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ABSTRACT

Over the past several decades, technological advancements have introduced new modes of com-

munication with the computers, introducing a shift from traditional mouse and keyboard interfaces.

While touch based interactions are abundantly being used today, latest developments in computer

vision, body tracking stereo cameras, and augmented and virtual reality have now enabled commu-

nicating with the computers using spatial input in the physical 3D space. These techniques are now

being integrated into several design critical tasks like sketching, modeling, etc. through sophisti-

cated methodologies and use of specialized instrumented devices. One of the prime challenges in

design research is to make this spatial interaction with the computer as intuitive as possible for the

users.

Drawing curves in mid-air with fingers, is a fundamental task with applications to 3D sketch-

ing, geometric modeling, handwriting recognition, and authentication. Sketching in general, is a

crucial mode for effective idea communication between designers. Mid-air curve input is typically

accomplished through instrumented controllers, specific hand postures, or pre-defined hand ges-

tures, in presence of depth and motion sensing cameras. The user may use any of these modalities

to express the intention to start or stop sketching. However, apart from suffering with issues like

lack of robustness, the use of such gestures, specific postures, or the necessity of instrumented

controllers for design specific tasks further result in an additional cognitive load on the user.

To address the problems associated with different mid-air curve input modalities, the presented

research discusses the design, development, and evaluation of data driven models for intent recog-

nition in non-instrumented, gesture-free, bare-hand mid-air drawing tasks.

The research is motivated by a behavioral study that demonstrates the need for such an ap-

proach due to the lack of robustness and intuitiveness while using hand postures and instrumented

devices. The main objective is to study how users move during mid-air sketching, develop qualita-

tive insights regarding such movements, and consequently implement a computational approach to

determine when the user intends to draw in mid-air without the use of an explicit mechanism (such
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as an instrumented controller or a specified hand-posture). By recording the user’s hand trajectory,

the idea is to simply classify this point as either hover or stroke. The resulting model allows for

the classification of points on the user’s spatial trajectory.

Drawing inspiration from the way users sketch in mid-air, this research first specifies the ne-

cessity for an alternate approach for processing bare hand mid-air curves in a continuous fashion.

Further, this research presents a novel drawing intent recognition work flow for every recorded

drawing point, using three different approaches. We begin with recording mid-air drawing data

and developing a classification model based on the extracted geometric properties of the recorded

data. The main goal behind developing this model is to identify drawing intent from critical ge-

ometric and temporal features. In the second approach, we explore the variations in prediction

quality of the model by improving the dimensionality of data used as mid-air curve input. Fi-

nally, in the third approach, we seek to understand the drawing intention from mid-air curves using

sophisticated dimensionality reduction neural networks such as autoencoders. Finally, the broad

level implications of this research are discussed, with potential development areas in the design

and research of mid-air interactions.
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1. INTRODUCTION

Over the years, several advances in technology have resulted in a rising interest towards devel-

oping user centric applications. Shifting from user-driven applications where the user or designer

herself is the sole contributor in performing a certain task and the other agent (typically, a com-

puter) being a mere enabler, there has been a growing trend towards exploring mixed-initiative

interactions and applications. Quoting Marti Hearst [1]: "Mixed-Initiative refers to a flexible inter-

action strategy, where each agent can contribute to the task what it does best". In other words, the

notion of mixed-initiative refers to a meaningful communication between two agents (say, a human

and a computer), where either of the two can take an initiative towards performing an action that

helps towards achieving a common goal.

To that effect, at a minimum, a mixed-initiative interface should include the following basic

components: (a) a mode of communication between the two agents, (b) recording and deciphering

the input received from each agent, and (c) a logical, well-structured initiative from either or both

involved agents to perform certain activities. Each of these components have received sufficient

attention from the design research community, and with the current state of art, techniques now

exist that establish an effective pipeline of information flow through traditional modalities like

mouse-click interactions, and touch based input. With the immense developments in computer

vision, different vision based modalities such as skeleton tracking cameras, depth sensing devices,

and wearable controllers have paved the way for additional modes to achieve spatial interactions

with the computer.

The prime motivation looks at the bigger picture of moving towards mixed-initiative interfaces

where the designer interacts with the computer using bare hands. To decipher the spatial input

received from the designer in a as-natural-as-possible setting, it is first necessary to understand the

designer’s intention. Strictly in the context of mid-air drawing using bare hands, the primary aim

of this thesis is to explore ways in which the designer’s intention to draw can be captured through

models derived from bare hand movements in the physical space.
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1.1 The Context of Mid-Air Curve Input

The last few decades have witnessed a steady growth in different modes of communication

with the computer using hand-arm movements. This form of communication in mid-air or free

3D space, is a fundamental task of mid-air interactions with applications towards 3D sketching

[2, 3], geometric modeling [4], hand-writing [5, 6, 7], and spatial authentication [8]. Recently,

there has been significant interest in techniques for recognizing symbols within curves drawn in

the air [6, 9].

In context of 3D sketching and modeling, these techniques process the curve input to identify

what is being drawn, i.e. determining the semantic content of the curve input. Moreover, these

techniques are not always scalable to spatial inputs due to the additional uncertainty added by the

third dimension: the intended planarity of strokes is not guaranteed.

When sketching on a desktop or a tablet, the distinction between a stroke (what the user actually

intends to draw) and a hover (all other movements that are not intentional to the drawing task) is

trivially accomplished through explicit events such as mouse button down or touch down (Figure

1.1(a)). In mid-air interaction, such explicit interrupts can either be provided with some specific

hand posture (Figure 1.1(b)) or with a hand-held device with buttons (Figure 1.1(c)). Most existing

approaches embody this requirement in their hardware setup and use events (such as pen up, pen

down, hand posture, etc.) that segment the hover points from stroke points for performing further

analysis for the stroke segments of the curve.

Mid-air curve input combined with interaction devices such as Wii Remote, skeletal and hand

tracking cameras like Microsoft’s Kinect and Leap Motion, etc. enable applications such as gesture

recognition [9, 10, 11, 12], hand-writing [5, 6, 7], and sketching [2, 4, 3]. In conventional gesture

recognition tasks, the mid-air curve input is typically matched against pre-defined templates to

identify the user’s intention. Activity recognition tasks use specifically designed wearables that

monitor the user’s movements and vital stats, and use sophisticated template matching and time-

series data processing algorithms to identify what activity is being done. Despite significant ad-

vances, these vision based techniques however face challenges related to tracking robustness, hand
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Figure 1.1: Different mid-air curve input modalities.

pose estimation, and ubiquity of these special devices.

There are three observations in relation to the previous works that motivate the problem and

approach. First, as Taranta et al. [9] note, the particular effectiveness of such recognizers for seg-

mentation and recognition of curve inputs on touch surfaces have not been particularly successful

in higher dimensional spaces. Second, in order to expand the scope of intelligent user interfaces

beyond symbol recognition to free-form design interfaces, there is a need for methods that do not

rely on comparing user input with canonical shapes in a repository. Most techniques are devel-

oped and evaluated using segmented data, rather than considering a continuous time-stamped data

sequence of 3D points [13, 14]. To address this issue, Krishnan et al. [15] develop and evalu-

ate a sliding window based approach to perform activity recognition with streaming sensor data.

The approach adopted in JackKnife [9] proposes implementation of dynamic time warping for

continuous dynamic identification of gestures. While JackKnife [9] treats each gesture as a time

series representation of direction vectors and then classifies with regard to all templates stored
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in a database, our work processes mid-air curve input as sequential points which have individual

set of feature vectors, and performs the classification on each point as and when new points are

recorded. Finally, unlike sketching on a tablet with a finger or stylus, using a spatial device or a

hand posture is not necessarily natural [4]. Works such as Data Miming [16] and grasp-based vir-

tual pottery [17] have demonstrated that for continuous and free-form tasks such as design, users’

movements are guided by their interactions with the physical world rather than actions prescribed

by the interface designer. We draw from these latter approaches and present a method that en-

capsulates human movement patterns during mid-air sketching within an intelligent framework for

sketch intent recognition.

The primary goal of this research is to investigate a complementary yet fundamental problem

in mid-air sketching task: determining when users actually intend to draw in mid-air. On a broader

level, the following questions motivate this research:

1. How do users draw in mid-air to express general shapes? What is the effect of spatial input

devices or hand postures on the intuitiveness of mid-air sketch input?

2. For processing and recognition of symbols and alpha-numeric patterns, a library of pre-

defined canonical shapes is needed. How do we approach recognition of sketches that repre-

sent known objects but may not be composed of individually recognizable strokes (such as

design sketches)?

3. Does the movement of the hand while drawing in mid-air posses an inherent geometric and

temporal structure that can be used to identify when the user intends to draw in mid-air?

4. Can this behavioral model be scaled to intent recognition for other activities encountered in

different design tasks?

Motivated by these questions, this research aims towards studying how users move during mid-

air sketching, develop qualitative insights regarding such movements, and consequently implement

a computational approach to determine when the user intends to draw in mid-air without the use
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of an explicit mechanism (such as an instrumented controller or a specified hand-posture). This

research aims at enabling future interfaces that will be able to eliminate the need for a prescribed

set of gestures/postures or controllers to allow users to express 3D artifacts.

Input:
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Figure 1.2: Feature-based, raw data based, and latent space based stroke-hover classification ap-
proaches discussed in this thesis.

1.2 Contributions

In context of using mid-air curve input for 3D drawing tasks, the presented research makes the

following contributions. First, an observational study characterizing hand trajectories generated

by users in mid-air sketching tasks with three interfaces is presented. This study provides a better

understanding of the quantitative aspects of spatial user input in terms of relative speeds of stroke

and hover, intuitiveness of postures and instrumented controllers for sketching, and the types of

shapes such as characters, shape primitives, and general multi-stroke shapes. Second, and the

primary contribution of this research, is presenting a novel approach of processing mid-air curve

input as an intent recognition task, instead of a curve segmentation process. The work looks at

detecting the person’s intention to draw using mid-air curve input as a non-segmentation problem.

Complementary to existing approaches which look at the problem as a segmentation task, and

perform all processing after the entire curve is recorded, the proposed approach treats the curve
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input on an on-the-fly point-by-point basis. While other works wish to identify what shape is being

drawn, the presented research first asks the question of whether anything is being drawn or not.

Which essentially makes it a point-to-point intent classification problem (stroke or hover).

Third, the research presents a data driven approach to computationally determine the stroke-

hover intent from user recorded hand trajectory data without using postures or controllers. Given a

sequence of points in the user’s finger trajectory, a binary classifier is trained to learn the relation-

ship between the motion profile and geometric features of each point in the trajectory with its true

classification (hover or stroke). The resulting model allows for the classification of points on the

user’s spatial trajectory. To present a computable understanding of how people move while draw-

ing in air, a data collection study is first conducted using the hand held stylus of GeoMagic Touch.

Features extracted from this data are used to train preliminary models, proving that stroke-hover

information can be extracted from the user’s mid-air trajectories. Limitations of classification

model developed using this data are addressed through a second data collection study using the

Leap Motion controller and a custom hand-held device. Preliminary experiments with latent space

intent classification using autoencoders are further discussed. Finally, potential applications of this

approach in combination with symbol recognition tasks are discussed.

