THE IMPACT OF THE LAST PLANNER SYSTEM ON CONSTRUCTION PROJECT

PERFORMANCE IN TERMS OF SCHEDULE AND COST

A Thesis

by

ARIAN VAZIRI

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee,	José L. Fernández-Solís
Committee Members, Eric Jing Du	
	Sarel Lavy
	Rodney Hill
Head of Department,	Patrick Suermann

May 2018

Major Subject: Construction Management

Copyright 2018 Arian Vaziri

ABSTARCT

When speaking of project performance, historically, improvements in practice have been held in higher regards than improvements in management theory. Yet, it is argued that enhancement in practice cannot be achieved without improved theory. This research investigates and compares Management by Results (MBR) and Management by Means (MBM), as two primitive and competing conceptualizations of management underlying prevailing project management and control systems. The Earned Value Method (EVM) and the Last Planner System (LPS) are found to be based on MBR and MBM view respectively. According to existing literature, the LPS, as a MBM-based system, is claimed to be more efficient in comparison with EVM in cost and schedule performance. Yet, more quantitative research is required to be carried out in this area. This research starts with a comprehensive structured literature search of MBR and MBM-based control and management systems in terms of cost and schedule performance with the aim of figuring out which system is more appropriate to today's construction projects with a high level of complexity and uncertainty and where tasks are highly interdependent. Structured literature review and three different statistical data analyses are used as the methodology of this research. The data of over seventy construction projects is statistically analyzed in order to test the research hypothesis that the LPS, as a project planning and control method, positively influences the project performance in terms of cost and schedule. The results display that projects implementing the LPS are superior to projects with traditional management method in terms of schedule performance, yet, there is no significant difference between their cost performance.

DEDICATION

This thesis work is dedicated to my dear parents, Giti Zoghi and Bijan Vaziri, who have been a constant source of support and encouragement during my whole life and I would not be here today without their endless love and help.

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. José L. Fernández-Solís. This research would not have been possible without his guidance and help. Also I would like to thank my committee members, Dr. Du, Dr. Lavy, and Prof. Hill, for their support throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for making my time at Texas A&M University a great experience, especially Prof. Ben Ashburn. Finally, thanks to my mother and father for their support and love. I credit all my accomplishments to them.

CONTRIBUTORS AND FUNDING SOURCES

This work was supervised by a thesis committee consisting of committee chair, Dr. José L. Fernández-Solís and committee members Dr. Eric Jing Du and Dr. Sarel Lavy of the Department of Construction Science and Professor Rodney Hill of Department of Architecture.

The data used for this research was provided by Dr. José L. Fernández-Solís and all the work conducted for this thesis was completed independently by the student Arian Vaziri under the advisement of Dr. José L. Fernández-Solís.

There are no outside funding contributions to acknowledge related to the research and compilation of this thesis.

NOMENCLATURE

ANOVA	Analysis of Variance
ACWP	Actual Cost of Work Performed
BCWP	Budgeted Cost of Work Performed
BCWS	Budgeted Cost of Work Scheduled
CIP	Construction in Progress
CMAR	Construction Management at Risk
CPI	Cost Performance Index
CSP	Competitive Sealed Proposal
CV	Cost Variance
DB	Design Build
DPS	Project Delivery System
EVM	Earned Value Method
GMP	Guaranteed Maximum Price
GSF	Gross Square Feet
LPS	Last Planner System
MANOVA	Multivariate Analysis of Variance
MBM	Management by Means
MBR	Management by Results
PPC	Percent Plan Complete
SF	Schedule Variance
SPI	Schedule Performance Index

Work Breakdown Structure

WBS

TABLE OF CONTENTS

			Page
AE	BSTRAC	Т	ii
DE	EDICATI	ON	iii
AC	CKNOWI	LEDGEMENTS	iv
CC	ONTRIBU	JTORS AND FUNDING SOURCES	v
NC	OMENCI	ATURE	vi
TA	BLE OF	CONTENTS	vii
LIS	ST OF FI	GURES	ix
LIS	ST OF TA	ABLES	Х
1.	INTRO	DUCTION	1
2.	REVIE	W OF LITERATURE	5
	2.1	Background	5
	2.2	Prevalent Management Theories in Construction Industry	6
		2.2.1 Management by Results (MBR)	7
		2.2.2 Management by Means (MBM)	14
	2.3	Accounting Numbers versus Relationship	19
	2.4	Empirical Evidence from Literature	21
3.	PROBL	EM STATEMENT	23
4.	METHO	DDOLOGY	24
	4.1	Research Design	24
	4.2	Measurements	25
	4.3	Statistical Analysis Methods	26
		4.3.1 Multivariate Regression Analysis	$\frac{-6}{26}$
		4 3 2 Discriminant Analysis	26
		4 3 3 Two Sample t-Test	$\frac{20}{27}$
		4.3.4 Factors and Metrics	27

Page

4.4	Data 4.4.1 Data Collection 4.4.2 Data Validation	28 28 29 20
5. ANALY	SIS AND FINDINGS	29 32
5.1	Statistical Analysis	32
	5.1.1 Hypothesis	32
	5.1.2 Discriminant Analysis	33
	5.1.3 Multivariate Regression Analysis	39
	5.1.4 Two Sample t-Test	46
5.2	Summary	58
	5.2.1 Summary Result of Discriminant Analysis	58
	5.2.2 Summary Result of Multivariate Regression	58
	5.2.3 Summary Result of Two Sample t-Test	59
5.3	Comparison	59
5.4	Limitations and Assumptions	60
5. CONCL	USION AND FUTURE WORK	62
REFERENC	CES	64
APPENDIX	ΧΑ	68
APPENDIX	КВ	69
APPENDIX	X C	70

LIST OF FIGURES

Figure 1	Variance Analysis for EVM curve	10
Figure 2	Traditional Planner Process	16
Figure 3	Last Planner Process	17
Figure 4	MBM and MBR Progress Curve	20
Figure 5	Number of Projects in Different Categories	29
Figure 6	Discriminant Analysis Results, Management Method vs All Metrics	33
Figure 7	Discriminant Analysis Results, PDS vs All Metrics	34
Figure 8	Discriminant Analysis Results, Project Contract Type vs All Metrics	35

LIST OF TABLES

Table 1	Schedule and Cost Performance from CV and SV	10
Table 2	Preliminary Literature Review Findings	22
Table 3	Factors and Metrics	27
Table 4	Sample Data Cell for Each Project	28
Table 5	Sample of Measurements Calculations	30
Table 6	Research Hypothesis	32
Table 7	Discriminant Analysis Results	35
Table 8	Discriminant Analysis with Grouped Metrics Results	39
Table 9	Multivariate Regression Analysis Results	46
Table 10	Two Sample t-Test Results	57

1. INTRODUCTION

Construction is a highly complex field with high level of unpredictability in time, condition, and every task (Allen and Iano 2011). According to Fernandez-Solis, construction can be conceived as an adaptive complicated system that is dynamic and non-linear (Fernandez-Solis 2013). Moreover, the number of participants of projects is increasing and there are serious time limitations for projects (Howell and Ballard 1996). An enormous number of transaction of material and information leads to high levels of interdependency and uncertainty, which is typical at the operational level. Under these circumstances, reliability of work and information flow becomes more critical and important than ever (Howell and Ballard 1996).

With regards to the properties of current construction projects, it is crucial to opt for the proper management method contributing to the success of the project and it is critical to coordinate and supervise the entire process thoroughly while making sure that the project is completed on schedule and within budget (Kim and Ballard 2010; Lagoo 2012). This requires a continuous track and revise in terms of cost and time. The variances in schedule and cost need to be monitored regularly in order to prevent escalating disorder in estimated and planned time and cost. This need culminated in evaluation and revision of control theories and practices with the ultimate purpose of the success of construction projects (Kim and Ballard 2010; Lagoo 2012).

There are several different project control tools and measures used in the industry. By the advent of computerized control tools, which makes the process of information easy, managers have started trying to control projects at more detailed levels. Despite the application of improved tools

using the advanced technology, there have been no significant improvement in projects performance (Kim and Ballard 2010).

It has been argued that an improved theory is vital for achieving improvement in practice (Koskela and Howell 2002; Vrijhoef and Koskela 2000). In fact, a theory elaborates observed behavior and contributes to grasping and predicting future behavior (Koskela and Howell 2002). In addition, the basis and source for the development of tools for analyzing, designing, and controlling are provided by implementation of theories (Kim and Ballard 2010).

According to the lack of an explicit theory in construction (Koskela 2000; Koskela and Howell 2002), in 1999, Koskela strived to develop a theory of construction (Koskela 1999). He proposed to consider construction as a type of production. In 2003, Bertelsen applied the theory of complex adaptive systems to construction (Bertelsen 2003). All these have addressed the nature of a project. Moreover, there have been some research and studies conducted on the question: What is project management? In 2002, Koskela and Howell explained the characteristics of traditional project management and lean project management by using thermostat and scientific model (Koskela and Howell 2002).

Management by results (MBR), is a target oriented management concept. In MBR, financial outcomes and their relation with the schedule are the main focus of the management or the 5 organization. Therefore, financial metrics and measures are used to evaluate and correct production process (Ballard and Howell 2003).

In contrast with MBR, Management by means (MBM) is a new concept of management focusing on resources, instead of finances, with the aim of achieving long term success by making improvement in methods, process, approaches, and their interrelations.

2

According to Johnson and Broms (2000), Earned Value Management method (EVM) reflects MBR thinking and the Last Planner System (LPS) is one of the examples of MBM concept; since the 'lean thinking' initiated from Toyota has roots and inferences that are well beyond manufacturing management alone (Ballard and Howell 2003).

EVM is a project management and control system that provides quantitative measure work performance and progress an objective approach (Fleming 1987). According to Warburton (2011), EVM can unite the triple main constraints of time, cost, and scope.

The LPS is a production planning and control tool introduced by Ballard (2000). The LPS applies flexible production planning procedures from the bottom that is in contrast with standard top down management principle, such as EVM. In LPS, promise fulfilments made to deliver production are being tracked with the purpose of keeping the production environment stable (Ballard and Howell 1994).

Although LPS, as an example of management methods reflecting MBM thinking, is elaborated and discussed adequately in the literature; however, there is no adequate quantitative evidence on the impacts of LPS on the performance of construction projects. Despite the fact that LPS is highly distributed and used across industry, most research studies conducted so far are mostly based on qualitative evidences of a few number of case studies (Formoso and Moura 2009). According to Ballard (2000), it is essential to evaluate and find out the advantages of greater plan reliability for time, cost, quality, and safety. As a result, there is a need to carry out quantitative studies and evaluate the impacts of each management concept (MBM and MBR) on the performance of construction projects.

This study first focuses on studying and comparing two management theories: Management-by Results (MBR) and Management-by-Means (MBM) in order to define a clear categorization of these two different management thinking's. Then, Earned Value Management system (EVM) and Last Planner system (LPS), as two project management and control systems reflecting MBR and MBM respectively, are compared in terms of their impact on schedule and cost performance in construction projects. This research is statistically considerable as it investigates a significant number of construction projects. twenty MBM-based and fifty-two MBR-based projects are statistically analyzed and studied in terms of schedule and cost performance.

This research endeavors to answer the following question:

Is the MBM more appropriate for construction project system where each task is highly independent?

The scope of the research is limited to investigating commercial projects, built in the state of Texas, with completion date in the interval of year 2000-2018.

2. REVIEW OF LITERATURE

2.1 Background

This literature review identifies concepts behind construction management practices, planning strategies, execution and planning tools, which are applied mostly within preconstruction, and construction planning and execution phases. Several search engines have been used for literature search and the content of this section is based on the search engines results for keywords, relevant data sources, and management practices applied in construction projects. Over thirty articles and books were found during the first step of literature search. Afterwards, specific criteria were applied to narrow down the database.

First, a wide ranging topic was chosen with the purpose of obtaining a broader perspective of construction management theories, concepts, and tools. Specific recurring words and most cited authors and practices were identified. Then, frequent recurrences were identified as keywords resulting to an outlined literature survey. A general database was developed for the literature search.

This database provided access to creditable and acclaimed publications and journals as following:

Journal of civil engineering and management, KSCE journal of civil engineering, journal of management in engineering (ASCE), Journal of construction engineering and management (ASCE), Alexandria Engineering Journal, Conference Proceedings of Annual Conferences of the International Group of Lean Construction (LGLC), Lean Construction Journal (LCI), etc.

The literature argues that it is not feasible to achieve improvement in practice without enhanced theory (Koskela and Howell 2002; Vrijhoef and Koskela 2000). A theory contributes to understanding observed behavior and anticipating future behavior (Koskela and Howell 2002). In addition, the development of tools for analyzing, designing, and controlling are based on a theory (Kim and Ballard 2010).

