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ABSTRACT 

 

Conventional pumping test theories such as Theis solution often assume a horizontally 

isotropic media. Horizontal anisotropy exists in certain aquifer settings and its impact on 

pumping tests is not clearly demonstrated before, particularly when the aquifer is bounded 

by a stream. In this thesis, based on a newly developed mathematical model for pumping 

tests in a horizontally anisotropic aquifer bounded by a stream, the corresponding 

interpretation procedures will be illustrated. Stream depletion will be calculated as a result 

of stream bank pumping based on the new model as well. The results of this research 

reflect that (1) aquifer parameters derived from newly developed interpretation methods 

are acceptable in the range of allowable error; so these methods can be used in practical 

field experiment; (2) with the increase of 𝑇𝛼/𝑇𝛽, stream depletion rate under the steady 

state also increases where 𝑇𝛼 and 𝑇𝛼are the major and minor principal transmissivity 

values ( 𝑇𝛼 > 𝑇𝛽); (3) when the angle between the X axis and the direction of 𝑇𝛼 increases 

from 0 to 
𝜋

2
, stream depletion increases, where the X-axis is one of the working coordinate;  

conversely, when such an angle increases from 
𝜋

2
 to 𝜋, stream depletion decreases. This 

research is expected to fill the gap of knowledge on present stream-aquifer interaction and 

pumping test theories for aquifers. 
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NOMENCLATURE 

 

Q     Constant pumping rate, (m3/s) 

s     Drawdown induced by pumping, (m) 

S     Storativity of confined aquifer or specific yield of 

unconfined aquifer, (dimensionless) 

t     Time from the beginning of pumping, (s) 

T     Transmissivity, T with subscript represents the component  

of transmissivity on that direction, (m2/s) 

L     Stream length, (m) 

q     Water flux through unit stream length per unit time,  

subscript  means the direction of it, (m2/s)  

QD     Stream depletion rate along the stream during the pumping  

test, (m3/s)  

𝑇𝑒     Equivalent scalar transmissivity, (m2/s)  

J     Hydraulic gradient, subscript represents the direction of the  

gradient, (dimensionless) 

X and Y    Orthogonal horizontal axes of working coordinate system,  

(m)  

 and     Orthogonal horizontal axes of principal coordinate system,  

(m) 

𝛼∗ and 𝛽∗    Orthogonal horizontal axis in equivalent isotropic domain,  
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(m)  

𝛼1 and 𝛽1    The coordinates of observation well in  system, (m)  

𝛼1
∗ and 𝛽1

∗    The coordinates of observation well in 𝛼∗𝛽∗ system, (m)  

, ,  and     Degree of angle, (dimensionless) 

a and b    The intercepts of stream on  and  axis, separately, (m)  

𝑎′and 𝑏′    The intercepts of stream on 𝛼∗ and 𝛽∗ axis, separately, (m)  

X0     Shortest distance between the pumping well and the stream,  

(m)  

X1 and Y1    The coordinate of the first observation well in the XY system,  

(m)  

l     The shortest distance between pumping well and stream in  

𝛼∗𝛽∗ system, (m) 

𝑅1 and 𝑅2    The equivalent distance between observation well and  

pumping well, image well in XY system, (m)  

𝑟1, 𝑟2 and 𝑟3    The straight-line distance between pumping well and three 

observation wells, separately, (m) 

D     Hydraulic diffusivity, subscript means the different  

observation wells, (m2/s)  

𝑠𝑖     Drawdown at the inflection point, (m) 

𝑡𝑖     Pumping time at the inflection point, (s) 
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1. INTRODUCTION

Groundwater is one of the most important natural resources, which occupies 30% of 

freshwater in the world (Herschy and Fairbridge, 1998). Although groundwater is buried 

beneath ground surface, in many cases, it is not isolated and has interactions with surface 

water, like streams, lakes and wetlands (Winter, 1998). Ground-surface water interaction 

is an important component of hydrological budgets and has significant effect on 

socioeconomic and geopolitical aspects (Butler et al., 2001). Because of concerns about 

acid rain, stream restoration, groundwater over-exploitation and other various 

environmental and social problems, the interactions between groundwater and stream 

attract great attention. Groundwater and stream interaction can primarily proceed in two 

ways, one is groundwater recharges stream through the streambed (the so-called base flow) 

when the hydraulic head of groundwater is greater than surface water; the other is stream 

water infiltrates the groundwater through the streambed when the stream stage has a higher 

head than the adjacent aquifer (Sophocleous, 2002, Kalbus et al., 2006). In some 

watersheds, groundwater can provide 50%-80% of annual stream flow, which could carry 

significant amount of nutrient to aquatic animals and plants at the same time (Hill, 1990). 

With the increase of water demand, the natural process of groundwater-stream interactions 

is artificially disturbed by pumping groundwater near the stream. Hantush (1959) 

introduced several purposes of well installation near a stream. One of them is inducing 
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infiltration from streams to underlying materials. Another is artificially decreasing natural 

flow that have been discharged to the streams.  

When a pumping well is installed near a stream and starts pumping, aquifer storage 

initially provides water to the pumping well and a cone of depression is created near the 

well. With the increase of pumping time, the cone of depression extends gradually and 

intercepts stream eventually. If the stream is hydraulically connected with the surrounding 

aquifer without any barriers, the stream may be considered as a constant-head boundary 

(CHB). When the hydraulic head at the aquifer adjacent to a stream is lower than the 

stream stage, water will flow away from the stream to the aquifer, which is called stream 

depletion. Jenkins (1968) gave an explicit definition of stream depletion as either direct 

depletion from the stream or reduction of return flow to the stream.  Compared with natural 

conditions, a direct influence of stream depletion is the decrease of stream flow amount, 

which will cause negative impacts on aquatic ecosystems, availability of surface water, 

quality and aesthetic value of streams and other water-resource management issues 

(Barlow and Leake, 2012).  

In the United States, stream depletion is a serious problem in many states. For instance, 

the Platte River, a tributary of Missouri River, is a major river in Nebraska and flows from 

west to east through the state, which is hydrologically connected with surrounding aquifers. 

Chen (2007) stated that because of tremendous groundwater exploitation for irrigation 

usage, stream depletion caused serious water issues in the Platte River valley. On the one 

hand, groundwater pumping reduced the stream flow greatly. On the other hand, non-point 

contamination threatened the quality of stream water. Both factors harmed the health of 
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stream and the ecosystem of the Platte River valley. A similar problem also appeared in 

Kansas in the past decades. The reduction of stream flow as the result of groundwater 

decline significantly impacted the fish and wildlife resources in and along the Arkansas 

River and other streams in western and south-central Kansas (Sophocleous et at., 1988). 

The situation promoted the establishment of minimum desirable stream flow standards in 

Kansas in the early 1980s by Kansas Legislature (Sophocleous et at., 1995). Besides the 

United States, regions in South America, North Africa, Middle East, Southern Europe, 

East and Southeast Asia also have severe stream depletion problems (Foglia et al., 2013). 

Numerous studies have made significant contributions to understand the processes and 

factors that affect stream depletion by pumping wells over the past few decades. Moreover, 

the methods used to estimate stream depletion rate and amount have also been well 

developed. For example, Theis (1941) and Glover and Balmer (1954) derived fundamental 

equations calculating the stream depletion rate at any location of the stream and the total 

depletion of the whole river during a given period. A main technique used in their work is 

image-well method, i.e., an image recharge well that has the same rate as the pumping 

well is added on the other side of the river, which is symmetric with the pumping well in 

respect to the stream. Such an image recharge well serves the same role as the stream 

hydraulically. The drawdown at any location of the study area will be the superposition of 

drawdowns (or buildup) generated by both the (original) pumping well and the (image) 

recharge well. Based on the work of Theis (1941) and Glover and Balmer (1954), some 

advanced works have also been developed.  For instance, Jenkins (1968) stressed the 

residual effect on stream depletion after the cessation of pumping, if groundwater can only 
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be recharged by an intercepted stream. Butler et al. (2001) focused on stream depletion 

problems for a stream that partially penetrates the aquifer. Butler et al. (2007) and Hunt 

(2009) interested on stream depletion in leaky aquifers. Yeh et al. (2008) focused on 

stream depletion in wedge-shaped aquifer. Tsou et al. (2010) discussed stream depletion 

caused by horizontal or slanted wells in confined aquifers. While, in some cases, observed 

pumping test data already reflect the existence of stream depletion, but the location of the 

hidden streams or underground streams such as karst channels is unknown. Sageev et al. 

(1985), Chapuis (1994) and Singh (2002) used different methods to analyze the observed 

pumping test data, which were subsequently used to detect the location of such hidden 

recharge boundary. 

Besides stream depletion issues, hydrogeologists are also interested in determining 

aquifer properties such as transmissivity, storativity based on pumping test data. When a 

pumping well is located near a stream, the drawdown curve is certainly different from that 

without a stream. Hantush (1959) developed several graphic methods for determining the 

hydraulic parameters of aquifer laterally bounded by one recharge boundary. Singh (2002) 

suggested a method that required a much shorter pumping duration for identifying aquifer 

parameters.  

For all of aforementioned works, the aquifer is assumed to be homogeneous and 

horizontally isotropic. Different controlling factors, such as sediment deposition rate, 

deposition environment, shape and orientation of sediment particles and others all can 

preclude the formation of a horizontally isotropic aquifer (Quinones-Aponte, 1989). This 

indicates that more realistic and accurate model of groundwater flow needs to consider the 
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horizontally anisotropy of the aquifer (Quiñones-Aponte, 1989). Papadopulos (1965) and 

Hantush (1966) stated that at least four wells were needed to determine aquifer parameters 

in a horizontally anisotropic aquifer: one pumping well and three non-collinear 

observation wells. Neuman et al. (1984) proposed a new pumping test scheme in which 

only three wells were needed to analyze data.  