To identify the stroke-hover intention, this research discusses following three approaches (Fig-

ure 1.2):

1.2.1 Feature Based Classification

As the first step towards extracting drawing intent from mid-air curves, we first understand user

preferences for different postures and drawing mechanisms through a behavioral study using the

Leap Motion controller and three interfaces. Findings from the study suggest that users’ posture

preference varies based on nature of the artifact drawn, and that explicit drawing mechanisms may

not be intuitive for the users. Moreover, we identify a geometric structure in the stroke and hover

curves, which forms the basis for development of a feature based stroke-hover classification model

trained using one-point data recorded from the GeoMagic Touch device (Figure 1.2 (a)).
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1.2.2 Raw Data Based Classification

To overcome the limitations of the feature based model, we develop another setup for mid-air

drawing data recording using a hand held custom device and Leap controller. The model trained us-

ing raw data representations of the tracked palm-wrist-elbow trajectories exhibits higher prediction

performance than one point feature based or raw data based models (Figure 1.2 (b)). The predic-

tion results from the 10 dimensional feature model suggest the importance of higher dimensional

multi-point data for mid-air drawing intent recognition.

1.2.3 Latent Space Classification

The prediction models trained in the previous two approaches are trained using derived or

direct data representations of the recorded data. Using autoencoder-random forest hybrid model,

in this third approach (Figure 1.2 (c)), we seek to learn the stroke-hover properties from the lower

dimensional latent space of the curve data. Prediction results indicate decent classification between

the two categories, in turn implying the need for higher dimensional data for better prediction

accuracies.

1.3 Thesis Overview

The thesis ahead is distributed as follows. Chapter 2 discusses the current state of art dealing

with mid-air curve inputs, and highlights areas where the proposed research is different. Chapter

3 starts with a behavioral study understanding the quantitative and qualitative aspects related to

drawing in mid-air. Building upon observations from the study, the chapter further describes a

data collection study and intent classification feature-based model. Eliminating the limitations

from the feature based model, Chapter 4 describes another data collection study implemented

using a custom pen and Leap controller, and subsequent raw data derived models. Chapter 5

quickly introduces the utility of neural networks for drawing intent recognition tasks through latent

space classification model, and Chapter 6 finally discusses the broad implications of this work with

potential future directions.
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2. LITERATURE & PREVIOUS WORK

2.1 Mid-Air 3D Drawing

Sketching, or in a broader sense drawing, is an essential aspect of externalizing or commu-

nicating ideas or designs, without the need for a finished product. Initiating from the traditional

pen-paper medium, the process of 2D or planar sketching has been effectively replicated using

various digital tools. Digital sketching is an extensively studied area of research. In contrast to

3D geometric models, sketches are rough, ambiguous, and vague by nature. Recent advances

in augmented and virtual reality, and computer vision techniques have enabled the expansion of

sketching as a 2D task to 3D spaces.

A few major modalities govern the creation of 3D sketches. The first category deals with creat-

ing sketches using tablet based multi-touch interactions. Bae et al. [18] introduce ILoveSketch, a

comprehensive system for expert designers to create and manipulate refined 3D sketches for con-

ceptualization tasks. MentalCanvas [19] allows quick creation of multi-planar curves similar to

actual rough sketches. Curve inputs, in general, have also been used as gestures by several ap-

proaches in multi-touch devices [18, 20, 21, 22, 23]. Lapides et al. [24] discuss the development

of a 3-dimensional drawing board metaphor, the 3D tractus, that allows creation of 3D objects

using simple tablet based interactions mounted on top of a board whose height is tracked using

sensors. However, these techniques are not always scalable to spatial inputs due to the additional

uncertainty added by the third dimension: the intended planarity of strokes is not guaranteed.

With advances in augmented and virtual reality, several techniques have been proposed that

use 3D input in virtual CAVE environments for creation of 3D curves [25, 26]. NapkinSketch [27]

introduced a novel technique for drawing multi-planar shapes in an augmented reality environment,

where all major sketching tasks were performed using a tablet based interface. The availability of

devices such as HTC Vive and Microsoft HoloLens has enabled development of 3D sketching and

modeling applications like TiltBrush [28] for expert designers in an immersive environment.
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An initial work that introduced a shift from traditional pen-paper based drawing to more tangi-

ble 3D input was proposed by Sachs et al. [29] 3Draw used six-degree of freedom sensors and cus-

tom workstations that allowed designers to input curves mid-air. Kiyokawa et al. [30] introduced

the idea of using custom made 3D trackers for manipulation of objects in a shared 3D environ-

ment. Recent works by Grosman et al. [31, 32, 33] propose a physical tape drawing metaphor for

automotive curve design, and this approach involves using robust hand trackers for hand skeleton

detection. 3D input techniques for large displays as described in [34] make use of infrared track-

ers and Wiimotes for improved robustness of the interactions. Schkolne et al. [35] suggest a 3D

drawing system that uses hand motions and tangible tools for sketching and manipulations of 3D

curves. Keefe et al. [36] demonstrated a haptics enabled bi-manual interactive system controlled

creation of 3D line illustrations. While these devices allow tangible input, they lack the intuitive-

ness associated with bare hand interactions. The presented research aims at extracting intent from

purely bare hand interactions, thus eliminating the possible usage of such devices.

While using bare hand interactions for sketching can be effective for short interactions such as

object selection, lack of tangibility makes them difficult for precise tasks like 3D drawing. Finally,

unlike sketching on a tablet with a finger or stylus, using a spatial device or a hand posture is

not necessarily natural [4]. Works such as Data Miming [16] and grasp-based virtual pottery [17]

have demonstrated that for continuous and free-form tasks such as design, users’ movements are

guided by their interactions with the physical world rather than actions prescribed by the interface

designer.

2.2 Symbol & Gesture Recognition

With the increasing availability of interactive devices such as Wii Remote, Microsoft’s Kinect,

and Leap Motion, there has been rising interest in techniques for mid-air curve input for gesture

recognition [9, 10, 11, 12], hand-writing [5, 6, 7], and sketching [2, 4, 3]. Despite the significant

advances, hand pose estimation and skeleton tracking still lack the required robustness for simple

tasks such as sketching. Further, posture recognition is not scalable for interactions with large dis-

plays [37, 38, 39], making it difficult to use multiple body skeleton tracking controllers to identify
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the user intent. However, as Taranta et al. [9] note, the particular effectiveness of such recogniz-

ers for segmentation and recognition of curve inputs on touch surfaces have not been particularly

successful in higher dimensional spaces.

Most techniques are developed and evaluated using segmented data, rather than considering

a continuous time-stamped data sequence of 3D points [13, 14]. To address this issue, Krishnan

et al. [15] develop and evaluate a sliding window based approach to perform activity recogni-

tion with streaming sensor data. The approach adopted in JackKnife [9] proposes implementation

of dynamic time warping for continuous dynamic identification of gestures. In similar light, Be-

hera [40] et al. introduce a similar approach for signature "spotting" using window based feature

sequence analysis. While JackKnife [9] treats each gesture as a time series representation of direc-

tion vectors and then classifies with regard to all templates stored in a database, our work processes

mid-air curve input as sequential points which have individual set of feature vectors, and performs

the classification on each point as and when new points are recorded.

Jacob and Wachs [41] introduce a contextual hand gesture recognition technique for navigat-

ing MRIs inside the operating room. Using body posture and hand trajectory movements with

gesture spotting networks, their technique helps "spot" or discriminate between intentional and

non-intentional cues for navigation. Our approach on the other hand uses pure geometric data

of the user’s hand motion with no pre-defined postures/gestures to characterize the intention for

drawing.

2.3 Object Manipulation & 3D Modeling

Mid-air bare hand gestures have been widely used for expressing user intent [42, 43, 44]. Initial

works like Gesture VR [42] introduced vision based hand pose extraction techniques for 6-DOF

object manipulation in 3D space. Standard computer aided design involve specifying 6 degrees

of freedom for 3D objects for standard tasks like assembly. Recent works like 6D hands [43]

use a bi-manual hand tracking system enabling 6-DOF manipulation of 3D assembly components.

Vinayak et al. [17, 44] discuss present geometric techniques to extract 3D object manipulation

intent based on mid-air bare-hand interactions with the virtual 3D model. The idea behind this
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research is to build upon observations from these later researches and develop a scalable approach

that can potentially be used for mid-air object manipulation and modeling.

2.4 Activity Recognition

Activity recognition is broadly performed using two techniques: vision based, and sensor

based. Most vision based techniques use single or multiple cameras for tracking the user’s activi-

ties. Several techniques involving hidden Markov models (HMM) have been abundantly developed

that allow tracking different activities like recognizing ballet steps [45], recognizing tennis stroke

[Yamato et al] [46], and Tai’ Chi movements [47]. Similar works have been presented to identify

typical gestures encountered during human-computer communication [48, 49]. Aggarwal and Xia

[50] provide a detailed overview of various vision based 3D activity recognition techniques.

There has been a rising interest in using body worn sensors for gesture or activity spotting from

a range of actions that the user performs in a given course of time. Junker et al. [51] present a HMM

based two stage classification model which first separates instances where any potential activity is

being done, and then classifies those activities using a set of pre-defined templates. Similarly, while

Cakmakci et al. [52] tried to identify when a person is looking at their watch, Lukowicz et al. [53]

presented a technique for identifying different workshop activities like sawing, drilling, hammer-

ing, etc. Lara and Labrador [54] present a comprehensive comparison of 28 systems performing

human activity recognition using wearable sensors. Our drawing intent recognition approach is

complementary, in the sense that the "anomaly" in the drawing case is when the user has started or

stopped drawing, and is performed without using any body worn sensors.

2.5 Complementary Approach

Previous and current works in the domain of gesture, activity, and intent recognition in mid-air

tasks follow a set approach. Through any of the above discussed modalities, a pre-defined tem-

plate of activity/gesture/symbol is recorded and trained. For every newly recorded continuous data

stream, fixed length window based features are extracted and matched using the trained template.

The results then indicate what shape was being drawn, or what gesture/activity was performed
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(Figure 2.1).

In contrast to the traditional approaches, this research treats mid-air curve inputs on a point-

by-point basis. Instead of training a template matching algorithm, a binary classifier is trained

on appropriate geometric and temporal features characterizing the stroke-hover intent from the

recorded 3D mid-air data. Then, for every new point recorded in a sequence of mid-air data,

the trained classifier predicts the drawing intent from extracted features, thus ensuring a seamless

point-by-point prediction model for continuously recorded mid-air data.
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Figure 2.1: Mid-air curve processing methodology followed by traditional template matching and
proposed point-to-point classification approaches.
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3. FEATURE BASED STROKE-HOVER CLASSIFICATION

To address the problem of identifying the user’s drawing intention from their hand trajectories,

it is first necessary to understand how users draw in mid-air. In this chapter, we first describe a

behavioral study discussing user preferences towards gestures and defined mechanisms for draw-

ing in mid-air. Based on the findings from this study, we explore different characteristics of the

recorded mid-air curve to extract the stroke-hover intention, and describe a feature based model to

achieve the same. Finally, we look at some prediction results using this feature based model, and

discuss limitations with this approach 1.

3.1 Mid-air Sketching: Observational Study

To better motivate the need for the proposed approach, an observational study is conducted

with an intentions to observe how users specifically react to known spatial input conditions (such

as constraining the sketch on a canvas or using a specific gesture) in comparison to a completely

rule-free scenario (how one might describe an object through spatial movement without a computer

interface at all). To achieve this, three interfaces using the Leap Motion Controller are implemented

to record the trajectory of the user’s hand skeleton while drawing a given curve. Based on the

recorded hand position, the following rules were applied for detecting whether the recorded point

is stroke or hover:

1. Proximal Plane (I1): A trajectory point is considered as a stroke point if the palm is in

proximity to a pre-defined sketching plane within a defined threshold (Figure 3.1 (a)). The

interface recognizes the user’s intention to sketch when the palm is within a certain threshold

of the front facing plane on the screen. Even though this method is agnostic to any specific

pose of the hand, users were asked to assume a pointing posture while sketching to maintain

1Part of the data reported in this chapter has been reprinted with permission from Association for Comput-
ing Machinery, Inc. and has been extracted from "To Draw or Not to Draw: Recognizing Stroke-Hover Intent
in Non-instrumented Gesture-free Mid-Air Sketching" by Umema Bohari, Ting-Ju Chen, and Vinayak, In 23rd
International Conference on Intelligent User Interfaces (IUI ’18). ACM, New York, NY, USA, 177-188. DOI:
https://doi.org/10.1145/3172944.3172985
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a natural way of providing input.