Whereas, there is an argument that there is no explicit theory in the area of construction (Koskela and Howell 2002). In fact, there is a clear need in establishing strong based theories that can be easily applies to construction practices. According to Kim and Ballard (2010), management theories are disregarded in construction industry. Moreover, making any late adjustment into a project is usually ineffective and expensive (Sterman 1992); in other words, the later the corrective action, the less effective it will be (Nepal et al. 2006).

Afterwards, literature based on existing theories that validates them through surveys and case studies was chosen. At the end, a holistic relation between construction theories and their corresponding practices was created. In addition, literature survey has been used to notice prevalent management principles applied in construction industry. Then, it develops a relation between these management concepts.

2.2 Prevalent Management Theories in Construction Industry

There are various concepts of management that are competing each other in different aspects. Johnson and Broms (2000) expressed the competing concepts of management in two distinct categories of Management-by-Results (MBR) and Management-by-Means (MBM).

MBR and MBM are continuously compared in construction industry. The controversy is that which of these two theories is better and more effective with the aim of improving management strategies that would lead to success of a construction project (Kim and Ballard 2010). These two theories will be discussed in detail in the research in order to establish the basis of choosing the topic of the research.

2.2.1 Management by Results (MBR)

Johnson and Broms (2000) proposed a distinction in management concept between MBR and MBM. MBR, displays the traditional management concept, expressing that organizations are driven by financial goals assuming that corporate purposes can be achieved by each part of the organization. In MBR, motivating and encouraging employees to reach or exceed financial goals is among the manager's key roles. That is the reason behind naming this management theory as "Managing-by-Results" by Johnson and Broms. In this category of management, managers set up financial targets and monitor performance against those targets. In other words, management is consisted of determining goal in advance to the act of production, monitoring during the course of production, and making correction after the act of production. In addition, financial metrics and measures are used to evaluate and correct production process (Ballard and Howell 2003).

MBR is driven from quantitative thinking. Consequently, this method of thinking delimits one's perception to only one dictated dimension; however, nature and organization are consisted of various dimensions (Johnson and Broms 2000). Under this quantitative thinking, the observers and objects are independent and separate from each other. The fact is that this quantitative thinking is appropriate to mechanical systems that all interactions can be defined in quantitative terms entirely. On the other hand, MBR neglects the attributes of organizations that are different from mechanical systems. In fact, it omits the assumption that the optimization of the whole can be achieved by optimizing all parts of the whole. In comparison with mechanical systems, organizational systems have more complicated relationships among their parts and subsystems. Therefore, MBR is considered as an inappropriate and insufficient management thinking for these systems. With regards to observations, MBR is worth to apply for short term goals where the stakes are low (Johnson and Broms 2000).

This system tracks the status and progress of a project as well as anticipating the likely performance in future. MBR, as a generalized term, incorporates the principles of Earned Value Management System (EVM).

2.2.1.1 Earned Value Method System (EVM)

Earned Value Method (EVM) is a project control system providing a quantitative measure of work performance (Fleming 1987). For every work performed, it includes crediting dollar or labor hour according to unit rates. The EVM is known for being superior to independent schedule and cost control for assessing work progress with the purpose of identifying possible schedule slippage and areas of budget overruns. Good planning along with efficient use of the EVM method, can reduce a considerable amount of problems arose from overruns in time and cost. Hence, in order to keep the project on time and within budget, it is essential to carefully direct the tracking of predicted schedule and cost (Kim and Ballard 2010).

Major components of this project control system are work package and variance analysis. A work breakdown structure (WBS), divides a project into the elements of work to be performed and completed. WBS defines cost accounts, which functions as management control points. This could be achieved by integrating elements of work need be accomplished with organization breakdown structure providing the "responsibility" field. Management control points are considered as the most detailed breakdown for project control, where resources are allocated, costs are collected, and performance is formally evaluated (McConnell 1985).

Every cost account acts as a control point and it is the minimum level at which individual variance analysis can be made. At any point in a WBS hierarchy, variance can be analyzed. According to cost/schedule control system criteria established by U.S Department of Defense, a cost account is defined as a management control point to accumulate actual cost and compare it to budged cost for work carried out (Kim and Ballard 2010).

2.2.1.1.1 Metrics

Cost Variance (CV) and Schedule Variance (SV) are the two relevant variances used in EVM. In this method, three types of data are collected for analysis (Kim and Ballard 2010):

- 1. Actual cost of work performed (ACWP): is the actual incurred cost typically in terms of dollar or labor hours of work carried out within a certain period of time.
- 2. Budgeted cost of work performed (BCWP) or Earned Value: is the budgeted value typically in terms of dollar or labor hours of work carried out within a certain period of time.
- 3. Budgeted cost of work scheduled (BCWS): is the budgeted value usually in terms of dollar or labor hours of work to be carried out within a certain period of time (Figure 1).

Figure 1. Variance Analysis for EVM curve (Reprinted from Kim and Ballard 2000)

In EVM, the monitoring of Cost Variance and Schedule Variance is required to achieve the objective of this method, which is having an integrated cost/schedule progress monitoring and control system.

CV is the difference between the budgeted and actual costs of the work carried out.

CV = BCWP - ACWP or CV% = BCWP - ACWP / BCWP

SV is the difference between the budgeted costs of work actually performed and the budgeted cost

of the work schedules to be accomplished.

SV = BCWP – BCWS or SV% = BCWP – BCWS / BCWS

Table 1 displays the performance interpretations that may be drawn from CV and SV values.

Variance	-	0	+
CV	Cost overrun	On budget	Cost underrun
SV	Behind schedule	On schedule	Ahead of schedule

Table 1. Schedule and Cost Performance from CV and SV (Reprinted from Kim and Ballard 2010)

2.2.1.1.2 Assumptions

It is required to examine the assumptions of a project control method in order to probe management thinking behind it. In EVM, it is assumed that a project can be divided into independent subprojects packages, with contractual responsibilities and quantitative goals assigned (McConnell 1985). Also, it is assumed that packages are independent of each other. For instance, each package represents a contractual obligation between one party (i.e., owner, general contractor, etc.) and multiple other parties (i.e. subcontractors), without any connection between one contract and another. Moreover, EVM assumes that the success of each package results in the success of the entire project. In other words, if each package driven from WBS is managed and accomplished within its schedule/cost target, the success of the whole project will be achieved. The ultimate goal of managers applying this method in their projects is to improve financial performance, such as increasing earned value of each account (Kim and Ballard 2010).

2.2.1.1.3 Management Thinking

From the perspective of management thinking, the EVM can be categorized under MBR thinking. This categorizing is based on the following:

- In EVM, WBS and CV analysis assume that every task or package is independent.
- Cost and progress are the objects of measure. Cost and progress are the outcomes of the processes. Processes may encompass planning, operations, and system reliability.
- Management decisions are dependent on performance results, such as CV and SV
 In project control, it is critical to monitor cost and progress in order to check if they are on the right track. EVM should be applied in at the system level with elements that are relatively

independent of each other. Unlike in system level, this method is not suitable to be used at operational level where tasks are highly independent.

According to an investigation done by Kim and Ballard (2000), if cost and budget on each cost account are the main decision criteria for releasing assignments into workflow, workflow becomes unreliable. Consequently, this will result in longer duration and higher cost than necessary. Schedule and cost overruns relative to target will be additional consequences of workflow unreliability (Kim and Ballard 2010).

In fact, in EVM, cost and schedule are the objects to measure and evaluate. Cost and schedule are targets of the processes that encompass planning, operation, system reliability, and etc. Management decisions, such as resource allocation, are based on SV and CV in this system.

After these calculations, Cost Performance Index (CPI) and Schedule Performance Index (SPI) are calculated. The values of them indicate if the project in on schedule and within the budget or vice versa. CPI and SPI are calculated as following:

CPI = BCWP / ACWP

If CPI is equal or greater than one (CPI ≥ 1), the project is within or under budget.

SPI = BCWP / BCWS

If SPI is equal or greater than one (SPI ≥ 1), the project is on or ahead of the schedule.

Although EVM can be considered as a highly developed method for integrating schedule and cost (Kim and Ballard 2000), there are some limitations and disadvantages associated with this system:

 The graphical representation of outcomes simply displays variance between the amount to be spent without regards to progress and the actual expense (Kim and Ballard 2000).

- It is assumed that one earned hour equivalent to another, and the productivity of one activity has no influence on the performance of the other one, even if they are mutually dependent.
- A provision to evaluate and measure quality and customer satisfaction is lacking in EVM system. Therefore, if EVM indicates that a project is within budget or ahead of schedule and fully executed scope, it does not demonstrate that the client is satisfied with the project.
- Although the schedule variance (SV) is in fact a difference in schedule, it does not show its statistical implications. In addition, the unit of the SV is in dollars instead of weeks or months, and this makes it difficult to define units for the schedule (Cioffi 2006).

The majority of management approaches focus on external factors and domains such as structures-processes-outcomes. This explains why management approaches and tools are less sustainable (Pavez et al. 2010). The main reason behind this fact is the lack of importance associated with internal factors like people and their personalities, interests and viewpoint (Beck and Cowan 2014). Quite a few theories have been developed in order to compensate this shortage and with the aim of implementing both internal (people) and external worlds of management (Barrett 2006; Kofman 2008). Among these newly established theories, one includes Lean Construction, a novel management thinking influencing the construction industry substantially.

Several technical tools are being used extensively for construction planning, scheduling, modeling, etc.; nonetheless, no apparent improvement has been observed in project performance. This demonstrates a strong need to develop management concepts that can contribute in improving construction performance through integrating both inner and outer management theories (Kim and Ballard 2002).

2.2.2 Management by Means (MBM)

Johnson and Broms (2000) define and use Management-by-Means (MBM) as the opposite concept of MBR. They believe that the difference between MBR and MBM follows the difference between the governing principles of mechanical systems and natural living (organizational) systems. In contrast with mechanical systems, organizational systems are not divided into independent ad separated parts. In this type of system, what important is to nurture and improve relationships between parts, not maximizing the efficiency and output of each part. In fact, managing projects or other types of organization requires more than quantitative summing up of the separate contributions of each part (Johnson and Broms 2000; Johnson 1992; Kim and Ballard 2010).

The principle belief of MBM is that the way a system organizes its work is actually, what determines its long-term profitability. Aiming to optimize each part separately ends up in one part cannibalizing another and consequently reduces the overall performance of the system. In MBM, managers should aim at conforming to disciplined practices, coordinating among parts of the system, and enabling who performs the work.

In contrast with MBR that applies financial measures, MBM relies on process measures for feedback on system performance. MBM has production system design before, system operation within, and improvement after the phase of production. MBM achieves these through operating itself divided into goal setting, controlling, and correcting (Ballard and Howell 2003).

According to Johnson and Broms (2000), Toyota is one of the exemplars of MBM; since the 'lean thinking' initiated from Toyota has roots and inferences that are well beyond manufacturing management alone (Ballard and Howell 2003). Liker's account of Toyota's management principle has provided a perfect example of this type of theory in his 'The Toyota Way' (Kim and Ballard 2010; Liker 2004).

All in all, the MBM and MBR clearly elaborate the differences in perspective of control in traditional management and Lean management. In traditional management, control is conceived as after-the-fact variance detection. Whereas, Lean Construction has different conception for control; it considers control as active steering of a production system or project towards its targets (Ballard and Howell 2003).

2.2.2.1 Last Planner System (LPS)

MBM as a general term incorporates Last Planner system (LPS) as a part of lean construction principles.

The Last Planner System is a production planning and control tool introduced by Ballard (2000) with the purpose of enhancing work flow reliability. Since then, it has made substantial changes in construction project planning and control and there has been significant advancement in its tools, techniques, and associated metrics (Fernandez-Solis et al. 2012).

The concept of LPS has its roots in the demand for control, with a method of giving rise to work flow predictability through controlling the quality of assigned tasks in weekly work plans (Fernandez-Solis et al. 2012).

According to Fernandez-Solis et al. (2012), the last individual, typically the foreman, is referred as the last planner. The foreman is able to ensure predictable work flow downstream.

Despite some challenges, this method has been adopted by many companies and the result of their case studies, along with several reports and academic papers have provided evidence that LPS contributes in, reliable and smooth workflow, improved productivity, and reduced project duration and cost subsequently. (Ballard et al. 2007; Fernandez-Solis 2013; Fiallo and Revelo 2002; Johansen and Porter 2003; Kim and Jang 2005).

The LPS provides essential planning and control tools for projects even when they are complex and uncertain. Planning defines project goals and sequence of activities to achieve these goals. Control monitors activities following the desired sequence, and causes re-planning when the existing plan is no longer practical or desirable. In addition, control initiates learning from past failures when activities could not conform to the plan (Nieto-Morote and Ruz-Vila 2011).

LPS is in contrast with the traditional method. In traditional practice, assignments are pushed onto construction crews and design teams with the aim of meeting scheduled dates (Figure 2). Whereas, LPS releases only workable jobs to the field (Figure 3) (Kim and Ballard 2010).

