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ABSTRACT

Inspired in the work of Poiseuille, and taking advantage of the much more realistic model

for describing the mechanical properties of blood in large vessels derived by K. R. Rajagopal,

this dissertation explains the behavior of blood on non circular cross sections, given an Implicit

Constitutive Relation.

First, by assuming that the axial direction is dominant in this phenomenom, an axial flow

problem is solved. Given the non linear and implicit nature of the problem, a non linear system

of coupled partial differential equations will be solved. Using the Minty-Browder Theorem and

the theory for linear elliptic operators, some elementary results about existense and uniqueness of

solutions can be stated.

Next, assuming a lower order velocity field in the other two directions, a secondary flow prob-

lem in the cross sectional area is stated. Taking into account just the terms of the same order and

the solution of the previous step, the problem becomes a linear coupled system of partial differen-

tial equations. Using the theorem of existence of a streamfunction in a two dimensional problem,

we can actually prove that there are no secondary flows for this model.

Finally, a numerical approximation directly based on the Lions-Mercier Splitting Algorithm is

given. Some generalizations of the problem are proposed as future work.
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NOMENCLATURE

Ω Open, bounded and connected subset of R2

D(Ω) Space of smooth functions with compact support in Ω

supp(f) Support of the function f

A
X

Closure of the subset A ⊂ X in the topology of the space X

‖u‖H Norm of the element u ∈ H in the space H

〈f, u〉H′,H Duality in between the dual element f ∈ H ′ and the element
u ∈ H in the space H

(u, v)H Inner product in between the elements u ∈ H and v ∈ H in
the space H

L2(Ω) Space of square-Lebesgue-integrable functions

H1(Ω) Space of weakly differentiable functions of L2(Ω)

H2(Ω) Space of twice weakly differentiable functions of L2(Ω)
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1. INTRODUCTION

1.1 History

In the first half of the XIX century, a young, brilliant French physician named Jean Leonard

Marie Poiseuille experimentally demostrated, amongst other things, that there was a direct rela-

tionship in between the pressure and the volumetric flow in an artery with blood as the working

fluid. Around the same time, a German Engineer called Gotthilf Heinrich Ludwig Hagen published

a paper in which he demostrated a similar but less accurate relationship for the flow of water on

circular pipes.

Figure 1.1: Jean Leonard Marie Poiseuille (1797-1869). From a photographic portrait that ap-
peared with the article by Brillouin (1930); oil-painted enhancement by SPS.

Independently of Poiseuille’s and Hagen’s work, Sir George Gabriel Stokes solved the problem

of a fluid flowing on a circular pipe and found a very similar result. Although, Stokes did not

published his results as he was not sure about the no slip condition on the boundary. Years later,
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he will accept the non slip boundary condition for viscous fluids as a result of his studies on the

drag around solid objects. Since both Hagen and Poiseuille worked independently over the same

problem and found similar results, the scientific comunity called this particular physical problem

as the Hagen-Poiseuille Flow.[1] .

Since them, as the mathematical tools available became more and more advanced, general

versions of this problem have been solved (compressible flow, porous media, non circular cross

section, time dependent pressure gradient, etc.). Nevertheless, most of these new problems rely

on the same physical hypothesis: the Constitutive Relation in between the symmetric part of the

velocity gradient and the traceless part of the Cauchy Stress tensor can be solved in terms of the

last one, i.e., the Constitutive Relation is Explicit.

The present work deals with the case of what happens when the Constitutive Relation is im-

plicit, and the effects (if any) of the geometry of the cross section of the pipe.

1.2 General definitions

Before we start with the statement of the problem, it is neccesary to state some basic definitions

that will be used throughout the body of this research.

1.2.1 Implicit Constitutive Relation

In the classical theory of Fluid (Solid) Mechanics, the Constitutive Relation that relates the

Cauchy stress tensor and the gradients of velocity (position) respectively is given as function of the

later:

T = F(D) (1.1)

Of course, this approach has the advantage that the divergence of the stress can be directly

replaced into the Conservation of Linear Momentum to get a system of differential equations in

terms of the velocity only. Obviously, in this case the boundary conditions are only necessary for

the velocity, since the problem does not depend on the Cauchy Stress tensor anymore.

The main advantage of the classical approach is the fact that it reduces the number of un-

2



knowns of the problem, and therefore the number of boundary conditions. On the other hand, it

cannot represent accurately the physical behaviour of some types of fluids, even some classical

ones as Bingham Fluids. Moreover, philosophycally it is also inconsistent with the causality of the

problem, since the cause (Cauchy stress) is written in terms of the effect (motion).

Rajagopal1, in a historical change of view of Mechanics, developed a series of theories called

"Implicit Constitutive Theories". The term "implicit" comes from the facts that on his models,

the kinematic invariants (velocity and deformation gradient dependent) are given as a tensorial

function of the stress and that, in general, the Constitutive Relation cannot be inverted to get an

explicit Constitutive Relation:

F(T,D) = O (1.2)

In a subsequent paper[2], Rajagopal presented a class of fluids called stress power-law fluids

which can fairly represent the behaviour of blood flowing on relatively large vessels. This class of

incompressible fluids is represented by the tensorial equation:

Figure 1.2: Norm of the symmetric gradient of velocity in terms of the deviatoric Cauchy stress
tensor.

1K. R. Rajagopal: On implicit constitutive theories. Appl Math. 48 (2003), 279-319.
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D =
[
α(1 + β ‖Tδ‖2)−n + γ

]
Tδ (1.3)

where Tδ = T − (1
3
tr T)I, α, β, γ are positive constants, and n ≥ 1

2
. Rajagopal proved that when

γ
α
< dn with dn = 2(2n−1

2n+2
)n+1 the norm of (1.1) is non monotonic, therefore the tensorial function

not only is not invertible but it is not even a function of the symmetric part of the velocity gradient

either.

1.2.2 Secondary Flow

In Fluid Mechanics, a secondary flow is defined as a lower order flow assumed to be perpen-

dicular to the main direction of the stream, superimposed to a simplified primary flow that flows

parallel to the main direction. Most of the times, the analytic primary flow solution can be found.

This assumption is made in order to simplify the resolution of the differential equations, because

we tranform the non linearity of the conservation of linear momentum into a linear recursion in

terms of the previous step.

