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ABSTRACT

Emerging technologies and digital devices provide us with increasingly large volume

of data with respect to both the sample size and the number of features. To explore the ben-

efits of massive data sets, scalable statistical models and machine learning algorithms are

more and more important in different research disciplines. For robust and accurate predic-

tion, prior knowledge regarding dependency structures within data needs to be formulated

appropriately in these models. On the other hand, scalability and computation complexity

of existing algorithms may not meet the needs to analyze massive high-dimensional data.

This dissertation presents several novel methods to scale up sparse learning models to an-

alyze massive data sets. We first present our novel safe active incremental feature (SAIF)

selection algorithm for LASSO (least absolute shrinkage and selection operator), with the

time complexity analysis to show the advantages over state of the art existing methods.

As SAIF is targeting general convex loss functions, it potentially can be extended to many

learning models and big-data applications, and we show how support vector machines

(SVM) can be scaled up based on the idea of SAIF. Secondly, we propose screening meth-

ods to generalized LASSO (GL), which specifically considers the dependency structure

among features. We also propose a scalable feature selection method for non-parametric,

non-linear models based on sparse structures and kernel methods. Theoretical analysis and

experimental results in this dissertation show that model complexity can be significantly

reduced with the sparsity and structure assumptions.
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1. INTRODUCTION

Massive data processing is becoming more and more important in modern research.

To explore the benefits of massive data sets, scalable models have been studied by differ-

ent research communities [1]. Prior knowledge regarding sparsity and structures within

data sets are formulated as L1 penalty and its variants to improve model robustness and

prediction accuracy [2]. Deep models have been recently developed to model complicate

data representations and structures and thus improve prediction accuracy [3].

On the other hand, the computation cost coming with these models on massive data

sets is usually frightening. To tackle the problem, one way is to construct parallel or

distributed systems and develop corresponding algorithms [1, 4]. This approach scales up

well especially when the targeted problem can be paralleled. Stochastic gradient descent

(SGD) [5, 6, 7] is another approach to combat problems with large data samples. SGD has

been widely employed in non-convex complex problems such as training deep learning

models. Besides distributed algorithms and SGD, recently people have developed methods

that gain scalability relying on intrinsic sparse data structures. Problem size can be reduced

by leveraging sparse structures recovered by the model. Feature screening methods such

as [8, 9, 10, 11] can remove inactive or unimportant features to reduce the problem size

and thus save CPU time in training. Sample screening methods such as [12, 13, 14, 15]

provide or develop practicable approaches scaling support vector machines (SVMs) up for

large data sets.

This dissertation proposes several methods for scaling up sparse models. In Chapter

2, 3 and 5, we develop approaches that can improve computation efficiency of sparse

models along the screening strategy. In Chapter 4, we present a scalable structured kernel

feature selection method that can be scaled up with dual average stochastic approximation
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algorithm. Chapter 2 and 3 deal with data sets with large feature size, and Chapter 4 and 5

are for data sets with large sample size.

There are three sections in this introduction chapter. Some basics on least absolute

shrinkage and selection operator (LASSO), support vector machine (SVM), kernel feature

selection, and screening methods are given in the first section. Research motivations are

given in the second section. The third section summarizes the main contributions of this

dissertation.

1.1 Mathematical Background

In this section we first survey the basic concepts such as LASSO, SVM, and kernel

feature selection for which we will provide efficient algorithms in following chapters. All

of these models are sparse models in which part of the optimal model parameters could be

zero. LASSO and kernel feature selection relies on L1 norm to obtain sparsity, while SVM

is a non-parametric model that can automatically assign zero coefficients to non-support

samples adaptively based on training data complexity. Literature reviews on feature and

sample screening are given in the last subsection.

1.1.1 LASSO

Least absolute shrinkage and selection operator (LASSO) and its variations have been

wildly used for feature selection, sparse structure recovering, compressed sensing and so

on. Let X ∈ Rn×p be a data matrix with n samples and p features, and y ∈ Rp×1 is the

response vector. The original LASSO problem [16] is as follows:

min
β

1

2
||y −Xβ||22 + λ||β||1. (1.1)

Here λ is the regularization parameter. The L1 penalty term imposes sparsity on β, and

this leads to some entries of the optimal solution β∗ being zeros. One variant of LASSO
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is Fused LASSO [17],

min
β

1

2
||y −Xβ||22 + λ

p−1∑
i=1

|βi − βi+1| . (1.2)

From the formulation, Fused LASSO tries to make adjacent model variables to be the

same, and this corresponds to the chain structures within many data sets such as time

series data. The Fused lasso can be rewritten as

min
β

1

2
||y −Xβ||22 + λ||Dβ||1 , (1.3)

where

D =



1 −1 0 ... 0 0

0 1 −1 ... 0 0

...

0 0 0 ... 1 −1


. (1.4)

Fused LASSO and the matrix form (1.3) can be extended to a broader range of tree and

graph structures, and all of these are named generalized LASSO that we will present a

novel scaling up method in the second chapter.

A bunch of algorithms have been brought up to solve the LASSO problem, such as

shooting algorithm [18], basis pursuit method [19], grafting [20], etc.. Feature screening

methods [10, 11, 21] have been developed to scale up LASSO, and we will give a detailed

review on these approaches.

1.1.2 Support Vector Machine

Suppose we have a dataset D = {(xi, yi)}n, and xi ∈ Rd, yi ∈ {−1, 1}. Let ψ be

feature mapping function, ψ : X → F . Let w be a vector in feature space F , the primal
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problem for SVM is:

P : min
w

1

2
||w||22 + C

n∑
i=1

[1− wT (yiψ(xi))]+ (1.5)

Here C ∈ R+ is the model penalty parameter, and a small C corresponds wide decision

margin. And the corresponding dual problem [14, 12, 22, 15] is

D̂ : sup
θ
−1

2
||ZT θ||22 + 1T θ (1.6)

s.t. θi ∈ [0, C], ∀i, (1.7)

where

Z = [y1ψ(x1), y2ψ(x2), ..., ylψ(xn)]T . (1.8)

Let w∗ and θ∗ denote the optimal solution to primal and dual problem. We have the primal

and dual relationship as

w∗ = ZT θ∗. (1.9)

If we use Q = ZZT , the dual problem is a standard quadratic optimization problem:

D : min
θ

1

2
θTQθ − 1T θ (1.10)

s.t. θi ∈ [0, C], ∀i. (1.11)

Many algorithms have been developed to address training SVM. Coordinate descent

methods have been developed for linear SVM [23, 24]. Sequential minimal optimization

(SMO) methods [25, 26] can solve large scale kernel SVM by searching the well chosen
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directions. Stochastic gradient decent methods have been extended to SVM on large data

sets in [27, 28]. Similar to LASSO, sample screening methods have been proposed to

solve SVM on large data sets.

1.1.3 Kernel Feature Selection

People have brought up non-linear feature selection models to capture intrinsic re-

sponse relationship between variables. Kernel feature selection is an import type of non-

linear feature selection method. For example, the formulation for the Hilbert-Schmidt

Feature Selection (HSFS) [29] is as follows:

min
W∈RP×P

−HSIC(WX,Y ) + λ
P∑
i=1

||wi||∞, (1.12)

where W = [w1, ..., wd] is a transformation matrix. Limited-memory BFGS (L-BFGS)

algorithm [30] can be used to solve the problem. One limitation of HSFS is that the

objective function is non-convex. Hence, with different starting points for optimization,

we may get different solutions. Other kernel based feature selection methods include

HSIC, FVM, HSIC-LASSO [31, 32, 33]. In [31], they propose to minimize the following

objective function:

min
α

1

2
||L̄−

p∑
k=1

αkK̄||+ λ||α||1 (1.13)

s.t. αk ≥ 0, ∀k = 1, ..., p . (1.14)
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The loss function can be interpreted as

1

2
||L̄−

p∑
k=1

K̄|| = 1

2
HSIC(Y, Y )−

∑
i

aiHSIC(Y,X•i) (1.15)

+
1

2

∑
ij

aiajHSIC(X•i, X•j). (1.16)

With the last term, their methods aim to eliminate the correlated redundant features. We

will propose a novel structured kernel feature selection model in chapter 4.

1.1.4 Screening Method for Sparse Models

In this subsection, we review the screening methods developed recently by researchers

for sparse models such as LASSO and SVM.

1.1.4.1 Sequential Feature Screening

Traditional methods such as shooting algorithm(coordinate minimization with soft-

thresholding) have been proposed to solve the LASSO problems. However, with large p

and n, this type of problem will become difficult to solve. Recently feature screening has

been proposed to scale up sparse learning. The first type of feature screening method is

sequential screening. Most sequential screening methods derive screening rules by lever-

aging the solutions to the LASSO model with a heavier regularization parameter.

There are two broad categories of sequential screening methods for LASSO problems:

heuristic and safe screening methods. The heuristic screening methods [8, 9] relies on

heuristics to remove features. For example, the Strong Rule screening [8] derives the

screening rule based on the assumption that the absolute values of the inner products be-

tween features and the residue are non-expansive with respect to the parameter values. It

is obvious that this assumption does not always hold. Such heurstic screening rules are not

safe, meaning that they cannot guarantee that the removed features will have correspond-

ing zero value in the optimal LASSO solution to the original full-scale problem.
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Safe LASSO screening methods do not take any unsafe assumption that the heuristic

screening methods use. Most of the safe screening methods [10, 11, 21] are inspired by

the seminal work by [10] and derive screening rules with the help of the LASSO solution

with a heavier regularization parameter. To derive the screening rule, we first need to have

the dual form of LASSO problem (1.1), which is given by

sup
θ

1

2
||y||22 −

λ2

2
||θ − y

λ
||22 (1.17)

s.t. |xTi θ| ≤ 1,∀i = 1, ..., p . (1.18)

(1.17) is a strongly convex quadratic problem with polygon constrains. For problem (1.1),

with KKT conditions [34, 11], we have

xTi θ
∗ ∈


sign([β∗]i) if [β∗]i 6= 0

[−1, 1] if [β∗]i = 0

. (1.19)

The primal and dual variable relationship is y −Xβ = λθj . From (1.19), we have

|xTi θ∗| < 1 =⇒ [β∗]i = 0 =⇒ xi inactive feature.

Given the optimal dual variables θ∗, we can easily check whether feature i is active or not

by |xTi θ∗| < 1. As it is equally expensive to compute θ∗ compared to solving the original

LASSO problem, screening methods aim to estimate a convex or ball region B(θ, r) =

{θ∗ | ||θ∗ − θ||2 ≤ r} as the range of θ∗. With θ∗ ∈ B(θ, r), let θ∗ = θ + ρ, we can see

||ρ||2 ≤ r. With xTi θ
∗ = xTi θ + xTi ρ, we have

xTi θ − ||xi||2r ≤ xTi θ
∗ ≤ xTi θ + ||xi||2r.
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Then

if


xTi θ − ||xi||2r > −1

xTi θ + ||xi||2r < 1

=⇒ xi inactive feature. (1.20)

Clearly, the tightness of the bound estimates and the computational cost of derivingB(θ, r)

determine the effectiveness of the corresponding screening methods.

Sequential screening methods rely on the LASSO solution with a heavier penalty to

infer the ball region of the dual variables θ, B(θ̂∗(λ′), r). Here λ′ > λ, and θ̂∗(λ′) can be

computed based on the primal-dual relation when the solution to the LASSO problem with

λ′ as the regularization penalty parameter. For example, DDP [11] takes the dual prob-

lem (1.17) as a projection problem and estimates the ball range of θ∗ based on the proper-

ties of projection operators such as non-expansiveness. Based on DPP, the screening rules

for Group LASSO [21], 1D-chain Fused LASSO [35], Sparse Group LASSO [36], and

Tree Group LASSO [37] have been developed. Typically, sequential screening requires to

solve a sequence of LASSO problems corresponding to a sequence of descending λ’s to

gradually tighten the range estimates of θ∗ to achieve the high screening power.

1.1.4.2 Dynamic Feature Screening

Instead of relying on the solutions with different λ’s, the recently proposed dynamic

screening [38, 39, 40] directly derives the range estimates of θ∗ by strong duality based

on the strong convex property of the dual objective function. The ball region for θ∗ is

estimated based on the duality gap as a function of the primal and dual objective function

values at iterative updates [38, 39]:

∀θ ∈ ΩF , β ∈ Rp×1, B
(
θ,

2

λ2
[P (β)−D(θ)]

)
=
{
θ∗ | ||θ∗−θ||22 ≤

2

λ2

[
P (β)−D(θ)

]}
.

(1.21)
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Here ΩF is the dual feasible space corresponding to feature set F . β is the current esti-

mation of primal variable, and θ is the projected feasible dual variable of β. The tightness

of the results depends on the duality gap [P (β) − D(θ)], determined by the quality of

iterative updates β and θ. Dynamic screening algorithms in [38, 39] iteratively update β

and θ for the original LASSO problem with the whole feature set X to check the duality

gap and apply screen rules to remove inactive features. Without the solution information

from a heavier parameter, dynamic screening has to iterate the operations in optimization,

such as sub-gradient computation, on the original whole feature set many times to gain a

small duality gap. Within these iterations, a large number of redundant solf-threshold or

sub-gradient operations can be performed on inactive features.

1.1.4.3 Sample Screening for SVM

Support Vector Machines gain their sparse structures on support vectors. Similar to

sequential screening for LASSO, sample screening method [12, 13] derive their screening

rules by leveraging the solutions to SVM with a another hyper parameter.This type of sam-

ple screening methods have been extended to sparse SVM in [41]. Recently, the screening

method developed in [15] derives sample screening rules by leveraging the duality gap,

which is similar to the dynamic screening method for sparse learning [38].

Most of SVM sample screening rules are derived based on the dual form (1.10). With

KKT condition regarding to (1.10), we have

[θ∗(C)i] = 0, if 〈ZT θ, yiψ(xi)〉 − 1 > 0 (1.22)

[θ∗(C)i] = C, if 〈ZT θ, yiψ(xi)〉 − 1 < 0 (1.23)

[θ∗(C)i] ∈ [0, C], if 〈ZT θ, yiψ(xi)〉 − 1 = 0 (1.24)
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Let us use {R,L, E} to represent the sets of data samples satisfy the three conditions.

R := {i ∈ N|〈ZT θ, yiψ(xi)〉 > 1} (1.25)

L := {i ∈ N|〈ZT θ, yiψ(xi)〉 < 1} (1.26)

E := {i ∈ N|〈ZT θ, yiψ(xi)〉 = 1} (1.27)

The data instance in E are on margin support vectors, data instances in L are inside margin

support vectors, and data instances in R are non-support vectors. With the solution from

C ′, [12, 13] estimate a region for either θ or w, and then remove a subset of the non-

support vector samples. Reduced sample size leads to less CPU time and memory space.

1.2 Motivations

LASSO and its variants are powerful tools for feature selection. On one hand the L1

norm can recover sparsity structures in data, while on the other hand its non-smoothness

results in difficulties in optimization. For sparse models, when the data set is with large

feature or sample size, the computation cost will become one of the main factors peo-

ple need to consider. As mentioned in previous section, screening methods provide us

approaches that can avoid redundant computation resulted from inactive features.

There are drawbacks coming with sequential and dynamic screening methods for LASSO.

Sequential screening relies on the model solution with a heavier penalty to infer the ball

region of the dual variables. The closer two λ values are, the tighter the range estimates of

θ∗ can be. Such a sequential procedure is suitable and efficient when solving a sequence

of such problems with different regularization parameters is necessary, for example, for

model hyper-parameter selection by cross validation. However, in the situations where

we only want to derive the solution with a small number of specific λ values, sequential

screening may take too much redundant computation on irrelative λ values. For dynamic
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screening, as mentioned in previous section, we may need many iterations to reach the

duality gap with screening power. The computation cost of the redundant operations on

inactive features or samples dilute the screening benefits.

Another shortcoming for existing screening methods is that they do not consider gen-

eral variable dependence structures, such as graph structure presented in generalized LASSO

(GL). With a generic structure in |D| in (1.3), the dual form will become much more com-

plicate, and it is not easy to derive sequential screening rules by following the strategies

utilized for LASSO and group LASSO. Thus we do need new screening strategies for GL

problems.

Furthermore, all of these screening methods are targeting at linear models with large

feature size. While it is equally challenging to solve non-linear feature selection models

such as kernel feature selection with large sample size. As described in previous section,

large sample size could result in infeasible kernel feature selection models. Thus there is

large scaling up space for kernel feature selection models.

In this dissertation, we try to bring up several methods to tackle these challenging

problems. We list the main contributions in next section.

1.3 Main Contributions

We propose several techniques that can further boost structured sparse models. We

summary our contributions in each chapter as follows.

Chapter 2 presents the important contributions of this dissertation, scalable safe active

incremental feature selection (SAIF). SAIF can overcome the shortcomings of sequential

and dynamic screening, and scales up sparse models such as LASSO by maximumly re-

ducing the redundant computation resulted from inactive features. Starting from an empty

active feature set, SAIF dynamically recruits the most correlated features and removes

inactive features with the estimation of the dual variables. Experimental results show sig-
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nificant improvements over existing screening methods. Theoretical analysis also proves

the advantages of SAIF.

In Chapter 3, we focus on screening methods for generalized LASSO (GL). By lever-

aging the dual form of GL, we show that GL screening rules rely on efficient deriving the

bounds of the solution space of an inequality system. We present an efficient approxima-

tion approach to tackle this problem. We also show how to extend SAIF to tree Fused

LASSO, a special case of GL. Experiments on simulation and real-world data sets demon-

strate the advantages of our methods. The proposed methods has broad applications and

impacts as they applicable to general loss functions and variable dependency structures.

In Chapter 4, we discuss a novel scalable method for kernel feature selection with

structures. The proposed model can incorporate general graph structures, such as 2D

and 3D image grid, into kernel feature selection. The model formulation comes with the

advantages that it can easily be scaled up with the dual average stochastic gradient descent

method [42]. Results from 3D image analysis show that the proposed model not only

obtains improved accuracy but also can save computation time tremendously.

Chapter 5 extends the idea of SAIF to SVM and leads to scalable safe active incremen-

tal support vector selection (SAIV) algorithm. Support vectors give SVM models sparsity,

and this also provide them the scaling up opportunities by leveraging the idea of SAIF.

Experiments and theoretical results are presented to demonstrate that SAIV can reduce the

computation cost of training SVM models.

The proposed models and methods, in which sparsity and structures can be incorpo-

rated as prior knowledge, can boost prediction performance and improve model efficiency

as well.
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2. SAFE ACTIVE FEATURE SELECTION FOR SPARSE LEARNING

In this chapter, we describe a novel method to scale up LASSO solutions, safe active

incremental feature selection (SAIF). SAIF is different from the existing sequential screen-

ing and dynamic screening methods for LASSO, both of which require solving the full-

scale LASSO problem in the original feature space. SAIF does not require a solution from

a heavier penalty parameter as in sequential screening or update the full model for each

iteration as in dynamic screening. SAIF starts with a small number of features and only

updates the significantly reduced model with the current most active features. The iterative

procedure of SAIF incrementally recruits active features and updates the model to reach

the final LASSO solution with the convergence guarantee to achieve the optimal solution

to the original full LASSO problem. SAIF has a promising potential to solve the scalabil-

ity issue for LASSO and its extensions when facing extremely high dimensional data sets.

Experiments with both synthetic and real-world data sets show that SAIF can be up to 50

times faster than dynamic screening, and hundreds of times faster than LASSO solutions

without screening.

2.1 Introduction

LASSO has been a powerful tool for sparse learning to generalize predictions based

on analyzing data sets with p � n, where p is the number of covariates or features and n

the number of samples. LASSO screening methods provide efficient approaches to scale

up sparse learning without solving the full LASSO problems, based on either sequential

or dynamic screening methods [10, 11, 38]. However, the existing sequential screening

requires the LASSO solution with a heavier regularization penalty parameter so that the

range of dual variables can be estimated tightly to help effectively screening redundant

features. Different from such static sequential screening methods, dynamic screening does
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not require the solution with the heavier penalty parameter but relies on duality gaps for

feature screening. To achieve high screening power, a significant number of optimization

iterations have to be operated on the full-scale problems with the original high dimensional

feature set to compute the effective duality gap. Both sequential and dynamic screening

requires to update the original full-scale LASSO model.

Homotopy methods have been applied to LASSO to compute the solution path when

λ varies [43, 44, 45, 46, 47, 48]. This type of methods rely on a sequence of decreasing

λ values and “warm start" (starting the active set with the solution from the previous λ)

to achieve computational efficiency. Usually these methods have multiple iteration loops

to incorporate the strong rule screening, active set, and path-wise coordinate descent. The

inner loop performs coordinate descent and active set management. The outer loop goes

through a sequence of decreasing λ values and initializes the active set at each λ with the

strong rule and warm start. Since they do not utilize safe convergence stopping criteria for

the active set, they may miss some of the optimal active features. Furthermore, this type

of methods do not employ any screening rule for the inner-loop sub-problem, and it may

limit the scalability.