(1) Traditional Planner Process

Figure 2. Traditional Planner Process (Reprinted from Ballard 2000)

(2) Last Planner Process

Figure 3. Last Planner Process (Reprinted from Ballard 2000)

In LPS, in addition to looking ahead and pre-screening upcoming tasks for any constraint, it is expected that all assignments meet certain quality requirements for definition, sequence, and size. LPS promotes learning from past failures with the purpose to avoid repeating mistakes.

Making quality assignments protects production units from workflow uncertainty. Also, it enables production units to enhance their own productivity and productivity of the downstream production units that receive and build on their work. This is important because downstream production units are dependent on reliable release of prerequisite work or shared resources to do their own planning (Ballard and Howell 1998; Kim and Ballard 2010).

In LPS, scheduling is completed in several phases: milestone planning, phase scheduling, look-ahead planning (six or ten weeks), and weekly work plan. The LPS metric for measuring the performance is Percent Plan Complete (PPC). There are other tools and techniques applied in LPS: Five Whys, Stickie's on the Wall, First Run Studies, Daily Huddle Meetings, Reason Charting, and Constraint Analysis (Fernandez-Solis et al. 2012).

2.2.2.1.1 PPC

Percent Plan Completion (PPC), is a metric proposed by Ballard (2000) for evaluating the reliability of the planning system. Ballard defines PPC as "the number of planned activities completed divided by the total number of planned activities, expressed as a percentage":

PPC% = (number of completed activities / number of planned activities) X 100

Higher PPC implies for doing more of the right work with given resources; it demonstrates higher productivity and progress (Ballard 2000). The required numbers to calculate PPC can be easily obtained from foremen or project engineers. There is no need to acquire additional information like resource consumption for this calculation (Kim and Ballard 2010).

In contrast to other project performance criteria or variance analysis (such as Earned Value method, schedule index, cost index, etc.), the PPC does not measure whether the project is on schedule or on budget. The PPC gauges whether the planning system enables the reliable anticipation of what will actually be done. In PPC calculation, is it critical to determine correctly whether an assignment was completed or not according to the plan, yet, it is more important to elaborate and investigate the causes of failure to accomplish the work as planned (Choo 2003).

2.2.2.2 Assumption

The LPS assumes that there are uncertainties and constrains associated with schedule tasks that prevent them from being started or accomplished at the right time. Timely availability of resources, shop drawings, or prerequisite work are among possible uncertainties and constraints and they are revealed and addressed in process of look-ahead planning which usually takes about six weeks. In look-ahead planning, only sound tasks are selected for inclusion in daily or weekly work plans. A properly-done look ahead planning results in improved work-flow reliability. The reason behind it is for tasks which are screened for constraints and probed to be constraint-free, the possibility of being finished when planned is higher (Kim and Ballard 2010). According to an argument made by Howell and Ballard (1996) a reliable planning is the prerequisite for having reliable cost and progress measurements.

2.2.2.3 Management Thinking

While traditional project control, such as EVM, with MBR thinking is focused on managing each activity separately, the focus of the LPS is on work flow reliability. The LPS follows MBM thinking as:

- In LPS, monitoring is focused on planning reliability, not financial metrics.
- It is assumed that planned tasks include constraints and uncertainties.
- Management decisions are made according to planning reliability and this is a prerequisite to cost and progress measures.

This type of view for production control reflects MBM thinking and quite a few results driven from case studies suggest that such as view is efficient and practical in managing production (Kim and Ballard 2010).

2.3 Accounting Numbers versus Relationship

The main difference between MBR and MBM is as following:

The difference between MBR and MBM practices is driven from the differences between the principles that govern natural living systems and those that govern mechanistic systems (Johnson

and Broms 2000). MBM requires developed system principles, while MBR needs continuous hard work to achieve and maintain success. MBR-based project control tools are considered to be less effective at the operational level with task interdependencies. On the other hand, the case studies and literature support the claim that MBM view is more applicable and suitable for managing work under these circumstances (Kim and Ballard 2010).

MBM and MBR are two different ways of improving performance. Although their methods, concepts and objectives are differing from each other, they both lead to a better performance (Johnson 2006). Professor H. Thomas Johnson (2006) presented figures displaying the progress curve for MBM and MBR. The MBR progress curve is saw toothed with periodical low and high growth; while, MBM progress curve is a stepped curve with gradual ascent to a desired goal (Figure 4).

Figure 4. MBM and MBR progress curve (Reprinted from Johnson 2006)

As seen in EVM, accounting numbers such as budget and planned schedule are the main focus of MBR-based project control and the ultimate aim is to minimize negative variances from planned cost and schedule. Whereas, the purpose of MBM-based control is improving the workflow among production units. This is achieved in two steps: first making workflow reliable, then advancing the performance of the whole production system in a continuous way. Making enhancement in reliability results in developing and nurturing relationships with all participants involved in project. Building relationships in driven from trusting each other. Trust comes from reliability, not from contract or commitment. Hence, MBM-based project control tools lead to forming relationships among project participants and reducing cost and duration are byproducts (Kim and Ballard 2010).

Nowadays, due to the complex and uncertain nature of construction projects, reliability of workflow and information flow becomes more essential than ever (Howell and Ballard 1996). Under these conditions, it is approved through research in the lean construction community that workflow reliability must be achieved in advance to managing cost and schedule (Ballard and Howell 1998; Howell 1999).

2.4 Empirical Evidence from Literature

Kim and Ballard (2010) conducted a survey of several construction projects implementing EVM and LPS in their projects. A case study was performed to investigate and understand how workflow reliability and productivity are affected by different factors (Liu and Ballard 2008). This method has been applied by many companies and they have reported the results of case studies. All these reports along with academic papers have demonstrated the claim that LPS improves workflow reliability, thereby saving project time and cost (Ballard et al. 2007; Fiallo and Revelo 2002; Johansen and Porter 2003; Kim and Jang 2005). In some of these case studies, EVM is specified as being applied in advance to implementing the LPS. Yet, as MBR is the management concept which is underlying currently accepted practice, it could be assumed that most, if not all, projects on which the LPS has been applied were previously managed by implementing MBR tools such as EVM (Kim and Ballard 2010). Table 2 indicates a summary of findings from preliminary literature review:

Researchers	Scope and case of research	Results
Ballard et al. 2007	LPS implemented at operational level on a pharmaceutical research and development center process and equipment building system.	 54% < PPC < 94% The LPS forced to think about tasks to be completed each day Better understanding of causes of incompletion and their roots.
Ballard et al. 2007	LPS applied to ten heavy civil projects *EVM was implemented prior to LPS	 The average PPC increased from 50% to 80% SPI improved by more than 10%
Ballard et al. 2007	LPS implemented on Refinery facility project in Indiana	LPS improves PPC and productivity
Kim and Jang 2005	LPS applied to production planning at the operational level *EVM were employed previously at the operational level	• planning reliability, schedule and cost performance were improved at the system level
Kim and Ballard 2010	22 Projects were investigated to study how MBM and MBR are effective in production planning and control at the operational level. Relevant production control documents such as weekly schedule were analyzed.	 MBM tends to improve Cost Performance MBM-based production planning showed better performance at the operational level

 Table 2. Preliminary Literature Review Findings

3. PROBLEM STATEMENT

Although LPS, as an example of management methods reflecting MBM thinking, is elaborated and discussed adequately in the literature; however, there is no adequate quantitative evidence on the impacts of LPS on the performance of construction projects. Despite the fact that LPS is highly distributed and used across industry, most research studies conducted so far are mostly based on qualitative evidences of a few number of case studies (Formoso and Moura 2009). According to Ballard, it is essential to evaluate and find out the advantages of greater plan reliability for time, cost, quality, and safety (Ballard 2000). As a result, there is a need to carry out quantitative studies and evaluate the impacts of each management concept (MBM and MBR) on the performance of construction projects in terms of cost and time.

Therefore, this research carries out a structured literature review to explore the theoretical implications, especially management thinking, of two project management and control tools: The Earned Value Method and the Last Planner System reflecting MBR and MBM view respectively. The second phase of this study uses statistical analysis methods to find out if there is any difference in the performance of projects implementing MBM-based and MBR-based management tools in terms of cost and time.

4. METHODOLOGY

4.1 Research Design

The ultimate objective of this research is to figure out if MBM-based planning and control method outperforms MBR-based system in terms of cost and time performance in construction projects. This study is designed as a three-phase research:

The first phase is a qualitative research method carried out by performing a structured literature review in order to have a complete and comprehensive knowledge about the previous studies conducted about comparison of cost and schedule performance of MBR and MBM-based projects (this phase of the research has been covered and explained previously in "Review of Literature").

The second phase is conducting in-depth statistical analysis on data from seventy-three actual construction projects. First, clear measurement priorities are set, which represent schedule and cost performance in construction project; and their values are calculated independently. The second sub-step is choosing the appropriate statistical analysis method and performing it on data. The final phase is interpreting the results of the statistical analysis and comparing them with the existing relevant literature.

This research is statistically significant, as it studies a considerable number of construction projects. Twenty-one MBM-based and fifty-two MBR-based projects are analyzed and investigated thoroughly in terms of schedule and cost performance. Furthermore, since the provided data set also includes information on delivery system and contract type of each construction project, the author uses them as two complementary factors to investigate if Project Delivery System (DPS) and Contract Type are also influential in project schedule and cost performance. Moreover, the influence level of these two additional factors and management method on cost and schedule performance are compared in order to determine the most and least effective ones.

4.2 Measurements

The following measurements, representing cost and schedule performance of projects, are used in this study:

- a. Unit Cost = Actual Total Project Cost / Gross Square Feet (Konchar and Sanvido 1998)
- b. Construction Change Order Amount = Actual Total Project Cost Planned Total Project Cost
- c. Project Cost Growth = Construction Change Order Amount / Planned Total Project Cost (Charoenphol et al. 2016; Konchar and Sanvido 1998)
- d. Project Schedule Growth = (Actual Total Project Duration Planned Project Duration) /
 Planned Project Duration
- e. Construction Intensity (SF / day /1000) = Total Square Feet of Building / Actual Total Design and Construction Duration / 1000 (Engineering News Record website, 2015)

Unit Cost (a), Change Order Amount (b), and Cost Growth (c) are used to evaluate the cost performance of projects. Due to different sample project sizes and types, it is not logical to compare their total costs directly; therefore, Unit Cost is measured as an indicator of cost performance. Project Cost Growth (c) is an indicator of how fast and how much project actual costs are increasing versus planned costs. Instead of Actual Total Duration, Project Schedule Growth (d) and Construction Intensity (e) are used as metrics addressing project schedule performance.

For Unit Cost (a) and Change Order Amount (b) there is no conclusion on when lower or higher numbers represent better performance. For both project Cost and Schedule Growth (c & d),
the lower calculation results are better than higher ones, and for Construction Intensity (f) the higher values are preferred.

4.3 Statistical Analysis Methods

In order to have an in-depth statistical analysis on the data, three different statistical analysis methods are used in this research. After consulting with statistics professionals and researchers, considering type of the data and the objectives of the research, the most appropriate statistical analysis methods have been chosen as following:

4.3.1 Multivariate Regression Analysis

Dr. Eric Jing, Du, in his "Manual for Data Analysis" for Zachry Company, describes the use of Multivariate Regression Analysis as this: "if an observed variable (metric) is affected by multiple variables (factors), then Multivariate Regression Analysis cam be utilized to reveal the relationship between response and predictors, and used for prediction purpose."

In this research, Multivariate Regression is performed, using JMP, to evaluate and measure the impact of all independent variable (factor) on each single dependent variable (measurement).

4.3.2 Discriminant Analysis

Discriminant Analysis is a statistical analysis, developed by Ronald Fisher in 1936, used to predict a categorical dependent variable by one or more independent variables. This statistical analysis is different from Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA), as they are used to predict one or multiple continuous dependent variables by one or more independent categorical variables. Discriminant Analysis is used for determining if a set of variables is effective in predicting category membership (Green and Salkind 2003).

In this research, Discriminant Analysis is conducted twice, each time with different number of metrics, in JMP, to evaluate and measure the impact of every independent variable (factor) on dependent variables (measurements). The application of Discriminant Analysis helps with identifying effective and ineffective factors and measuring their level of influence over construction project performance.

4.3.3 Two Sample t-Test

T-test is a generic statistical hypothesis test, which can be used in many problems. It is sometimes treated a statistical test to evaluate the importance of a variable. Coefficients of independent variables (the slop of regression line) are standardized, called t-ratios. T-ratio then can be used to evaluate the importance of a factor.

Since, the focus of this study is on MBM and MBR management methods and the difference between their impacts on project performance, in this research, Two Sample t-test is only performed to evaluate and compare the impact of the two management principles (MBM and MBR) on the measurements.