2. Pinch Posture (I2): A trajectory point is considered as a stroke point if the hand assumes

the pinching posture (Figure 3.1 (b)). The choice of the pinch posture is motivated from the

way one holds a pen while sketching on a piece of paper. The pinch is recognized when the

Euclidean distance between the thumb and index finger is within a pre-defined threshold.

3. Unrestricted (I3): In the third interface, the users were simply asked to describe a curve

in the air without any restrictions on their hand movement or posture. Here, there was no

explicit distinction between hover and stroke for the recorded data (i.e. all points were stroke

points).

(b) Pinch posture(a) Proximal-plane

Figure 3.1: Illustration of the plane-proximity and pinch gesture mechanisms used in Leap Motion
interfaces I1 and I2 for the observational study.

3.1.1 Participants

10 engineering students (5 female) within the age range of 19-30 years were recruited. Except

one participant, none of these participants had prior experiences with motion tracking devices such

as Wii and Kinect or mid-air sketching.
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3.1.2 Procedure

The total time taken during the experiment varied between 30 and 35 minutes and the three

interfaces were randomized across the participants. After describing the setup, and the purpose

of the study, the features of the first sketching interface were explained to the participants, and its

usage was demonstrated. For each participant and task T3, a video of the task, the completion time,

and the time-stamped 3D coordinates of the trajectories generated by the users for each sketched

shape were recorded. Each participant performed the following tasks:

1. Unrestricted Sketch (T1): Participants were asked to draw primitive shapes, like a square, in

mid-air without restrictions on their hand posture or movement. The participants’ responses

were video recorded for observational exploration.

2. Posture-preference (T2): Participants were then asked to repeat the primitive sketching, but

with one or more hand postures of their choice from a list of pointing, two-finger pinch, open

palm, and pen-holding posture. In addition to video recording, the reasons for these choices

were also recorded.

3. Practice (P): To familiarize themselves with the interaction of their hand postures with the

corresponding three interfaces, the participants were given a brief demonstration of the soft-

ware and its functions, and were allowed to practice for 5 minutes on each interface. They

were allowed to ask questions and were provided guidance when required.

4. Sketching with I1 & I2 (T3): Participants were asked to sketch on the planar-proximity

and pinch based interfaces in a randomized manner. For each of these interfaces, every

participant sketched at least two primitives (Figure 3.2). Although the duration of time for

each interface was set to five minutes, the participants were allowed to sketch more shapes

with their aspirations. The canvas was cleared after completion of each primitive.

5. Questionnaire (Q): Finally, each participant answered a series of questions regarding their

perception of each of the interfaces in terms of ease of use, intuitiveness, and robustness.
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Open-ended comments regarding the tasks were also recorded.

Primitives Freeform sketches

Figure 3.2: Primitives and free-form multi-stroke sketches drawn by users during the observational
study.

3.1.3 Findings

With each participant drawing 6 sketches, a total of 106670 points (55919 stroke, 60751 hover)

were recorded. We make the following observations:

1. Posture Comparison: As expected, nine out of ten participants used index finger to draw

single-stroke primitives in the unrestricted sketch interface (I3). However, in the posture-

preference task (T2), three out of these nine participants who used the pointing posture

in I3, changed their preference to the pinching posture. One user stated: "It is more like

using pen and paper". Another user stated: "Pinching can help me deal with more complex,

detailed drawings". This indicates that (a) there is a natural default hand posture and body

movement that manifests commonly across users during mid-air curve input and (b) the way

users move while sketching in air is dependent on the nature of the artifact itself that they

are trying to draw.

2. Interface Comparison: We further observed that the order of interfaces affected ease of

adopting different hand postures in mid-air sketching. A participant who completed sketch-

ing tasks with I1 and I2 before I3, stated: "It is difficult to turn it on and off, people normally
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do not change their hand posture despite it is a stroke or a hover". Nine participants out

of ten also preferred I3 over the other two even though I3 did not have any visual cue that

distinguished hover from stroke. They stated: "The normal interface was easiest" and "I do

not need to worry about gestures and everything was detected with the normal interface".

I11.5

1.0

0.5

0.0

I2

Hover

Stroke

a. Speed profiles for stroke and hover trajectories

b. Stroke and hover speeds across interfaces 1 & 2

Stroke Hover Stroke Hover

1.5

1.0

0.5

0.0

Figure 3.3: The speed profile (top) shows a near-constant speed for hover that is greater than
stroke speeds. The average hover and stroke speeds were greater for the pinch-posture interface I2
in comparison to proximal plane (I1)

3. Motion Characteristics: As expected, participants were generally slower (Figure 4.3(a))

while creating strokes (I1: 0.35 m/s, I2: 0.56 m/s on average) as opposed to hover (I1:

0.66 m/s, I2: 0.9 m/s on average). For the proximal plane interface (I1), this was observed

to a larger extent in comparison to pinch interface (I2) (Figure 4.3(b)). Further, the un-

certainty of users’ trajectory increased as they reached closer to the instance of transitioning
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from hover to stroke. This was observed in terms of large straight hover trajectories followed

by short zigzag ones while transitioning from hover to stroke.

4. Shape Type: There were significant differences in how participants approached different

types of primitives. They spent time in refining details for multi-stroke shapes. The dis-

tribution of hover and stroke regions trajectories for drawing single-stroke primitives were

common across users when compared with general multi-stroke shapes. This strongly in-

dicated that for arbitrary sketches, there is a need for a general computational strategy for

segmenting and recognizing meaningful parts of the users’ trajectory.

3.2 Stroke-Hover Modeling Approach

Findings from the behavioral study indicate the necessity of developing an approach for mid-air

curve input that minimizes the use of pre-defined hand postures/gestures, or specialized interaction

design to initiate or stop drawing in mid air. Speed profiles and average completion times of the

hand trajectory data recorded points towards the different temporal characteristics of stroke and

hover curves. The problem thus now simplifies to developing a model that extracts important

geometric and temporal features from the recorded data, and identifies the drawing intent for every

recorded point. The stroke-hover identification work flow (Figure 3.4) can be explained as follows:

1. Record Mid-Air Drawing Data: The mid-air drawing data is recorded by using a depth or

motion tracking camera like the Kinect or Leap Motion controller.

2. Extract Features for Model Training: From the recorded 3D data, distinguishing geometric

and temporal properties of strokes and hovers are computed. Different combinations of these

features are used to train binary classification models.

3. Point-to-Point Classification: For every new point recorded, the trained classifier is now used

for classification.

4. Report Drawing Intent: Finally, the stroke-hover intent for every classified point is reported.
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Figure 3.4: Stroke-Hover Intent Recognition Workflow.

Once classified, the strokes can be used for further processing like shape retrieval, recogni-

tion, and search tasks, to name a few.

3.3 Mid-Air Drawing Data Collection Study

The lack of robust finger tracking was a major concern for the pinch-posture interface (I2).

As a result, stroke points were intermittently lost due to incorrect prediction of the pinch posture.

One of the participants, who had experience in motion tracking devices such as Wii and VR, stated:

"The software interface with hardware probably had some minor issues with detection of fingers...It

couldn’t follow the movement of my hand and veered off course many times". In contrast to the

behavioral study, we used the GeoMagic Touch device for data acquisition. Here, users specified

their intent to sketch through the use of buttons on the device stylus (similar to a mouse click-

and-drag). This choice of hardware was directly a result of the lack of robustness observed in our

behavioral studies with the Leap Motion wherein capturing user intent was prohibitively difficult.

3.3.1 Participants

We recruited 21 engineering students (11 female) within the age range of 19-30 years. None of

these participants had prior experience with using the GeoMagic Touch device.
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Button 
pressed

Figure 3.5: 3D Sketching data collection setup using GeoMagic Touch device. Inset: Button press
operation used for distinguishing hover from stroke.

3.3.2 Sketching tasks and assumptions

Each participant was asked to draw 47 different shapes comprising of symbols, 2D and 3D

primitives, and free-form sketches in mid-air (Figure 3.6). The participants were instructed to

sketch the curves as naturally as they could (i.e. as fast or as slow as they would if there were no

interface). We assume that the 2D data sketched by users is primarily planar, and can be drawn

using single strokes or multi-strokes; while the 3-dimensional primitives recorded are multi-planar

and multi-stroke sketches.

3.3.3 Recorded Data

We developed a simple interface that allows the participants to sketch in 3D using the Ge-

oMagic Touch stylus (Figure 3.5). For every curve drawn, the interface records a continuous

sequence of 3D coordinates of the stylus tip trajectory Px,y,z , and the classification of that point

as being stroke(1), or hover(0). While writing on a piece of paper, or sketching on tablet surfaces,
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Figure 3.6: Symbols (left), 2D and 3D primitives (center), and free-form 2D sketches (right) drawn
by users during 3D sketching data collection using the GeoMagic Touch device.

velocity of the traversal trajectories between two successive strokes is much faster than the stroke

trajectories themselves. As noted by Johnson et al.[55], time data is generally used for segmenting

strokes in different sketch recognition algorithms. Speed profiles of the data recorded in the obser-

vational studies (Figure 4.3), also point towards a similar distinguishing factor between stroke and

hover curves. Therefore, along with the curve coordinates and classification status, we record the

time stamp in milliseconds t of all drawn points.

3.4 Feature Design & Model Training

In machine learning, a feature can be defined as an individual measurable property or charac-

teristic of a particular pattern being observed. Based on the motion profiles and local geometric

properties of the recorded 3D temporal data, to train and test the stroke-hover classification model,

a feature list comprising of the following curve characteristics is constructed:

1. Motion profile: For every given point i recorded on the trajectory, its speed (si), acceleration

(ai), and jerk (ji) relative to the (i− 1)th point is computed:

si = ‖Pi − Pi−1‖, ai =
si − si−1
ti − ti−1

, ji =
ai − ai−1
ti − ti−1

Angular velocity and three axial acceleration are found to be good measures for capturing
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human activity [56].

Based on the motion characteristics of the 3D data recorded in the observational study, it is

noted that at the stroke-hover transition, there is an abrupt shift in the local curve speed. To

capture this shift, the relative speed ratio (Sr) at a given point is calculated as:

Sr =
si
si−1

2. Curvature: Recorded curve trajectories from the Leap Motion observational study, and Ge-

oMagic Touch data collection study are suggestive of the fact that hover trajectories have a

higher degree of flatness, whereas stroke trajectories have a higher curvature. This measure

of flatness of the curve at the ith point is captured by estimating the Menger curvature (ci)

at that point (Figure 3.7 (a)). For a given triangle formed by Pi, Pi−1, Pi+1, the curvature is

given by:

ci =
1

r
=

4A

s1s2s3

where A is the area of4 Pi−1PiPi+1, and s1, s2, and s3 are lengths of the triangle’s sides.