Besides screening and homotopy methods, working set methods [49] maintain a work-

ing set according to some violation rules and solve a sub-problem regarding the working

set at each step. The working set method [49] estimates an extreme feasible point based

on the current solution, and then the constraints that are closest to the feasible point con-

struct the working set for the next step. This kind of methods also start from solving the

original full-scale problem as the existing LASSO screening methods. However, when

p � n, the basic assumption of sparse learning is that most of the given features are

irrelevant and should be inactive for the optimal solutions. It is clear that existing al-

gorithms may not be efficient due to redundant time-consuming operations on inactive

features. In this chapter, we propose a novel LASSO feature selection method to fur-
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Figure 2.1: SAIF Screening. At stands for the Active set, while Rt stands for the Remain-
ing set at step t.

ther scale up LASSO solutions by overcoming the issues in the existing methods. Rather

than taking the whole feature set as the initial input, our method SAIF starts from a small

set of features, which is taken as the active set. The features that are not in the active

set are put in the remaining set (Figure 2.1). Time-consuming iterations such as coordi-

nate minimization with soft-thresholding are only performed on the features in the active

set. Features are actively recruited or removed from the active set according to the es-

timated ranges of optimal dual variables. Based on duality properties, efficient feature

operation rules and safe stopping criteria have been developed to keep most inactive and

redundant features out of the active set. With a small active set, CPU time and mem-

ory operations can be tremendously reduced. Complexity analysis is provided for both

dynamic screening and SAIF. Theoretical results show that the running time of SAIF is

almost only proportional to the active feature size, the number of features with non-zero

model coefficients in the optimal LASSO, rather than the input feature size. Experiments

on simulated and real-world datasets verified the advantages of the proposed method.
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Data: Data matrix X , label Y , penalty λ, stopping duality gap ε

Result: Coefficient Vector β

Choose dc log(md+mx
λ

) log(p)e features from F in the descending order of

|XT f ′(0)|;

δ = λ
λmax

, IsAdd = True;

while True do

Update βt with K iterations of soft-thresholding operations on At;

Compute a ball region B(θt, rt) based on (2.13) or (2.14);

rt = δrt;

if IsAdd = False & Duality Gap < ε then
Stop;

end

DEL operation;

if IsAdd = False then
Continue;

else

if maxi∈Rt |xTi θt|+ ||xi||2rt < 1 then

if δ < 1 then
δ = min(10δ, 1)

else
IsAdd = False; Continue;

end

end

ADD operation;

end

end

Put βt in to β, and inflate the other entries with 0.
Algorithm 1: SAIF Algorithm
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2.2 Safe Active Incremental Feature Selection for LASSO

We derive an innovative incremental feature screening algorithm, SAIF, in which we

can iteratively solve much smaller sub-problems, i.e., iteratively update the duality gap

while adding or removing features by leveraging the active ball region estimates for the

optimal dual variables of these sub-problems. The schematic illustration of SAIF is given

in Figure 2.1. Let At and Rt denote the active feature index set and remaining feature

index set at iteration step t, respectively. Instead of solving either the original full-scale

LASSO primal problem or the corresponding dual problem, SAIF screening is different

from the existing sequential and dynamic screening as it only needs to solve significantly

reduced sub-problems and updates the screening rules only based on the duality gap with-

out solving these sub-problems exactly. More importantly, SAIF has the safe guarantee

that only irrelevant or redundant features in the original LASSO problem will be removed.

Algorithm 1 summarizes our SAIF screening procedure, which starts withA0 and dynam-

ically moves active features betweenRt and At.

2.2.1 ADD and DEL Operations

Two operations in SAIF are ADD and DEL. Starting from an initial active set A0,

whose features can be selected by some simple heuristics, for example, based on their

correlation with the output, SAIF iteratively adds features (ADD) into or removes features

(DEL) from the active set. At the tth iteration, we derive both ADD and DEL operations

to dynamically update At based on the primal sub-problem with only the current active
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features:

Pt : min
β∈R|At|×1

n∑
i=1

f(
∑
j:j∈At

xijβj, yi) + λ||β||1. (2.1)

Dt : sup
θ
−

n∑
j=1

f ∗(−λθj, yj) (2.2)

s.t. |xTi θ| ≤ 1, ∀i ∈ At,

Let ΩAt be the dual feasible region and D(θt) denote the dual objective function value of

the sub-problem at the dual variable θt considering only the active features in At with θ∗t

being the corresponding optimal dual solution. We use βt ∈ R|At|×1 to represent the β

value after t out layer iterations in SAIF. β∗t denotes the optimal active feature solution

regarding the problem Pt. Pt(β̃) is the objective value of Pt with input β̃, and β̃ can have

a different set of features compared withAt; we inflate the missing entries in β̃ with zeros

and ignore the entries or features not in At in the calculation of Pt(β̃). Let SA represent

the set of the optimal primal solutions for any feature set A, θ∗ the optimal dual solution

with the full feature set F , and Ā for the optimal active feature set that {i : |xTi θ∗| = 1}.

Let B(θt, rt) = {θ∗t
∣∣ ||θ∗t − θt||2 ≤ rt} be an estimated ball region for θ∗t at step t.

SAIF carries out ADD and DEL operations as follows:

DEL: For i ∈ At, if |xTi θt|+ ||xi||2rt < 1, move i from At toRt.

ADD: For j ∈ Rt, if ∀k ∈ Rt, k 6= j,
∣∣|xTj θt| − ||xj||2rt∣∣ > |xTk θt|+ ||xk||2rt, move j to

At.

We have the following theorem regarding ADD and DEL operations:

Theorem 1 Assume B(θt, rt) = {θ∗t
∣∣ ||θ∗t − θt||2 ≤ rt}, an estimated ball region for θ∗t at

step t.

a) If we add a new feature into At, then At ⊆ At+1, ΩAt ⊇ ΩAt+1 , and D(θ∗t+1) ≤

D(θ∗t ).
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b) If ∃i ∈ Rt and |xTi θ∗t | > 1, we add feature i to At at step t, then D(θ∗t ) > D(θ∗t+1).

c) At step t, if maxi∈Rt |xTi θ∗t | < 1, then θ∗t = θ∗, β∗t ∈ SF .

d) If xi satisfies ∀j ∈ Rt, j 6= i,
∣∣|xTi θt| − ||xi||2rt∣∣ ≥ |xTj θt|+ ||xj||2rt, then |xTi θ∗t | ≥

|xTj θ∗t |,∀j ∈ Rt, j 6= i.

Proof: a) From the dual form (2.2), if we add i to At, there will be one more constraint

for the dual problem at step t + 1, thus ΩAt+1 ⊆ ΩAt . As we have smaller feasible space

at t+ 1, D(θ∗t+1) ≤ D(θ∗t ).

b) As ΩAt+1 ⊂ ΩAt , we have D(θ∗t+1) ≤ D(θ∗t ). With |xTi θ∗t | > 1 and |xTi θ∗t+1| ≤ 1,

θ∗t+1 6= θ∗t . As ΩAt is convex and closed, and f∗ is convex and smooth, the optimal

dual solution for the active set At is unique, which means D(θ∗t ) 6= D(θ∗t+1). Hence,

D(θ∗t ) > D(θ∗t+1).

c) According to a), with At ⊆ F , we have ΩF ⊆ ΩAt , and D(θ∗) ≤ D(θ∗t ). As ∀i ∈

Rt = F−At, |xTi θ∗t | < 1, θ∗t ∈ ΩF . With θ∗ = supθ∈ΩF
D(θ), we getD(θ∗) ≥ D(θ∗t ). As

we already know D(θ∗) ≤ D(θ∗t ), we then have D(θ∗) = D(θ∗t ). Since the dual problem

is convex and smooth, and the feasible set is closed and convex, θ∗t = θ∗. Hence, β∗t ∈ SF
as the primal solution may not be unique.

d) For ADD operations, we choose a feature in Rt that is mostly correlated to the

residual dual variables, that is maxi∈Rt |xTi θ∗t |. With feature i ∈ Rt and θ∗t ∈ B(θt, rt), we

have
∣∣|xTi θt| − ||xi||2rt∣∣ ≤ |xTi θ∗t | ≤ |xTi θt| + ||xi||2rt by the Pythagorean theorem. Thus

∀j ∈ Rt, j 6= i,
∣∣|xTi θ|−||xi||2rt∣∣ ≥ |xTj θ|+||xj||2rt, and |xTi θ∗t | ≥ |xTj θ∗t |,∀j ∈ Rt, j 6= i.

Remark 1 Theorem 1-c) provides us the stopping criterion for ADD operations in

our SAIF algorithm. We can apply ADD and DEL operations in iterations to minimize

maxi∈Rt |xTi θ∗t | until maxi∈Rt |xTi θ∗t | < 1. Hence, with B(θt, rt) = {θ∗t
∣∣ ||θ∗t − θt||2 ≤ rt},

if we have maxi∈Rt |xTi θt|+ ||xi||2rt < 1, we can stop ADD operations.

Remark 2 Moreover, if ∀j ∈ Rt, |xTj θ∗t | < 1, from Theorem 1-c), we can see that

θ∗t = θ∗, thus Ā ⊆ At. So if Ā * At, ∃j ∈ Rt, |xTj θ∗t | ≥ 1. This concludes that our
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stopping criterion for ADD operations ensures safe feature screening.

The DEL operation is similar to the screening steps in dynamic screening. As we

can see, at step t with the DEL operation, D(θ∗t ) = D(θ∗t−1). Theorem 1-a) implies that

D(θ∗t ) ≤ D(θ∗t−1). Thus the optimal dual objective value always goes down. Theorem 1-c)

and Remark 1 show that after the stopping of ADD operation, At already have recruited

all of the active features for the original problem. After this the algorithm stops once it

reaches the pre-specified accuracy value of the duality gap. Such monotonicity leads to

the convergence of SAIF detailed in Section 3.

2.2.2 Implementation

We first discuss how we derive a tighter ball region B(θt, rt) for the rage estimate of

θ∗t , taking advantages of existing screening methods.

Dual variable range estimation: Accurately estimating the range of θ∗t , B(θt, rt), for

the sub-problem is critical for efficient SAIF screening with ADD and DEL operations at

each iteration. With f as the vector form of loss function regarding all of the samples, we

provide the following theorem to estimate the ball region for θ∗t with the similar idea from

sequential screening.

Theorem 2 For the LASSO problem with the loss function f , if f∗ is 1
α

-strongly convex,

and θ∗0 and θ∗ are the optimal solutions to the dual problem at λ0 and λ with λ < λ0, then

||θ∗ − λ0

λ
θ∗0||22 ≤

2α

λ2

[
f∗(−λ

2

λ0

θ∗0)− f∗(−λ0θ
∗
0) + (λ− λ0)〈f ′∗(−λ0θ

∗
0), θ∗0〉

]
. (2.3)

If we have θ ∈ Ω, the bound can be further improved by

||θ∗ − λ0

λ
θ∗0||22 ≤

2α

λ2

[
f∗(−λθ̄(%̄))− f∗(−λ0θ

∗
0) + (λ− λ0)〈f ′∗(−λ0θ

∗
0), θ∗0〉

]
, (2.4)

where θ̄(%̄) = (1− %̄)θ + %̄ λ
λ0
θ∗0, and %̄ = argmin%:0≤%≤1f

∗(−λθ̄(%)).
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Proof: As f ∗ is 1
α

-strongly convex, we have

||λθ∗ − λ0θ
∗
0||22 ≤ 2α

[
f∗(−λθ∗)− f∗(−λ0θ

∗
0)− 〈f ′∗(−λ0θ

∗
0),−λθ∗ − (−λ0θ

∗
0)〉
]
,

which is

||θ∗ − λ0

λ
θ∗0||22 ≤

2α

λ2

[
f∗(−λθ∗)− f∗(−λ0θ

∗
0) + 〈f ′∗(−λ0θ

∗
0), λθ∗ − λ0θ

∗
0〉
]
. (2.5)

As θ∗0 is the optimal solution at λ0 we can see θ∗0 ∈ Ω, and λ
λ0
θ∗0 ∈ Ω, thus

f∗(−λθ∗) ≤ f∗(−λ λ
λ0

θ∗0) (2.6)

Also as θ∗0 is the optimal dual solution at λ0, thus we have

〈−λ0f
′∗(−λ0θ

∗
0), θ∗ − θ∗0〉 ≥ 0 (2.7)

=⇒ 〈−f ′∗(−λ0θ
∗
0), λθ∗ − λθ∗0〉 ≥ 0 (2.8)

=⇒ 〈f ′∗(−λ0θ
∗
0), λθ∗〉 ≤ 〈f ′∗(−λ0θ

∗
0), λθ∗0〉 (2.9)

With (2.5)- (2.9), we have

||θ∗ − λ0

λ
θ∗0||22 ≤

2α

λ2

[
f∗(−λ

2

λ0

θ∗0)− f∗(−λ0θ
∗
0) + (λ− λ0)〈f ′∗(−λ0θ

∗
0), θ∗0〉

]
. (2.10)

As θ ∈ Ω, we have θ̄ = (1− %)θ + % λ
λ0
θ∗0 ∈ Ω, if 0 ≤ % ≤ 1, which implies

f∗(−λθ∗) ≤ min
%:0≤%≤1

f∗(−λθ̄(%)) ≤ f∗(−λ
2

λ0

θ∗0). (2.11)
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So we have improved the bound as

||θ∗ − λ0

λ
θ∗0||22 ≤

2α

λ2

[
f∗(−λθ̄(%̄))− f∗(−λ0θ

∗
0) + (λ− λ0)〈f ′∗(−λ0θ

∗
0), θ∗0〉

]
, (2.12)

where θ̄(%̄) = (1− %̄)θ + %̄ λ
λ0
θ∗0, and %̄ = argmin%:0≤%≤1f

∗(−λθ̄(%)).

At step twith the active setAt, λmax(t) is the minimum λ that leads to β∗t = 0. It is easy

to compute λmax(t) = maxi∈At |xTi f ′(0)|, and θ∗0(t) = − f ′(0)
λ0(t)

. If we take λ0(t) = λmax(t),

we can use Theorem 2 to estimate θ∗t . For linear regression, the estimation can be further

improved based on the projection properties as in DPP [11].

Theorem 2 provides a tight estimation when λ0 is close to λ. When λ is far away from

λ0, we can adopt the tighter dual variable range estimation with the following ball region

by dynamic screening [38, 39]. At step t, we have

∀θt ∈ ΩAt , βt ∈ Rpt×1, ||θ∗t − θt||22 ≤
2

λ2

[
Pt(βt)−D(θt)

]
. (2.13)

For βt, with the primal-dual relation, we can easily project it to the dual feasible region

ΩAt to get a feasible dual variable θt.

With two ball regions from Theorem 2 and the duality gap, we can derive a tighter

constrained region by computing the center and radius of a ball regionB(θt, rt) that covers

the intersection of two ball regions, B1(θ1, r1) and B2(θ2, r2):

rt =
2A

d
, θt = (1− d1

d
)θ1 +

d1

d
θ2, d1 =

√
r2

1 − r2
t (2.14)

d = ||θ1 − θ2||2, A =
√
s(s− r1)(s− r2)(s− d), s =

r1 + r2 + d

2
,

where B1 can be derived from Theorem 2, and B2 from (2.13). The resulting B(θt, rt)

gives us a tighter region at step t when rt < min{r1, r2}. When we do not have the
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solutions with other λ values, we simply set the bounding region for θ∗t based on (2.13).

Improve SAIF with a factor of the estimation: The estimation of dual variables may be

inaccurate to have enough screening power during the optimization iterations, especially

at the beginning of the algorithm. We add a factor to the radius of the ball region to reduce

redundant computation resulted from inaccurately recruited features. At the beginning of

Algorithm 1, δ is a value smaller than 1. δ will be increased to 1 during the SAIF iterations

to ensure the safe guarantee of SAIF algorithm.

ADD operation implementation details: The number of added features in each ADD

operation can vary to reduce redundant iterations. Generally, the relationship between

the screening power and this number depends on the regularization parameter λ and how

well feature vectors xi, i ∈ F , correlate with the outcome label y. In this chapter, we

empirically set the number to be h = dc log(md+mx
λ

) log(p)e. Here mx and md are the

maximum and median of |XT f ′(0)| (|XTy| with linear regression). Many iterations may

need to be operated to reach the dual space point that can distinguish h features, and this

may reduce the efficiency of the algorithm. We can decrease the redundancy by relaxing

the strict condition in Theorem 1-d). Let Sj represent the set of features that violate the

condition in Theorem 1-d) regarding feature j, i.e., Sj = {k
∣∣k ∈ Rt, k 6= j,

∣∣|xTj θt| −
||xj||2rt

∣∣ ≤ |xTk θt| + ||xk||2rt}. For a feature j ∈ Rt, if |Sj| < h̃, we move it from Rt to

At. Here h̃ = dζhe, and ζ > 0. Algorithm 6 summarizes the implementation of the ADD
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operation.
Data: θt, rt, Rt, At, X

Result: Rt+1, At+1

Set h = dc log(md+mx
λ

) log(p)e;

h̃ = dζhe ;

for i = 1 to h do

j ← maxl∈Rt |xTl θt| ;

Set Sj = {k
∣∣k ∈ Rt, k 6= j, |xTk θ|+ ||xk||2r ≥

∣∣|xTj θ| − ||xj||2r∣∣} ;

if |Sj| < h̃ then

At ← At ∪ {j} ;

Rt ← Rt − {j} ;

else

Stop;

end

end

At+1 ← At ;

Rt+1 ← Rt ;
Algorithm 2: Algorithm for ADD operation

2.3 Convergence Analysis

In this section, we first discuss the convergence properties of SAIF and then provide

the detailed complexity analysis of our SAIF algorithm.

2.3.1 Algorithm Properties

Similar to dynamic screening, SAIF employs coordinate minimization (CM) in the

primal variable space. Besides feature screening (DEL), SAIF has feature recruiting op-

eration (ADD). In this subsection, we first discuss the convergence of the base algorithm,

24



then we show that the number DEL and ADD operations are finite in SAIF.

2.3.1.1 Coordinate Minimization (CM)

The base algorithm we employ in SAIF is shooting algorithm [18], which is a cyclic

block coordinate minimization method. Coordinate descent (CD) and coordinate mini-

mization (CM) methods have been studied by many researchers [50, 51, 52]. Recently [53]

gives faster convergence estimations for coordinate descent and CM methods on convex

problems. Based on the analysis from [53], we can prove the following lemma regarding

CM for LASSO. We use k to indicate the iteration or base operation number of CM, and t

for the iteration number in the outer loop of SAIF or dynamic screening.

Lemma 1 (Adaptation of [53]) For the LASSO problem with a γ-convex loss function,

with cyclic coordinate minimization at most logψ
ε

P (β0)−P (β∗)
base operations are per-

formed to arrive at βa that P (βa) − P (β∗) ≤ ε, where ψ = γ2

pL̄2+γ2 , L̄ =
√
σmaxL,

σmax is largest eigenvalue of XTX , L is the Lipschitz constant of f ′, and β0 is the starting

point.

Proof: With L as the Lipschitz constant of f ′, then L̄ =
√
σmaxL is the Lipschitz constant

of XT f ′. Following the proof of Theorem 8 by [53], we have

P (βk+1)− P (β∗) ≤ pL̄2

2γ
||βk+1 − βk||22 . (2.15)

Then

P (βk)− P (β∗) = P (βk)− P (βk+1) + P (βk+1)− P (β∗) (2.16)

≥ γ

2
||βk − βk+1||22 + P (βk+1)− P (β∗) (2.17)

≥ (1 +
γ2

pL̄2
)
(
P (βk+1)− P (β∗)

)
(2.18)
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Thus

P (βk+1)− P (β∗)

P (βk)− P (β∗)
≤ pL̄2

pL̄2 + γ2
= ψ . (2.19)

Recursively apply (2.19), we have

P (βa)− P (β∗)

P (β0)− P (β∗)
≤ ψa =

ε

P (β0)− P (β∗)
(2.20)

(P (β0)− P (β∗))ψa = ε (2.21)

And this leads to a = logψ
ε

P (β0)−P (β∗)
. For any iteration number k ≥ a, we always

have the primal gap P (βk)− P (β∗) ≤ ε.

The base operation (soft-thresholding) in CM is operated in the primal variable space.

Feature screening or feature selection operations such as ADD and DEL operations are

relying on the dual variable estimation. We provide the following lemma to show that

the accuracy of dual variables are almost linearly bounded by the the accuracy of primal

variables when the iteration number is large.

Lemma 2 For the primal problem and dual problem, let θ̂k = − f ′(Xβk)
λ

, τk = 1

maxi |xTi θ̂k|
,

and θk = τkθ̂k, with a large k in coordinate minimization, we have ||θk − θ∗||22 ≤
1+v
λ2 ||f ′(Xβk) − f ′(Xβ∗)||22 ≤ L(1+v)

λ2 ||βk − β∗||2Σ, where Σ = XTX , and v is a small

positive value.

