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ABSTRACT

Emerging technologies and digital devices provide us with increasingly large volume
of data with respect to both the sample size and the number of features. To explore the ben-
efits of massive data sets, scalable statistical models and machine learning algorithms are
more and more important in different research disciplines. For robust and accurate predic-
tion, prior knowledge regarding dependency structures within data needs to be formulated
appropriately in these models. On the other hand, scalability and computation complexity
of existing algorithms may not meet the needs to analyze massive high-dimensional data.
This dissertation presents several novel methods to scale up sparse learning models to an-
alyze massive data sets. We first present our novel safe active incremental feature (SAIF)
selection algorithm for LASSO (least absolute shrinkage and selection operator), with the
time complexity analysis to show the advantages over state of the art existing methods.
As SAIF is targeting general convex loss functions, it potentially can be extended to many
learning models and big-data applications, and we show how support vector machines
(SVM) can be scaled up based on the idea of SAIF. Secondly, we propose screening meth-
ods to generalized LASSO (GL), which specifically considers the dependency structure
among features. We also propose a scalable feature selection method for non-parametric,
non-linear models based on sparse structures and kernel methods. Theoretical analysis and
experimental results in this dissertation show that model complexity can be significantly

reduced with the sparsity and structure assumptions.
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1. INTRODUCTION

Massive data processing is becoming more and more important in modern research.
To explore the benefits of massive data sets, scalable models have been studied by differ-
ent research communities [1]. Prior knowledge regarding sparsity and structures within
data sets are formulated as L, penalty and its variants to improve model robustness and
prediction accuracy [2]. Deep models have been recently developed to model complicate
data representations and structures and thus improve prediction accuracy [3].

On the other hand, the computation cost coming with these models on massive data
sets is usually frightening. To tackle the problem, one way is to construct parallel or
distributed systems and develop corresponding algorithms [1, 4]. This approach scales up
well especially when the targeted problem can be paralleled. Stochastic gradient descent
(SGD) [5, 6, 7] is another approach to combat problems with large data samples. SGD has
been widely employed in non-convex complex problems such as training deep learning
models. Besides distributed algorithms and SGD, recently people have developed methods
that gain scalability relying on intrinsic sparse data structures. Problem size can be reduced
by leveraging sparse structures recovered by the model. Feature screening methods such
as [8, 9, 10, 11] can remove inactive or unimportant features to reduce the problem size
and thus save CPU time in training. Sample screening methods such as [12, 13, 14, 15]
provide or develop practicable approaches scaling support vector machines (SVMs) up for
large data sets.

This dissertation proposes several methods for scaling up sparse models. In Chapter
2, 3 and 5, we develop approaches that can improve computation efficiency of sparse
models along the screening strategy. In Chapter 4, we present a scalable structured kernel

feature selection method that can be scaled up with dual average stochastic approximation



algorithm. Chapter 2 and 3 deal with data sets with large feature size, and Chapter 4 and 5
are for data sets with large sample size.

There are three sections in this introduction chapter. Some basics on least absolute
shrinkage and selection operator (LASSO), support vector machine (SVM), kernel feature
selection, and screening methods are given in the first section. Research motivations are
given in the second section. The third section summarizes the main contributions of this

dissertation.
1.1 Mathematical Background

In this section we first survey the basic concepts such as LASSO, SVM, and kernel
feature selection for which we will provide efficient algorithms in following chapters. All
of these models are sparse models in which part of the optimal model parameters could be
zero. LASSO and kernel feature selection relies on ; norm to obtain sparsity, while SVM
is a non-parametric model that can automatically assign zero coefficients to non-support
samples adaptively based on training data complexity. Literature reviews on feature and

sample screening are given in the last subsection.
1.1.1 LASSO

Least absolute shrinkage and selection operator (LASSO) and its variations have been
wildly used for feature selection, sparse structure recovering, compressed sensing and so
on. Let X € R™*? be a data matrix with n samples and p features, and y € RP*! is the

response vector. The original LASSO problem [16] is as follows:

o1
min g |ly — X5 + AllBlls- (1.1)

Here ) is the regularization parameter. The L; penalty term imposes sparsity on (3, and

this leads to some entries of the optimal solution 5* being zeros. One variant of LASSO



is Fused LASSO [17],

1 S
min o[y = B3+ A D |8 — Bl (1.2)

=1

From the formulation, Fused LASSO tries to make adjacent model variables to be the
same, and this corresponds to the chain structures within many data sets such as time

series data. The Fused lasso can be rewritten as

1
min o |ly = X6l + DAL (1.3)
where ) )
1 -1 0 0 0
01 -1 ..0 0
D — . (1.4)
00 0 1 -1

Fused LASSO and the matrix form (1.3) can be extended to a broader range of tree and
graph structures, and all of these are named generalized LASSO that we will present a
novel scaling up method in the second chapter.

A bunch of algorithms have been brought up to solve the LASSO problem, such as
shooting algorithm [18], basis pursuit method [19], grafting [20], etc.. Feature screening
methods [10, 11, 21] have been developed to scale up LASSO, and we will give a detailed

review on these approaches.
1.1.2 Support Vector Machine

Suppose we have a dataset D = {(z;,v:)}n, and 7; € R, y; € {—1,1}. Let 1 be

feature mapping function, ¥ : X — F. Let w be a vector in feature space F, the primal



problem for SVM is:

1 n
Prmin zlwl[3+C Y [1—w! (yib(:)] (15)

=1

Here C' € R" is the model penalty parameter, and a small C' corresponds wide decision

margin. And the corresponding dual problem [14, 12, 22, 15] is

D: sup—%HZTQHg—FlT@ (1.6)
)
s.t. 0; € [0,C], Vi, (1.7)
where
Z = [y1w<'r1)7 y2¢(5€2)7 ) ylw(xn)]T (18)

Let w* and #* denote the optimal solution to primal and dual problem. We have the primal

and dual relationship as
w* = 270" (1.9)
If we use Q = ZZ7, the dual problem is a standard quadratic optimization problem:

1
D : min §9TQ9 — 179 (1.10)
s.t. 9; € [0,C], Vi. (1.11)
Many algorithms have been developed to address training SVM. Coordinate descent

methods have been developed for linear SVM [23, 24]. Sequential minimal optimization

(SMO) methods [25, 26] can solve large scale kernel SVM by searching the well chosen



directions. Stochastic gradient decent methods have been extended to SVM on large data
sets in [27, 28]. Similar to LASSO, sample screening methods have been proposed to

solve SVM on large data sets.
1.1.3 Kernel Feature Selection

People have brought up non-linear feature selection models to capture intrinsic re-
sponse relationship between variables. Kernel feature selection is an import type of non-
linear feature selection method. For example, the formulation for the Hilbert-Schmidt

Feature Selection (HSFS) [29] is as follows:

P

in —HSIC(WX,Y)+ A illoo> 1.12

min (WX,Y)+ ;Ilwll (1.12)

where W = [wy, ..., w,] is a transformation matrix. Limited-memory BFGS (L-BFGS)

algorithm [30] can be used to solve the problem. One limitation of HSFS is that the
objective function is non-convex. Hence, with different starting points for optimization,
we may get different solutions. Other kernel based feature selection methods include
HSIC, FVM, HSIC-LASSO [31, 32, 33]. In [31], they propose to minimize the following

objective function:

Lo &~ -

min o[|L = Y oK + Mo, (1.13)
k=1

st. ap>0,Vk=1,...,p. (1.14)



The loss function can be interpreted as

1 - & - 1
SIIZ - Y K[| = SHSIC(Y,Y) - > aHSIC(Y, X4) (1.15)

k=1 [
1
+5 > aia; HSIC( X, Xaj). (1.16)
ij
With the last term, their methods aim to eliminate the correlated redundant features. We

will propose a novel structured kernel feature selection model in chapter 4.
1.1.4 Screening Method for Sparse Models

In this subsection, we review the screening methods developed recently by researchers

for sparse models such as LASSO and SVM.
1.1.4.1 Sequential Feature Screening

Traditional methods such as shooting algorithm(coordinate minimization with soft-
thresholding) have been proposed to solve the LASSO problems. However, with large p
and n, this type of problem will become difficult to solve. Recently feature screening has
been proposed to scale up sparse learning. The first type of feature screening method is
sequential screening. Most sequential screening methods derive screening rules by lever-
aging the solutions to the LASSO model with a heavier regularization parameter.

There are two broad categories of sequential screening methods for LASSO problems:
heuristic and safe screening methods. The heuristic screening methods [8, 9] relies on
heuristics to remove features. For example, the Strong Rule screening [8] derives the
screening rule based on the assumption that the absolute values of the inner products be-
tween features and the residue are non-expansive with respect to the parameter values. It
is obvious that this assumption does not always hold. Such heurstic screening rules are not
safe, meaning that they cannot guarantee that the removed features will have correspond-

ing zero value in the optimal LASSO solution to the original full-scale problem.

6



Safe LASSO screening methods do not take any unsafe assumption that the heuristic
screening methods use. Most of the safe screening methods [10, 11, 21] are inspired by
the seminal work by [10] and derive screening rules with the help of the LASSO solution
with a heavier regularization parameter. To derive the screening rule, we first need to have

the dual form of LASSO problem (1.1), which is given by

1 A2 y
sup o lylls — 5 116 = 115 (1.17)

st. |zl <1,Vi=1,..p. (1.18)

(1.17) is a strongly convex quadratic problem with polygon constrains. For problem (1.1),
with KKT conditions [34, 11], we have

| sin(s1 i #0
2T € . (1.19)

[—1.1] if[67:i =0

The primal and dual variable relationship is y — X 3 = A\0;. From (1.19), we have
2]0*| <1 = [B*]; =0 = u; inactive feature.

Given the optimal dual variables 6*, we can easily check whether feature ¢ is active or not

by |«

0*| < 1. As it is equally expensive to compute §* compared to solving the original
LASSO problem, screening methods aim to estimate a convex or ball region B(6,r) =
{60% | ||0* — 6]]2 < r} as the range of *. With 8* € B(0,r), let 0* = 6 + p, we can see

l|p|l2 < 7. With 27'0* = 270 + 2T p, we have

270 — |lzillor < 276" < &l 6+ ||i]lor.



Then

xl0 — ||zil|ar > —1
if = x; inactive feature. (1.20)

10+ ||z |2r < 1

Clearly, the tightness of the bound estimates and the computational cost of deriving B(0, r)
determine the effectiveness of the corresponding screening methods.

Sequential screening methods rely on the LASSO solution with a heavier penalty to
infer the ball region of the dual variables 6, B(6*(X),r). Here X' > A, and 6*(\') can be
computed based on the primal-dual relation when the solution to the LASSO problem with
)\ as the regularization penalty parameter. For example, DDP [11] takes the dual prob-
lem (1.17) as a projection problem and estimates the ball range of 6* based on the proper-
ties of projection operators such as non-expansiveness. Based on DPP, the screening rules
for Group LASSO [21], 1D-chain Fused LASSO [35], Sparse Group LASSO [36], and
Tree Group LASSO [37] have been developed. Typically, sequential screening requires to
solve a sequence of LASSO problems corresponding to a sequence of descending \’s to

gradually tighten the range estimates of 6* to achieve the high screening power.
1.1.4.2  Dynamic Feature Screening

Instead of relying on the solutions with different \’s, the recently proposed dynamic
screening [38, 39, 40] directly derives the range estimates of 6* by strong duality based
on the strong convex property of the dual objective function. The ball region for 6* is
estimated based on the duality gap as a function of the primal and dual objective function

values at iterative updates [38, 39]:

vo € r 6 € B B(0,55[P(9) - D)) = {0 110"~ 6l < 5 [P(5)~ D(6)] |

(1.21)



Here (£ is the dual feasible space corresponding to feature set F. [ is the current esti-
mation of primal variable, and 6 is the projected feasible dual variable of 5. The tightness
of the results depends on the duality gap [P(5) — D(6)], determined by the quality of
iterative updates £ and . Dynamic screening algorithms in [38, 39] iteratively update (3
and 6 for the original LASSO problem with the whole feature set X to check the duality
gap and apply screen rules to remove inactive features. Without the solution information
from a heavier parameter, dynamic screening has to iterate the operations in optimization,
such as sub-gradient computation, on the original whole feature set many times to gain a
small duality gap. Within these iterations, a large number of redundant solf-threshold or

sub-gradient operations can be performed on inactive features.
1.1.4.3 Sample Screening for SVM

Support Vector Machines gain their sparse structures on support vectors. Similar to
sequential screening for LASSO, sample screening method [12, 13] derive their screening
rules by leveraging the solutions to SVM with a another hyper parameter.This type of sam-
ple screening methods have been extended to sparse SVM in [41]. Recently, the screening
method developed in [15] derives sample screening rules by leveraging the duality gap,
which is similar to the dynamic screening method for sparse learning [38].

Most of SVM sample screening rules are derived based on the dual form (1.10). With

KKT condition regarding to (1.10), we have

[6°(C)i] = 0, if (270, yip(a;)) =1 >0 (1.22)
[6°(C)i) = C, if (Z70, yip(a1)) =1 <0 (1.23)
[6*(C):] € [0,C), if (276, yitp(z:)) =1 =0 (1.24)



Letususe { R, L, £} to represent the sets of data samples satisfy the three conditions.

R = {i € N(ZT0,y(z;)) > 1} (1.25)
L= {i e N(ZT0,ynp(x;)) < 1} (1.26)
&= {i e N(ZT0,y(2;)) = 1} (1.27)

The data instance in £ are on margin support vectors, data instances in £ are inside margin
support vectors, and data instances in ‘R are non-support vectors. With the solution from
C’, [12, 13] estimate a region for either  or w, and then remove a subset of the non-

support vector samples. Reduced sample size leads to less CPU time and memory space.
1.2 Motivations

LASSO and its variants are powerful tools for feature selection. On one hand the I,
norm can recover sparsity structures in data, while on the other hand its non-smoothness
results in difficulties in optimization. For sparse models, when the data set is with large
feature or sample size, the computation cost will become one of the main factors peo-
ple need to consider. As mentioned in previous section, screening methods provide us
approaches that can avoid redundant computation resulted from inactive features.

There are drawbacks coming with sequential and dynamic screening methods for LASSO.
Sequential screening relies on the model solution with a heavier penalty to infer the ball
region of the dual variables. The closer two \ values are, the tighter the range estimates of
0* can be. Such a sequential procedure is suitable and efficient when solving a sequence
of such problems with different regularization parameters is necessary, for example, for
model hyper-parameter selection by cross validation. However, in the situations where
we only want to derive the solution with a small number of specific A values, sequential

screening may take too much redundant computation on irrelative A values. For dynamic
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screening, as mentioned in previous section, we may need many iterations to reach the
duality gap with screening power. The computation cost of the redundant operations on
inactive features or samples dilute the screening benefits.

Another shortcoming for existing screening methods is that they do not consider gen-
eral variable dependence structures, such as graph structure presented in generalized LASSO
(GL). With a generic structure in |D| in (1.3), the dual form will become much more com-
plicate, and it is not easy to derive sequential screening rules by following the strategies
utilized for LASSO and group LASSO. Thus we do need new screening strategies for GL
problems.

Furthermore, all of these screening methods are targeting at linear models with large
feature size. While it is equally challenging to solve non-linear feature selection models
such as kernel feature selection with large sample size. As described in previous section,
large sample size could result in infeasible kernel feature selection models. Thus there is
large scaling up space for kernel feature selection models.

In this dissertation, we try to bring up several methods to tackle these challenging

problems. We list the main contributions in next section.
1.3 Main Contributions

We propose several techniques that can further boost structured sparse models. We
summary our contributions in each chapter as follows.

Chapter 2 presents the important contributions of this dissertation, scalable safe active
incremental feature selection (SAIF). SAIF can overcome the shortcomings of sequential
and dynamic screening, and scales up sparse models such as LASSO by maximumly re-
ducing the redundant computation resulted from inactive features. Starting from an empty
active feature set, SAIF dynamically recruits the most correlated features and removes

inactive features with the estimation of the dual variables. Experimental results show sig-
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nificant improvements over existing screening methods. Theoretical analysis also proves
the advantages of SAIF.

In Chapter 3, we focus on screening methods for generalized LASSO (GL). By lever-
aging the dual form of GL, we show that GL screening rules rely on efficient deriving the
bounds of the solution space of an inequality system. We present an efficient approxima-
tion approach to tackle this problem. We also show how to extend SAIF to tree Fused
LASSO, a special case of GL. Experiments on simulation and real-world data sets demon-
strate the advantages of our methods. The proposed methods has broad applications and
impacts as they applicable to general loss functions and variable dependency structures.

In Chapter 4, we discuss a novel scalable method for kernel feature selection with
structures. The proposed model can incorporate general graph structures, such as 2D
and 3D image grid, into kernel feature selection. The model formulation comes with the
advantages that it can easily be scaled up with the dual average stochastic gradient descent
method [42]. Results from 3D image analysis show that the proposed model not only
obtains improved accuracy but also can save computation time tremendously.

Chapter 5 extends the idea of SAIF to SVM and leads to scalable safe active incremen-
tal support vector selection (SAIV) algorithm. Support vectors give SVM models sparsity,
and this also provide them the scaling up opportunities by leveraging the idea of SAIF.
Experiments and theoretical results are presented to demonstrate that SAIV can reduce the
computation cost of training SVM models.

The proposed models and methods, in which sparsity and structures can be incorpo-
rated as prior knowledge, can boost prediction performance and improve model efficiency

as well.
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2. SAFE ACTIVE FEATURE SELECTION FOR SPARSE LEARNING

In this chapter, we describe a novel method to scale up LASSO solutions, safe active
incremental feature selection (SAIF). SAIF is different from the existing sequential screen-
ing and dynamic screening methods for LASSO, both of which require solving the full-
scale LASSO problem in the original feature space. SAIF does not require a solution from
a heavier penalty parameter as in sequential screening or update the full model for each
iteration as in dynamic screening. SAIF starts with a small number of features and only
updates the significantly reduced model with the current most active features. The iterative
procedure of SAIF incrementally recruits active features and updates the model to reach
the final LASSO solution with the convergence guarantee to achieve the optimal solution
to the original full LASSO problem. SAIF has a promising potential to solve the scalabil-
ity issue for LASSO and its extensions when facing extremely high dimensional data sets.
Experiments with both synthetic and real-world data sets show that SAIF can be up to 50
times faster than dynamic screening, and hundreds of times faster than LASSO solutions

without screening.
2.1 Introduction

LASSO has been a powerful tool for sparse learning to generalize predictions based
on analyzing data sets with p > n, where p is the number of covariates or features and n
the number of samples. LASSO screening methods provide efficient approaches to scale
up sparse learning without solving the full LASSO problems, based on either sequential
or dynamic screening methods [10, 11, 38]. However, the existing sequential screening
requires the LASSO solution with a heavier regularization penalty parameter so that the
range of dual variables can be estimated tightly to help effectively screening redundant

features. Different from such static sequential screening methods, dynamic screening does
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not require the solution with the heavier penalty parameter but relies on duality gaps for
feature screening. To achieve high screening power, a significant number of optimization
iterations have to be operated on the full-scale problems with the original high dimensional
feature set to compute the effective duality gap. Both sequential and dynamic screening
requires to update the original full-scale LASSO model.

Homotopy methods have been applied to LASSO to compute the solution path when
A varies [43, 44, 45, 46, 47, 48]. This type of methods rely on a sequence of decreasing
A values and “warm start” (starting the active set with the solution from the previous \)
to achieve computational efficiency. Usually these methods have multiple iteration loops
to incorporate the strong rule screening, active set, and path-wise coordinate descent. The
inner loop performs coordinate descent and active set management. The outer loop goes
through a sequence of decreasing A values and initializes the active set at each \ with the
strong rule and warm start. Since they do not utilize safe convergence stopping criteria for
the active set, they may miss some of the optimal active features. Furthermore, this type
of methods do not employ any screening rule for the inner-loop sub-problem, and it may
limit the scalability.

Besides screening and homotopy methods, working set methods [49] maintain a work-
ing set according to some violation rules and solve a sub-problem regarding the working
set at each step. The working set method [49] estimates an extreme feasible point based
on the current solution, and then the constraints that are closest to the feasible point con-
struct the working set for the next step. This kind of methods also start from solving the
original full-scale problem as the existing LASSO screening methods. However, when
p > n, the basic assumption of sparse learning is that most of the given features are
irrelevant and should be inactive for the optimal solutions. It is clear that existing al-
gorithms may not be efficient due to redundant time-consuming operations on inactive

features. In this chapter, we propose a novel LASSO feature selection method to fur-

14



Sub-Prob.
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ADDy DEL
At |— Rt

Figure 2.1: SAIF Screening. A; stands for the Active set, while R; stands for the Remain-
ing set at step .

ther scale up LASSO solutions by overcoming the issues in the existing methods. Rather
than taking the whole feature set as the initial input, our method SAIF starts from a small
set of features, which is taken as the active set. The features that are not in the active
set are put in the remaining set (Figure 2.1). Time-consuming iterations such as coordi-
nate minimization with soft-thresholding are only performed on the features in the active
set. Features are actively recruited or removed from the active set according to the es-
timated ranges of optimal dual variables. Based on duality properties, efficient feature
operation rules and safe stopping criteria have been developed to keep most inactive and
redundant features out of the active set. With a small active set, CPU time and mem-
ory operations can be tremendously reduced. Complexity analysis is provided for both
dynamic screening and SAIF. Theoretical results show that the running time of SAIF is
almost only proportional to the active feature size, the number of features with non-zero
model coefficients in the optimal LASSO, rather than the input feature size. Experiments

on simulated and real-world datasets verified the advantages of the proposed method.
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Data: Data matrix X, label Y, penalty )\, stopping duality gap e

Result: Coefficient Vector [

Choose [clog(™H%) Jog(p)] features from F in the descending order of
[ XTE(0)];

o= ﬁ, IsAdd = True;

while True do

Update [, with K iterations of soft-thresholding operations on .4;;

Compute a ball region B(6;, ;) based on (2.13) or (2.14);

re = 0Ty

if IsAdd = False & Duality Gap < e then
| Stop;

end
DEL operation;

if IsAdd = False then
| Continue;

else
if max;cp, |27 0;| + ||7;]|2r: < 1 then

if 6 < 1 then
| 0 = min(100, 1)

else
| IsAdd = False; Continue;

end

end

ADD operation;

end

end

Put 3, in to 3, and inflate the other entries with 0.
Algorithm 1: SAIF Algorithm
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2.2 Safe Active Incremental Feature Selection for LASSO

We derive an innovative incremental feature screening algorithm, SAIF, in which we
can iteratively solve much smaller sub-problems, i.e., iteratively update the duality gap
while adding or removing features by leveraging the active ball region estimates for the
optimal dual variables of these sub-problems. The schematic illustration of SAIF is given
in Figure 2.1. Let A; and R, denote the active feature index set and remaining feature
index set at iteration step ¢, respectively. Instead of solving either the original full-scale
LASSO primal problem or the corresponding dual problem, SAIF screening is different
from the existing sequential and dynamic screening as it only needs to solve significantly
reduced sub-problems and updates the screening rules only based on the duality gap with-
out solving these sub-problems exactly. More importantly, SAIF has the safe guarantee
that only irrelevant or redundant features in the original LASSO problem will be removed.
Algorithm 1 summarizes our SAIF screening procedure, which starts with Ay and dynam-

ically moves active features between R, and A;.
2.2.1 ADD and DEL Operations

Two operations in SAIF are ADD and DEL. Starting from an initial active set Ay,
whose features can be selected by some simple heuristics, for example, based on their
correlation with the output, SAIF iteratively adds features (ADD) into or removes features
(DEL) from the active set. At the tth iteration, we derive both ADD and DEL operations

to dynamically update .4; based on the primal sub-problem with only the current active
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features:

P, : i B i) + A 2.1
: BeRm;‘{lxlzf];t%ﬁg vi) + MBIl 1)
Dy : sup Z 1 (=A0;,y;) (2.2)

st. |xl0| <1, Vi€ A,

Let €24, be the dual feasible region and D(6;) denote the dual objective function value of
the sub-problem at the dual variable 6, considering only the active features in A; with 6
being the corresponding optimal dual solution. We use 3, € R/*! to represent the 3
value after ¢ out layer iterations in SAIF. 3; denotes the optimal active feature solution
regarding the problem F;. Pt(B ) is the objective value of P, with input f3, and 3 can have
a different set of features compared with A;; we inflate the missing entries in B with zeros
and ignore the entries or features not in A; in the calculation of P;( 5) Let S4 represent
the set of the optimal primal solutions for any feature set .4, 6* the optimal dual solution
with the full feature set F, and A for the optimal active feature set that {i : |z70*| = 1}.
Let B(0;, 1) = {0;| ||6; — 64]|> < r¢} be an estimated ball region for 6; at step ¢.