Moreover, the non Newtonian behavior of the model expressed in the fact that the normal

stress components are different gives rise to interesting non linear effects such as "rod climbing"

and "die swell". In fact, Fosdick and Serrin [3] proved that for a steady rectilinear flow in a pipe

with bounded and connected cross sectional area and with material functions φ and µ satisfying

appropiate analytic and monotonic conditions and such that they are not porportional in between

them for small shear rates, the only possible cross section of the pipe must be either circular or in

between two concentric circles. Therefore, we can reasonably expect to have a secondary flow in

our problem since it is defined in a general bounded, simply connected cross sectional pipe.

The secondary flow assumption will be extended for the Cauchy stress tensor too. This gen-

eralization is very natural and simple to obtain, since it follows from the directions of both the

primary and the secondary velocity fields.

4



1.3 Problem Statement

As it was previously stated, for the sake of simplicity, we will focus on the study of the be-

haviour of blood flowing inside an elliptical cross sectional pipe. Since the general problem is

excedenly hard to solve, we will start with a somewhat physically meaningful simplification of the

general phenomenom.

Figure 1.3: Elliptic pipe.

1.3.1 Hypothesis and assumptions

To start, we will assume that the fluid will be flowing on a steady state (∂v
∂t

= 0), that the

velocity field is fully developed (which eliminates the dependence on the axial direction) and that

velocity and stress can be expressed in terms of a first order Taylor expansion:

v = v0 + εv1 (1.4)

where v0 is the primary axial flow, v1 is the secondary flow (in the plane perpendicular to the

primary flow) and:

T = T0 + εT1 (1.5)

where T0 is the stress tensor associated with the primary axial flow and T1 is the stress tensor

associated to the secondary flow. Next, recall the conservation of linear momentum:

5



ρ
dv

dt
= div T + ρb (1.6)

and the incompressible version of the conservation of mass:

div v = 0 (1.7)

For simplicity in the analysis, we will also assume no body forces. All the previous assumptions

are made to transform the general tridimensional problem into a two dimensional one in which

every cross sectional area have the same vector fields (velocity) and tensor fields (stress).

1.3.2 Nondimensional analysis

In order to make an easier and more meaningful physical analysis of the problem, we define

the dimensionless variables:

x∗ = 1
L
x t∗ = V

L
t v∗ = 1

V
v

D∗ = L
V
D T∗ = αL

V
T T∗δ = αL

V
(T∗)δ

(1.8)

where L is a characteristic length, V is the characteristic maximum speed and α is the characteristic

inverse of the dynamic viscosity. These characteristic properties depend on both the geometry of

the cross section and in the actual velocity profile obtained from the calculations.

Now, neglecting the gravitational and other source of body forces, equations (1.3) (1.6) and

(1.7) become:

D∗ =
[
(1 +R2 ‖T∗δ‖

2)−n +R3

]
T∗δ (1.9)

dv∗

dt∗
=

1

R1

div T∗ (1.10)

and
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div v∗ = 0 (1.11)

where R1 = αρV L, R2 = βV 2

α2L2 , and R3 = γ
α

. For the sake of simplicity, from now on we will drop

the asterisk notation and work only with the parameters R1, R2 and R3.

The advantage of the non dimensional equations comes into the physical meaning of the co-

efficients R1, R2 and R3: Reynolds number, shear thinning/thickening by Newtonian shear stress

ratio, and Non linear shear by Newtonian shear ratio respectively.

1.3.3 Primary and Secondary flow equations

By replacing equations (1.4), (1.5) into equations (1.10) and (1.11) and taking in account the

assumptions previously discussed it yields:

[grad (v0 + εv1)](v0 + εv1) =
1

R1

div (T0 + εT1) (1.12)

div (v0 + εv1) = 0 (1.13)

now, if we replace (1.4) and (1.5) into (1.9) and use the linearity of trace we get:

D0 + εD1 =
[
(1 +R2 ‖T0δ + εT1δ‖2)−n +R3

]
(T0δ + εT1δ) (1.14)

next, since the axial flow v0 has only one component across the axial direction, and that component

depends only on the other independent variables, then (grad v0)v0 = 0. Similarly, it is easy to see

that (grad v1)v0 = 0. Moreover, because of the nature of the secondary flow the traction on both

the primary and the secondary Cauchy Stress tensor are always perpendicular in between them,

which then leads to the useful relation:

‖T0δ + εT1δ‖2 = ‖T0δ‖2 + ε2 ‖T1δ‖2 ≈ ‖T0δ‖2 (1.15)
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Figure 1.4: Primary shear traction (blue) and secondary shear and normal traction (red). The axial
direction is given by z.

This small property will make a huge difference in terms of solvability of the problem as we

will see next.

Re arranging terms on equations (1.12), (1.13) and replacing equation (1.14) along with the

definition of trace of a tensor leads to solving the problem:

ε(grad v0)v1+ε2(grad v1)v1 =
1

R1

[
div T0δ + grad (

1

3
tr T0)I

]
+ε

1

R1

[
div T1δ + grad (

1

3
tr T1)I

]
(1.16)

D0 + εD1 =
[
(1 +R2 ‖T0δ‖2)−n +R3

]
T0δ + ε

[
(1 +R2 ‖T0δ‖2)−n +R3

]
T1δ (1.17)

div v0 + ε div v1 = 0 (1.18)

Finally, equating the terms of the polynomial in the variable ε on each one of the three previous

equations, and neglecting the only second order term ((grad v1)v1) that appears, the problem of

finding a secondary flow becomes two coupled problems of systems of partial differential equations

given by:
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
−grad (1

3
trT0) = div T0δ

D0 =
[
(1 +R2 ‖T0δ‖2)−n +R3

]
T0δ

div v0 = 0

(1.19)


−grad (1

3
trT1) = −(grad v0)v1 + div T1δ

D1 =
[
(1 +R2 ‖T0δ‖2)−n +R3

]
T1δ

div v1 = 0

(1.20)

Notice that the system of equations (1.20) is linear in both v1 and T1δ, thus it can be reduced to

a classical Navier Stokes problem, with one of its terms depending on T0δ known from the previous

step. Also, it is clear that the system of Partial Differential Equations (PDE) for the secondary flow

can only be solved once that the solution for the primary flow is obtained.

Now that we have already set the appropiate system of PDE for both problems, we will develop

all the theoretical scheme necessary to solve them.
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2. PRIMARY AXIAL FLOW

From the previous Chapter, it was proven that finding the secondary flow problem reduces to

solving two coupled systems of PDE, one after the other. To do so, we have first to calculate and

determine how the conservation equations and the Constitutive Equations are represented in the

Cartesian coordinate system for the main axial flow.