Vertical anisotropy is very common in the field, such as alluvial aquifer because of the 

process of sedimentation. In general, horizontal hydraulic conductivity is often one to two 

orders of magnitude larger than the vertical one, and such a vertical anisotropy can play 

an important role in controlling stream-aquifer interactions, particularly when vertical 

flow is of concern near the stream (Chen and Yin, 1999). Stream depletion in vertically 

anisotropic aquifers have been extensively investigated over many decades (Chen, 2000; 

Chen and Chen, 2003; Cheng et al., 2011).  

After extensive literature review, there is little research related to pumping near a 

stream concerning the horizontal aquifer anisotropy. Different from vertical anisotropy, 

when a horizontally anisotropic aquifer is pumped, equipotential lines are elliptical rather 

than circular in a planar view. Horizontal anisotropy may be developed in several 

geological settings. For example, Stoner (1981) introduced that thick coal beds exhibit a 

systematic set of fractures that almost perpendicular to bedding, which result in 

significantly horizontal anisotropy in Sawyer-A and Anderson coal aquifers, Montana. As 

part of U.S. Geological Survey program known as “Caribbean Islands Regional Aquifer-

System Analysis”, Quiñones-Aponte (1989) performed an aquifer test in Salinas alluvial 

fan in the southern part of Puerto Rico. By analyzing collected test data, it indicated that 
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in the study area, the major and minor transmissivity tensor are 3,608 and 2,228 m2/day, 

respectively, and the ratio of horizontal anisotropy in the area varies from 1.62 to 1.00. 

Recently, Cook and Barlas (2014) launched four pumping test in the Pen Argyl Member 

of the Martinsburg Formation in Pennsylvania, and used statistical tests to determine the 

direction and magnitude of principal transmissivity. The results showed that major and 

minor transmissivity are 582 m2/day  and 65 m2/day , separately, and the counter-

clockwise angle between the direction of major transmissivity and X axis is 41.5° ± 8.8°. 

There are also many publications addressing groundwater flow in horizontally anisotropic 

aquifers (Lebbe and Breuck, 1997; Mathias and Butler, 2007; Wen et al., 2010; Cihan et 

al., 2014).  

The aim of this thesis is developing a new mathematical model to process pumping 

test data near a stream in a horizontally anisotropic aquifer. I will propose a new procedure 

to determine aquifer properties for such a situation, and propose new equations to calculate 

stream depletion with specific consideration of horizontal anisotropy. This research fills 

the gap of pumping induced groundwater-surface water interaction in horizontally 

anisotropic aquifers. 



 7 

2. PROBLEM STATEMENT 

       

2.1 Conceptual Model  

To simplify the problem, the stream is assumed to be a CHB, which is a straight line 

and fully penetrates the entire aquifer (Singh, 2002). If a semi-permeable river bed exists, 

then the river cannot be treated as a CHB and instead is often treated as a general-head 

boundary (GHB). The discussion of GHB is out of scope of this thesis and will be pursued 

in a future study. Nevertheless, based on the CHB assumption, the conceptual model of 

the problem is shown in Figure 1. The aquifer is bounded laterally by a straight stream, 

the pumping well that has a constant pumping rate is also fully penetrating.  

The properties of aquifer are homogeneous and horizontally anisotropic, as shown in 

Figure 2. X and Y are the orthogonal axes of a working coordinate system and the Y axis 

is parallel with the stream. 𝛼  and 𝛽  are the orthogonal axes of a principal coordinate 

system. Principal transmissivities are 𝑇𝛼  and 𝑇𝛽 , and 𝑇𝛼  is the major component that 

satisifies that 𝑇𝛼 > 𝑇𝛽. The pumping well is located at the origin of the working coordinate 

system and has a constant pumping rate. The shortest distance between the pumping well 

and the stream is X0. The stream intercepts  and  axes at (a,0) and (0, -b), respectively. 

Usually, for a horizontally anisotropic aquifer in the field, the principal direction of 

transmissivity is unknown. Therefore, it is assumed that the major component of principal 

transmissivity (𝑇𝛼) forms an angle  with the X axis. The value of  will be determined 

later.  
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Figure 1：Graphic view of studied aquifer bounded by a stream (After Ferris et al. 

1962). 

 

  

Figure 2: The outline of studied aquifer. α and 𝛽 are the principal coordinates; X and Y 

are the working coordinates. The origins of both coordinates are located at the pumping 

well. 
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2.2 Main Tasks 

I will follow the following procedures to investigate the problem. 

Firstly, the drawdown equation is derived as follows. Theis (1941) and Glover and 

Balmer (1954) established the foundation of solving stream depletion problems, and both 

studies assumed that the pumped aquifer is horizontally isotropic, which can directly use 

the following Eqs. (2-1) and (2-2) to describe drawdown distribution.  

 𝑠 =
𝑄

4𝜋𝑇
𝑊(𝑢) =

𝑄

4𝜋𝑇
∫

𝑒−𝜆

𝜆
𝑑𝜆  

+∞

𝑢
,  (2-1) 

 𝑢 =
𝑟2𝑆

4𝑇𝑡
  ,  (2-2) 

where s is drawdown; Q is the pumping rate; r is the radial distance between the pumping 

well and an arbitrary observation well; t is time since pumping starts; T and S are 

transmissivity and storativity of an isotropic aquifer, respectively. While the domain of 

interest in the conceptual model of this thesis is horizontally anisotropic rather than 

isotropic, thus new drawdown equations rather than above Eqs. (2-1) and (2-2) will be 

discussed in the following Chapter 3.1.  

Secondly, the aquifer properties are determined based on the newly developed 

drawdown equations as follows. If the aquifer is confined, transmissivity and storativity 

represent its main properties. If the aquifer is unconfined, a modified procedure based on 

the procedure used for confined aquifer will be used (discussed in Chapter 3.2). The 

following questions will be answered in Chapter 3.2: 1) How to design an appropriate 

pumping test to determine such parameters values in a horizontally anisotropic aquifer? 2) 

How many minimum observation wells are needed to determine the parameter values in a 
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horizontally anisotropic aquifer? The detailed steps of pumping test interpretation in a 

horizontally anisotropic aquifer will be discussed in Chapter 3.2.  

Thirdly, the stream depletion rate is determined. In order to evaluate the effect of 

pumping on the stream flow, depletion rate is an important criterion. This part will be 

explained in Chapter 3.3. 

Fourthly, the effect of the horizontal anisotropy is specifically checked. For a 

horizontally anisotropic aquifer, its properties are mainly controlled by 𝜃 and the ratio of 

𝑇𝛼/𝑇𝛽 . Keeping all other parameters constant and changing the values of 𝜃 or 𝑇𝛼/𝑇𝛽  

conclude its influence on the depletion rate, which will be discussed in Chapter 3.3. 
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3. METHODOLOGY 

 

The four tasks listed in Chapter 2.2 will be tackled orderly.  

 

3.1 Drawdown Equation 

When studying groundwater flow in a horizontally anisotropic aquifer, it is advisable 

to change the horizontally anisotropic aquifer into an equivalent isotropic aquifer. Neuman 

et al. (1984) proposed a method to describe drawdown in a horizontally anisotropic aquifer, 

in which the principal coordinates form an angle  with the working coordinates XY as 

shown in Figure 2. By using coordinates transformation, the relationship between two 

coordinate systems satisfies  

 {
𝛼 = 𝑋𝑐𝑜𝑠𝜃 + 𝑌𝑠𝑖𝑛𝜃
𝛽 = −𝑋𝑠𝑖𝑛𝜃 + 𝑌𝑐𝑜𝑠𝜃

  .  (3-1) 

For a horizontally anisotropic aquifer, the general form of transmissivity tensors in the 

working (XY) and principal (𝛼𝛽) coordinate systems are respectively  

 T𝑋𝑌̿̿ ̿̿̿ = |
𝑇𝑋𝑋 𝑇𝑋𝑌
𝑇𝑌𝑋 𝑇𝑌𝑌

| ,   T𝛼𝛽̿̿ ̿̿ ̿ = |
𝑇𝛼 0
0 𝑇𝛽

| .  (3-2) 

Because of the existence of non-zero  values, the off-diagonal terms of the transmissivity 

tensor satisfy 

 𝑇𝑋𝑌 = 𝑇𝑌𝑋 ≠ 0 .  (3-3) 

Therefore, the flow governing equation in the XY system is 

 T𝑋𝑋
𝜕2𝑠

𝜕𝑋2
+ 2𝑇𝑋𝑌

𝜕2𝑠

𝜕𝑋𝜕𝑌
+ 𝑇𝑌𝑌

𝜕2𝑠

𝜕𝑌2
= 𝑆

𝜕𝑠

𝜕𝑡
  .  (3-4) 
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While, in the principal coordinate system, the flow is governed by  

 𝑇𝛼
𝜕2𝑠

𝜕𝛼2
+ 𝑇𝛽

𝜕2𝑠

𝜕𝛽2
= 𝑆

𝜕𝑠

𝜕𝑡
  ,  (3-5) 

and the relationship between two sets of transmissivity tensors is (Bear, 1972) 