SAIF carries out ADD and DEL operations as follows:
DEL: Fori € Ay, if [z7 0| + ||x;||or¢ < 1, move i from A; to R;.
ADD: For j € Ry, if Vk € Ry,
Ay

| — ||$]||2Tt‘ > |10y + ||k |27, move j to

We have the following theorem regarding ADD and DEL operations:
Theorem 1 Assume B(0;,1,) = {0

110 — 6|2 < ri}, an estimated ball region for 0} at
step t.

a) If we add a new feature into Ay, then Ay C Aiy1, Qa, 2 Qu,,,, and D(0;, ;) <

D(6?).
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b)If 3i € Ry and |z} 07| > 1, we add feature i to A, at step t, then D(607) > D(0;, ).
c) At step t, if max;er, |x] 0] < 1, then 0} = 0%, 3; € Sr.

d) If x; satisfies V) € Ry, 7 # 1,

276 — Ilzillore| > [276,] + lla;|ore, then |276;] >
27 0;],¥] € Ry, j # 1.

Proof: a) From the dual form (2.2), if we add 7 to A;, there will be one more constraint
for the dual problem at step ¢ + 1, thus 4, , € € 4,. As we have smaller feasible space
att + 1, D(0f ) < D(6y).

b) As Q4,,, C Qa,, we have D(0;,,) < D(67). With |20 > 1 and |z} 0}, ,| < 1,
01 # 0;. As Qy, is convex and closed, and f* is convex and smooth, the optimal
dual solution for the active set 4, is unique, which means D(0;) # D(6;,,). Hence,
D(8;) > D(b;.,).

¢) According to a), with A; C F, we have Qr C Qyu,, and D(0*) < D(67). As Vi €
Ri=F— Ay, |2]0;| < 1,0; € Qr. With 0% = sup,cq, D(0), we get D(6*) > D(6;). As
we already know D(6*) < D(6;), we then have D(6*) = D(6;). Since the dual problem
is convex and smooth, and the feasible set is closed and convex, 0 = 6*. Hence, 3; € Sr
as the primal solution may not be unique.

d) For ADD operations, we choose a feature in R, that is mostly correlated to the
residual dual variables, that is max;er, |x7 0F|. With feature i € R; and 0} € B(0;,r,), we
have ||z76;] — ||zi||are| < [276;| < |276;] + ||2;]|2r¢ by the Pythagorean theorem. Thus

vj € Rtaj #Z,

|l 0] —[lillore| = ] 0]+ ]ay]lore, and o] 07| > 2] 07|, V) € Ry, j # .
Remark 1 Theorem 1-c) provides us the stopping criterion for ADD operations in
our SAIF algorithm. We can apply ADD and DEL operations in iterations to minimize

max;er, |27 07| until max;cg, |27 07| < 1. Hence, with B(0;,1;) = {0}

107 = 0|2 < 7},
if we have max;cg, |v10;| + ||zi||2r: < 1, we can stop ADD operations.

Remark 2 Moreover, if Vi € Ry,

a:f@f | < 1, from Theorem 1-c), we can see that

0; = 0%, thus A C Ay Soif A€ A, 3j € Ry, |2T0;| > 1. This concludes that our
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stopping criterion for ADD operations ensures safe feature screening.

The DEL operation is similar to the screening steps in dynamic screening. As we
can see, at step ¢ with the DEL operation, D(6;) = D(6;_,). Theorem 1-a) implies that
D(0F) < D(6;_,). Thus the optimal dual objective value always goes down. Theorem 1-c)
and Remark 1 show that after the stopping of ADD operation, A; already have recruited
all of the active features for the original problem. After this the algorithm stops once it
reaches the pre-specified accuracy value of the duality gap. Such monotonicity leads to

the convergence of SAIF detailed in Section 3.
2.2.2 Implementation

We first discuss how we derive a tighter ball region B(6,,r;) for the rage estimate of
07, taking advantages of existing screening methods.
Dual variable range estimation: Accurately estimating the range of 6;, B(6;,r,), for
the sub-problem is critical for efficient SAIF screening with ADD and DEL operations at
each iteration. With f as the vector form of loss function regarding all of the samples, we
provide the following theorem to estimate the ball region for #; with the similar idea from
sequential screening.
Theorem 2 For the LASSO problem with the loss function f, if £* is é—strongly convex,
and 0} and 0* are the optimal solutions to the dual problem at \o and \ with A < )\, then
Ao 20 [ £( A2

6" — —H*HQ SV —)\—9*) — £ (=Xob) + (A — M) (£ (= Nob5), 93)] . (23)

If we have 6 € (), the bound can be further improved by

A 2 .
16"~ 6113 < A—O; {f*( A0(2)) — £*(=Xoby) + (A — )\0)<f/*(—>\093)793>17 24)

where 0(g) = (1 — 0)0 + @%093, and g = argmin yo<,<1£*(—\0(0)).
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. * 1o 1
Proof: As f* is _-strongly convex, we have

A0 — X |5 < 20 [f*(—)\ﬁ*) — £ (=Xob) — (£ (=), — A" — (—/\006)>},

which is

o — 0

As 6 is the optimal solution at Ay we can see ¢ € €2, and %96‘ € (), thus

A

£ (—A0%) < £ (—A—67)
Ao

Also as 6 is the optimal dual solution at )\, thus we have

(= Xof™ (= Xof2), 0" — 62) > 0
s (£ (= NfE), N — NGE) > 0

—> (£ (=), A7) < (£ (=ab5), A6G)

With (2.5)- (2.9), we have

Ao A2
* _ Y * f*
o = 2031 < 55 £ (-

As 0 € Q, we have § = (1—0)0+ Q%OH{; € Q,if 0 < p <1, which implies

F(00) < min F(<2(0)) < £ (—2o8p).

0:0<p<1 Ao

21
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~06) — £ (=) + (A = o) (£ (= Xf5), 05) |-

(2.5)

(2.6)

2.7)
(2.8)

2.9)

(2.10)

(2.11)



So we have improved the bound as

Ao
A

2 _
03112 < <2 £ (—A0(2)) — £ (—Mob) + (A — o) (" (=Xo65), 65) |, (2.12)

I - =

where 0(g) = (1 — 0)0 + @/\100{;, and g = argmin o< ,<1f*(—A\0(0)).

At step t with the active set Ay, A\pqz(¢) 1S the minimum A that leads to 8; = 0. Itis easy
to compute a1 = max;eq, |27 £'(0)], and 0y = —%. If we take Aoty = Amax(t)»
we can use Theorem 2 to estimate ;. For linear regression, the estimation can be further
improved based on the projection properties as in DPP [11].

Theorem 2 provides a tight estimation when ) is close to \. When A is far away from
Ao, we can adopt the tighter dual variable range estimation with the following ball region

by dynamic screening [38, 39]. At step ¢, we have

2
VO, € Qy,, B € R, 107 — 045 < Vi [Pt(ﬁt) — D(&t)]. (2.13)

For f3;, with the primal-dual relation, we can easily project it to the dual feasible region
(24, to get a feasible dual variable 0;.

With two ball regions from Theorem 2 and the duality gap, we can derive a tighter
constrained region by computing the center and radius of a ball region B(6,, ;) that covers

the intersection of two ball regions, B; (61, 7r1) and By(63,72):

2A d d
s = 7, Qt = (1 — El)@l —+ 31927 dl = 7"% — th (214)
ri4+ry+d
d:H@l_eQHQ, A:\/S(S—T1>(S—T2)(5—d), 5:%’

where B; can be derived from Theorem 2, and B from (2.13). The resulting B(6;, ;)

gives us a tighter region at step ¢ when r; < min{r1,r2}. When we do not have the
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solutions with other A values, we simply set the bounding region for #; based on (2.13).
Improve SAIF with a factor of the estimation: The estimation of dual variables may be
inaccurate to have enough screening power during the optimization iterations, especially
at the beginning of the algorithm. We add a factor to the radius of the ball region to reduce
redundant computation resulted from inaccurately recruited features. At the beginning of
Algorithm 1, ¢ is a value smaller than 1. ¢ will be increased to 1 during the SAIF iterations
to ensure the safe guarantee of SAIF algorithm.

ADD operation implementation details: The number of added features in each ADD
operation can vary to reduce redundant iterations. Generally, the relationship between
the screening power and this number depends on the regularization parameter A and how

well feature vectors x;, © € F, correlate with the outcome label y. In this chapter, we

empirically set the number to be h = [clog(24™) log(p)]. Here ma and md are the
maximum and median of | X7'(0)| (| X”y| with linear regression). Many iterations may
need to be operated to reach the dual space point that can distinguish h features, and this
may reduce the efficiency of the algorithm. We can decrease the redundancy by relaxing

the strict condition in Theorem 1-d). Let S; represent the set of features that violate the

condition in Theorem 1-d) regarding feature j, i.c., S; = {k|k € Ry, k # j, |27 0] —
|z;]l2re| < |2f6,] + ||w]|2re}. For a feature j € Ry, if [S;| < h, we move it from R, to

Ay. Here h = [Ch], and ¢ > 0. Algorithm 6 summarizes the implementation of the ADD
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operation.
Data: Qt’ Tt, Rta Ata X

Result: R;.q, A;iq

Set h = [clog(™H™2) log(p)];
h=T[¢hl:

for: =1toh do

j < maxier, |7 6 ;
Set S = {k|k € Ro, k # j, [«f0] + [|axllor = [|a] 0] — [|zjllor]} ;
if |S;| < h then

A+ A U{j};
R+ R, —{j};
else
Stop;
end
end
Apr < A
Ry < Ry

Algorithm 2: Algorithm for ADD operation

2.3 Convergence Analysis

In this section, we first discuss the convergence properties of SAIF and then provide

the detailed complexity analysis of our SAIF algorithm.
2.3.1 Algorithm Properties

Similar to dynamic screening, SAIF employs coordinate minimization (CM) in the
primal variable space. Besides feature screening (DEL), SAIF has feature recruiting op-

eration (ADD). In this subsection, we first discuss the convergence of the base algorithm,
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then we show that the number DEL and ADD operations are finite in SAIF.
2.3.1.1 Coordinate Minimization (CM)

The base algorithm we employ in SAIF is shooting algorithm [18], which is a cyclic
block coordinate minimization method. Coordinate descent (CD) and coordinate mini-
mization (CM) methods have been studied by many researchers [50, 51, 52]. Recently [53]
gives faster convergence estimations for coordinate descent and CM methods on convex
problems. Based on the analysis from [53], we can prove the following lemma regarding
CM for LASSO. We use k to indicate the iteration or base operation number of CM, and ¢
for the iteration number in the outer loop of SAIF or dynamic screening.

Lemma 1 (Adaptation of [53]) For the LASSO problem with a y-convex loss function,

with cyclic coordinate minimization at most log,, Plo) base operations are per-

&
—P(8*)
formed to arrive at B, that P(p,) — P(B*) < e, where v = ﬁ%’ L = /Omaxl,
Omax i8 largest eigenvalue of X* X, L is the Lipschitz constant of £/, and B, is the starting
point.

Proof: With L as the Lipschitz constant of f’, then L = \/TmaxL is the Lipschitz constant

of XTf'. Following the proof of Theorem 8 by [53], we have

pL?
P(Bry1) — P(B") < WHﬁk—i—l — Bill5 - (2.15)
Then
P(B) — P(5%) = P(By) — P(Brsr) + P(Bepn) — P(5") (2.16)
> 2118 = Bl + P(Brir) = P(8) 2.17)
2
> (14 55) (P(5he) = P(5) (2.18)
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Thus

P(Brs1) — P(BY) < pL?

P(B) — P(B*) ~ pL2++2 v (2.19)
Recursively apply (2.19), we have
P(Ba) = P(B") _ o 2
P(Go) — P(3) ="~ P~ P(3) 220
(P(Bo) = P(B"))* =« (2.21)

And this leads to a = log,, m

have the primal gap P(8x) — P(p*) < e.

. For any iteration number & > a, we always

The base operation (soft-thresholding) in CM is operated in the primal variable space.
Feature screening or feature selection operations such as ADD and DEL operations are
relying on the dual variable estimation. We provide the following lemma to show that
the accuracy of dual variables are almost linearly bounded by the the accuracy of primal

variables when the iteration number is large.

Lemma 2 For the primal problem and dual problem, let 0, = —%, Tk = m
and 0, = 7.0y, with a large k in coordinate minimization, we have ||0), — 0*||3 <
%Hf’(Xﬁk) — f(XB9|]3 < L(;rv)Hﬂk — B*||3, where ¥ = XTX, and v is a small

positive value.

. _ 1 _ 1 N _ 1
Proof: Let 7, = ey Bl P ,and 0, = 0" + p,. We have 75, = BT 2T ]
1

ETo =Ty Here £ means plus or minus. With

) ) - . 1 .
khm okl = lim ||0x — 0% = lim —||f'(XB) — £(X5%)||2 (2.22)
—00 k—o00 k—oo )\
. L .
k—oo )\
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andVi € A, |z7'0*| = 1,and Vi € F — A, |z7'6*| < 1, we always can reach a k that

|, ok] < 1. After setting ), = %[z, px|, we have 7, = 7.
16, — 67|13 (2.24)
—llmf (X8 — X8 (2.26)
1 f/(Xﬁk> / *
—ellTy,, & IE 2.27)
:—QIIf’(Xﬂw(l — @) — (X33 (2.28)
;((f’(XB ) —f(XpB%)) - q)f’(Xﬁk) (£'(XB) —£/(XB7)) — of (X By)) (2.29)
:pr’(Xﬂk) — (X895 + H@f/(Xﬁk)Hz <(f’(XB ) — (X)), of' (X Br))
(2.30)

20

S (E(XB) — F(X5), E (X))

(2.31)

1 , / *\ 12 (I)Q / 2
:pr (XB) — £(XB9|5+ ﬁ”f (XBllz —

Here ® = > 7 (—1)"g). With ® = Y% (=1)"o, = (—wr) doio(—er)" =

(—¢K) 55 = —Thr We get

16, — 0113 < 1€ 3) — £CXA) 1 + L2 /(3 3+ 232)
TR (X ) — (X6, F (X)) 2.33)

= lIF (X8 — F X + e (2:34)
<HIXG— B+t = SllB - FlR+ar  39)
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where

27—1@

TEPk e
= B (x a3 + Sy

2 (F(XB) — (X 57)), £(X5r)) (2.36)

If X, = X5, we have § = 6%, 6 = ¢°, /(X 5,) = £/(X "), and ¥ = 52"

[1£/(X Be)|[3. Thus ||6; — 6*|3 < 52 |[£/(X Bx) — £/(X 8413 < 2572118, — 5|12
If X # X%, for any v > 0, we alway can reach a k, to make o, ¥ < {5 ||f'(X ;) —

(X33 < 2|8y — 5*[|%. In summary, we have

1—|—v L(1+v)

10k = 67[13 <

[1£/(X3) — £1(XB7)][5 < 181 — 5[5 (2.37)

With Lemma 2, we can see that the estimation of dual variables relies on the accuracy
of primal variables. In SAIF, the starting point for each [, is already with relatively high
accuracy as empirically there are only one or a few features different between steps ¢ and

t—1.
2.3.1.2  Finite number of ADD and DEL Operations

With CM as the inner base algorithm, we prove that the outer loop can stop in a finite
number of steps. The ADD operation recruits more features into the active set, and thus
results in decreasing optimal objective value as shown in Theorem 1. Since the DEL
operation does not change the optimal objective value, the corresponding optimal dual
objective function value of the sub-problem decreases monotonically and finally converges
to the value of the original full-scale problem. Experimentally, for a given A, the running
time of SAIF is proportional to the size of the optimal active set .A. The following theorem
provides the guarantee for the convergence of SAIF.

Theorem 3 Let 3] and 0; be the optimal primal and dual solutions for the sub-problem

with the active feature set A,.
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a)If AL Ay, andt <t then Ay, # Ay.

b) limy o 0; = 0*; limy_,o. B € S5

c)dT, ¥Vt >T,0f =07, and 5} € S} .

Proof: a) If A Q A;, from Remark 2, we can see that, 35 € R, |x;f€;‘ | > 1. If
max;er,, |7 6;]

> 1, we can apply the ADD operation at step ¢ to add the most active feature to A;, ;. We
will have D(6;) > D(0;,,). Ast < t', D(0f) > D(6;,,) > D(0},), and A, # Ay. If
max;er,, |21 6;| = 1, the optimal dual variable is already on the hyperplanes |z 67| = 1.
From the algorithm, we can see that, with an ADD operation to move all z; : |ij9:| =1
to A;, the optimal dual solution will remain the same, i.e., & '+, = 0;. The ADD operation
will stop at step ¢, as maxjep,,,,|z] 0;,,| < 1. DEL does not remove z; : |z] ;| = 1
from the active set Ay, Vt' > t, as the optimal dual variable will remain the same, and the
algorithm will stop. Thus A; # A;. In summary, we have A; # Ay, Vt' > t.

b) At step ¢, if the operation is DEL, we have P(8;) = P(3;,,), and D(6;) = D(6;,,),
as removing inactive features does not change primal and dual problems. If the operation
is ADD, and max;eg, |z 0;| > 1, we have P(8;) > P(8;,,). and D(6;) > D(6;,,).
Thus Im > 0,D(0;) > D(6;,,,) for each step ¢, which means D(6;) will converge to
a fixed value as t — oo. From a), A; changes monotonously with finite combinations.
Thus SAIF will stop within finite steps. Let lim; o, D(0) = d, and let ' = {0|D(0) =
d,0 € limy_o Q4,}. As Qyu, D Qr, we have d > D(6*). If 6* ¢ T, as the dual objective
function is smooth and convex, and Qr C lim; ., Q4,, Vo* € r, D(é*) =d > D(0").
As 0* = argmazgeq, D(0), and 6* is unique, we have V0* € T',0* ¢ Q. This implies
Vo* e I, 3y, \:ché*\ > 1, which contradicts the algorithm stopping criterion. Therefore we
have 0 € I'. As the optimal dual value is unique, lim;_,, 8] = 6* and lim;_,, 8] € S%.

) As Qu, = NMiea, {0 : |276] < 1}, the active sets at different iterations are different

before the algorithm stops from a). From b), we have lim;_,, 0; = 6*. There are at most
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( Zig“_l (")) ( ZigR ("®)) different potential active sets (n4 + ng = p,n4 = |A|)
through the algorithm iterations of upating the current active features. In practice, the
number of legitimate active set combinations is much smaller. Thus, 37", V¢ > T', 0; = 0%,

and 3} € Sp.
2.3.2 Complexity Analysis

For complexity analysis, we split the SAIF algorithm into three phases: feature re-
cruiting, inactive feature deletion, and accuracy pursuing. The inactive feature deletion
phase is the same as the feature screening phase in dynamic screening. We first present
the complexity analysis for dynamic screening, which is our additional contribution in this
manuscript, and then based on that and previous results, we give the detailed complexity

analysis for SAIF.
2.3.2.1 Complexity Analysis for Dynamic Screening

Dynamic screening [38, 39] starts its active set with the whole feature set. Let r; be

the radius of the ball region for the screening of feature ¢, according to DEL operation,

I ] —
|ZE1T9t| + sz||2rz <l = r; < ma)‘(J |$J ! = |z%9t‘ . (238)
||zil[2 JEAP
Here ., is the feature with the value of max; |x;fét|, 0, = —f/()iﬁ D9, = 70, and T =

1
max, vat '
i 1] Ol

If feature 7 does not belong to the final active set A, then |z;0*| < 1. With large

t, x,, belongs to A according to Theorem 1, and |z,,0*| = 1. We have

— —|x'”Tét| T p*
B A

4] [2 [ ]2

T < (2.39)
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Thus the screening radius for feature ¢ is determined by how close 6, and 6* are, linearly
determined by the primal variable accuracy according to Lemma 2. With ¢ as the pre-
specified objective function value accuracy, the following theorem gives the time com-
plexity of the dynamic screening procedure.

Theorem 4 Assume that the time complexity for one operation of coordinate minimization
is O(u), then the time complexity for dynamic screening is O (u% (p log f—g +| Al log %D) )
Here Gy = P(By) — P(B*), and p is the accuracy of the objective function value for the
last feature screening operation.