3. Rate of change of Frenet frame: Three orthogonal components (tangent ti, normal ni, binor-

mal bi) of the Frenet frame (Figure 3.7 (b)) associated with each edge forming the curve are

further computed as:

ti =
Pi − Pi−1
‖Pi − Pi−1‖

, bi = ti−1 × ti, ni = bi × ti

As the user draws the stroke and hover curves, the change in planarity is estimated by calcu-

lating the rate of change of angles between the consecutive Frenet frame components. These

angular velocities (ωα, ωβ , ωγ) form the last three components of the training and testing

feature vector:
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ωα =
αi − αi−1
ti − ti−1

, ωβ =
βi − βi−1
ti − ti−1

, ωγ =
γi − γi−1
ti − ti−1
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Figure 3.7: Estimated curvature and discrete Frenet frames of the recorded curve.

3.5 Training and Testing

Of the total data recorded from 21 participants, data from 2 participants had to be discarded,

due to misrepresentation of visual cues that hinted towards it being a plane drawing task instead of

mid-air sketching task. Of the remaining data, 50000 points (22923 stroke, 27078 hover) were used

for training the model, while the remaining 50000 points (24292 stroke, 25708 hover) were used to

test and cross-validate the data. While training, the feature vectors were randomly sampled from

the available pool to eliminate any kind of over-fitting of the trained model due to adjacent data

points. For testing, sequences of points belonging to a given shape were sampled. All machine

learning classifiers are implemented using MATLAB’s Statistics and Machine Learning Toolbox

[57] and implementations. With mid-air sketches essentially being a series of alternating stroke

and hover curves, it is assumed that the status of a given point on the curve is dependent on that of

its neighbors. To test this assumption, a k-Nearest Neighbor binary classifier [58] is trained. It is

ensured that there is an equal mix of stroke and hover features in the training list to eliminate model

bias towards the over-represented class. Since Support Vector Machines (SVM) [59] find utility
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in multiple gesture recognition tasks, a binary SVM classifier is also trained. Training and testing

data is uniformly scaled for accurate implementation of SVM. Finally, random forest classifiers [1]

are explored, and the effect of different tuning parameters for accurate predictions is discussed.

3.5.1 k-NN Classifier

In pattern recognition, k-NN or k-Nearest Neighbor is a non-parametric method used for clas-

sification or regression tasks [60, 61]. For data distributed in a given feature space, the k-NN

classifier outputs the classification of a given point. The classifier locally computes the distance

of the point under consideration from its neighbors, and classifies the point to the category that is

most common among its k closest neighbors. To enhance the predictions from this instance-based

learning method, the distance computation of a point from its nearest neighbors is weighted, to

ensure that the contributions of the closest points is enhanced. This makes the algorithm sensitive

to the local structure of data - closely controlled by the parameter k - and the trained classifiers

reflect this structure during their predictions.

3.5.2 Support Vector Machines

Support Vector Machines are supervised learning algorithms that are typically used for binary

classification tasks [62]. For a given data distributed in a linear feature space, SVMs try to find

a linear separating boundary that divides the data into two parts belonging to each class. If the

data distribution is non-linear, SVMs use techniques like kernel tricks and implicit mapping to first

transform the data into linear high-dimensional space, to identify the best separating boundary.

For every newly added point in the dataset, the classifier calculates its distance from the separating

boundary or hyperplane, and assigns it a classification accordingly. In other words, the SVM

constructs a hyperplane, or sets of hyperplanes, as far as possible from the closest points in each

of the two classes, to achieve good generalization of the data.

3.5.3 Random Forests Classifier

Random forests belong to the category of ensemble learning methods used for classification

and regression tasks [63]. For classification tasks, random forests use bootstrapped samples to
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train decision trees, and classify every given feature based on the maximum class vote received

from the trees collectively. A decision tree is a flowchart like structure that assigns a class label

for every observation by repeatedly splitting the data from root to final leaf node based on certain

classification rules. A critical feature of random forests is that they are invariant to feature data

scaling, can handle transformations of the feature space, and are robust to inclusion of irrelevant

features [61]. The low bias, high variance nature of decision trees is effectively compensated for

by bootstrap aggregation, or bagging, used in random forests, and deep grown trees have known to

identify good data generalization during supervised learning tasks.

3.6 Stroke-Hover Classification Results

In this section, the prediction accuracies of the 3 classifiers are discussed, and the best model is

selected. Further, a hyper-parameter search is performed to identify the most optimum parameters

of the random forest model. Finally, stroke-hover predictions using this model are described and

limitations of the current model are discussed.

3.6.1 Classifier Comparison

To compare the classification accuracies (η) across the 3 models, symbols, 2D and 3D primi-

tives, and free-form sketches from the testing feature list are sampled and tested.

After performing parametric optimization, with 27 closest neighbors, and correlation distance

metric, the k-NN model predicts with an average accuracy of η = 57.11% at a 0.04 seconds per

point prediction rate. For cross-validated two-class SVM models using both radial basis function,

and Gaussian kernels, the average prediction accuracy is η = 51.44% at a 0.02 seconds per point

prediction rate. It is observed that while the k-NN model shows some trends of segmenting the

stroke-hover data (Figure 3.8 (1a),(2a),(3a),(4a)), the SVM model classifies every point as being

stroke (high false positive) (Figure 3.8 (2b), (3b),(4b)). The random forest model, on the other

hand, exhibits good demarcation between stroke and hover curves, and classifies them with an

average accuracy of η = 71.63% at 0.03 seconds per point prediction rate.
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Figure 3.8: Sampled prediction results with accuracies (η) for k-NN, SVM, and Random Forest
binary classifiers. k-NN and SVM models show high false positives.

3.6.2 Random Forest

The random forest classifier is explored to further improve its accuracy, by training different

models using the following feature list:

Fi =

[
si ai ji ci Sr ωα ωβ ωγ

]
(3.1)

Two main tuning parameters – maximum node splits per decision tree Ns, and number of trees
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Figure 3.9: Variation in random forest model accuracy (η) with changes in number of individual
tree splits (Ns) and number of trees per forest (Nt).

per forest, Nt, are used to control the prediction accuracy. The depth of every decision tree is

controlled by Ns. Starting with the default values of Ns = 7 and Nt = 10, a grid search is

performed to identify optimum parameters. Based on this analysis, the model with Ns = 779 and

Nt = 40 performs best with a prediction accuracy of η = 82% for 50000 points (Figure 3.9).

As in the case of SVM, the effect of scaling 3D data coordinates as well as processed features, is

explored on the model prediction accuracy. It is observed that the model with no scaling performs

with the best accuracy. Speed (si), Speed ratio (Sr), local curvature (ci), and ωα are found to be the

dominating features, and the final random forest model is retrained using only these parameters.

3.6.3 Instrumented Controller Predictions

The optimum random forest model is tested using symbols, 2D and 3D primitives, and free-

form shapes from the testing feature list. Higher prediction accuracy is observed in case of prim-

itives and free-form shapes η = 85.75%, as compared to symbols η = 78.75%. This can be

explained in a couple of ways. First, during the data collection study, it was observed that due
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to familiarity with symbols, participants sketched them at a much faster rate. On the other hand,

the participants were found to be cautious while sketching multi-stroke free-form sketches and 3D

primitives. This factor had a direct effect on the hypothesis that hover trajectories should essen-

tially be traversed faster as compared to stroke, in the sense that, this was followed for the multi-

stroke shapes, but was not reflected for the recorded symbols data. Second, from a close analysis

of the data collection video, it was observed that symbol sketches were primarily restricted to a

single plane, while multi-stroke primitives and free-form sketches spanned multiple planes. While

the multi-planarity was effectively captured for the shapes using the three Frenet frame vectors,

the same cannot be guaranteed for symbols.

3.6.4 Bare Hand Predictions

Performance of the model is further evaluated by predicting 3D sketching data recorded in

the Unrestricted Interface I3 using the Leap Motion controller. The predicted results have two

characteristics: discontinuity in predictions, and high false positive rates (hover misclassification).

These characteristics can be attributed to the different ways in which the training and testing data

sets are recorded on the GeoMagic Touch and Leap motion interfaces, respectively. On one hand,

while the GeoMagic Touch based interface recorded data with accurate sketch-hover demarcation,

it ultimately is a tethered device, with limited work volume availability. On the other hand, with

the Leap interface, users had comparatively more freedom with respect to workspace availability,

and were able to draw curves at a much faster rate. However, it is worth noting that the model

was able to classify sufficient points without geometrically pre-processing the recorded data using

techniques like corner detection.

3.7 Conclusion

The primary reason for using the haptics device for 3D sketching data collection was to ensure

accurately recording the stroke-hover data of the drawn points. However, the device itself posed

certain limitations due to its physical manipulation capacities, offering roughly an interaction space

of 16 in x 12 in x 10 in. Also, since it was primarily tethered to the computer, the user did not have
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a. Ground truth (top row) and predictions (bottom row) for alpha-numeric characters

(η= 89.17%) (η= 78.23%) (η= 86.32%)(η= 79.17%)

(η= 87.71%) (η= 84.92%)

b. Ground truth (top row) and predictions (bottom row) for 3D and 2D single- and multi-stroke shapes

(η= 85.71%) (η= 90.81%)

Figure 3.10: Random Forest model prediction accuracies (h) for symbols (first two rows) and
3D/2D primitives (bottom two rows) sketch data recorded using GeoMagic Touch.

much freedom in terms of moving away from the computer and sketching. It was also observed that

participants experienced high resistance from the stylus pivot while traversing wavy curves like the

tree crown (Figure 3.11). This resulted in the user dwelling for much longer time while drawing

stroke curves. Restricted motion about the stylus pivot also resulted in wavy hover trajectories,

resulting in high curvature hover curves. Further, mid-air curve input speed is dependent on some

other factors like the type of curves, preciseness with which they are drawn, and the application for

the 3D curve. These factors are taken into consideration in the study discussed in the next section.

Based on the results obtained from the offline instrumented controller and Leap bare hand data
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(η= 84.70%) (η= 78.51%) (η= 79.12%)

a. Ground truth (top row) and predictions (bottom row) for 2-dimensional free-form shapes

b. Ground truth (top row) and predictions (bottom row) for 2-dimensional free-form shapes

(η= 84.01%) (η= 87.21%) (η= 79.33%)

Figure 3.11: Random Forest model prediction accuracies (η) for multi-stroke free-form sketch data
recorded using GeoMagic Touch.

predictions, modifications in the feature design, as well as the data collection set up are proposed.

Moreover, the model in this approach is simply trained using data recorded from a single stylus

point moving in 3D space. This low dimensionality of mid-air drawing data may not be sufficient

to capture the stroke-hover characteristics. To eliminate spatial restrictions caused during data

collection task, the GeoMagic Touch with its tethered stylus is replaced by a wireless, Bluetooth

connected device, used as a 3D pen. In this setup, the hand trajectory of the user is recorded using
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the Leap Motion sensor, and the stroke-hover intention is recognized through explicit button press

operations on the 3D pen. Further, to improve the quality of data captured, we experiment with

3-point tracking of the user’s hand.
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4. RAW DATA BASED STROKE-HOVER CLASSIFICATION

Results from the model trained using a single point trajectory indicate that stroke-hover classi-

fication of a given 3D trajectory can be achieved using local geometric features extracted from the

drawn curve. This model was trained from data recorded using the tethered stylus of GeoMagic

Touch device. However, validation of this model using bare hand data recorded in interface I3

suggests that using non-tethered devices for recording data closely emulates the actual application

scenario. Several works dealing with gesture recognition, and activity recognition suggest using

high dimensional geometric data for tasks involving mid-air curve input. Moreover, the activity of

drawing in air involves significant movements of the elbow, wrist, and palm trajectories. Based on

these observations, this chapter describes a new data collection study implemented using a custom

made, hand-held, non-tethered device. Apart from recording the palm trajectory, the user’s wrist

and elbow trajectories are also recorded. Qualitative and quantitative differences between the two

types of data are discussed, and multiple feature construction models for training a stroke-hover

classifier are described. Finally, the design and selection of feature space, model training and

testing, and results from the proposed three point local differential model are discussed.