4.3.4 Factors and Metrics

In advance to conducting any statistical analysis on the data set, variables are defined as following (Table 3):

Factor (independent variable)	Measurement (dependent variable)
 Management method (MBM, MBR) Project Delivery System (DB, CMAR) Contract Type (GMP, CSP) 	 Unit Cost Change Order Amount Cost Growth Schedule Growth Construction Intensity

Table 3. Factors and Metrics

4.4 Data

4.4.1 Data Collection

Dr. José L. Fernández-Solís has provided the required data that are used and studied in this research. The provided data from seventy-three projects includes the following information and numbers, which are analyzed in this research: actual and planned unit cost, actual total cost, actual and planned duration, total gross square feet (GSF), and PPC (for MBM-based projects). Table 4 displays a sample of data cell for each project.

Table 4. Sample Data Cell for Each Project
--

Project No.	Year			CIP			MBM / MBR
Contract type	Project Delivery System			Project Type			
	Туре			5 51			
Gross square feet (GSF)	Cost pe	r GSF		Time - months			PPC % (If applicable)
	Plan	Actual	Delta	Plan	Actual	Delta	
Totals							

All seventy-three projects are commercial buildings which are constructed in the state of Texas from year 2000 to 2017.

Among the seventy-three projects, fifty-two (52) of them used Management-By-Results (traditional) planning and control method and twenty-one (21) projects used Management-by-Means planning and control system. Thirty-four (34) projects used Guaranteed Maximum Price (GMP) and thirty-nine (39) ones used Competitive Sealed Proposal (CSP) as their type of contract. Construction Management at Risk and Design-Build are two delivery systems applied in these seventy-three projects (Figure 7); Fifty-seven (57) projects used Design-build (DB) and sixteen (16) projects used Construction Management at Risk (CMAR) (Figure 5).

Figure 5. Number of Projects in Different Categories

4.4.2 Data Validation

After carefully checking the documentation and calculation of all the seventy-three sample projects, project No. 42 is found out to have been documented incorrectly. The correct total actual cost of this project has not been calculated correctly according to its GSF and Actual Unit Cost. Thus, Project No. 42 is excluded from the sample group and the remaining seventy-two projects are used in the statistical analysis.

4.4.3 Data Preprocessing

4.4.3.1 Time and Location Adjustment

The seventy-two sample projects are finished and delivered in different years from 2000 to 2017. With the purpose of minimizing the impact of time value and inflation on project cost values, all cost data are adjusted to their present value in year 2017 for future statistical analysis. An Excel table is used as the time value adjustment tool, which is provided by a Master's student, Daniel Wheeler (B. S. Agribusiness Finance, Texas A&M University). According to Wheeler's suggestion, with regards to the US economic crisis in 2008, using inflation rates can not represent the real costs of projects built in those years. As a result, the average Escalation Rate of the last

ten years are selected when adjusting the time value of project costs. Since all sample projects are constructed in the state of Texas, no location adjustment is applied.

4.4.3.2 Calculation of Measurements

After adjusting projects costs time value, the defined measurements of Change Order Amount, Cost Growth, Schedule Growth, and Construction Intensity were calculated to four decimal places (Table 5).

2							Cost-2	017/GSF	Time Duration (month)				~	
No.	Year	Management Method	Delivery System	Contract Type	CIP (Actual Total Cost)	GSF	Planned (Unit Cost)	Actual (Unit Cost)	Planned	Actual	Amount	Growth	Growth	Intensity
1	2000	MBM	CMAR	CSP	35500000	216000	244.4536	241.6740	28	28	-600383	-0.0114	0.0000	7.7143
2	2000	MBM	CMAR	CSP	23020000	143000	243.2476	236.7914	24	25	-923238	-0.0265	0.0417	5.7200
4	2014	MBM	CMAR	CSP	68700000	243500	300.5887	304.5174	33.5	32	956638	0.0131	-0.0448	7.6094
8	2008	MBM	CMAR	CSP	63500000	330000	264.6313	266.5987	30	30	649247	0.0074	0.0000	11.0000
9	2010	MBM	CMAR	CSP	116000000	200000	713.6951	731.3483	38	40	3530647	0.0247	0.0526	5.0000
11	2013	MBM	CMAR	CSP	36100000	150000	269.5782	270.3307	16	16	112886	0.0028	0.0000	9.3750
19	2014	MBR	CMAR	CSP	40800000	153000	287.0973	287.8205	35	36	110640	0.0025	0.0286	4.2500
21	2009	MBR	CMAR	CSP	47900000	179000	350.4089	351.1964	36	36.5	140951	0.0022	0.0139	4.9041
22	2002	MBR	CMAR	CSP	115900000	323600	511.4305	510.2338	41.5	40.5	-387240	-0.0023	-0.0241	7.9901
23	2007	MBR	CMAR	CSP	63600000	177000	504.0286	503.0766	36	36	-168514	-0.0019	0.0000	4.9167
25	2007	MBR	CMAR	CSP	85970000	640000	182.0103	188.0727	34	36	3879901	0.0333	0.0588	17.7778
26	2010	MBR	CMAR	CSP	80870000	394000	259.7547	258.8090	49	49.5	-372609	-0.0036	0.0102	7.9596
28	2015	MBM	CMAR	CSP	177500000	602200	303.4374	302.7356	47	48	-422641	-0.0023	0.0213	12.5458
29	2008	MBR	CMAR	CSP	121000000	553000	166.2605	167.6460	36	37	766184	0.0083	0.0278	14.9459
31	2008	MBR	CMAR	CSP	80000000	246500	450.2888	450.2888	46	45.5	0	0.0000	-0.0109	5.4176
32	2008	MBR	CMAR	CSP	475000000	315000	196.7416	197.9192	53	53.5	370969	0.0060	0.0094	5.8879
34	2012	MBR	CMAR	CSP	51000000	340000	174.8721	174.8721	30	30.5	0	0.0000	0.0167	11.1475
35	2011	MBR	CMAR	CSP	48200000	305000	192.7863	192.8229	18	19.5	11165	0.0002	0.0833	15.6410
37	2016	MBR	CMAR	CSP	75000000	225000	334.0000	333.3300	37	37.2	-150750	-0.0020	0.0054	6.0484

Table 5. Sample of Measurements Calculations

4.4.3.3 Sample Grouping

The ultimate goal of this study is to investigate the cost and duration differences between MBM and MBR-based construction projects. The seventy-two sample projects used different Delivery System and Contract type. With regards to the fact that different delivery system and contract types might affect cost and schedule management of construction projects, it is decided to perform the last statistical analysis (Two Sample t-Test) on the projects divided into four groups

with the same Project Delivery System and Contract type. In other words, PDS and contract are the controlled variables in this analysis.

Group 1: (GMP, DB)

Group 2: (CSP, DB)

Group 3: (GMP, CMAR)

Group 4: (CSP, CMAR)

5. ANALYSIS AND FINDINGS

5.1 Statistical Analysis

5.1.1 Hypothesis

The general null hypothesis for this research is that there is no difference between the cost and time performance of projects applying MBR and MBM-based planning and control tools. The general alternative hypothesis is that there do exists differences. The null hypothesis and alternative hypothesis for each research question will be as following (Table 6):

Measurement	Hypot	hesis Description
	H _{0:} :	There is no statistically significance difference between the means (μ) of unit costs of projects applying MBR and MBM-based planning and control tools.
Unit Costs	H _{A:} :	There is a statistically significance difference between the means (μ) of unit costs of projects applying MBR and MBM-based planning and control tools.
Change Order	H _{0:} :	There is no statistically significance difference between the means (μ) of change order cost factor of projects applying MBR and MBM-based planning and control tools
Amount	H _{A:} :	There is a statistically significance difference between the means (μ) of change order cost factor of projects applying MBR and MBM-based planning and control tools.
Schedule	H _{0:} :	There is no statistically significance difference between the means (μ) of schedule growth of projects applying MBR and MBM-based planning and control tools.
Growth	$H_{A:}$:	There is a statistically significance difference between the means (μ) of schedule growth of projects applying MBR and MBM-based planning and control tools.
	H _{0:} :	There is no statistically significance difference between the means (μ) of cost growth of projects applying MBR and MBM-based planning and control tools.
Cost Growth	H _{A:} :	There is a statistically significance difference between the means (μ) of cost growth of projects applying MBR and MBM-based planning and control tools.

Table 6. Table of Research Hypothesis

Table 6. Continued

Measurement	Hypothesis Description
Construction	$H_{0:}$: There is no statistically significance difference between the means (μ) of construction intensity of projects applying MBR and MBM-based planning and control tools.
Intensity	$H_{A:}$: There is a statistically significance difference between the means (μ) of construction intensity of projects applying MBR and MBM-based planning and control tools.

5.1.2 Discriminant Analysis

Discriminant Analysis is conducted to determine if each factor (independent variable) influences the value of the metrics. To have a more accurate result, the confidence level in all tests is set as 0.05. In other words, if the null hypothesis in each test is rejected at this significance level, it can be concluded that there is a probability of 95% that this factor affects the metrics value.

a) Management Method:

Test Hypothesis: Projects using Management by Means (MBM) and Management by Results

(MBR) are different from each other in terms of all metrics value.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Eigenvalue	Percent	Cun	Percent	Canonical Corr	Likelit	nood Latio	Approx. F	NumDF	DenDF	Prob>F
0.1315242 1	0000.000		100.0000	0.34093447	0.8837	6369	1.7361	5	66	0.1386
Test	V	alue	Exact	F NumDF	DenDF	Pro	ob>F			
Wilks' Lambda	0.883	7637	1.736	1 5	66	0.1	386			
Pillai's Trace	0.116	2363	1.736	1 5	66	0.1	386			
Hotelling-Lawl	ey 0.131	5242	1.736	1 5	66	0.1	386			
Roy's Max Roo	t 0.131	5242	1.736	1 5	66	0.1	386			

Figure 6. Discriminant Analysis Results, Management Method vs All Metrics

Test result: P-Value is 0.1328, which is greater than the confidence level (0.05): 0.1328 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles are different in terms of cost and schedule performance. The Canonical Correlation indicates that 34% of all metric values can be explained by management method. Canonical Correlation refers to the linear relation between a set of independent variables and a set of more than one dependent variables (Figure 6).

b) Project Delivery System (PDS):

Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk (CMAR) are different from each other in terms of all metrics value.

 H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})

 H_A : Mean of DB ($\mu_{DB}) \neq$ Mean of CMAR ($\mu_{CMAR})$

Eigenvalue I	Percent	Cum	Percent	Canonical Corr	Likelih	ood atio	Approx. F	NumDF	DenDF	Prob>F
0.274427 10	0000.00	1	00.0000 0	0.46404056	0.7846	5636	3.6224	5	66	0.0059*
Test	V	alue	Exact F	NumDF	DenDF	Pro	ob>F			
Wilks' Lambda	0.784	6664	3.6224	. 5	66	0.0	059*			
Pillai's Trace	0.215	3336	3.6224	. 5	66	0.0	059*			
Hotelling-Lawle	y 0.27	4427	3.6224	. 5	66	0.0	059*			
Roy's Max Root	0.27	4427	3.6224	5	66	0.0	059*			

Figure 7. Discriminant Analysis Results, Project Delivery System vs All Metrics

Test result: P-Value is 0.0059, which is smaller than the confidence level (0.05): 0.0059 < 0.05. Thus, the null hypothesis can be rejected and it is concluded that different Project Delivery Systems have different cost and schedule performance. The Canonical Correlation indicates that 46% of all metric values can be explained by PDS (Figure 7).

c) Contract Type:

Test Hypothesis: Projects using Guaranteed Maximum Price (GMP) and Competitive Sealed Proposal (CSP) are different from each other in terms of all metrics value.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_{A} : Mean of GMP ($\mu_{GMP}) \neq$ Mean of CSP ($\mu_{CSP})$

Eigenvalue	Percent	Cun	Percent	Canonical Corr	Likelil	hood Ratio	Approx. F	NumDF	DenDF	Prob>F
0.1315242 1	000000		100.0000	0.34093447	0.8837	6369	1.7361	5	66	0.1386
Test	V	alue	Exact	F NumDF	DenDF	Pro	ob>F			
Wilks' Lambda	0.883	7637	1.736	1 5	66	0.1	386			
Pillai's Trace	0.116	2363	1.736	1 5	66	0.1	386			
Hotelling-Lawl	ey 0.131	5242	1.736	1 5	66	0.1	386			
Roy's Max Root	t 0.131	5242	1.736	1 5	66	0.1	386			

Figure 8. Discriminant Analysis Results, Project Contract Type vs All Metrics

Test result: P-Value is 0.1386, which is greater than the confidence level (0.05): 0.1386 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different cost and schedule performance. The Canonical Correlation indicates that 34% of all metric values can be explained by contract type (Figure 8).

Table 7 displays a summary of discriminant analysis results in this research.