Proof: Let τk = 1

maxi |xTi θ̂k|
= 1

|xTmθ̂k|
, and θ̂k = θ∗ + ρk. We have τk = 1

|xTmθ∗+xTmρk|
=

1
|xTmθ∗|±|xTmρk|

. Here ± means plus or minus. With

lim
k→∞
||ρk||2 = lim

k→∞
||θ̂k − θ∗||2 = lim

k→∞

1

λ
||f ′(Xβk)− f ′(Xβ∗)||2 (2.22)

≤ lim
k→∞

L

λ
||βk − β∗||Σ → 0, (2.23)
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and ∀i ∈ Ā, |xTi θ∗| = 1, and ∀i ∈ F − Ā, |xTi θ∗| < 1, we always can reach a k that

|xTmρk| < 1. After setting ϕk = ±|xTmρk|, we have τk = 1
1+ϕk

.

||θk − θ∗||22 (2.24)

=||τkf
′(Xβk)

λ
− f ′(Xβ∗)

λ
||22 (2.25)

=
1

λ2
||τkf ′(Xβk)− f ′(Xβ∗)||22 (2.26)

=
1

λ2
||f
′(Xβk)

1 + ϕk
− f ′(Xβ∗)||22 (2.27)

=
1

λ2
||f ′(Xβk)(1− Φ)− f ′(Xβ∗)||22 (2.28)

=
1

λ2
〈(f ′(Xβk)− f ′(Xβ∗))− Φf ′(Xβk), (f

′(Xβk)− f ′(Xβ∗))− Φf ′(Xβk)〉 (2.29)

=
1

λ2
||f ′(Xβk)− f ′(Xβ∗)||22 +

1

λ2
||Φf ′(Xβk)||22 −

2

λ2
〈(f ′(Xβk)− f ′(Xβ∗)),Φf ′(Xβk)〉

(2.30)

=
1

λ2
||f ′(Xβk)− f ′(Xβ∗)||22 +

Φ2

λ2
||f ′(Xβk)||22 −

2Φ

λ2
〈(f ′(Xβk)− f ′(Xβ∗)), f ′(Xβk)〉

(2.31)

Here Φ =
∑∞

i=1(−1)i+1ϕik. With Φ =
∑∞

i=1(−1)i+1ϕik = (−ϕk)
∑∞

i=0(−ϕk)i =

(−ϕk) 1
1+ϕk

= −τkϕk, we get

||θk − θ∗||22 ≤
1

λ2
||f ′(Xβk)− f ′(Xβ∗)||22 +

τ 2
kϕ

2
k

λ2
||f ′(Xβk)||22+ (2.32)

2τkϕk
λ2
〈(f ′(Xβk)− f ′(Xβ∗)), f ′(Xβk)〉 (2.33)

=
1

λ2
||f ′(Xβk)− f ′(Xβ∗)||22 + ϕkΨ (2.34)

≤ L
λ2
||X(βk − β∗)||2 + ϕkΨ =

L

λ2
||βk − β∗||2Σ + ϕkΨ (2.35)
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where

Ψ =
τ 2
kϕk
λ2
||f ′(Xβk)||22 +

2τk
λ2
〈(f ′(Xβk)− f ′(Xβ∗)), f ′(Xβk)〉 (2.36)

If Xβk = Xβ∗, we have θ̃ = θ∗, θ = θ∗, f ′(Xβk) = f ′(Xβ∗), and Ψ =
τ2
kϕk
λ2

||f ′(Xβk)||22. Thus ||θk − θ∗||22 ≤ 1+v
λ2 ||f ′(Xβk)− f ′(Xβ∗)||22 ≤ L(1+v)

λ2 ||βk − β∗||2Σ.

If Xβk 6= Xβ∗, for any v > 0, we alway can reach a k, to make ϕkΨ ≤ v
λ2 ||f ′(Xβk)−

f ′(Xβ∗)||22 ≤ Lv
λ2 ||βk − β∗||2Σ. In summary, we have

||θk − θ∗||22 ≤
1 + v

λ2
||f ′(Xβk)− f ′(Xβ∗)||22 ≤

L(1 + v)

λ2
||βk − β∗||2Σ. (2.37)

With Lemma 2, we can see that the estimation of dual variables relies on the accuracy

of primal variables. In SAIF, the starting point for each βt is already with relatively high

accuracy as empirically there are only one or a few features different between steps t and

t− 1.

2.3.1.2 Finite number of ADD and DEL Operations

With CM as the inner base algorithm, we prove that the outer loop can stop in a finite

number of steps. The ADD operation recruits more features into the active set, and thus

results in decreasing optimal objective value as shown in Theorem 1. Since the DEL

operation does not change the optimal objective value, the corresponding optimal dual

objective function value of the sub-problem decreases monotonically and finally converges

to the value of the original full-scale problem. Experimentally, for a given λ, the running

time of SAIF is proportional to the size of the optimal active set Ā. The following theorem

provides the guarantee for the convergence of SAIF.

Theorem 3 Let β∗t and θ∗t be the optimal primal and dual solutions for the sub-problem

with the active feature set At.
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a) If Ā * At, and t < t′, then At 6= At′ .

b) limt→∞ θ
∗
t = θ∗; limt→∞ β

∗
t ∈ S∗F .

c) ∃T, ∀t ≥ T, θ∗t = θ∗, and β∗t ∈ S∗F .

Proof: a) If Ā * At, from Remark 2, we can see that, ∃j ∈ Rt, |xTj θ∗t | ≥ 1. If

maxj∈Rt , |xTj θ∗t |

> 1, we can apply the ADD operation at step t to add the most active feature to At+1. We

will have D(θ∗t ) > D(θ∗t+1). As t < t′, D(θ∗t ) > D(θ∗t+1) ≥ D(θ∗t′), and At 6= At′ . If

maxj∈Rt , |xTj θ∗t | = 1, the optimal dual variable is already on the hyperplanes |xTj θ∗t | = 1.

From the algorithm, we can see that, with an ADD operation to move all xj : |xTj θ∗t | = 1

to At, the optimal dual solution will remain the same, i.e., θ∗t+1 = θ∗t . The ADD operation

will stop at step t, as maxj∈Rt+1 , |xTj θ∗t+1| < 1. DEL does not remove xj : |xTj θ∗t | = 1

from the active set At′ ,∀t′ > t, as the optimal dual variable will remain the same, and the

algorithm will stop. Thus At 6= At′ . In summary, we have At 6= At′ ,∀t′ > t.

b) At step t, if the operation is DEL, we have P (β∗t ) = P (β∗t+1), andD(θ∗t ) = D(θ∗t+1),

as removing inactive features does not change primal and dual problems. If the operation

is ADD, and maxi∈Rt |xTi θ∗t | > 1, we have P (β∗t ) > P (β∗t+1), and D(θ∗t ) > D(θ∗t+1).

Thus ∃m > 0, D(θ∗t ) > D(θ∗t+m) for each step t, which means D(θ∗t ) will converge to

a fixed value as t → ∞. From a), At changes monotonously with finite combinations.

Thus SAIF will stop within finite steps. Let limt→∞D(θ∗t ) = d̄, and let Γ = {θ|D(θ) =

d̄, θ ∈ limt→∞ΩAt}. As ΩAt ⊇ ΩF , we have d̄ ≥ D(θ∗). If θ∗ /∈ Γ, as the dual objective

function is smooth and convex, and ΩF ⊆ limt→∞ΩAt , ∀θ̂∗ ∈ Γ, D(θ̂∗) = d̄ > D(θ∗).

As θ∗ = argmaxθ∈ΩFD(θ), and θ∗ is unique, we have ∀θ̂∗ ∈ Γ, θ̂∗ /∈ ΩF . This implies

∀θ̂∗ ∈ Γ,∃j, |xTj θ̂∗| > 1, which contradicts the algorithm stopping criterion. Therefore we

have θ∗ ∈ Γ. As the optimal dual value is unique, limt→∞ θ
∗
t = θ∗ and limt→∞ β

∗
t ∈ S∗F .

c) As ΩAt = ∩i∈At{θ : |xTi θ| ≤ 1}, the active sets at different iterations are different

before the algorithm stops from a). From b), we have limt→∞ θ
∗
t = θ∗. There are at most
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(∑k=nA−1
k=0

(
nA
k

))(∑k=nR
k=0

(
nR
k

))
different potential active sets (nA + nR = p, nA = |Ā|)

through the algorithm iterations of upating the current active features. In practice, the

number of legitimate active set combinations is much smaller. Thus, ∃T, ∀t ≥ T, θ∗t = θ∗,

and β∗t ∈ S∗F .

2.3.2 Complexity Analysis

For complexity analysis, we split the SAIF algorithm into three phases: feature re-

cruiting, inactive feature deletion, and accuracy pursuing. The inactive feature deletion

phase is the same as the feature screening phase in dynamic screening. We first present

the complexity analysis for dynamic screening, which is our additional contribution in this

manuscript, and then based on that and previous results, we give the detailed complexity

analysis for SAIF.

2.3.2.1 Complexity Analysis for Dynamic Screening

Dynamic screening [38, 39] starts its active set with the whole feature set. Let ri be

the radius of the ball region for the screening of feature i, according to DEL operation,

|xTi θt|+ ||xi||2ri < 1 =⇒ ri <
1− |xTi θ̂t|

maxj |xTj θ̂t|

||xi||2
=

1− |xTi θ̂t|
|xTmθ̂t|

||xi||2
. (2.38)

Here xm is the feature with the value of maxj |xTj θ̂t|, θ̂t = − f ′(Xβt)
λ

, θt = τ θ̂t, and τ =

1

maxj |xTj θ̂t|
. If feature i does not belong to the final active set Ā, then |xiθ∗| < 1. With large

t, xm belongs to Ā according to Theorem 1, and |xmθ∗| = 1. We have

ri <
1− |xTi θ̂t|

|xTmθ̂t|

||xi||2
≈ 1− |xTi θ∗|

||xi||2
. (2.39)
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Thus the screening radius for feature i is determined by how close θ̂t and θ∗ are, linearly

determined by the primal variable accuracy according to Lemma 2. With ε as the pre-

specified objective function value accuracy, the following theorem gives the time com-

plexity of the dynamic screening procedure.

Theorem 4 Assume that the time complexity for one operation of coordinate minimization

isO(u), then the time complexity for dynamic screening isO
(
u L̄

2

γ2

(
p log G0

εD
+|Ā| log εD

ε

))
.

Here G0 = P (β0)− P (β∗), and εD is the accuracy of the objective function value for the

last feature screening operation.

Proof: The computation of dynamic screening has two main phases, feature screening

and accuracy pursuing, denoted by Ta and Tb respectively. Let Gt = P (βt) − P (β∗) to

represent the primal accuracy after t outer loop iterations. Ku is the complexity for K

CM iterations, and we need npt to compute the duality gap. Let Z to represent the total

number of outer loop iterations for the feature screening phase. Then we have

Ta =
Z∑
t=1

logψt
Gt
Gt−1

K
(Ku+ npt), and Tb = u logψZ

ε

GZ

. (2.40)

The complexity is

T = Ta + Tb (2.41)

=
Z∑
t=1

logψt
Gt
Gt−1

K
(Ku+ npt) + u logψZ

ε

GZ

(2.42)

= u

Z∑
t=1

logψt
Gt

Gt−1

+
n

K

Z∑
t=1

logψt
Gt

Gt−1

pt + u logψZ
ε

GZ

(2.43)

= u
Z∑
t=1

logψt
Gt

Gt−1

+ u logψZ
ε

GZ

+
n

K

Z∑
t=1

logψt
Gt

Gt−1

pt. (2.44)
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By following the proof of Theorem 3 in [53],

logψt
Gt

Gt−1

≤ ptL̄
2 + γ2

γ2
(log

Gt−1

Gt

), (2.45)

we have

T1 = u
Z∑
t=1

logψt
Gt

Gt−1

+ u logψZ
ε

GZ

(2.46)

≤ u
Z∑
t=1

(1 +
ptL̄

2

γ2
) log

Gt−1

Gt

+ u(1 +
|Ā|L̄2

γ2
) log

Gz

ε
(2.47)

= u log
G0

ε
+
uL̄2

γ2
log
(
ΠZ
t=1

Gpt
t−1

Gpt
t

)G|Ā|z

ε|Ā|
= u log

G0

ε
+
uL̄2

γ2
log

Gp
0

Ḡp−|Ā|ε|Ā|
(2.48)

= u log
G0

ε
+
uL̄2

γ2

(
(p− |Ā|) log

G0

Ḡ
+ |Ā| log

G0

ε

)
. (2.49)

Here Ḡ =
(
ΠZ−1
t=1 G

pt−pt+1

t G
pZ−1−|Ā|
Z

) 1
p−|Ā| .

T2 =
n

K

Z∑
t=1

logψt
Gt

Gt−1

pt ≤
n

K

Z∑
t=1

(pt +
p2
t L̄

2

γ2
) log

Gt−1

Gt

(2.50)

=
n

K

(
log

Gp
0

Ḡp−|Ā|G
|Ā|
Z

+
L̄2

γ2
log

Gp2

0

G̃p2−|Ā|2G
|Ā|2
Z

)
, (2.51)

where G̃ =
(
ΠZ−1
t=1 G

p2
t−p2

t+1

t G
p2
Z−1−|Ā|

2

Z

) 1
p2−|Ā|2 .

As

Ḡ ≥
(
ΠZ−1
t=1 G

pt−pt+1

Z G
pZ−1−|Ā|
Z

) 1
p−|Ā| = GZ , (2.52)
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and

G̃ ≥
(
ΠZ−1
t=1 G

p2
t−p2

t+1

Z G
p2
Z−1−|Ā|

2

Z

) 1
p2−|Ā|2 = GZ . (2.53)

T =T1 + T2 (2.54)

≤u log
G0

ε
+
uL̄2

γ2

(
(p− |Ā|) log

G0

GZ

+ |Ā| log
G0

ε

)
+
n

K

(
log

Gp
0

G
p−|Ā|
Z G

|Ā|
Z

+ (2.55)

L̄2

γ2
log

Gp2

0

G
p2−|Ā|2
Z G

|Ā|2
Z

)
(2.56)

=u log
G0

ε
+
uL̄2

γ2

(
(p− |Ā|) log

G0

GZ

+ |Ā| log
G0

ε

)
+
n

K

(
p log

G0

GZ

+ (2.57)

p2L̄2

γ2
log

G0

GZ

)
. (2.58)

We can set K = Cp, with GZ = εDψ
k
Z , k ∈ {1, 2, ..., K}, we have

T ≤ u log
G0

ε
+
uL̄2

γ2

(
(p− |Ā|) log

G0

GZ

+ |Ā| log
G0

ε

)
+
n

K

(
p log

G0

GZ

(2.59)

+
p2L̄2

γ2
log

G0

GZ

)
(2.60)

= u log
G0

ε
+
uL̄2

γ2

(
(p− |Ā|) log

G0

GZ

+ |Ā| log
G0

ε

)
+
n

C

(
log

G0

GZ

+
pL̄2

γ2
log

G0

GZ

)
(2.61)

=
(
u
L̄2

γ2
(p− |Ā|+ p

C
) +

n

C
+
n

C

pL̄2

γ2

)
log

G0

GZ

+ u(1 +
L̄2

γ2
|Ā|) log

G0

ε
(2.62)

=
(
u
L̄2

γ2
(p+

p

C
) + u+

n

C
+
n

C

pL̄2

γ2

)
log

G0

GZ

+ u(1 +
L̄2

γ2
|Ā|) log

GZ

ε
(2.63)

= upη
L̄2

γ2
log

G0

GZ

+ u
L̄2

γ2
|Ā| log

GZ

ε
+ u log

GZ

ε
+ (u+

n

C
) log

G0

GZ

. (2.64)

Here η = 1 + 1
C

+ u
Cn

. With εD = GZ , ignoring the last two terms, the complexity of

dynamic screening can be simplified as O
(
u L̄

2

γ2

(
p log G0

εD
+ |Ā| log εD

ε

))
.
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Remark 3 With coordinate minimization, the number of iterations to reach the accuracy

of the objective function value ε is O
(
L̄2

γ2

(
p log 1

εD
+ |Ā| log εD

ε

))
. As p >> |Ā|, the

computation cost in dynamic screening is mainly from the iterations to reach εD.

Experiments will confirm the conclusions from Theorem 4 and Remark 3 in the results

presented in Section 5.

2.3.2.2 Complexity Analysis for SAIF

With the complexity analysis for dynamic screening, we now derive the complexity

of SAIF and show its advantages over dynamic screening theoretically. SAIF starts the

algorithm from the feature recruiting phase. The ADD operation recruit a feature with

maxi∈Rt |xTi θt|. When θt is close to θ∗t , we have

|xTi θt| − ||xi||2ri > |xTk θt|+ ||xk||2ri, ∀k ∈ Rt, k 6= i (2.65)

=⇒ ri <
|xTi θt| − |xTk θt|
||xi||2 + ||xk||2

≈ |x
T
i θ
∗
t | − |xTk θ∗t |

||xi||2 + ||xk||2
∀k ∈ Rt, k 6= i. (2.66)

Here we use θ∗t rather than θ∗ as the algorithm has not reached the stopping point of ADD

operations and Ā * At. In (2.66), the radius for adding feature i into the active set is

determined by how large it can outperform the other features. We use Ta to represent the

running time consumed in the feature recruiting phase. The inactive feature deletion phase

starts from setting IsADD = False in SAIF in Algorithm 1. Let Qt(β) = Pt(β) − Pt(β∗t ),

the time complexity for SAIF with CM is given by the following lemma and theorem.

Lemma 3 With O(u) as the complexity for the base operation of cyclic coordinate min-

imization of the LASSO problem with a γ-convex loss function, the complexity for the

feature recruiting phase is

Ta =
Ku+ pn

K

(
Υ +

L̄2

γ2
Φ + pTI

L̄2

γ2
log

Q̄

QTI (βTI )

)
, (2.67)
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where

Q̄ =
(
ΠTI−1
t=1 Qt+1(βt)

pt+1−pt
) 1
pTI , Υ = log

(
ΠTI−1
t=1

Qt+1(βt)

Qt(βt)
pt
pt+1

1

QTI (βTI )

)
, (2.68)

Φ = log
(
ΠTI−1
t=1

Qt+1(βt)
pt

Qt(βt)pt

)
, and ADD operation stops after TI steps. (2.69)

Proof: The time complex for each t before stopping ADD operation is Ku+ np.

Ta =

TI∑
t=1

logψt
Qt(βt)
Qt(βt−1)

K
(Ku+ np) (2.70)

=
Ku+ np

K

TI∑
t=1

logψt
Qt(βt)

Qt(βt−1)
(2.71)

=
Ku+ np

K

(
− logψ1

Q1(β0) +

TI−1∑
t=1

(
logψt Qt(βt)− logψt+1

Qt+1(βt)
)

(2.72)

+ logψTI
QTI (βTI )

)
(2.73)

=
Ku+ np

K

(
− logψ1

Q1(β0) +

TI−1∑
t=1

(
logψt Qt(βt)− logψt+1

Qt+1(βt)
)

(2.74)

+ logψTI
QTI (βTI )

)
(2.75)

=
Ku+ np

K

(
logψTI

QTI (βTI )− logψ1
Q1(β0) +

TI−1∑
t=1

logψt+1

Qt(βt)
logψt+1

logψt

Qt+1(βt)

)
(2.76)

≤Ku+ np

K

(
− (1 + pTI

L̄2

γ2
) logQTI (βTI )− logψ1

Q1(β0)+ (2.77)

TI−1∑
t=1

(1 + pt+1
L̄2

γ2
) log

Qt+1(βt)

Qt(βt)
logψt+1

logψt

)
(2.78)

With logψt+1

logψt
≈ pt

pt+1
, we have
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Ta ≤
Ku+ np

K

(
− (1 + pTI

L̄2

γ2
) logQTI (βTI )− logψ1

Q1(β0)+ (2.79)

TI−1∑
t=1

(1 + pt+1
L̄2

γ2
) log

Qt+1(βt)

Qt(βt)
pt
pt+1

)
(2.80)

≤Ku+ np

K

(
log
(
ΠTI−1
t=1

Qt+1(βt)

Qt(βt)
pt
pt+1

1

QTI (βTI )

)
(2.81)

+
L̄2

γ2
log
(
ΠTI−1
t=1

Qt+1(βt)
pt+1

Qt(βt)pt

) 1

QTI (βTI )
pTI

)
(2.82)

=
Ku+ np

K

(
log
(
ΠTI−1
t=1

Qt+1(βt)

Qt(βt)
pt
pt+1

1

QTI (βTI )

)
+
L̄2

γ2
log
(
ΠTI−1
t=1

Qt+1(βt)
pt

Qt(βt)pt

)
+

(2.83)

L̄2

γ2
log

ΠTI−1
t=1 Qt+1(βt)

pt+1−pt

QTI (βTI )
pTI

)
(2.84)

=
Ku+ np

K

(
log
(
ΠTI−1
t=1

Qt+1(βt)

Qt(βt)
pt
pt+1

1

QTI (βTI )

)
+
L̄2

γ2
log
(
ΠTI−1
t=1

Qt+1(βt)
pt

Qt(βt)pt

)
+

(2.85)

pTI
L̄2

γ2
log

Q̄

QTI (βTI )

)
. (2.86)

Here

Q̄ =
(
ΠTI−1
t=1 Qt+1(βt)

pt+1−pt
) 1
pTI . (2.87)

Let

Υ = log
(
ΠTI−1
t=1

Qt+1(βt)

Qt(βt)
pt
pt+1

1

QTI (βTI )

)
, and Φ = log

(
ΠTI−1
t=1

Qt+1(βt)
pt

Qt(βt)pt

)
. (2.88)
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This results

Ta =
Ku+ np

K

(
Υ +

L̄2

γ2
Φ + pTI

L̄2

γ2
log

Q̄

QTI (βTI )

)
. (2.89)

Theorem 5 With O(u) as the complexity for the base operation of cyclic coordinate min-

imization of the LASSO problem with a γ-convex loss function, the time complexity for

SAIF is O
(
u L̄

2

γ2

(
p̄ log Q̄

εD
+ p̄pA + |Ā| log εD

ε

))
. Here pA is the total number of features

involved in ADD operations, p̄ is the maximum size of the active set during the algorithm

iterations, Q̄ is the geometric mean of the accuracy of the sub-problem objective function

values corresponding to ADD operations, and εD is the accuracy of the objective function

value for the last feature DEL operation.

Proof: Tb is the time consumed by both inactive feature screening and accuracy pursuing

phases. The inactive feature screening and accuracy pursue phases are similar to dynamic

screening. We simplify the derivations by following the steps and techniques used in the

analysis for dynamic screening.

