q ∈ R(n+1)×(n+1) is a symmetric matrix. We denote byQ+,Q−, ker(Q) the positive

definite, negative definite and null subspaces of Q in Rn+1. Obviously, Rn+1 = Q−⊕Q+⊕
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ker(Q). ) and define

G+ = {t0v∗ + t1u1 + · · ·+ tnun | (t0, t1, · · · , tn)T ∈ Q+} ⊆ [L, v∗],

G− = {t0v∗ + t1u1 + · · ·+ tnun | (t0, t1, · · · , tn)T ∈ Q−} ⊆ [L, v∗],

G0 = {t0v∗ + t1u1 + · · ·+ tnun | (t0, t1, · · · , tn)T ∈ ker(Q)} ⊆ [L, v∗].

Then the following statements hold,

(i) u∗ is a critical point of J ,

(ii) [L, v∗] = G− ⊕G0 ⊕G+,

(iii) dim(H0 ∩ [L, v∗]) ≤ dim(G0) = dim(ker(Q)),

(iv) dim(L) + 1− dim(Q+) ≤MI(u∗) + dim(H0 ∩ [L, v∗]),

(v) dim(L) + 1− dim(Q+) ≤MI(u∗) + dim(ker(Q)).

So far, we can establish a bound estimate of Morse index by LMO.

Theorem 3.7. (Instability Analysis of Saddles by LMO) Let L = [u1, u2, · · · , un], where

{ui} ⊂ H are linearly independent. Let v∗ = arg minv∈S
L⊥
J(p(v)), where p is a local

L-⊥ selection of J at v∗ ∈ SL⊥ , and differentiable at v∗. Assume u∗ = p(v∗) /∈ L and

define Q, G+, G0, G− as in Lemma 3.13, then u∗ is a critical point of J and the following

bound estimates hold

dim(L) + 1− dim(Q+) ≤MI(u∗) + dim(H0 ∩ [L, v∗]) ≤ dim(L) + 1.(3.46)

Proof. According to Lemma 3.13, it is known that u∗ is a critical point of J with

dim(L) + 1− dim(Q+) ≤MI(u∗) + dim(H0 ∩ [L, v∗]),
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so we just need to prove

MI(u∗) + dim(H0 ∩ [L, v∗]) ≤ dim(L) + 1. (3.47)

By Lemma 3.11, we have the decomposition

H = p′(v∗)([L, v∗]⊥)⊕ [L, v∗],

then we can write H as

H = H− ⊕ (H0 ∩ [L, v∗])⊕ (H0 ∩ [L, v∗]⊥H0)⊕H+.

Suppose (3.47) does not hold, namely, MI(u∗) + dim(H0 ∩ [L, v∗]) > dim(L) + 1, then

(H− ⊕ (H0 ∩ [L, v∗])) ∩ p′(v∗)([L, v∗]⊥) 6= {0},

which contradicts to (3.43). That means the inequality (3.47) holds and (3.46) holds con-

sequently.

Remark 3.4. 1, The result in Theorem 3.6 provides a way to evaluate the Morse index for

a saddle point of a M-type functional without actually computing dim(H−), which is very

expensive. Additionally, for a degenerate saddle point u∗, it implies that dim(L) + 1 is

better than Morse index to measure its instability.

2, Theorem 3.7 provides a bound estimate forMI(u∗)+dim(H0∩[L, v∗]) when saddle

points can be found by LMO. Note that when p(v) is a peak selection of J , LMO becomes

LMM and in Theorem 3.7, Q+ = {0} for LMM, then we have the same result as previously

[55].

3, For LMMM in this thesis, we proved that it fits into LMO frame-work, so we also
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have the same bound estimate in Theorem 3.7. On the other side, LMMM has a much

clearer structure than LMO, so we should have a better instability analysis for such a

saddle point found by it.

So far, we can establish the following bound estimate of the Morse index by LMMM.

Theorem 3.8. Let L = [u1, u2, · · · , un], {ui} ⊂ H and they are linearly independent.

p(v) is defined as in (3.8), i.e., p(v) = arg maxw∈[L,v],‖w‖=1 mint>0 J(tw) for v ∈ SL⊥ and

p(v) = tww for some w ∈ S[L,v], where tw = arg mint>0 J(tw). T is defined as in (3.9).

Assume that

(i) T is locally Lipschitz continuous at w,

(ii) v∗ = arg minv∈S
L⊥
J(p(v)),

(iii) u∗ = p(v∗) /∈ L,

(iv) J is non-degenerate in the direction u∗,

(v) p is differentiable at v∗.

Q, G+, G−, G0 are defined as in Lemma 3.13. Then the following statements hold

(a) u∗ = p(v∗) is a critical point of J ,

(b) dim(Q+) = 1,

(c) dim(L) ≤MI(u∗) + dim(H0 ∩ [L, v∗]) ≤ dim(L) + 1.

Proof. (a) follows directly from Lemma 3.13.

Now we prove (b).