2.1 Mathematical statement of the problem

Since we assumed a fully developed fluid, we can focus our analysis on what happens on a fixed

cross sectional are of the pipe, thus (given a > 0, b > 0) let Ω =
{

(x, y) ∈ R : x2

a2
+ y2

b2
< 1
}
⊂ R2

be the domain, then the associated system of PDE is given by:



∂
∂x

(1
3
tr T0) = 0 in Ω

∂
∂y

(1
3
tr T0) = 0 in Ω

∂
∂z

(1
3
tr T0) = ∂Txz

∂x
+ ∂Tyz

∂y
in Ω

∂vz
∂x

= 2G(Txz, Tyz)Txz in Ω

∂vz
∂y

= 2G(Txz, Tyz)Tyz in Ω

vz = 0 on ∂Ω

(2.1)

where v0 = (0, 0, vz) and Txz, Tyz are the only non null elements of the stress tensor T0δ. It is

easy to see that (1
3
tr T) is a function of z only, and since the fluid is fully developed the system

becomes:



∂Txz
∂x

+ ∂Tyz
∂y

= λ in Ω

∂vz
∂x

= 2G(Txz, Tyz)Txz in Ω

∂vz
∂y

= 2G(Txz, Tyz)Tyz in Ω

vz = 0 on ∂Ω

(2.2)

with G(Txz, Tyz) = [1 + 2R2(T 2
xz + T 2

yz)]
−n +R3
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2.2 Variational formulation

It is clear that seeking for classical solutions of this system of differential equations is a futile

endeavor. Instead, we will find what is called a weak solution of the problem defined by the

variational formulation of the problem.

Before we start, notice that if we take a smooth function v with compact support in Ω and a

smooth two dimensional vector field T, we have the following:

∫
Ω

div (vT) dx =

∫
∂Ω

vT · n̂ dS =

∫
Ω

grad v ·T dx +

∫
Ω

vdiv T dx (2.3)

this clearly leads to the interesting relation:

∫
Ω

−grad v ·T dx =

∫
Ω

v div T dx (2.4)

the previous equality holds for any v and T since they are arbitrary. This relation suggests that

both the gradient and divergence are dual operators in between them on some appropiate spaces.

Next, let us define the vector T = (Txz, Tyz), then the problem (2.2) can be written as:


div T = λ in Ω

grad vz = 2G(|T|2)T in Ω

vz = 0 in ∂Ω

(2.5)

Now, letw be a smooth function with compact support in Ω and S be a smooth two dimensional

vector field. Multiplying the first and second equations of (2.5) by w and S respectively, and

integrating the result over Ω it yields:


∫

Ω
div Tw dx =

∫
Ω
λw dx∫

Ω
grad vz · S dx =

∫
Ω

2G(|T|2)T · S dx
(2.6)

Using the property (2.4) we end up with:
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 −
∫

Ω
T · grad w dx =

∫
Ω
λw dx∫

Ω
grad vz · S dx =

∫
Ω

2G(|T|2)T · S dx
(2.7)

wich is true for anyw and S as previously defined. This is what is called the variational formulation

of the problem. Finally, by invoquing some classical results about density (Appendix A) we know

that (2.7) holds for v ∈ H1
0 (Ω) and T ∈ (L2(Ω))2.

2.3 Abstract approach

As it was mentioned before, the core analytical approach to solve this problem comes from

ideas originally developed to solve the Navier Stokes equations [4], but combined with some other

results on the Theory of Monotone Operators.

Let X and M be two Hilbert spaces with norms ‖·‖M and ‖·‖X respectively. and define two

continuous forms: a(·; ·, ·) : X ×X ×X → R and b(·, ·) : X ×M → R such that the first one is

bilinear in the second and third entries, and the second form is bilinear.

Then consider the problem: Given f ∈M ′ find a pair (T, v) ∈ X×M such that for any S ∈ X

and w ∈M we have:

a(T; T,S) + b(S, v) = 0

b(T, w) = 〈f, w〉M ′,M

(2.8)

By Riesz Representation Theorem we know that associated with both forms, we have two linear

operators A(R) ∈ L(X,X ′) and B ∈ L(X,M ′) such that they satisfy:

〈
A(R)S,T

〉
X′,X

= a(T; T,S)

〈BS, v〉M ′,M = b(T, w)
(2.9)

Therefore, the equations on (2.8) become:

〈
A(T)T,S

〉
X′,X

+ 〈B∗v,S〉X′,X = 0

〈BT, v〉M ′,M = 〈f, w〉M ′,M

(2.10)
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which is valid for any T ∈ X and any w ∈M . Thus, our problem is equivalent to:

Given f ∈M ′, find a pair (T, v) ∈ X ×M such that:

〈
A(T)T,S

〉
X′,X

+ 〈B∗v,S〉X′,X = 0 ∀S ∈ X

〈BT, w〉M ′,M = 〈f, w〉M ′,M ∀w ∈M
(2.11)

or equivalently:

A(T)T +B∗v = 0 in X ′

BT = f in M ′
(2.12)

It is clear that the operator B in the abstract form acts as the divergence operator in our original

problem. Therefore, the existence and uniqueness of the solution to the problem will depend on

the properties of both operators A(T) and B.

Remark 1. In the classical approach our system is of the form:

T + b(v)B∗v = 0 in X ′

BT = f in M ′
(2.13)

where b(v) is scalar field. Therefore, it is trivial to see that the previous system reduces to solving:

−B(b(v)B∗v) = f in M ′ (2.14)

which is not only independent of the value of T, but also in the general divergence form of an

elliptic second order PDE.