Tb =

TD∑
t=TI+1

logψt
Gt
Gt−1

K
(Ku+ npt) + u logψTD+1

ε

GTD

(2.90)

= u

TD∑
t=TI+1

logψt
Gt

Gt−1

+ u logψTD+1

ε

GTD

+
n

K

TD∑
t=TI+1

pt logψt
Gt

Gt−1

. (2.91)

The first two terms can be written as

Tb1 = u

TD∑
t=TI+1

logψt
Gt

Gt−1

+ u logψTD+1

ε

GTD

(2.92)

≤ u log
GTI

ε
+
uL̄2

γ2

(
(pTI − |Ā|) log

GTI

Ḡ
+ |Ā| log

GTI

ε

)
. (2.93)
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Here Ḡ =
(
ΠTD−1
t=TI+1G

pt−pt+1

t G
pTD−1−|Ā|
TD

) 1
pTI
−|Ā| .

Tb2 =
n

K

TD∑
t=TI+1

pt logψt
Gt

Gt−1

≤ n

K

TD∑
t=TI+1

(pt +
p2
t L̄

2

γ2
) log

Gt−1

Gt

(2.94)

=
n

K

(
log

G
pTI
TI

ḠpTI−|Ā|G
|Ā|
TD

+
L̄2

γ2
log

G
p2
TI
TI

G̃
p2
TI
−|Ā|2

G
|Ā|2
TD

)
, (2.95)

where G̃ =
(
ΠTD−1
t=TI+1G

p2
t−p2

t+1

t G
p2
TD−1−|Ā|

2

TD

) 1

p2
TI
−|Ā|2 .

Similar to dynamic screening,

Ḡ ≥
(
ΠTD−1
t=TI+1G

pt−pt+1

TD
G
pTD−1−|Ā|
TD

) 1
pTI
−|Ā| = GTD , (2.96)

and

G̃ ≥
(
ΠTD−1
t=TI+1G

p2
t−p2

t+1

TD
G
p2
TD−1−|Ā|

2

TD

) 1

p2
TI
−|Ā|2

= GTD . (2.97)

Thus

Tb1 ≤ u log
GTI

ε
+
uL̄2

γ2

(
(pTI − |Ā|) log

GTI

GTD

+ |Ā| log
GTI

ε

)
, (2.98)

and

Tb2 ≤
n

K

(
pTI log

GTI

GTD

+
L̄2

γ2
p2
TI

log
GTI

GTD

)
. (2.99)

We set K proportion to feature size for both feature increasing and inactive feature

deletion phases, i.e., KI = Cp and KD = CpTI . With GTI = QTI (βTI ), the time com-

plexity for SAIF can be written as
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T =Ta + Tb = Ta + Tb1 + Tb2 (2.100)

≤KIu+ np

KI

(
Υ +

L̄2

γ2
Φ + pTI

L̄2

γ2
log

Q̄

GTI

)
+ u log

GTI

ε
+
uL̄2

γ2

(
(pTI − |Ā|) log

GTI

GTD

(2.101)

+ |Ā| log
GTI

ε

)
+

n

KD

(
pTI log

GTI

GTD

+
L̄2

γ2
p2
TI

log
GTI

GTD

)
(2.102)

=(u+
n

C
)
(

Υ +
L̄2

γ2
Φ + pTI

L̄2

γ2
log

Q̄

GTI

)
+ u log

GTI

ε
+
uL̄2

γ2

(
pTI log

GTI

GTD

+

(2.103)

|Ā| log
GTD

ε

)
+
n

C

(
log

GTI

GTD

+
L̄2

γ2
pTI log

GTI

GTD

)
(2.104)

=pTI (u+
n

C
)
L̄2

γ2
log

Q̄

GTD

+ u
L̄2

γ2
|Ā| log

GTD

ε
+ (u+

n

C
)
L̄2

γ2
Φ (2.105)

+ (u+
n

C
)Υ + u log

GTI

ε
+
n

C
log

GTI

GTD

. (2.106)

Let η = 1 + n
uC

, and µ = maxt:1≤t≤TI−1 η log
P (βt)−P (β∗t+1)

P (βt)−P (β∗t )
, then we have

ηΦ = η log
(
ΠTI−1
t=1

Qt+1(βt)
pt

Qt(βt)pt

)
=

TI−1∑
t=1

ptη log
Qt+1(βt)

Qt(βt)
(2.107)

≤ µ

TI−1∑
t=1

pt ≤ µp̄pA, (2.108)

and

T ≤ uηpTI
L̄2

γ2
log

Q̄

GTD

+ u
L̄2

γ2
|Ā| log

GTD

ε
+ uµp̄pA + uηΥ + u log

GTI

ε
+
n

C
log

GTI

GTD

.

(2.109)

Here pA is the total number of features have been involved in the ADD operation.

p̄ = maxt:1≤t≤TI pt, and εD = GTD , the time complexity for SAIF can be simplified as
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O

(
u L̄

2

γ2

(
p̄ log Q̄

εD
+ p̄pA + |Ā| log εD

ε

))
.

Remark 4 With coordinate minimization, the number of iterations to reach the accuracy

of the objective function value ε isO
(
L̄2

γ2

(
p̄ log Q̄

εD
+ p̄pA+ |Ā| log εD

ε

))
. Q̄ is a value much

smaller than G0 in dynamic screening (as the value of Qi for adding feature i usually is

very small).

According to our experiments, p̄ is often close to the number of the actual active fea-

tures in the optimal LASSO solution, |Ā|. The dominating factor for the computational

complexity of SAIF is the second term p̄pA. The less features being added in the active

set, the less time SAIF will consume. Experimentally, pA is often a value several times

larger than |Ā|, and pA << p. We can conclude that SAIF takes much less time than dy-

namic screening based on the analysis of Theorems 4 and 5. With the theoretical safe and

convergence guarantees, SAIF can work with extremely high-dimensional data to obtain

optimal LASSO solutions.

2.4 Experiments

In this section, we present the experiments comparing SAIF with other existing LASSO

methods. We first evaluate the selected methods based on a simulation study and then ap-

ply them to one real-world study based on the LASSO formulation. In the second subsec-

tion, we evaluate SAIF for logistic regression with two real-world data sets. We present the

comparison between SAIF and sequential screening and homotopy methods in the third

subsection. The base algorithm (coordinate minimization) is implemented with C, and the

main algorithm of SAIF, dynamic screening [38], DPP [11] and the homotopy method [48]

is in Matlab. We use the BLITZ package for BLITZ method. The experimental environ-

ment is iMac 21.5-inch, macOS Sierra version 10.12.1, Intel Core i5. The implementation

and environment will be the same for all experiments unless specified.
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2.4.1 Results for Linear Regression

Similar to sequential and dynamic screening algorithms, SAIF can be assembled with

different kinds of LASSO solution methods. Shooting algorithm (coordinate minimiza-

tion) is chosen as the base algorithm in our experiments. Both dynamic screening [38] and

SAIF can do feature screening or selection without the help from a heavier parameter solu-

tion. We specifically focus on the performance comparison among (1) shooting algorithm

without screening (No Scr.), (2) shooting algorithm with dynamic screening [38] (Dyn.

Scr), (3) Working set method BLITZ [49] (BLITZ), and (4) shooting algorithm with SAIF

screening (SAIF). All of these are safe methods for LASSO problems.

2.4.1.1 Simulation Study

First, we simulate the data sets with n = 100 samples and p = 5, 000 features accord-

ing to a linear model y = Xβ+ε, where each column ofX is a vector with random values

uniformly sampled from the interval [−10, 10], and ε ∼ N(0, 1). For the linear coefficients

β, 20% entries (0.2p) are randomly set to the values in [1,−1], and the rest (0.8p) to zero.

For this data set, we can derive λmax = 2.183 × 104. The first plot in Figure 2.2 illus-

trates the running time for different methods in the logarithmic time scale at λ = 20, 100,

and 1, 000. We can see that, SAIF takes much less time than the other methods to reach

the optimal solutions with given duality gaps. The results also show that SAIF is more

efficient to the feature dimension compared with existing safe methods when the model

hyper-parameter is small.

2.4.1.2 Breast Cancer Data

Breast cancer data set consists of gene expression data of 8,141 genes for 78 metastatic

and 217 non-metastatic breast cancer patients from the study introduced in [54]. In this

set of experiments, the metastatic samples are labeled as 1 and non-metastatic as -1 as the
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Figure 2.2: Running time comparison on simulation (left) and breast cancer (right).

output of the LASSO linear regression problem. The right plot in Figure 2.2 compares

the running time for three different methods at different λ’s. Again, SAIF takes the least

computation time for different duality gaps.

We further investigate the size of the active set along with the optimization iterations

for dynamic screening and SAIF in Figure 2.3-a,c), with λ = 0.1 and 5. We can see that

SAIF starts from a small active feature set and gradually increase its size with time, while

dynamic screening starts from the whole feature set and takes longer time to reach the point

with screening power. Figure 2.3-c,d) illustrate the change of the dual objective function

values D(θt) for SAIF during the optimization procedure. With the active feature set size

a) b)
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Figure 2.3: a,c) Active feature set size at different time points for breast cancer data with
λ = 0.1 and 5, respectively. Green dotted lines indicate the optimal feature set size. b,d)
The corresponding D(θt) value changes with different time points during SAIF optimiza-
tion at λ = 0.1 and 5, respectively.
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t(sec.)) (y-axis) for a) dynamic screening, and b) SAIF on breast cancer data.

increasing, D(θt) decreases and finally converges to a steady value D(θ∗), indicating the

algorithm obtains the optimal solutions to the original LASSO problems.

Let pt be the feature number at iteration step t for SAIF or dynamic screening. The

left column in Figure 2.4 shows the change of pt
p

with respect to the regularization penalty

(log10

(
λ

λmax

)
on x-axis) and the optimization time (log(100 × t(sec.)) on y-axis). Simi-

larly, we plot the change of log(pt
p′

), where p′ is the corresponding optimal active feature

size in the right column of Figure 2.4. From Figure 2.4, it is clear that dynamic screening

always takes longer time to reach the optimal active feature set size, especially when λ is

small. Before reaching the point with screening power, the active feature set size is almost

p. While the active feature set size for SAIF grows gradually from a small set. Due to the

small active set size for the starting iterations, SAIF can more efficiently reach the optimal

active set size with much shorter running time. All of these results confirms the theoret-

ical complexity analysis for dynamic screening and SAIF. Furthermore, both Figures 2.3
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Figure 2.5: Running time comparison on USPS (left) and Gisette (right) data sets.

and 2.4 illustrate that SAIF is more scalable than the existing methods as it always starts

from a very small active set and iteratively focuses on a small subset of the features.

2.4.2 Results for Logistic Regression

We evaluate the proposed algorithms for sparse logistic regression with two data sets,

Gisette and USPS, from LibSVM [55] Website. The Gisette data set has 5,000 features

and 6,000 samples; there are 256 features, 7,291 samples, and 10 labels in the USPS data

set, and we categorize the label values large than 4 as positive, and negative otherwise.

The λmax is 932,575 and 992, respectively. Figure 2.5 gives the running time at different

λ values for dynamic screening, BLITZ, and SAIF. Though due to the implementation

issue, BLITZ may achieve comparable performance when the active set is very small,

SAIF continuously take less computation at different λ values for both data sets. SAIF can

achieve more efficiency for both linear and logistic regression compared with existing safe

methods.

2.4.3 Comparison with Sequential Screening and Homotopy Methods

With a sequence of decreasing λ values, SAIF can be further improved with the warm

start strategy. Given the simulation and the breast cancer data sets in Section 5.1, a de-

creasing sequence of λ values are evenly sampled from the logarithmic scale of the range
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Figure 2.6: Running time for different methods with different number of λ values on
simulation (left) and breast cancer (right) data sets.

[0.001λmax, λmax]. The plots in Figure 2.6 present the running time for DPP [11], the ho-

motopy method [48], and SAIF with a different number of λ values on both of data sets.

In this set of study, we set the stopping criteria with the duality gap 1.0E-6 for all of the

algorithms to achieve fair comparison. The results show that SAIF takes much less time

than the DPP method especially when the number of λ is small. With breast cancer data

set, the homotopy method can achieve the least computation cost; however, in the result

for simulation data, the homotopy method losses its advantages. More critically, the ho-

motopy methods is not safe. Table 2.1 gives the average (Avg.) and standard derivation

(Std.) for recall (Rec.) and precision (Prec.) regarding the active features recovered by the

homotopy method [48]. According to the recall results, the homotopy method always miss

some of the active features at different number of λ values. Furthermore, the homotopy

method lead to the inclusion of inactive features into the final solution as evidenced in

Table 1 that the precision cannot reach 1 at different numbers of λ values. While our SAIF

has the safe guarantee, the recall and precision metrics regarding active features recovered

by SAIF are always one. Clearly, the unsafe strategies employed by homotopy methods

do not always reduce computation, and the employed inactive features may lead to larger

CPU time consumption as shown in the left plot in Figure 2.6.
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Table 2.1: Recall and precision for active features recovered by homotopy method at dif-
ferent numbers of λ values.

Num. of λ values Rec. Avg. Rec. Std Prec. Avg. Prec. Std
20 0.896 0.097 0.972 0.032
50 0.912 0.075 0.982 0.017
100 0.911 0.079 0.979 0.021
200 0.926 0.061 0.974 0.068
300 0.927 0.060 0.969 0.093
400 0.929 0.059 0.971 0.087
500 0.929 0.058 0.976 0.060

2.5 Conclusions

In this chapter, we have developed a novel feature selection method for LASSO–SAIF.

From the experimental results, SAIF can achieve improved efficiency compared with ex-

isting methods. SAIF has the potential to scale up for data sets with high dimensional fea-

tures due to its incremental property. Further more, theoretical analysis reveals the safety

guarantee and low algorithm complexity of the proposed method. SAIF provides us with a

new direction for scaling up sparse learning. Given a data set with extremely high feature

dimension, SAIF can be further improved with the multi-level active set and remaining set

schema. Furthermore, SAIF can be potentially extended to group LASSO [56] and other

sparse models.
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3. SAFE FEATURE SCREENING FOR GENERALIZED LASSO

Chapter 2 focuses on scaling up sparse models regularized with L1 norm with the as-

sumption that model parameters are independent with each other. However, real world data

usually contains much complicate structures, and people usually impose these structural

knowledge with Fused LASSO, Group LASSO, and Generalized LASSO (GL) into mod-

els. A bunch of algorithms and screen methods have been developed for Fused LASSO,

Group LASSO. But solving GL problems is challenging, particularly when analyzing

many features with a complex interacting structure. Existing methods are mostly devoted

to special cases of GL problems with special structures for feature interactions, such as

chains or trees. Developing screening rules, particularly, safe screening rules to remove or

aggregate features with general interaction structures, calls for a very different screening

approach for GL problems. We propose two approaches to tackle this challenge. Firstly,

we develop a sequentially screening method for GL. We formulate the GL screening prob-

lem as a bound estimation problem in a large linear inequality system when solving them in

the dual space. We propose a novel bound propagation algorithm for efficient safe screen-

ing for general GL problems, which can be further enhanced by developing novel trans-

formation methods that can effectively decouple interactions among features. Secondly,

we show that GL problem with tree structures can be scaled up with SAIF. Experiments

on real-world data demonstrate the effectiveness of the proposed screening methods.

3.1 Introduction

Sparse and structured sparse regularization, such as LASSO [16], Fused LASSO [17,

57], and Graph LASSO [34, 58, 59], provide effective tools to incorporate feature sparsity

and structure prior knowledge to classification and regression problems when involved fea-

tures have complex interactions. Such Generalized LASSO (GL) [34, 60, 61, 62] problems
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can be summarized by the following optimization formulation:

min
β

f(X,y; β) + λ||Dβ||1, (3.1)

in which the loss function f(·) can have different functional forms such as the squared

loss function for linear regression, 0/1 loss for logistic regression, hinge loss, and other

convex formulations to characterize the prediction performance and guide the learning of

functional relationships from observed features X to outcome responses y. The opera-

tion matrix D captures structural relationships among features. With different D, we can

impose different regularization formulations for learning, such as Fused LASSO, General-

ized Fused LASSO (GFL), sparse Generalized Fused LASSO (SGFL), trend filtering, and

graph OSCAR (Octagonal Shrinkage and Clustering Algorithm for Regression).

With the data volume and feature dimension growing in an astounding speed, directly

solving such sparse and structured sparse problems is challenging. Efficient methods and

software packages such as SLEP [63] and MALSAR [64] have been developed to tackle a

range of sparse and structured sparse learning problems. The dual path method proposed

by [34] can sequentially compute the solutions for all of the valid regularization penalty

parameter λ’s. This method requires to compute the inversion of the feature matrix, which

makes it difficult to scale up to large data sets. The method presented in [57] tries to solve

the Sparse Generalized Fused LASSO problem with submodular optimization, but their

algorithm cannot be applied to problems with any arbitrary D. Moreover, they did not

compare their methods with standard convex optimization solvers such as CVX on large

data sets.

As discussed in the introduction chapter, recently, there has been a very exciting dis-

covery that it is possible to screen many features before the use of any optimization solver

for learning by developing efficient screening rules [9, 8, 10, 65, 11, 21, 35]. Some of these
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derived screening rules are proved to be safe, which means the features that are screened

will definitely be inactive or redundant in the actual optimization formulations for the

corresponding learning problems [10, 11, 65]. Typical advancements along this direction

include the screening methods for LASSO [10, 65, 11], Group LASSO [21], and Fused

LASSO [35]. However, none of the existing screening methods can be directly applied

to Generalized LASSO (GL) problems because of the complex structure of the operation

matrix D in (3.1) when capturing complex interactions among high-dimensional features.

Due to the arbitrary and often complex topology than the 1D-chain in Fused LASSO or

the tree structure in Tree Group LASSO, it is difficult to transform the GL problems into a

form so that we can easily follow LASSO screening strategies as in Group LASSO [11, 36]

or 1D-chain Fused LASSO [35] screening approaches. This imposes a significant chal-

lenge that calls for a very different screening approach for GL in (3.1) from the existing

ones. In the following sections, we first develop a sequential screening method that can

apply to more general structure cases. Then we propose an active selection method based

on the idea of SAIF for tree Fused LASSO.

3.2 Dual of Generalized LASSO

Assume that we have a data set X ∈ Rn×p with n data samples and p features; y is

the corresponding outcome or sample label vector, and the entry value of y can be real,

integer, or binary. In this chapter, we focus on the following Generalized LASSO (GL)

problem:

P : min
β

n∑
i

f(gi•β) + λ||Dβ||1. (3.2)

Here, gi• is the ith row of a matrix G, which is a general matrix function of the outcome y

and the data sample X; D captures the feature interactive relationships and is typically a

sparse matrix; f(·) is a convex loss function, such as the squared or logistic loss function.
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We also assume f(β) =
∑n

i=1 f(gi•β). For example, the GL regression problem can be

written as the following optimization problem:

min
β

1

2
||y −Xβ||22 + λ||Dβ||1, (3.3)

in which G is simply the design matrix X . As examples, for LASSO, D is an identity

matrix; and for 1D-chain Fused LASSO [17, 35], D can be written as follows:

D =



1 −1 0 ... 0 0

0 1 −1 ... 0 0

...

0 0 0 ... 1 −1


. (3.4)

To facilitate the derivation of the screening rules for any GL problem P , we study its

dual problem. Let f ∗ be the conjugate function of f . We can derive the dual problem

of (3.63) based on the following theorem.

Theorem 1 A dual form of (3.63) is given by

D : min
θ∈Ωλ

f∗(θ) =
n∑
i=1

f ∗(θi), Ωλ = {θ : GT θ = λDTu, ||u||∞ ≤ 1}. (3.5)

The primal and dual relationship is f ′(gTi•β) = θi with f ′(z) denoting the derivative of

f(z) with respect to z.

Proof:

We here provide the derivation of the dual problem for Generalized LASSO (GL). For

the original problem,

min
β

n∑
i=1

f(gTi•β) + λ||Dβ||1. (3.6)
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With θ as the corresponding Lagrangian multiplier, we can write the Lagrangian as

follows

L(β, z, λ; θ) =
n∑
i=1

f(zi) + λ||Dβ||1 + θT (Gβ − z). (3.7)

Let

fβ = λ||Dβ||1 + θTGβ, fzi = f(zi)− θizi. (3.8)

To get the dual form, we need to minimize fβ and fz. Since

∂βfβ = GT θ + λDTu, (3.9)

where u ∈ sign(Dβ), and ||u||∞ ≤ 1, uTDβ = ||Dβ||1. To minimize fβ , we have

0 ∈ ∂βfβ ⇒ ∃u,−GT θ = λDTu, ⇒ min
β
fβ = (λuTD + θTG)β = 0. (3.10)

We also have

0 = ∂zifzi ⇒ θi = f ′(zi) (3.11)

min
zi

fzi = min
zi

f(zi)− θizi = min
zi
−(θizi − f(zi)) (3.12)

= −max
zi

(θizi − f(zi))
∆
= −f ∗(θi) (3.13)

With (3.10) and (3.13), we can have the dual objective function as follows:

max
θ
L(θ) = max

θ
−

n∑
i=1

f ∗(θi) (3.14)
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With the constraints on θ, the dual problem is

max
θ
L(θ) = max

θ
−

n∑
i=1

f ∗(θi) (3.15)

s.t.−GT θ = λDTu ||u||∞ ≤ 1. (3.16)

From (3.11), the primal and dual variables satisfy the following equation

f ′(gi•β) = θi. (3.17)

As the feasible region for u is symmetric, we can move the negative sign in (3.16) to

right side and the above dual form can be rewritten as

min
θ

n∑
i=1

f ∗(θi) (3.18)

s.t. GT θ = λDTu, ||u||∞ ≤ 1. (3.19)

And the primal and dual relationship is

f ′(gi•β) = θi. (3.20)

In the above theorem, θ denotes the dual variables; u denotes the sub-gradient vector

of ||Dβ||1 with respect to Dβ, and u can be considered as an auxiliary vector in the dual

form. With Theorem 1, we can derive the dual forms of many GL problems with different

convex loss functions. For example, the dual problem of GL regression (3.3) can be written

as:

min
θ

{
1

2
||θ + y||22 −

1

2
||y||22, s.t.XT θ = λDTu, ||u||∞ ≤ 1

}
(3.21)
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with−y+Xβ = θ as the primal-dual relationship. Table 3.1 gives the dual forms of some

standard loss functions [38] in GL learning.