 {

𝑇𝑋𝑋 = 𝑇𝛼𝑐𝑜𝑠
2𝜃 + 𝑇𝛽𝑠𝑖𝑛

2𝜃

𝑇𝑌𝑌 = 𝑇𝛼𝑠𝑖𝑛
2𝜃 + 𝑇𝛽𝑐𝑜𝑠

2𝜃

𝑇𝑋𝑌 = 𝑇𝑌𝑋 = (𝑇𝛼 − 𝑇𝛽)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

 .  (3-6) 

In the  coordinate system, the domain of interest is anisotropic, so the corresponding 

drawdown equation Eq. (3-5) is still not convenient to use. Thus, it is transformed into an 

equivalent isotropic form by defining a new set of coordinates 𝛼∗ and  𝛽∗ , which are 

parallel to  and , respectively. One has 

 𝛼∗ = √
𝑇𝛽

𝑇𝑒
𝛼;     𝛽∗ = √

𝑇𝛼

𝑇𝑒
β .  (3-7) 

where 𝑇𝑒 is the equivalent scalar tansmissivity and the steps about deriving the 

expression of  𝑇𝑒 are shown in Appendix A, 

 𝑇𝑒 = √𝑇𝛼𝑇𝛽 = √𝑇𝑋𝑋𝑇𝑌𝑌 − 𝑇𝑋𝑌
2  .   (3-8) 

Substituting Eq. (3-7) into Eq. (3-5) will result in  

 𝑇𝑒 (
𝜕2𝑠

𝜕𝛼∗2
+

𝜕2𝑠

𝜕𝛽∗2
) = 𝑆

𝜕𝑠

𝜕𝑡
  .  (3-9) 

During the transformation processes, not only the aquifer is transformed from an 

anisotropic one into an isotropic one, but also the relative position of stream against 

pumping well is changed. Such a position change is illustrated as follows. 

Firstly, in the  system, intercepts on  and  axis are (a,0) and (0, -b) which can be 

calculated as 
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 𝑎 =
𝑋0

𝑐𝑜𝑠𝜃
 ;  𝑏 =

𝑋0

𝑠𝑖𝑛𝜃
 .   (3-10) 

Secondly, in the  𝛼∗, 𝛽∗ system, which is shown in Figure 3. Stream intercepts the  𝛼∗ 

and 𝛽∗ axes at (𝑎′, 0) and (0,−𝑏′), respectively, and the intercepts satisfy 

 𝑎′ = 𝑎√
𝑇𝛽

𝑇𝑒
;     𝑏′ = 𝑏√

𝑇𝛼

𝑇𝑒
  .  (3-11) 

Thirdly, in the 𝛼∗ 𝛽∗ system, in order to derive drawdown equation, an image recharge 

well is added on the other side of the stream, which is symmetric with the real pumping 

well against the stream and has the same magnitude as the pumping rate. Perpendicular 

distance between the pumping well and stream (denoted as l in Figure 3) equals to 

 𝑙 =
|𝑎′𝑏′|

√𝑎′
2
+𝑏′

2
=

√𝑇𝑒|𝑎𝑏|

√𝑇𝛽𝑎
2+𝑇𝛼𝑏2

  .  (3-12) 

Therefore, based on the property of symmetry, the coordinate of the image recharge well 

in the 𝛼∗𝛽∗ system is (
2𝑙2

𝑎′
, −

2𝑙2

𝑏′
) 
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Figure 3: The study area is shown in the 𝛼∗𝛽∗ coordinate system. 

 

The location of the observation well in the XY coordinate system is (X1, Y1). After the 

coordinate transformation procedures as outlined above, the location of the observation 

well in the 𝛼∗ 𝛽∗ coordinate system is (𝛼1
∗, 𝛽1

∗). The drawdown at this observation well is 

a summation of drawdown caused by the pumping well and buildup induced by the 

image recharge well,  

 s =
𝑄

4𝜋𝑇𝑒
[𝑊(𝑢𝑅1) −𝑊(𝑢𝑅2)]  ,  (3-13) 

 W(𝑢𝑅1) = ∫
𝑒−𝜆

𝜆
𝑑𝜆;    W(u𝑅2) = ∫

𝑒−𝜆

𝜆
𝑑𝜆

∞

𝑅2
2𝑆

4𝑇𝑒𝑡

∞

𝑅1
2𝑆

4𝑇𝑒𝑡

 ;  (3-14) 
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 𝑅1
2 = (𝛼1

∗)2 + (𝛽1
∗)2;  (3-15) 

 𝑅2
2 = (𝛼1

∗ −
2𝑙2

𝑎′
)2 + (𝛽1

∗ −
2𝑙2

−𝑏′
)2 = 𝑅1

22 + 4𝑙2 (1 −
𝛼1
∗

𝑎′
+

𝛽1
∗

𝑏′
),  (3-16) 

where 𝑅1 and 𝑅2 are the distances between the observation well and the real pumping well 

and the image recharge well, respectively. 

To obtain the drawdown equation in the XY system, Eq. (3-13) should be transformed 

back into the  system first. The relationship of coordinates of the observation well in 

the 𝛼 𝛽 systems satisfies 

 𝛼1
∗ = √

𝑇𝛽

𝑇𝑒
𝛼1;    𝛽1

∗ = √
𝑇𝛼

𝑇𝑒
𝛽1.  (3-17) 

Consequently, Eq. (3-15) and Eq. (3-16) can be respectively transformed into 

 𝑅1
2 =

𝑇𝛽𝛼1
2+𝑇𝛼𝛽1

2

𝑇𝑒
 ;  (3-18) 

 𝑅2
2 = 𝑅1

2 + 4𝑙2 (1 −
𝛼1

𝑎
+
𝛽1

𝑏
).   (3-19) 

Fourthly, the relationship of coordinates of the observation well in the 𝛼𝛽 and  𝑋𝑌 

systems satisfies  

 {
𝛼1 = 𝑋1𝑐𝑜𝑠𝜃 + 𝑌1𝑠𝑖𝑛𝜃
𝛽1 = −𝑋1𝑠𝑖𝑛𝜃 + 𝑌1𝑐𝑜𝑠𝜃

 .  (3-20) 

Therefore, Eq. (3-18) can be expressed using the XY coordinates considering Eq. (3-6) 

and Eq. (3-20), and it becomes (see Appendix A) 

 𝑅1
2 =

𝑇𝑋𝑋𝑌1
2+𝑇𝑌𝑌𝑋1

2−2𝑇𝑋𝑌𝑋1𝑌1

𝑇𝑒
 .          (3-21) 

Additionally, from Eq. (3-6), the expressions of 𝑇𝛼 and  𝑇𝛽 are also derived, and the 

detailed procedures are listed in Appendix A 
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 𝑇𝛼 =
𝑐𝑜𝑠2𝜃𝑇𝑋𝑋−𝑠𝑖𝑛

2𝜃𝑇𝑌𝑌

𝑐𝑜𝑠2𝜃−𝑠𝑖𝑛2𝜃
  ;  (3-22) 

 𝑇𝛽 =
𝑐𝑜𝑠2𝜃𝑇𝑌𝑌−𝑠𝑖𝑛

2𝜃𝑇𝑋𝑋

𝑐𝑜𝑠2𝜃−𝑠𝑖𝑛2𝜃
  ;  (3-23) 

 𝑎2𝑇𝛽 + 𝑏
2𝑇𝛼 = 𝑇𝑋𝑋(𝑎

2 + 𝑏2) .  (3-24) 

By substituting Eqs. (3-21) to (3-24), Eq. (3-19) can also be transformed into the XY 

system (see Appendix A) 

 𝑅2
2 = 𝑅1

2 +
4𝑇𝑒𝑎𝑏

𝑇𝑋𝑋(𝑎2+𝑏2)
[𝑎𝑏 − 𝑋1(𝑏𝑐𝑜𝑠𝜃 + 𝑎𝑠𝑖𝑛𝜃) + 𝑌1(𝑎𝑐𝑜𝑠𝜃 − 𝑏𝑠𝑖𝑛𝜃)] .          (3-25) 

Substituting Eqs. (3-8), (3-10), (3-21) and (3-26) into Eq. (3-13), the drawdown 

equation in the XY system is 

 

{
 
 

 
 𝑠 =

𝑄

4𝜋𝑇𝑒
[𝑊(𝑢𝑅1) −𝑊(𝑢𝑅2)] =

𝑄

4𝜋𝑇𝑒
(∫

𝑒−𝜆

𝜆

∞

𝑢𝑅1
𝑑𝜆 – ∫

𝑒−𝜆

𝜆

∞

𝑢𝑅2
𝑑𝜆)

𝑢𝑅1 =
𝑅1
2𝑆

4𝑇𝑒𝑡
;     𝑢𝑅2 =

𝑅2
2𝑆

4𝑇𝑒𝑡
;

𝑇𝑒 = √𝑇𝑋𝑋𝑇𝑌𝑌 − 𝑇𝑋𝑌
2  ;  

 .      (3-26) 

Eq. (3-26) will serve as the working equation for the following analysis. 

 

3.2 Data Interpretation 

With above preparation, one is able to conduct the pumping test data interpretation for 

a horizontally anisotropic aquifer. I start with the interpretation in a confined aquifer first. 

After that, interpretation in an unconfined aquifer will follow on the basis of the confined 

aquifer interpretation. Kruseman et al. (1994) and Batu (1998) summarized a library of 

methods of analyzing various pumping test data in details. Unfortunately, none of those 

methods concern the pumping test near a stream in a horizontally anisotropic aquifer. The 
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procedures that will be discussed in the following will fill a knowledge gap not covered 

in the books mentioned before. 