Proof: The computation of dynamic screening has two main phases, feature screening
and accuracy pursuing, denoted by 7, and T} respectively. Let G; = P(/3;) — P(5*) to
represent the primal accuracy after ¢ outer loop iterations. Ku is the complexity for /K
CM iterations, and we need np; to compute the duality gap. Let Z to represent the total

number of outer loop iterations for the feature screening phase. Then we have

Z log,, -2t
T, — %(KU +npy),and Ty = ulog,,, Gi (2.40)
t=1 z
The complexity is
T=T,+T, (2.41)
Z log,, St
-y %(KU +npy) + ulog,, Gi (2.42)
z
t=1
z z
Gt n Gt €
—uS log, — 4+ LN log, b log, —— 2.43
U; Oy, Gy + I ; 0L, Gtilpt + ulogy,, e ( )
z z
Gt g n Gt
—uS log, 1 ulog, — + 25 log, — " p. 2.44
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By following the proof of Theorem 3 in [53],

Gy peL? ++* Gy
1 < 1 2.45
08y, Gt—l = ')/2 ( Gt )7 ( )
we have
z
Gt £
T =u log,, =—— +ulo — (2.46)
1 ; & G, &2 G,
4 72 1172
peL Gy ’ ‘L G,
<u 1+ lo + u(l + log — (2.47)
;( ) log 5= u(l+ 55 log —
Go  ul? , GGGy ul? G?
= ulog - + 7 log (thlG—ft)m = ulog - + 22 log Gr—AIA (2.48)
G ul? - G - G
:ulog?OnL?((p— ) log 7 + 4] log ?”) (2.49)
Here G« _ (HtZ:—llet*ptH Gl%z-l*M\)ﬁw .
z z =
n Gy n piL? Gi_q
T, =— log,, =—p: < — Pt + log (2.50)
RS R S
G? L2 Gr
KA\ graghtl - 27 gre-lae gt
~ 2_ .2 2 1 A12 1
where G = (HtZ:—llet pt+1GZZ_1 Al )4p2,|f{|2 .
As
G > (HtZ:flleZt—pt+1GpZZ—1—|fl|) p,lw =Gy, (2.52)
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and

G > Mz 6% Mgl My — gy, 2.53)

T =T, + T (2.54)
<ulog G_ - UV—LQ <(p — | A]) log g—; + | Al log %) + %(log G?'GT?GEA'—F (2.55)
%IO o S\TQGAQ) (2:30)
=ulog Go + qu; <( — | A]) log g—z + | Al log %) + 2 <plog g—z+ (2.57)
pigz log g_z ) (2.58)

We can set K = Cp, with Gz = epyk, k € {1,2, ..., K}, we have

T < ulog @ + “7—L2 (( —|4|) log g_; + | Al log %) = <p log gZ (2.59)

2L21 og g;) (2.60)
—ulog%+u7€2(( — |A|)logg—z + |A|10g%> - %<log%+1£_jlogg—;>

(2.61)

= (ui—z( — |A|+£) 5—1—%2%2)1 gg—+u(1+L—|A])logG— (2.62)

=< s—z(p%—g)Jr +C+%Z;i2>lgg—+u(1+L—|A\)logG— (2.63)

= upn{;— log g— + u—|A\ log G— + ulog G— + (u+ C’) log gz (2.64)

Heren =1+ % + & With ep = Gz, ignoring the last two terms, the complexity of

dynamic screening can be simplified as O (u% (p log f—g + | Al log %’))
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Remark 3 With coordinate minimization, the number of iterations to reach the accuracy

of the objective function value ¢ is O<% (plog% + | Al log %D)) As p >> |A|, the

computation cost in dynamic screening is mainly from the iterations to reach €p.
Experiments will confirm the conclusions from Theorem 4 and Remark 3 in the results

presented in Section 5.
2.3.2.2  Complexity Analysis for SAIF

With the complexity analysis for dynamic screening, we now derive the complexity
of SAIF and show its advantages over dynamic screening theoretically. SAIF starts the
algorithm from the feature recruiting phase. The ADD operation recruit a feature with

max;cg, |v7 0;|. When 0; is close to 07, we have

|:ciT€t] — ||a;||omi > |$£9t| + ||zg||2ri, VE € Ry, k # i (2.65)
2] 0] — |20, |x] 0] — |2 6;]

zillz + llzrlla Nills + [lzx]l2

sy, < Vk € Ru,k # i. (2.66)

Here we use 0 rather than 6* as the algorithm has not reached the stopping point of ADD
operations and A ¢ A;. In (2.66), the radius for adding feature i into the active set is
determined by how large it can outperform the other features. We use 7}, to represent the
running time consumed in the feature recruiting phase. The inactive feature deletion phase
starts from setting ISADD = False in SAIF in Algorithm 1. Let Q;(5) = P,(8) — P.(5)),
the time complexity for SAIF with CM is given by the following lemma and theorem.

Lemma 3 With O(u) as the complexity for the base operation of cyclic coordinate min-
imization of the LASSO problem with a ~y-convex loss function, the complexity for the

feature recruiting phase is

(2.67)
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where

- -1 Qt+1</3t) 1

)= (12! By Py Y = log (112 - . (2.68)
Q= (L2 Qun(8) ) 8 (I Qu(By) P+t QTI(ﬁTI))
d—1 -1 Qur1(B)™ .
= log (thl W), and ADD operation stops after T steps. (2.69)
t\ Mt
Proof: The time complex for each ¢ before stopping ADD operation is Ku + np.
71 Jog Qi (Br)
T, = %(m + np) (2.70)
t=1
17
Ku+np Q:(5)
_ logy, (2.71)
K Z: 0 Qi)
Ku+np =
== (—logy, Qi) + Y (logy, QulB) —logy,, Qun(8))  @72)
t=1
+10g,,,, Qr; (Br,)) 2.73)
Ku+np i
:T( - 1Og¢1 Ql(ﬁo) + Z (logd,t Qt(ﬁt) - logd,tﬂ Qt+1(5t)) (2.74)
t=1
+10g,,, Qr, (51;) ) (275)
Tr—1 108 t+1
_ Ku+np Qq(By) Tzt
—T<10g¢Tl Qr,(Br,) — logy, Q1(Bo) + ; logy,,, m) (2.76)
Ku+n L?
STP< —(1+ PTI?) log Qr, (Br,) — log,, Q1(Bo)+ (2.77)
-1 =9
L
Z (1 + pt+1_2) IOg Qt+11€gﬁi2+1 ) (278)
t=1 i Q(By) To=ve

1
With 198%t1 ~ Pt we have
log v+ Dt+1
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72
7, <= (= (14 pr ) og @, (Br,) — oy, Qo)+ 279
Tr—1 =9
(04 s o) log 21 (2.80)
t=1 " Qi (By) Pt

(2.81)

Ku+np 11 Qey1(Br) 1
§—<10g (thl Qt(ﬁt)p:% Qr, (Br,)

1 Qo1 (8P 1 ) (2.82)
Qu(Br)P 7 Qry (Br, )P

L2 .
+ =5 log (IT}1;
-

~ Ku+np Tr—1 Qtﬂ(ﬁt) 1 E—l li- 1 Q1 (By)P
(e i Q) T e g )
(2.83)
Lo T Quia (B 2.8
’7 1 QT[<6T1)pTI ) B
~ Ku+np Tr—1 Qtﬂ(ﬁt) 1 L—l li- 1 Qi1 (By)P
K (1 g (L4 Qt(ﬁt)ml QTI(5T1)>+ g (2 Qi(Be)P )+
(2.85)
L? Q
pri 7108 5 >) (2.86)
Here
Q= (Hfilem(ﬂt)pt“’pf)i. (2.87)
Let
_ 7,1 Qiv1(Br) _ 7,1 Q1 (Be)P )38
T = log (I1,1; PR QT,(BT,))’ and ® = log (IT, 1 G ). (2.88)
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This results

T, =

2 T2 9
Ku+np< L L log 6&2 )) (2.89)

7 T+ 7@ + pT[
Theorem 5 With O(u) as the complexity for the base operation of cyclic coordinate min-
imization of the LASSO problem with a ~y-convex loss function, the time complexity for
SAIF is O (u% (]5 log % + ppa + |A] log %D)) Here p 4 is the total number of features
involved in ADD operations, p is the maximum size of the active set during the algorithm
iterations, Q) is the geometric mean of the accuracy of the sub-problem objective function
values corresponding to ADD operations, and € is the accuracy of the objective function
value for the last feature DEL operation.
Proof: T is the time consumed by both inactive feature screening and accuracy pursuing
phases. The inactive feature screening and accuracy pursue phases are similar to dynamic
screening. We simplify the derivations by following the steps and techniques used in the

analysis for dynamic screening.

2 logwt chil €
T, = t_TZ —% (Ku+np) +ulogy, Gr (2.90)
=T;+1
Tp
G, € G
=u Z logy, —— e + ulong " G Z pelogy, —— e L. (2.91)
t=Tr+1 t—1 t Tr+1 B
The first two terms can be written as
Tp
Gt 9
Ty =u log,, =—— +ulo e (2.92)
N tZ;-l o G Burp Gy,
G L? G
< ulog 2 4 = ((pTI 1A)) ) (2.93)
3 ~2 €
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T 1
~ _ (T{Tp=1 pr—pe1 ~PTp—-1~ AN 50 1A
Here G = (Ht:TIHGt GTD ) T )

Gt n th-EQ Gt—l
Ty = — Z pilog,, — < — (pe + =) log
t=Tr+1 G 1 K t=Tr+1 f)/ Gt
2
GpTI Z—.JQ GpTI
:%Oog At 08 an MP)’
Grr—| ‘GTD ¥ GP1r G

B 2 o 2 —|A]2 R T
. Tp—1 ~Pi—Piy1 ~PTp-1 p2. —|A]
where G = (1,2, G, Gy, )T :

Similar to dynamic screening,

- 1
e Tp—1 pe—pit1 ~PTp -1~ AN 5 1A
G = (Ht=T1+1GTD GTD ) ! - GTD’

and
- _ 2 p? p2. . —|A? ﬁ
G = (H$£T11+1G17)’D pHGTZD 1 ) A = Grp.
Thus
G uL? _ G . G
Tir < wlog 2+ “ ((pr, — 1)) log 22 + | A log 1),
€ Y Gr, €
and

n Gr L? Gr
Ty < —( log =11 4 22 ’).
b2 > K pT] Og GTD + 72 pTI Og GTD

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

We set K proportion to feature size for both feature increasing and inactive feature

deletion phases, i.e., K; = Cp and Kp = Cpr,. With G, = Q,(B7,), the time com-

plexity for SAIF can be written as
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T=T0+Ty =T, 4+ Ty + 1o (2.100)

Kru+ np( L? L? T ul? _ Gr
e LY L S ) log =11 —( AJ)log 22
ST +72 +pT172 0g = 1 + ulog + v (pr, — |A]) log G,

(2.101)
GT,) n < Gr, L2 Gr
log ~T o ) 2.102
5 +— e Py OgG L+ 7210TI gGTD (2.102)
n L? L? Q GT ul? Gr
—(ut+ (T =y 1 ) log — 11 —( 1
(u~|—c)< +72 "‘PTz,yg ogGTI + ulog + - pr, ogGTD+
(2.103)
Gr Gr, E Gr,
1 D) ~ (10 log ") 2,104
| Al log + 5 (log GTD Szbrilos o ( )
n, L? Q Gr n L?
= =)= 1 75 —)— 2.105
pTI(u+ C>/72 0g GTD (’LL"‘ C>’}/2 ( )
n GT n GT
T log —L 4+ ] I 2.106
+(U+C) + ulog 5 +COgGTD ( )
Letn =1+ -z, and 4 = maxg1<i<1;-17 log % then we have
-1
® = nlog (177 1Qt+1 /Bt o Qt+1 Bt) (2.107)
= 0 95200 s S0
-1
< p Z Pt < HUPpa, (2.108)
t=1
and
L? ) L? - G G G
T < unpr, — log @ +u—|Allog T 4 upppa + unY + ulog b log —L.
Y GTD Y € 9 C GTD
(2.109)

Here p4 is the total number of features have been involved in the ADD operation.

D = maxi1<i<1, Pt» and ep = G, the time complexity for SAIF can be simplified as
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O <u% (plog % + ppa + | Al log %)) .
Remark 4 With coordinate minimization, the number of iterations to reach the accuracy
of the objective function value € is O (% (plog % +ppa+]|Allog =2) ) Q is a value much
smaller than G in dynamic screening (as the value of Q); for adding feature i usually is
very small).

According to our experiments, p is often close to the number of the actual active fea-
tures in the optimal LASSO solution, |A|. The dominating factor for the computational
complexity of SAIF is the second term pp4. The less features being added in the active

set, the less time SAIF will consume. Experimentally, p4 is often a value several times

larger than | A, and py << p. We can conclude that SAIF takes much less time than dy-
namic screening based on the analysis of Theorems 4 and 5. With the theoretical safe and
convergence guarantees, SAIF can work with extremely high-dimensional data to obtain

optimal LASSO solutions.
2.4 Experiments

In this section, we present the experiments comparing SAIF with other existing LASSO
methods. We first evaluate the selected methods based on a simulation study and then ap-
ply them to one real-world study based on the LASSO formulation. In the second subsec-
tion, we evaluate SAIF for logistic regression with two real-world data sets. We present the
comparison between SAIF and sequential screening and homotopy methods in the third
subsection. The base algorithm (coordinate minimization) is implemented with C, and the
main algorithm of SAIF, dynamic screening [38], DPP [11] and the homotopy method [48]
is in Matlab. We use the BLITZ package for BLITZ method. The experimental environ-
ment is iMac 21.5-inch, macOS Sierra version 10.12.1, Intel Core 15. The implementation

and environment will be the same for all experiments unless specified.
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2.4.1 Results for Linear Regression

Similar to sequential and dynamic screening algorithms, SAIF can be assembled with
different kinds of LASSO solution methods. Shooting algorithm (coordinate minimiza-
tion) is chosen as the base algorithm in our experiments. Both dynamic screening [38] and
SAIF can do feature screening or selection without the help from a heavier parameter solu-
tion. We specifically focus on the performance comparison among (1) shooting algorithm
without screening (No Scr.), (2) shooting algorithm with dynamic screening [38] (Dyn.
Scr), (3) Working set method BLITZ [49] (BLITZ), and (4) shooting algorithm with SAIF

screening (SAIF). All of these are safe methods for LASSO problems.
2.4.1.1 Simulation Study

First, we simulate the data sets with n = 100 samples and p = 5, 000 features accord-
ing to a linear model y = X 3+ ¢, where each column of X is a vector with random values
uniformly sampled from the interval [—10, 10], and € ~ N (0, 1). For the linear coefficients
3, 20% entries (0.2p) are randomly set to the values in [1, —1], and the rest (0.8p) to zero.
For this data set, we can derive ., = 2.183 x 10*. The first plot in Figure 2.2 illus-
trates the running time for different methods in the logarithmic time scale at A = 20, 100,
and 1,000. We can see that, SAIF takes much less time than the other methods to reach
the optimal solutions with given duality gaps. The results also show that SAIF is more
efficient to the feature dimension compared with existing safe methods when the model

hyper-parameter is small.
2.4.1.2 Breast Cancer Data

Breast cancer data set consists of gene expression data of 8,141 genes for 78 metastatic
and 217 non-metastatic breast cancer patients from the study introduced in [54]. In this

set of experiments, the metastatic samples are labeled as 1 and non-metastatic as -1 as the
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Figure 2.2: Running time comparison on simulation (left) and breast cancer (right).

output of the LASSO linear regression problem. The right plot in Figure 2.2 compares
the running time for three different methods at different \’s. Again, SAIF takes the least
computation time for different duality gaps.

We further investigate the size of the active set along with the optimization iterations
for dynamic screening and SAIF in Figure 2.3-a,c), with A = 0.1 and 5. We can see that
SAIF starts from a small active feature set and gradually increase its size with time, while
dynamic screening starts from the whole feature set and takes longer time to reach the point
with screening power. Figure 2.3-c,d) illustrate the change of the dual objective function

values D(6;) for SAIF during the optimization procedure. With the active feature set size

a) 1 120, b) 19 130
160 8 120
80,
o 6 110
60
2

(-]

D

log(p,)
log(p,)

B

—Dyn. Scr. o

—SAIF

2 20| 2]

4 100}
—Dyn. Scr.
—SAIF 90|

a0

40 cO

80

2

5 10 20 4 6 8 10 0 1
log(100t (sec.)) t(sec.) log(100t (sec.)) t(sec.)

Figure 2.3: a,c) Active feature set size at different time points for breast cancer data with
A = 0.1 and 5, respectively. Green dotted lines indicate the optimal feature set size. b,d)
The corresponding D(6;) value changes with different time points during SAIF optimiza-
tion at A = 0.1 and 5, respectively.
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Figure 2.4: % (left) and log(%) (right) as functions of log;, 2 - (x-axis) and log(100 x

)\ma

t(sec.)) (y-axis) for a) dynamic screening, and b) SAIF on breast cancer data.

increasing, D(6;) decreases and finally converges to a steady value D(6*), indicating the
algorithm obtains the optimal solutions to the original LASSO problems.

Let p; be the feature number at iteration step ¢ for SAIF or dynamic screening. The
left column in Figure 2.4 shows the change of % with respect to the regularization penalty
(logy, (ﬁ) on x-axis) and the optimization time (log(100 x t(sec.)) on y-axis). Simi-
larly, we plot the change of log(%), where p’ is the corresponding optimal active feature
size in the right column of Figure 2.4. From Figure 2.4, it is clear that dynamic screening
always takes longer time to reach the optimal active feature set size, especially when \ is
small. Before reaching the point with screening power, the active feature set size is almost
p. While the active feature set size for SAIF grows gradually from a small set. Due to the
small active set size for the starting iterations, SAIF can more efficiently reach the optimal
active set size with much shorter running time. All of these results confirms the theoret-

ical complexity analysis for dynamic screening and SAIF. Furthermore, both Figures 2.3
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Figure 2.5: Running time comparison on USPS (left) and Gisette (right) data sets.

and 2.4 illustrate that SAIF is more scalable than the existing methods as it always starts

from a very small active set and iteratively focuses on a small subset of the features.
2.4.2 Results for Logistic Regression

We evaluate the proposed algorithms for sparse logistic regression with two data sets,
Gisette and USPS, from LibSVM [55] Website. The Gisette data set has 5,000 features
and 6,000 samples; there are 256 features, 7,291 samples, and 10 labels in the USPS data
set, and we categorize the label values large than 4 as positive, and negative otherwise.
The A\jae 18 932,575 and 992, respectively. Figure 2.5 gives the running time at different
A values for dynamic screening, BLITZ, and SAIF. Though due to the implementation
issue, BLITZ may achieve comparable performance when the active set is very small,
SAIF continuously take less computation at different A values for both data sets. SAIF can
achieve more efficiency for both linear and logistic regression compared with existing safe

methods.
2.4.3 Comparison with Sequential Screening and Homotopy Methods

With a sequence of decreasing A values, SAIF can be further improved with the warm
start strategy. Given the simulation and the breast cancer data sets in Section 5.1, a de-

creasing sequence of \ values are evenly sampled from the logarithmic scale of the range
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Figure 2.6: Running time for different methods with different number of A values on
simulation (left) and breast cancer (right) data sets.

[0.001\ 025 Amaz]- The plots in Figure 2.6 present the running time for DPP [11], the ho-
motopy method [48], and SAIF with a different number of A values on both of data sets.
In this set of study, we set the stopping criteria with the duality gap 1.0E-6 for all of the
algorithms to achieve fair comparison. The results show that SAIF takes much less time
than the DPP method especially when the number of A is small. With breast cancer data
set, the homotopy method can achieve the least computation cost; however, in the result
for simulation data, the homotopy method losses its advantages. More critically, the ho-
motopy methods is not safe. Table 2.1 gives the average (Avg.) and standard derivation
(Std.) for recall (Rec.) and precision (Prec.) regarding the active features recovered by the
homotopy method [48]. According to the recall results, the homotopy method always miss
some of the active features at different number of A values. Furthermore, the homotopy
method lead to the inclusion of inactive features into the final solution as evidenced in
Table 1 that the precision cannot reach 1 at different numbers of \ values. While our SAIF
has the safe guarantee, the recall and precision metrics regarding active features recovered
by SAIF are always one. Clearly, the unsafe strategies employed by homotopy methods
do not always reduce computation, and the employed inactive features may lead to larger

CPU time consumption as shown in the left plot in Figure 2.6.
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Table 2.1: Recall and precision for active features recovered by homotopy method at dif-
ferent numbers of A values.

Num. of X values | Rec. Avg. | Rec. Std | Prec. Avg. | Prec. Std
20 0.896 0.097 0.972 0.032
50 0.912 0.075 0.982 0.017
100 0911 0.079 0.979 0.021
200 0.926 0.061 0.974 0.068
300 0.927 0.060 0.969 0.093
400 0.929 0.059 0.971 0.087
500 0.929 0.058 0.976 0.060

2.5 Conclusions

In this chapter, we have developed a novel feature selection method for LASSO-SAIF.
From the experimental results, SAIF can achieve improved efficiency compared with ex-
isting methods. SAIF has the potential to scale up for data sets with high dimensional fea-
tures due to its incremental property. Further more, theoretical analysis reveals the safety
guarantee and low algorithm complexity of the proposed method. SAIF provides us with a
new direction for scaling up sparse learning. Given a data set with extremely high feature
dimension, SAIF can be further improved with the multi-level active set and remaining set
schema. Furthermore, SAIF can be potentially extended to group LASSO [56] and other

sparse models.
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3. SAFE FEATURE SCREENING FOR GENERALIZED LASSO

Chapter 2 focuses on scaling up sparse models regularized with L; norm with the as-
sumption that model parameters are independent with each other. However, real world data
usually contains much complicate structures, and people usually impose these structural
knowledge with Fused LASSO, Group LASSO, and Generalized LASSO (GL) into mod-
els. A bunch of algorithms and screen methods have been developed for Fused LASSO,
Group LASSO. But solving GL problems is challenging, particularly when analyzing
many features with a complex interacting structure. Existing methods are mostly devoted
to special cases of GL problems with special structures for feature interactions, such as
chains or trees. Developing screening rules, particularly, safe screening rules to remove or
aggregate features with general interaction structures, calls for a very different screening
approach for GL problems. We propose two approaches to tackle this challenge. Firstly,
we develop a sequentially screening method for GL. We formulate the GL screening prob-
lem as a bound estimation problem in a large linear inequality system when solving them in
the dual space. We propose a novel bound propagation algorithm for efficient safe screen-
ing for general GL problems, which can be further enhanced by developing novel trans-
formation methods that can effectively decouple interactions among features. Secondly,
we show that GL problem with tree structures can be scaled up with SAIF. Experiments

on real-world data demonstrate the effectiveness of the proposed screening methods.
3.1 Introduction

Sparse and structured sparse regularization, such as LASSO [16], Fused LASSO [17,
57], and Graph LASSO [34, 58, 59], provide effective tools to incorporate feature sparsity
and structure prior knowledge to classification and regression problems when involved fea-

tures have complex interactions. Such Generalized LASSO (GL) [34, 60, 61, 62] problems
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can be summarized by the following optimization formulation:
min £(X,y; ) + MDA, (3.1)

in which the loss function f(-) can have different functional forms such as the squared
loss function for linear regression, 0/1 loss for logistic regression, hinge loss, and other
convex formulations to characterize the prediction performance and guide the learning of
functional relationships from observed features X to outcome responses y. The opera-
tion matrix D captures structural relationships among features. With different D, we can
impose different regularization formulations for learning, such as Fused LASSO, General-
ized Fused LASSO (GFL), sparse Generalized Fused LASSO (SGFL), trend filtering, and
graph OSCAR (Octagonal Shrinkage and Clustering Algorithm for Regression).

With the data volume and feature dimension growing in an astounding speed, directly
solving such sparse and structured sparse problems is challenging. Efficient methods and
software packages such as SLEP [63] and MALSAR [64] have been developed to tackle a
range of sparse and structured sparse learning problems. The dual path method proposed
by [34] can sequentially compute the solutions for all of the valid regularization penalty
parameter \’s. This method requires to compute the inversion of the feature matrix, which
makes it difficult to scale up to large data sets. The method presented in [57] tries to solve
the Sparse Generalized Fused LASSO problem with submodular optimization, but their
algorithm cannot be applied to problems with any arbitrary D). Moreover, they did not
compare their methods with standard convex optimization solvers such as CVX on large
data sets.