The dual variables have the following properties:

Theorem 2 For Generalized LASSO problems (3.63):

a) If θ∗0 and θ∗ are the optimal solutions to the dual problem (3.5) at λ0 and λ, then we

have

〈f ′∗(θ∗0)− λ

λ0

f ′∗(θ∗), θ∗ − λ

λ0

θ∗0〉 ≥ 0,

and

〈f ′∗(θ∗0)− f ′∗(θ∗),
θ∗

λ
− θ∗0
λ0

〉 ≥ 0.

b) If f∗ is α-strongly convex, and θ∗0 and θ∗ are the optimal solutions to the dual problems

at λ0 and λ with λ < λ0, then

||θ∗ − θ∗0||22 ≤
2

α

[
f∗(

λ

λ0

θ∗0)− f∗(θ∗0) + (1− λ

λ0

)〈f ′∗(θ∗0), θ∗0〉
]
.

c) For GL linear regression problems with λ < λ0 < λmax, and θ∗ and θ∗0 are the

optimal dual solutions at λ and λ0, respectively, we have

||θ∗ − λ

λ0

θ∗0 +
1

2
v||2 ≤

1

2
||v||2, (3.22)

where

v = λ(v2 −
〈v1,v2〉
||v1||22

v1),v1 =
y

λ0

+
θ∗0
λ0

,v2 =
y

λ
+
θ∗0
λ0

.

Proof:

a) We transform the dual form into the following form
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D2 : min
θ̂∈Ω

f∗(−λθ′) =
n∑
i=1

f ∗(−λθ′i), (3.23)

Ω = {θ′ : GT θ′ = DTu, ||u||∞ ≤ 1}. (3.24)

With a given λ, the solution relationship between D2 and the dual form is θ′∗ = − θ∗

λ
.

We can see that with different λ’s, the corresponding optimization problems still have

the same feasible region. According to [66], for a constrained optimization problem,

minx∈Φ h(x), with Φ being convex and closed and h(·) being convex and differentiable,

we have the following relationship for an optimal solution x∗:

〈h′(x∗),x− x∗〉 ≥ 0, ∀x ∈ Φ. (3.25)

Let θ′∗ and θ′∗0 be the optimal solution of D2 at λ and λ0, we have

〈−λf ′∗(−λθ′∗), θ′∗0 − θ′∗〉 ≥ 0, 〈−λ0f
′∗(−λ0θ

′∗
0 ), θ′∗ − θ′∗0 〉 ≥ 0. (3.26)

Thus we have

〈λ0f
′∗(−λ0θ

′∗
0 )−λf ′∗(−λθ′∗), θ′∗0 −θ′∗〉 ≥ 0, and 〈f ′∗(−λ0θ

′∗
0 )−f ′∗(−λθ′∗), θ′∗0 −θ′∗〉 ≥ 0,

which lead to

〈f ′∗(θ∗0)− λ

λ0

f ′∗(θ∗), θ∗ − λ

λ0

θ∗0〉 ≥ 0, and 〈f ′∗(θ∗0)− f ′∗(θ∗),
θ∗

λ
− θ∗0
λ0

〉 ≥ 0,

respectively.

b) We use Ωλ to represent the feasible region of the dual problem at λ. As λ < λ0, we
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can easily get Ωλ ⊂ Ωλ0 .

f∗(·) is a α-strongly convex function, we have

||θ∗ − θ∗0||22 ≤
2

α

[
f∗(θ∗)− f∗(θ∗0)− 〈f ′∗(θ∗0), θ∗ − θ∗0〉

]
. (3.27)

Let θ̃∗ = λ
λ0
θ∗0. We have GT θ̃∗ = λ

λ0
GT θ∗0 = λDTu∗0. As ||u∗0||∞ ≤ 1, we have θ̃∗ ∈ Ωλ =

{θ | GT θ = λDTu, ||u||∞ ≤ 1}, and

f∗(θ∗) = min
θ∈Ωλ

f∗(θ) ≤ f∗(θ̃∗) = f∗(
λ

λ0

θ∗0). (3.28)

As in the proof of a), we convert the dual problem into the similar formD2. With (3.25),

we have

〈−λ0f
′(θ∗0), θ − (− θ

∗
0

λ0

)〉 ≥ 0, ∀θ ∈ Φ. (3.29)

Here Ω =
{
θ | GT θ = DTu, ||u||∞ ≤ 1

}
. As θ∗ is the optimal dual solution at λ, thus

− θ∗

λ
∈ Ω. Then we have

〈−λ0f
′(θ∗0),−θ

∗

λ
− (− θ

∗
0

λ0

)〉 ≥ 0 =⇒ 〈−f ′(θ∗0),−θ
∗

λ
− (− θ

∗
0

λ0

)〉 ≥ 0 (3.30)

=⇒ −〈f ′(θ∗0), θ∗〉 ≤ −〈f ′(θ∗0),
λ

λ0

θ∗0〉. (3.31)

Plugging (3.28) and (3.31) into (3.27), we get

||θ∗ − θ∗0||22 ≤
2

α

[
f∗(

λ

λ0

θ∗0)− f∗(θ∗0) + (1− λ

λ0

)〈f ′∗(θ∗0), θ∗0〉
]
.

c) According to Theorem 1, the dual form for linear regression is

min
θ

{
1

2
||θ + y||22 −

1

2
||y||22 : XT θ = λDTu, ||u||∞ ≤ 1

}
, (3.32)
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which can be reformulated as:

min
θ′

{
λ2

2
||θ′ − y

λ
||22 −

1

2
||y||22 : XT θ′ = DTu, ||u||∞ ≤ 1

}
. (3.33)

We can see that at the same λ, the optimal solution to (3.32) and (3.33) have the following

relationship:

θ′∗ = −θ
∗

λ
. (3.34)

According to [11], when λ < λ0 < λmax, all of the projection properties used in Dual

Polytope Projection (DPP) and enhanced DPP still hold regarding to the objective of (3.33).

Let v1 = y
λ0
− θ′∗0 ,v2 = y

λ
− θ′∗0 . With Theorem 15 in [11], we have

∣∣∣∣∣∣θ′∗λ − (θ′∗λ0
+

1

2
v⊥2

)∣∣∣∣∣∣
2
≤ 1

2
||v⊥2 ||2,

where v⊥2 = v2 − 〈v1,v2〉
||v1||22

. With the optimal solution relationship (3.34), we have

∣∣∣∣∣∣θ∗ − λ

λ0

θ∗0 +
1

2
v
∣∣∣∣∣∣

2
≤ 1

2
||v||2, (3.35)

where

v = λ
(
v2 −

〈v1,v2〉
||v1||22

v1

)
,v1 =

y

λ0

+
θ∗0
λ0

,v2 =
y

λ
+
θ∗0
λ0

.

Note that Theorem 2 is generic for a wide range of loss functions. For instance, for

logistic regression, f∗(θi) = (yi+θi) log(yi+θi)+(1−yi−θi) log(1−yi−θi), and f ′′∗(θi) =

1
(yi+θi)(1−yi−θi) ≥ 4, so f(·) is 4-strongly convex, and we can directly use Theorem 2-b)

to estimate the region for θ∗ at λ. For linear regression, Theorem 2-c) usually gives a

tighter bound. There are many existing methods for different loss functions with the classic

LASSO penalty [10, 11, 67, 38]. LASSO screening [67] derives their screening rules in a

similar way as in Theorem 2-a). It is possible to derive tighter bounds for dual variables

57



given some properties of the loss functions.

The intersection of the constraint regions from these inequalities in Theorem 2 can give

us tighter bound estimates for the optimal dual solution at λ. In the next section, we show

how to derive SAIF feature selection rule based on the dual form. In the third section,

we show how to derive the screening rules for GL problems based on the corresponding

constraint regions.

3.3 Sequential Screening Rules for Generalized LASSO (GL)

In this section, we follow the sequential screening approach survey in Chapter 1, and

propose a screening method for GL. The main contributions of this method include: a) We

show that the safe GL screening problem can be formulated as a bound estimation problem

constrained by a linear inequality system derived based on the equivalent dual problem.

We also provide effective dual variable range estimation approaches that give the initial

upper and lower bounds of the linear system for a broad range of loss functions; b) A

novel bound propagation algorithm is developed to efficiently approximate the feasible

solution space for the linear inequality system to derive tight bound estimates; c) We show

that the efficiency of our bound propagation algorithm can be further improved by our

graph transformation methods; d) The proposed propagation and transformation methods

can also be applicable with dynamic screening [38, 39, 40], which further provides an

efficient way to start the screening process when the desirable regularization parameter λ

is difficult to estimate. The experimental results on synthetic and real-world data sets have

shown clear advantages of incorporating our safe screening method in GL learning.

3.3.1 Derivation of Safe Screening Rules

A safe screening rule is to identify the items that take zero values within the L1 regular-

ization term in the primal problem (3.63) solution at any given λ. The kthL1 regularization

item is trivial if it is zero in the solution of the given λ, which corresponds to Dk•β
∗ = 0
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in the matrix form. In what follows, we show that the underlying computational task of

deriving safe screening rules involves the estimation of the ranges of the sub-gradient vec-

tor for ||Dβ∗||1 with respect to each entry of Dβ∗ at λ, denoted as u∗(λ). u∗k is the kth

entry of u∗(λ). To see that, note that Dk•β
∗ = 0, if and only if |u∗k| < 1 by the definition

of the sub-gradient. Thus, once we have a range set U for the vector u∗(λ), we can derive

the following screening rule for each entry uk in u, where uk corresponds to the kth L1

item:

sup
u∈U
|uk| < 1⇒ Dk•β

∗ = 0 (R1). (3.36)

Therefore, to decide whether the kth item is trivial or not at the given λ, the task is to

estimate the range of uk with U . From the dual form in (3.5), the range of the sub-gradient

vector u∗(λ) is constrained by Gθ∗. Thus if we can estimate the range of θ∗, we can

determine the range of Gθ∗, then determine the range of DTu∗(λ), which will ultimately

lead to the estimation of the range of u∗(λ). Note that, in existing screening methods such

as those for LASSO, without a complex structure for D, it is straightforward to translate

the estimation of the range of θ∗ to u∗(λ). Thus, LASSO is a special case of our problem,

for which θ∗(λ) can be bounded by a ball: B(τ, r) : ||θ∗(λ) − τ ||2 ≤ r as in the ball test

for LASSO screening [10, 11, 38, 39], with τ being the center and r the radius.

Let θ∗(λ) denote the optimal dual variable at a given penalty parameter λ. We follow

the results in Theorem 2 to derive the ball region for GL problems. Let θ∗(λ) = τ + ρ. We

have gT•iθ
∗(λ) = gT•iτ + gT•iρ. As ||ρ||2 ≤ r, gT•iθ

∗(λ) can be bounded as follows:

gT•iτ − r||g•i||2 ≤ gT•iθ
∗(λ) ≤ gT•iτ + r||g•i||2, (3.37)

which gives the upper and lower bounds for GT θ∗(λ): L ≤ 1
λ
GT θ∗(λ) ≤ H . The ith
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entries in L and H are given by Li = 1
λ
(gT•iτ − r||g•i||2), and Hi = 1

λ
(gT•iτ + r||g•i||2).

From (3.5), we can see

L ≤ DTu∗(λ) ≤ H. (3.38)

Since u∗(λ) is a sub-gradient vector, we define the inequality set for u∗(λ) as U = {u :

L ≤ DTu ≤ H,−1 ≤ u ≤ 1}, in which L and H are screening bounds. Estimating the

bounds for each u∗k subject to the constraint, u∗(λ) ∈ U , is a challenging computational

problem.

Before we tackle the problem by introducing a novel bound propagation algorithm in

Section 3, we first establish that the derived screening rule R1 is safe for aggregating vari-

ables to reduce the problem size. Note that to apply this screening rule R1, we need to start

with a given λ0, which can be any non-negative value. Given a sequence of descending

λ’s, we can sequentially screen and aggregate features so that the computational cost is

reduced for all λ’s.

3.3.2 Safe Feature Elimination and Aggregation

If Dk• has only one non-zero entry, e.g., dki, |u∗k| < 1 corresponds β∗i = 0. For

this case, we define an elimination operator, which removes the column g•i from G and

remove the ith column and kth row of D as well.

If Dk• has more than one non-zero entries, e.g. dki,dkj ,...,dkm, applying the screening

rule R1 leads to dkiβ∗i + dkjβ
∗
j + ...+ dkmβ

∗
m = 0. Thus, we have

β∗i = −dkj
dki

β∗j − ...−
dkm
dki

β∗m = tiβ
′∗, (3.39)

β∗i gi• = tiβ
′∗gi•. (3.40)

Let t′i = [..., 0, ...,−dkj
dki
, ...,−dkm

dki
, ..., 0, ...]1×p. Note that ti and β′∗ are the corresponding
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sub-vectors of t′i and β∗ by removing their corresponding ith entries. For this case, we

define an aggregation operator:

1. Add the vector drit′i to the rows Dr• with dri 6= 0,

2. Remove the kth row and ith column of D,

3. Update the feature set with G′ = GTi, where Ti is a p× (p− 1) matrix with ti being

the ith row and all of the remaining rows forming a (p−1)×(p−1) diagonal matrix.

Once we know the range of the sub-gradient vector u∗(λ), we can sequentially and

safely aggregate the features to reduce the problem size. P ′ is the reduced-size problem:

P ′ : min
β′

n∑
i

f(g′i•β
′) + λ||D′β′||1. (3.41)

One can reconstruct the original solution for each aggregation operation by the transfor-

mation β∗ = Tiβ
′∗. Similarly, for each elimination operation, reconstruction can be done

with Ti by inserting one all-zero row to a diagonal matrix. Thus the original solution can

be recovered by β∗ = Ti1 × Ti2 × ... × Titβ′∗ = Tβ′∗. We can derive T for any reduced

problem.

For a fixed λ, let S be the solution set for the original problem P , S ′ be the optimal

solution set for the reduced problem P ′, and S̃ ′ be the reconstructed solution set. We

have β∗ ∈ S, β′∗ ∈ S ′, and β̃′∗ ∈ S̃ ′. Let P (β̃′∗) represent the value of the objective

function of P at β̃′∗. Similarly, P ′(β′∗) for P ′ at β′∗. Assume β̃′∗ = Tβ′∗, and β̄′∗ is the

reduced solution of β∗. We have the following Theorem to guarantee the equivalence of

the problems P and P ′.

Theorem 3 For any Generalized LASSO problem with the penalty parameter λ,

a) P ′(β̄′∗) = P (β∗); P ′(β′∗) = P (β̃′∗).
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b) The extended optimal solution set of the reduced-size problem P ′ (3.41) equals to

the solution set of the original problem P (3.63).

Proof: a) We first prove P ′(β̄′∗) = P (β∗). For sequential operations, if we can prove at

each step the equation holds, then the equation is correct for all operations.

For elimination, we can see that f(G′β̄′∗) = f(Gβ∗), and λ||D′β̄′∗||1 = λ||Dβ∗||1.

For aggregation, we first prove f(G′β̄′∗) = f(Gβ∗). As G′β̄′∗ = GTβ̄′∗, we just need to

prove T β̄′∗ = β∗. From (3.39) and (3.40), we have βi = tiβ
′. Therefore, T β̄′∗ = β∗.

Next we prove λ||D′β̄′∗||1 = λ||Dβ∗||1. After we expand both sides of the equation, as

the aggregation operator replaces β∗i with −dkj
dki
β∗j − ...− dkm

dki
β∗m by (3.39), we can derive

λ||D′β̄′∗||1 = λ||Dβ∗||1.

Now we prove P ′(β′∗) = P (β̃′∗). As β̃′∗ = Tβ′∗ and G′ = GT , we get f(G′β′∗) =

f(Gβ̃′∗). To prove λ||D′β′∗||1 = λ||Dβ̃′∗||1, we need to prove ||D′β′∗||1 = ||DTβ′∗||1.

After we insert T into ||D′β′∗||1 = ||DTβ′∗||1, we can see that the right-hand side has one

more L1 term, which is zero, and the remaining terms are exactly the same, which proves

Theorem 3-a).

b) ∀β̃′∗ ∈ S̃ ′, we prove that β̃′∗ ∈ S by contradiction. For β̃′∗, we use β′∗ to represent

the corresponding optimal solution to P ′. Let’s assume β̃′∗ /∈ S. According to the convex-

ness of the problem, ∃β̄∗ ∈ S, and P (β̄∗) < P (β̃′∗). Let’s construct a solution in S ′ with

β̄∗, i.e., β̄′, so that P ′(β̄′∗) = P (β̄) < P (β̃′∗) = P ′(β′∗). This contradicts with the fact

that β′∗ is in the optimal solution set of P ′.

∀β̄∗ ∈ S, we prove that β̄∗ ∈ S̃ ′. Similarly, assume β̄∗ /∈ S̃ ′, then ∃β̃′ ∈ S̃ ′, and

P (β̃′) < P (β̄∗). This contradicts with the fact that β̄∗ is in the optimal solution set of P .

Hence, we prove that ∀β̄∗ ∈ S, β̄∗ ∈ S̃ ′.
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3.3.3 Bound Propagation for Screening

To apply the screening rule R1, we need to estimate the bounds for the entries in u∗(λ).

Particularly, our objective is to identify as many trivial regularization items as possible.

Since an L1 item is trivial as long as |u∗k| < 1, we need to estimate the upper and lower

bounds for uk as tight as possible, which will increase the chance of finding the items that

indeed lead to |u∗k| < 1.

Since u∗(λ) ∈ U , the bound estimation for evaluating the screening rule R1 can be

obtained by solving two linear programming (LP) problems:

min
u

ui max
u

ui (3.42)

s.t. L ≤ DTu ≤ H s.t. L ≤ DTu ≤ H

− 1 ≤ u ≤ 1; −1 ≤ u ≤ 1.

Standard simplex and interior point methods can be used to solve these problems. How-

ever, it may be very computationally costly as we need to run the LP solver for every ui

twice for the lower and upper bounds. A recent speedup has been proposed to solve sim-

ilar linear inequality systems [68]. But the algorithm can only identify one of the feasible

solutions to an inequality system, which doe not identify bounds tight enough for the ef-

ficacy of the proposed screening method to remove as many trivial L1 items as possible.

Inspired by [68], we propose a new bound propagation algorithm to provide an efficient

approach for the safe Generalized LASSO screening.

We show the basic idea of the proposed bound propagation algorithm below. Let hui

and lui be the upper and lower bounds of ui, and h and l are the upper and lower bounds
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of u . First, we convert the inequality constraints of ui in (3.42) in the following form:

Ih : −dj1iuj1 − dj2iuj2 − ...− djtiujt +Hi ≥ 0; (3.43)

Il : dj1iuj1 + dj2iuj2 + ...+ djtiujt − Li ≥ 0, (3.44)

which will give the bounds of ui as: ui − lui ≥ 0; −ui + hui ≥ 0. Obviously, the bound

estimates of ui depend on the estimated bounds of other interacting features. We note that

the special diagonal structure ofD for LASSO screening leads to efficient screening due to

its non-interacting features in the regularization term. Since the estimation of the bounds

for the variables are interdependent, we design the bound propagation that iteratively up-

dates the bounds of each variable sequentially. We can set the initial values for lui and hui

as 1, which are named as the initial context for ui. Then, in each bound propagation step,

we update the bounds for each variable in the above inequalities: lui and hui , and derive

the new bounds of each ui by variable elimination.

Our procedure can be illustrated using a simple example, when the inequality con-

straint for the sub-gradient vector u is

− 2u1 + 3u2 − u3 + 0.4 ≥ 0, (3.45)

and the current contexts for the bound estimates of u1, u2 and u3 are:

(a) − u1 + 1 ≥ 0; (b) u1 + 1 ≥ 0; (3.46)

(a) − u2 + 0.1 ≥ 0; (b) u2 + 0.7 ≥ 0; (3.47)

(a) − u3 + 0.6 ≥ 0; (b) u3 + 0.8 ≥ 0. (3.48)

We can lift these inequalities by adding 3× (3.47)(a) and (3.48)(b) to (3.45) to get one
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propagated bound for u1: −u1 + 0.75 ≥ 0. As 0.75 is smaller than 1, we take it as

the new bound for u1. Otherwise, we keep the bound unchanged. We can apply the

bound propagation in a breadth-first manner to iteratively tighten the estimated bounds.

Algorithm 3 provides the details about of the Bound Propagation (BP) procedure, where

� denotes the element-wise multiplication. Fig. 3.1 provides schematic illustration of BP

procedure with inequalities contain two variables.