In a horizontally anisotropic aquifer with unknown principal directions, at least three 

observation wells are needed to determine the aquifer properties (Papadopulos, 1965; 

Hantush, 1966). Figure 4 shows the positon of three observation wells and a pumping well. 

𝑟1, 𝑟2 and 𝑟3 are the radial distances between the pumping well and three observation wells, 

respectively. As defined previously, the  and  axes are the principal transmissivity 

directions, and the  axis makes  angle with 𝑟1. And, 𝑟1 makes  and  angle with 𝑟2 and 

𝑟3 , separately. Consequently, the  axis makes angle + and + with 𝑟2  and 𝑟3 , 

respectively. A positive  means that 𝑟1 is on the counter-clockwise side of the  axis. 

Conversely, a negative  means that 𝑟1 is on the clockwise side of the  axis. 

 

 

Figure 4: The position of pumping well and three non-collinear observation wells. 
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Based on observed drawdowns in three observation wells, the pumping test 

interpretation is illustrated step by step as follows. Because the analytical steps are exactly 

the same for data from three observation wells, the first observation well is chosen as an 

example to explain the interpretation procedures.  

Step 1: According to Eq. (3-26) derived in Chapter 3.1, one can define a new parameter 

𝜀 =
𝑅2

𝑅1
. Meanwhile, based on the series form of Theis well function (Batu, 1998), Eq. (2-

1) can be transformed into 

 𝑠 =
𝑄

4𝜋𝑇
𝑊(𝑢) =

𝑄

4𝜋𝑇
(−0.5772 − 𝑙𝑛 𝑢 − ∑ (−1)𝑛

𝑢𝑛

𝑛∙𝑛!

∞

𝑛=1 ) .  (3-27) 

Similarly, Eq. (3-26) can be rewritten as 

 𝑠 =
𝑄

4𝜋𝑇𝑒
[𝑊(𝑢𝑅1) −𝑊(𝜀

2𝑢𝑅1)] =
𝑄

4𝜋𝑇𝑒
[2 𝑙𝑛(𝜀) + ∑ (−1)𝑛(𝜀2𝑛 − 1)

𝑢𝑅1
𝑛

𝑛∙𝑛!

∞

𝑛=1 ].     (3-28) 

When pumping time is large enough, which satisfies (𝜀2𝑢𝑅1) ≤ 0.01, Eq. (3-28) can be 

approximated as (Hantush, 1959) 

 𝑠 =
𝑄

4𝜋𝑇𝑒
[2 𝑙𝑛(𝜀) − (𝜀2 − 1)

(
𝑅1
2𝑆

4𝑇𝑒
)

𝑡
+ (𝜀4 − 1)

(
𝑅1
2𝑆

4𝑇𝑒
)2

2∙2!∙𝑡2
] . (3-29) 

Above equations work for a confined aquifer. It is notable that Eq. (3-29) is a quadratic 

function of 1/t. However, problems involving stream depletion often occur in unconfined 

aquifers. In the following, a straightforward modification of the procedures for a confined 

aquifer is provided to be applicable for an unconfined aquifer. Actually, if the pumped 

aquifer is unconfined and the water table variation is much smaller than the saturated (pre-

pumping) thickness of the unconfined aquifer (less than 10%), one may simplify the 
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nonlinear flow equation in the unconfined aquifer into a linear equation with an adjusted 

(𝑠′) based on the observed drawdown (s) as follows (Batu, 1998) 

 𝑠′ = 𝑠 −
𝑠2

2𝑑
 ,  (3-30) 

where d is the initial saturated thickness of unconfined aquifer. After such a transformation, 

one can adopt the same procedures for a confined aquifer to interpret the adjusted 𝑠′. In 

all the following discussion, I will use the same symbol s for both confined and unconfined 

measured drawdowns, and if it is for an unconfined aquifer, it actually means the  𝑠′term 

in Eq. (3-30).  

If, however, the drawdown in the unconfined aquifer cannot be regarded as much 

smaller than the initial saturated thickness of the unconfined aquifer (greater than 10%), 

then the nonlinearity of the unconfined flow probably becomes significant enough to 

render the analytical interpretative procedure invalid (Hantush, 1964). For such 

circumstances, one needs to call in a numerical method to interpret the pumping test data, 

which is out of the scope of this thesis, but will be explored in a future study. 



 20 

 

Figure 5: Drawdown in an observation well versus logarithm time (After Kruseman et 

al., 1994). 

 

Step 2: According to observed drawdown data during the pumping test, plot the 

drawdown versus logarithm of time. As shown in Figure 5, there is an inflection point on 

the drawdown-time curve, at which the second derivative of Eq. (3-29) with respect to ln(t) 

equals to zero. At such an inflection point, the value of 𝑢𝑅1 satisfies (Kruseman et al., 

1994) 

 𝑢𝑅1 =
2𝑙𝑛 (𝜀)

𝜀2−1
 .     (3-31) 

Putting Eq. (3-31) into the first derivative of Eq. (3-29) with respect to log(t), the result 

is the geometric slope (𝑚1) at the inflection point (Kruseman et al., 1994) as 

 𝑚1 =
2.303𝑄

4𝜋𝑇𝑒
(𝑒−𝑢𝑅1 − 𝑒−𝜀

2𝑢𝑅1) .     (3-32) 

In addition, the maximum drawdown 𝑠𝑚 is also related with   as (Hantush, 1959) 

 𝑠𝑚 =
𝑄

2𝜋𝑇𝑒
𝑙𝑛(𝜀) .     (3-33) 
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Step 3: Drawdown data can also be used to plot the drawdown versus reciprocal time 

(1/t), as shown in Figure 6. This curve intercepts the vertical axis at the maximum 

drawdown 𝑠𝑚 in Figure 6, and the geometric slope at such an intercept is −𝑚𝑡, which 

satisfies (Batu, 1998) 

 𝑚𝑡 =
𝑄

4𝜋𝑇𝑒
(𝜀2 − 1)

𝑅1
2𝑆

4𝑇𝑒
 .    (3-34) 

 

 

Figure 6:  Drawdown in observation well versus (1/t) (Batu, 1998) 
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Substituting Eq. (3-33) and Eq. (3-34) into Eq. (3-29) leads to  

 𝑠 = 𝑠𝑚 −
𝑚𝑡

𝑡
+

𝑐

𝑡2
 ;    (3-35) 

 𝑐 =
𝑄

4𝜋𝑇𝑒
(𝜀4 − 1)

𝑅1
4𝑆2

64𝑇𝑒
2 .    (3-36) 

It is worthwhile to see that Eq. (3-35) is a quadratic function in respect to 1/t (similar 

to above Eq. (3-29)) with three coefficients of sm, -mt, and c. 

Before determining values of aquifer parameters, the exact location of the inflection 

point cannot be determined. Therefore, the geometric slope at the inflection point is always 

approximated by the slope of a straight portion of the curve shown in Figure 5, which can 

be measured directly (Batu, 1998).  

To facilitate the data analysis, one can employ a statistical software, like Statistical 

Analysis System (SAS), to do the following tasks: 1) Importing drawdown-time data into 

the software to plot drawdown versus logarithm time like Figure 4; 2) Determining the 

straight-line portion from the obtained curve; 3) The SAS software will establish a best-

fitted linear equation for such a straight-line portion, and yield 𝑚1 , which can be 

considered as the slope of the inflection point. 

Using the same way in respect to the analysis of Figure 5 to get the drawdown-1/t 

curve as shown in Figure 6, and find a best-fitted quadratic equation (see Eq. (3-35)). 

Corresponding coefficients of such a quadratic equation are the values of 𝑠𝑚, −𝑚𝑡 and c, 

respectively. Consequently, the ratio of 𝑠𝑚/𝑚1  is a known constant. Simultaneously, 

according to Eqs. (3-32) and (3-33), 

 
𝑠𝑚

𝑚1
=

2log (𝜀)

𝑒
−𝑢𝑅1−𝑒

−𝜀2𝑢𝑅1
 .     (3-37) 
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The left side of Eq. (3-37) is now a known constant and the right side of Eq. (3-37) is only 

related with , so the value of  can be calculated directly. 

Because the values of  and 𝑠𝑚 are both known based on above processes, substituting 

them into Eq. (3-33), 𝑇𝑒  is solved straightforward. Three 𝑇𝑒  values can be obtained by 

analyzing drawdown data from three observation wells, using the same procedures 

outlined above, and such three 𝑇𝑒 values should be close to each other. A mathematical 

mean of such three 𝑇𝑒 values may be regarded as the best estimation of its actual value. 

Besides that, substituting the obtained  into Eq. (3-31), the value of 𝑢𝑅1 at the inflection 

point is calculated, which can be substituted together with  into Eq. (3-29) to determine 

the drawdown at the inflection point (𝑠𝑖). Based on the calculated 𝑠𝑖, one can locates the 

inflection point on the drawdown-time curve shown in Figure 5, and gets the 

corresponding time (𝑡𝑖).  

Step 4: In a horizontally anisotropic aquifer, one has 

 𝑢𝑅1 =
𝑅1
2𝑆

4𝑇𝑒𝑡
=

𝑟1
2𝑆

4𝑇𝑟1𝑡
 .   (3-38) 

where 𝑟1
2 = 𝑋1

2 + 𝑌1
2 and (𝑋1, 𝑌1) are the coordinates of the first observation well. And 

𝑇𝑟1  is the corresponding radial transmissivity in the 𝑟1 direction. In the field, once the 

location of the observation well is determined, the value of 𝑟1 can be measured directly. 