4.1 Data Collection

4.1.1 Experimental Setup

Based on the feedback received from the preliminary data collection study, the new experimen-

tal setup is designed to eliminate the spatial and physical restrictions associated with a tethered

device. The setup (Figure 4.1) primarily comprises of the following major components:

1. Hand Trajectory Tracking: In this experiment, instead of tracking a single point in 3D space,

three points on the user’s hand trajectory are recorded. Bare hand interactions in the mid-

air involve a series of simultaneous movements of the user’s elbow, wrist, and consecutively,

palm joints. To incorporate the effect of these movements in the stroke-hover intent classifier,

the Leap Motion controller is used to record time stamped coordinates of the user’s elbow-
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Figure 4.1: Data collection setup using the Bluetooth-connected 3D pen and Leap Motion con-
troller.

wrist-palm inclusive three point trajectory. The Leap controller is placed on the table, and

the user draws 3D sketches within the interaction volume of the device (Figure 4.1).

2. Intent Detection: To record the drawing stroke-hover intent, a device resembling a 3D hand-

held pen is developed. The device consists of a button, that is pressed by the user every time

a stroke is to be drawn. The pen communicates with the computer via a Bluetooth serial

port, and is programmed using an Arduino Pro Mini. At any given point of time, the pen

sends a 0-1 status to the computer, indicating the button up or down states, respectively. This

information, combined with the 3-point trajectory recorded by the Leap Motion effectively

constitute a single data point at any given time.

The data recording interface is developed using C++ on the OpenGL platform, and imple-

mented on a Dell Precision Tower 3620.
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4.1.2 Participants

For recording 3-point trajectory 3D sketching data, 25 engineering students (13 female) within

the age range of 19-30 years were recruited. 3 participants had prior experience with 3D sketching

(digital), while none of the participants had experience with any computer vision devices like the

Leap motion controller, or 3D depth cameras. None of the participants had any experience with

using hand-held devices for drawing in mid-air.

4.1.3 Sketching tasks and assumptions

The tasks for this study were elaborately designed to incorporate multiple geometries, different

planarity, and a broad variety of motion and gestural drawings. Each participant recorded data

across six shape categories (Figure 4.2) as follows:

And more sourced from 
@Quick, Draw! The Data

A B C D E F G H I J 
K L M N O P Q R S 

T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

✓

Session 1 Session 2 Session 3

Session 4 Session 5 Session 6

Figure 4.2: Alphanumerics (a), 2D primitives (b), motion gestures (c), special curves (d), 2D free-
form shapes (e), and 3D primitives (f) drawn by users during the data collection study.
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1. Alphanumerics: In this session, participants were instructed to draw alphanumeric charac-

ters.

2. 2D Primitives: This session involved drawing basic 2D primitives. To understand whether

the size of a drawn shape affects the stroke-hover classification accuracy of the models, the

participants were asked to draw the primitives in three sizes: small, medium, and large.

All shapes were drawn on the front, top, and right planes to ensure the shape’s planarity is

incorporated while training the classifier.

3. Gestures: This session involved participants drawing curves with special geometric proper-

ties (degree 2, degree polynomials) and features.

4. Special Curves: In this session, the participants used the 3D pen to "draw" motion gestures in

mid air. These set of curves were recorded to validate the utility of stroke-hover classification

approach towards symbol/gesture recognition tasks.

5. Free-Form Data: This session allowed the participants to use the 3D pen to draw free form

planar shapes on the front plane, from Google’s Quick, Draw[64] database.

6. 3D Primitives: In comparison to the other sessions, here, the participants were not restricted

to a given plane, and were allowed to draw 3D primitives within the entire interaction volume

of the Leap controller.

Unlike the previous study, no visual feedback about the mid-air curve input was provided to

the participants, and instead, they were instructed to draw the curves as naturally as they could

(i.e. as fast or as slow as they would if there were no interface). The hand trajectory tracking

was monitored by the study proctor, and the participants were instructed accordingly. After every

session, the participants were allowed a break to ensure that hand fatigue does not bias the recorded

data. It is assumed that the 2D data sketched by users is primarily planar, and can be drawn using

single strokes or multi-strokes; while the 3-dimensional primitives recorded are multi-planar and

multi-stroke sketches.
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4.1.4 Recorded Data

For every curve drawn, the interface records a continuous sequence of 3D coordinates of the

user’s elbow Ex,y,z, wrist Wx,y,z, and the palm trajectory Px,y,z, and the classification of that point

as being stroke(1), or hover(0). Along with the curve coordinates and classification status, the time

stamp of all drawn points is recorded in milliseconds t.

4.1.5 User Feedback & Observations

Once all tasks were completed, the participants recorded their experiences with drawing the

designed tasks in air through a questionnaire. Some observations from the questionnaire are as

discussed below:

1. Utility of Mid-Air Curve Input: The users were asked to describe if they typically used mid-

air curve input while describing ideas during a conversation, and their usage frequency. All

participants except 3 indicated using hand movements during a conversation. Most partic-

ipants indicated using hand movements to describe shapes, sizes, or special features of a

given idea/product. One participant stated,"...(I) use them in almost every conversation. I

attach shape to concepts. It may change according to the severity of the design." Another

mentioned, "...have used hand movements to describe assemblies in vehicles during my Se-

nior year project, I use them regularly". A Civil Engineering student expressed, "I recall

using hand movements to describe many technical aspects and drawings to my colleagues

in Civil Engineering". These observations stress upon the utility of mid-air curve input in

sophisticated design tasks.

2. Applications in Design: When asked about the utility of mid-air curve input in design tasks,

most participants pointed towards using them for 3D modeling and concept drawing tasks.

One user mentioned:"...similar to some 3-D based note pad for jotting down all thoughts

including complex designs". Another user stressed upon the corrective actions that need to be

undertaken to make such mid-air input usable for modeling tasks: "...the application would

be good for 3D drawings in the future. For example Solidworks, but the software would need
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to be able to recognize what shape the user is trying to draw and correct it.", while another

stated that it can be used for machine design tasks, if there is a way to recognize the shape

that is being drawn. One participant stressed upon the importance of such techniques for

engineering specific tasks: "There are endless possibilities. Particularly as a Mechanical

Engineer I would say solid modeling using this approach would make 3D modeling easy".

An interesting application area focused on pedagogical tasks as such: "...can be useful in

applications for teaching, helping students visualize the objects and also to help physically

challenged people to express their emotions and ideas".

Palm Wrist Elbow

e. Free-Form Curves f. 3D Primitives

Palm Wrist Elbow

Palm Wrist Elbow

c. Gestures

Palm Wrist Elbow

d. Special Curves

Palm Wrist Elbow

a. Alphanumerics

Palm Wrist Elbow

b. 2D Primitives

Figure 4.3: Variations in the mid-air spatial trajectories of the recorded palm, wrist, and elbow data
for shapes drawn across the six categories.
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4.2 Qualitative & Quantitative Analysis

Observations from the behavioral study indicate that for a given 3D hand trajectory, stroke and

hover points exhibit interesting trends in speed profiles and average completion times. This section

discusses about such trends observed in data collected across the 6 sessions using the custom hand-

held device.

4.2.1 Visual Profiles

A quick visual analysis of the spatial profiles for the palm, wrist, and elbow trajectory indicate

the following aspects. When drawing any given shape mid-air, the palm point travels maximum

distance (Figure 4.4), while the elbow trajectory is observed to be almost stationary. It is observed

that most participants used the elbow point as a pivot, and manipulated the wrist and palm to draw

shapes. This observation is not very different from when a person writes on a piece of paper,

or draws on a tablet. Spatial variations in the elbow trajectory are observed however, when 3D

primitives are being drawn (Figure 4.3).
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Figure 4.4: Average distance traversed by the palm, wrist, and elbow points across the six shape
categories.
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Figure 4.5: Average stroke-hover speeds of the palm-wrist-elbow trajectory for all drawn shapes
across the six sessions.

4.2.2 Speed Profiles & Directionality

Overall stroke-hover speed profiles are different from as observed in the previous study. Here,

on an average, strokes are traversed faster than hovers. Further, reduction in traversal speeds are

observed along the transition points. Variations in speed profiles are observed across different

shape categories (Figure 4.5). Alphanumeric characters, due to their familiarity, are traversed

fastest (average speed = 0.9mm/s), while free-form shapes are drawn the slowest (average speed

= 0.624). Also, as observed in the behavioral study, stroke curves possess higher curvature (aver-

age curvature = 0.096) than hover curves, indicating that hovers are typically traversed in straight

lines.
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4.3 Classification Model Feature Design

4.3.1 Geometric Feature Based Models

Based on the mid-air drawing intent classification results discussed in the previous chapter, we

first extract the following geometric properties from any given point on the recorded trajectories:

Gi =

[
si ai ji ci Sr ωα ωβ ωγ

]
(4.1)

where, si, ai, ji are the speed, acceleration, and jerk relative to the previous point; Sr is the

ratio between speed of successive points; ci is the local curvature; and ωα, ωβ , and ωγ represent the

change in planarity of the recorded mid-air curve input.

These geometric features are used to construct the following models with the recorded data:

1. One Point Geometric G1: Using the time-stamped coordinate of the palm trajectory and the

geometric features above, we train a classifier using the following 8-dimensional geometric

feature vector extracted from the recorded palm trajectory:

G1 =

[
spi api jpi cpi Spr ωpα ωpβ ωpγ

]
(4.2)

2. Three Point Geometric G2 Along with considering the point-to-point geometric variations in

the palm trajectory(Gp), we consider the wrist(Gw) and elbow (Ge) points too, and construct

a 24-dimensional geometric feature vector as below:

G2 =

[
Gp Gw Ge

]
(4.3)

4.3.2 Raw Data Based Local Differential Models

Geometric features described in the previous section are a derived representation of the nature

of stroke-hover 3D data recorded. For any given shape drawn mid-air, the recorded palm-wrist-

elbow data is a time stamped trajectory of sequential points in 3D. To extract the differentiating
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Figure 4.6: One point and three point local differential representations for palm, wrist, and elbow
data recorded.

inherent nature of the 3D data, we use the raw time-series coordinates to train classifier models.

A typical sequential time series data may exhibit trends. To ensure these trends do not affect any

computations, a common practice is to the difference the data at any instant. That is, the obser-

vation at time step ti is represented as the difference with respect to observation at instance ti−1.

This removes the trend and the resultant difference series represents the changes in observations,

in this case, changes in the 3D trajectories of the elbow, wrist, and palm when the user draws a

shape mid-air.

For every given point at instance i,

Pi =

[
Px,i Py,i Pz,i

]
,Wi =

[
Wx,i Wy,i Wz,i

]
, Ei =

[
Ex,i Ey,i Ez,i

]
(4.4)

Five models based on different representations of the three trajectory points are constructed:

1. One Point Representation (F1): This is the simplest 4 dimensional vector (Figure 4.6) repre-

sentation constructed using time stamped palm coordinates recorded for every user.