Data: T p and T n, are array lists for positive and negative entries in any column of
D; A is the array lists for the indices of non-zero entries in any column of D;
Ineuqlity bounds L, H; Initial context bounds for u, l, h

Result: Estimated bounds l and h for all ui
while l or h is updated do

for i = 1 to p do
Let Bmax = T p[i]� h[A[i]] + T n � l[A[i]];
Bmin = T p[i]� l[A[i]] + T n � h[A[i]];

Let Smax =
∑

j Bmax[j]; Smin =
∑

j Bmin[j];
for j ∈ A[i] do

if D[j][i] > 0 then
ĥuj = (−Smin +Bmin[j] +H[i])/D[j][i];
l̂uj = (−Smax +Bmax[j] + L[i])/D[j][i];

else
l̂uj = (−Smin +Bmin[j] +H[i])/D[j][i];
ĥuj = (−Smax +Bmax[j] + L[i])/D[j][i];

end
huj = min{huj , ĥuj};
luj = max{luj , l̂uj}

end
end

end
Algorithm 3: Bound Propagation (BP).
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Figure 3.1: Schematic illustration of bound propagation algorithm. In the figures l1 and l2
are two lines corresponding two inequalities of u1 and u2. (A) Initial context for u1 and u2

as the illustrated box. (B) Upper bound for u1 is updated to 0.7 based on the intersection
of l1 and the upper bound of u2. (C) Upper bound for u2 is updated to 0.8 due to the
intersection of l2 and the upper bound of u1.

3.3.3.1 Properties of the Bound Propagation Algorithm

Let Ũ be the box region as the bound estimates obtained by our bound propagation

algorithm. Through the following analysis, we prove that the edge screening rule by bound

propagation is still safe and the algorithm terminates in a finite number of steps.

Theorem 4 Let U = {u : L ≤ DTu ≤ H,−1 ≤ u ≤ 1}, we have

a)U is not an empty set, which means that there is at least one solution to the inequality

system of U .

b) The bound propagation algorithm derives a loose bounding box for the problems (3.42):

U ⊆ Ũ .

c) The bound propagation algorithm is guaranteed to terminate with the complexity

O(p2).

Proof: a) If the constraint region B(τ, r) is from Theorem 2, we can see that θ∗0 ∈ B(τ, r).

As GT θ∗0 = λ0D
Tu0, we can get L ≤ DTu0 ≤ H , thus u0 ∈ U . If we use other LASSO

screening methods [10, 67, 11] to estimate the bounds of GT θ∗(λ) or DTu∗(λ), it is easy
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to derive the proof in a similar way.

b) We prove this theorem by induction. In the initial state, Ũ0 = {u : −1 ≤ u ≤ 1},

hence U ⊆ Ũ0. Assume at step t, U ⊆ Ũt. We just need to prove U ⊆ Ũt+1. The first

case is that at step t + 1, no change is made to Ũt. Hence, Ũt+1 = Ũt, and U ⊆ Ũt+1. For

the second case, if we get a tighter bound for a certain ui, for example, ui − l̃ui ≥ 0 and

l̃ui > ltui , where ltui is the current bound. This tighter bound is derived from one inequality

Φ in U and the bounds in Ut for non-zero uφi ,

Φ : dφ1uφ1 + dφ2uφ2 + ...+ diui + ...+ dφQuφQ + φ ≥ 0.

Let Huφi
represent the half space for the bound of uφi , and HΦ is the half space for

the inequality Φ. With the variable elimination and replacement by bounds, we can see

HΦ ∩i=Qi=1 Huφi
⊆ Hui−l̃ui≥0, where Hui−l̃ui≥0 is the half space for the bound ui − l̃ui ≥ 0.

As U ⊆ HΦ and U ⊆ Huφi
,∀i, 1 ≤ i ≤ Q, we get U ⊆ Hui−l̃ui

. We also have U ⊆ Ũt

and Ũt ∩ Hui−l̃ui
= Ũt+1, therefore U ⊆ Ũt+1. Hence, we prove that for any t : t ≥ 1,

U ⊆ Ũt.

c) First we construct a regularization graph Ψ according to the inequality system U .

We take each inequality (not the bounds for ui’s) in U as one vertex in Ψ. If ui appears in

two vertices, we connect the two vertices with an edge ui.

Note that the number of inequality bounds in Ũ is fixed. According to Theorem 6.2

by [68], the algorithm is guaranteed to terminate since there are feasible solutions to U

and we use only the bound propagation rules. In what follows, we prove that the algorithm

converges in ΩΨ + 1 iterations, where ΩΨ is the longest active inference path between two

nodes or two edges.

If an inequality system S can improve one inequality I , we say that S implies I . Thus,

it is easy to see that U implies all of the bounds in Ũ . From Theorem 3.2 by [68], if U
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implies one bound, i.e., lui : ui ≥ lui , then lui can be obtained with a linear combination

of the inequalities in U . Let U ′ be the subset of U that implies lui . If we want to infer lui ,

all of the bounds for the edges and nodes in the induced sub-graph corresponding U ′ must

reach ui in the bound propagation procedure. So there is a longest inference path in U ′ for

the inequality lui . As in each iteration, the bound propagation algorithm starts from a fixed

node in Ψ. The traversal from any edge or node to another edge or node progresses at least

one step. Therefore, it takes at most ΩΨ iterations to finish the path traversal, and one more

iteration to finish the final update. Putting all these together, the algorithm complexity is

O(k(ΩΨ + 1)p). Here k is the number of non-zero entries in each column of D. Since D

is highly sparse, k is a small number. In the worst case, the longest inference path is p, so

the algorithm complexity is O(p2).

Theorem 4 states that the bound propagation algorithm is safe for trivial L1 item

screening and can stop within ΩΨ+1 iterations. BP has the potential to be further improved

by updating only the bounds may be affected in the previous iteration. We will show that

our bound propagation algorithm is effective and much more efficient than directly solving

the LP problems using standard LP solvers in CPLEX [69] in our experiments.

3.3.4 Improve Screening with Transformation

Since we adopt bound propagation, and the range for θ is a sphere, the fewer variables

there are in each inequality, the tighter bound we can estimate for each ui. Hence, we can

improve the accuracy and efficiency of the bound propagation algorithm by transforming

D and G. Let T 1 be a transformation matrix, which satisfies

a) D̃ = DT 1; b) G̃ = GT 1; c) θT G̃ = λuT D̃. (3.49)

We look for the transformation matrix T 1 so that there are fewer non-zero entries in each

column of D̃ after transformation than in each column of the original matrix D.
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Different operation matrices D will have different transformation matrices. In the fol-

lowing two subsections, we introduce the transformations for Generalized Fused LASSO

and trend filtering problems as examples.

3.3.4.1 Transformation for Generalized Fused LASSO

For Generalized Fused LASSO, each pair of the bound inequalities in L ≤ DTu ≤ H

corresponds to a node in the regularization graph Ψ, as shown in Figure 3.2. To find a

desirable T 1, we first initialize a visiting status variable V isit for each node based on

its node degree. We traverse the graph Ψ starting from a node with the degree equal to

one, and then we visit the adjacent nodes with the degree of two. For each visited node,

we decrease its V isit status by 1. We traverse along the path until the visited node is a

terminal or with its V isit status larger or equal to three. We then restart the traversal again

with a node having V isit = 1, until V isit = 0 for each node. In this traversal process,

we accumulate the labels of visited nodes, and store the current accumulated node labels

to a data structure labeled as the Data section for each visited node. For each node i , we

use T•i to represent the corresponding column in T 1. We set the entries of T 1
•i in the Data

section to one and the other entries to zero.

Theorem 5 For a forest graph (dp
2
e ≤ |E| < p − 1) and a tree graph (|E| = p − 1),

the above graph traversal process takes |E| steps; and D̃ is a diagonal matrix with nT

all-zero columns, where nT is the number of trees in the graph. For a general graph with

|E| > p− 1 , the graph traversal process takes fewer than |E| steps.

Proof: For a simple non-loopy graph with |E| < p − 1, the graph traversal process just

goes through each edge one time. For a complex graph with loops, the traversal process

goes through the edges that are not in any loop. This leads to the theorem.

For edges in a loop or connecting loops, the previous transformation cannot isolate

them from other edges. But we can still get tighter bounds L and H by using node ag-
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Figure 3.2: Regularization graph examples. (A) Tree graph; (B) Graph with loops. Each
node corresponds to one entry in DTu, with several entries in the vector u.

gregation transformation. Figure 3.2(B) illustrates one example of this kind for cyclic or

loopy graphs. From Section 2.1, we can see that the bounds L and H are actually from

the projection of the spherical range of θ along the direction of each g•i. For the edges

in such loopy graphs, we can get better bound estimates with feature node aggregation in

the given graphs. There are numerous possible combinations of feature nodes. We only

consider the ones without increasing the number of variables in the resulting inequalities.

One simple way is to find all the paths between the nodes with the degree higher than two,

and then implement node aggregation on each path. For example, for the loopy graph in

Figure 3.2(B), we can have three paths, which are a− b− c− d, d− e, and e− f − g. We

can see that the corresponding node aggregation also corresponds to column addition inD.

Hence, for such an improvement strategy, we can construct an additional transformation

matrix T 2 for the graph with |E| > p− 1.

3.3.4.2 Transformation for Trend Filtering

Similarly, we can get the transformation matrix for trend filtering. The trend filtering

uses the matrix D with the structure illustrated below. Thus, we aim to reduce the number
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of the involved elements in u in each row of the inequality system: L ≤ DTu ≤ H , with

a (n− 1)× n matrix D:

D =



1 −2 1 ... 0 0 0

0 1 −2 ... 0 0 0

...

0 0 0 ... 1 −2 1


. (3.50)

We can easily derive a transformation matrix for more efficient screening with the trend

filter:

T =



1 0 0 ... 0 0 0

2 1 0 ... 0 0 0

3 2 1 ... 0 0 0

...

n n− 1 n− 2 ... 3 2 1


. (3.51)

With this transformation, D̃ will become a diagonal matrix, leading to efficient screening.

3.3.5 Algorithm Flow for Sequential GL Screening and Dynamic Screening

3.3.5.1 Algorithm Flow for Sequential Screening

Given a data set {X,y}, an arbitrary operation matrixD depending on the correspond-

ing GL problem, and a sequence of decreasing λ’s, our safe GL screening algorithm first

derives the transformation matrix T , then applies bound propagation to iteratively tighten

the bound estimates at a given λ. For each λ, features are aggregated based on the optimal

solution β∗(λ′) of the regularized problem with the previous heavier penalty parameter

λ′. Figure 3.3 illustrates the sequential screening procedure. Although for general cases

of GL problems, it is difficult to compute λmax to initiate the sequential screening, in the

following, we list a few special cases, for which we can derive λmax and β∗(λmax) for safe
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sequential screening.

Theorem 6 If the operation matrix D can be transformed to a diagonal matrix, i.e. D̃ =

DT , then λmax = maxi | g̃
T
•if
′(Gβ̄)

d̃ti
|, and g̃•i is the ith column of G̃ = GT , β̄ ∈ {β : |Dβ| =

0}, and d̃ti is the nonzero entry in the ith column of D̃.

Proof: From G̃T θ = λD̃Tu, we can see that if D̃T is a diagonal matrix, λmax =

maxi | g̃
T
•if
′(Gβ̄)

d̃ti
|, and d̃ti is the nonzero entry in ith row of D̃T . As θ = f ′(Gβ) and |Dβ| = 0

at λmax, we can choose β̄ that |Dβ̄| = 0. Thus, λmax = maxi | g̃
T
•if
′(Gβ̄)

d̃ti
|.

Based on Theorem 6, we can compute the λmax for the LASSO, Fused LASSO, Tree

Fused LASSO and trend filtering problems, due to the special structures of their corre-

sponding D matrices.

3.3.5.2 Dynamic Screening

For many general cases of GL problems, it is difficult to compute λmax. Thus, it is hard

to derive the corresponding β∗(λmax) to initiate the sequential screening process. Here,

to solve this problem, we further propose a dynamic screening method for GL problems.

Dynamic screening for LASSO [38, 39, 40] does not require the solution from a heavier

penalty parameter, but constructs the constraint region for the dual variable θ based on the

approximate solution from the first-order gradient method and then derive the screening

rules.
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If f∗(·) is a α-strongly convex function, we have

∀θ ∈ Ωλ, ||θ − θ∗λ||22 ≤
2

α

[
f∗(θ)− f∗(θ∗λ)− 〈f ′∗(θ∗λ), θ − θ∗λ〉

]
. (3.52)

Here θ∗λ is the optimal solution for a given D and λ, which means 〈f∗′(θ∗λ), θ − θ∗λ〉 ≥ 0.

Hence, we have

||θ − θ∗λ||22 ≤
2

α

[
f∗(θ)− f∗(θ∗λ)

]
.

Let β∗λ be the primal solution at λ. P (β, λ) represents the primal value at (β, λ). By strong

duality, we have −f∗(θ∗λ) = P (β∗λ, λ). We also know that, for any β ∈ R1×p, we have

P (β∗λ, λ) ≤ P (β, λ). Therefore, we can prove the following theorem,

Theorem 7 If f∗ is α-strongly convex, then

∀θ ∈ Ωλ, β ∈ R1×p, ||θ − θ∗λ||22 ≤
2

α

[
P (β, λ) + f∗(θ)

]
. (3.53)

Iterative algorithms such as the alternating direction method of multipliers (ADMM) [70]

iteratively update the primal variable β, which are asymptotically close to the optimal β∗λ.

With the primal and dual relationship, for βt at each iteration step t, we can easily compute

θt. However, θt may not belong to the dual feasible region since the solution during the

iterations of the ADMM algorithm is an approximate solution rather than the exact solu-

tion. To construct a constrained region for θ∗λ using Theorem 7 so that we can apply the

screening rule, we need to project θt to Ωλ. Assume α is a scalar as a projection parameter.

If α is small enough, we can have αθt ∈ Ωλ. On the other hand, we also want to have

α that helps to quickly approach θ∗λ, which will lead to tighter bounds for more effective
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screening. We can formulate the optimization problem to search for α:

min
α∈Φ

n∑
i=1

f ∗(αθti), Φ = {α : GTαθt = λDTu, ||u||∞ ≤ 1}. (3.54)

If the loss function in the primal problem is linear regression, we can conveniently compute

α according to the following theorem.

Theorem 8 The scaled feasible θ̂t for any θt that is the closest to θ∗λ is θ̂t = αtθ
t, where

αt = min

{
max

{
−mini

λ||D•,i||1
||XT θt||1 ,−

yT θt

||θt||22
)
}
,mini

λ||D•,i||1
||XT θt||1

}
.

Proof: We want to compute

αt = arg min
α∈R

{
1

2
||αθt + y||22 −

1

2
y2, s.t. XTαθt = λDTu, ||u||∞ ≤ 1

}
(3.55)

We can see that the objective function is quadratic with a scalar variable α, and the min-

imum is at α = − yT θt

||θt||22
. Therefore, we just need to estimate the range of α and then

determine the optimal α. With the constraint
{
XTαθt = λDTu, ||u||∞ ≤ 1

}
, we can

see that the range of α is
[
−mini

λ||D•,i||1
||xTi θt||1

,mini
λ||D•,i||1
||xTi θt||

]
. Thus the optimal least-squares

objective function is minimized at min

{
max

{
−mini

λ||D•,i||1
||xTi θt||1

,− yT θt

||θt||22
)
}
,mini

λ||D•,i||1
||xTi θt||1

}
.

For the logistic regression or other forms of loss functions that we cannot compute the

closed-form solutions for α that minimize the corresponding dual objective functions, we

can choose one from
[
−mini

λ||D•,i||1
||xTi θt||1

,mini
λ||D•,i||1
||xTi θt||1

]
that has a smaller objective function

value as the projection parameter α.

With a sequence of decreasing λ’s, i.e., λ0 > λ1 > ... > λn, if we can directly

compute the λmax as in Theorem 10, we can start the sequential screening process from

λmax and then do the screening and solve the problems one by one according to the λ

sequence; otherwise we can start the sequential screening process directly from λ0 using

the proposed dynamic screening procedure here.
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Since it is difficult to get an absolute accurate optimum for the optimization problem

at λi, we can add a slack variable to improve the safety of the screening at λi+1,

sup
u∈U
|uk| < 1− ε⇒ Dk•β

∗ = 0 . (3.56)

In our experiments, we take ε = 0.01. An alternative absolute safe way is to derive a

relatively loose but absolute safe bound with the equation (5.2.1), i.e., Li = 1
λ
(gT•iτ −

r1||g•i||2 − rr||g•i||2), and Hi = 1
λ
(gT•iτ + r1||g•i||2 + r2||g•i||2), where τ = θ̂, θ̂ is the

projected dual variable at λi and r1 is the ball radius from Theorem 2, and r2 is the ball

radius from (5.2.1).

3.3.6 Extensions to Models with Residual Terms

Our GL screening method can be extended to general prediction models with residual

terms, such as the following problem:

P̄ : min
β,b

n∑
i

f(gi•β + gi0b) + λ||Dβ||1. (3.57)

Here gi0 could be 1, e.g., in linear regression models.

Theorem 9 A dual form of (3.57) is given by

min
θ∈Ωλ

n∑
i=1

f ∗(Hi•θ), Ωλ = {θ : ḠT θ = λDTu, ||u||∞ ≤ 1}. (3.58)

Here Ḡ = HTG, and H =

 I

h

, h = [− g1,0

gn,0
, ...,−gn−1,0

gn,0
]. The primal and dual rela-

tionship is f ′(gTi•β + gi0b) = Hi•θi.
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Proof: Let G′ =
[
G, g•0

]
, D′ = [D 0], and β′ =

 β

b

. The primal problem becomes

min
β′

n∑
i

f(G′β′) + λ||D′β′||1. (3.59)

By Theorem 1, the dual problem of (3.59) is

min
θ′∈Ωλ

n∑
i=1

f ∗(θ′i), Ωλ = {θ′ : G′T θ′ = λD′Tu, ||u||∞ ≤ 1}. (3.60)

As G′T θ′ = λD′Tu, we have gT•0θ
′ = 0, thus θ′n = − g1,0

gn,0
θ′1 − ... − gn−1,0

gn,0
θ′n−1. Let

θ = [θ′1, ..., θ
′
n−1]T , H =

 I

h

, and h = [− g1,0

gn,0
, ...,−gn−1,0

gn,0
], and we have θ′ = Hθ. With

θ′ = Hθ, the dual form becomes

min
θ∈Ωλ

n∑
i=1

f ∗(Hi•θ), Ωλ = {θ : GTHθ = λDTu, ||u||∞ ≤ 1}. (3.61)

Let f̄(β, b) =
∑n

i=1 f(gi•β+gi0b), and f̄∗(θ) =
∑n

i=1 f
∗(Hi•θ). Similarly as the proof

for Theorem 2, we have the following theorem.

Theorem 10 Let θ∗0 and θ∗ be the optimal solutions to the dual problem (3.73) at λ0 and

λ, respectively, then we have

〈f̄ ′∗(θ∗0)− λ

λ0

f̄ ′∗(θ∗), θ∗ − λ

λ0

θ∗0〉 ≥ 0,

and

〈f̄ ′∗(θ∗0)− f̄ ′∗(θ∗),
θ∗

λ
− θ∗0
λ0

〉 ≥ 0.
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If f̄∗ is α-strongly convex, then

||θ∗ − θ∗0||22 ≤
2

α

[
f̄∗(

λ

λ0

θ∗0)− f̄∗(θ∗0) + (1− λ

λ0

)〈f̄ ′∗(θ∗0), θ∗0〉
]
,

and

∀θ ∈ Ωλ, β ∈ R1×p, ||θ − θ∗λ||22 ≤
2

α

[
P̄ (β, λ) + f̄∗(θ)

]
. (3.62)

We can construct the dual variable constraint region for sequential and dynamic screen-

ing using Theorem 10, and then, apply the transformation and bound propagation for the

problems with residual terms in similar ways as discussed previously. Similarly, if the

operation matrix D can be transformed into a diagonal matrix, we can compute the λmax

by Theorem 6 based on the dual form in Theorem 9.

3.3.7 Experiments and Discussions

In Section 7.1, we first demonstrate the advantages of using our safe GL screening

method with linear regression and logistic regression on synthetic data. In Section 7.2,

we compare the proposed bound propagation algorithm with the CPLEX solver to demon-

strate the effectiveness and efficiency of our bound propagation algorithm for safe screen-

ing. We show the results for dynamic screening in Section 7.3. Finally we present the

results of our proposed safe GL screening method on two real-world biomedical data sets:

We test our screening method for Generalized Fused LASSO (GFL) linear regression on

an Alzheimer’s disease data FDG-PET; and then we show our results for GFL and Sparse

Generalized Fused LASSO (SGFL) logistic regression on a breast cancer data.

In the following subsections, we employ CVX [71] as the base GL solver and integrate

CVX with the proposed methods. We evaluate the effectiveness of our screening method
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according to the rejection rate, which is defined as

Rej. Rate =
Reduced feature set size
Original feature set size

.

Let βcvx be the solution from CVX, and βscr as the solution from screening and CVX. We

define Sparse Level and Prim. Diff. as

Sparse Level =
#{i : |Dβcvx|i < ε}

#rows of D
,

and

Prim. Diff. = |P (βcvx)− P (βscr)|.

Here ε = 10−5 and Prim. Diff. measures the difference of the primal objective function

values with and without screening, which provides the evaluation of the expected safe

screening. Besides average values, we also provide variation values of both Rej. rate and

Prim. Diff. from running multiple experiments in respective tables.