Denote u∗ = p(v∗) = tuu for some u ∈ [L, v∗] with ‖u‖ = 1, tu = arg mint>0 J(tu), by

Lemma 3.13, [L, v∗] = G+ ⊕G0 ⊕G−, then we have the following decomposition of u

u = u+ + u0 + u−, (3.48)

where u+ ∈ G+, u0 ∈ G0 and u− ∈ G−.
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First we claim that u+ 6= 0. If u+ = 0, since J is non-degenerate in the direction u∗,

i.e.〈J ′′(u∗)u∗, u∗〉 6= 0, then 〈J ′′(u∗)u, u〉 < 0. However, J(tu) achieves its local mini-

mum at tu, so

〈J ′′(u∗)u, u〉 > 0, (3.49)

which is a contradiction. Since u+ 6= 0, u+ ∈ G+, then dim(Q+) = dim(G+) ≥ 1. If we

can prove dim(Q+) ≤ 1, statement (b) holds immediately.

Now we prove dim(Q+) ≤ 1. If it does not hold, then dim(Q+) ≥ 2. Since

dim(Q+) = dim(G+), there are at least one vector u1 ∈ G+ with ‖u1‖ = 1 such that

〈J ′′(u∗)u+, u1〉 = 0. (3.50)

Denote u(r) = u+ru1

‖u+ru1‖ ∈ [L, v∗], r > 0, then ‖u(r)‖ = 1. Let tr = arg mint>0 J(tu(r)),

we have

‖u− u(r)‖ ≤ 2r‖u1‖
‖u+ ru1‖

=
2r

‖u+ ru1‖
. (3.51)

Since T is locally Lipschitz continuous at u, there exist d0 > 0, l0 > 0 such that for all

u′ ∈ [L, v∗] with ‖u′‖ = 1, when ‖u− u′‖ < d0, it holds

‖tuu− t′u′‖ ≤ l0‖u− u′‖, (3.52)

where t′ = arg mint>0 J(tu′), and that u(r) ∈ [L, v∗], u(r) → u, t′ → tu as r → 0. In

view of (3.51) and (3.52 ), there are l1 > 0 and r0 > 0, s.t

‖tuu− tru(r)‖ ≤ l1|r|, ∀r0 > r > 0. (3.53)
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Look at the definition for u(r), we know u(r) ∈ [u, u1], then (tuu − tru(r)) ∈ [u, u1].

Denote tuu − tru(r) = su + s1u1, by (3.53), both s, s1 can be very small when r is very

small. In view of (3.48), (3.50), (3.49), (3.53), when r is sufficiently small

J(tru(r)) = J(u∗ + tru(r)− tuu)

= J(u∗) +
1

2
〈J ′′(u∗)(tru(r)− tuu), tru(r)− tuu〉+ o(‖tru(r)− tuu‖2)

= J(u∗) +
1

2
〈J ′′(u∗)(su+ s1u1), su+ s1u1〉+ o(‖su+ s1u1‖2)

= J(u∗) +
1

2
(〈J ′′(u∗)su, su〉+ 〈J ′′(u∗)s1u1, s1u1〉) + o(‖su+ s1u1‖2)

> J(u∗),

which contradicts to u∗ = p(v∗) = arg maxw∈S[L,v∗] mint>0 J(tw). So dim(Q+) ≤ 1.

To sum up, we must have dim(Q+) = 1.

(c) If p(v) is defined as in (3.8), by Lemma 3.2, p is a local L-⊥ selection of J . Then (c)

follows immediately from (b).

3.7 Conclusion

In this chapter, a local minmaxmin method (LMMM) is proposed to solve multiple

saddles for defocused W-type problems. First, with the new weakened conditions, we

verify that LMMM fits into min-⊥ frame-work and justify the stepsize rule, then LMMM

characterization follows immediately. Second, the algorithm for LMMM is carried out

with numerical results displayed successfully. Third, by the difficulties we encountered

due to our numerical experience, we analyze its feasibility when applied to the model

problem. Finally, the instability analysis is studied to get a bound estimate of Morse index

for Saddles by LMMM.
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4. SUMMARY

Search and study of multiple unstable states for new applications are of great interests

in modern science and advanced engineering. Extensive numerical methods were carried

out in literature to compute multiple unstable solutions for variational problems. However,

neither G-saddles for M-type problems nor multiple saddles for W-type problems can be

obtained by the existing methods.

In this thesis, we studied two types of nonlinear variational functionals. we established

computational theory and designed numerical methods for finding multiple unstable sad-

dle points of them. The first type consists of Gateaux differentiable M-type problems.

Such type of functionals are at most lower semi-continuous. They have blow-up singular-

ities in the whole space caused by quasilinear terms and they are just G-differentiable in a

subspace. With a new strong-weak topology approach, we established a new mathematical

frame-work for a local minimax method and presented its numerical implementation for

finding multiple G-saddles. Numerical examples are carried out to illustrate the method.

Some interesting phenomenons were observed. The second type consists of C1 W-type

problems. Finding saddles for W-type functionals in a variational order is desirable in

many applications. Motivated by local min-⊥ method, we proposed a new mathematical

numerical method called a local minmaxmin method (LMMM). By verifying that LMMM

fits into min-⊥ frame work, we established its mathematical validation such as stepsize

rule and LMMM characterization. Numerical examples are carried out to illustrate the

efficiency of this method. Due to the difficulties caused by the structures of such type

of functionals, we investigated the algorithm in depth when applied to typical W-type

problems. We aslo presented the convergence results of LMMM under much weaker con-

ditions. Lastly, we analyzed the instability performances of saddles by LMMM.
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