In regard to the inflection point, the corresponding values of 𝑡𝑖  and 𝑢𝑅1 have been obtained 

in Step 3. Therefore, based on Eq. (3-38), hydraulic diffusivity in the 𝑟1 direction 𝐷1 =
𝑇𝑟1

𝑆
 

can be calculated using the following equation 
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 𝐷1 =
𝑟1
2

4𝑢𝑅1𝑡𝑖
 .     (3-39) 

Conducting the same processes for other two observation wells, one can get values of 𝐷2 

and 𝐷3 

 𝐷2 =
𝑇𝑟2

𝑆
;    𝐷3 =

𝑇𝑟3

𝑆
 ,     (3-40) 

where 𝑇𝑟2 and 𝑇𝑟3 are the radial transmissivity values in the directions of the second and 

the third observation wells, respectively. From above definitions of hydraulic diffusivity, 

it is obvious that  

 
𝑇𝑟1

𝑇𝑟2
=

𝐷1

𝐷2
;  
𝑇𝑟1

𝑇𝑟3
=

𝐷1

𝐷3
 .    (3-41) 

In a horizontally anisotropic aquifer, the relation between the radial transmissivity and 

the principal transmissivity is (Batu, 1998) 

 

{
  
 

  
 𝑇𝑟1 =

𝑇𝛼

𝑐𝑜𝑠2𝜂+
𝑇𝛼
𝑇𝛽
𝑠𝑖𝑛2𝜂

𝑇𝑟2 =
𝑇𝛼

𝑐𝑜𝑠2(𝜂+𝜉)+
𝑇𝛼
𝑇𝛽
𝑠𝑖𝑛2(𝜂+𝜉)

𝑇𝑟3 =
𝑇𝛼

𝑐𝑜𝑠2(𝜂+𝛾)+
𝑇𝛼
𝑇𝛽
𝑠𝑖𝑛2(𝜂+𝛾)

 .        (3-42)  

Step 5: In the field, the values of  and  can be measured directly. Because of the 

unknown principal anisotropy direction,  is also unknown, but it can be calculated using 

the following equation (Batu, 1998) 

 𝑡𝑎𝑛(2𝜂) = −2
(
𝐷1
𝐷3
−1)𝑠𝑖𝑛2𝜉−(

𝐷1
𝐷2
−1)𝑠𝑖𝑛2𝛾

(
𝐷1
𝐷3
−1)𝑠𝑖𝑛(2𝜉)−(

𝐷1
𝐷2
−1)𝑠𝑖𝑛(2𝛾)

  .     (3-43) 

All items on the right side of Eq. (3-43) are known, thus  can be solved straightforwardly. 

Considering the properties of tangent function involved in Eq. (3-43), there should be two 
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values of 𝜂, which deviate by 90°. The following step will decide which one is the true 

solution and which one is false. In this regard, one can define a new parameter p as follows 

 𝑝 =
𝑇𝛼

𝑇𝛽
= (

𝑇𝑒

𝑇𝛽
)2 .     (3-44) 

After knowing values of three angles, 𝑝 can be calculated using Eq. (3-45) (Batu, 1998) 

 𝑝 =
𝑐𝑜𝑠2(𝜂+𝜉)−

𝐷1
𝐷2
𝑐𝑜𝑠2𝜂

𝐷1
𝐷2
𝑠𝑖𝑛2𝜂−𝑠𝑖𝑛2(𝜂+𝜉)

 .    (3-45) 

As defined in Chapter 2.1, 𝑇𝛼 > 𝑇𝛽, which will lead to 𝑝 > 1. Therefore, the values of   

which leads to 𝑝 < 1 will be rejected, and the one results in 𝑝 > 1 is accepted.  

The angle between 𝑟1 and the X axis plus the calculated value of  is the degree of , 

the angle between the 𝑇𝛼 and X axes. Finally, based on the solved p, 𝑇𝑒 and Eq. (3-44), 

𝑇𝛼 and 𝑇𝛽 can be found out. One can then use Eq. (3-42) to get the corresponding radial 

transmissivity. After that, according to the definition of hydraulic diffusivity, the aquifer 

storativity, which also means specific yield of unconfined aquifer can be determined 

straightforwardly. 

 

3.3 Stream Depletion  

After getting the aquifer parameter values, the subsequent steps are used to calculate 

stream depletion. A fundamental formula for calculating stream depletion is the 

differential drawdown equation in an isotropic and infinite aquifer (Glover and Balmer, 

1954) 

 𝑑𝑠 =
𝑄

4𝜋𝑇𝑡
𝑒
−𝑟2𝑆

4𝑇𝑡 𝑑𝑡,      (3-46) 
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where ds and dt are infinitesimally small increment of drawdown and time. For an 

horizontally anisotropic infinite aquifer, one can modify above Eq. (3-46) based on Eq. 

(3-26) to have 

 𝑑𝑠 =
𝑄

4𝜋𝑇𝑒𝑡
𝑒

−(
𝑇𝑋𝑋𝑌

2+𝑇𝑌𝑌𝑋
2−2𝑇𝑋𝑌𝑋𝑌

𝑇𝑒
)𝑆

4𝑇𝑒𝑡 𝑑𝑡 .    (3-47) 

Darcy’s law introduces that  

 𝑞 = 𝑇̿ ∙ 𝐽 .    (3-48) 

where q is the discharge vector per unit width, 𝑇̿ is the transmissivity tensor, and J is the 

hydraulic gradient. Based on Eq. (3-47), one has 

 

{
 
 

 
 
𝐽𝑋 =

𝑑𝑠

𝑑𝑋
= ∫

𝑄

4𝜋𝑇𝑒𝑡
∙ 𝑒

−(𝑇𝑋𝑋𝑌
2+𝑇𝑌𝑌𝑋

2−2𝑇𝑋𝑌𝑋𝑌)𝑆

4𝑇𝑒
2𝑡 ∙

(2𝑇𝑋𝑌𝑌−2𝑇𝑌𝑌𝑋)𝑆

4𝑇𝑒𝑡
𝑑𝑡

𝑡

0

𝐽𝑌 =
𝑑𝑠

𝑑𝑌
= ∫

𝑄

4𝜋𝑇𝑒𝑡
∙ 𝑒

−(𝑇𝑋𝑋𝑌
2+𝑇𝑌𝑌𝑋

2−2𝑇𝑋𝑌𝑋𝑌)𝑆

4𝑇𝑒
2𝑡 ∙

(2𝑇𝑋𝑌𝑋−2𝑇𝑋𝑋𝑌)𝑆

4𝑇𝑒𝑡
𝑑𝑡

𝑡

0

 .      (3-49) 

For a horizontally anisotropic aquifer, Eq. (3-2) is substituted into Eq. (3-48),  

 |
𝑞𝑋
𝑞𝑌
| = |

𝑇𝑋𝑋 𝑇𝑋𝑌
𝑇𝑌𝑋 𝑇𝑌𝑌

| ∙ |
𝐽𝑋
𝐽𝑌
| = |

𝑇𝑋𝑋𝐽𝑋 + 𝑇𝑋𝑌𝐽𝑌
𝑇𝑌𝑋𝐽𝑋 + 𝑇𝑌𝑌𝐽𝑌

| .     (3-50) 

The component of water flux that perpendicular to Y axis at X=X0 equals to  

 𝑞𝑋=𝑋0 = 𝑇𝑋𝑋 ∙ 𝐽𝑋|𝑋=𝑋0 + 𝑇𝑋𝑌 ∙ 𝐽𝑌|𝑋=𝑋0 .    (3-51) 

When the principal transmissivities are known, 𝑇𝑋𝑋 and 𝑇𝑋𝑌 can be solved through Eq. (3-

6). 

Above discussion is for a laterally infinite aquifer without the stream. If, however, 

there is a stream with a constant stage fully penetrating the aquifer at X=𝑋0 without any 

hydraulic barrier separating the stream from the aquifer, such a stream can be treated as a 

CHB which supplies addition flow to the pumped aquifer. Thus, total water flux through 
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X=𝑋0 can be divided into two components:  the first part is induced by the pumping well, 

which comes from aquifer storage; the second part is provided by the stream. These two 

parts have the same quantity and direction. Therefore, the total water flux equals to the 

double of 𝑞𝑋 calculated in above Eq. (3-51). The total stream depletion rate over the entire 

stream during a given time (t) should be the integral of Eq. (3-51) with respect to L 

 𝑄𝐷 = ∫ 2 ∙ 𝑞𝑋=𝑋0𝑑𝐿
+∞

−∞
 .     (3-52) 

where L means the stream length. 

 

3.4 Influence of Anisotropy 

 𝑇𝛼/𝑇𝛽  represents the extent of anisotropy, a larger ratio means a greater anisotropy. 

The value of  determines the direction of principal transmissivity. Based on Chapters 3.1 

and 3.2, it is obvious to find that both 𝑇𝛼/𝑇𝛽 and  control the characteristics of horizontal 

anisotropy. One can use the following procedures to inspect the influence of 𝑇𝛼/𝑇𝛽 and . 

Firstly, one can compare the difference of stream depletion rate under different values of 

𝑇𝛼/𝑇𝛽 such as 4:1, 25:1, 50:1. Secondly, one can compute the stream depletion rate for  

values varying from 0 to 
𝜋

2
. Based on the symmetry of geometry, when   varies in other 

quadrants, the stream depletion rate variation is similar to that when   varies in the first 

quadrant.  