2.4 Existence and uniqueness of solutions

Clearly, the functional A(T)T from the previous section given by:

A(T)T = 2G(|T|)T = 2
{(

1 + 2R2 |T|2
)−n

+R3

}
T (2.15)

is not linear, but it still has some useful properties that can help in our task of finding a solution. In
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fact, it is easy to see that:

∥∥∥{(1 + 2R2 |T|2
)−n

+R3

}
T
∥∥∥
L2(Ω)

≤ (1 +R3) ‖T‖L2(Ω) (2.16)

i.e., A(T)T ∈ (L2(Ω))2, and also

R3 ‖T‖2
L2(Ω) ≤

∫
Ω

{(
1 + 2R2 |T|2

)−n
+R3

}
T ·T dx (2.17)

Now, take T,S ∈ (L2(Ω))2
⋂

(C1(Ω))2 and let t > 0 and calculate the following:

∫
Ω

[G(|T + tS|2)(T + tS)−G(|T|2)T] · [(T + tS)−T]dx (2.18)

after arranging terms and dividing by 1
t2

it yields:

∫
Ω

1

t
[G(|T + tS|2)−G(|T|2)]T · Sdx+

∫
Ω

G(|T + tS|2)S · Sdx (2.19)

by letting t→ 0 we get:

∫
Ω

(grad G(|T|2) ·T)(T · S)dx+

∫
Ω

G(|T|2)S · Sdx (2.20)

finally, by calculating the actual value of the differential of G, replacing it back into equation

(2.20) and by Theorem of Monotonicity of Differentiable Mappings (Appendix A), we have that

the monotonicity of the operator holds if, for any T,S ∈ (L2(Ω))2:

∫
Ω

|S|2 [−4R2n(1 + 2R2 |T|2)−n−1 |T|2 +G(|T|2)]dx ≥ 0 (2.21)

the critical point when |T| = 0 gives the final condition that the operator is monotonic if:

R3 ≥
(

2n− 1

2n+ 2

)n+1

(2.22)
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It turns out this is the same condition for monotonicity found by Le Roux and Rajagopal 1

Obviously, for negative values of n, the monotonicity is uniform, i.e., it is independent of any of

the other parameters.

Finally, since the operator G(|T|)T is continuous, bounded, monotone, and coercive, the

Browder-Minty Theorem (Appendix B) implies that for any S ∈ (L2(Ω))2 there exists a unique

T ∈ (L2(Ω))2 such that:

G(|T|)T = S (2.23)

as long as (2.22) holds.

To summarize all the previous ideas, let us prove the next.

Proposition 1. Let λ ∈ R, R2 > 0,R3 > 0 and n be such that R3 ≥ (2n−1
2n+2

)n+1. Then, there exists

a unique pair (T, v) ∈ L2(Ω)2 ×H1
0 (Ω) such that:

 −
∫

Ω
T · grad w dx =

∫
Ω
λw dx∫

Ω
grad vz · S dx =

∫
Ω

2G(|T|2)T · S dx
(2.24)

holds for any (S, w) ∈ L2(Ω)2 ×H1
0 (Ω)

Proof. Associated to λ we define the function λ = −div Fλ, then the problem becomes:


∫

Ω
(T− Fλ) · grad w dx = 0∫

Ω
grad vz · S dx =

∫
Ω

2G(|T|2)T · S dx
(2.25)

which holds for any (S, w) ∈ L2(Ω)2 ×H1
0 (Ω)

In particular, for T ∈ L2(Ω)2 the second equation on (2.25) becomes:

∫
Ω

grad vz ·T dx =

∫
Ω

2G(|T|2)T ·T dx ≥ R3 ‖T‖2
(L2(Ω))2 (2.26)

1Shear Flows of a New Class of Power-Law Fluids, Applications of Mathematics, 2013
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then, by the Cauchy-Schwartz and Poincare inequality we finally have that:

‖T‖(L2(Ω))2 ≤
Cp
2R3

‖vz‖H1
0 (Ω) (2.27)

also, by the upper boundedness of the non linear term and by the second equation of (2.5) we have

that:

‖vz‖H1
0 (Ω) ≤

2(1 +R3)

Cp
‖T‖(L2(Ω))2 (2.28)

next notice that in the first equation on (2.25), in particular we have that

∫
Ω

T · grad vz dx =

∫
Ω

Fλ · grad vz dx (2.29)

thus, we can finally see that the stress has a bound given by:

‖T‖(L2(Ω))2 ≤
(1 +R3)

R3

‖Fλ‖(L2(Ω))2 (2.30)

and since the velocity is bounded by the stress, then so is the velocity. Therefore, since L2(Ω)2 and

H1
0 (Ω) are reflexive spaces, we can solve the finite dimensional projected problem.

Finally, let us assume that we have two solutions (T1, v1) and (T2, v2) such that they satisfy

(2.5), then substracting one from another we have that:

 div (T1 −T2) = 0 in Ω

grad (v1 − v2) = 2(G(|T1|2)T1 −G(|T2|2)T2) in Ω
(2.31)

then, by calculating the inner product of the second equation with T1 −T2 it yields:

(grad (v1 − v2),T1 −T2)(L2(Ω))2 = 2((G(|T1|2)T1 −G(|T2|2)T2),T1 −T2)(L2(Ω))2 (2.32)
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then notice that the left hand side has the property:

(grad (v1 − v2),T1 −T2)(L2(Ω))2 = −(v1 − v2, div (T1 −T2))(L2(Ω))2 = 0 (2.33)

this implies by the monoticity of the non linear operator that T1 = T2 which then implies that

v1 = v2

Remark 2. Notice that the bounds for both velocity and stress do not depend on anything else than

the size of the domain, the Poincare constantCp and the non dimensional parameterR3. Moreover,

from (2.30) we see that the smaller R3 is, the bigger right hand side bound we have. This means

that for very small values of R3 the problem becomes more and more unstable, which is exactly

what the monotonicity condition for R3 from the Browder-Mintty Theorem stated.
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3. SECONDARY FLOW

3.1 Mathematical statement of the problem

For the secondary flow analysis, recall the system of equations of the secondary flow:


− 1
R1

grad (1
3
trT1) = −(grad v0)v1 + 1

R1
div T1δ

D1 =
[
(1 +R2 ‖T0δ‖2)−n +R3

]
T1δ

div v1 = 0

(3.1)

at this time, the terms v0 and T0δ are already known, so this problem is linear on v1 and T1δ.

Moreover, it can be written only in terms of velocity and the trace of τ as:

−
1
R1

grad (1
3
trT1) = −(grad v0)v1 + 1

R1
div [ 1

2G(T0)
(grad v1 + grad vT1 )]

div v1 = 0
(3.2)

where v1 = (vx, vy, 0) and the term (1
3
trT1) are unknown. Notice that only the gradient on the left

and the first term on the right hand side of the first equation have components on the z direction.

3.2 Existence and uniqueness

The two dimensional nature of the problem and the fact that the divergence of the velocity is

zero implies the existence of a streamfunction ψ such that:

 vx = ∂ψ
∂y

vy = −∂ψ
∂x

(3.3)

Next after calculating the curl of the conservation of linear momentum (3.2) and replacing the

streamfunction (3.3) it yields:
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
42ψ +G

[(
∂2

∂x2
− ∂2

∂y2

) (
1
G

)] (
∂2ψ
∂x2
− ∂2ψ

∂y2

)
+ 4G ∂2

∂x∂y

(
1
G

)
∂2ψ
∂x∂y

= 0

∂ψ
∂x

= ∂ψ
∂y

= 0

ψ = ψ0

(3.4)

where the symbol ∆2 stands for the bilaplacian operator. The boundary conditions come naturally

from the definition of ψ and also from the fact that the boundary itself is also a streamline.