3.3.7.1 Experiments with Synthetic Data

GFL Linear Regression (GFL-LinR) We simulate the data sets with n = 100 sam-

ples and p = 3, 000 features according to a linear model y = Xβ + ε, where each column

of X is a vector with random entry values in the interval [−10, 10], and ε ∼ N(0, 1.0). β

takes structured relationships from a randomly generated graph G, and each element of β

is in [−1, 1]. We simulate graph structures using both general connected graphs and forest

graphs. First, we generate four different data sets. Each data set corresponds to a randomly

generated graph with the total number of edge densities ranging from p− 1 to 1.3p. These

four data sets correspond to the rows indexed by “p-1", “1.1p", “1.2p", “1.3p" in Table

3.2, respectively. We randomly choose the variables in two subgraphs in each G to be the
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non-zero contributing features. The distance between the two subgraphs is chosen to be

large, so that we can independently set different β values for the corresponding features

in these two subgraphs. Second, for forest graphs (dp
2
e ≤ |E| < p − 1), we generate two

data sets with 5 and 10 trees, respectively. These two data sets correspond to the rows of

“p-10" and “p-5" in Table 3.2, respectively. Entries of β in the same tree have the same

value. Table 3.2 provides the running time (in seconds) when applying GFL linear regres-

sion solved by the CVX package [71] with and without our safe GL screening method. In

the table, the “GFL-LinR" column provides the time used by the CVX package without

screening; “Scr." denotes the time used by our GL screening process. We have tested 52 λ

values ranging from 3 to 1 in the descending order in this set of experiments to implement

the sequential screening.

GFL Logistic Regression (GFL-LogR)

In this subsection we test our proposed screening method on GLF Logistic Regression.

As CVX takes more time to solve the logistic regression problems, we simulate the data

sets with n = 60, p = 1, 500 to enable the comparison with reasonable computation time.

The binary label for each sample is generated based on the logistic regression model,

where we let ỹ = Xβ + ε, where each column of X is a vector with random entry value

belongs to [−10, 10], and ε ∼ N(0, 1.0), and we set yi = 1 if ỹi ≥ c; and yi = 0 if ỹi < c.

We choose the c value to give balanced training data sets in our experiments. Five data sets

are simulated with the graph edge number ranging from p− 1 to 1.3p. The corresponding

graphs and regression coefficient vectors β are generated in a similar way as GFL Linear

regression with general connected graphs in the previous subsection. Table 3.3 provides

the results for this study with 50 λ’s ranging in [1, 3], in which “GFL-LogR" denotes the

implementation with the CVX package.
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λ/λ0

λ/λ0 λ/λ0

λ/λ0 λ/λ0

Figure 3.4: Rejection rates with and without transformation. The two plots in the first row
are for GFL Linear Regression based on data from Section 7.1.1 with the edge number at
p− 1 and 1.2p; the two plots in the second row are for GFL Logistic Regression based on
data from Section 7.1.2 with the edge number at p−1 and 1.2p. In the figures, “BP” stands
for bound propagation, and “Transf+BP” is bound propagation with transformation.
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Tables 3.2 and 3.3 also provide the average and variance values of Rej. Rate and Prim.

Diff. with decreasing λ sequences on graphs with different edge densities. Our proposed

screening method can speed up the original CVX solver up to 5 times faster. Both tables

show that the screening power decreases with the graph edge density increasing. In addi-

tion, the primal objective function value difference with and without screening is negligi-

ble, indicating the safe guarantee of our screening method. For both GFL linear regression

and GFL logistic regression, Figure 3.4 compares the rejection rates with and without the

proposed transformation and the transformation can always improve the rejection rate to

speed up solving GL problems.

Figure 3.5 gives the rejection rate for both GFL linear regression and GFL logistic

regression when the graph edge number is p − 1. In this situation, we can compute the

λmax according to Theorem 6. With sequential screening, many L1 terms can be removed

from both models, and the computation cost can be remarkably reduced.

SGFL Linear Regression (SGFL-LinR)

The formulation for Sparse Generalized Fused LASSO (SGFL) Linear Regression is

min
β

1

2
||y −Xβ||+ λ1||β||1 + λ2||Dβ||1,

where λ1 is the parameter that controls the sparsity penalty and λ2 is the parameter con-

trolling the penalty from structural feature relationships. It can be transformed into the

following form:

min
β

1

2
||y −Xβ||+ λ||D̃β||1,

where D̃ =

 λ1

λ2
I

D

, and λ = λ2.
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Figure 3.5: Rejection rate for GFL screening when the edge number is p − 1. The upper
left figure is for the synthetic data in Section 7.1.1; the upper right figure is for the FDG-
PET data set in Section 7.4.1. The lower left figure is for the synthetic data in Section
7.1.2; and the lower right figure is for the breast cancer data in Section 7.4.2. For these
four data sets, we use 50 or 100 λ’s ranging from 0.05× λmax to λmax.
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We first present the results here with λ1

λ2
= 8. To simulate the data, we generate

the graphs to simulate the structural relationships among features in a similar way as in

the previous two subsections and randomly set some nodes to be non-zero contributing

features. We generate nine data sets with general connected graphs with the edge number

ranging from 0.1p to 2p. There are n = 100 data samples with p = 5, 000 features in each

data set. Table 3.4 gives the results for this simulation study with 51 λ’s ranging from 50

to 100. “SGFL-LinR" denotes the time used by the CVX package.

Figure 3.6 further illustrates the rejection rates with changing λ1/λ2. We generate

11 data sets with λ1/λ2 changing from 0.1 to 10 for two graphs with 0.6p edges and 1.2p

edges, respectively, with the other parameters fixed to the same values as described before.

From the figure, we can see that the larger the difference between λ1 and λ2, the higher

rejection rate we can get. This is expected due to the property of the inequality system

in (3.38) and (3.42). For the sub-gradient ui’s with larger coefficients, they tend to have

tighter bounds. If all ui’s have similar coefficients in one inequality system for their upper

and lower bounds, they will have similar bound gaps as the system cannot discriminate

them. In this situation, with the same system bounds, the overall screening power will be

reduced.

3.3.7.2 Compare CPLEX and Bound Propagation for Safe Screening

As the goal for screening is to identify as many trivial L1 items as possible (in other

words, eliminate and/or aggregate as much as possible), we have shown that the efficacy

for screening depends on the fact that how tight the bounds of the sub-gradient vector u can

be estimated. Although the CPLEX LP solver can solve the bound estimation problem, it

is very computationally costly. In order to clearly demonstrate that our bound propagation

algorithm can achieve similar screening performance as the CPLEX LP solver with signif-

icant speedup, we compare the rejection rates as well as running time for bound estimation
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Figure 3.6: Rejection rates for SGFL Linear Regression on simulation data with different
λ1/λ2 ratios.

based on both CPLEX LP solver and our bound propagation on a GFL-LinR model with a

similarly simulated data set as in Section 7.1.1. Due to the tremendous computational cost

of CPLEX, we only present the results on the data sets with n = 50, p = 500, |E| = 1.2p,

and |E| = 1.3p. Table 3.5 shows the comparison of the running time. Figure 3.7 compares

the rejection rates of the two methods. We can see that our bound propagation can achieve

very similar rejection rates as the CPLEX LP solver, but with much lower computational

cost. For bound estimation, our bound propagation algorithm can achieve speedups by

two orders of magnitude compared to the CPLEX LP solver as shown in Table 3.5. In Fig-

ure 3.8, the red curves give the average values of estimated upper bound and lower bound

at different λ′s for bound propagation; and the blue curves are from CPLEX solver. Fig-

ure 3.9 gives the mean and variance values bound difference between CPLEX and bound

propagation. From both figures, we can see that bound propagation can provide tight up-

per and lower bound estimates for u. We also notice that these estimates are loose bounds

for u, thus they are safe for screening.

3.3.7.3 Experiments for Dynamic Screening

In this section, we take the GFL linear regression as an example to study the proposed

dynamic screening. We generate 50 data samples with 1,500 features for each sample.
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Table 3.5: Running time (in seconds) for CPLEX and bound propagation

Method CPLEX BD Propagation
CVX + GFLS (1.2p) 421.7 65.5
LP (1.2p) 369.1 2.1
CVX + GFLS (1.3p) 576.7 81.2
LP (1.3p) 508.7 2.4

) + λ ) + λ
Figure 3.7: Rejection rates for CPLEX and Bound Propagation on GFL with the edge
density |E| = 1.2p (left) and |E| = 1.3p (right) (n = 50 and p = 500).

) + λ ) + λ

Figure 3.8: Average upper and lower bound by bound propagation and CPLEX on GFL
with the edge density |E| = 1.2p (left) and |E| = 1.3p (right) (n = 50 and p = 500).
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) + λ

) + λ

) + λ

) + λ

Figure 3.9: Mean and variance values for bound difference between CPLEX and bound
propagation on GFL with the edge density |E| = 1.2p (first two figures) and |E| =
1.3p (third and forth figures) (n = 50 and p = 500).
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Figure 3.10: Dynamic screening. The left figure presents the number of reduced features
with the increasing number of iterations. The right figure compares the running time for
ADMM and ADMM with dynamic screening at different duality gap values.

We simulate the structural relationships among features by the randomly generated graph

with 1.1p edges. The random simulation setup is the same as in Section 7.1.1. We have

embedded our dynamic screening with the ADMM algorithm. Figure 3.10 shows the

experimental results for the dynamic screening study. From the figure, we can see that

the smaller the duality gap is, the tighter constraint region of the dual variables will be;

and the more L1 items can be removed, the more efficiency gain we can get from dynamic

screening.

3.3.7.4 Experiments on Biomedical Data

We further test our GL screening method on two real-world data sets: FDG-PET [72]

and Breast Cancer [54]. The first two subsections present the results for Generalized Fused

LASSO on both data sets, and the last subsection gives the results for Sparse Generalized

Fused LASSO (SGFL) on the breast cancer data set.

GFL Linear Regression on FDG-PET The FDG-PET data set was collected from 74

Alzheimer’s disease (AD) patients, 172 mild cognitive impairment (MCI) subjects, and 81

normal control (NC) subjects, which was downloaded from the Alzheimer’s Disease Neu-
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Table 3.6: Results on FDG-PET data set

Method p-1 1.1p 1.2p 1.3p
GFL-LinR 64.4 66.7 64.2 69.1
GFL-LinR + Scr. 23.1 27.1 38.2 43.0
Rej. Rate 0.939 0.720 0.549 0.394
(Var.) (6.7E-4) (3.6E-4) (3.6E-4) (2.0E-4)
Sparse Level [0.955, [0.967, [0.963, [0.959,

1.000] 0.992] 0.993] 0.993]
Prim. Diff. 3.2E-7 2.4E-7 2.4E-7 4.2E-7
(Var.) (7.3E-14) (2.6E-14) (3.0E-13) (2.5E-12)

roimaging Initiative (ADNI) database [73]. After preprocessing of the data by following

the approach adopted in [72], 116 features (each feature corresponds to a brain region) can

be derived for each subject. The outcome variable in this data set takes transformed nu-

merical values from the original categorical sample label (NC, MCI, and AD). We further

use the method described in [72] to construct the regularization graph by using the Sparse

Inverse Covariance Estimation (SICE) [74]. Table 4.4 gives the running time of CVX and

CVX + Screening for different scenarios, where each scenario has a different graph den-

sity controlled by SICE. Results in Table 4.4 clearly show the significant improvement on

computational time if our GFL screening is applied to remove many of the trivial edges

and aggregate the corresponding variables, before the use of the CVX to solve the GFL

learning problem. We apply sequential screening with 54 decreasing λ’s for each graph

density based on SICE. Figure 3.11 gives the rejection rates with and without transforma-

tion for graphs |E| = 1.2p and |E| = 1.3p. We can see that with transformation, we can

further reduce the problem size.

GFL Logistic Regression on Breast Cancer Breast cancer data set consists of gene

expression data for 8,141 genes in 295 breast cancer tumors (78 metastatic and 217 non-

metastatic) [54]. The largest connected component in the human protein-protein inter-
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Figure 3.11: FDG-PET data with and without transformation (Left:|E| = 1.2, right: |E| =
1.3).

action (PPI) network was identified in [54] to capture the gene-gene relationships by a

connected graph with 7,782 nodes. To generate different regularization graphs with dif-

ferent edge density levels, we start with a randomly induced tree from the PPI network

and gradually add back edges randomly chosen from the original PPI network. Table 3.7

shows the running time for CVX with and without screening on these different graphs.

We apply sequential screening with 64 decreasing λ’s for each graph density. The bottom

right plot in Figure 3.5 presents the rejection rate at 100 different λ’s with edge number

p− 1.
SGFL Logistic Regression on Breast Cancer

We also have tested the proposed screening method on the following SGFL logistic

regression problem,

min
β

∑
i

{
log(1 + exp(xiβ))− xiβyi

}
+ λ||D̃β||1,

92



Table 3.7: Results for GFL-LogR on breast cancer data set

Method p-1 1.1p 1.2p 1.3p
GFL-LogR 6434.1 7159.3 6849.0 6944.6
GFL-LogR+Scr. 1234.6 2504.3 3427.0 3730.9
Rej. Rate 0.915 0.749 0.667 0.601
(Var.) (5.8E-4) (7.3E-4) (5.3E-4) (5.3E-4)
Sparse Level [0.981, [0.981, [0.986, [0.987,

0.986] 0.989] 0.992] 0.993]
Prim. Diff. 1.1E-7 5.5E-7 5.6E-8 7.7E-8
(Var.) (4.0E-15) (2.3E-13) (2.0E-15) (5.0E-15)
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Figure 3.12: Rejection rate for SGFL Logistic Regression on breast cancer with different
λ1/λ2.

where D̃ =

 λ1

λ2
I

D

, and λ = λ2. This problem is the same as in Section 7.1.3 except

the different loss function. We use the breast cancer data set with the same preprocessing

as done in the previous subsection. Table 3.8 shows the running time for CVX with and

without screening. In this study, we choose 30 λ’s ranging from 0.1λ0 to λ0, and λ0 =

||XTy||∞. Figure 3.12 gives the rejection rates for different graph densities when λ1

λ2
is 5.
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From the simulation and real-world data studies, we can see our screening method

can effectively remove the trivial L1 items especially when the operation matrix D can be

transformed into a diagonal matrix. For SGFL problems, according to our experiments,

when the difference between λ1 and λ2 is larger, we can obtain higher screening power,

which has been similarly observed in Section 7.1.3.

The proposed methods are appealing in solving GL problems with high feature dimen-

sion, and with the D matrix diagonalizable (the number of non-zero entries in D can be

reduced with column transformations), as demonstrated in the reported experiments. For

example, for generalized Gused LASSO (GFL) problems with a graph capturing feature

relationships, we can derive a transformation matrix T according to the method detailed

in Section 4.1. Other GL problems with diagonalizable D with a transformation matrix T

can potentially have high rejection rates using our proposed algorithm. We have tried our

method on trend filtering problems withG being an identity matrix, and the problem can be

transformed into LASSO problems with the transformation method in section 4.2. Empiri-

cally our screening method does not show significant improvement for such trend filtering

problems compared to learning without screening. In fact, the CVX solver is quite efficient

on solving the GL problems with the family of objective functions: 1
2
||y−β||22 +λ||Dβ||1.

We have tried to integrate the proposed screening method with other GL solvers, e.g.,

[34, 61, 62, 57], but none of these methods can provide sufficient scalability or accuracy

for screening. More details about comparison between these solvers can be found in Ap-

pendix of the supplemental file.

3.3.7.5 Comparison between CVX and Other GL Solvers

We have made a great effort to integrate the proposed screening method with other GL

solvers. Methods in [34, 60, 61, 62] provide novel approaches for solving the path solution

problem for GL. The screening method proposed in this chapter requires accurate solutions
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Table 3.9: Compare CVX and other solvers on data sets with p = 500, n = 30.

Method GraphCut [57] Path Sol. [34] CVX
Time(Sec.) (|E| = 0.8p) 58.7 65.9 1.2
P (β̂) (|E| = 0.8p) 15.8794 14.8662 14.8630
Time(Sec.) (|E| = 1.3p) 118.9 134.2 2.4
P (β̂) (|E| = 1.3p) 2.9707 2.4427 2.4246

at given λ’s. In our experiments, the method in [61] cannot give primal solutions with

high precision at given λ’s, and cannot scale well to the problems with high dimensional

feature sets, e.g. p > 1000. The authors in [57] also derived a solver to sparse generalized

Fused lasso problems, to minimize the objective function: 1
2
||y − Xβ||22 + λ1||β||1 +

λ2

∑
(i,j)∈E |βi − βj|1. However, in the provided software package of [57], the penalty

weight on ||β||1 can only be one constant value (λ1). And this makes it difficult to integrate

screening into the solver in [57]: During the screening process, the weights for vector ||β||1
may have different values. Furthermore, according to our experiments, similar to [61], the

solver in [57] does not scale as well with the high dimensional data sets as CVX does.

Table 3.9 provides the running time and primal objective values for different GL solvers

on Sparse Generalized Fused LASSO (SGFL) linear regression with similarly simulated

data sets as in the experiments reported in Section 7.1 when p = 500, n = 30. Based on

these results, we have chosen the CVX solver as the baseline solution to be integrated with

our screening method.

3.4 SAIF for Fused LASSO

In this section, we focus on GL problem with tree structures, which means there is no

loop in the graph. We show that this type of tree Fused LASSO can be transformed into a

typical LASSO form with residual term, thus we can employ the SAIF idea for scaling up.
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3.4.1 Methodology

The formulation for fused LASSO is

min
β

n∑
i

f(xi•β, yi) + λ||Dβ||1, (3.63)

where ||Dβ||1 =
∑

(a,b)∈E |βa − βb|, and each pair in E denotes an edge in a complete

tree with F as the vertex set. The tree G(F , E) captures the dependency structures among

features. HereD is a matrix representation of the tree, and in each row ofD, we have zeros

entries except two with 1 and −1. The fused LASSO problem can be further transformed

into the equivalent LASSO formulation with the following theorem.

Theorem 11 IfD can be transformed into a diagonal matrix with a column transformation

matrix T, i.e. D̃ = DT , and D̃ is a diagonal matrix, then

a) the problem (3.63) is equivalent to

P̃ : min
β̃,b

n∑
i

f
( p−1∑
j=1

x̃ijβ̃j + x̃ipb, yi

)
+ λ||β̃||1, (3.64)

where X̃ = XT , and the solution relationship is β∗ = T
[
β̃∗

b∗

]
;

b) a dual form of (3.64) is

D̃ : min
θ̄∈Ω
−

n∑
i=1

f ∗(−λθ̄i), Ω =
{
θ̄ : |x̄Ti θ̄| ≤ 1,∀i ∈ {1, ..., p− 1}

}
. (3.65)

Here X̄ = X̃−p, and H =

 I

h

, h =
[
− x̄1,p

x̄n,p
, ...,− x̄n−1,p

x̄n,p

]
. θ̄ = Hθ−p , and

θ = −
f ′
(
X̃
[
β̃∗

b∗

])
λ

. M−p means matrix or vector M without pth column or entry;

c) λmax = maxi∈{1,...,p−1}
∣∣x̄Ti f ′(X̃

[
0
b

]
)
∣∣.
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Proof: a) The dual form for fused LASSO is

D1 : sup
θ
−

n∑
i=1

f ∗(−λθi) (3.66)

s.t. XT θ = DTu (3.67)

||u||∞ ≤ 1. (3.68)

Here the primal and dual optima relation is θ∗ = − f(Xβ∗)
λ

.

With transformation matrix T , X̃ = XT , and D̄ = DT is a diagonal matrix, with the

elements either 1 or 0 and the last column is all-zero column. And the dual form becomes

D2 : sup
θ
−

n∑
i=1

f ∗(−λθi) (3.69)

s.t. |x̃Ti θ| ≤ 1,∀i, 1 ≤ i ≤ p− 1 (3.70)

x̃Tp θ = 0 (3.71)

We can see the corresponding primal problem for D2 also is

P̃ : min
β̃,b

n∑
i

f
( p−1∑
j=1

x̃ijβ̃j + x̃ipb, yi

)
+ λ||β̃||1. (3.72)

where X̃ = XT , and the solution relationship is β∗ = T
[
β̃∗

b∗

]
.

b) With (3.71), we have θn = − x̄1,p

x̄n,p
θ1 − ... − x̄n−1,p

x̄n,p
θn−1. Let X̄ = X̃−p, and H =
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 I

h

, h =
[
− x̄1,p

x̄n,p
, ...,− x̄n−1,p

x̄n,p

]
, θ̄ = Hθ−p the dual form becomes

min
θ̄∈Ωλ

−
n∑
i=1

f ∗(−λθ̄i), Ω =
{
θ̄ : |x̄Ti θ̄| ≤ 1,∀i ∈ {1, ..., p− 1}

}
. (3.73)

As we have θ∗ = − f(Xβ∗)
λ

, and β∗ = T
[
β̃∗

b∗

]
, thus we have θ̄∗ = −

[
f ′
(
X̃
[
β̃∗

b∗

])]
−p

λ
.

c) As λmax is the minimum λ that β̃∗1 = β̃∗2 = ... = β̃∗p−1 = 0, we also have

maxi∈{1,...,p−1} |x̄Ti θ̄|

= 1,
∣∣∣x̄Ti
[
f ′
(
X̃
[
β̃∗

b∗

])]
−p

λmax

∣∣∣ = 1, thus λmax = maxi∈{1,...,p−1}
∣∣x̄Ti f ′

(
X̃
[
0
b

])∣∣.
With the primal form (3.64) and dual form (3.65) in Theorem 11, we just need a trans-

formation on the feature set to apply our method to fused LASSO problems. From the

proof of Theorem 2 in [38], we can easily get ∀θ̄ ∈ Ω, β̄ =
[
β̃
b

]
∈ Rp×1, ||θ̄∗ − θ̄||22 ≤

2
λ2

[
P̃ (β̄)− D̃(θ̄)

]
. With the duality gap, we can derive the ADD and DEL rules for fused

LASSO. The following Theorem shows how to project the current dual estimation ˆ̄θ to the

feasible space Ω for regression with the least square loss function.