 I will use the following example to demonstrate the application of the new solutions 

of calculating the drawdowns and stream depletion rates and new pumping test data 

interpretation procedures proposed above. 
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4. EXAMPLE 

 

Hantush (1959) conducted a 7-day pumping test in Norbert Irsik site near the Arkansan 

River, in the Ingalls area, Kansas. The pumped aquifer is unconfined, which is composed 

of alluvial deposits, and the saturated aquifer thickness before pumping is about 6.7 m. 

Pumping well with a  rate of 0.044 m3/s is 41.15 m from the Arkansas River, and fully 

penetrates the aquifer. Arkansas River fully penetrates the aquifer as well. The distribution 

of observation wells is shown in Figure 7. The coordinates of three observation wells are 

(-8.5m, 10.5 m), (0, -19.8 m) and (17.4 m, 0), respectively. Hantush (1959) assumed the 

aquifer as horizontally isotropic, and the obtained transmissivity and storativity of the 

aquifer are 0.0228 m2/s and 0.11 from his analysis, respectively. A minor point to note 

is that the transmissivity for an unconfined aquifer is approximated by a product of 

hydraulic conductivity and the saturated thickness and vertical flow is neglected in this 

analysis. 

In the following, we will generate a hypothetical case based on the work of Hantush 

(1959) by assuming the aquifer to be horizontally anisotropic rather than isotropic with 

the major principal direction forming an angle of 60°from the X axis (see Figure 7).  
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Figure 7: The map of studied area and locations of pumping well and observation wells. 

 

4.1 Drawdown Curve 

This section is devoted to compute the drawdowns and analyze the drawdown-time 

curves. Firstly, the isotropic case studied in Hantush (1959) can be considered as a special 

condition of horizontal anisotropy, which satisfies that 𝑇𝛼 = 𝑇𝛽 = 𝑇𝑒 = 0.0228 m2/s. To 

reflect the difference of drawdown between horizontally isotropic and anisotropic 

conditions, the values of 𝑇𝑒 under these two scenarios should keep constant and one only 

changes the ratio of 𝑇𝛼/𝑇𝛽 in the following analysis. Without losing generality, 
𝑇𝛼

𝑇𝛽
= 4 is 

used as an example for the anisotropic condition. Nevertheless, one has 𝑇𝛼 =

0.0456 m2/s and 𝑇𝛽 = 0.0114  m
2/s. Other values of  

𝑇𝛼

𝑇𝛽
 can be used as well if needed. 
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Secondly, because the drawdown calculation processes are exactly the same for three 

observation wells, OW-1 is chosen as an example in the following. In Eq. (3-26), the 

information used for calculating 𝑅1 and 𝑅2 includes: the coordinates of observation well 

in the XY system, the intercepts of stream on the 𝛼 and 𝛽 axes, which are denoted as (a, 0) 

and (0. -b), respectively, and the transmissivity components in the XY system. Based on 

Eqs. (3-6), (3-10), one has 

 𝑎 =
41.15

𝑐𝑜𝑠
1

3
𝜋
= 82.28 m       𝑏 =

41.15

𝑠𝑖𝑛
1

3
𝜋
= 47.51 m.      (4-1) 

 𝑇𝑋𝑋 = 0.02 m
2/s ;   𝑇𝑌𝑌 = 0.037 m2/s ;   𝑇𝑋𝑌 = 0.015 m

2/s  .     (4-2) 

Then, substituting Eqs. (4-1), (4-2) into Eqs. (3-21), (3-25), 𝑅1
2 and 𝑅2

2 are found to 

be 329.8 m2 and 9.67 × 103 m2, respectively. Finally, substituting the value of 𝑅1
2 and 

𝑅2
2 into Eq. (3-26), drawdown can be calculated. Using the same procedures to deal with 

other two observation wells OW-2 and OW-3, one can get drawdowns for all three 

observation wells and the results are listed in Appendix B. The drawdown-time curves of 

three observation wells for a horizontally anisotropic case in semi-logarithmic scales are 

shown in Figure 8.  For the purpose of comparison, drawdowns in three observation wells 

under equivalent isotropic condition are also computed and shown in Figure 8. 
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Figure 8: Drawdown in three observation wells under two different scenarios. 

 

One can see from Figure 8 that the overall drawdown-time curves for an anisotropic 

case follow somewhat similar S-shapes as those for an isotropic case, but drawdowns for 

an anisotropic case can deviate significantly from their counterparts for an isotropic case 

at a given time. Furthermore, drawdowns for an anisotropic case can be greater or less 

than their counterparts at a given time depending on the location of the observation well. 

Figure 8 indicates that if one adopts a horizontally isotropic curve to interpret pumping 

test data of a horizontally anisotropic aquifer, considerable errors can be generated. Figure 

8 signifies the importance of acknowledge the horizontal anisotropy for pumping test data 

interpretation. 
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4.2 Aquifer Parameters 

This section is devoted to the pumping test interpretation. Basically, I will use the 

procedures outlined in Chapter 3.2 to interpret the drawdowns calculated in Chapter 4.1 

to see if I can reproduce the two principal transmissivities, storativity, and the angle of the 

major principal transmissivity from the X axis. 

According to the geometric relationship among observation wells as shown in Figure 

7, the angles between 𝑟1 and 𝑟2 (ξ),  𝑟1 and 𝑟3 (γ) are 
7

9
𝜋 and 

23

18
𝜋, respectively, and the 

angle between 𝑟1 and X axis is 
13

18
𝜋. The radial distances between observation wells and 

pumping well are 13.5 m, 19.8 m and 17.4 m, respectively. 

A prerequisite of having quadratic relationship between drawdown and reciprocal 

pumping time is 𝑢𝑅2 ≤ 0.01 (as shown in Eq. (3-35)).  The alluvium in the Ingalls area 

primarily consists of stream-laid deposits that range from clayed silt to very coarse gravel. 

Gravels compose the bulk of the alluvium, and are predominantly fine to medium and 

poorly sorted (Stramel et al., 1958). Domenico and Schwartz (1998) listed that the 

hydraulic conductivity of gravels ranges from 3 × 10−4 m/s to 3 × 10−2 m/s. Thus, the 

assumed average hydraulic conductivity of the studied domain is 3 × 10−3 m/s. Because 

the saturated thickness of the aquifer before pumping is 6.7 m, the transmissivity is about 

0.02 m2/s.  Additionally, the specific yield in an unconfined aquifer usually ranges from 

0.1 to 0.3 (Lohman, 1972). Therefore, the average specific yield of pumped aquifer is set 

as 0.2. According to these assumptions, for OW-1, when the pumping time is more than 
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25 minutes, 𝑢𝑅2 ≤ 0.01 is satisfied. Thus, I import the drawdown data after 25 minutes 

into SAS to find the best-fitted quadratic equation as follows,   

 𝑠 = 0.52 − 1.39 × 103 ×
1

𝑡
+ 1.45 × 106 ×

1

𝑡2
 .     (4-3) 

Based on the coefficients in Eq. (3-35), 𝑠𝑚 equals to 0.52.  

Now, I use entire drawdown data to plot a drawdown versus logarithm time curve, and 

determine the straight portion of the curve. After this step, the straight portion data is 

imported into SAS to identify its slope, which has  

 𝑚1 = 0.28 .    (4-4) 

After getting the values of 𝑠𝑚  and 𝑚1 , the other related parameters can all be 

calculated using the following steps and the results are listed in Table 1. To facilitate the 

interpretation, I develop necessary MATLAB script files listed in Appendix C. 

Firstly, based on Eq. (3-37), 
𝑠𝑚

𝑚1
= 1.85. Using the MATLAB program to find =6.2. 

Secondly, based on Eq. (3-31), 𝑢𝑅1 and 𝑢𝑅2 are found to be 0.1 and 3.75, respectively. 

Thirdly, substituting the calculated 𝑢𝑅1and 𝑢𝑅2into Eq. (3-28), the drawdown and time 

values at the inflection point are found. Finally, based on Eqs. (3-33) and (3-39),  𝑇𝑒 and 

𝐷 are determined. The above procedures used for observation well OW-1 can be directly 

applied to other two observation wells OW-2 and OW-3, and the related results are also 

listed in Table 1. 
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Table 1: Calculated results for three observation wells 

 
𝑠𝑚 

(m) 

𝑚1 𝑓(𝜀)  𝑢𝑅1 𝑢𝑅2 
𝑠𝑖 

(m) 

𝑡𝑖 

(min) 

𝑇𝑒 

(m2/s) 

𝐷 

(m2/s) 

OW-1 0.52 0.28 1.85 6.2 0.10 3.75 0.26 58 0.025 0.13 

OW-2 0.48 0.28 1.74 5.4 0.12 3.50 0.24 52 0.025 0.26 

OW-3 0.35 0.23 1.48 3.8 0.20 2.87 0.16 41 0.027 0.15 

Average         0.026  

 

Combining the obtained hydraulic diffusivity (D) with Eq. (3-43), the degree of angle 

𝜂 is solved. For OW-1,  𝜂 = −
19

180
𝜋  or   𝜂 =

71

180
𝜋. Substituting the values of 𝜂 and 𝜉 into 

Eq. (3-45), the value of p is then calculated. As defined previously, p should be greater 

than 1 for an anisotropic aquifer. While, when 𝜂 = −
19

180
𝜋, p = 0.27, which is less than 1 

and should be rejected. Thus, the correct value of 𝜂 is 
71

180
𝜋, and the corresponding p value 

is 3.75. Therefore, the value of 𝜃 can be calculated as 

 𝜃 =
13

18
𝜋 −

71

180
𝜋 = 59° .    (4-5) 

Substituting the p value of 3.75 into Eq. (3-44), the principal transmissivities 𝑇𝛼 and 𝑇𝛽 

are found, 

 𝑇𝛼 = 0.050 m2/s;   𝑇𝛽 = 0.013 m
2/s.    (4-6) 

Combining Eq. (4-6) with Eqs. (3-40) and (3-42), the storativity (specific yield for the 

unconfined aquifer) equals to 0.1. Table 2 summaries the discrepancy between interpreted 
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and actual parameters. One can see the discrepancy is the least for 𝜃  (1.6%) and the 

greatest for 𝑇𝛽  (14%), which are both below 15%. This implies that the proposed 

interpretative procedures in Chapter 3.2 are valid in explaining pumping data from 

horizontally anisotropic aquifer laterally bounded by a stream. 