F1 =

[
∆P ∆t

]
(4.5)

2. Three Point Representations: Using the 3-point tracking data, we embody the multi-joint
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motion when drawing in mid-air through different representations of the bio-mechanical link

system. While feature F2 comprises of a simple difference between the palm, elbow, and

wrist points between any two given instances, features F3 and F4 describe representations

with elbow as the pivot for the bio-mechanical link. Feature F5 considers a representation

with the palm as the reference point for the consecutive wrist and elbow movements (Figure

4.6).

Feature F2

F2 =

[
∆E ∆W ∆P ∆t

]
(4.6)

Feature F3

F3 =

[
∆E ~WP ~EP ∆t

]
(4.7)

Feature F4

F4 =

[
∆E ~EW ~WP ∆t

]
(4.8)

Feature F5

F5 =

[
∆P ~PW ~PE ∆t

]
(4.9)

4.4 Training and Testing

A total of 165, 000 (70, 813 strokes, 94, 187 hovers) time-stamped data points were recorded

across the 6 shape categories from all participants. Experiments described in the previous chapter

show random forests to be a comparatively better technique for estimating the strokes-hovers intent

of recorded 3D data [65]. Of the total recorded data, 114, 270 points (50, 786 strokes, 63, 481 hov-

ers) are used for training the model, while the remaining 50, 730 points (25, 024 strokes, 25, 076

hovers) are used to test and cross-validate (10-fold cross validation) the features. All models with

feature representations G1, G2 and F1 to F5 are trained using this data split. While training, the

feature vectors were randomly sampled from the available pool to eliminate any kind of over-fitting

of the trained model due to adjacent data points. Then, using the best feature representation, a
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hyper-parameter search for optimum random forest parameters is performed. All models are eval-

uated on the basis of their prediction accuracies, using the remaining 30% split of data. Prediction

results for all 6 shape categories are finally discussed.

4.5 Results & Observations

In this section, the prediction accuracies for different models are discussed, and the best feature

representation is identified. Initially, the random forest parameters are set to tree size Nt = 40, and

default maximum splits. Next, a parametric optimization is performed to identify the best hyper-

parameters for random forest with the chosen feature vector, and the best results for every shape

category are discussed. Along with standard prediction accuracy (η), following additional metrics

are used for comparing different feature models:

Precision = TP/(TP + FP ), Recall = TP/(TP + FN)

TNR = TN/(TN + FP ), TPR = TP/(TP + FN)

where, TP: True Positives; TN: True Negatives; FP: False Positives; FN: False Negatives; TNR:

True Negative Rate; and TPR: True Positive Rate.

4.5.1 Feature Based Models

The classifiers trained using features G1 and G2 performed with an accuracy of η = 72.33%

and η = 73.1% respectively. Testing accuracies from the palm-point feature G1 align closely with

the single point model discussed in the previous study, and exhibit a precision-recall rate of 0.659

and 0.616. The three point geometric feature G3 predicts with a slightly better accuracy, however,

both models exhibit a relatively high false negative rate.

4.5.2 Local Differential Models

4.5.2.1 One Point Model

With a 4-dimensional feature representation of the palm points(F1), the classifier results in a

training accuracy of η = 70.56% and an average test accuracy of ηF1 = 76.07%. The classification
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results show a significant improvement in comparison with the real-time results obtained from

the model trained using data collected on the haptic device. The results however, indicate a high

degree of false negatives, with a precision-recall distribution of 0.733 and 0.692 respectively. This

validates the need for high dimensional representation of the 3D data, which is discussed in the

next section.

Accuracy = 87.50 Accuracy = 97.87 Accuracy = 91.17 

Accuracy = 89.43 Accuracy = 70.00 Accuracy = 79.45 

Accuracy = 91.30 Accuracy = 82.00 Accuracy = 77.78 

Accuracy = 87.52 Accuracy = 85.185 Accuracy = 87.33 

Figure 4.7: 3-point model Random Forest classifier prediction accuracies for alphanumeric sketch
data recorded using the 3D Pen in Session 1.
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Accuracy = 83.00 Accuracy = 74.16 Accuracy = 80.43 

Accuracy = 91.07 Accuracy = 82.00 Accuracy = 87.03 

Accuracy = 75.43 Accuracy = 83.78 Accuracy = 82.59 

Figure 4.8: 3-point model Random Forest classifier prediction accuracies for 2D primitives
recorded using the 3D Pen in Session 2.

4.5.2.2 Three Point Models

Remaining four data representations are trained and tested using a similar data split, as de-

scribed before. Model 2 performs with a test accuracy ηF2 = 73.17%, whereas models 3 and 4

have average accuracies equal to ηF3 = 73.22% and ηF4 = 73.26% respectively. Model 5 on

the other hand performs with the best accuracy of ηF5 = 79.17%. Further analysis of prediction

accuracies across different sessions indicate that best results are obtained for shape categories 3

(motion gestures) and 4 (special curves), with η = 80.33% and η = 81.36% respectively. This fea-

ture representation is further used to identify best hyper-parameters of the classifier for optimum

results.
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Accuracy = 81.55 Accuracy = 87.50 Accuracy = 91.47 

Accuracy = 86.67 Accuracy = 87.76 Accuracy = 85.55 

Accuracy = 83.15 Accuracy = 87.50 Accuracy = 83.72 

Figure 4.9: 3-point model Random Forest classifier prediction accuracies for gesture and motion
curves recorded using the 3D Pen in Session 3.

4.5.3 Best Model & Hyper-parameter Exploration

Different models with varying number of trees (Nt) are trained using the best feature represen-

tation:

F5 =

[
∆P ~PW ~PE ∆t

]
(4.10)

Starting with default values of Nt = 10, the trees are increased iteratively until Nt = 150.

To counter the effects of stroke-hover imbalance in the data, a weighted cost matrix is used, with

chover = 1 and cstroke = 1.15. Based on this analysis, the model with Nt = 60 performs with an

optimum overall accuracy of η = 84.53%.
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Accuracy = 83.05 Accuracy = 84.11 Accuracy = 72.92 

Accuracy = 77.67 Accuracy = 85.75 Accuracy = 91.66 

Accuracy = 89.87 Accuracy = 87.59 Accuracy = 86.45 

Accuracy = 71.56 Accuracy = 88.21 Accuracy = 82.55 

Figure 4.10: 3-point model Random Forest classifier prediction accuracies for special planar curves
recorded using the 3D Pen in Session 4.

4.5.4 False Negative Trends

Across data from all 6 sessions, the predicted results are characterized by a true negative rate of

TNR = 0.8495, while the true positive rate is observed as TPR = 0.7655. These metrics explain

why the predicted strokes appear as fragments in certain predictions. Visual inspection of such

false negatives point towards areas of high curvature, or high speed transitions. Incorporating an

equal balance of such features in the stroke-hover dataset used for training can help improve these
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Accuracy = 73.18 Accuracy = 72.20 Accuracy = 86.85 

Accuracy = 88.08 Accuracy = 88.51 Accuracy = 89.23 

Figure 4.11: 3-point model Random Forest classifier prediction accuracies for free-form planar
curves recorded using the 3D Pen in Session 5.

metrics, leading to better predictions.

4.5.5 Bare Hand Curve Data Predictions

To test how the best selected model performs with real-world data, a simple interface was de-

veloped on the OpenGL platform. The setup is maintained similar to the 3D pen data collection

study described earlier, except that no hand-held Bluetooth connected device was used. The par-

ticipants purely used their hand movements within Leap’s interaction volume to draw shapes in

mid-air. Data across the six categories was recorded. To observe how feature design affects the

stroke-hover predictions, the recorded data was tested using all 4 models: geometric (G1, G2) and

local differential (F1, F5). The 3-point differential model (F5) clearly exhibits the best predic-

tion results comparatively (Figure 4.13). While the intended negatives or hovers are appropriately

identified, the predictions include false negatives too (Figure 4.14).

4.5.6 Live Prediction & Symbol Recognition Results

To test how the best selected model performs with real-world data, a simple interface was

developed on the OpenGL platform. The setup was maintained similar to the Leap based data
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Accuracy = 88.36 Accuracy = 84.77 Accuracy = 87.19 

Accuracy = 83.12 Accuracy = 76.34 Accuracy = 82.23 

Figure 4.12: 3-point model Random Forest classifier prediction accuracies for 3D primitives
recorded using the 3D Pen in Session 6.

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4Mid-Air Data Mid-Air Data

Model 1 1-point geometric Model 2 3-point geometric Model 3 1-point differential Model 4 3-point differential

Figure 4.13: Comparison of stroke-hover prediction for bare-hand mid-air drawings by four differ-
ent classifier models.

collection described earlier, except that no hand-held Bluetooth connected device was used. The

participants purely used their hand movements within Leap’s interaction volume to draw shapes in

mid-air. The collected input was then passed onto an OpenCV implementation of Random Forests

using optimum hyper parameters. The prediction results obtained are further processed using

classic symbol recognition technique like the $P recognizer [21]. The recognizer is initially trained

using templates sampled from the recorded data. Further exploration of the symbol recognizer

pointed towards using the predicted shapes, instead of original user recorded shapes, for training
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the symbol recognizer.

The interface works with an overall accuracy of xx for yy number of total data points tested.

Different Data and Feature Representations

Geometric 
Features Local Differential Features

Feature G1 G2 F1 F2 F3 F4 F5

Accuracy 72.23 73.1 74.07 73.17 73.22 73.26 79.17

Precision 0.659 0.679 0.733 0.7 0.703 0.717 0.8166

Recall 0.616 0.627 0.692 0.605 0.614 0.611 0.723

Figure 4.14: Average accuracy, precision, and recall for test predictions using all combinations of
geometric and differential feature vectors.

4.6 Conclusion

Despite eliminating spatial restrictions associated with the GeoMagic Touch device, the ba-

sic premise of the Leap controller data collection study involved using a hand-held device for

recording the stroke-hover intent in mid-air. While the setup was designed to closely replicate how

users typically draw in mid-air, the palm and wrist trajectories differ in the two scenarios, which

is evident through the bare-hand Leap data predictions (Figure 4.13). In the future, it would be

worthwhile to conduct a study with hand trackers and soft-buttons to make the effects of hand-held

remotes less obvious during data collection. The biased false negatives predictions of the model

dictates the need for identifying more critical geometric and temporal properties associated with

strokes, leading to more accurate predictions. Due to the sensitivity of the predictive models to-

wards the way data is represented, it is necessary to experiment with neural networks, that have

the ability to learn the structure of data, without needing any specific features. Moreover, the data

recorded in both studies involves asking the user to create drawings instead of strokes. A future

study recording strokes only would help towards developing a better model for identifying the

stroke-hover transition anomaly.
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5. LATENT SPACE STROKE-HOVER CLASSIFICATION

Starting with insights from a behavioral study describing the way people draw in mid-air, we

discussed two different types of models that help us with drawing intent classification. Results

from the feature based model, and raw data representations indicate that the recorded mid-air

curve consists of information that can be effectively used for training a binary classifier to iden-

tify the point-by-point stroke-hover intent. In this chapter, we explore the use of a special type of

neural networks - autoencoders - to learn the stroke-hover characteristics from a latent embedding

of the raw recorded mid-air curves. This chapter presents an introduction to autoencoders, and an

overview of how autoencoders help capture important characteristics from the data through recon-

struction. Further, we discuss a supervised learning methodology devised using autoencoders and

random forests, and discuss some preliminary classification results obtained from this approach.

5.1 Autoencoders

An autoencoder is an artificial neural network that performs unsupervised learning on coded

data [66]. Unlike algorithms discussed in the previous chapter, an autoencoder learns some form

of encoded representation of the data in lower or higher dimensionality space. Autoencoders, like

any other neural network do not need the input in an explicit "feature" space. They have been

proven to learn patterns in raw image data sets effectively.