Independent Variable (Factor)	P-value	Canonical Correlation
Management Method	0.1328	0.34323504
PDS	0.0059(**)	0.46404056
Contract type	0.1386	0.34093447

Fable 7. Discriminant	Analysis	Results
-----------------------	----------	---------

5.1.2.1 Discriminant Analysis with Grouped Metrics

Although the metrics possibly have influence on each other values, the author decides to group the five metrics into two categories of Cost Related and Schedule Related metrics and redo the Discriminant Analysis with less number of metrics each time. Cost Growth, Actual Unit Cost, and Change Order Amount are grouped as Cost related metrics, while Schedule Growth and Construction Intensity are grouped as Schedule related ones.

a) Management Method

 Test hypothesis: Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Cost Performance</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM (μ_{MBM}) \neq Mean of MBR (μ_{MBR})

Test result: P-Value is 0.5148, which is greater than the confidence level (0.05): 0.5148 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles are different in terms of cost performance. The Canonical Correlation indicates that 18% of cost related metric values can be explained by management method.

ii. Test hypothesis: Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Schedule Performance</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM (μ_{MBM}) \neq Mean of MBR (μ_{MBR})

Test result: P-Value is 0.0495, which is smaller than the confidence level (0.05): 0.0495 < 0.05 Thus, the null hypothesis can be rejected and it can be concluded that projects with different Management Principles are different in terms of cost performance. The Canonical Correlation indicates that 28% of schedule related metric values can be explained by management method.

b) Project Delivery System (PDS)

 Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk (CMAR) are different from each other in terms of <u>Cost Performance</u>.

 H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})

 H_A : Mean of DB $(\mu_{DB}) \neq$ Mean of CMAR (μ_{CMAR})

Test result: The P-Value is 0.0347, which is smaller than the confidence level (0.05): 0.0347 < 0.05. Thus, the null hypothesis can be rejected and it is concluded that projects with different Delivery Systems have different cost performance. The Canonical Correlation indicates that 34% of cost related metric values can be explained by PDS.

- Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk (CMAR) are different from each other in terms of <u>Schedule Performance</u>.
- H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})
- H_A : Mean of DB $(\mu_{DB}) \neq$ Mean of CMAR (μ_{CMAR})

Test result: The P-Value is 0.0022, which is smaller than the confidence level (0.05): 0.0022 < 0.05. Thus, the null hypothesis can be rejected and it is concluded that projects with different

Delivery Systems have different duration. The Canonical Correlation indicates that 40% of schedule related metric values can be explained by PDS.

c) Contract Type:

 Test hypothesis: Projects using Guaranteed Maximum Price (GMP) and Competitive Sealed Proposal (CSP) are different from each other in terms of <u>Cost Performance</u>.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_A : Mean of GMP (μ_{GMP}) \neq Mean of CSP (μ_{CSP})

Test result: P-Value is 0.1859, which is greater than the confidence level (0.05): 0.1859 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different cost performance. The Canonical Correlation indicates that 26% of cost related metric values can be explained by contract type.

ii. Test hypothesis: Projects using Guaranteed Maximum Price (GMP) and CompetitiveSealed Proposal (CSP) are different from each other in terms of <u>Schedule Performance</u>.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_A : Mean of GMP $(\mu_{GMP}) \neq$ Mean of CSP (μ_{CSP})

Test result: P-Value is 0.0533, which is greater than the confidence level (0.05): 0.0533 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different duration. The Canonical Correlation indicates that 28% of schedule related metric values can be explained by contract type.

Table 8 displays a summary of discriminant analysis with group metrics results in this research.

Factor	Cost Performance	Schedule Performance
Management Method	P-Value: 0.5148	P-Value: 0.0495(**)
(MBM, MBR)	Canonical Correlation: 0.1812	Canonical Correlation: 0.2888
Project Delivery System	P-Value: 0.0347(**)	P-Value: 0.0022(**)
(DB, CMAR)	Canonical Correlation: 0.3439	Canonical Correlation: 0.4028
Contract Type	P-Value: 0.1859	P-Value: 0.0533
(GMP, CSP)	Canonical Correlation: 0.2605	Canonical Correlation: 0.2854

Table 8. Discriminant Analysis with Grouped Metrics Results

5.1.3 Multivariate Regression Analysis

In this study, Multivariate Regression is used to evaluate and measure the impact of every independent variable (Management principle, PDS, and Contract type) on each dependent variable (measurement). This analysis helps with identifying effective and ineffective factors and measuring their level of influence (F-Ratio) over construction project performance.

1) Management Method

a. Test hypothesis: Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of total <u>Change Order Amount</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.76162, which is greater than the confidence level (0.05): 0.76162 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Change Order Amount.

Project Delivery System (PDS)

b. Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk (CMAR) are different from each other in terms of total Change Order Amount.

 H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})

 H_A : Mean of DB $(\mu_{DB}) \neq$ Mean of CMAR (μ_{CMAR})

Test result: P-Value is 0.684, which is greater than the confidence level (0.05): 0.684 > 0.05. Thus, the null hypothesis cannot be rejected and it is concluded that different Project Delivery Systems have different Change Order Amount.

Contract Type

c. Test hypothesis: Projects using Guaranteed Maximum Price (GMP) and Competitive Sealed Proposal (CSP) are different from each other in terms of total <u>Change Order Amount</u>.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_A : Mean of GMP ($\mu_{GMP}) \neq$ Mean of CSP ($\mu_{CSP})$

Test result: P-Value is 0.63889, which is greater than the confidence level (0.05): 0.63889 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different Change Order Amount.

2) Management Method

d. Test hypothesis: Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Cost Growth rate</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM (μ_{MBM}) \neq Mean of MBR (μ_{MBR})

Test result: P-Value is 0.43955, which is greater than the confidence level (0.05): 0.43955 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Cost Growth rate.

Project Delivery System (PDS)

e. Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk (CMAR) are different from each other in terms of <u>Cost Growth rate.</u>

 H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})

 H_A : Mean of DB $(\mu_{DB}) \neq$ Mean of CMAR (μ_{CMAR})

Test result: P-Value is 0.067, which is greater than the confidence level (0.05): 0.067 > 0.05. Thus, the null hypothesis cannot be rejected and it is concluded that different Project Delivery Systems have different Cost Growth rate.

Contract Type

f. Test hypothesis: Projects using Guaranteed Maximum Price (GMP) and Competitive Sealed
 Proposal (CSP) are different from each other in terms of total <u>Cost Growth rate</u>.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_A : Mean of GMP (μ_{GMP}) \neq Mean of CSP (μ_{CSP})

Test result: P-Value is 0.48548, which is greater than the confidence level (0.05): 0.48548 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different Cost Growth rate.

3) Management Method

g. Test hypothesis: Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Schedule Growth rate</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM (μ_{MBM}) \neq Mean of MBR (μ_{MBR})

Test result: P-Value is 0.1105, which is greater than the confidence level (0.05): 0.1105 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Schedule Growth rate.

Project Delivery System (PDS)

- h. Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk
 (CMAR) are different from each other in terms of <u>Schedule Growth rate.</u>
 - H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})
 - H_A : Mean of DB $(\mu_{DB}) \neq$ Mean of CMAR (μ_{CMAR})

Test result: P-Value is 0.0094, which is smaller than the confidence level (0.05): 0.0094 < 0.05. Thus, the null hypothesis can be rejected and it is concluded that different Project Delivery Systems have different Schedule Growth rate.

Contract Type

i. Test hypothesis: Projects using Guaranteed Maximum Price (GMP) and Competitive Sealed Proposal (CSP) are different from each other in terms of total <u>Schedule Growth rate</u>.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_A : Mean of GMP $(\mu_{GMP}) \neq$ Mean of CSP (μ_{CSP})

Test result: P-Value is 0.25126, which is greater than the confidence level (0.05): 0.25126 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different Schedule Growth rate.

4) Management Method

 j. Test hypothesis: Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Unit Cost</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 $H_A: \text{Mean of MBM} \ (\mu_{MBM}) \neq \text{Mean of MBR} \ (\mu_{MBR})$

Test result: P-Value is 0.28256, which is greater than the confidence level (0.05): 0.28256 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Unit Cost.

Project Delivery System (PDS)

k. Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk (CMAR) are different from each other in terms of Actual <u>Unit Cost.</u>

 H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})

 H_A : Mean of DB ($\mu_{DB}) \neq$ Mean of CMAR ($\mu_{CMAR})$

Test result: P-Value is 0.12611, which is greater than the confidence level (0.05): 0.12611 > 0.05. Thus, the null hypothesis can be rejected and it is concluded that different Project Delivery Systems have different Unit Cost.

Contract Type

 Projects using Guaranteed Maximum Price (GMP) and Competitive Sealed Proposal (CSP) are different from each other in terms of <u>Unit Cost</u>.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_A : Mean of GMP ($\mu_{GMP}) \neq$ Mean of CSP ($\mu_{CSP})$

Test result: P-Value is 0.97659, which is greater than the confidence level (0.05): 0.97659 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different Unit Cost.

5) Management Method

m. Test hypothesis: Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Construction Intensity</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.35049, which is greater than the confidence level (0.05): 0.35049 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Construction Intensity.

Project Delivery System (PDS)

n. Test hypothesis: Projects using Design Build (DB) and Construction Management at Risk (CMAR) are different from each other in terms of <u>Construction Intensity</u>.

 H_0 : Mean of DB (μ_{DB}) = Mean of CMAR (μ_{CMAR})

 H_A : Mean of DB $(\mu_{DB}) \neq$ Mean of CMAR (μ_{CMAR})

Test result: P-Value is 0.019, which is smaller than the confidence level (0.05): 0.019 < 0.05. Thus, the null hypothesis can be rejected and it is concluded that different Project Delivery Systems have different Construction Intensity.

Contract Type

Test hypothesis: Projects using Guaranteed Maximum Price (GMP) and Competitive Sealed
 Proposal (CSP) are different from each other in terms of <u>Construction Intensity</u>.

 H_0 : Mean of GMP (μ_{GMP}) = Mean of CSP (μ_{CSP})

 H_A : Mean of GMP ($\mu_{GMP}) \neq$ Mean of CSP ($\mu_{CSP})$

Test result: P-Value is 0.1382, which is greater than the confidence level (0.05): 0.1382 > 0.05. Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Contract Types have different Construction Intensity. Table 9 displays a summary of multivariate regression analysis results in this research.

	Actual Unit Cost	Change Order	Cost Growth	Schedule Growth	Construction
		Amount			Intensity
Management	P-Value: 0.28256	P-Value: 0.76162	P-Value: 0.43955	P-Value: 0.1105	P-Value:
Method (MBM,	F-Ratio: 1.173	F-Ratio: 0.093	F-Ratio: 0.604	F-Ratio: 2.613	0.35049
MBR)					F-Ratio:
					0.884
Project Delivery	P-Value: 0.12611	P-Value: 0.684	P-Value: 0.067	P-Value: 0.0094(**)	P-Value:
System (DB,	F-Ratio: 2.397	F-Ratio: 0.167	F-Ratio: 3.457	F-Ratio: 7.136	0.019(**)
CMAR)					F-Ratio:
					5.770
Contract Type	P-Value: 0.97659	P-Value: 0.63889	P-Value: 0.48548	P-Value: 0.25126	P-Value:
(GMP, CSP)	F-Ratio: 0.001	F-Ratio: 0.222	F-Ratio: 0.492	F-Ratio: 1.339	0.1382
					F-Ratio:
					2.250

Table 9. Multivariate Regression Analysis Results

5.1.4 Two Sample t-Test

The last analysis is on the projects divided into four groups with the same Project Delivery System and Contract type. PDS and contract are the controlled variables in this analysis.

Group 1: (GMP, DB)

Group 2: (CSP, DB)

Group 3: (GMP, CMAR)

Group 4: (CSP, CMAR)

H₀: MBM and MBR-based Projects with the same DPS and contract type are not different from each other in terms of Cost and Schedule Performance.

H_{A:} MBM and MBR-based Projects with the same DPS and contract type are different from each other in terms of Cost and Schedule Performance.

5.1.4.1 Group 1: (GMP, DB)

a) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of total <u>Change Order Amount</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.271, which is greater than the confidence level (0.05): 0.271 > 0.05Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Change Order Amount.

$\mu_{MBM}=280065$	
$\mu_{MBR} = 1057097$	$\mu_{MBM} < \mu_{MBR}$

b) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Actual Unit Cost</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.1813, which is greater than the confidence level (0.05): 0.1813 > 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Actual Unit Cost.

 $\mu_{MBM} = 0.002125$

 $\mu_{MBR} = 0.008250 \qquad \qquad \mu_{MBR} < \mu_{MBR}$

c) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of Cost Growth.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.4842, which is greater than the confidence level (0.05): 0.4842 > 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Cost Growth.

 $\label{eq:mbm} \begin{array}{l} \mu_{MBM} = 327.0470 \\ \\ \mu_{MBR} = 296.3983 \end{array} \qquad \begin{array}{l} \mu_{MBM} > \mu_{MBR} \end{array}$

 d) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Schedule Growth</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.002187, which is smaller than the confidence level (0.05): 0.002187<

0.05

Thus, the null hypothesis can be rejected and it can be concluded that projects with different Management Principles have different Schedule Growth.