Notice that this is a linear PDE for ψ with the function G given from the previous step of the

axial flow. In particular, if the exponent n = 0, the function G becomes constant and the equation

reduces to a biharmonic equation, whose solution is a flat surface at a distance ψ0 from the origin,

i.e., there are no streamlines being formed.

Without any loose of generality on the boundary conditions, we can rewrite the problem as

follows:


∂2

∂x2

[
1
G

(
∂2ψ
∂x2
− ∂2ψ

∂y2

)]
− ∂2

∂y2

[
1
G

(
∂2ψ
∂x2
− ∂2ψ

∂y2

)]
+ 4 ∂2

∂x∂y

[
1
G

∂2ψ
∂x∂y

]
= 0

∂ψ
∂x

= ∂ψ
∂y

= 0

ψ = 0

(3.5)

The previous equations suggests that the solution to our problem would be on the spaceH2
0 (Ω).

Next, let φ ∈ D(Ω) be given. After multuplying and integrating over the domain, we get the

variational form given by:

∫
Ω

1

G

[
∂2ψ

∂x2

∂2φ

∂x2
− ∂2ψ

∂x2

∂2φ

∂y2
− ∂2ψ

∂y2

∂2φ

∂x2
+ 4

∂2ψ

∂x∂y

∂2φ

∂x∂y
+
∂2ψ

∂y2

∂2φ

∂y2

]
= 0 (3.6)

After rearranging terms, we define the symmetric bilinear form:

B(ψ, φ) =

∫
Ω

1

G

[
∆ψ∆φ− 2

∂2ψ

∂x2

∂2φ

∂y2
− 2

∂2ψ

∂y2

∂2φ

∂x2
+ 4

∂2ψ

∂x∂y

∂2φ

∂x∂y

]
dx (3.7)

from the boundedness of G (upper and lower) we can get the estimates:
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|B(ψ, φ)| ≤ 1
R3
‖D2ψ‖L2(Ω) ‖D2φ‖L2(Ω)

B(ψ, ψ) ≥ 1
1+R3

‖∆ψ‖2
L2(Ω)

(3.8)

notice that the derivatives of ψ are functions of H1
0 (Ω), therefore we can apply the Poincare

Inequality to them, sum them up and get:

‖Dψ‖L2(Ω) ≤ cp
∥∥D2ψ

∥∥
L2(Ω)

(3.9)

also, we have the interesting property:

∫
Ω

∂2ψ

∂x∂y

∂2ψ

∂x∂y
dx = −

∫
Ω

∂ψ

∂x

∂3ψ

∂x∂y2
dx =

∫
Ω

∂2ψ

∂x2

∂2ψ

∂y2
dx (3.10)

then, it is easy to see that the two previous equations imply the important relation:

‖ψ‖L2(Ω) ≤ c2
p ‖∆ψ‖L2(Ω) (3.11)

that holds for any ψ ∈ D(Ω), and by density in H2
0 (Ω)

In other words, the Laplacian operator is continuous and bounded in H2
0 (Ω). Now, since the

Laplacian is also symmetric, and positive definite we can directly claim (without the help of Lax-

Milgram Theorem) that the bilinear form is also an inner product. Finally, we claim that the

problem has solution and that it is unique for any given right hand side element in H−2(Ω).

Finally, since the boundary condition for ψ is constant all over it, and since (3.5) involves

derivatives only, we have finally proved that there are no secondary flows being formed for this

particular Implicit Constitutive Model in our approach.

20



4. NUMERICAL ANALYSIS

4.1 Numerical Method

Recall the variational formulation for the primary flow:

 −
∫

Ω
T · grad w dx =

∫
Ω
λw dx∫

Ω
grad vz · S dx =

∫
Ω

2G(|T|2)T · S dx
(4.1)

Then, let us take a Delaunay triangulation of the domain, and set Vh to be the defined by:

Vh =
{
wh ∈ C0(Ω) : wh ∈ P1(τh), τh ∈ Th

}
(4.2)

where P1(τh) is the space of first degree polynomials on the triangle τh of the triangulation Th .

For the stress we can take Lh to be:

Lh =
{
Th ∈ L2(Ω) : Th = Txêx + Tyêy

}
(4.3)

As we expected, the elements of the Lh space are functions that are constant on each triangle.

Now let’s take a triangle τh of the mesh with vertices i,j and k and define the ith nodal basis

element of Vh as:

φi(x) =


1 if x = Pi

0 if x = Pj or x = Pk

linear over τh

(4.4)

in particular, for a triangle with vertices Pi, Pj and Pk the ith element φi(x, y) is given by

φi(x, y) =
ai
∆

+
bi
∆
x+

ci
∆
y (4.5)

where the constants ai, bi and ci are calculated in terms of coordinates of the vertices, and ∆ is
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twice the size of the triangle.

Figure 4.1: triangular element

Next, we define Th = (Tx, Ty), Sh = (Sx, Sy), vh = ΦT
τ V and wh = ΦT

τ W where Φτ =

(φi, φj, φk)
T , V = (Vi, Vj, Vk) and W = (Wi,Wj,Wk). This leads to:

∫
τh

grad ΦT
τ V · Sh dx =

∫
τh

(∇φiVi +∇φjVj +∇φkVk) · (Sxêx + Syêy) dx

=

(
Sx , Sy

)
1
2

bi bj bk

ci cj ck



Vi

Vj

Vk


(4.6)

∫
τh

Th · grad ΦT
τ W dx =

∫
τh

(Txêx + Tyêy) · (∇φiWi +∇φjWj +∇φkWk) dx

=

(
Wi , Wj , Wk

)
1
2


bi ci

bj cj

bk ck


Tx
Ty

 (4.7)
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∫
τh

Th · Sh dx =
∫
τh

(Txêx + Tyêy) · (Sxêx + Syêy) dx

=

(
Sx , Sy

)
∆
2

1 0

0 1


Tx
Ty

 (4.8)

∫
τh
G(Th)Th · Sh dx = G(Tx, Ty)

∫
τh

(Txêx + Tyêy) · (Sxêx + Syêy) dx

=

(
Sx , Sy

)
∆
2
G(Tx, Ty)

1 0

0 1


Tx
Ty

 (4.9)

∫
τh

ΦT
τ FΦT

τ W dx =
∫
τh

(φiFi + φjFj + φkFk)(φiWi + φjWj + φkWk) dx

=

(
Wi , Wj , Wk

)∫
τh


φiφi φiφj φiφk

φjφi φjφj φjφk

φkφi φkφj φkφk

 dx


Fi

Fj

Fk

 = WTA0
τF

(4.10)

where A0
τ is known as the mass matrix of the element. Notice that G is constant over each triangle

since our elements are constant too.