As discussed in the introduction chapter, recently, there has been a very exciting dis-
covery that it is possible to screen many features before the use of any optimization solver

for learning by developing efficient screening rules [9, 8, 10, 65, 11, 21, 35]. Some of these
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derived screening rules are proved to be safe, which means the features that are screened
will definitely be inactive or redundant in the actual optimization formulations for the
corresponding learning problems [10, 11, 65]. Typical advancements along this direction
include the screening methods for LASSO [10, 65, 11], Group LASSO [21], and Fused
LASSO [35]. However, none of the existing screening methods can be directly applied
to Generalized LASSO (GL) problems because of the complex structure of the operation
matrix D in (3.1) when capturing complex interactions among high-dimensional features.
Due to the arbitrary and often complex topology than the 1D-chain in Fused LASSO or
the tree structure in Tree Group LASSO, it is difficult to transform the GL problems into a
form so that we can easily follow LASSO screening strategies as in Group LASSO [11, 36]
or 1D-chain Fused LASSO [35] screening approaches. This imposes a significant chal-
lenge that calls for a very different screening approach for GL in (3.1) from the existing
ones. In the following sections, we first develop a sequential screening method that can
apply to more general structure cases. Then we propose an active selection method based

on the idea of SAIF for tree Fused LASSO.
3.2 Dual of Generalized LASSO

Assume that we have a data set X € R"™*P with n data samples and p features; y is
the corresponding outcome or sample label vector, and the entry value of y can be real,
integer, or binary. In this chapter, we focus on the following Generalized LASSO (GL)

problem:

P:omind | f(giB) + MDAl (32)

Here, g;, is the 7th row of a matrix (G, which is a general matrix function of the outcome y
and the data sample X; D captures the feature interactive relationships and is typically a

sparse matrix; f(-) is a convex loss function, such as the squared or logistic loss function.
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We also assume f(53) = >""" | f(gie3). For example, the GL regression problem can be

written as the following optimization problem:
1 2
IT151H§HY—X5H2+>\HDB||1, (3.3)

in which G is simply the design matrix X. As examples, for LASSO, D is an identity

matrix; and for 1D-chain Fused LASSO [17, 35], D can be written as follows:

1 -1 0 0 0
01 -1 ..0 0

D= . (3.4)
0 0 0 1 -1

To facilitate the derivation of the screening rules for any GL problem P, we study its
dual problem. Let f* be the conjugate function of f. We can derive the dual problem
of (3.63) based on the following theorem.

Theorem 1 A dual form of (3.63) is given by

0eQy

D:minf*(0) =Y f*(6;), Q= {0: G0 =AD", |Jul| < 1}. (3.5)
=1

The primal and dual relationship is f'(gL3) = 0; with f'(2) denoting the derivative of
f(2) with respect to z.
Proof:

We here provide the derivation of the dual problem for Generalized LASSO (GL). For

the original problem,

min > f(gieB) + MIDBIl1- (3.6)
=1
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With 6 as the corresponding Lagrangian multiplier, we can write the Lagrangian as

follows
L(8,2.%:6) = 3 () + MDAl + 07(G5 — =) 3
e
Let
fo=NIDBIl +0"GB, [ = f(z) — Oiz. (3.8)

To get the dual form, we need to minimize fz and f,. Since

Osf3 =G 0+ AD"u, (3.9)
where u € sign(DJ), and ||ul|s < 1,u” DS = ||DB]|1. To minimize f5, we have
0 € dsfs = Ju,—G"0 = \D"u, = mﬂin fa=0Ouw"D+0"G)3 = 0. (3.10)
We also have

0=0,f. =6 = f(z) (3.11)

ngln fa = mzln f(zi) = iz = Igln —(0izi — f(2:)) (3.12)

= —max(f;z — f(z1) 2 —f(6) (3.13)

With (3.10) and (3.13), we can have the dual objective function as follows:

mgaxL(@) = meax—zz:;f*(ﬁi) (3.14)
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With the constraints on 6, the dual problem is

max L(0) = max — z:; £7(6;) (3.15)

st.— G0 =AD"u  ||jul|le < 1. (3.16)
From (3.11), the primal and dual variables satisfy the following equation
f'(gie ) = 0. (3.17)

As the feasible region for u is symmetric, we can move the negative sign in (3.16) to

right side and the above dual form can be rewritten as

memz; F5(6;) (3.18)
st. GT0 =AD"y, |jul|le < 1. (3.19)

And the primal and dual relationship is

f'(gie3) = 6. (3.20)

In the above theorem, § denotes the dual variables; u denotes the sub-gradient vector
of ||Df||; with respect to D3, and u can be considered as an auxiliary vector in the dual
form. With Theorem 1, we can derive the dual forms of many GL problems with different
convex loss functions. For example, the dual problem of GL regression (3.3) can be written

as:
1 1
min {§H9 + ¥l = Syl st X760 =AD", [[uflc < 1} (3.21)
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with —y + X 8 = 6 as the primal-dual relationship. Table 3.1 gives the dual forms of some
standard loss functions [38] in GL learning.

The dual variables have the following properties:
Theorem 2 For Generalized LASSO problems (3.63):

a) If 0 and 0* are the optimal solutions to the dual problem (3.5) at \y and )\, then we

have
(€°(65) = 0" (0).6" = +-03) = .
and
€65) - (0. 5 - %) 20

b) If £* is a-strongly convex, and 0 and 0* are the optimal solutions to the dual problems

at Ao and X\ with A < )Xo, then

* * 2 * A * * ()% A 1% ()% *
107 = 65115 < = |£°(-05) — £7(65) + (1 = -)(E(60), 65) |-
(0% )\0 )\0

c) For GL linear regression problems with A < Ao < Apaz, and 0 and 0 are the

optimal dual solutions at A and )\, respectively, we have

P S| 1
16" — 05 + 5Vl < Sl[v]le, (3.22)
Ao 2
where
(V1,Va) y 6 y 6
v (v Al Vi), V1 N + )\O,Vg 3 + "
Proof:

a) We transform the dual form into the following form
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Dy :min 5 (—=A0') = ) f*(= ), (3.23)
eq P
Q=1{0:G"0 = D"u, ||ul| < 1}. (3.24)

0*

With a given ), the solution relationship between D, and the dual form is 6™ = —=-.

We can see that with different \’s, the corresponding optimization problems still have
the same feasible region. According to [66], for a constrained optimization problem,
miny,eq h(x), with ® being convex and closed and h(-) being convex and differentiable,

we have the following relationship for an optimal solution x*:
(h'(x*),x —x*) >0, Vxed. (3.25)
Let 0™ and 6 be the optimal solution of D, at A and \,, we have
(=M (=N0™), 00 —0™) >0, (=Xof™"(=Xoby), 0™ — 65) > 0. (3.26)
Thus we have

NoE™ (= Ao0r) =M™ (= X0, 0l —6") > 0,and (£ (—=Aobl") — £ (= \O™), 61 —0) > 0,

which lead to
A A o* o
< ( 0) )\0 ( )7 >\O 0> - 07 an < ( 0) ( )7 )\ )\0> - 07
respectively.

b) We use (2, to represent the feasible region of the dual problem at A. As A\ < )y, we
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can easily get 2, C €2y,.

f*(-) is a a-strongly convex function, we have
2
167 = 65115 < —£°(07) = £(65) — (£ (65), 6" — 65) |- (3.27)

Let §* = 2-65. We have GTo* = G705 = ADTug. As |[uf|| < 1, we have 0 € Qy =

{01 G0 = A\D"u, ||u||s < 1}, and
£*(6*) = min £*(9) < £*(6*) = £*( A 0;) (3.28)
= min = ~—0). .
6ey - )\0 0
As in the proof of a), we convert the dual problem into the similar form D,. With (3.25),
we have
%

(=Xof'(87),0 — ( 1)) =0, 70 € P, (3.29)
0

Here Q = {0 | G'0 = D"u,||u||oc < 1}. As 6" is the optimal dual solution at ), thus

—97* € ). Then we have

! ( )* 0* 68 ! ( O* 0* QS
(=of(05), =+ — (—/\—0)> 20 = (-£1(05), —~+ - (—)\—0» >0 (3.30)
A

Ao
Plugging (3.28) and (3.31) into (3.27), we get
* * 2 * )\ * * * )\ /% * *
16" = 65115 < = |£°(==05) — £°(05) + (1 — —=)(£"(65), 65) |-
(6] )\0 )\0

¢) According to Theorem 1, the dual form for linear regression is

.1 1
win {3110+ ¥IE - §Ib1E X0 =AD"l < 1) 632
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which can be reformulated as:
. [ A2 y 1
min {5||9’ LI = Iyl X76 = DT, Jlull < 1}. (333)

We can see that at the same ), the optimal solution to (3.32) and (3.33) have the following
relationship:
9*

= 34
0 3 (3.34)

According to [11], when A < A\g < A4z, all of the projection properties used in Dual
Polytope Projection (DPP) and enhanced DPP still hold regarding to the objective of (3.33).

Let v, = /\lo — 0, vo = ¥ — 07. With Theorem 15 in [11], we have

where vy = vy — <\‘|/\1f—1‘|,\2§> With the optimal solution relationship (3.34), we have

. . 1 1
o - (¢ + 591 )|, < 3IvE

A 1
r= eyl
)\00+2V2_

V]2, (3.35)

where

(vi,v2) y 65 y 6
TSR M S
B T e T A

Note that Theorem 2 is generic for a wide range of loss functions. For instance, for
logistic regression, f*(0;) = (y;+60;) log(y;+60;)+(1—y;—0;) log(1—y;—0;), and £"*(0;) =
m > 4, so f(-) is 4-strongly convex, and we can directly use Theorem 2-b)
to estimate the region for §* at A\. For linear regression, Theorem 2-c) usually gives a
tighter bound. There are many existing methods for different loss functions with the classic

LASSO penalty [10, 11, 67, 38]. LASSO screening [67] derives their screening rules in a

similar way as in Theorem 2-a). It is possible to derive tighter bounds for dual variables
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given some properties of the loss functions.

The intersection of the constraint regions from these inequalities in Theorem 2 can give
us tighter bound estimates for the optimal dual solution at A. In the next section, we show
how to derive SAIF feature selection rule based on the dual form. In the third section,
we show how to derive the screening rules for GL problems based on the corresponding

constraint regions.
3.3 Sequential Screening Rules for Generalized LASSO (GL)

In this section, we follow the sequential screening approach survey in Chapter 1, and
propose a screening method for GL. The main contributions of this method include: a) We
show that the safe GL screening problem can be formulated as a bound estimation problem
constrained by a linear inequality system derived based on the equivalent dual problem.
We also provide effective dual variable range estimation approaches that give the initial
upper and lower bounds of the linear system for a broad range of loss functions; b) A
novel bound propagation algorithm is developed to efficiently approximate the feasible
solution space for the linear inequality system to derive tight bound estimates; ¢) We show
that the efficiency of our bound propagation algorithm can be further improved by our
graph transformation methods; d) The proposed propagation and transformation methods
can also be applicable with dynamic screening [38, 39, 40], which further provides an
efficient way to start the screening process when the desirable regularization parameter A
is difficult to estimate. The experimental results on synthetic and real-world data sets have

shown clear advantages of incorporating our safe screening method in GL learning.
3.3.1 Derivation of Safe Screening Rules

A safe screening rule is to identify the items that take zero values within the L, regular-
ization term in the primal problem (3.63) solution at any given A. The kth L; regularization

item is trivial if it is zero in the solution of the given )\, which corresponds to D5 = 0
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in the matrix form. In what follows, we show that the underlying computational task of
deriving safe screening rules involves the estimation of the ranges of the sub-gradient vec-
tor for ||DS*||; with respect to each entry of DS* at A, denoted as u*(\). uj is the kth
entry of u*(\). To see that, note that Dy, 5* = 0, if and only if |uj| < 1 by the definition
of the sub-gradient. Thus, once we have a range set U for the vector u*(\), we can derive
the following screening rule for each entry uy; in u, where u; corresponds to the kth L,

item:

sup Jug| < 1= Die8" =0 (R1). (3.36)

uelU

Therefore, to decide whether the kth item is trivial or not at the given ), the task is to
estimate the range of u; with U. From the dual form in (3.5), the range of the sub-gradient
vector u*(\) is constrained by G0*. Thus if we can estimate the range of 6*, we can
determine the range of G6*, then determine the range of DTwu*(\), which will ultimately
lead to the estimation of the range of u*(\). Note that, in existing screening methods such
as those for LASSO, without a complex structure for D, it is straightforward to translate
the estimation of the range of 6* to u*(\). Thus, LASSO is a special case of our problem,
for which 6*(\) can be bounded by a ball: B(r,7) : ||0*(\) — 7||> < r as in the ball test
for LASSO screening [10, 11, 38, 39], with 7 being the center and r the radius.

Let 6*(\) denote the optimal dual variable at a given penalty parameter A. We follow
the results in Theorem 2 to derive the ball region for GL problems. Let 8*(\) = 7+ p. We

have gZ0*(\) = gLm + gLp. As||p|l2 < r, gZ0*()\) can be bounded as follows:

g = rllgaill2 < 950" (N) < g7 + 7]|geil ]2, (3.37)

which gives the upper and lower bounds for GT6*(\): L < $GT6*(\) < H. The ith
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entries in L and H are given by L; = (957 — 7|[geill2), and H; = $(g%7 + r|geil]2)-

From (3.5), we can see

L<D"w(\)<H. (3.38)

Since u*(\) is a sub-gradient vector, we define the inequality set for u*(\) as U = {u :
L<D'w<H -1<u< 1}, in which L and H are screening bounds. Estimating the
bounds for each uj, subject to the constraint, u*(\) € U, is a challenging computational
problem.

Before we tackle the problem by introducing a novel bound propagation algorithm in
Section 3, we first establish that the derived screening rule R1 is safe for aggregating vari-
ables to reduce the problem size. Note that to apply this screening rule R1, we need to start
with a given )\, which can be any non-negative value. Given a sequence of descending
A’s, we can sequentially screen and aggregate features so that the computational cost is

reduced for all \’s.
3.3.2 Safe Feature Elimination and Aggregation

If Dy, has only one non-zero entry, e.g., dy;, |uj| < 1 corresponds 37 = 0. For
this case, we define an elimination operator, which removes the column g,; from G and
remove the ith column and kth row of D as well.

If Dy, has more than one non-zero entries, €.g. d;,d;,....drm. applying the screening

rule R1 leads to dy; 5] + dkjﬁ;-‘ + ... + dgm B, = 0. Thus, we have

dy; i ,
5 = -8 - = S, (3:39)
Bi Gie = ti3” gie- (3.40)
Lett, =[..,0,.., —3? sy —%, ..., 0,...]1xp. Note that t; and 3" are the corresponding
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sub-vectors of t; and 5* by removing their corresponding ith entries. For this case, we

define an aggregation operator:
1. Add the vector d,;t! to the rows D,., with d,; # 0,
2. Remove the kth row and ith column of D,

3. Update the feature set with G’ = GT;, where T; is a p X (p — 1) matrix with t; being

the ith row and all of the remaining rows forming a (p—1) x (p—1) diagonal matrix.

Once we know the range of the sub-gradient vector u*(\), we can sequentially and

safely aggregate the features to reduce the problem size. P’ is the reduced-size problem:
P’ n%i/n;ﬂgé.ﬁ’) + DB (3.41)

One can reconstruct the original solution for each aggregation operation by the transfor-
mation 8* = T;4’*. Similarly, for each elimination operation, reconstruction can be done
with 7} by inserting one all-zero row to a diagonal matrix. Thus the original solution can
be recovered by * = Tj; X Tip x ... x T8 = T'5"*. We can derive T for any reduced
problem.

For a fixed ), let S be the solution set for the original problem P, S’ be the optimal
solution set for the reduced problem P’, and S’ be the reconstructed solution set. We
have 8* € S, * € 9, and f* € S'. Let P(5~’*) represent the value of the objective
function of P at #™*. Similarly, P’ (B"™) for P" at §"*. Assume B = TS, and 5 is the
reduced solution of 5*. We have the following Theorem to guarantee the equivalence of
the problems P and P’.

Theorem 3 For any Generalized LASSO problem with the penalty parameter ),
a) P'(6) = P(6*); P'(8™) = P(6).
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b) The extended optimal solution set of the reduced-size problem P’ (3.41) equals to
the solution set of the original problem P (3.63).

Proof: a) We first prove P'(3’*) = P(/3*). For sequential operations, if we can prove at
each step the equation holds, then the equation is correct for all operations.

For elimination, we can see that f(G’#*) = f(GS*), and \||D'5*||; = N|DB*|..
For aggregation, we first prove f(G'3") = f(G3*). As G'B"* = GT /3", we just need to
prove T4* = B*. From (3.39) and (3.40), we have 3; = t;3'. Therefore, T3"* = [*.
Next we prove A||D'S*||, = A||DB*||,. After we expand both sides of the equation, as
the aggregation operator replaces /3] with _% B; — .. — ‘Z’“T? B by (3.39), we can derive
NID'B™|l = MIDB |-

Now we prove P'(§*) = P(5™). As * = Tf* and ' = GT, we get f(G'3"*) =
f(Gf™). To prove \||D'8*||; = A||Df*||1, we need to prove ||[D'8*||, = ||DTB"|]..
After we insert 1" into || D'3"[|; = ||DT'3"||1, we can see that the right-hand side has one
more L; term, which is zero, and the remaining terms are exactly the same, which proves
Theorem 3-a).

b) VG € S, we prove that e s by contradiction. For B, we use 5 to represent
the corresponding optimal solution to P’. Let’s assume g ¢ S. According to the convex-
ness of the problem, 35* € S, and P(5*) < P(f™). Let’s construct a solution in S’ with
8%, ie., 3, so that P'(5") = P(B) < P(8"*) = P'(8™). This contradicts with the fact
that 5* is in the optimal solution set of P’.

VG* € S, we prove that §* € S’. Similarly, assume 3* ¢ S, then 33’ € S’, and
P(ﬁN’ ) < P(f*). This contradicts with the fact that 3* is in the optimal solution set of P.

Hence, we prove that V3* € S, 5* € §'.

62



3.3.3 Bound Propagation for Screening

To apply the screening rule R1, we need to estimate the bounds for the entries in u*(\).
Particularly, our objective is to identify as many trivial regularization items as possible.
Since an L, item is trivial as long as |u}| < 1, we need to estimate the upper and lower
bounds for uy, as tight as possible, which will increase the chance of finding the items that
indeed lead to |uj| < 1.

Since u*(A) € U, the bound estimation for evaluating the screening rule R1 can be

obtained by solving two linear programming (LP) problems:

min u; max u; (3.42)
st. L<D'w<H st. L< D'w<H
—1<u<1; -1 <u<l.

Standard simplex and interior point methods can be used to solve these problems. How-
ever, it may be very computationally costly as we need to run the LP solver for every u;
twice for the lower and upper bounds. A recent speedup has been proposed to solve sim-
ilar linear inequality systems [68]. But the algorithm can only identify one of the feasible
solutions to an inequality system, which doe not identify bounds tight enough for the ef-
ficacy of the proposed screening method to remove as many trivial L, items as possible.
Inspired by [68], we propose a new bound propagation algorithm to provide an efficient
approach for the safe Generalized LASSO screening.

We show the basic idea of the proposed bound propagation algorithm below. Let A,

and [,,, be the upper and lower bounds of w;, and / and [ are the upper and lower bounds

63



of w . First, we convert the inequality constraints of u; in (3.42) in the following form:

]h : —djliujl — dj2iU,j2 — ... djtiujt + Hz Z 0, (343)

Il . dj1iuj1 + deinz + ...+ djtiujt — Lz Z O, (344)

which will give the bounds of u; as: u; — [, > 0; —u; + h,, > 0. Obviously, the bound
estimates of u; depend on the estimated bounds of other interacting features. We note that
the special diagonal structure of D for LASSO screening leads to efficient screening due to
its non-interacting features in the regularization term. Since the estimation of the bounds
for the variables are interdependent, we design the bound propagation that iteratively up-
dates the bounds of each variable sequentially. We can set the initial values for /,,, and h,,,
as 1, which are named as the initial context for u;. Then, in each bound propagation step,
we update the bounds for each variable in the above inequalities: [, and h,,,, and derive
the new bounds of each u; by variable elimination.

Our procedure can be illustrated using a simple example, when the inequality con-

straint for the sub-gradient vector u is

—2uy + 3ug —usz +0.4 >0, (3.45)

and the current contexts for the bound estimates of u, u, and us are:

(@) —uy +1>0; ) uy +1 > 0; (3.46)
() —us +0.1>0; (b) up + 0.7 > 0; (3.47)
(a) —us+0.6 > 0; (b) us + 0.8 > 0. (3.48)

We can lift these inequalities by adding 3x (3.47)(a) and (3.48)(b) to (3.45) to get one
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propagated bound for uy: —uy + 0.75 > 0. As 0.75 is smaller than 1, we take it as
the new bound for w;. Otherwise, we keep the bound unchanged. We can apply the
bound propagation in a breadth-first manner to iteratively tighten the estimated bounds.
Algorithm 3 provides the details about of the Bound Propagation (BP) procedure, where
® denotes the element-wise multiplication. Fig. 3.1 provides schematic illustration of BP

procedure with inequalities contain two variables.

Data: 77 and T™", are array lists for positive and negative entries in any column of
D; A is the array lists for the indices of non-zero entries in any column of D;
Ineuqlity bounds L, H; Initial context bounds for u, [, h

Result: Estimated bounds [ and h for all u;

while [ or h is updated do

fori=1topdo

Let Buax = T7[i] © h[A [@]] + T” HA[]];

Bin = T7[i] © [[A[i]] + T © h[A[]];

Let Smax = Z Bmax[ ]’ min Z Bmln[ ]

for j € Afi] do

if D[j][:] > O then

ra; = (=Smin + Buinlj] + H[d]) / DIj]1i]:
Ly; = (= Swmax + Bmax[j] + LI[i]) / D[j]i];

end
end

Algorithm 3: Bound Propagation (BP).
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u2 u2

e

ui

uy € [—1,1] up € [—1,0.7] up € [—1,0.7]
Ug € [—1, 1} Uz € [—].7 1} Ug € [*170.8]

Figure 3.1: Schematic illustration of bound propagation algorithm. In the figures /; and [,
are two lines corresponding two inequalities of u; and wus. (A) Initial context for u; and us
as the illustrated box. (B) Upper bound for w; is updated to 0.7 based on the intersection
of [; and the upper bound of uy. (C) Upper bound for us is updated to 0.8 due to the
intersection of /5 and the upper bound of u;.

3.3.3.1 Properties of the Bound Propagation Algorithm

Let U be the box region as the bound estimates obtained by our bound propagation
algorithm. Through the following analysis, we prove that the edge screening rule by bound
propagation is still safe and the algorithm terminates in a finite number of steps.
Theorem 4 Let U = {u: L < DTu < H,—1 < u < 1}, we have

a) U is not an empty set, which means that there is at least one solution to the inequality
system of U.

b) The bound propagation algorithm derives a loose bounding box for the problems (3.42):
UcCuU.

c) The bound propagation algorithm is guaranteed to terminate with the complexity
op?).