 $\mu_{MBM}=0.001850$

 $\mu_{MBR} = 0.0941125 \qquad \mu_{MBR} < \mu_{MBR}$

e) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Construction Intensity</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.1882, which is greater than the confidence level (0.05): 0.1882 > 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Construction Intensity.

 $\label{eq:mbm} \begin{array}{l} \mu_{MBM} = 10.07527 \\ \\ \mu_{MBR} = 14.82806 \end{array} \qquad \begin{array}{l} \mu_{MBM} < \mu_{MBR} \end{array}$

5.1.4.2 Group 2: (CSP, DB)

a) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of total <u>Change Order Amount</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.4626, which is greater than the confidence level (0.05): 0.4626 > 0.05Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Change Order Amount.

 $\mu_{MBM} = 478319$ $\mu_{MBR} = -44780$ $\mu_{MBM} > \mu_{MBR}$

b) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Actual Unit Cost</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.09576, which is greater than the confidence level (0.05): 0.09576 > 0.05

Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Actual Unit Cost.

 $\mu_{MBM} = 311.5917$ $\mu_{MBR} = 283.1952$ $\mu_{MBM} > \mu_{MBR}$

c) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Cost Growth</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.4308, which is greater than the confidence level (0.05): 0.4308 > 0.05Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Cost Growth.

 $\mu_{MBM}=0.00655$

 $\mu_{MBR} = -0.00130 \qquad \qquad \mu_{MBM} > \mu_{MBR}$

 d) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Schedule Growth</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.8418, which is greater than the confidence level (0.05): 0.8417> 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Schedule Growth.

 $\mu_{MBM} = -0.01200$ $\mu_{MBR} = -0.00185$ $\mu_{MBM} < \mu_{MBR}$

e) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Construction Intensity</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.3756, which is greater than the confidence level (0.05): 0.3756> 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Construction Intensity.

```
\label{eq:mbm} \begin{array}{l} \mu_{MBM} = 14.00880 \\ \\ \mu_{MBR} = 4.45835 \end{array} \qquad \begin{array}{l} \mu_{MBM} > \ \mu_{MBR} \end{array}
```

5.1.4.3 Group 3: (GMP, CMAR)

a) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of total <u>Change Order Amount</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.3232, which is greater than the confidence level (0.05): 0.3232 > 0.05Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Change Order Amount.

 $\label{eq:mbm} \begin{array}{l} \mu_{MBM} = 782839.200 \\ \\ \mu_{MBR} = 5188.812 \\ \end{array} \qquad \begin{array}{l} \mu_{MBM} > \mu_{MBR} \end{array}$

b) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Actual Unit Cost</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

```
H_A : Mean of MBM (\mu_{MBM}) \neq Mean of MBR (\mu_{MBR})
```

Test result: P-Value is 0.2498, which is greater than the confidence level (0.05): 0.2498 > 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Actual Unit Cost.

 $\mu_{MBM} = 440.2163$

 $\mu_{MBR} = 286.6970 \qquad \qquad \mu_{MBR} > \mu_{MBR}$

c) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Cost Growth</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.4827, which is greater than the confidence level (0.05): 0.4827 > 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Cost Growth rate.

 $\mu_{MBM} = 0.00706000$ $\mu_{MBR} = 0.00334375$ $\mu_{MBM} > \mu_{MBR}$

 d) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Schedule Growth</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.2366, which is greater than the confidence level (0.05): 0.2366> 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Schedule Growth rate.

 $\mu_{MBM} = 0.0184400$

 $\mu_{MBR}=0.04260625\qquad \mu_{MBM}<\mu_{MBR}$

e) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Construction Intensity</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.01273, which is smaller than the confidence level (0.05): 0.01273 < 0.05

Thus, the null hypothesis can be rejected and it can be concluded that projects with different Management Principles have different Construction Intensity.

 $\mu_{MBM} = 7.98346$ $\mu_{MBR} = 19.81609 \qquad \mu_{MBM} < \mu_{MBR}$

5.1.4.4 Group 4: (CSP, CMAR)

a) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of total <u>Change Order Amount</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.9635, which is greater than the confidence level (0.05): 0.9635 > 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Change Order Amount.

 $\mu_{MBM}=227392.6$

 $\mu_{MBR} = 196112.2 \qquad \quad \mu_{MBM} > \mu_{MBR}$

b) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of Actual Unit Cost.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.674, which is greater than the confidence level (0.05): 0.674 > 0.05Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Actual Unit Cost.

$\mu_{MBM}=372.5954$	
$\mu_{MBR}=345.7868$	$\mu_{MBM} > \mu_{MBR}$

c) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Cost Growth</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.944, which is greater than the confidence level (0.05): 0.944 > 0.05Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Cost Growth.

 $\mu_{MBM} = 0.0008333333$

 $\mu_{MBR}=0.0011961538\qquad \mu_{MBM}<\mu_{MBR}$

 d) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of <u>Schedule Growth</u>.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.6178, which is greater than the confidence level (0.05): 0.6178> 0.05 Thus, the null hypothesis cannot be rejected and it cannot be concluded that projects with different Management Principles have different Schedule Growth.

 $\mu_{MBM} = 0.02158889 \\ \mu_{MBR} = 0.02718462 \qquad \mu_{MBM} < \mu_{MBR}$

e) Projects using Management by Means (MBM) and Management by Results (MBR) are different from each other in terms of Construction Intensity.

 H_0 : Mean of MBM (μ_{MBM}) = Mean of MBR (μ_{MBR})

 H_A : Mean of MBM ($\mu_{MBM}) \neq$ Mean of MBR ($\mu_{MBR})$

Test result: P-Value is 0.5389, which is smaller than the confidence level (0.05): 0.5389 < 0.05Thus, the null hypothesis can be rejected and it can be concluded that projects with different Management Principles have different Construction Intensity.

 $\mu_{MBM} = 23.41533$ $\mu_{MBR} = 15.06161$ $\mu_{MBM} > \mu_{MBR}$

Table 10 displays a summary of two sample T-test results in this research.

		Change Order Amount	Actual Unit Cost	Cost Growth	Schedule Growth	Construction Intensity
Group 1 (GMP , DB)	P-Value	0.271	0.1813	0.4842	0.002187(**)	0.1882
		$\mu_{MBM} < \mu_{MBR}$	$\mu_{MBM} < \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$	<mark>µмвм < µмвr</mark>	$\mu_{MBM} < \mu_{MBR}$
Group 2 (CSP , DB)	P-Value	0.4626	0.09576	0.4308	0.8418	0.3756
		$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} < \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$
Group 3 (GMP , CMAR)	P-Value	0.3232	0.2498	0.4827	0.2366	0.01273(**)
		$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} < \mu_{MBR}$	<mark>µмвм < µмвr</mark>
Group 4 (CSP , CMAR)	P-Value	0.9635	0.674	0.944	0,6178	0.5389
		$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$	$\mu_{MBM} < \mu_{MBR}$	$\mu_{MBM} < \mu_{MBR}$	$\mu_{MBM} > \mu_{MBR}$

Table 10. Two Sample t-Test Results

5.2 Summary

5.2.1 Summary Result of Discriminant Analysis

At 95% confidence level, the measurements value of MBM- and MBR-based projects are similar; in other words, there is no discrimination between projects with different types of management method in terms of cost and schedule performance. According to the results, neither the contract type factor has significant influence on metrics value. Whereas, the results show that Project Delivery System is an influential factor and DB projects are different from CMAR projects at cost and schedule performance.

When grouping the metrics into cost and schedule related and at 95% confidence level, the results indicates that although management method has no significant impact on project cost performance, it has considerable influence on project duration and 28% of schedule related metric values can be explained by management type. Yet, in comparison to management method, project delivery system has more influence on schedule related measurements (Canonical Correlation: 40% > 28%). Also, PDS affects the project cost performance, while management method and contract type do not.

5.2.2 Summary Result of Multivariate Regression

At 95% confidence level, PDS factor has a significant influence on Schedule Growth and Construction Intensity metrics, which both represent schedule performance in a construction project. As the absolute value of the F-ratio addresses the level of influence, it can be concluded that DPS factor has more effect on Schedule Growth comparing to Construction Intensity (F-ratio: 7.136 > 5.770). Since the F-ratio in all other tests is a small number, it can be interpreted that Management Method and Contract Type have no considerable influence on project cost and schedule performance.

5.2.3 Summary Result of Two Sample t-Test

When keeping the Delivery system and Contract type as controlled variables and grouping all 72 projects into 4 groups with the same type of contract and delivery system:

There is a probability of 95% that projects using different management principles (MBM, MBR), have different Schedule Growth and Construction Intensity values. In other words, MBM and MBR-based projects are dissimilar in terms of schedule performance.

According to the results of the two-sample t-test on the sample projects, in Group 1, the sample mean of the MBM-based projects has smaller value in comparison with the sample mean of MBR-based projects in terms of Schedule Growth. On the other hand, for this particular measurement, smaller value indicates a shorter duration of the project and is preferred. Therefore, this result shows that among projects with GMP and DB as their delivery and contract type respectively, MBM-based projects have better Schedule Growth values.

In contrast, In Group 3, the sample mean of the MBM-based projects is smaller in comparison with the sample mean of MBR-based projects in terms of Construction Intensity. For this measurement, greater value indicates a better schedule performance and is preferred. Thus, this result addresses that among projects with GMP and CMAR as their delivery and contract type respectively, MBR-based projects have better Construction Intensity values.

5.3 Comparison

This study finds that there is no significant difference between cost performance of MBMand MBR-based projects, while Kim and Jang (2005) and Kim and Ballard (2010) claim that MBM-based projects have a better cost performance in comparison with projects with traditional management method. In Discriminant Analysis, when the metrics are grouped as cost and schedule performance related, this study shows that MBM-based projects have better performance on schedule performance related measurements, which is the same as the conclusion of Ballard et al. (2007) and Kim and Jang (2005).

This study reaches conclusions that conflict with those of previous studies. A very critical reason is that the sample projects used in this study and previous ones are from different sectors. This study used commercial building projects, while previous researchers used projects from heavy civil, industrial, and other sectors. In other words, the difference among the conclusions of this study and previous studies may indicates that one type of management method could be more efficient and effective in one sector than the other ones. Another reason is that all the sample projects used in this study are built in the state of Texas, whereas previous studies used sample projects located across the nation. Different locations and built years would influence the final conclusions.

5.4 Limitations and Assumptions

The conclusion of this research suffers from the following limitations:

- 1. The sample projects used in this study were not selected randomly.
- 2. The sample size is relatively small; thus, the conclusions might not convincingly reflect the attributes of the real populations.
- 3. Practically, every construction project is unique and has its own characteristics; therefore, it is very difficult to make sure that all the variables remain the same.
- 4. The samples are limited to commercial projects in terms of project type.

- 5. The samples are limited to Guaranteed Maximum Price and Competitive Sealed Proposal in terms of contract type.
- 6. The samples are limited to Construction Management at Risk and Design-Build in terms of delivery system.
- 7. The deficiencies associated with the chosen economic methods used for adjusting cost values from different years to one certain year would affect the final conclusions.
- 8. The measurements used in this study have their own deficiencies and sometimes fail to accurately measure and reflect the cost and schedule performance of construction projects.
- 9. The sample projects might have not been categorized accurately in terms of management method. Sometime, people who work on projects, such as superintendents, are not aware that they are actually implementing lean tools in their projects. For instance, they have weekly work plan or daily huddle sessions on the jobsite, yet, they would deny when asked if they use any lean principles in their project. Hence, a sample project cell labeled as MBR, does not necessarily reflect a non-lean project. On the other hand, a question arises that is PPC the most important and reflective principle of MBM-based projects? Typically, PPC is mostly a leverage tool and it does not reflect the overall management method of a project. Therefore, it might not be convincing to label a construction project as MBM-based when PPC data is attached to it.
6. CONCLUSION AND FUTURE WORK

This research designed a comprehensive comparative study between the cost and schedule performance of MBM- and MBR-based projects.

While Change Order Amount, Actual Unit Cost, and Cost Growth were used as the metrics representing the cost performance, Schedule Growth and Construction Intensity were used as the measurements to evaluate the schedule performance of the projects.

After conducting several statistical analyses, including Discriminant Analysis, Multivariate Regression, and Two Sample t-Test, the author was able to conclude that the factor of management method has influence on schedule performance, but not on cost performance of construction projects. While MBM-based projects tend to have better schedule growth rate, MBR-based ones have more preferred construction intensity values. Moreover, in comparison with Project Delivery System (PDS), management principle and contract type are less influential.