4.1.1 Splitting Algorithm

Unfortunately, the non linear nature of the problem makes any direct approach insufficient,

which is why we have to use a very clever trick based in the paper by Mercier and Lions [5],

that exploits the fact that some non linear monotonic operators can be splitted into two non linear

monotonic operators. In our case, since one of the two operators is linear, we can use it as a

initializating value, in the algorithm that is explained as follows:

• step 0: set n = 0 in the non linear operator so it becomes a linear operator, and solve the

associated linear problem:


∫

Ω
(1 +R3)T0 · S dx−

∫
Ω

1
2

grad v0 · S dx = 0

−
∫

Ω
T0 · grad w dx =

∫
Ω
λw dx

(4.11)
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• step 1: using the previous k step and a fake time derivative, calculate the linear problem for

the step k + 1
2

given by:


∫

Ω

[
1
h
(Tk+ 1

2 −Tk) +R3T
k+ 1

2 −∇vk+ 1
2

]
· S dx = −

∫
Ω

(1 + 2R2

∣∣Tk
∣∣2)−nTk · S dx

−
∫

Ω
Tk+ 1

2 · ∇w dx =
∫

Ω
λw dx

(4.12)

• step 2: using the previous k + 1
2

step, calculate the nonlinear k + 1 term given by:

∫
Ω

[
1

h
(Tk+1 −Tk+ 1

2 ) + (1 + 2R2

∣∣Tk+1
∣∣2)−nTk+1

]
·S dx =

∫
Ω

(∇vk+ 1
2 −R3T

k+ 1
2 ) ·S dx

(4.13)

now feed the first step with the result of the second step recursively until the solution con-

verges to a steady state.

Finally, notice that the finite dimensional scheme for step 0 has the structure:


(1 +R3)D −1

2
BT

B 0



−→Tx

−→
Ty


−→
V

 =


−→0−→

0


A0−→Λ

 (4.14)

and the scheme for step 1 has the structure:


( 1
h

+R3)D −1
2
BT

B 0



−→Tx

−→
Ty


−→
V

 =


D(
−→
T0)

−→T0
x

−→
T0
y


A0−→Λ

 (4.15)

where D ∈ R2M×2M is a diagonal matrix, B ∈ RN×2M is a rectangular matrix and 0 ∈ RN×N

is a null matrix.
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Remark 3. Notice that by the choice of the elements on the stress, the second step (4.13) is in

reality a nonlinear algebraic system of two equations, that can be solved triangle by triangle by

applying, for example, the classical Newton’s Method.

4.2 Numerical Results

For the experimental results, a Matlab R© algorithm was developed using a Delaunay triangular

mesh obtained with Abaqus R©. The code had to be written since most simulation programs do not

allow to compute Implicit Constitutive Relations.

4.2.1 Effects on the minor to major axis ratio for the elliptic cross section

As it can be seen from the results (fig. 4.2), if all the parameters of the model are kept fixed,

the minor to major axis ratio has a minor effect on the axial velocity. It escentially just decreases

when the ratio decreases, which is consistent with the decreased cross sectional area. Overall, the

surface that represents the axial velocity remains very similar to a paraboloid.

From the plots of the norm of the shear stress (fig. 4.3), it can be seen that the maximum stress

occurs all over the boundary for a circular cross section, and it smoothly changes to being just two

single points on the ends of the minor axes when the ratio in between them changes.

4.2.2 Effects on the geometry of the domain

As it was stated before, the numerical model also works on different domains (fig. 4.4), as

long as they are bounded and simply connected. In this case, the maximum stress will appear on

the boundary point which is the closest to the center of the domain, and the velocity profile would

remain to be a paraboloid-like surface.

4.2.3 Numerical experiments

To compare how well the numercal approximation works, it is important to compare it against

a particular given analitycal solution. It turns out that when the cross section of the pipe is circular,

the problem becomes trivial, and the velocity is then given analitically by the equation:
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vz =
1

(−n+ 1)R2λ

{[
1 +

R2λ
2

2
(x2 + y2)

]−n+1

−
(

1 +
R2λ

2

2

)−n+1
}

+
R3λ

2
(x2 + y2 − 1)

(4.16)

From the formulation of the problem, we see that the most critical power exponent such that the

model is implicit is when n = 1
2
, and also by the monotonicity of the nonlinear term, the critical

value for the model to be monotonic is when R3 ≥ 2e−
3
2 therefore we pick R3 = 1

2
. A similar

analysis tell us that a meaningful value for the last parameter will be R2 = 1.

Table 4.1: Experimental error for different pressure gradients

pressure gradient 0.1 0.25 0.5 1
coarse 0.0089 0.0084 0.0079 0.0065
refined 8.6981× 10−4 7.8671× 10−4 7.1506× 10−4 5.7597× 10−4

From the experimental errors, it is easy to see that the smaller the pressure gradient, the greater

the error, which is consistent with the theory since the nonlinearity is dominant for small values

of the pressure gradient. For large enough pressure gradients the error becomes smaller, since the

model tends to a Newtonian fluid.

Remark 4. Notice that the stress field cannot be given in terms of an analytical solution since the

problem itself is implicit. Therefore, there is no point on comparing the numerical results for stress

agaisnt another numerical approximation.
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b
a = 1 b

a = 0.9

b
a = 0.75 b

a = 0.5

Figure 4.2: Effect of the axes ratio b
a

on the axial velocity for given values on the model’s parame-
ters
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b
a = 1 b

a = 0.9

b
a = 0.75 b

a = 0.5

Figure 4.3: Effect of the axes ratio b
a

on the shear stress for given values on the model’s parameters

L-shaped domain Irregular domain

Figure 4.4: Axial velocity for different geometries
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5. CONCLUSIONS

• Solving the secondary flow approximated problem (first order perturbation of velocity and

stress) is equivalent to solve the axial flow problem only.