Proof: a) If the constraint region B(r, r) is from Theorem 2, we can see that §;; € B(r, 7).
As GT0; = \gDTug, we can get L < DTwuy < H, thus ug € U. If we use other LASSO

screening methods [10, 67, 11] to estimate the bounds of GT6*()\) or DTu*(\), it is easy
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to derive the proof in a similar way.

b) We prove this theorem by induction. In the initial state, Uy = {u:—-1<wu<1},
hence U C UO. Assume at step t, U C Ut. We just need to prove U C Ut+1- The first
case is that at step ¢ + 1, no change is made to Ut. Hence, Ut+1 = Ut, and U C Utﬂ. For

the second case, if we get a tighter bound for a certain w;, for example, u; — [, > 0 and

ly, > Ii,,, where I, is the current bound. This tighter bound is derived from one inequality

® in U and the bounds in U, for non-zero uy,,
D . dd)lud)l -+ d¢2U¢2 + ...+ CZZ’LLz + ...+ d¢QU¢Q -+ ¢ Z 0.

Let H,, represent the half space for the bound of u,,, and Hoe is the half space for
the inequality ®. With the variable elimination and replacement by bounds, we can see

Hs ﬂ?:? Huqﬁi C Huﬁl}izo’ where Hufl*uizo is the half space for the bound u; — l~ui > 0.

1=

AsU C Hg and U C H%,Vi,l <i<@Q,wegetlU C Hui—ll%' We also have U C U,
and Ut N Hur;ui = Utﬂ, therefore U C Ut+1~ Hence, we prove that for any ¢ : ¢ > 1,
U CU.

c¢) First we construct a regularization graph W according to the inequality system U.
We take each inequality (not the bounds for u;’s) in U as one vertex in V. If w; appears in
two vertices, we connect the two vertices with an edge u;.

Note that the number of inequality bounds in U is fixed. According to Theorem 6.2
by [68], the algorithm is guaranteed to terminate since there are feasible solutions to U
and we use only the bound propagation rules. In what follows, we prove that the algorithm
converges in {2y + 1 iterations, where ()y is the longest active inference path between two
nodes or two edges.

If an inequality system S can improve one inequality /, we say that S implies /. Thus,

it is easy to see that U implies all of the bounds in U. From Theorem 3.2 by [68], if U
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implies one bound, i.e., [,, : u; > [,,, then [,,, can be obtained with a linear combination
of the inequalities in U. Let U’ be the subset of U that implies /,,,. If we want to infer [,
all of the bounds for the edges and nodes in the induced sub-graph corresponding U’ must
reach u; in the bound propagation procedure. So there is a longest inference path in U’ for
the inequality /,,,. As in each iteration, the bound propagation algorithm starts from a fixed
node in V. The traversal from any edge or node to another edge or node progresses at least
one step. Therefore, it takes at most )y iterations to finish the path traversal, and one more
iteration to finish the final update. Putting all these together, the algorithm complexity is
O(k(Q2y + 1)p). Here k is the number of non-zero entries in each column of D. Since D
is highly sparse, k is a small number. In the worst case, the longest inference path is p, so
the algorithm complexity is O(p?).

Theorem 4 states that the bound propagation algorithm is safe for trivial L, item
screening and can stop within {2y +1 iterations. BP has the potential to be further improved
by updating only the bounds may be affected in the previous iteration. We will show that
our bound propagation algorithm is effective and much more efficient than directly solving

the LP problems using standard LP solvers in CPLEX [69] in our experiments.
3.3.4 Improve Screening with Transformation

Since we adopt bound propagation, and the range for 6 is a sphere, the fewer variables
there are in each inequality, the tighter bound we can estimate for each u;. Hence, we can
improve the accuracy and efficiency of the bound propagation algorithm by transforming

D and G. Let T be a transformation matrix, which satisfies

a) D =DT'; b G=GT"; ¢)67G = "D. (3.49)

We look for the transformation matrix 7" so that there are fewer non-zero entries in each

column of D after transformation than in each column of the original matrix D.
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Different operation matrices DD will have different transformation matrices. In the fol-
lowing two subsections, we introduce the transformations for Generalized Fused LASSO

and trend filtering problems as examples.
3.3.4.1 Transformation for Generalized Fused LASSO

For Generalized Fused LASSO, each pair of the bound inequalities in L < DTu < H
corresponds to a node in the regularization graph W, as shown in Figure 3.2. To find a
desirable T, we first initialize a visiting status variable Visit for each node based on
its node degree. We traverse the graph W starting from a node with the degree equal to
one, and then we visit the adjacent nodes with the degree of two. For each visited node,
we decrease its Visit status by 1. We traverse along the path until the visited node is a
terminal or with its Visit status larger or equal to three. We then restart the traversal again
with a node having Visit = 1, until Visit = 0O for each node. In this traversal process,
we accumulate the labels of visited nodes, and store the current accumulated node labels
to a data structure labeled as the Data section for each visited node. For each node i , we
use T,; to represent the corresponding column in 7. We set the entries of T in the Data
section to one and the other entries to zero.

Theorem 5 For a forest graph ([5] < |E| < p — 1) and a tree graph (|E| = p — 1),
the above graph traversal process takes |E| steps; and Disa diagonal matrix with nr
all-zero columns, where nr is the number of trees in the graph. For a general graph with
|E| > p — 1, the graph traversal process takes fewer than | E)| steps.

Proof: For a simple non-loopy graph with |E| < p — 1, the graph traversal process just
goes through each edge one time. For a complex graph with loops, the traversal process
goes through the edges that are not in any loop. This leads to the theorem.

For edges in a loop or connecting loops, the previous transformation cannot isolate

them from other edges. But we can still get tighter bounds L and H by using node ag-
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Figure 3.2: Regularization graph examples. (A) Tree graph; (B) Graph with loops. Each
node corresponds to one entry in DT, with several entries in the vector w.

gregation transformation. Figure 3.2(B) illustrates one example of this kind for cyclic or
loopy graphs. From Section 2.1, we can see that the bounds L and H are actually from
the projection of the spherical range of ¢ along the direction of each g¢,;. For the edges
in such loopy graphs, we can get better bound estimates with feature node aggregation in
the given graphs. There are numerous possible combinations of feature nodes. We only
consider the ones without increasing the number of variables in the resulting inequalities.
One simple way is to find all the paths between the nodes with the degree higher than two,
and then implement node aggregation on each path. For example, for the loopy graph in
Figure 3.2(B), we can have three paths, whicharea —b —c—d,d —e,ande — f — g. We
can see that the corresponding node aggregation also corresponds to column addition in D.
Hence, for such an improvement strategy, we can construct an additional transformation

matrix 72 for the graph with |E| > p — 1.
3.3.4.2 Transformation for Trend Filtering

Similarly, we can get the transformation matrix for trend filtering. The trend filtering

uses the matrix D with the structure illustrated below. Thus, we aim to reduce the number
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of the involved elements in u in each row of the inequality system: L < D7y < H, with

a(n —1) x n matrix D:

1 -2 1 0 0 O
0o 1 -2 ..0 0 O

D = . (3.50)
0 0 0 1 -2 1

We can easily derive a transformation matrix for more efficient screening with the trend

filter: ) )
1 0 0 ... 000
2 1 0 ... 000

T=13 2 1 .. 00 0f- (3.51)

n n—1n-2 ... 3 2 1

With this transformation, D will become a diagonal matrix, leading to efficient screening.
3.3.5 Algorithm Flow for Sequential GL Screening and Dynamic Screening
3.3.5.1 Algorithm Flow for Sequential Screening

Given a data set { X, y }, an arbitrary operation matrix D depending on the correspond-
ing GL problem, and a sequence of decreasing \’s, our safe GL screening algorithm first
derives the transformation matrix 7', then applies bound propagation to iteratively tighten
the bound estimates at a given \. For each ), features are aggregated based on the optimal
solution 3*(\’) of the regularized problem with the previous heavier penalty parameter
A. Figure 3.3 illustrates the sequential screening procedure. Although for general cases
of GL problems, it is difficult to compute \,,., to initiate the sequential screening, in the

following, we list a few special cases, for which we can derive \,,,, and 3*(\,,4.) for safe
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Compute Feature
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initial 8*(\) eorems aggregation 8N

Figure 3.3: Algorithm flow for sequential GL screening.

sequential screening.

Theorem 6 If the operation matrix D can be transformed to a diagonal matrix, i.e. D=
DT, then )\, = max; PZ;%ng% and §; is the ith column of G = GT, § € {6:|Dg| =
0}, and Jti is the nonzero entry in the ith column of D.

Proof: From GT0 = ADTu, we can see that if D7is a diagonal matrix, Ay, =
gﬂ%ﬁ(gé) |, and dy; is the nonzero entry in ith row of D”. As § = f'(Gf) and | D3| = 0
de;f'(GB) |

dy; )
Based on Theorem 6, we can compute the \,,,, for the LASSO, Fused LASSO, Tree

max;

at A\pnaz» We can choose 3 that |[Dj3| = 0. Thus, \pe, = max; |

Fused LASSO and trend filtering problems, due to the special structures of their corre-

sponding D matrices.
3.3.5.2 Dynamic Screening

For many general cases of GL problems, it is difficult to compute \,,,... Thus, it is hard
to derive the corresponding (*(\..:) to initiate the sequential screening process. Here,
to solve this problem, we further propose a dynamic screening method for GL problems.
Dynamic screening for LASSO [38, 39, 40] does not require the solution from a heavier
penalty parameter, but constructs the constraint region for the dual variable 6 based on the
approximate solution from the first-order gradient method and then derive the screening

rules.
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If £*(-) is a a-strongly convex function, we have
2
We - GIE< 2 |r0) - e - e -] )

Here 6} is the optimal solution for a given D and )\, which means (f*'(6%),0 — 6%) > 0.

Hence, we have

o~ 6318 < 2|6 - 65 .

Let 3} be the primal solution at A. P(3, \) represents the primal value at (5, \). By strong
duality, we have —f*(0%) = P(/3;,\). We also know that, for any 3 € R'*P, we have
P(B%,A) < P(,\). Therefore, we can prove the following theorem,

Theorem 7 If f* is a-strongly convex, then

2
W€ 08 e B (-3 < {Pw, A+ f*<9>} (3.53)

Iterative algorithms such as the alternating direction method of multipliers (ADMM) [70]
iteratively update the primal variable 3, which are asymptotically close to the optimal /5.
With the primal and dual relationship, for 3! at each iteration step ¢, we can easily compute
0'. However, 6" may not belong to the dual feasible region since the solution during the
iterations of the ADMM algorithm is an approximate solution rather than the exact solu-
tion. To construct a constrained region for 63 using Theorem 7 so that we can apply the
screening rule, we need to project 6 to 2. Assume « is a scalar as a projection parameter.
If « is small enough, we can have af® € Q,. On the other hand, we also want to have

« that helps to quickly approach 65, which will lead to tighter bounds for more effective
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screening. We can formulate the optimization problem to search for a:

. * t — . T t — T < . .
%;f (af}), ® = {a:G"ab" =AD", ||u|| < 1} (3.54)
If the loss function in the primal problem is linear regression, we can conveniently compute
« according to the following theorem.

Theorem 8 The scaled feasible 0 for any ' that is the closest to 0% is 6 = a,0", where

— i i AllDe il 1y yTGt} i AllDe iy
at—mln{max{ Min; T H9‘H§) , NG [T o

Proof: We want to compute

1 1
ay :argmig {§||a6t + 9|5 — §y2, sit. XTah' = A\D"u, ||u||s < 1} (3.55)
ac

We can see that the objective function is quadratic with a scalar variable «, and the min-

_ yTet
116%]

imum is at @ = Therefore, we just need to estimate the range of « and then

N

determine the optimal o. With the constraint { X7 a6’ = ADu,||ul|l < 1}, we can

. . M|Da.; . M|Da.; .
see that the range of « is { — min; |||LT;%|‘||11 , min; ”xT'G’tlll} . Thus the optimal least-squares
i i
.. .. C . - Al|Des T gt . A|Da;
objective function is minimized at min { max { —min; ||!5T 9;“"11 ,— ﬁ’etﬁg )}, min; H|a|cT 9;||||11 }
7 2 [3

For the logistic regression or other forms of loss functions that we cannot compute the

closed-form solutions for o that minimize the corresponding dual objective functions, we

Al[Da,il1
EEIR

Al[Da,ill1
T 0|1

can choose one from {— min; , min, } that has a smaller objective function
value as the projection parameter c.

With a sequence of decreasing \’s, i.e., \g > Ay > ... > \,, if we can directly
compute the \,,,, as in Theorem 10, we can start the sequential screening process from
Amaz and then do the screening and solve the problems one by one according to the A
sequence; otherwise we can start the sequential screening process directly from \q using

the proposed dynamic screening procedure here.
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Since it is difficult to get an absolute accurate optimum for the optimization problem

at \;, we can add a slack variable to improve the safety of the screening at \;, 1,

sup jug| <1 —e= Dpff*=0. (3.56)

uelU

In our experiments, we take ¢ = 0.01. An alternative absolute safe way is to derive a
relatively loose but absolute safe bound with the equation (5.2.1), i.e., L; = %(g,TiT —
r1]|geill — 74]|geill2), and H; = (g7 + 71]|geil|2 + 72||gei]|2), where 7 = 6, 6 is the
projected dual variable at \; and r; is the ball radius from Theorem 2, and r is the ball

radius from (5.2.1).
3.3.6 Extensions to Models with Residual Terms

Our GL screening method can be extended to general prediction models with residual

terms, such as the following problem:

Piomin} | f(giB + giob) + AlIDS]1. (3.57)

Here g,y could be 1, e.g., in linear regression models.

Theorem 9 A dual form of (3.57) is given by

n

i *(HiW0), Qy=1{0: G760 = \D" o < 1} 3.58
;g;ﬁizlf( ), h={0:C U, [[ulloe < 1} (3.58)

_ I
Here G = H'G, and H = , ho=[-22 . —9=L0] The primal and dual rela-

gn,07 : 9n,0

h
tionship is f'(ghB + giob) = Hiab;.
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B
Proof: Let G' = |G, goo], D' = [D 0], and 8’ = . The primal problem becomes

b
min Z FIG'B) + N|ID'B']]1. (3.59)
By Theorem 1, the dual problem of (3.59) is
. x/nl . I Tl T
egébri;f (0)), Q= {0 : G760 = \D"u,||ul|s <1}. (3.60)
As G0 = AD'"u, we have gl,0' = 0, thus 0, = —220; — .. — &2=20¢" | Let
9n,0 9n,0
I
0=101,...0 )" H= ,and h = [— 22 —9=L0] "and we have @' = HA. With
h 9gn,0 9n,0
¢’ = HO, the dual form becomes
min Y f*(Hiwb), Q= {0: G"HO = A\D"u, [[u| < 1}. (3.61)

e
N =1

Let £(3,0) = >°1 | f(gie3+ gioh), and £*(0) = 7| f*(H;s0). Similarly as the proof
for Theorem 2, we have the following theorem.
Theorem 10 Let 0 and 0™ be the optimal solutions to the dual problem (3.73) at \y and

A, respectively, then we have

F(07) — 274 (07),0" — 20) > 0,

Ao Ao
and
_ _ G* g
fl* * _fl* * 2“0 > 0.
(B (65) - (0, 5~ 2 2 0
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If £ is a-strongly convex, then

* * 2 s )\ * £ N* )\ £/* ( n* *
16" — 6515 < S|f (A_OQO)_f (90)+(1—A—0)<f (90)79())],
and
27 _ _
We 05 e R 106518 < 2P + o) (.62

We can construct the dual variable constraint region for sequential and dynamic screen-
ing using Theorem 10, and then, apply the transformation and bound propagation for the
problems with residual terms in similar ways as discussed previously. Similarly, if the
operation matrix D can be transformed into a diagonal matrix, we can compute the A4,

by Theorem 6 based on the dual form in Theorem 9.
3.3.7 Experiments and Discussions

In Section 7.1, we first demonstrate the advantages of using our safe GL screening
method with linear regression and logistic regression on synthetic data. In Section 7.2,
we compare the proposed bound propagation algorithm with the CPLEX solver to demon-
strate the effectiveness and efficiency of our bound propagation algorithm for safe screen-
ing. We show the results for dynamic screening in Section 7.3. Finally we present the
results of our proposed safe GL screening method on two real-world biomedical data sets:
We test our screening method for Generalized Fused LASSO (GFL) linear regression on
an Alzheimer’s disease data FDG-PET; and then we show our results for GFL and Sparse
Generalized Fused LASSO (SGFL) logistic regression on a breast cancer data.

In the following subsections, we employ CVX [71] as the base GL solver and integrate

CVX with the proposed methods. We evaluate the effectiveness of our screening method
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according to the rejection rate, which is defined as

Reduced feature set size

Rej. Rate = —— —.
! Original feature set size

Let .., be the solution from CVX, and [, as the solution from screening and CVX. We

define Sparse Level and Prim. Diff. as

#{Z : |Dﬁcvm|z < 6}
#rowsof D’

Sparse Level =

and

Prim. Diff. = |P(Buv) — P(Bser)-

Here ¢ = 107° and Prim. Diff. measures the difference of the primal objective function
values with and without screening, which provides the evaluation of the expected safe
screening. Besides average values, we also provide variation values of both Rej. rate and

Prim. Diff. from running multiple experiments in respective tables.
3.3.7.1 Experiments with Synthetic Data

GFL Linear Regression (GFL-LinR) We simulate the data sets with n = 100 sam-
ples and p = 3, 000 features according to a linear model y = X /3 + ¢, where each column
of X is a vector with random entry values in the interval [—10, 10], and ¢ ~ N(0,1.0).
takes structured relationships from a randomly generated graph G, and each element of
isin [—1, 1]. We simulate graph structures using both general connected graphs and forest
graphs. First, we generate four different data sets. Each data set corresponds to a randomly
generated graph with the total number of edge densities ranging from p — 1 to 1.3p. These

four data sets correspond to the rows indexed by “p-1", “1.1p", “1.2p", “1.3p" in Table

3.2, respectively. We randomly choose the variables in two subgraphs in each G to be the
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non-zero contributing features. The distance between the two subgraphs is chosen to be
large, so that we can independently set different § values for the corresponding features
in these two subgraphs. Second, for forest graphs ([£] < [E| < p — 1), we generate two
data sets with 5 and 10 trees, respectively. These two data sets correspond to the rows of
“p-10" and “p-5" in Table 3.2, respectively. Entries of 5 in the same tree have the same
value. Table 3.2 provides the running time (in seconds) when applying GFL linear regres-
sion solved by the CVX package [71] with and without our safe GL screening method. In
the table, the “GFL-LinR" column provides the time used by the CVX package without
screening; “Scr." denotes the time used by our GL screening process. We have tested 52 A
values ranging from 3 to 1 in the descending order in this set of experiments to implement
the sequential screening.

GFL Logistic Regression (GFL-LogR)

In this subsection we test our proposed screening method on GLF Logistic Regression.
As CVX takes more time to solve the logistic regression problems, we simulate the data
sets with n = 60, p = 1, 500 to enable the comparison with reasonable computation time.
The binary label for each sample is generated based on the logistic regression model,
where we let y = X3 + €, where each column of X is a vector with random entry value
belongs to [—10, 10], and € ~ N(0,1.0), and we sety; = 1if §; > c;and y; = 0if g; < c.
We choose the ¢ value to give balanced training data sets in our experiments. Five data sets
are simulated with the graph edge number ranging from p — 1 to 1.3p. The corresponding
graphs and regression coefficient vectors [ are generated in a similar way as GFL Linear
regression with general connected graphs in the previous subsection. Table 3.3 provides
the results for this study with 50 A’s ranging in [1, 3], in which “GFL-LogR" denotes the

implementation with the CVX package.
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Figure 3.4: Rejection rates with and without transformation. The two plots in the first row
are for GFL Linear Regression based on data from Section 7.1.1 with the edge number at
p — 1 and 1.2p; the two plots in the second row are for GFL Logistic Regression based on
data from Section 7.1.2 with the edge number at p— 1 and 1.2p. In the figures, “BP” stands
for bound propagation, and “Transf+BP” is bound propagation with transformation.
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Tables 3.2 and 3.3 also provide the average and variance values of Rej. Rate and Prim.
Diff. with decreasing A\ sequences on graphs with different edge densities. Our proposed
screening method can speed up the original CVX solver up to 5 times faster. Both tables
show that the screening power decreases with the graph edge density increasing. In addi-
tion, the primal objective function value difference with and without screening is negligi-
ble, indicating the safe guarantee of our screening method. For both GFL linear regression
and GFL logistic regression, Figure 3.4 compares the rejection rates with and without the
proposed transformation and the transformation can always improve the rejection rate to
speed up solving GL problems.

Figure 3.5 gives the rejection rate for both GFL linear regression and GFL logistic
regression when the graph edge number is p — 1. In this situation, we can compute the
Amaz according to Theorem 6. With sequential screening, many L, terms can be removed
from both models, and the computation cost can be remarkably reduced.

SGFL Linear Regression (SGFL-LinR)

The formulation for Sparse Generalized Fused LASSO (SGFL) Linear Regression is

o1
min 5 ly = X8I+ M1l + A1 DB,

where )\; is the parameter that controls the sparsity penalty and ), is the parameter con-
trolling the penalty from structural feature relationships. It can be transformed into the
following form:

1 ~
min = ly = XBI|+ X DBl

where D = | ,and A = \o.
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Figure 3.5: Rejection rate for GFL screening when the edge number is p — 1. The upper
left figure is for the synthetic data in Section 7.1.1; the upper right figure is for the FDG-
PET data set in Section 7.4.1. The lower left figure is for the synthetic data in Section
7.1.2; and the lower right figure is for the breast cancer data in Section 7.4.2. For these
four data sets, we use 50 or 100 \’s ranging from 0.05 X A4z t0 A\jpge-
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We first present the results here with i—; = 8. To simulate the data, we generate
the graphs to simulate the structural relationships among features in a similar way as in
the previous two subsections and randomly set some nodes to be non-zero contributing
features. We generate nine data sets with general connected graphs with the edge number
ranging from 0.1p to 2p. There are n = 100 data samples with p = 5, 000 features in each
data set. Table 3.4 gives the results for this simulation study with 51 A\’s ranging from 50
to 100. “SGFL-LinR" denotes the time used by the CVX package.