The future work that could be done is as following:

- The conclusions of this study are only made toward commercial construction projects built in the state of Texas. Future studies could use sample projects across the country from all sectors to investigate and compare the effects of MBM- and MBR management principles on project performance.
- 2. The sample data size of this research is relatively small; therefore, in this study the sample projects were not divided based on their size. For future studies, with a sufficient number of data samples, projects can be grouped by their size. In this case, it can be possible to compare

the projects having the same size but applying different management methods to make a more accurate conclusion.

- 3. The reason behind the conclusion of this research can be studied and analyzed in future studies: the reason of why MBM-based projects tend to have better value in terms of schedule growth? What principle of this management method impact the schedule and duration of construction projects and how it works?
- 4. The criteria on which construction projects are labeled as MBM- and MBR-based can be investigated and studied. Also a study on determining an element accurately reflecting Lean projects, rather than PPC, can be carried out.

REFRENCES

- Allen, E., and Iano, J. (2011). Fundamentals of building construction: materials and methods, John Wiley & Sons.
- Ballard, G., and Howell, G. (1994). "Implementing lean construction: stabilizing work flow." *Lean construction*, 101-110.
- Ballard, G., and Howell, G. (1998). "Shielding production: essential step in production control." *Journal of Construction Engineering and management*, 124(1), 11-17.
- Ballard, G., and Howell, G. A. "Competing construction management paradigms." *Proc., Construction Research Congress: Wind of Change: Integration and Innovation*, 1-8.
- Ballard, G., and Howell, G. A. "An update on last planner1." *Proc., Proc., 11th Annual Conf., International Group for Lean Construction, Blacksburg, VA.*
- Ballard, G., Kim, Y., Jang, J., and Liu, M. (2007). "Roadmap for lean implementation at the project level." *The Construction Industry Institute*.
- Ballard, H. G. (2000). "The last planner system of production control." The University of Birmingham.
- Barrett, R. (2006). Building a values-driven organization: A whole system approach to cultural transformation, Routledge.
- Beck, D. E., and Cowan, C. (2014). Spiral dynamics: Mastering values, leadership and change, John Wiley & Sons.
- Bertelsen, S. "Construction as a complex system." *Proc., Proceedings for the 11th annual conference of the International Group for Lean Construction*, 11-23.
- Charoenphol, D., Stuban, S. M., and Dever, J. R. (2016). "Using Robust Statistical Methodology to Evaluate the Cost Performance of Project Delivery Systems: A Case Study of Horizontal Construction." *Journal of Cost Analysis and Parametrics*, 9(3), 181-200.

- Choo, H. J. (2003). "Distributed planning and coordination to support lean construction." University of California, Berkeley.
- Cioffi, D. F. (2006). "Completing projects according to plans: an earned-value improvement index." *Journal of the Operational Research Society*, 57(3), 290-295.
- Fernandez-Solis, J. L. (2013). "Building construction: A deterministic non-periodic flow–A case study of chaos theories in tracking production flow." *Architectural Engineering and Design Management*, 9(1), 21-48.
- Fernandez-Solis, J. L., Porwal, V., Lavy, S., Shafaat, A., Rybkowski, Z. K., Son, K., and Lagoo, N. (2012).
 "Survey of motivations, benefits, and implementation challenges of last planner system users." *Journal of construction engineering and management*, 139(4), 354-360.
- Fiallo, M., and Revelo, V. "Applying the last planner control system to a construction project: a case study in Quito, Ecuador." *Proc., Proceedings of the 10th Annual conference of the International Group for Lean Construction.*
- Fleming, Q. W. (1987). Put earned value (C/SCSC) into your management control system, Humphreys & Associates.
- Formoso, C. T., and Moura, C. B. "Evaluation of the impact of the last planner system on the performance of construction projects." *Proc., Proceedings of 17th Annual Conference of the International Group of Lean Construction*, 153-164.
- Howell, G., and Ballard, G. "Can project controls do its job?" Proc., Proceedings of the 4th annual conference of the International Group for Lean Construction.

Howell, G. A. "What is lean construction-1999." Proc., Proceedings IGLC, 1.

- Johansen, E., and Porter, G. (2003). "An experience of introducing last planner into a UK construction project."
- Johnson, H. T., and Broms, A. (2000). *Profit beyond measure: Extraordinary results through attention to work and people*, Simon and Schuster.

- Johnson, T. (1992). "Relevance regained: From top-down control to control to bottom-up." Free Press, New York.
- Kim, Y.-W., and Ballard, G. "Is the earned-value method an enemy of work flow." *Proc., Proceedings Eighth Annual Conference of the International Group for Lean Construction, IGLC.*
- Kim, Y.-W., and Ballard, G. (2002). "Earned value method and customer earned value." *Journal of Construction Research*, 3(01), 55-66.
- Kim, Y.-W., and Ballard, G. (2010). "Management thinking in the earned value method system and the last planner system." *Journal of Management in Engineering*, 26(4), 223-228.
- Kim, Y.-W., and Jang, J.-W. "Case study: An application of last planner to heavy civil construction in korea." Proc., 13th International Group for Lean Construction Conference: Proceedings, International Group on Lean Construction, 405.
- Kofman, F. (2008). Conscious business: How to build value through values, ReadHowYouWant. com.
- Konchar, M., and Sanvido, V. (1998). "Comparison of US project delivery systems." *Journal of construction engineering and management*, 124(6), 435-444.
- Koskela, L. (1999). "Management of production in construction: a theoretical view."
- Koskela, L. (2000). An exploration towards a production theory and its application to construction, VTT Technical Research Centre of Finland.
- Koskela, L., and Howell, G. "The theory of project management: Explanation to novel methods." *Proc., Proceedings IGLC*, 1-11.
- Lagoo, N. (2012). "A Seminal Case Study on Application of Last Planner System with Cash Flow Data for Improvements in Construction Management Practices." Texas A & M University.
- Liker, J. K. (2004). The toyota way, Esensi.
- Liu, M., and Ballard, G. "Improving labor productivity through production control." *Proc., Proceedings of the 11th Annual Conference of International Group for Lean Construction.*
- McConnell, D. R. (1985). "Earned value technique for performance measurement." *Journal of Management in Engineering*, 1(2), 79-94.

- Nepal, M. P., Park, M., and Son, B. (2006). "Effects of schedule pressure on construction performance." *Journal of Construction Engineering and Management*, 132(2), 182-188.
- Nieto-Morote, A., and Ruz-Vila, F. (2011). "Last planner control system applied to a chemical plant construction." *Journal of Construction Engineering and Management*, 138(2), 287-293.
- Pavez, I., Gonzalez, V., and Alarcon, L. (2010). "Improving the effectiveness of new construction management philosophies using the integral theory." *Revista de la Construcción*, 9(1).
- Sterman, J. D. (1992). "System dynamics modeling for project management." Unpublished manuscript, Cambridge, MA, 246.
- Vrijhoef, R., and Koskela, L. "The prevalent theory of construction is a hindrance for innovation." *Proc., IGLC Conference, Brighton, UK, 17-19 July, 11.*
- Warburton, R. D. (2011). "A time-dependent earned value model for software projects." *International Journal of Project Management*, 29(8), 1082-1090.

APPENDIX A

Discriminant Analysis

Discriminant Analysis Results									
Independent Variable (Factor)	P-value	Canonical Correlation							
Management Method	0.1328	0.34323504							
PDS	0.0059(**)	0.46404056							
Contract type	0.1386	0.34093447							

Schedule Construction

Growth

0.02524

0.06458

0.03344

Intensity 14.15

Construction Intensity

23.24 16.04

Actual

346.63

282.87

333.35

(Unit Cost)

Delivery

Change

252970.91

466759.80

297510.26

Delivery System

Order Amount Cost Growth

0.001868

0.007060

0.002950

that (Unit Cost)

⊿ Group Means

Count System 57 CMAR 15 DB

72 All

⊿ Canonical Plot

1.0

0.5

Classification:

Discriminant Method: Linear

🖉 💌 Discriminant Analysis **⊿** Group Means Management Change Schedule Construction Actual Count Method Order Amount Cost Growth Growth Intensity (Unit Cost) 20 MBM 401881.35 0.003220 0.01350 15.95 374.29 52 MBR 257367.54 0.002846 0.04111 16.08 317.60 72 All 297510.26 0.002950 0.03344 16.04 333.35 Discriminant Method: Linear Classification: Management Method **⊿** Canonical Plot 1.0 -0.5 Growth Change Order Amount 0.0 -----..... . ð Schedule Growth -0.5 Actual (Unit Cost) -1.0--2 -1 0 2 3 Canonical1 ⊿ Canonical Details Canonical Details calculated from the overall pooled within-group covariance matrix. Canonical Likelihood Eigenvalue Percent Cum Percent Corr Ratio Approx. F NumDF DenDF 0.13354304 100.0000 100.0000 0.34323504 0.8821897 1.7628 5 66 Test Value Exact F NumDF DenDF Prob>F Wilks' Lambda 0.8821897 1.7628 66 0.1328 5 Pillai's Trace 0.1178103 1.7628 66 0.1328 5 Hotelling-Lawley 0.133543 1.7628 5 5 66 0.1328 1.7628 66 0.1328 Roy's Max Root 0.133543 Vithin Matrix Between Matrix Scoring Coefficients Standardized Scoring Coefficients **⊿** Score Summaries Number Percent Entropy Source Count Misclassified Misclassified RSquare -2LogLikelihood

	0.0 onical2		-		4-	CMAR	J	Δ		Schedule 6	rowth ees	•••	
	Can	-				C	/	T	-	_Cost Gro	wth		
	-0.5 -				/	_	/		_	\square			
	-1.0												
		-	2		-1	1	0 Car	nonical1		1	2		3
	⊿ Canor	nical De	tails										
	Canonic	al Details	calculat	ed from	the ov	erall poo	led w	vithin-gro	oup				
	covariar	nce matrix	ι.					1					
rob>F	Figan	alua P	arcant	Cum Pe	arcent	Cano	Corr	Likelih	ood	Approv E	NumDE	DepDE	Prob E
.1328	0.27	4427 10	0.0000	100	0.0000	0.4640	4056	0.78466	5636	3.6224	5	66	0.0059*
	Test		V	alue	Exact	F Nun	DF	DenDF	Pro	ob>F			
	Wilks' L	ambda	0.784	6664	3.622	24	5	66	0.0	059*			
	Pillai's	Trace	0.215	3336	3.622	24	5	66	0.0	059*			
	Hotellin	ng-Lawley	0.27	4427	3.622	24	5	66	0.0	059*			
	Roy S IV	lax Koot	0.27	4427	3.024	24	S	00	0.0	059"			
	D Retw	een Matri	~										
	D Scori	na Coeffi	cients										
	▷ Stand	dardized S	coring (Coefficie	nts								
	⊿ Score S	ummar	ies										
			N	umber	P	ercent	Ent	ropy					
	Source	Count	Miscla	ssified	Miscla	ssified	RSq	uare -2	Log	likelihood			
	Training	72		14	1	9.4444	-0.	0295		75.8636			
		Training		_									
	Actua	al Pre	dicted										
	Delive	ry C	ount										
	System	n CM/	AR DB	8									
	CMAR DB		46 11 3 12										
	⊿ Grou	os		-0									
	Deliver	v											
	System	Cour	nt										
	CMAR	5	7										
	DB	1	5										

Gr	oup	Means	
с	ount	Contract Type	Change Order Amount
	39	CSP	205449.46
	33	GMP	406309.39
	72	All	297510.26
Discri	minar	t Method:	Linear
lassif	icatio	on:	Contract Type
Ca	noni	ical Plot	
		T	
	1.0		
	0.5		
cal2		-	1
oni	0.0	- •	
Can		-	(
	-0.5	-	
	-0.5		CH
		-	
	-1.0		
		-	
		-2	-1

Discriminant Analysis

⊿ Canonical Details Canonical Details calculated from the overall pooled within-group covariance matrix. Eigenvalue Percent Cum Percent 0.1315242 100.0000 Test Wilks' Lambda 0.8837637 Pillai's Trace 0.1162363 Hotelling-Lawley 0.1315242 Roy's Max Root 0.1315242