• The result does not depend on the geometry of the boundary, as long as the domain is

bounded and simply connected.

• Notice also, that the problem does not depend on the Reynolds number R1, which is a hughe

problem when it comes to stability analysis.

• For the elliptical case, the non linearities are barely noticeable since the profile remain closer

to the paraboloid profile of the classical solution.

• For general shape domains, the the axial velocity remains as a paraboloid-like surface where

the maximum velocity occurs around some inner point of the domain, whereas the maximum

stress occurs on the closest point to the maximum velocity in the boundary.

• The algorithm behaves quite well for small values of n and λ, but it starts to become slower

and slower when these parameters increase.

5.1 Challenges

Recall the abstract formulation of the problem (equation 2.12) from the axial flow:

A(T)T +B∗v = 0 in X ′

BT = f in M ′
(5.1)

In our perturbation approach , and because of the space of solutions chosen, the second equation

depends linearly on only one of the unknowns. Without having any perturbation on the velocity or

the Cauchy stress tensor, the problem becomes:
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A(T)T +B∗v = 0 in X ′

C(v)v +BT = f in M ′
(5.2)

where C(v)v is also a nonlinear operator. Obviously, this problem must be solved simultaneously

for velocity and stress. Also, the ellipticity condition, in general, is no longer valid. Nevertheless,

we can still apply the Minty-Browder Theorem (Appendix A) for the nonlinear term A(T)T and

try to apply something similar to C(v)v. Also, notice that the fully developed flow assumption can

still be applied.

5.2 Further Study

The next natural step from here is to analyze the transient axial flow problem. The only change

that we will have is that now we will assume a pulsatile flow, which brings an extra term on the

Conservation of Linear Momentum, wich transforms the elliptic nature of this equation into a

parabolic PDE. Notice that in this case, the Reynolds number R1 will play a role on the model.

Since our main interest is the study of the flow of human blood in artificial pipes, and given that

this pipes are flexible, the more interesting problem to solve is the flow of the blood under the same

Stress Power-Law Constitutive Relation but for a curved pipe. There are currently available some

studies on the classical approach [6] that can be generalized for the type of fluids we are interested

in. The main challenge of this problem is the fact that the curvature of the pipe plays a very

important rol and cannot be neglected nor taken as a small parameter. An analytical approach using

the concepts of differential manifolds with curvilinear coordinate systems should be considered for

the differential operators involved in the problem.
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APPENDIX A

SOME CLASSICAL RESULTS ON FUNCTIONAL ANALYSIS

A.1 Sobolev Spaces and L2 Spaces

Definition 1. Let Ω ⊂ Rn be a non empty, open, bounded set. We define the space H1(Ω) to be:

H1(Ω) =

{
w ∈ L2(Ω) :

∂w

∂xi
∈ L2(Ω), i = 1, ..., n

}
(A.1)

with inner product defined by:

(u, v)H1(Ω) =

∫
Ω

(
uv +

N∑
i=1

∂u

∂xi

∂v

∂xi

)
dx (A.2)

Likewise, we define (H2(Ω))n to be:

H2(Ω) =

{
w ∈ L2(Ω) :

∂w

∂xi
∈ L2(Ω),

∂2w

∂xi∂xj
∈ L2(Ω)i, j = 1, ..., n

}
(A.3)

with inner product defined by:

(S,T)H2(Ω) =

∫
Ω

(
uv +

N∑
i=1

∂u

∂xi

∂v

∂xi
+

N∑
i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj

)
dx (A.4)

where differentiation is meant to be in the sense of a Lebesgue measure.

Finally, we define (L2(Ω))n to be:

(L2(Ω))n = L2(Ω)× ...× L2(Ω)︸ ︷︷ ︸
n-times

(A.5)

with inner product defined by:

(S,T)L2(Ω) =

∫
Ω

S ·T dx (A.6)
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Now, we invoque the next classical result from the theory of Sobolev spaces in order to find an

appropiate space in which our velocity would be in.

Definition 2. Under the same hypothesis of the previous definition, we define the closed subspace

H1
0 (Ω) to be given by

H1
0 (Ω) = D(Ω)

H1(Ω)
(A.7)

H2
0 (Ω) = D(Ω)

H2(Ω)
(A.8)

where

D(Ω) =
{
v ∈ C∞(Ω) : supp(v)

R2

⊂ Ω
}

(A.9)

A.2 Some results about existence and uniqueness of solutions to Partial Differential Equa-

tions

A.2.1 Linear operators

Theorem 1. (Lax-Milgram) Let H be a Hilbert space and let b : H ×H 7→ R be a bilinear form

such that:

|b(u, v)| ≤ c ‖u‖H ‖v‖H , ∀u, v ∈ H

b(u, u) ≥ α ‖u‖2
H ,∀u ∈ H

(A.10)

for given positive constants c and α. Then, given f ∈ H ′, there exists a unique u ∈ H such that:

b(u, v) = 〈f, v〉H′,H (A.11)

for any v ∈ H .

If the bilinear form is continuous but not elliptic, we can still guarantee the existence and

uniqueness of the solution of the problem by the next:
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Theorem 2. (Banach-Necas-Babuska) Let X be a Banach space and M be a reflexive Banach

space. Let b : X × Y 7→ R a bilinear form and f ∈M ′ be such that:

1. there exists a constant α > 0 such that:

inf
v∈M

sup
T∈X

b(T, v)

‖T‖X ‖v‖M
≥ α (A.12)

2. for all v ∈M and for all T ∈ X :

b(T, v) = 0⇒ v = 0 (A.13)

then, for f ∈M ′ there exists a unique T such that for all v ∈M we have:

b(T, v) = 〈f, v〉M ′,M (A.14)

Moreover, for all f ∈M ′ the following estimate holds:

‖T‖X ≤
1

α
‖f‖M ′ (A.15)

A.2.2 Non Linear operators

When the operator is non linear, there is still a way to prove existence and uniqueness o solu-

tions via the next:

Theorem 3 (Browder-Minty). Let X be a reflexive Banach space, and let F : X 7→ X ′ be contin-

uous, bounded, and such that:

〈F (u), u〉X′,X

‖u‖X
→∞ as ‖u‖X →∞ (A.16)

〈F (u)− F (v), u− v〉X′,X ≥ 0 ∀u, v ∈ X (A.17)
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then, for every g ∈ X ′, there exists an element u ∈ X such that:

F (u) = g (A.18)

In order to prove the monotonicity of the functional, sometimes it is useful to use the next

result:

Theorem 4 (Monotonicity of differentiable mappings). A differentiable mapping F : Rn 7→ Rn

is monotone if and only if for each x ∈ Rn the Jacobian matrix DF (x) is positive-semidefinite.