An autoencoder consists of two important units - the encoder and the decoder (Figure 5.1). At a

minimum, a single autoencoder network consist of three layers: the input layer, the latent or hidden

layer, and the output layer. The simplest autoencoder architecture is similar to a feed forward non-

recurrent neural network, except that in an autoencoder, the input and output layers have the same

dimensionality. When a certain input is passed to the first layer, the network’s encoder encodes

or compresses the data into a short code. The data in the encoded state is found in the hidden

layer. Further, the autoencoder learns to decompress or decode this data back through the decoder

to a representation as close as the original input data. This ultimately requires the autoencoder to
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Encoding:

Decoding:

Figure 5.1: Architecture of a simple three layer autoencoder comprising of the encoder, decoder,
and latent space.

perform dimensionality reduction on the data, and learn latent patterns in this lower dimensional

embedding by reconstructing the data.

Mathematically, the autoencoder architecture with 3 layers can be explained as follows (Figure

5.1):

1. Encoder: The encoder or the first layer of the autoencoder takes in an input x ∈ Rd = χ,

and maps it using a transformation φ to z ∈ Rp = Γ as z = σ(Wx+ b). The transformation

z of the input data is referred to as the latent representation or latent variables. Here, σ is the

element wise activation function, W is the weight matrix, and b is the vector or individual

variable biases.

2. Decoder: This part then maps the latent variables (Γ) back to the input space (χ) through

transformation ψ as x′ = σ′(W ′z+ b′), where W ′ and b′ are the weight and bias matrices for

the decoder function ψ.
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While reconstructing, autoencoders learn to minimize the reconstruction loss to ensure the x′

matches as closely as possible with input x: L(x, x′) = ‖x−x′‖2 = ‖x−σ′(W ′(σ(Wx+b))+b′)‖2

5.2 Rationale

Autoencoders are typically used for data dimension reduction by passing it through the en-

coder layer into the latent space. Several applications have proven the ability of autoencoders to

identify clusters of data belonging to a given class, and use the information in the latent state to

perform supervised and semi-supervised classifications. In context of stroke-hover binary classifi-

cation problem, this research explores the utility of autoencoders combined with random forests to

identify the drawing intent at a given point. This chapter explores the possibility of compressing

the 3D drawing data to a latent space using autoencoders, and train a random forest classifier on

this hidden space embedding of strokes and hovers.

5.3 Feature Space Formulation & Training

The construction and training of the autoencoder-random forest hybrid model is divided in two

major tasks. The training data is distributed equally for these tasks:

1. Autoencoder Training: 3-point local differential representation of the training data (Features

F2 to F5) is used to train a simple three layer autoencoder. While learning how to reconstruct

the data effectively, this autoencoder learns the latent space distribution of the data. We

use window-based feature space representations of the training data, by concatenating d

previous data points in the recorded time sequences. In other words, every feature vector

for the autoencoder is a 10 × d dimensioned feature, with d− 1 feature points concatenated

together. This 10 × d dimensioned feature is compressed to a hidden space of dimension d

through the encoder function φ, which is typically the sigmoid function. The value of d is

determined heuristically using hyper-parameter space exploration.

2. Random Forest Training: Once the autoencoder model is trained, the encoder part of the

network is used to compress the second half of the training data into the latent space. This

latent embedding of each data point is then used for a typical supervised learning classifi-
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𝒙

Trained Encoder

Figure 5.2: Latent Space learning work-flow: a. Convert data to window based representation. b.
Train the autoencoder network. c. Use the encoder of the trained network to transform recorded
data to 3D space and train random forest model.

cation task to train the random forest model. The random forest parameters viz. number of

trees (Nt) is initially equal to the best value obtained from the 3-point model trained earlier

(Nt = 60).

Of the total 165, 000 data points, 70% were used for training, while the remaining 30% were

used for testing. Half of the training data was used for training the autoencoder, and the remaining

half for training the random forest.

For every new data point that is recorded mid-air, to identify the stroke-hover intent, following

steps are followed:

1. Latent Space Embedding: For every feature of 10 × d dimension, the encoder part of the

trained autoencoder compresses this feature to a latent space of dimension d.

2. Random Forest Classification: The encoded data from previous step is passed to the trained
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random forest model, which classifies the feature as either a stroke or hover.

5.4 Preliminary Results

Features constructed from the remaining 30% of the dataset are used for testing the trained

autoencoder-random forest model. While the results suggest that a latent space embedding of the

3D data helps with identifying the stroke-hover intent, the maximum test accuracy achieved is

72.09%, which is lower than the best 3-point model identified in the previous chapter. The average

precision- recall for the entire test set is 0.6941 and 0.66819, whereas the true negative rate and

true positive rates are calculated as TNR = 0.803 and TPR = 0.606 respectively. These metrics

suggest that the hybrid model is further biased towards identifying hovers correctly, but is prone to

mis-classify potential strokes as hovers.

5.5 Conclusion

This variation in the prediction accuracies for the latent space classification can be attributed to

certain factors. Autoencoders, like any other neural network need a huge amount of data to learn

the hidden patterns. With the total samples recorded from 25 participants, this data is insufficient to

train an autoencoder, which can be seen from the high reconstruction error. This error is reflected

in the form of a poor embedding of the latent space, which affects the way the random forest

classifier is trained. Also, the original dimensionality of the data comprising of Px,y,z, Wx,y,z, and

Ex,y,z is typically low for training an autoencoder - which have been found to perform exceptionally

well while reconstructing images of 128 × 128 input dimension. Future studies that involve large

amount of high dimensional data, like full upper body skeleton tracking, may help mitigate this

problem.
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Accuracy = 75.00 Accuracy = 71.50 Accuracy = 70.72

Accuracy = 82.14 Accuracy = 70.58 Accuracy = 70.06 

Accuracy = 67.29 Accuracy = 63.88 Accuracy = 72.98 

Accuracy = 73.88 Accuracy = 72.72 Accuracy = 76.67 

Figure 5.3: Stroke-Hover prediction results for different shape categories using autoencoder based
latent space classifier.
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6. CONCLUSION

This chapter concludes the thesis by first summarizing the technical and intellectual contribu-

tions, discussing implications of the proposed approach towards the design of spatial interactions,

and finally discussing the potential areas for future work on mid-air intent recognition 1.

Feature Based Classification Raw Data ClassificationLatent Space Classification
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✓ 3-point tracking hand-held pen 
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✓ Differential vector based 3D 
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✓ Low dimensional embedding 

of mid-air curve data
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∅ 𝑥 𝑧𝑥
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The Stroke-Hover Characteristics Spectrum

Figure 6.1: Summary of the key findings obtained from feature based, raw data based, and latent
space based stroke-hover classification models.

6.1 Summary

This research presented a complementary approach for capturing user intent for creating strokes

using spatial input. The idea was based on a simple premise that the user’s intention to draw in

mid-air can be implied through the motion and geometric characteristics of user-generated hand

1Part of the data reported in this chapter has been reprinted with permission from Association for Comput-
ing Machinery, Inc. and has been extracted from "To Draw or Not to Draw: Recognizing Stroke-Hover Intent
in Non-instrumented Gesture-free Mid-Air Sketching" by Umema Bohari, Ting-Ju Chen, and Vinayak, In 23rd
International Conference on Intelligent User Interfaces (IUI ’18). ACM, New York, NY, USA, 177-188. DOI:
https://doi.org/10.1145/3172944.3172985
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trajectory. Feedback from the behavioral study provided key insights towards the need for devel-

oping such intent recognition methodology. We explored a spectrum of approaches through which

stroke-hover characteristics can be represented (Figure 6.1). In the first feature based approach, we

explicitly designed features to train the binary classifier. In the second raw data based approach,

we explored the other end of the spectrum, where no explicit features were defined and we sim-

ply used raw data representations to classify the drawing intent. Finally, in the third latent space

classification approach, we used autoencoders to help design the most appropriate features in the

latent space, and used those features to identify the stroke-hover intent.

As the first step towards solving the stroke-hover intent recognition problem, we recorded 3D

drawing data from different users through the GeoMagic Touch haptic device. Using the data

recorded, we identified important geometric characteristics of stroke-hover points that can be used

to train classification models. We explored three different binary classification algorithms, and

identified random forests as the best model for this classification task. Finally, we discussed pre-

dictions from the optimum random forests models, and discussed some potential limitations with

the approach.

To overcome the limitations with the feature based model, we conducted another study where

we asked users to draw using a custom hand-held device, with their palm-wrist-elbow being tracked

using the Leap controller. Instead of training the classifier on explicit features extracted from the

recorded trajectories, we used a local differential representation of the raw data. By recording data

encompassing multiple shape categories, the proposed 3-point model shows increase in accuracy

in comparison to the features based model. In similar veins, a richer and more extensive dataset -

primarily tracking the upper body skeleton - can be effectively used for training classifiers based

on neural networks (especially recurrent neural networks that can capture the time-series nature of

the underlying data).

Finally, in the third approach, using the 3-point model and autoencoders, we looked at identi-

fying the user’s drawing intentions from the latent space embedding of the processed data. Here,

considering the mid-air trajectories as time sequences, we hypothesized that the drawing intent for
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a given point is dependent on the variation in the 3D position of its previous points. Using this

assumption, we trained a hybrid autoencoder-random forests model to first compress each data

vector to a lower dimensional space, and learn the latent stroke-hover characteristics of the data.

While the average prediction accuracy for this hybrid model was lower as compared to the raw data

based model, the results indicate that with a high dimensional data and large numbers of feature

vectors for training, such an approach can give better insights for the stroke-hover classification

problem.

6.2 Research Impact

At its core, the presented approach offers a different and complementary perspective for seam-

lessly processing mid-air curve inputs, that is, considering intentional strokes as anomalies within a

continuous hover trajectory. The ability to detect this anomaly changes the way we design mid-air

interfaces. In context of mid-air curve input, the primary idea behind the presented research is to

minimize the use of predefined hand postures or instrumented controllers while drawing in mid-air.

On completion, the implications of this work are manifold. First, by eliminating the use of ges-

tures for intent identification, they can be used for other interface interaction tasks. Further, mid-air

curves are the basis of a majority of applications dealing with 3D interactions. Generalization of

this approach as an intent recognition task makes it applicable in applications ranging right from

gesture tracking to activity recognition. Scaling this approach to multi-dimensional mid-air curve

input comprising of hand tracking, body skeleton tracking, and gaze tracking trajectories could

potentially improve the flexibility and ubiquity with which mid-air interactions are designed.

6.3 Discussion & Future Work

6.3.1 Mid-Air Data Dimensionality

Depending on the dimensionality of the data on which the classifier is trained, we observe vari-

ations in the prediction accuracy. The one point feature representation models in approach 1 and

2 (F1) trained using the time stamped stylus or palm coordinates predicted curves with an average

accuracy much lower than the models trained using three point feature representations (F2 to F5).
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This shift can also be clearly seen in the reduction in false positives and false negatives, as one

moves from one point to three point models - both, for feature based as well as raw geometric

data representations (Figure 4.13). These variations suggest that apart from the palm trajectory,

important stroke-hover information can be derived from the additional wrist and elbow joints. This

observation is suggestive of the fact that though the overall movement of the wrist and elbow joints

is smaller when compared to the palm, inclusion of higher dimensional data in the drawing intent

classification task is an important aspect. In future studies, it would be worthwhile to understand

how a person’s movements of the upper body skeleton when drawing in mid-air affect the repre-

sented information on which the stroke-hover classification models are trained.