Vithin Matrix

Se

Tr

4

Between Matrix

Scoring Coefficients

Standardized Scoring Coefficients Discriminant Scores **⊿** Score Summaries Number

urce	Count	Misclassified
aining	72	26
Group	5	
Contract Type	Cour	nt
CSP GMP	3	9

Management Method (MBM, MBR) vs All Metrics

34.7222 -0.0386

88.3636

Training

Method

MBM

MBR

⊿ Groups Management Method

MBM

MBR

72

Training

Actual Predicted Management Count

25

34

MBM MBR

13 18

Count

20

52

Delivery System (DB, CMAR) vs All Metrics

Contract Type (GMP, CSP) vs All Metrics

APPENDIX B

Multivariate Regression Analysis

⊿ 🗷 Stepwise Fit for Actual (Unit Cost)	⊿ Stepwise Fit for Cost Growth
⊿ Stepwise Regression Control	⊿ Stepwise Regression Control
Stopping Rule: P-value Threshold Prob to Enter 0.25 Prob to Leave 0.25 Remove All Run Model Run Model	Stopping Rule: P-value Threshold Prob to Enter 0.25 Prob to Leave 0.25 Prob to Leave 0.25
Direction: Mixed Rules: Combine	Direction: Mixed Rules: Combine
521 rows not used due to excluded rows or missing values.	521 rows not used due to excluded rows or missing values.
SSE DFE RMSE RSquare RSquare Adj Cp p AICc BIC 1410160 70 141.93359 0.0331 0.0193 1.2267935 2 922.2235 928.7006	SSE DFE RMSE RSquare RSquare Adj Cp p AICc BIC 0.0064814 70 0.0096225 0.0471 0.0334 0.8970097 2 -460.035 -453.558
⊿ Current Estimates	⊿ Current Estimates
Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" ✓ Intercept 314.749652 1 0 0.000 1 ✓ Management Method{(MBR-MBM) 0 1 23571.7 1.173 0.28256 ✓ Delivery System{D8-CMAR} -31.881459 1 48280.3 2.397 0.12611 ○ Contract Type[GMP-CSP} 0 1 17.72524 0.001 0.97659	Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F" ✓ Intercept 0.00446421 1 0 0.000 1 Omagement Method{MBR-MBM} 0 1 5.628e-5 0.604 0.43955 ✓ Delivery System(CMAR-DB) -0.0025958 1 0.00032 3.457 0.0672 Omagement Contract Type(CSP-GMP) 0 1 4.587e-5 0.492 0.48548
⊿ Step History	⊿ Step History
Step Parameter Action "Sig Prob" Seq SS RSquare Cp p AICc BIC 1 Delivery System{DB-CMAR} Entered 0.1261 48280.3 0.0331 1.2268 2 922.224 928.701 Image: State S	Step Parameter Action "Sig Prob" Seq SS RSquare Cp p AICc BIC 1 Delivery System{CMAR-DB} Entered 0.0672 0.00032 0.0471 0.897 2 -460.03 -453.56 0
All Factors vs Actual Unit Cost	All Factors vs Cost Growth
⊿ 💽 Stepwise Fit for Schedule Growth	✓ Stepwise Fit for Construction Intensity
⊿ Stepwise Regression Control	⊿ Stepwise Regression Control

Stepwise Fit for Schedule Growth	Stepwise Fit for Construction Intensity
⊿ Stepwise Regression Control	⊿ Stepwise Regression Control
Stopping Rule: P-value Threshold Prob to Enter Prob to Leave 0.25 Prob to Leave 0.25	Stopping Rule: P-value Threshold Prob to Enter 0.25 Prob to Leave 0.25 Remove All Run Model
Direction: Mixed ~	Direction: Mixed Y
Rules: Combine Y	Rules: Combine Y
Go Stop Step	Go Ston Ston
521 rows not used due to excluded rows or missing values.	
	52 I rows not used due to excluded rows or missing values.
356 DFE NWSE RSquare RSquare RSquare RSq $(p - p)$ ACC DFC 1122007 60 0.0403411 0.1677 0.1436 3.3380723 3.252.436 -243.026	SSE DFE RMSE RSquare RSquare Adj Cp p AICc BIC
	19012.286 69 16.599409 0.0776 0.0509 2.8837955 3 614.4087 622.9184
	Current Estimates
Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F"	Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F"
M Intercept 0.03903/5 1 0 0.000 1	✓ Intercept 19.8142451 1 00000 1
Management wendownwinner 0.00504556 1 0.004255 2.015 0.01055 Vendown System/(CMAR-DB) -0.016427 1 0.011613 7 136 0.00942	Management Method {MBM-MBR} 0 1 243.9322 0.884 0.35049
Contract Type(CSP-GMP) 0 1 0.002168 1.339 0.25126	Delivery System{CMAR-DB} -6.9698789 1 1589.865 5.770 0.019
Chan History	Contract Type{GMP-CSP} -3.5472774 1 619.887 2.250 0.1382
	4 Step History
Step Parameter Action "Sig Prob" Seq SS RSquare Cp p AlCc BIC	Stan December Action "Cin Dech" Son SC DSmuse Co. o. AlCe. DIC
1 Delivery System{CMAR-DB} Entered 0.0014 0.0183/5 0.1362 3.9652 2 -252 -245.53	1 Delivery System/CMAP_DPL Extend 0.0657, 090.2566, 0.0476, 2.1307, 2.614,475, 620.052
2 Wanagement Method (MbM-MbAy Entered 0.1105 0.004255 0.107 5.559 5 -25244 -245.55 @	2 Contract Ture(GML-CB) Entered 0.1382 619.887 0.0776 2.8838 3.614.479 620.52
All Factors vs Schedule Growth	All Factors vs Construction Intensity

Stopping Rule:	P-va	alue Th
	Prob Prob	to Ent to Lea
Direction:	Mix	ed
Rules:	Con	nbine
Go	Stop	
521 rows not use	ed du	e to ex
SSE DF	E	RMS
2.28e+14 7	1 17	91939
⊿ Current Estin	nate	s
Lock Entered	Para	meter
V V	Inter	cept
	Man	ageme
	Deliv	ery Sys
	Cont	ract Ty
⊿ Step History		
		Service of the

All Factors v	All	Factors	V
---------------	-----	---------	---

	Actual Unit Cost	Change Order	Cost Growth	Schedule Growth	Construction
		Amount			Intensity
Management Method	P-Value: 0.28256	P-Value: 0.76162	P-Value: 0.43955	P-Value: 0.1105	P-Value: 0.35049
(MBM, MBR)	F-Ratio: 1.173	F-Ratio: 0.093	F-Ratio: 0.604	F-Ratio: 2.613	F-Ratio: 0.884
Project Delivery	P-Value: 0.12611	P-Value: 0.684	P-Value: 0.067	P-Value: 0.0094(**)	P-Value: 0.019(**)
System (DB, CMAR)	F-Ratio: 2.397	F-Ratio: 0.167	F-Ratio: 3.457	F-Ratio: 7.136	F-Ratio: 5.770
Contract Type	P-Value: 0.97659	P-Value: 0.63889	P-Value: 0.48548	P-Value: 0.25126	P-Value: 0.1382
(GMP, CSP)	F-Ratio: 0.001	F-Ratio: 0.222	F-Ratio: 0.492	F-Ratio: 1.339	F-Ratio: 2.250

Produce Interstold Prob Prob to Enter 0.25 Prob to Leave 0.25 Remove All Run Model Direction: Mixed Rules: Combine 21 rows not used due to excluded rows or missing values. SSE DFE RMSE RSquare RSquare Adj P AlCc BlC .28e+14 71 1791939.6 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates Ock Entered Parameter Estimate nDF SS "F Ratio" "Prob Management Method{(MBR-MBM) 0 1 3.02e+11 0.000 0.003 0.74 Delivery System{(CMAR-DB) 0 1 5.43e+11 0.167 0 Delivery System{(CMAR-DB) 0 1 7.21e+11 0.222 0.63	topping Rule:	D-value Threshold	~	Enter All	Make	Model		
Prob to Enter 0.25 Prob to Leave 0.25 Prob to Leave 0.25 Bules: Combine × Go Step Step 21 rows not used due to excluded rows or missing values. Cp p AIC c BIC SSE DFE RMSE RSquare RSquare Adj Cp p AIC c BIC 28e+14 71 1791939.6 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates Direcept 297510.264 1 0 0.000 Management Method{(MBR-MBM) 0 1 3.02e+11 0.093 0.74 Delivery System{(CMAR-DB) 0 1 5.43e+11 0.167 0 Outract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63		P-Value Threshold	25	-				
Direction: Mixed Rules: Combine Go Step 21 rows not used due to excluded rows or missing values. Cp p AICc BIC SSE DFE RMSE RSquare RSquare Adj Cp p AICc BIC 28+14 71 1791939.6 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates O 0.000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates O 0.000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates O 0.000 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Outrent Estimates O 1 0.000 -1.593073 1 2280.923 2285.302 Owner Hettrate Parameter Estimate nDF SS "F Ratio" "Prob O Intercept 297510.26		Prob to Leave 0.2	25	Remove All	Run	Model		
Go Stop Step 21 rows not used due to excluded rows or missing values. SSE DFE RMSE RSquare RSquare Al/C BIC 28e+14 71 1791939.6 0.000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates ock Entered Parameter Estimate nDF SS "F Ratio" "Prob Management Method{MBR-MBM} 0 1 3.02e+11 0.000 0.003 0.74 Delivery System{CMAR-DB} 0 1 5.43e+11 0.167 0 Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63	virection:	Mixed ~						
Go Step 21 rows not used due to excluded rows or missing values. SSE DFE RMSE RSquare RSquare Adj Cp p AICc BIC 28e+14 71 1791939.6 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates SS "F Ratio" "Prob Intercept 297510.264 1 0 0.000 Management Method{(MBR-MBM) 0 1 3.02e+11 0.093 0.74 Delivery System{CMAR-DB} 0 1 5.43e+11 0.167 0 Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63	ules:	Combine ~						
21 rows not used due to excluded rows or missing values. SS DFE RMSE RSquare RSquare Alice BIC 28e+14 71 1791939.6 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates Estimate nDF SS "F Ratio" "Prob Intercept 297510.264 1 0 0.000 0.000 0.701 Management Method{MBR-MBM} 0 1 3.02e+11 0.093 0.701 Delivery System{CMAR-DB} 0 1 5.43e+11 0.167 0 Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63	Go	Stop Step						
SSE DFE RMSE RSquare RSquare Adj Cp p AICc BIC 28e+14 71 1791939.6 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates Estimate nDF SS "F Ratio" "Prob Intercept 297510.264 1 0 0.000	21 rows not us	ed due to excluded row	vs or missing val	ues.				
28e+14 71 1791939.6 0.0000 0.0000 -1.593073 1 2280.923 2285.302 Current Estimates ock Entered Parameter Estimate nDF SS "F Ratio" "Prob ✓ Intercept 297510.264 1 0 0.000 ✓ Management Method{MBR-MBM} 0 1 3.02e+11 0.093 0.74 ○ Delivery System(CMAR-DB) 0 1 5.43e+11 0.167 0 ○ Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63	SSE DF	E RMSE RSquar	re RSquare Ad	lj Cp	р	AIC	c Blo	C
Ourrent Estimates ock Entered Parameter Estimate nDF SS "F Ratio" "Prob Intercept 297510.264 1 0 0.000	28e+14 7	1 1791939.6 0.000	00.00	0 -1.593073	1	2280.92	3 2285.30	2
ook Entered Parameter Estimate nDF SS "F Ratio" "Prob Intercept 297510.264 1 0 0.000	urrent Esti	mates						
Intercept 297510.264 1 0 0.000 Management Method{MBR-MBM} 0 1 3.02e+11 0.093 0.76 Delivery System{CMAR-DB} 0 1 5.43e+11 0.167 0 Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63	ock Entered	Parameter		Estimate r	DF	SS	"F Ratio"	"Prob>F"
Management Method{MBR-MBM} 0 1 3.02e+11 0.093 0.71 Delivery System(CMAR-DB) 0 1 5.43e+11 0.167 0 Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63	~	Intercept	2	97510.264	1	0	0.000	1
Delivery System{CMAR-DB} 0 1 5.43e+11 0.167 0 Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.63		Management Method	{MBR-MBM}	0	1 3.	02e+11	0.093	0.76162
Contract Type{CSP-GMP} 0 1 7.21e+11 0.222 0.6		Delivery System{CMAF	R-DB}	0	1 5.	43e+11	0.167	0.684
		Contract Type{CSP-GN	MP}	0	1 7.	21e+11	0.222	0.63889
tep History	tep History	N I						
itep Parameter Action "Sig Prob" Seq SS RSquare Cp p AICc BIC	A	eter Action "Sig P	rob" Seq SS	RSquare	Ср	р	AICc	BIC
	tep Param							

Multivariate Regression Analysis Results

Time Value Adjustment

							Legend:	
Disc	ounted Pr	oject Va	lue Calcula	ator			Input	Output
Use:	Project C	ost TVM Ca	alculator					
Rate Multiplier:	Annual Escalation Rate	or	Annual US Inflation Rate					
Source:	RS Means		US B.L.S.					
Select:	Rate Type Average Ty			e		Rate Type		Average Ty
	Escalation		Last 10-			Escalation		Last 10-
	Rate		Year			Rate		Year
	7.77%					2.25%		
	Historical Project: Present Value					Current P	roject: Fut	ure Value
	Original Project Cost					Present	Value Proj	ect Cost
	\$	48,000,000.00				\$	48,0	00,000.00
	Year Built			Curren	t Year	Project to year		
		1981		203	17	2051		
	Projec	t Present V	/alue			Futur	re Project \	/alue
	\$70	9,771,927.	08			\$10	2,278,552	.25