It is strictly monotone if the matrix is positive-definite (but this condition is only sufficient, not

necessary).
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APPENDIX B

NUMERICAL SCHEME

B.1 Algorithm

function [error_v] = implicit(ellipse,n,R2,R3,lambda)

h = 100; %time step

node = table2array(ellipse);

TRI = delaunay(node(:,2),node(:,3));

N = length(node(:,1));

N0 = length(node(:,1))-sum(node(:,4));

M = length(TRI(:,1));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

D = sparse(2*M,2*M);

B = sparse(N,2*M);

A0 = sparse(N,N);

for i=1:M

P1 = [node(TRI(i,1),2);node(TRI(i,1),3)];

P2 = [node(TRI(i,2),2);node(TRI(i,2),3)];

P3 = [node(TRI(i,3),2);node(TRI(i,3),3)];

[At0,b,c] = matricesfinal(P1,P2,P3);

delta = det([[P1,P2,P3];[1 1 1]]);

D(i,i) = delta/2;

D(i+M,i+M) = delta/2;

B(TRI(i,1),i) = B(TRI(i,1),i) + b(1)/2*node(TRI(i,1),4);

B(TRI(i,2),i) = B(TRI(i,2),i) + b(2)/2*node(TRI(i,2),4);

B(TRI(i,3),i) = B(TRI(i,3),i) + b(3)/2*node(TRI(i,3),4);

B(TRI(i,1),i+M) = B(TRI(i,1),i+M) + c(1)/2*node(TRI(i,1),4);

B(TRI(i,2),i+M) = B(TRI(i,2),i+M) + c(2)/2*node(TRI(i,2),4);
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B(TRI(i,3),i+M) = B(TRI(i,3),i+M) + c(3)/2*node(TRI(i,3),4);

A0(TRI(i,1),TRI(i,1)) = A0(TRI(i,1),TRI(i,1)) + At0(1,1)*node(TRI(i,1),4);

A0(TRI(i,2),TRI(i,2)) = A0(TRI(i,2),TRI(i,2)) + At0(2,2)*node(TRI(i,2),4);

A0(TRI(i,3),TRI(i,3)) = A0(TRI(i,3),TRI(i,3)) + At0(3,3)*node(TRI(i,3),4);

A0(TRI(i,1),TRI(i,2)) = A0(TRI(i,1),TRI(i,2)) + At0(1,2)*node(TRI(i,1),4);

A0(TRI(i,1),TRI(i,3)) = A0(TRI(i,1),TRI(i,3)) + At0(1,3)*node(TRI(i,1),4);

A0(TRI(i,2),TRI(i,3)) = A0(TRI(i,2),TRI(i,3)) + At0(2,3)*node(TRI(i,2),4);

A0(TRI(i,2),TRI(i,1)) = A0(TRI(i,2),TRI(i,1)) + At0(2,1)*node(TRI(i,2),4);

A0(TRI(i,3),TRI(i,1)) = A0(TRI(i,3),TRI(i,1)) + At0(3,1)*node(TRI(i,3),4);

A0(TRI(i,3),TRI(i,2)) = A0(TRI(i,3),TRI(i,2)) + At0(3,2)*node(TRI(i,3),4);

end

A = [(1+R3)*D , -.5*B’ ; B , sparse(N,N)];

A( ~any(A,2), : ) = []; %delete null rows

A( :, ~any(A,1) ) = []; %delete null columns

l = lambda*ones(N-N0,1);

f = [sparse(2*M,1);A0(N0+1:N,N0+1:N)*l];

x0 = A\f;

T0 = x0(1:2*M);

v0 = [zeros(N0,1) ; x0(2*M+1:2*M+N-N0)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

D1 = sparse(2*M,2*M);

A1 = [(1/h+R3)*D , -.5*B’ ; B sparse(N,N)];

A1( ~any(A1,2), : ) = []; %delete null rows

A1( :, ~any(A1,1) ) = []; %delete null columns

T1 = ones(2*M,1);

T2 = zeros(2*M,1);

while(norm(T1-T2)>1e-3)

for i=1:M

P1 = [node(TRI(i,1),2);node(TRI(i,1),3)];
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P2 = [node(TRI(i,2),2);node(TRI(i,2),3)];

P3 = [node(TRI(i,3),2);node(TRI(i,3),3)];

delta = det([[P1,P2,P3];[1 1 1]]);

norm2 = T0(i)^2+T0(i+M)^2;

norm2 = 1/h - (1+2*R2*norm2)^(-n);

D1(i,i) = delta*norm2/2;

D1(i+M,i+M) = delta*norm2/2;

end

f1 = [D1*T0 ; A0(N0+1:N,N0+1:N)*l];

x1 = A1\f1;

T1 = x1(1:2*M);

v1 = [zeros(N0,1) ; x1(2*M+1:2*M+N-N0)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STEP 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:M

P1 = [node(TRI(i,1),2);node(TRI(i,1),3)];

P2 = [node(TRI(i,2),2);node(TRI(i,2),3)];

P3 = [node(TRI(i,3),2);node(TRI(i,3),3)];

delta = det([[P1,P2,P3];[1 1 1]]);

[~,b,c] = matricesfinal(P1,P2,P3);

Tt_1 = [T1(i);T1(i+M)];

vt_1 = [v1(TRI(i,1));v1(TRI(i,2));v1(TRI(i,3))];

Tt_2 = Newton(n,R2,R3,Tt_1,vt_1,b,c,delta,h);

T2(i) = Tt_2(1);

T2(i+M) = Tt_2(2);

end

T0 = T2;

end

v_th = -1/((-n+1)*R2*lambda)*((1+(R2*lambda^2/2)*(node(:,2).^2+node(:,3).^2)).^(-n+1)

-(1+R2*lambda^2/2)^(-n+1)) - (R3*lambda/2)*(node(:,2).^2+node(:,3).^2-1);
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tri1 = triangulation(TRI,node(:,2),node(:,3),v1);

tri = triangulation(TRI,node(:,2),node(:,3),v_th);

subplot(2,1,1)

trisurf(tri1);

title(’experimental velocity’);

subplot(2,1,2)

trisurf(tri);

title(’theoretical velocity’);

error_v = norm(v1-v_th)/norm(v_th);

end
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