Figure 3.6 further illustrates the rejection rates with changing A;/X.. We generate
11 data sets with \; /Ay changing from 0.1 to 10 for two graphs with 0.6p edges and 1.2p
edges, respectively, with the other parameters fixed to the same values as described before.
From the figure, we can see that the larger the difference between A\; and Ao, the higher
rejection rate we can get. This is expected due to the property of the inequality system
in (3.38) and (3.42). For the sub-gradient u;’s with larger coefficients, they tend to have
tighter bounds. If all u;’s have similar coefficients in one inequality system for their upper
and lower bounds, they will have similar bound gaps as the system cannot discriminate
them. In this situation, with the same system bounds, the overall screening power will be

reduced.
3.3.7.2  Compare CPLEX and Bound Propagation for Safe Screening

As the goal for screening is to identify as many trivial L; items as possible (in other
words, eliminate and/or aggregate as much as possible), we have shown that the efficacy
for screening depends on the fact that how tight the bounds of the sub-gradient vector v can
be estimated. Although the CPLEX LP solver can solve the bound estimation problem, it
is very computationally costly. In order to clearly demonstrate that our bound propagation
algorithm can achieve similar screening performance as the CPLEX LP solver with signif-

icant speedup, we compare the rejection rates as well as running time for bound estimation
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Figure 3.6: Rejection rates for SGFL Linear Regression on simulation data with different
A1/ Ag ratios.

based on both CPLEX LP solver and our bound propagation on a GFL-LinR model with a
similarly simulated data set as in Section 7.1.1. Due to the tremendous computational cost
of CPLEX, we only present the results on the data sets with n = 50, p = 500, |E| = 1.2p,
and |E'| = 1.3p. Table 3.5 shows the comparison of the running time. Figure 3.7 compares
the rejection rates of the two methods. We can see that our bound propagation can achieve
very similar rejection rates as the CPLEX LP solver, but with much lower computational
cost. For bound estimation, our bound propagation algorithm can achieve speedups by
two orders of magnitude compared to the CPLEX LP solver as shown in Table 3.5. In Fig-
ure 3.8, the red curves give the average values of estimated upper bound and lower bound
at different \'s for bound propagation; and the blue curves are from CPLEX solver. Fig-
ure 3.9 gives the mean and variance values bound difference between CPLEX and bound
propagation. From both figures, we can see that bound propagation can provide tight up-
per and lower bound estimates for u. We also notice that these estimates are loose bounds

for u, thus they are safe for screening.

3.3.7.3 Experiments for Dynamic Screening

In this section, we take the GFL linear regression as an example to study the proposed

dynamic screening. We generate 50 data samples with 1,500 features for each sample.
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Table 3.5: Running time (in seconds) for CPLEX and bound propagation

Method | CPLEX | BD Propagation
CVX +GFLS (1.2p) [ 421.7 | 655

LP (1.2p) 369.1 |21

CVX +GFLS (1.3p) [ 576.7 | 81.2

LP (1.3p) 508.7 |24
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Figure 3.7: Rejection rates for CPLEX and Bound Propagation on GFL with the edge
density |E| = 1.2p (left) and |E| = 1.3p (right) (n = 50 and p = 500).
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ADMM and ADMM with dynamic screening at different duality gap values.

We simulate the structural relationships among features by the randomly generated graph
with 1.1p edges. The random simulation setup is the same as in Section 7.1.1. We have
embedded our dynamic screening with the ADMM algorithm. Figure 3.10 shows the
experimental results for the dynamic screening study. From the figure, we can see that
the smaller the duality gap is, the tighter constraint region of the dual variables will be;
and the more L, items can be removed, the more efficiency gain we can get from dynamic

screening.
3.3.7.4  Experiments on Biomedical Data

We further test our GL screening method on two real-world data sets: FDG-PET [72]
and Breast Cancer [54]. The first two subsections present the results for Generalized Fused
LASSO on both data sets, and the last subsection gives the results for Sparse Generalized
Fused LASSO (SGFL) on the breast cancer data set.

GFL Linear Regression on FDG-PET The FDG-PET data set was collected from 74
Alzheimer’s disease (AD) patients, 172 mild cognitive impairment (MCI) subjects, and 81

normal control (NC) subjects, which was downloaded from the Alzheimer’s Disease Neu-
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Table 3.6: Results on FDG-PET data set

Method | p1 | Llp | 12p | 13p
GFL-LinR 64.4 66.7 64.2 69.1
GFL-LinR + Scr. 23.1 27.1 38.2 43.0
Rej. Rate 0.939 0.720 0.549 0.394
(Var.) (6.7E-4) | (3.6E-4) | (3.6E-4) | (2.0E-4)
Sparse Level [0.955, [0.967, [0.963, [0.959,
1.000] 0.992] 0.993] 0.993]
Prim. Diff. 3.2E-7 24E-7 24E-7 4.2E-7
(Var.) (7.3E-14) | (2.6E-14) | (3.0E-13) | (2.5E-12)

roimaging Initiative (ADNI) database [73]. After preprocessing of the data by following
the approach adopted in [72], 116 features (each feature corresponds to a brain region) can
be derived for each subject. The outcome variable in this data set takes transformed nu-
merical values from the original categorical sample label (NC, MCI, and AD). We further
use the method described in [72] to construct the regularization graph by using the Sparse
Inverse Covariance Estimation (SICE) [74]. Table 4.4 gives the running time of CVX and
CVX + Screening for different scenarios, where each scenario has a different graph den-
sity controlled by SICE. Results in Table 4.4 clearly show the significant improvement on
computational time if our GFL screening is applied to remove many of the trivial edges
and aggregate the corresponding variables, before the use of the CVX to solve the GFL
learning problem. We apply sequential screening with 54 decreasing \’s for each graph
density based on SICE. Figure 3.11 gives the rejection rates with and without transforma-
tion for graphs |E| = 1.2p and |E| = 1.3p. We can see that with transformation, we can
further reduce the problem size.

GFL Logistic Regression on Breast Cancer Breast cancer data set consists of gene
expression data for 8,141 genes in 295 breast cancer tumors (78 metastatic and 217 non-

metastatic) [54]. The largest connected component in the human protein-protein inter-
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Figure 3.11: FDG-PET data with and without transformation (Left:| E| = 1.2, right: |E| =
1.3).

action (PPI) network was identified in [54] to capture the gene-gene relationships by a
connected graph with 7,782 nodes. To generate different regularization graphs with dif-
ferent edge density levels, we start with a randomly induced tree from the PPI network
and gradually add back edges randomly chosen from the original PPI network. Table 3.7
shows the running time for CVX with and without screening on these different graphs.
We apply sequential screening with 64 decreasing \’s for each graph density. The bottom
right plot in Figure 3.5 presents the rejection rate at 100 different \’s with edge number

p—1.
SGFL Logistic Regression on Breast Cancer

We also have tested the proposed screening method on the following SGFL logistic

regression problem,

mﬁinz { log(1 + exp(z;03)) — ﬂfiﬂyi} + )\||D5H1>
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Table 3.7: Results for GFL-LogR on breast cancer data set

Method | p-1 | 1.1p | 1.2p | 1.3p
GFL-LogR 64341 [ 71593 | 6849.0 | 6944.6
GFL-LogR+Scr. | 12346 [ 25043 [3427.0 [3730.9
Rej. Rate 0.915 0.749 0.667 0.601
(Var.) (5.8E-4) | (7.3B-4) | (5.3E-4) | (5.3E-4)

Sparse Level [0.981, [0.981, [0.986, [0.987,
0.986] 0.989] 0.992] 0.993]
Prim. Diff. 1.1E-7 5.5E-7 5.6E-8 7.7E-8
(Var.) (4.0E-15) | (2.3E-13) | (2.0E-15) | (5.0E-15)
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Figure 3.12: Rejection rate for SGFL Logistic Regression on breast cancer with different
A1/ Ag.

AL
)\2[

D

the different loss function. We use the breast cancer data set with the same preprocessing

where D = ,and A = \y. This problem is the same as in Section 7.1.3 except

as done in the previous subsection. Table 3.8 shows the running time for CVX with and
without screening. In this study, we choose 30 \’s ranging from 0.1\ to Ay, and )y =

|| X7y||oo. Figure 3.12 gives the rejection rates for different graph densities when i—; is 5.
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From the simulation and real-world data studies, we can see our screening method
can effectively remove the trivial L; items especially when the operation matrix D can be
transformed into a diagonal matrix. For SGFL problems, according to our experiments,
when the difference between \; and )\, is larger, we can obtain higher screening power,
which has been similarly observed in Section 7.1.3.

The proposed methods are appealing in solving GL problems with high feature dimen-
sion, and with the D matrix diagonalizable (the number of non-zero entries in D can be
reduced with column transformations), as demonstrated in the reported experiments. For
example, for generalized Gused LASSO (GFL) problems with a graph capturing feature
relationships, we can derive a transformation matrix T according to the method detailed
in Section 4.1. Other GL problems with diagonalizable D with a transformation matrix T
can potentially have high rejection rates using our proposed algorithm. We have tried our
method on trend filtering problems with GG being an identity matrix, and the problem can be
transformed into LASSO problems with the transformation method in section 4.2. Empiri-
cally our screening method does not show significant improvement for such trend filtering
problems compared to learning without screening. In fact, the CVX solver is quite efficient
on solving the GL problems with the family of objective functions: ||y — 8|3+ A||Df||:.
We have tried to integrate the proposed screening method with other GL solvers, e.g.,
[34, 61, 62, 57], but none of these methods can provide sufficient scalability or accuracy
for screening. More details about comparison between these solvers can be found in Ap-

pendix of the supplemental file.
3.3.7.5 Comparison between CVX and Other GL Solvers

We have made a great effort to integrate the proposed screening method with other GL
solvers. Methods in [34, 60, 61, 62] provide novel approaches for solving the path solution

problem for GL. The screening method proposed in this chapter requires accurate solutions
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Table 3.9: Compare CVX and other solvers on data sets with p = 500, n = 30.

Method | GraphCut [57] | Path Sol. [34] | CVX
Time(Sec.) (|E] = 0.8p) | 58.7 65.9 1.2
P(B) (|E| = 0.8p) 15.8794 14.8662 14.8630
Time(Sec.) (|[E| = 1.3p) | 1189 1342 2.4
P(B) (|E| = 1.3p) 2.9707 2.4427 2.4246

at given \’s. In our experiments, the method in [61] cannot give primal solutions with
high precision at given \’s, and cannot scale well to the problems with high dimensional
feature sets, e.g. p > 1000. The authors in [57] also derived a solver to sparse generalized
Fused lasso problems, to minimize the objective function: |ly — XB|3 + M||B|[: +
X2 3 jyer |Bi — Bjli. However, in the provided software package of [57], the penalty
weight on ||3]]; can only be one constant value (\;). And this makes it difficult to integrate
screening into the solver in [57]: During the screening process, the weights for vector |||
may have different values. Furthermore, according to our experiments, similar to [61], the
solver in [57] does not scale as well with the high dimensional data sets as CVX does.
Table 3.9 provides the running time and primal objective values for different GL solvers
on Sparse Generalized Fused LASSO (SGFL) linear regression with similarly simulated
data sets as in the experiments reported in Section 7.1 when p = 500, n = 30. Based on
these results, we have chosen the CVX solver as the baseline solution to be integrated with

our screening method.
3.4 SAIF for Fused LASSO

In this section, we focus on GL problem with tree structures, which means there is no
loop in the graph. We show that this type of tree Fused LASSO can be transformed into a

typical LASSO form with residual term, thus we can employ the SAIF idea for scaling up.
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3.4.1 Methodology

The formulation for fused LASSO is

min } _ f(zif,9:) + MIDB|l, (3.63)

where [|DS|[1 = >_, cp B — Bol, and each pair in E' denotes an edge in a complete
tree with F as the vertex set. The tree G(F, E') captures the dependency structures among
features. Here D is a matrix representation of the tree, and in each row of D, we have zeros
entries except two with 1 and —1. The fused LASSO problem can be further transformed
into the equivalent LASSO formulation with the following theorem.

Theorem 11 If D can be transformed into a diagonal matrix with a column transformation
matrix T, i.e. D= DT, and Disa diagonal matrix, then

a) the problem (3.63) is equivalent to

n p—1
P ngianf(Z@jﬁjmpb,yi)+A||ﬁ||1, (3.64)
Py j=1

where X = XT, and the solution relationship is p* =T [ /g* } ;

b) a dual form of (3.64) is
D: min— (=NG;), Q=1{0:1z"9| <1,Vie{l,..p—1}}. 3.65
%23;“ ) {01770 <1,Vie{l,..p—1}} (3.65)
_ - 1 _ _ _
Here X = X_,, and H = , h = [— ;:Lp,,—ajg‘#} 0 = HY_, , and
h sP n,p
S eED) . . |
= ———>—. M_, means matrix or vector M without pth column or entry;

.....
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Proof: a) The dual form for fused LASSO is

Dy : sup— *(—=\b; (3.66)
1 910 ; A )
st. X' =D"u (3.67)
[lulloo < 1. (3.68)
Here the primal and dual optima relation is 6* = —f(X—/\B*).

With transformation matrix 7, X=X T,and D = DT is a diagonal matrix, with the

elements either 1 or 0 and the last column is all-zero column. And the dual form becomes

Dy : sup — *(—=\b; 3.69
21 Sup ;f (—\6;) (3.69)
st. 710 <1,¥i,1<i<p—1 (3.70)

o =0 (3.71)

p

We can see the corresponding primal problem for D, also is

n p—1
p: rgianf(va‘ijéjmpb,yz—)+A||B||1. (3.72)
P j=1

where X = X7, and the solution relationship is 3* = T[f ].

b) With (3.71), we have 0, = — 26, — .. — =226, ;. Let X = X, and H =

Tn,p
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Jh=— Z—’Z,...,—%—lf},gz H0_,, the dual form becomes
b , ,
min — (=X0,), Q={0:|zT0| < 1,Vie{l,...p—1}}. 3.73
pin =3 /(0), 0= (T A SLYiE (Lop 1)) 67
. . _ e (x[B8
As we have §* = —f()f\ﬁ ) and B* = T[/g}, thus we have 6* = —%.
¢) As Mg 1S the minimum A that B{ = B; = .. = 6;1 = 0, we also have

|
r 1D

With the primal form (3.64) and dual form (3.65) in Theorem 11, we just need a trans-

77777

formation on the feature set to apply our method to fused LASSO problems. From the

proof of Theorem 2 in [38], we can easily get V0 € Q, § = [’f] € R 10F —0)2 <

% {]5 (B) — D(@)} . With the duality gap, we can derive the ADD and DEL rules for fused

LASSO. The following Theorem shows how to project the current dual estimation § to the

feasible space (2 for regression with the least square loss function.

Theorem 12 For linear regression problems with fused LASSO regularization, the scaled
vy’

feasible 7 for any 6 that is the closest to 0* is h— 70, where T = min{max{w,
2

1 1
B HXTOHOC}’ 1X70]|oo }
Proof: According to Theorem 11, the dual variable corresponding to primal variable [B}

v (x[3]) b

iSéZ{Hl,...,ep_l},HZ— By

. While § may not be feasible to the dual problem of
linear regression. With a projection scalar 7, we try to make 76 closer to #* in the feasible

space:

1 - 1 _
T :argmijr%l {§]|)\79 —yll5 - §HyH§, st |7 0| < 1,Vie{l,....p— 1}} (3.74)
TE
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From the objective function, we can easily get 7 = to reach the minimum point if no

DO )

constraint on 7. Therefore we need to estimate the range of 7 to determine the minimum

for our case. From the constraint region {|5EZT7'9_| <LVie{l,.,p— 1}}, the range for

. . 1 1 . . yTo o 1 1
7is | HXTeuoo’||XT9||OO]'Thu”—mm{mm{xw|e\|§’ DXL HXTGHOO}’

The algorithm for fused LASSO is the same as LASSO with the transformation steps.
As the transformation matrix is highly sparse and only have column operations on the
feature matrix X, we can replace matrix multiplication with column operations to further

improve computation efficiency.
3.4.2 Results for Fused LASSO

We further present the experiments fo fused LASSO with the formulation (3.63). There
are a few solvers that are suitable for tree fused LASSO problems, such as [71] and the
path solution method [60]. Due to the scalability and solution accuracy issues with the path
solution package, we only take [71] as the baseline for comparison in our experiments. We
first compare the running time between SAIF and [71] on breast cancer regarding fused
LASSO linear regression; then we compare them on the FDG-PET data set [73] with

logistic regression as the loss function.
3.4.2.1 Breast Cancer Data

For the same breast cancer data set, we would like to incorporate the interaction rela-
tionships among genes to formulate the fused LASSO problems for regression analysis.
The largest connected component in the human protein-protein interaction (PPI) network
was identified in [54] to capture the gene-gene relationships by a connected graph with
7,782 nodes. The first plot in Figure 3.13 gives the running time for both CVX and SAIF
at different \’s with duality gap 1.0E-6. The results show that SAIF can significantly

reduce computation cost compared with CVX.
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Figure 3.13: Running time for fused LASSO on breast cancer (left) and PET (right) data
sets at duality gap 1.0E-6.

3.4.2.2 FDG-PET Data Set

The FDG-PET data set has 74 Alzheimer’s disease (AD) patients, 172 mild cognitive
impairment (MCI) subjects, and 81 normal control (NC) subjects, which was downloaded
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [73]. 116 features
(each feature corresponds to a brain region) can be derived for each subject after prepro-
cessing. We further use the method described in [72] to construct a correlation tree on
these features. We take AD as positive(1) and NC as negative(0), and disregard all of MCI
samples in this set of experiments in fitting to a fused LASSO logistic regression model.
The second plot in Figure 3.13 gives the running time for three As at duality gap 107°.

Again SAIF takes much less time on this data set.
3.5 Conclusions

In this chapter, we present novel safe screening methods for Generalized LASSO (GL)
problems. Due to the arbitrary structure of the GL problems in terms of structural regu-
larization, developing safe screening rules for GL problems calls for a different approach
from the existing screening methods that have been devoted for special cases of the GL
problems. The main idea of the first approach is to show that safe screening for GL prob-

lems can be derived by formulating equivalent dual problems constrained by linear in-
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equality systems for GL learning. We then develop a novel bound propagation algorithm
in the dual space to estimate tight bounds of u*(\), so that we can identify as many trivial
L, items as possible to significantly reduce the original problem size. This bound prop-
agation method is further enhanced by novel transformation methods that can be tailored
to different GL problems. The proposed propagation and transformation methods can also
be applicable with dynamic screening, which further provides an efficient way to start
the screening process when the desirable regularization parameter is difficult to estimate.
We also show that GL problems with tree structures can be scaled up with SAIF method,
in which we do not need to solve an extra problem with heavier penalty parameter. Ex-
perimental results on both synthetic and real-world data sets demonstrate the promising

performance of our safe GL screening method.
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4. SCALABLE ALGORITHM FOR STRUCTURED KERNEL FEATURE
SELECTION *

In chapter 2 and 3, we developed two types of feature screening methods to scale up
linear sparse learning. Non-linear feature selection methods have been developed to cap-
ture more complicate response relations. In this chapter, we propose one of such kind of
feature selection models based on kernel methods. Incorporated with structured LASSO,
the kernelized structured LASSO is an effective feature selection approach that can pre-
serve the nonlinear input-output relationships as well as the structured sparseness. But as
the data dimension increases, the method can quickly become computationally prohibitive.
In this chapter we propose a stochastic optimization algorithm that can efficiently address
this computational problem on account of the redundant kernel representations of the given
data. Experiments on simulation data and PET 3D brain image data show that our method

can achieve superior accuracy with less computational cost than existing methods.
4.1 Introduction

Feature selection has been one of the important problems to address the infamous
curse of dimensionality in applying statistical learning methods to short and fat data with
n/p < 1, where n and p denote the sample size and feature space dimension respectively.
Penalized feature selection methods such as the Least Absolute Shrinkage and Selection
Operator (LASSO) [16] provide one of effective solutions, which typically search for fea-
tures that are linearly related to the output.

In order to explore potential nonlinear input-output relationships with feature selection,

*Part of this chapter is reprinted with permission from “A scalable algorithm for structured kernel fea-
ture selection” by S. Ren, S. Huang, J. Onofrey, X. Papademetris and X. Qian, 2015, 18" International
Conference on Artificial Intelligence and Statistics (AlStats), San Diego, CA, USA. JMLR: W&CP volume
38. Copyright 2015 by the authors.

103



researchers have proposed both parametric and non-parametric methods [16, 17, 32, 31].
We focus on non-parametric methods in this chapter, specifically, kernel feature selec-
tion methods. Kernel methods are arguably among the most popular tools that provide
a practical way to capture nonlinear relationships. For example, Quadratic Programming
Feature Selection (QPFS) [75] solves a quadratic programming problem with quadratic
kernelized dependency measures. But with the increasing feature dimension, the Hessian
matrix for the quadratic term may become singular and cause computational difficulty.
Song et al. [76] proposed a greedy kernel feature selection method with forward feature
selection or backward elimination strategies based on Hilbert-Smith Independent Criteria
(HSIC) [77]. A related method—Hilbert-Schmidt Feature Selection (HSFS)—proposed
in [29] can be considered as its continuous relaxation. HSFS was formulated as non-
convex optimization problems with only local optimality guarantee from the resulting op-
timization algorithms. Neither the method in [76] nor HSFS can scale up with the feature
dimension due to the non-convexity and complexity of their accompanying optimization
problems. To address the scalability problem, Sparse Additive Models (SAM) have been
proposed to efficiently solve kernel feature selection by a back-fitting algorithm [78], but
it was shown that it may not perform well when features are not additively related. More
recently, based on feature vector machines (FVM)[32], Yamada et al.[31] proposed a high-
dimensional kernel feature selection method: HSIC-LASSO, in which the optimization
problem can be efficiently solved by dual augmented Lagrangian(DAL) algorithm [79].
HSIC-LASSO is a feature-wise kernel method. When studying features from struc-
tured data such as images and networks for disease diagnosis, inherent structural and func-
tional relationships among features may need to be integrated in feature selection for better
accuracy, reproducibility, and interpretability. Feature-wise kernel selection methods may
be further improved with better performance by considering such structural and functional

relationships among features, especially when the sample size is limited. Hence, in this
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chapter, we aim to develop such a kernel feature selection method that explicitly imposes
structural constraints among selected features. One of such structured penalized feature
selection methods is the Fused LASSO [17, 57] in linear regression and classification.
The direction implementation of Fused LASSO for kernel feature selection to capture
nonlinearity is computationally challenging. When the sample size and feature dimension
increase, for example when studying 3-Dimensional brain images, the general batch-based
optimization becomes inefficient and even infeasible. To address this computational dif-
ficulty, we introduce explicit structural constraints for structured kernel feature selection
and derive a highly scalable stochastic optimization algorithm for this structured kernel
feature selection method that is designed for the classification problems.

In summary, we propose a new structured kernel feature selection method based on the
Hilbert-Smith Independent Criteria [77] but with explicitly enforced structural constraints
to incorporate potential structural and functional relationships among features when they
are available. The derived stochastic optimization algorithm is tailored to such a structured
kernel feature selection problem and can efficiently solve the problem of very large size,
for example for 3D brain images, on account of the redundant kernel representations of
the given data. Finally, unlike HSIC-LASSO, which is designed for feature selection and
requires separate learning processes for prediction with the selected features, our struc-
tured kernel feature selection method is formulated in a supervised learning framework
and simultaneously learns the prediction model that can be directly adopted for new data.