 

Table 2: Comparison of analyzed transmissivity, storativity and 𝜃 with theoretical value. 

 𝑇𝛼  (m
2/s) 𝑇𝛽  (m

2/s) S 𝜃  (°) 

Analyzed 0.050 0.013 0.1 59 

Theoretical 0.0456 0.0114 0.11 60 

Error Percentage 9.6% 14% 9.1% 1.6% 

 

 

4.3 Depletion Comparison 

In order to investigate the effect of horizontal anisotropy on stream depletion, one can 

change the values of 𝑇𝛼/𝑇𝛽  and 𝜃  individually to check their influences on stream 

depletion. It is notable that 𝑇𝑒 remains constant when 𝑇𝛼/𝑇𝛽 varies. For instance, when 

𝑇𝑒 remains to be 0.0228 m2/s, one has  
𝑇𝛼

𝑇𝛽
= 25 , and  

𝑇𝛼

𝑇𝛽
= 50. 
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Figure 9: Stream depletion rate over the entire stream reach under different values of (a) 

𝑇𝛼/𝑇𝛽; (b) 𝜃. 
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From Figure 9(a), it is obvious to see that a greater horizontal anisotropy will lead to 

a higher stream depletion rate. When 𝑇𝛼/𝑇𝛽 equals to 50, the depletion rate under steady 

state is about 0.039 m3/s, which represents 89% of the pumping rate which is 0.044 m3/s. 

While this depletion rate is just 0.035 m3/s for 
 𝑇𝛼

𝑇𝛽
= 4, which is about 79% of the pumping 

rate. Although the difference of depletion rate among three scenarios does not appear to 

be significant in Figure 9(a), the difference of total depletion volume during the whole 

pumping period could be sizable. For example, after stream depletion reaches steady state, 

the total depletion volumes during a following 7-day pumping period for 
 𝑇𝛼

𝑇𝛽
= 50 and 

 𝑇𝛼

𝑇𝛽
= 4 are 2.36 × 104 m3 and 2.11 × 104 m3, respectively, with a difference of 2.5 ×

103 m3 . From United States Environmental Protection Agency (EPA), the average 

American family of four uses 2.6 m3 of water per day. Thus, aforementioned depletion 

volume difference could supply 32 families for one months. Therefore, one can conclude 

that horizontal anisotropy has significant impact on stream depletion amount, which will 

affect streamflow, aquatic ecosystem and the benefits of different stakeholders. As shown 

in Figure 9(b), when 𝜃 varies from 0 to 
𝜋

2
, the depletion rate decreases considerably.  
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5. FUTURE WORK 

 
In this thesis, the derived drawdown equations and related interpretation procedures 

are based on a series of idealistic assumptions. These assumptions can be relaxed in some 

cases to accommodate the actual field conditions. Several future studies can be carried out 

on the basis of this thesis with the purpose of expanding the current knowledge base on 

investigating horizontally anisotropic aquifers: 

1. Considering stream width: Zlotnik et al. (1999) derived an analytical model 

about stream depletion with a finite stream width in an isotropic aquifer. Future 

work with horizontally anisotropic media can be extended to accommodate this 

factor, probably on the basis of Zlotnik et al. (1999). 

2. Partially penetrating stream: In the Great Plains, streams almost partially 

penetrate the surrounding aquifers (Zlotnik and Huang, 1999). The application 

of previous derived equations to a partially penetrating stream will result in the 

overestimation of stream depletion rate (Chen and Yin, 2004). Therefore, a 

future work could consider this factor.  

3. Hydraulically disconnected: Field tests conducted along the Arkansas River in 

the southeastern Colorado reflected that pumping can easily lower the 

groundwater table below the streambed, which will break the hydraulic 

connection between the stream and the groundwater, and subsequent pumping 

may not greatly impact the stream depletion rate (Moore and Jenkins, 1966). 
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Developing appropriate analytical model for this condition in a horizontally 

anisotropic aquifer will be meaningful. 

4. Semi-permeable barrier between the stream and aquifer: For some streams, 

there is a semi-permeable barrier separating the stream from the aquifer. For 

this case, the stream cannot be treated as a CHB. Instead, it can be treated as a 

GHB (Hantush, 1965). It will be interesting to extend the work of this thesis to 

this scenario.  

Besides the aforementioned works, changing constant pumping rate into a time-

dependent rate, such as harmonic pumping rate; considering nonlinear flow in the 

unconfined aquifer, and concerning the heterogeneity property of the aquifer can all 

serve as potential topics of investigation based on this thesis.  
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6. CONCLUSION 

 

In this thesis, I investigate drawdown-time behavior caused by a pumping well near a 

stream in a horizontally anisotropic aquifer. I also investigate the stream depletion rate at 

a specific location of the stream and total stream depletion rate over the entire stream reach 

induced by the pumping well. This thesis shows that the drawdown and stream depletion 

equations for a horizontally anisotropic aquifer can be substantially different from their 

counterparts in a horizontally isotropic aquifer. 

Because of the complexity of different transmissivity tensor involved in a horizontally 

anisotropic aquifer, i.e., the major and minor components of the principal transmissivities 

and the principal directions unknown, the pumping test interpretation procedures for a 

horizontally isotropic aquifer is substantially more complex than the standard 

interpretation procedures for a horizontally isotropic aquifer. I report a detailed and 

innovative procedure for interpreting the pumping test data for a horizontally isotropic 

aquifer in this thesis. It appears that minimum three non-collinear observation wells are 

needed for such a task. I also develop MATLAB script files to facilitate the computation 

of drawdown and stream depletion and then to aid the pumping test interpretation. 

Based on results of this thesis, I conclude that the direction of principal transmissivity 

and anisotropic ratio considerably impact the drawdown and stream depletion rate for a 

horizontally anisotropic aquifer laterally bounded by a stream.   
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Some of the assumptions involved in this thesis can be relaxed to account for a variety 

of realistic field situations, and the related future researches are summarized in the final 

chapter. 
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APPENDIX A 

 

1. Calculation of 𝑇𝑒.  

𝑇𝑋𝑋𝑇𝑌𝑌 − 𝑇𝑋𝑌
2 = (𝑇𝛼𝑐𝑜𝑠

2𝜃 + 𝑇𝛽𝑠𝑖𝑛
2𝜃)(𝑇𝛼𝑠𝑖𝑛

2𝜃 + 𝑇𝛽𝑐𝑜𝑠
2𝜃) 

                                  −(𝑇𝛼 − 𝑇𝛽)
2
𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 

                             = 𝑇𝛼𝑇𝛽(𝑠𝑖𝑛
4𝜃 + 2𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 + 𝑐𝑜𝑠4𝜃) 

                             = 𝑇𝛼𝑇𝛽(𝑠𝑖𝑛
2𝜃 + 𝑐𝑜𝑠2𝜃)2                                                       

                              = 𝑇𝛼𝑇𝛽 .                                                                                   (A-1) 

2. Calculation of 𝑅1
2 

𝑅1
2 = 𝑇𝛽(𝑋1𝑐𝑜𝑠𝜃 + 𝑌1𝑠𝑖𝑛𝜃)

2 + 𝑇𝛼(−𝑋1𝑠𝑖𝑛𝜃 + 𝑌1𝑐𝑜𝑠𝜃 )
2                           

       = 𝑋1
2(𝑇𝛼𝑠𝑖𝑛

2𝜃 + 𝑇𝛽𝑐𝑜𝑠
2𝜃) + 𝑌1

2(𝑇𝛼𝑐𝑜𝑠
2𝜃 + 𝑇𝛽𝑠𝑖𝑛

2𝜃) −

             2𝑋1𝑌1𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃(𝑇𝛼−𝑇𝛽)  

       = 𝑇𝑌𝑌𝑋1
2 + 𝑇𝑋𝑋𝑌1

2 − 2𝑇𝑋𝑌𝑋1𝑌1 .                                                            (A-2) 

3. Calculation of 𝑇𝛼 and 𝑇𝛽  

The steps about calculating 𝑇𝛼 and 𝑇𝛽 are the same. So, the steps 𝑇𝛽 is not 

repeated. Based on Eq. (3-7),  

{
𝑐𝑜𝑠2𝜃𝑇𝑋𝑋 = 𝑇𝛼𝑐𝑜𝑠

4𝜃 + 𝑇𝛽𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛2𝜃𝑇𝑌𝑌 = 𝑇𝛼𝑠𝑖𝑛
4𝜃 + 𝑇𝛽𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃
 

 ⟹ 𝑐𝑜𝑠2𝜃𝑇𝑋𝑋 − 𝑠𝑖𝑛
2𝜃𝑇𝑌𝑌 = 𝑇𝛼(𝑐𝑜𝑠

4𝜃 − 𝑠𝑖𝑛4𝜃 ) = 𝑇𝛼(𝑐𝑜𝑠
2𝜃 − 𝑠𝑖𝑛2𝜃) 