6.3.2 Data Representation for Stroke-Hover Intent Recognition

In this work, we experimented with two different ways in which information can be extracted

from the recorded raw hand trajectories. First, in line with previous similar work [65], using

both one point and three point representations, we extracted important geometric features from the

raw data. While this feature based classifier was able to segregate the hovers, these models are

characterized with a low precision-recall rate. On the other hand, the second data representation

using simple local differences of the hand point trajectories exhibited high prediction accuracies

as well as reasonable precision-recall. That is, modeling the variations in spatial coordinates of

the time stamped hand-trajectories proved to be a good indicator of identifying a user’s stroke-

hover intent. Which brought us to this question: is there a way to extract hidden characteristics

from strokes and hovers? Our third approach experimenting with autoencoders and the results so

obtained suggest that in future, it would be worthwhile to experiment with unsupervised learning

techniques specializing in time sequences, such as the recurrent neural networks.

6.3.3 Classifier Training Data Recording Modality

Training a classifier for drawing intent recognition task is a supervised learning problem – that

is, it is necessary to record the mid-air drawing data with accurate stroke-hover demarcation. In the

first approach, data was recorded using the movement of the 6-DOF stylus of the GeoMagic Touch
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haptic device for mid-air drawing tasks by several users. While the classifier trained using this

data performed well for the haptic data predictions, it exhibited broken predictions and high false

positives for bare hand data. In the second approach, we used the hand-held device with a Leap

controller tracking the user’s elbow-wrist-palm while they drew in mid-air. While this setup was

designed to be as close as possible to the way people naturally would draw in mid-air, the inclusion

of the hand-held device caused some variations in the wrist trajectories for both cases. The hand

movements observed when using an instrumented controller, as compared to bare hand movements,

are different. This explains the false positives and false negatives observed while predicting bare

hand mid-air data. To ensure similarity between the trained classifier and its targeted application

areas (say, mid-air drawing), it is necessary to use robust minimalistic hand posture based tracking

for recording the raw data, or alternative modalities that would be less invasive to the user’s hand

movements in mid-air when drawing.

6.3.4 Robustness towards False Negatives

Bare hand leap data tested using all models proposed in this research exhibit a certain degree of

false negatives. Typically localized in areas of high curvature, or high speed transitions, it would

be interesting to record feature rich information for training the classifier. Bare hand mid-air draw-

ing involves 6-DOF movements of the palm-wrist-elbow joint-link structure, ranging from simple

translation, rotation about the joints, tilting, etc. Thus, along with recording the 3D coordinates

of these joints, it is necessary to use accelerometers and gyroscopes to record these latter critical

movements. A model trained on such data is expected to help improve the stroke-hover prediction

metrics.

6.4 Applications

Some of the immediate implications of this work are discussed here.

6.4.1 Interaction Design

The validation of this model opens up new vistas in the domain of mid-air interactions in con-

text of design ideation, and early stage concept design. With an on-the-fly implementation of the
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presented approach, designers will be able to naturally construct 3D concepts through consecutive

curve descriptions without the need for specific gestures or instrumented controllers. The classi-

fied stroke data can then be recognized using standard sketch recognition techniques. Standard $N

and $P recognition results discussed in the previous section indicate the utility of this approach in

development of drawing applications based on 2D and 3D primitives, or any other templates that

the recognizer is trained on. In collaborative design ideation setups, coupling this approach with

semantic data may lead to the development of intelligent mixed-initiative interfaces.

Several works like Google’s Quick, Draw! [64] and Sketch-RNN [67] discuss sketch recog-

nition or sketch auto-completion applications using recurrent neural networks. The sketches or

strokes are provided to the neural network through traditional tablet touch or mouse button-press

based applications. Combination of the proposed intent recognition approach with such neural

networks may lead to the development of suggestive mid-air interfaces, with the computer as a

potential collaborator in cognitive tasks like design ideation and idea generation.

6.4.2 Extension Towards User Identification

The presented approach is simply based on the differential spatial data recorded from user’s

hand movements in mid air. Hayashi et al. [68] in their work Wave2Me discuss creation of au-

thentic gestural and body length based signature IDs for multiple users on a shared network. An

extension of the presented approach in similar directions may lead to development of a certain

shape based ID for authentication purposes.

6.4.3 Development of Tangible Midair Feedback

A primary motivation behind this research has been minimizing the use of predefined postures

or templates for intent recognition in mid-air drawing. Mid-air drawing in itself has seen tremen-

dous developments over the last decade. With the advent of augmented and virtual reality, sev-

eral devices simulating effective immersive environment have been developed. Applications like

Google’s Tilt Brush [28] and Gravity Sketch [69] allow experienced designers to create meaningful

sketching/modeling artifacts in the 3D space. Along with the standard drawbacks associated with
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immersive environments, these applications lack the tangibility that is often necessary for drawing

in mid-air. Combination of the proposed approach with a simple hand-held device capable of pro-

viding vibration or haptic feedback every time a stroke point is drawn, may lead to the development

of interesting drawing applications with appropriate mid-air tactile feedback.

6.4.4 Applications to 3D Modeling

The presented approach can be considered complementary to existing segmentation and recog-

nition applications. It is interesting to consider the implications of this model in context of 3-

dimensional sketching applications like Tilt Brush [28] and Gravity Sketch [69], that use aug-

mented reality and instrumented controllers for enabling mid-air sketching. Participant feedback

from the behavioral study is indicative of the fact that sketching in mid-air without specifying ex-

plicit gestures, or using instrumented controllers, is both natural, as well as intuitive. The current

work shows that both aspects are relevant and related. One of the major problems associated with

using freehand 3D data in geometric modeling applications is the lack of controllability[36]. Scal-

ing this approach and modeling geometric shape controllability using the stroke-hover analogy

may lead to the development of mid-air curve input based 3D modeling applications.

Extending upon markerless hand tracking techniques used for object manipulation in 3D [43],

this approach provides a starting point for context specific intent recognition, where the "intent"

could be one of the many object manipulation tasks encountered in simpled CAD processes like

assembly.

6.4.5 Scalability across different interaction volumes

In order for mid-air interactions to scale, we must have different levels of details for recogniz-

ing when a user wants to affect the state of an interactive system - specially in setups involving

large displays. In this context, the presented approach offers a possibility of bypassing hand skele-

tal tracking by simply analyzing body-level activity (that can be robustly tracked by most available

algorithms) to identify user intent for curve drawing [32]. This will further allow for implementa-

tion of novel and richer interfaces for large displays and interaction spaces enabling collaborative
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design experiences.

6.5 Conclusion

With the current accuracy of the proposed classification algorithms, it is possible to create

interesting applications such as interactive art, especially for large displays with multiple users.

Further, the validation of the approach in tandem with classic symbol recognition algorithms serves

as a pointer to use this approach for developing intelligent mixed-initiative interfaces with the

computer as a collaborator. In the broader domain of mid-air curve input, this work opens a new

problem context that can potentially lead to novel approaches for enabling users to express visual

ideas through spatial interactions.

6.6 Closing Statement

An important problem associated with bare hand mid-air interactions with the computer lies

in extracting meaningful intent from the input curve, given the context of any specific application.

To that extent, while several techniques have been developed that process the mid-air curves using

external interrupts or segmentation based approaches, there is a necessity to explore more com-

plementary approaches that treat the mid-air curve input in an as-natural-as-possible continuous

point-by-point basis. With the stroke-hover classification approaches presented in this research

serving as the starting point, there is a scope to develop scalable approaches applicable to general

mid-air curve inputs for a variety of tasks. With the recent development of robust skeleton tracking

cameras, developing high dimensional data models using entire upper body skeleton tracking can

result in improvements in the performance of the context-specific intent prediction models.
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APPENDIX A

FEATURE BASED CLASSIFICATION RANDOM FOREST PREDICTIONS

In this section, we show all random forest model prediction results for symbols, 2D and 3D

primitives, and free-form sketches sampled from the 50000 testing data points recorded across the

19 participants.
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c. Ground truth (top row) and predictions (bottom row) for 2-dimensional symbols

b. Ground truth (top row) and predictions (bottom row) for 2-dimensional symbols

a. Ground truth (top row) and predictions (bottom row) for 2-dimensional symbols

Figure A.1: Random Forest model predictions for symbols data recorded using GeoMagic Touch.
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b. Ground truth (top row) and predictions (bottom row) for 2-dimensional symbols

a. Ground truth (top row) and predictions (bottom row) for 2-dimensional symbols

c. Ground truth (top row) and predictions (bottom row) for 2-dimensional symbols

Figure A.2: Random Forest model predictions for alphanumerics data recorded using GeoMagic
Touch.
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a. Ground truth (top row) and predictions (bottom row) for 3D primitives

b. Ground truth (top row) and predictions (bottom row) for 3D primitives

b. Ground truth (top row) and predictions (bottom row) for 3D primitives

Figure A.3: Random Forest model predictions for 3D primitives & 2D free-form data recorded
using GeoMagic Touch.
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a. Ground truth (top row) and predictions (bottom row) for 3D primitives

b. Ground truth (top row) and predictions (bottom row) for 3D primitives

Figure A.4: Random Forest model predictions for 3D primitives data recorded using GeoMagic
Touch.
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a. Ground truth (top row) and predictions (bottom row) for 2D free-form sketches

b. Ground truth (top row) and predictions (bottom row) for 2D free-form sketches

c. Ground truth (top row) and predictions (bottom row) for 2D free-form sketches

Figure A.5: Random Forest model predictions for 2D free-form shapes recorded using GeoMagic
Touch.
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APPENDIX B

RAW DATA BASED CLASSIFICATION RANDOM FOREST PREDICTIONS

In this section, we show all random forest model prediction results all six shape categories

sampled from the 50000 testing data points recorded across the 25 participants.

Accuracy = 77.78 Accuracy = 75.00 Accuracy = 73.17 

Accuracy = 77.00 Accuracy = 73.93 Accuracy = 79.45 

Accuracy = 78.52 Accuracy = 84.00 Accuracy = 77.78 

Accuracy = 80.00 Accuracy = 85.185 Accuracy = 68.95 

Figure B.1: Random Forest model predictions for shapes belonging to the alphanumerics category.
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Accuracy = 69.50 Accuracy = 80.43 Accuracy = 77.68 

Accuracy = 81.47 Accuracy = 72.55 Accuracy = 94.44 

Accuracy = 91.03 Accuracy = 72.96 Accuracy = 73.33 

Accuracy = 70.513 Accuracy = 84.57 Accuracy = 73.91 

Accuracy = 75.43 Accuracy = 73.93 Accuracy = 74.16 

Figure B.2: Random Forest model predictions for shapes belonging to the 2D primitives category.
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Accuracy = 83.66 Accuracy = 84.80 Accuracy = 75.86 

Accuracy = 75.00 Accuracy = 76.19 Accuracy = 73.77 

Accuracy = 82.00 Accuracy = 80.15 Accuracy = 80.00 

Accuracy = 84.84 Accuracy = 87.50 Accuracy = 81.51 

Accuracy = 86.38 Accuracy = 69.50 Accuracy = 77.78 

Figure B.3: Random Forest model predictions for shapes belonging to the gestures category.
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Accuracy = 88.55 Accuracy = 86.34 Accuracy = 83.78 

Accuracy = 77.00 Accuracy = 73.93 Accuracy = 79.45 

Accuracy = 78.52 Accuracy = 84.00 Accuracy = 77.78 

Accuracy = 81.47 Accuracy = 88.66

Figure B.4: Random Forest model predictions for special curves recorded using the data collection
setup.
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