The remaining of the chapter is organized as follows: Section 2 formulates the struc-
tured kernel feature selection problem; Section 3 derives the tailored stochastic optimiza-
tion algorithm; Section 4 presents and discusses our experimental results with both simula-
tion data and 3D PET brain images; Section 5 provides the discussion on the relationships
of our method with the existing kernel feature selection methods in literature; Section 6

concludes this chapter and provides future research directions.
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4.2 Methodology

In this section, we present our structured kernel feature selection model for classifica-

tion.
4.2.1 Structured Kernel Feature Selection

Different from [31], we take the Hinge loss function in our model instead of the least
squared loss in [31] since we focus on classification problems in this chapter. Without loss
of generality, with the input features X € R"™*P and output responses Y € {—1,1}", the
penalized kernel feature selection problem can be formulated as follows with the L;-norm

penalty as typically done in LASSO:

n p
min Y “[n— Lh(aol + Y a; K] + Mlar, s (4.1)
m=1 i=1
+ )\2 Z ((ZZ' — Clj)2
(3,7)EE
s.t. a; >0 Vi>1 4.2)

where the first term is the Hinge Loss; L,, is a n—dimensional vector, corresponding to
the mth column of the output kernel matrix L;and K i corresponds to the mth column of
K i which is the kernel matrix for feature x; . n is the number of data sample, and p is
the number of feature. The structural constraints among candidate features are imposed as
quadratic terms of fitting coefficients a in (4.1), where I denotes all the available pairwise
structural relationships among features. We consider an six-neighborhood-system for 3D
images. We note that these quadratic terms can be rewritten in the matrix form with the
graph Laplacian based on the feature structural relationships. But for many applications,
the Laplacian is highly sparse, and it is not advisable to store and use the Laplacian matrix

directly in the algorithm. With the L;-norm regularization term, the non-negative con-
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straints (4.2) guarantees that the active features have larger values and non-related features
have small values to make the results easily interpretable. As similarly done in [31], for

each feature x; € X, we have

. , 1
K'=HK'H: H=1-~-117;

n
(9Eki - Wi)Q)_

K/i,z(xzw X;) = 633]?( - 2052

K' = vec(K"); K! = f(ﬁm

For output responses Y, we adopt the following kernel:

L=HYYTH; L=vec(L); Ly=Lemn.

Note that the output kernel matrix in our model is also different from the one adopted

in [31], which is given as follows:

L(yi, y;) =
0 otherwise

L=HLH; L =vec(L),

where n,, is the number of training samples in class y;.
4.2.2 Interpretation by Hilbert-Smith Independent Criteria

The formulated optimization problem in (4.1) aims to identify predictive features that

have large inner-product values between L and K = agl + Y, K'a; under previously
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described constraints. By expanding the inner-product L™ K, we have

L"K = tr(LK) = agtr(LI) + > atr(LK") = agtr(LI) + Y~ a;HSIC(Y,x,).

HSIC(Y,x;) = tr(if( *) is the empirical estimation of Hilbert-Smith Independent Crite-
ria (HSIC), which is the same kernel-based independence measure adopted in HSIC [76]
and HSIC-LASSO [31]. As proven in [77], HSIC always takes nonnegative value and
is zero if and only if the two variables are independent. When solving the optimization
problem 4.1, the Hinge loss term drives the feature selection for highly correlated features
with the output through the HSIC term; thereafter to have larger fitting coefficients a;’s
with the nonnegative L;-norm term penalizing less correlated or independent features to
have zero coefficients. Finally, with the structural constraints, our new model can robustly
recover structurally related groups of features that are responsible for the output, aiming

to obtain reproducible and accurate results.
4.3 Stochastic Optimization Solution

In this section, we derive the stochastic optimization algorithm to solve our structured

kernel feature selection problem.
4.3.1 Stochastic Optimization Algorithm

We note that the dimension of K* in (4.1) is n? x 1, and there are p such feature kernel
vectors for p features in the problem. When either the sample size or feature dimension
is large, many general-purpose first-order optimization algorithms cannot scale up accord-
ingly to solve 4.1. In order to provide practical and efficient solution algorithms to 4.1,
we develop a stochastic optimization algorithm based on an efficient online algorithm: the
dual average method [42, 80].

As the fitting coefficients a are nonnegative, the optimization problem 4.1 can be
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rewritten as

n p p
min Z[n — LT (apl + Z a; KM )]+ M Z a; 4.3)
m=1 i=1 i=1
+ )\2 Z (ai - Clj)2 (44)
(i,7)€EE
s.t. a; >0 VYi>1. 4.5)

As in the dual average method [42], the above optimization problem can be considered as
two parts: the loss function part, which should be subdifferentiable; and the regularization
or constraint part, which should be convex. For our current formulation 4.4, the objective
function in 4.4 is subdifferentiable and can be directly taken as the loss function part for
the dual average optimization. The only constraint term is the nonnegative constraints on
a. Applying the dual average method [42], the objective function can be rewritten in each

step ¢ for one sample m :

p

p
lt = [n — [_ﬁ(aol + Z }_(fna,)]+ + )\1 Z a; + /\2 Z ((li - aj)Z. (46)

i=1 i=1 (i,§)€E

L,, and K! can be considered as sample-dependent parts of L and K*, respectively.

We first compute the subgradient of /; with respect to fitting coefficients a:

—(Ki) Ly + ¢(a) if LT (apl + 3, Kla;) <n
o(a) if LT (ag1 + Y, Kl a;) > n

da) = +2% > (a—ay.

{7:(4,9)€E}

g(i) =

Here, g (i) gives the ith entry of the subgradient g;. For ag, K is 1. For the dual average
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method at step ¢, we can compute the average subgradient g;:

t—1_ 1
= ; g1+ ;gt- 4.7)

gt =

According to [42], the dual average method requires to solve a modified optimization
problem by choosing a simple but strongly convex auxiliary function h(a) as well as a
nondecreasing step size sequence {/3;}. The appropriate choice of the auxiliary function
helps make the problem smooth and strongly convex for easier optimization. The appro-
priate nondecreasing sequence {/3;} can guarantee fast convergence. For our structured

kernel feature selection problem, we need to solve the following optimization problem

each step:
1+ 1In(t
mingfa + 1O (.38)
st. a; > 0,Vi>1. 4.9)
Here, we take h(a) = ||a||? as the auxiliary function, which is strongly convex, and 3; =

(1 + In(¢)). This auxiliary function h(a) is designed specifically to have an efficient
updating rule for solving our original structured kernel feature selection problem (4.1).
Following the derivation of the dual average method in [42], we can prove the following
theorem that gives the updating rule of our stochastic optimization algorithm.

Theorem 1 With the auxiliary function i(a) = ||a||? and the nondecreasing sequence
{6} with 8; = v(1 + In(t)), then the updating rule in each step ¢ for fitting coefficients a

for the problem (4.1) is:
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(a:), = &) ifi=0
i)t —

ramm & @) ifi=1..p

Proof We can write the Lagrangian of the problem (4.8) by introducing the Lagrangian

multipliers with the non-negative constraint:

L(a,A) = —————la— (

We can compute the gradient of the Lagrangian with respect to a as

(1 + In(t)) t _
L=2—"(a—(—F——— - A . 4.10
Va t ( ( 27(1 +ln(t))gt)) 1,..., y4 ( )
There is no constraint for ay. Hence, ag = —m g:(0) does not violate any KKT
conditions. For a;.;-, if —mgt(i) > 0, we set a; = —mgt(i) and \; = 0,

and all of the KKT conditions are satisfied. If —mgt(i) < 0, we set a; = 0, and
Ai = g(i), so a;A; = 0 and also v/, L(i) = 0. Therefore, all of the KKT conditions can
be met. With the updating rule stated in the theorem, all of the KKT conditions can be
satisfied. Finally, as the problem (4.8) is convex, the updating rule in the theorem provides
the optimal solution to (4.8).

This stochastic optimization algorithm provides an efficient updating rule for our origi-
nal problem, and this is the key that our method can scale up to high dimensional datasets.
Since the objective function in 4.1 is subdifferentiable, and the constraint set is convex,
as shown in Xiao [42], with a large enough number of samples and iteration steps, the

updating rules finally approach to the optimal solution to 4.1.
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The pseudo-code of the final stochastic optimization algorithm is summarized in Al-

gorithm 4.
Data: Data matrix X, Outcome labels Y, Feature structural relationship graph

G(V, E), a strongly convex auxiliary function h(a), A1, As.
Result: Fitting coefficients a.
Initialization: Compute the kernel matrices forX and Y'; Initialize a € min, h(a);

while Stop criteria not satisfied do
1 Given the function [;, compute the subgradient on a;: g;;

t—1
t

2 Update the average subgradient g; = —=g;_1 + %gt;

3 Calculate next a with

(a;); = ~ om) &) ifi =0
i)t —

[~y ifi=1..p

end
Algorithm 4: Dual Average Algorithm for Structured Kernel Feature Selection

The required storage of the kernel matrices Ki,i=1,.,p may take large memory
space for high-dimensional datasets. Similar tricks adopted in [31] can be implemented to

reduce memory requirements when needed.
4.3.2 Convergence and Regret Analysis

Following [42], we can prove the following theorem:

2, and the nondecreasing sequence

Theorem 2 With an auxiliary function h(a) = ||a
{6} with 5; = v(1+1n(t)), Let {a;} and {g; } be two sequences generated by 4. Suppose
the optimal solution a* to problem (4.1) satisfies h(a*) < D, for some D > 0, and there
is a constant GG such that ||g;||. < G for all ¢ > 1, we have the following property for 4:

a) For each ¢t > 1, the average regret is bounded by
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2

Ri(a) < (w? N %) (1 + ().

b) The sequence of primal variables are bounded by

2

o =l < i (074 )1+ 000) - e ).

Also we can have the convergence in the expectation form:

c)

2 G?
—a¥l < — = (D24 = )
Ella; —a¥|| < T (D + 272)(1+1n(t))

Theorem 2(a) reveals that when v = we can have the improved regret bound,

G
V2D’

Ri(a) =2 D—\/g(l +1In(t)).

From Theorem 2(b-c), we can see that our algorithm has a convergence rate of O(In(¢)/t).

Proof: We use the indication function to represent the nonnegative region constraint:

0 ifa; > 0,Vi >0

oo ifda; <0,0>0

The loss function for our original problem can be written as:

n p p
fl@) =Y In—Lhal + Y aKi i+ MDD ai+r Y (ai—a;)
m=1 i=1 i=1 (i.§)€E
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We define the region
Fp = {a € dom(®)|h(a) < D?}.

a) For the regret analysis, let

t

J; = max { Z ((gc,ac —a) + ®(ac)) — t@(a))}, t=1,23, ..

ac%p
¢=1

We can see that d, is the upper bound of the regret R;(a)

t t

Ri(a) =) (fe(a) +@(ar)) = Y (fe(a) + @(a))
¢=1 ¢=1

> (felag) = fe(a) + @(a)) — t9(a)

1

IA I
"

((gc,ac —a) + P(ac)) — td(a)

o~
Il

IN
&

For an arbitrary initial feasible solution ay, we can rewrite

Z (8¢, ac —ao) + CI)(aC)) + max { 1g;, a9 — a) — tCD(a)}.

ac%p
C:

Define V;(tg;) = maxa { (t8, a — ag) — t®(a) — Bh(a)}. As a € Fp, we can derive the
following inequality similarly as in Lemma 9 in (Xiao, 2010):
t

00 <> ({8 ac — ag) + (ac)) + Vi(—t&) + 8D, (4.3)
¢=1
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According to Lemmas 10 and 11 in [42], we can easily get

Ve(—C8¢) + P(ac1) < Ve(—C8),

and

|lgc I
2(v(C = 1) + Be-1)

Ve(—=C8¢) < Veor(— (¢ = 1)8¢—1) + (—8¢,ac — ag) +

when ¢ > 2. Hence

|lgc I
2(v(C = 1) + Be1)’

Ve(=C8¢) + P(act) < Veor(—(C—1)8¢—1) + (—8¢,ac — ag) +
¢>2
Moving corresponding terms, we get:

|lgI?
2(v(¢ = 1) + Be-1)’

(8c;ac —ag) + Placy1) < Veoa(—(C = 1)8c-1) — Ve(—(8e) +

¢>2.
When ( = 1, we have

(1,1 — a0) + Dlan) < — Vi(~1) + % T (B — B1)h(ae)

By adding all the inequalities for ¢ = 1, ..., ¢, we can get

t t

((gc ac — ag) + ®(acy1)) + Ve(—C&¢) < (Bo — Bu)h(az) +
=1

1 [lgell?
2 — (¢ —1) + Be

Since a; = a9 = 0 € argmin,®(a), so ®(a;1) > P(ag) = P(a;). Adding ¢(a;) —
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®(a;41) to both sides,

t

> ({8 ac — ag) + ®(ag)) + Ve(—C8) < (Bo — Bu)hla)+

|gcll?
Y€ = 1)+ Bea

Substituting this into (4.3) , we have

, I¢ llgc|)? 2(60 — A1)l &1 |2
R S0 SOD 50 S g T A

For our algorithm 3; = (1 + In(t)), and 5y = 1 = ~, hence

R<6<111&D2G21t_1 ! < (v0 + )1+ me
(@) < 6 < {1+ In)) +5(+<1m)_(7 o))

b) To find the bounds for primal variables, we first rewrite the solution to the subprob-

lem (9) in the manuscript at the ¢th step in 4:

at+1 = arg mgn {(tgty a> —+ t@(a) + /Bth(a)}
The subgradients b;; € 0®(asy1) and dyy1 € Oh(as; ;) satisfy the following inequality:

<tgt + tbt+1 + Btdt—f—la a — at+1> Z O, Va € dom(CI))
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Since both ®(-) and h(-) are strongly convex, we have

S0t + Bo)llacss —al?

< 1(®(a) — Daesr) — (brsra— i) + 61 (@) = has) = (ds,a - acia)
= Gih(@) — Biblaver) — {tbysr + B, — ager) + £B(a) — tB(ays)

< Giha) — Gihlace) + (180 — a) + 19(a) — 19(ars)

= Bih(a) + t®(a) + {(—18:, arr1 — ao) — Brh(ary) — tP(ap)} + (18, a — ag)

= Bih(a) + tP(a) + Vi(—tg:) + (18, a — ag).

Note that for the dual average methods in 4,
t t
(tg:,a —ag) = Z(&n a—ac)+ Z(goag — ap).

¢=1 ¢=1

Substituting the corresponding term, we can get

1
St + Bl — al

~+

< Bih(a) + {Vt(_tgt) +
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Taking the proof for a) (4.3.2) that

t

D (gc.a—ac) +td(a Z@ac ) <> (fela) = fe(ag)) +td(a) — Y ®(ar)

=1 ¢=1
t

~+

t

= (fela) + ®(a)) = D (fe(ac) + @(ac)) = —Ry(a),

¢=1

Oy

Using (4.3.2), we can derive

S0t + Bl —all3 < Gih(a) + (o — Bu)h(an) +

By the assumptions given in the theorem, and setting 5y = (5, = -, we have

1 G 1
301+ Bl —al <21+ ) + & (1 *Zm) Ri(a)

, G
< (w04 5 )4 i) - R

Hence,

2

fovss — a1l < s (4074 £ ) 44 1ai0) - e,

c) Let z = {Y;, X} be the (th sample for 4, and z[t| denote the collection of i.i.d random

variables {2, .

of {z¢, ..., 2zt }.
We have

.., zt}. We can take a as a function of {z1, ..., z._1 }, which is independent

118



and

E.i(f(ac, ze) + ®(ac)) = Eye—y(f(ac, zc) + ®(ac)) = Eqp(f(ac) + ®(ac)).
We also can get
E,(f(a*, z) + ®(a*)) = E. (f(a*, %) + ®(a*)) = f(a*) + P(a”).
Since
f(@") + ®(a") = min f(a) + &(a),

combining the previous results leads to the following equation:
E,Ri(a Z E.i(f(ac) + ®(ac)) — t(f(a) + @(a®)) > 0.

Therefore, with the result from b), we can get

2 G?
E —a*|| < ——————(D*+ — | (1 +1In(?)).
o =l £ 1y (D + g )1+ o)

4.4 Experimental Results

We have two sets of experiments to verify the effectiveness and efficiency of out meth-
ods on structured high dimensional datasets. The first one is based on simulation ex-
periments using MRI data. The second one is to analyze the 3D PET brain images for
Alzheimer’s disease (AD) prognosis [73, 57]. For these studies, we compare our algo-
rithm with fused LASSO [17, 57], and HSIC-LASSO [31]. For fused LASSO we use

the recent efficient implementation based on the graph-cut algorithm [57] with the same
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efforts to provide scalable feature selection for 3D brain images.
4.4.1 Simulated Active Regions in MRI Images

In this set of experiments, we study the proposed method with a simulation of structural
anomalies within MRI anatomical data. From the 1000 Functional Connectomes Project
International Neuroimaging Data-Sharing Initiative[81], we randomly selected 200 3D
anatomical MRI brain images from healthy subjects. Each image was spatially normal-
ized to a Imm X 1lmm X 1mm custom, average anatomical template image using a low-
dimensional free-form deformation image registration [82] with 15mm control point spac-
ing. For this simulation experiments, we equally partition the total samples into healthy
(negative) samples and positive samples by simulating the perturbations from the original
images. Considering computation efficiency, only one brain lobe region as shown in Fig-
ure 4.1 is chosen for study. One spherical regions within the lobe are randomly perturbed
as active functional areas with structural anomalies. Each voxel intensity within the ac-
tive areas is modified by adding a random value g, which follows a Gaussian distribution,
N(p, o). In our experiments, we take o as the standard deviation of voxel intensity values
of the original image. Among selected original images without perturbation, the average
value of o is 262.75. We perturb the voxel intensity values in 100 positive samples in a
randomly selected single spherical active region with radius of r = 4 voxels. The images
in the first row of Figure 4.1 display three axis views for one example of an original MRI
image. The second and third rows in Figure 4.1 are the images after perturbation in the
active areas at different levels pu.

For fused LASSO and our method we directly adopt the learned parameters for predic-
tion as both methods are formulated as supervised learning problems. For HSIC-LASSO,
kernel SVM [55] based on the learned features is used for prediction. For the proposed

model, we can use the learned parameters to predict the pairwise relationship between the
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test sample with all of the training samples. Since it is a binary classification problem,
we can use the sign of the accumulated prediction label to determine the final prediction

value. The measure on active region recovery accuracy ACC 4 is computed as follows:

2R—ME
ACCar = —55—

where R denotes the number of voxels in the actual active region; and M E represents the
binary voxel-wise matching error between the ground truth active region and the recovered
region, which is the number of voxels in both binary images that are not in the overlap
region. We take the R active voxels in the recovered region corresponding to the R voxels
with highest average value f; over all of the positive samples. When the recovered binary
functional active region is the same as the ground truth region, M E = 0 and thereafter
ACCsr = 1. When the recovered region does not have any overlap voxel with the ground
truth, M E = 2R and hence ACC 4 = 0.

In this set of experiments, 200 samples are divided into the training set and testing set.
The training set contains 50 randomly chosen positive samples and 50 negative ones. The
rest of the samples go to the testing set. All of the model parameters are learned based on
the training set with five-fold cross validation. Since the number of training samples is not
large, we use all of training samples in our stochastic algorithm without any subsampling
on the training dataset. In this set of simulation experiments, we study all of the three
methods on three different types of input-output relationships: linear, additive nonlinear,

and non-additive nonlinear.
4.4.1.1 Linear Response

In this experiment, we compare all of the models based on simulated linear responses
from perturbed MRI images with 100 positive samples having the active regions perturbed

with random values following N (u, o) with ;1 = 100, and the other 100 negative samples
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Figure 4.1: The first row shows one example from the original MRI images; the second
row is the corresponding perturbed image at ¢+ = 100; the third row displays the perturbed

image at ;. = 200.

from the original MRI images. The output label for each image is directly determined

by whether there are perturbed regions. The results for the three comparing methods are

shown in Table 4.1, and the recovered regions are shown in Figure 4.2.

Table 4.1: Comparison for simulated MRI images with linear responses

Method Proposed | FL HSIC-Lasso
Pred. Accuracy | 96% 70 % | 69%

Reg. Accuracy | 78.1% 33.3% | 23.1%

CPU time (sec.) | 65.6 431.5 | 73.7

Table 4.1 shows that our method can achieve higher prediction accuracy as well as

higher active region recovery accuracy. Moreover, our algorithm takes less computational
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Figure 4.2: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for simulated MRI images with linear responses.

resources. The results in this experiment show that our method can work robustly even
though the active signal is relatively weak. The proposed model and fused LASSO can
get higher ACC due to the extra structure knowledge of the data that are incorporated
in the model formulation. Without the structure constraints, HSIC-LASSO misses many
active voxels with the redundancy penalty term in their formulation. This is the reason
why the recovered region is sparse and the ACC is low in HSIC-LASSO. We have also
forced lower sparse penalty in HSIC-LASSO but it does not significantly change the re-
sults. We also note that HSIC-LASSO can achieve similar computing time compared to
our proposed method due to the efficiency of their dual augmented Lagrangian (DAL) al-
gorithm. However, HSIC-LASSO does not impose any structural constraints, which is one

of bottlenecks for scalability of structured kernel feature selection.
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4.4.1.2 Additive Nonlinear Response

In this experiment, we set © = 200 for perturbations. Among 200 original im-
ages, 150 are chosen to be perturbed by adding random values following N(u,0) to
the corresponding voxels in the selected active regions. In addition, in order to cre-
ate a nonlinear response model, not all of these samples are labelled as positive sam-
ples. We divide the voxels within the active regions into four groups: V'1,V2 V3 V4
according to the spacial order in the image. Then we compute a nonlinear response
value ¥ = D701 vt voevavsersoera ST(VL) + exp(v2/cl) + v3/c2 + (v4/c3)?, where
cl = 2000, ¢2 = 1500, and ¢3 = 1500 are constants in this experiment. All the perturbed
images are ranked in an ascending order of ¢ values. The top 100 samples are consid-
ered as positive samples while the other 100 samples are labelled as health (or negative)
samples.

The results for this experiment are presented in Table 4.2. Figure 4.3 illustrates the
recovered regions by three methods. It is clear that our proposed model takes lead in the
accuracies and speed. The high prediction accuracy compared to the fused LASSO is
due to the kernel method in our model for incorporating potential nonlinear input-output
relationships. By enforcing structural constraints, our structured kernel feature selection
also performs superior to HSIC-LASSO. It is interesting to note that the fused LASSO can
achieve high ACC for active region recovery compared to HSIC-LASSO because of the
incorporated spacial structures. However, the fused LASSO takes much longer computing
time than the other two methods due to the incorporated non-smooth structure constraints
even with the fast proximal and graph-cut algorithms implemented in (Xin, 2014).