 ⟹ 𝑇𝛼 =
𝑐𝑜𝑠2𝜃𝑇𝑋𝑋−𝑠𝑖𝑛

2𝜃𝑇𝑌𝑌

𝑐𝑜𝑠2𝜃−𝑠𝑖𝑛2𝜃
  .                                                                                (A-3) 

4. Calculation of 𝑎2𝑇𝛽 + 𝑏
2𝑇𝛼 
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Based on Eq. (3-11), 𝑠𝑖𝑛𝜃 =
𝑚

𝑏
 and 𝑐𝑜𝑠𝜃 =

𝑚

𝑎
 

             𝑎2𝑇𝛽 + 𝑏
2𝑇𝛼 =

𝑎2(𝑐𝑜𝑠2𝜃𝑇𝑌𝑌 − 𝑠𝑖𝑛
2𝜃𝑇𝑋𝑋) + 𝑏

2(𝑐𝑜𝑠2𝜃𝑇𝑋𝑋 − 𝑠𝑖𝑛
2𝜃𝑇𝑌𝑌)

𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃
 

                                       =
𝑎2 (

𝑚2

𝑎2
𝑇𝑌𝑌 −

𝑚2

𝑏2
𝑇𝑋𝑋) + 𝑏

2 (
𝑚2

𝑎2
𝑇𝑋𝑋 −

𝑚2

𝑏2
𝑇𝑌𝑌)

𝑚2

𝑎2
−
𝑚2

𝑏2

 

                                        = 𝑇𝑋𝑋
𝑏4 − 𝑎4

𝑏2 − 𝑎2
 

                                  = 𝑇𝑋𝑋(𝑎
2 + 𝑏2).                                                                       (A-4) 

5. Calculate 𝑅2
2 

𝑅2
2 = (𝑅1)

2 + 4(
√𝑇𝛼𝑇𝛽|𝑎𝑏|

√𝑎2𝑇𝛽 + 𝑏2𝑇𝛼

)2 (1 −
√𝑇𝛽𝛼1

𝑎√𝑇𝛽
+
√𝑇𝛼𝛽1

𝑏√𝑇𝛼
) 

        = 𝑅1
2 +

4𝑇𝑒
2𝑎𝑏

𝑇𝑋𝑋(𝑎2 + 𝑏2)
(𝑎𝑏 − 𝑏𝛼1 + 𝑎𝛽1) 

        = 𝑅1
2 +

4𝑇𝑒
2𝑎𝑏

𝑇𝑋𝑋(𝑎2+𝑏2)
[𝑎𝑏 − 𝑏(𝑋1𝑐𝑜𝑠𝜃 + 𝑌1𝑠𝑖𝑛𝜃) + 𝑎(−𝑋1𝑠𝑖𝑛𝜃 +

             𝑌1𝑐𝑜𝑠𝜃)]                                                                                               (A-5) 

        = 𝑅1
2 +

4𝑇𝑒
2𝑎𝑏

𝑇𝑋𝑋(𝑎2+𝑏2)
[𝑎𝑏 − 𝑋1(𝑏𝑐𝑜𝑠𝜃 + 𝑎𝑠𝑖𝑛𝜃) + 𝑌1(𝑎𝑐𝑜𝑠𝜃 − 𝑏𝑠𝑖𝑛𝜃)].  
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APPENDIX B 

 

Table 3: Simulated drawdown data for three observation wells. 

Time （minutes） 𝑠𝑂𝑊−1 (m) 𝑠𝑂𝑊−2 (m) 𝑠𝑂𝑊−3 (m) 

0 0 0 0 

1 2.70E-05 1.99E-05 7.20E-07 

2 0.0013 0.0011 0.0002 

5 0.0200 0.0184 0.0077 

10 0.0616 0.0585 0.0343 

15 0.0978 0.0939 0.0620 

25 0.1534 0.1487 0.1084 

40 0.2116 0.2062 0.1578 

60 0.2647 0.2578 0.2004 

120 0.3516 0.3396 0.2619 

180 0.3944 0.3784 0.2886 

240 0.4199 0.4009 0.3034 

300 0.4367 0.4156 0.3128 

360 0.4487 0.4260 0.3193 

540 0.4700 0.4442 0.3306 

840 0.4864 0.4582 0.3390 

1140 0.4946 0.4650 0.3430 

1440 0.4995 0.4691 0.3454 

1800 0.5032 0.4723 0.3473 

2160 0.5058 0.4744 0.3485 

2520 0.5076 0.4759 0.3494 

2880 0.5090 0.4771 0.3501 

3240 0.5100 0.4780 0.3506 

3600 0.5109 0.4787 0.3510 

3960 0.5116 0.4793 0.3514 

4320 0.5122 0.4798 0.3517 

4680 0.5127 0.4802 0.3519 

5040 0.5131 0.4806 0.3521 

5440 0.5135 0.4809 0.3523 

5760 0.5138 0.4811 0.3525 

6120 0.5141 0.4814 0.3526 
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6480 0.5144 0.4816 0.3527 

6840 0.5146 0.4818 0.3528 

7200 0.5148 0.4820 0.3529 

7560 0.5150 0.4821 0.3530 

7920 0.5152 0.4823 0.3531 

8280 0.5153 0.4824 0.3532 

8640 0.5155 0.4825 0.3533 

9000 0.5156 0.4826 0.3533 

9360 0.5157 0.4827 0.3534 

9720 0.5158 0.4828 0.3534 

10080 0.5159 0.4829 0.3535 
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APPENDIX C 

 

1. MATLAB script for calculating drawdown in different observation wells. 

X=-8.5; Y=10.5;     % the coordinate of observation well 
Q=0.044;       %pumping rate 
T1=0.0456;T2=0.0114;     % principal transmissivity  
de=pi/3;        % the angle between T1 and X axis 
T=604800;      % pumping time 
m=41.15;       % perpendicular distance between stream and pumping well 
S=0.11;        % storativity 
Te=sqrt(T1*T2); 
Se=S/Te; 
a=m/cos(de);b=m/sin(de); 
Txx=T1*(cos(de))^2+T2*(sin(de))^2;  
Tyy=T2*(cos(de))^2+T1*(sin(de))^2; 
Txy=(T1-T2)*cos(de)*sin(de); 
R1=Txx*Y^2+Tyy*X^2-2*Txy*X*Y; 
R2=R1+4*Te^2*a*b*(a*b-X*(b*cos(de)+a*sin(de))+Y*(a*cos(de)-b*sin(de)))/(Txx*(a^2+b^2)); 
t=0:60:T; 
s=zeros(length(t),1); 
lgt=zeros(length(t),1); 
for i=1:length(t) 
    u1=R1*Se/(4*Te*t(i)); 
    u2=R2*Se/(4*Te*t(i)); 
    lgt(i)=log10(t(i)/60); 
    w1=expint(u1); 
    w2=expint(u2); 
    s(i)=Q*(w1-w2)/(4*pi*Te); 
end 
 

 

2. MATLAB script for calculating 𝜀 

Because Eq. (3-37) is so complicated that the function like fzero and solve in Matlab 

cannot be used to calculate the value of 𝜀 for each observation well, trail and error method 

is adopted. 

x=[5:0.1:15];  % x represents   

sm=0.47;     % maximum drawdown derived from quadratic model 
m1=0.27;  % the slope of straight portion of drawdown versus logarithmic time 
ratio=sm/m1 
c=zeros(length(x),1); 
for i=1:length(x) 
u=2*log(x(i))/(x(i)^2-1); 
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a=exp(-u); 
b=exp(-u*x(i)^2); 
d=2*log10(x(i))/(a-b); 
c(i)=ratio-d; 
end 
 

3. MATLAB script for calculating stream depletion amount 

clc, clear; 
syms t y; 
  
Q=-0.044;   % pumping rate 
T1=0.0456;T2=0.0114;   % principal transmissivity 
theta=pi/3;  % the angle between T1 and X axis 
T=604800;   % pumping time 
x=41.15;   % perpendicular distance between stream and pumping well 
S=0.11;   % storativity 
Te=sqrt(T1*T2); 
Se=S/Te; 
Txx=T1*(cos(theta))^2+T2*(sin(theta))^2;  
Tyy=T2*(cos(theta))^2+T1*(sin(theta))^2; 
Txy=(T1-T2)*cos(theta)*sin(theta); 
  
F1=Q./(4*pi*Te.*t); 
F2=(Se.*(-(Txx.*y.^2+Tyy*x^2-2*Txy*x.*y)))./(4*Te.*t); 
F3=(Se*(2*Txy.*y-2*Tyy*x))./(4*Te.*t); 
F4=(Se*(2*Txy*x-2*Txx.*y))./(4*Te.*t); 
  
q1=Txx*F1.*F3.*exp(F2); 
q2=Txy*F1.*F4.*exp(F2); 
q=q1+q2; 
  
fun = matlabFunction(q); 
  
dt = 60; 
Vmat = zeros(1,(T)/dt); 
Vmat(1) = 2*integral2(fun,0,1,-150,150); 
  
i = 2; 
for tmax = (dt+1):dt:T 
    Vmat(i) = Vmat(i-1)+2*integral2(fun,tmax-dt,tmax,-150,150); 
    i = i+1; 
end 
  

  
plot(1:dt:T,Vmat); 
xlabel('t') 
legend('V') 

 