Based on these simulation experiments, our structured kernel feature selection with
the dual average stochastic optimization algorithm can robustly recover potential active

function regions, accurately predict output responses, and scale better with both the sample
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Table 4.2: Comparison for simulated MRI images with additive nonlinear responses

Method Proposed | FL HSIC-Lasso
Pred. Accuracy | 94% 62 % | 65%

Reg. Accuracy | 74.5% 64.5% | 27.9%

CPU time (sec.) | 62.1 414.3 | 80.5

]

0

Figure 4.3: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for simulated MRI images with additive nonlinear responses.

size and feature dimension compared to the other existing feature selection methods.
4.4.1.3 Non-additive Nonlinear Response

In this experiment, the simulation data is generated in a similar way as in the previous
experiment. But this time we randomly choose the voxels in the four groups, and the

nonlinear response value 1) = Y1 cy1 wocvawsevsacya V1 X exp(v2/cl)/c2+(v3/c3)? x
v4, where c1 = 2000, ¢2 = 6200 and ¢3 = 1500. Similarly, top ranked 100 perturbed

images in the ascending order of ¢ are set as positive samples and the remaining 100
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Table 4.3: Comparison for simulated MRI images with non-additive nonlinear responses

Method Proposed | FL HSIC-Lasso
Pred. Accuracy | 75% 69 % 60%

Reg. Accuracy | 70.9% 27.95% | 0%

CPU time (sec.) | 69.5 2230.4 | 89.9

images are negative samples.

The results of this experiment for prediction accuracies, active region recovery accu-
racies, and computational time are given in Table 4.3. Figure 4.4 displays the recovered
regions by three methods. As visualized in the figures, our method is much more robust
than the other two methods. For non-additive and nonlinear responses, the objective func-
tion is more complicated, and fused Lasso and HSIC-LASSO take longer time to reach to
the optimal values. The computational time for the fused LASSO has increased dramati-
cally. The possible reason is that as the problem becomes complicated, the line search step
in the proximal algorithm in the fused LASSO takes much longer time. In this experiment,
HSIC-LASSO failed to identify any responsive voxels inside the active region due to the
lack of structural constraints in their formulation.

The results in this set of experiments show that our model can recover active function
regions in high dimensional structured data, even when the response signal is weak and

complicated.
4.4.2 PET 3D Brain Images

In this section, we test the proposed method on a 3D positron emission tomography
(PET) dataset, which is collected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [73]. We collected 95 Alzheimer’s disease (AD) patients and 102 healthy subjects

in this set of experiments. With the affine transformation and subsequent non-linear warp-
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Figure 4.4: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for simulated MRI images with non-additive nonlinear responses.

ing algorithm [83] in the SPM MATLAB toolbox, each image was spatially normalized
to the Montreal Neurological Institute (MNI) template[84]. The data was resampled and
the resolution was reduced to 4mm x 4mm X 4mm to save computation time. Student’s
t-test was used to remove the voxels that do not differ significantly between patients and
healthy people. Furthermore, the voxels with very small intensity values are also removed
to reduce computational cost. Figure 4.5 shows the mean image before and after prepro-
cessing.

The dataset is divided into two sets: the training set contains 51 healthy people and 47
patients, the testing set has 51 healthy people and 48 patients. The parameters are learned 5
fold cross validation on the training data set according to the prediction accuracy.Table 4.4
provides the performance comparison for the three comparing methods. We can see that
our method again performs much better on prediction than the other two approaches. Fig-

ure 4.6 gives the predicted active regions by three models. We use the mean of the health
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Figure 4.5: The first row displays the mean image of the original PET images in three axis
views and the second row shows the corresponding mean image after preprocessing.

Table 4.4: Comparison on Pet 3D Brain Images

Method Proposed | FL HSIC-Lasso
Pred. Accuracy | 94.9% 85.9 % | 87.9%
CPU time (sec.) | 163.5 2786.2 | 187.9

brain images as reference background, and then we add the learned voxels weights by the

three models on the background. We can see our method can recover multiple regions.

4.5 Conclusions

Our structured kernel feature selection problem is specifically designed for classifica-

tion with the Hinge loss function, which can be represented by HSIC terms as we show

earlier. Enforcing that related features should be selected together as they have higher

probability in similarly correlating the output, our structured kernel feature selection can

get more robust feature selection results. In addition to the differences in formulations,

we derive a tailored stochastic optimization algorithm so that the proposed method can

be implemented to efficiently solve feature selection and active region recovery when we
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Figure 4.6: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for PET 3D brain images.

have big and high-dimensional data such as 3D brain images in our experiments.

In this chapter we propose a new kernel feature selection model for binary classifica-
tion problem. Based on Hilbert-Smith Independent Criteria, with the structure knowledge
among features incorporated into the objective function, our model can effectively and ro-
bustly identify the active regions related to the outcome of interest. Our method can scale
up to large data problem with the efficiency stochastic algorithm based on the dual aver-
age method. Experimental results on simulation data and real-world 3D image data have
verified the effectiveness and efficiency of the proposed method. Our structured formula-
tion for kernel feature selection together with the accompanying stochastic optimization
method provides a practical approach for large structured data feature selection and active
function region recovery from 3D brain images. Our model can be further improved with
the less memory techniques [31] and faster stochastic methods [42], which will be our

future research directions.
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5. SCALE UP SVM WITH ACTIVE SAMPLE SELECTION

In this chapter, we propose a scalable algorithm for support vector machines (SVMs),
safe active incremental support vector selection (SAIV), based on the similar active in-
cremental idea of SAIF in Chapter 2. Unlike existing working set or active set meth-
ods [24, 23, 25, 26], SAIV actively updates the active set based on the recruiting or screen-
ing rules derived from the duality gap of the sub-problem on the active set. In this way,
SAIV maximally reduces the computation cost for non-support samples. Experiments
on different data sets show the advantages of SAIV over the existing shrinking [24] and

sequential screening methods [12].
5.1 Introduction

Similar to the sequential feature screening methods for LASSO, derived to address the
prohibitive computational cost issues with extremely high-dimensional features, sequen-
tial sample screening methods for SVM have been proposed in [14, 12, 22] to address
computation issues due to the extremely large number of samples. These methods esti-
mate the range of model parameters relying on the solutions from a smaller model hyper-
parameter. This type of sample screening methods have been extended to sparse SVM
in [41]. Recently, the screening method developed in [15] derives sample screening rules
by leveraging the duality gap, which has similar theoretical roots as the dynamic screening
method for sparse learning [38].

We propose a novel method to scale up SVM to large data sets by investigating the
properties of the dual problem (5.1). In (5.1), D is the training sample index set, and C'

is the model hyper-parameter as introduced in Section 1.1.2. Due to the convexity of the
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SVM problem, solving the following dual problem leads to efficient SVM training:

1
D : mein §0TQ9 — 179

s.t. 6, € [0,C], Vie D.

Data: Training data set D, SVM model parameter C, stopping duality gap e
Result: ¢

Choose [ random samples from D as .4;, and the rest as R;

ISREC = True;

while True do

Update 0, regarding D; with K iterations with 4, as the input ;
Compute duality gap G4(6;) based on (5.2.1) ;

if ISREC = False & Duality Gap < ¢ then
| Stop;

end
SCR operation;

if IsSREC = False then
| Continue;

else

if mingca, h(z;, yi; we — /kiiGe(6¢) > 0 then
| ISREC = False; Continue;

end

REC operation;

end

end

Put 6, in to 0, and inflate the other entries with O.
Algorithm 5: Active Sample Selection for SVM
Starting from a small random sample set as the active set .4, our method actively selects
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and moves potential support samples (vectors) from the remaining set R to .4. During the
iterations, non-support vectors of the sub-problem (only the samples considered in the
current A) are also removed from .4 and put into R. With a small active set .4, CPU time
and memory operations are significantly reduced compared with the existing solutions
for SVM. The proposed method starts from a small active set and incrementally recruits
potential support vectors. Due to its incremental nature, this approach can reduce more
redundant computation compared with the existing working set and screening methods for

SVM.
5.2 Safe Active Incremental Sample Selection

We first introduce two basic operations in our sample screening algorithm. We then

derive our SAIV algorithms in the second sub-section.
5.2.1 REC and SCR Operations

With a feasible dual variable vector 6, the corresponding primal variable vector is
w(f) = ZTH. At time ¢, we have the active set A;, and the corresponding primal and dual

problems for SVM with the “kernel function" v are P; and 15,5 as follows,

o1
P, : mu%n§HwH§ +C E [1—w (yp ()]s,
Vie Ay

A 1
D, : min -07Q0 — 176
0 2
s.t. 0, €[0,C], Vie A,
We define the generalized primal and dual objective values as P,(w) and D,(6). The

dimension of w and @ can be any value not larger than n. In computing P,(w) and D,(6),

we inflate the missing entries in w and € with zeros, and ignore some entries to align w
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and 6 with the input of P; and D, based on the index of original data set D . The duality

gap is defined as

Gi(0r) = Pi(w;) — Dt(et) )

where w; = Z1'0;.
Let h(zi, yi;wy) = wiyb(z:) — 1 = (Z]'0,yiby(x;)) — 1, and ky; be the ith row
and jth column entry of the kernel matrix. With A; at time ¢, the two operations in our

algorithms are defined as

REC: Vi € R, if h(x;, y;; wt)+\/k:i,-Gt(Qt)—l—\/kijt(Ht) < h(xj,y;;we), Y] € Re,j # 1,
move 7 from R, to A;;
SCR: Vi € Ay, if h(z;, yi; wy) — \/m > (0, move ¢ from A, to R;.

Our method is similar to the existing working set or active set methods. Let’s use S 4
to represent the set of support vector coefficients in the optimal dual solution when the
working set is A, i.e. S = {07, ...,0%}. Here 07 is zeros if i ¢ A. We use A to represent
the sample index set for the final support vectors.

Theorem 1 For active sample selection regarding the problem (5.2.1) , we have

(@) If min;eg, h(z;, yi; wy) > 0, then Sp = Sy,.

(b) Vi € Ap, |h(i, ys; wp) — h(ws, yis wi)| < /kaGr(0y).

(¢) Fori € Ry, if h(zs, yi; wi) + / ki Ge(00) +/k;;Ge(0r) < b, y55wi), V) € Ry, j # 4,

then we have h(x;, y;; wy) < h(z;, y;; wy), Vi € Ry, j # i

Proof: (a) As we can see, P(w;) = Py(w;) + C Y. cn [1 — wi (yithe(2:))]+ = Po(wy) +
C Y ier,[—hl@i,yswi)ly = Pi(wy) +0 < P(w*) + CFicr, [ — w (g (2:))]4 =
P(w*), thus w} = w*.

(b) By applying Corollary 4.3 in [15], Y{x;,y;} € Ay, |h(zi,yi;w)) — h(zi, yi; we)| =

(207 yide(i)) — (210 b (xi))| = [((wy = we), yihe(a))| < Nlyithe(za)|la] w0 —
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wlly < \/kiuGi(6:).
(c) From (b), Y{z;,y;} € Ry, we have —/k;;G(6;) + h(zi, yi;wy < h(zg, y; wi) <
kuGt(é’t) +h($l, Y wt). FOI'i,j € Rt, lf /{:“Gt(Qt) + h(l’z, Y wt) S — kijt<9t) +

h(x;, y;;wy), whichis h(z;, yi; wy) +/kiGe(6:) + \/kijt(QtH— < h(xj,y;;w;), we have
(s, yss wy) < hl(wj,y;;wp).
Remark 1 Theorem 1-a) provides us a stopping criterion for the REC operation. Further

more, if A ¢ A, then 3i, h(z;, y;; w;) < 0. This shows that SAIV is safe.
Data: Qt, Gt(Gt), Rt, At

Result: R 1, Aiq

Setl = [¢l];

wy =276, ;

forv=1to/do

i < miner, h(zi, yi; wy) ;

Set S; = {j|j € Re.j # i, h(ws, yis we) + VkuGi(00) + /kj;Gi(0,) >
M@, yj5we) } s

if |S;| <[ then

A — AU {5}
R+ Ri—{j};
else
Stop;
end
end
Ay — Ay s
Rit1 < Res

Algorithm 6: Algorithm for REC operation
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5.2.2 Algorithm

We employ the coordinate descent method in [24] as our base iterative optimization
algorithm for the dual problem D,. Algorithm 5 summaries the procedure of SAIV with
the detailed steps laid out for the REC operator in Algorithm 6. Algorithms 5 and 6 are

similar to the SAIF algorithm and ADD algorithm in Chapter 2, respectively.
5.3 Properties of SAIV

In this section, we first give the properties of the proposed SAIV algorithm, and then

give detailed computational complexity analysis.
5.3.1 Algorithm Properties

Coordinate descent has been studied by many researchers [24, 50, 53]. The base
algorithm we employed is the coordinate descent method presented in [24], in which model

parameters are updated with the Gauss-Southwell Rule.
5.3.1.1 Coordinate Descent with Gauss-Southwell Rule

The following lemma gives the number of iterations needed to reach a given accuracy
for the original SVM problem (5.1).
Lemma 1 With coordinate descent [24], starting from 6y, we need at most log,. m
iterations to reach accuracy ¢ = D(0) — D(6*) for objective in (5.1). Here r = 1 — £-, L
is the coordinate wise Lipschitz continuousness value, and w is the convexity value of the
loss function in (5.1).

Proof: With Gauss-Southwell Rule [85], the convergence rate is

D(0k11) — D(6)
D(0x) — D(6")

1
<r=1-—-—-—.
=7 Ln
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Staring from 6 to reach accuracy gap €, we can recurrently apply (5.3.1.1),

(‘9*) < r? c — a =lo °
= & D(0y) — D(07)

~ D(6y) — D(6%)’

With the iteration numberlarger than a, the accuracy gap will be smaller than ¢.

The duality gap converges with primal updating.

G(6;) = P(w(8,)) — D(6,)

l

1 1

= SllwlP +C Y1 —w” (5:Q()]s + 56/ 96, — 170,
i=1

l
=0/ 00, + C > _[~h(zs, yi; w(0,))+ — 176,.

=1
With limy,_, ||0; — 6*|| = 0, we have limy,_,, G(6)) = 0.
5.3.1.2  Finite Numbers of REC and SCR Operations

The following theorem indicates that REC and SRC operations can end within a finite
number of steps in SAIV to include all of the actual support vectors in the original SVM
problem with all of training samples.

Theorem 2 Let w; and ¢; be the optimal primal and dual solutions for the sub-problem
with the active feature set A,.

(a) If sample i = argmin;ep, h(z;, y;; w) is added to A, operation at time ¢, and A € A,
then 0; (i) # 0.

(b) If A ¢ Ay, and we have REC operation at ¢, then Vt', ¢ < ¢/, A, # Ay.

(c) 3T, vVt > T,0; = 0%, and w; = w*.

Proof: (a) If 0;,,(i) = 0O, then h(x;,y;;w;) > 0, and with Theorem 1-a), this means
A C A,, this contradicts with the conditions.

(b) With an REC operation at ¢ to movie sample ¢ into .4;, we insert an entry into 0
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corresponding to sample i with the value of 0. From a), we know that 07, (i) # 6; (i).

D(0;1) = Do (071) = min Dya(f) < Dea(|§ ) = D)

SCR operation does not change dual objective value. Thus V', ¢’ > t, D(6%) < D(6}),
which means A, # A;.

(c) With REC operation the dual objective value always goes down. From Remark 1, there
are alway samples for REC operation before working set includes A. Thus lim;_,., 0} =
6%, and lim;_,, w; = w*. With REC operations, .4, changes with ¢ with finite combination
according to a). Thus 37, V¢ > T'. 0} = 0%, and w; = w™.

In the next section, we present detail complexity analysis for SAIV.
5.3.2 Algorithm Complexity Analysis

We consider the running time for the proposed method has three parts: sample increas-
ing, sample screening, and accuracy pursuing, and we use 1, T3, and 7T, to represent the

corresponding time complexity, and the overall time complexity is 7' =T, + 1T, + 1. .

5.3.2.1 Sample Recruiting

To move i from R, to A;, we need h(z;, yi; wy) + 1/ ki G(6;) + VkiiG(0:) < h(z;,y;;
wy),Vj € Ay, j # 1. This leads to

h(ﬂfj,yﬁwt) - h(ifi,yi;wt))Q ~ (h(a:j,yj;wf) - h(l‘hyi;w:))%

Glon) < (A Vs Vs

Samples may be added or removed from A; during the sample recruiting phase. Let
U, (0) = D(0) — D(6;) be the gap with REC operation at time ¢, we have

Lemma 2 The time complexity for the sample recruiting phase is O (21(% (%@2 +
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where

1

B — 7§n3 log Uyti(6;) 0. — (HTI—l\Ijni’H*n?)%
3 t _‘I’t(Qt)_7 3 t=0 t+1 )

t=1

n2 L n
and T3 = —log, ¥ *(6y) — —log ‘Ill?(ﬁo).
v

5.3.2.2 Sample Screening

To remove sample ¢ from A;, we need h(z;, y;; wy) — \/ki;G(60;) > 0. This leads to

200 .
G(6;) < (i, yii wr) (mzl’j“wt).

Lemma 3 The time complexity for the sample screening phase is O <2%nTI log %+2(6T’)+

L 3 Y, +1(07;)
K_unTI 1 f‘—g s where

1

f (HTD 1 \IJnt nz+1 (Qt)\llngD (QTD>) n%1+1 :

t=Tr+1

1

_ nd—n? n3 3
I3 = (HtTDTllﬂ\Ij +1(Qt)‘I’TZD (QTD>) Tt

Proof: For the sample screening phase,

Ip logrt \I/lf(t o)

Tb = Z T(2K'ﬂt —i—nt)

t= T]+1
Tp
\I]t 6t> 1 \Ilt<0t)
=2 ng log, + = n;log,, —
TZ o8 G T K 2 O g,
T+1 t=T7+1
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1

— _ n?—nf n2 )
Iy = (Hfjﬂilqjt H(et)\DTzD (QTD>) ans

Similarly, let

Vo, 11(01,)
_ 2 Tr+1\VTy
Ty = g n; log VO = —nip, 41 10g T, ,

where

1

a - ny—n} n3 —3
Ly = (20 0 (00) gy (07,)) "1

5.3.2.3 Time Cost

After the sample recruiting and screening phases, we only need to iteratively update

the parameters to improve the accuracy. The time complexity for accuracy pursuing is

£
T.=mlog, ———<—m



Theorem 3 The time complexity for the proposed algorithm is O (QTL nr, log 2+

1
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24m? log 2+ =02 ang, ). Here Q = (IL,L, W, 1" ™) "1, ep is the minimize accuracy
gap for the sample screening, m is the number of support vectors.
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5.4 Experiments

We first compare SAIV with a typical working set (Shrinking) method [24] and then we
compare SAIV with the state-of-the-art sequential sample screening method [12]. More
thorough comparison studies are still ongoing, and we present the available preliminary

results in this section.
5.4.1 Comparison with Shrinking Method

We evaluate the proposed method on different data sets from the LIBSVM website [86].
We compare SAIV with the shrinking method [24] and report the running time in Table 5.1.
Here we use the RBF kernel for both methods. The running time for both methods are
based on the same hyper-parameters (C' and kernel parameters). From Table 5.1, we can
see that the proposed method achieves improved computation efficiently compared with
the shrinking method. Furthermore, when the data sample size is large, SAIF can reduce

more computational cost.
5.4.2 Comparison with Sequential Screening

Grid search with cross validation has often been adopted to select model hyper-parameters

(C' and kernel parameters). In this set of experiments, we compare SAIV with the state-of-
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Table 5.1: Running time (Sec.) on different data sets

Data Set \ Feature Size \ Sample Size \ CD+Shrinking \ Proposed

Gisette 5000 6000 83.8 51.1
USPS 256 7291 7.73 591
Vehicle 18 746 0.116 0.072
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Figure 5.1: Running time for SAIV and sequential screening on Gisette (a, b) and USPS
(c, d) data sets with different numbers of C' values at different v values (kernel parameter).
For Gisette, v = 1E-9 (a) and v = SE-8 (b). For USPS, v =0.039 (¢) and v = 0.019 (d).
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the-art sequential screening method [12] on a sequence of C' values controlling the width
of margin. Figure 5.1 gives the running time for both methods on Gisette and USPS data
sets with different numbers of C' values. For Gisette data set, all of the model hyper-
parameter C' values are sampled evenly on the logarithmic scale of range [0.01, 500]. For
USPS, the range is [0.1,100]. The running time for SAIV is linearly increasing with the
number of C' values. Although sequential screening can take less when the number of C
values is large, SAIV takes less time when the number of C'is small. This is because the
density of C' values determines the screening power of sequential screening, and smaller
gaps between C' values can remove more non-support samples (vectors). While the den-
sity of C' values does not affect the performance of SAIV, and thus the running time for
SAIV increases with the number of C' values. When we do hyper-parameter tunning, we
can incorporate SAIV and sequential screening with coarse to fine strategies. We can start
from several different important C' values with SAIV, and then do the sequential screening

to select the optimal hyper-parameter.
5.5 Conclusions

In this chapter, we propose a sample selection method for SVM. The main idea is fol-
lowing the similar derivation of the active incremental feature selection method of SAIF
for sparse learning. Theoretical analysis on convergence is given. Experiments on dif-
ferent data sets illustrate the advantages of the proposed method. Based on these results,
we conclude that the sparse properties can reduce the model computation cost of SVM ,
especially when there are a large number of training samples but only a small fraction of

them are support vectors. .
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6. CONCLUSIONS AND FUTURE WORK

In this dissertation, we have developed several methods to scale up sparse and struc-
ture models. In Chapter 2, we present a new feature selection algorithm for LASSO,
SAIF. SAIF utilizes quit different strategies compared with typical sequential and dynamic
screening methods, and it actively employees the most active features and deletes inactive
ones to minimize redundant computations. Experimental results prove that SAIF con-
sumes much less computation than state of art dynamic screening method. SAIF provides
a new direction for scaling up sparse learning, and it can be easily extended to group
LASSO, graph LASSO, and other sparse and structure models. We also show that the idea
of SAIF can be extended to support vector machines (SVM) in Chapter 5.

In Chapter 3, we try to address the GL scaling up problem. Firstly, the sequential
screening rules for GL problems can be derived by formulating equivalent dual problems
constrained by linear inequality systems. The bound propagation (BP) algorithm in the
dual space approximates the range of sub-gradient of L items, and then with the approx-
imation we can identify as many L; items as possible to significantly reduce the original
problem size. With dynamic screening as an efficient way to start the screening process,
BP can be further improved with the the proposed transformation method. Secondly, we
extend the SAIF method to GL problems with tree structures. Experimental results on
both synthetic and real-world data sets demonstrate the promising performance of both
methods.

We developed a scalable structured kernel feature selection in Chapter 4. With the prior
knowledge of structures among features incorporated into the objective function, active
regions in medical images can be robustly and efficiently identified by the proposed HSIC

kernel feature selection method. The efficiency of the model can be boosted significantly
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with the dual average stochastic algorithm. Experimental results on simulation data and
real-world 3D image have verified the effectiveness and efficiency of the proposed method.

Based on the proposed methods in this dissertation, there are several directions we
can progress further in the future. First, SAIF can be extended to more general cases,
such as group LASSO, or general convex problems with sparse structures. Second, SAIF
can be further improved with strategies such as multi-level active set strategies, and SGD
methods [42]. Finally, kernel feature selection models can be further improved with the
proposed screening methods in this dissertation. These directions can improve the model

efficiency further by leveraging the sparse and structures in the data sets.
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