Theorem 12 For linear regression problems with fused LASSO regularization, the scaled

feasible ˆ̄θ for any θ that is the closest to θ̄∗ is ˆ̄θ = τ θ̄, where τ = min
{
max{ yT θ̄

λ||θ̄||22
,

− 1
||X̄T θ̄||∞},

1
||X̄T θ̄||∞

}
.

Proof: According to Theorem 11, the dual variable corresponding to primal variable
[
β̃
b

]
is θ̄ = {θ1, ..., θp−1} , θ = −

f ′
(
X̄
[
β̃
b

])
λ

. While θ̄ may not be feasible to the dual problem of

linear regression. With a projection scalar τ , we try to make τ θ̄ closer to θ̄∗ in the feasible

space:

τ = arg min
τ∈R

{
1

2
||λτ θ̄ − y||22 −

1

2
||y||22, s.t. |x̄Ti τ θ̄| ≤ 1,∀i ∈ {1, ..., p− 1}

}
. (3.74)
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From the objective function, we can easily get τ = yT θ̄
λ||θ̄||22

to reach the minimum point if no

constraint on τ . Therefore we need to estimate the range of τ to determine the minimum

for our case. From the constraint region
{
|x̄Ti τ θ̄| ≤ 1,∀i ∈ {1, ..., p − 1}

}
, the range for

τ is
[
− 1
||X̄T θ̄||∞ ,

1
||X̄T θ̄||∞

]
. Thus τ = min

{
max{ yT θ̄

λ||θ̄||22
,− 1
||X̄T θ̄||∞},

1
||X̄T θ̄||∞

}
.

The algorithm for fused LASSO is the same as LASSO with the transformation steps.

As the transformation matrix is highly sparse and only have column operations on the

feature matrix X , we can replace matrix multiplication with column operations to further

improve computation efficiency.

3.4.2 Results for Fused LASSO

We further present the experiments fo fused LASSO with the formulation (3.63). There

are a few solvers that are suitable for tree fused LASSO problems, such as [71] and the

path solution method [60]. Due to the scalability and solution accuracy issues with the path

solution package, we only take [71] as the baseline for comparison in our experiments. We

first compare the running time between SAIF and [71] on breast cancer regarding fused

LASSO linear regression; then we compare them on the FDG-PET data set [73] with

logistic regression as the loss function.

3.4.2.1 Breast Cancer Data

For the same breast cancer data set, we would like to incorporate the interaction rela-

tionships among genes to formulate the fused LASSO problems for regression analysis.

The largest connected component in the human protein-protein interaction (PPI) network

was identified in [54] to capture the gene-gene relationships by a connected graph with

7,782 nodes. The first plot in Figure 3.13 gives the running time for both CVX and SAIF

at different λ’s with duality gap 1.0E-6. The results show that SAIF can significantly

reduce computation cost compared with CVX.
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Figure 3.13: Running time for fused LASSO on breast cancer (left) and PET (right) data
sets at duality gap 1.0E-6.

3.4.2.2 FDG-PET Data Set

The FDG-PET data set has 74 Alzheimer’s disease (AD) patients, 172 mild cognitive

impairment (MCI) subjects, and 81 normal control (NC) subjects, which was downloaded

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [73]. 116 features

(each feature corresponds to a brain region) can be derived for each subject after prepro-

cessing. We further use the method described in [72] to construct a correlation tree on

these features. We take AD as positive(1) and NC as negative(0), and disregard all of MCI

samples in this set of experiments in fitting to a fused LASSO logistic regression model.

The second plot in Figure 3.13 gives the running time for three λs at duality gap 10−6.

Again SAIF takes much less time on this data set.

3.5 Conclusions

In this chapter, we present novel safe screening methods for Generalized LASSO (GL)

problems. Due to the arbitrary structure of the GL problems in terms of structural regu-

larization, developing safe screening rules for GL problems calls for a different approach

from the existing screening methods that have been devoted for special cases of the GL

problems. The main idea of the first approach is to show that safe screening for GL prob-

lems can be derived by formulating equivalent dual problems constrained by linear in-
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equality systems for GL learning. We then develop a novel bound propagation algorithm

in the dual space to estimate tight bounds of u∗(λ), so that we can identify as many trivial

L1 items as possible to significantly reduce the original problem size. This bound prop-

agation method is further enhanced by novel transformation methods that can be tailored

to different GL problems. The proposed propagation and transformation methods can also

be applicable with dynamic screening, which further provides an efficient way to start

the screening process when the desirable regularization parameter is difficult to estimate.

We also show that GL problems with tree structures can be scaled up with SAIF method,

in which we do not need to solve an extra problem with heavier penalty parameter. Ex-

perimental results on both synthetic and real-world data sets demonstrate the promising

performance of our safe GL screening method.
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4. SCALABLE ALGORITHM FOR STRUCTURED KERNEL FEATURE

SELECTION ∗

In chapter 2 and 3, we developed two types of feature screening methods to scale up

linear sparse learning. Non-linear feature selection methods have been developed to cap-

ture more complicate response relations. In this chapter, we propose one of such kind of

feature selection models based on kernel methods. Incorporated with structured LASSO,

the kernelized structured LASSO is an effective feature selection approach that can pre-

serve the nonlinear input-output relationships as well as the structured sparseness. But as

the data dimension increases, the method can quickly become computationally prohibitive.

In this chapter we propose a stochastic optimization algorithm that can efficiently address

this computational problem on account of the redundant kernel representations of the given

data. Experiments on simulation data and PET 3D brain image data show that our method

can achieve superior accuracy with less computational cost than existing methods.

4.1 Introduction

Feature selection has been one of the important problems to address the infamous

curse of dimensionality in applying statistical learning methods to short and fat data with

n/p� 1, where n and p denote the sample size and feature space dimension respectively.

Penalized feature selection methods such as the Least Absolute Shrinkage and Selection

Operator (LASSO) [16] provide one of effective solutions, which typically search for fea-

tures that are linearly related to the output.

In order to explore potential nonlinear input-output relationships with feature selection,

∗Part of this chapter is reprinted with permission from “A scalable algorithm for structured kernel fea-
ture selection” by S. Ren, S. Huang, J. Onofrey, X. Papademetris and X. Qian, 2015, 18th International
Conference on Artificial Intelligence and Statistics (AIStats), San Diego, CA, USA. JMLR: W&CP volume
38. Copyright 2015 by the authors.
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researchers have proposed both parametric and non-parametric methods [16, 17, 32, 31].

We focus on non-parametric methods in this chapter, specifically, kernel feature selec-

tion methods. Kernel methods are arguably among the most popular tools that provide

a practical way to capture nonlinear relationships. For example, Quadratic Programming

Feature Selection (QPFS) [75] solves a quadratic programming problem with quadratic

kernelized dependency measures. But with the increasing feature dimension, the Hessian

matrix for the quadratic term may become singular and cause computational difficulty.

Song et al. [76] proposed a greedy kernel feature selection method with forward feature

selection or backward elimination strategies based on Hilbert-Smith Independent Criteria

(HSIC) [77]. A related method—Hilbert-Schmidt Feature Selection (HSFS)—proposed

in [29] can be considered as its continuous relaxation. HSFS was formulated as non-

convex optimization problems with only local optimality guarantee from the resulting op-

timization algorithms. Neither the method in [76] nor HSFS can scale up with the feature

dimension due to the non-convexity and complexity of their accompanying optimization

problems. To address the scalability problem, Sparse Additive Models (SAM) have been

proposed to efficiently solve kernel feature selection by a back-fitting algorithm [78], but

it was shown that it may not perform well when features are not additively related. More

recently, based on feature vector machines (FVM)[32], Yamada et al.[31] proposed a high-

dimensional kernel feature selection method: HSIC-LASSO, in which the optimization

problem can be efficiently solved by dual augmented Lagrangian(DAL) algorithm [79].

HSIC-LASSO is a feature-wise kernel method. When studying features from struc-

tured data such as images and networks for disease diagnosis, inherent structural and func-

tional relationships among features may need to be integrated in feature selection for better

accuracy, reproducibility, and interpretability. Feature-wise kernel selection methods may

be further improved with better performance by considering such structural and functional

relationships among features, especially when the sample size is limited. Hence, in this
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chapter, we aim to develop such a kernel feature selection method that explicitly imposes

structural constraints among selected features. One of such structured penalized feature

selection methods is the Fused LASSO [17, 57] in linear regression and classification.

The direction implementation of Fused LASSO for kernel feature selection to capture

nonlinearity is computationally challenging. When the sample size and feature dimension

increase, for example when studying 3-Dimensional brain images, the general batch-based

optimization becomes inefficient and even infeasible. To address this computational dif-

ficulty, we introduce explicit structural constraints for structured kernel feature selection

and derive a highly scalable stochastic optimization algorithm for this structured kernel

feature selection method that is designed for the classification problems.

In summary, we propose a new structured kernel feature selection method based on the

Hilbert-Smith Independent Criteria [77] but with explicitly enforced structural constraints

to incorporate potential structural and functional relationships among features when they

are available. The derived stochastic optimization algorithm is tailored to such a structured

kernel feature selection problem and can efficiently solve the problem of very large size,

for example for 3D brain images, on account of the redundant kernel representations of

the given data. Finally, unlike HSIC-LASSO, which is designed for feature selection and

requires separate learning processes for prediction with the selected features, our struc-

tured kernel feature selection method is formulated in a supervised learning framework

and simultaneously learns the prediction model that can be directly adopted for new data.

The remaining of the chapter is organized as follows: Section 2 formulates the struc-

tured kernel feature selection problem; Section 3 derives the tailored stochastic optimiza-

tion algorithm; Section 4 presents and discusses our experimental results with both simula-

tion data and 3D PET brain images; Section 5 provides the discussion on the relationships

of our method with the existing kernel feature selection methods in literature; Section 6

concludes this chapter and provides future research directions.
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4.2 Methodology

In this section, we present our structured kernel feature selection model for classifica-

tion.

4.2.1 Structured Kernel Feature Selection

Different from [31], we take the Hinge loss function in our model instead of the least

squared loss in [31] since we focus on classification problems in this chapter. Without loss

of generality, with the input features X ∈ Rn×p and output responses Y ∈ {−1, 1}n, the

penalized kernel feature selection problem can be formulated as follows with the L1-norm

penalty as typically done in LASSO:

min
a

n∑
m=1

[n− L̄Tm(a01 +

p∑
i=1

aiK̄
i
m)]+ + λ1|a1,...,p|1 (4.1)

+ λ2

∑
(i,j)∈E

(ai − aj)2

s.t. ai ≥ 0 ∀i ≥ 1 (4.2)

where the first term is the Hinge Loss; L̄m is a n−dimensional vector, corresponding to

the mth column of the output kernel matrix L̃; and K̄i
m corresponds to the mth column of

K̃i, which is the kernel matrix for feature xi . n is the number of data sample, and p is

the number of feature. The structural constraints among candidate features are imposed as

quadratic terms of fitting coefficients a in (4.1), where E denotes all the available pairwise

structural relationships among features. We consider an six-neighborhood-system for 3D

images. We note that these quadratic terms can be rewritten in the matrix form with the

graph Laplacian based on the feature structural relationships. But for many applications,

the Laplacian is highly sparse, and it is not advisable to store and use the Laplacian matrix

directly in the algorithm. With the L1-norm regularization term, the non-negative con-
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straints (4.2) guarantees that the active features have larger values and non-related features

have small values to make the results easily interpretable. As similarly done in [31], for

each feature xi ∈ X , we have

K̃i = HKiH; H = I − 1

n
11T ;

Ki
k,`(xi,xi) = exp

(
− (xki − x`i)2

2σ2
xi

)
;

K̄i = vec(K̃i); K̄i
m = K̃i

•,m.

For output responses Y , we adopt the following kernel:

L̃ = HY Y TH; L̄ = vec(L̃); L̄m = L̃•,m.

Note that the output kernel matrix in our model is also different from the one adopted

in [31], which is given as follows:

L(yi, yj) =

 1/nyi if yi = yj

0 otherwise

L̃ = HLH; L̄ = vec(L̃),

where nyi is the number of training samples in class yi.

4.2.2 Interpretation by Hilbert-Smith Independent Criteria

The formulated optimization problem in (4.1) aims to identify predictive features that

have large inner-product values between L̄ and K̄ = a01 +
∑

i K̄
iai under previously
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described constraints. By expanding the inner-product L̄T K̄, we have

L̄T K̄ = tr(L̃K̃) = a0tr(L̃I) +
∑
i

aitr(L̃K̃
i) = a0tr(L̃I) +

∑
i

aiHSIC(Y,xi).

HSIC(Y,xi) = tr(L̃K̃i) is the empirical estimation of Hilbert-Smith Independent Crite-

ria (HSIC), which is the same kernel-based independence measure adopted in HSIC [76]

and HSIC-LASSO [31]. As proven in [77], HSIC always takes nonnegative value and

is zero if and only if the two variables are independent. When solving the optimization

problem 4.1, the Hinge loss term drives the feature selection for highly correlated features

with the output through the HSIC term; thereafter to have larger fitting coefficients ai’s

with the nonnegative L1-norm term penalizing less correlated or independent features to

have zero coefficients. Finally, with the structural constraints, our new model can robustly

recover structurally related groups of features that are responsible for the output, aiming

to obtain reproducible and accurate results.

4.3 Stochastic Optimization Solution

In this section, we derive the stochastic optimization algorithm to solve our structured

kernel feature selection problem.

4.3.1 Stochastic Optimization Algorithm

We note that the dimension of K̄i in (4.1) is n2× 1, and there are p such feature kernel

vectors for p features in the problem. When either the sample size or feature dimension

is large, many general-purpose first-order optimization algorithms cannot scale up accord-

ingly to solve 4.1. In order to provide practical and efficient solution algorithms to 4.1,

we develop a stochastic optimization algorithm based on an efficient online algorithm: the

dual average method [42, 80].

As the fitting coefficients a are nonnegative, the optimization problem 4.1 can be
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rewritten as

min
a

n∑
m=1

[n− L̄Tm(a01 +

p∑
i=1

aiK̄
i
m)]+ + λ1

p∑
i=1

ai (4.3)

+ λ2

∑
(i,j)∈E

(ai − aj)2 (4.4)

s.t. ai ≥ 0 ∀i ≥ 1. (4.5)

As in the dual average method [42], the above optimization problem can be considered as

two parts: the loss function part, which should be subdifferentiable; and the regularization

or constraint part, which should be convex. For our current formulation 4.4, the objective

function in 4.4 is subdifferentiable and can be directly taken as the loss function part for

the dual average optimization. The only constraint term is the nonnegative constraints on

a. Applying the dual average method [42], the objective function can be rewritten in each

step t for one sample m :

lt = [n− L̄Tm(a01 +

p∑
i=1

K̄i
mai)]+ + λ1

p∑
i=1

ai + λ2

∑
(i,j)∈E

(ai − aj)2. (4.6)

L̄m and K̄i
m can be considered as sample-dependent parts of L̄ and K̄i, respectively.

We first compute the subgradient of lt with respect to fitting coefficients a:

gt(i) =

 −(K̄i
m)T L̄m + φ(a) if L̄Tm(a01 +

∑
i K̄

i
mai) ≤ n

φ(a) if L̄Tm(a01 +
∑

i K̄
i
mai) > n

φ(a) = λ1 + 2λ2

∑
{j:(i,j)∈E}

(ai − aj).

Here, gt(i) gives the ith entry of the subgradient gt. For a0, K̄i
m is 1. For the dual average
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method at step t, we can compute the average subgradient ḡt:

ḡt =
t− 1

t
ḡt−1 +

1

t
gt. (4.7)

According to [42], the dual average method requires to solve a modified optimization

problem by choosing a simple but strongly convex auxiliary function h(a) as well as a

nondecreasing step size sequence {βt}. The appropriate choice of the auxiliary function

helps make the problem smooth and strongly convex for easier optimization. The appro-

priate nondecreasing sequence {βt} can guarantee fast convergence. For our structured

kernel feature selection problem, we need to solve the following optimization problem

each step:

min
a

ḡTt a +
γ(1 + ln(t))

t
||a||2 (4.8)

s.t. ai ≥ 0,∀i ≥ 1. (4.9)

Here, we take h(a) = ||a||2 as the auxiliary function, which is strongly convex, and βt =

γ(1 + ln(t)). This auxiliary function h(a) is designed specifically to have an efficient

updating rule for solving our original structured kernel feature selection problem (4.1).

Following the derivation of the dual average method in [42], we can prove the following

theorem that gives the updating rule of our stochastic optimization algorithm.

Theorem 1 With the auxiliary function h(a) = ||a||2 and the nondecreasing sequence

{βt} with βt = γ(1 + ln(t)), then the updating rule in each step t for fitting coefficients a

for the problem (4.1) is:
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(ai)t =

 −
t

2γ(1+ln(t))
ḡt(i) if i = 0

[− t
2γ(1+ln(t))

ḡt(i)]+ if i = 1, ..., p

Proof We can write the Lagrangian of the problem (4.8) by introducing the Lagrangian

multipliers with the non-negative constraint:

L(a, λ) =
γ(1 + ln(t))

t
||a− (− t

2γ(1 + ln(t))
ḡt)||2 − λTa1,...,p.

We can compute the gradient of the Lagrangian with respect to a as

5aL = 2
γ(1 + ln(t))

t
(a− (− t

2γ(1 + ln(t))
ḡt))− λ1,...,p. (4.10)

There is no constraint for a0. Hence, a0 = − t
2γ(1+ln(t))

ḡt(0) does not violate any KKT

conditions. For ai:i>0, if − t
2γ(1+ln(t))

ḡt(i) ≥ 0, we set ai = − t
2γ(1+ln(t))

ḡt(i) and λi = 0,

and all of the KKT conditions are satisfied. If − t
2γ(1+ln(t))

ḡt(i) < 0, we set ai = 0, and

λi = gt(i), so aiλi = 0 and also 5aL(i) = 0. Therefore, all of the KKT conditions can

be met. With the updating rule stated in the theorem, all of the KKT conditions can be

satisfied. Finally, as the problem (4.8) is convex, the updating rule in the theorem provides

the optimal solution to (4.8).

This stochastic optimization algorithm provides an efficient updating rule for our origi-

nal problem, and this is the key that our method can scale up to high dimensional datasets.

Since the objective function in 4.1 is subdifferentiable, and the constraint set is convex,

as shown in Xiao [42], with a large enough number of samples and iteration steps, the

updating rules finally approach to the optimal solution to 4.1.
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The pseudo-code of the final stochastic optimization algorithm is summarized in Al-

gorithm 4.
Data: Data matrix X , Outcome labels Y , Feature structural relationship graph

G(V,E), a strongly convex auxiliary function h(a), λ1, λ2.

Result: Fitting coefficients a.

Initialization: Compute the kernel matrices forX and Y ; Initialize a ∈ mina h(a);

while Stop criteria not satisfied do
1 Given the function lt, compute the subgradient on at: gt;

2 Update the average subgradient ḡt = t−1
t

ḡt−1 + 1
t
gt;

3 Calculate next a with

(ai)t =

 −
t

2γ(1+ln(t))
ḡt(i) if i = 0

[− t
2γ(1+ln(t))

ḡt(i)]+ if i = 1, ..., p

end
Algorithm 4: Dual Average Algorithm for Structured Kernel Feature Selection
The required storage of the kernel matrices K̃i, i = 1, ..., p may take large memory

space for high-dimensional datasets. Similar tricks adopted in [31] can be implemented to

reduce memory requirements when needed.

4.3.2 Convergence and Regret Analysis

Following [42], we can prove the following theorem:

Theorem 2 With an auxiliary function h(a) = ||a||2, and the nondecreasing sequence

{βt} with βt = γ(1+ ln(t)), Let {at} and {gt} be two sequences generated by 4. Suppose

the optimal solution a∗ to problem (4.1) satisfies h(a∗) ≤ D, for some D > 0, and there

is a constant G such that ||gt||∗ ≤ G for all t ≥ 1, we have the following property for 4:

a) For each t ≥ 1, the average regret is bounded by
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Rt(a) ≤
(
γD2 +

G2

2γ

)
(1 + ln(t)).

b) The sequence of primal variables are bounded by

||at+1 − a∗|| ≤ 2

γ(1 + t+ ln(t))

((
γD2 +

G2

2γ

)
(1 + ln(t))−Rt(a

∗)

)
.

Also we can have the convergence in the expectation form:

c)

E||at+1 − a∗|| ≤ 2

1 + t+ ln(t)

(
D2 +

G2

2γ2

)
(1 + ln(t)).

Theorem 2(a) reveals that when γ = G√
2D

, we can have the improved regret bound,

Rt(a) = 2

√
DG√

2
(1 + ln(t)).

From Theorem 2(b-c), we can see that our algorithm has a convergence rate of O(ln(t)/t).

Proof: We use the indication function to represent the nonnegative region constraint:

Φ(a) = IC(a) =

 0 if ai ≥ 0,∀i > 0

∞ if ∃ai < 0,i > 0

The loss function for our original problem can be written as:

f(a) =
n∑

m=1

[n− L̄Tm(a01 +

p∑
i=1

aiK̄
i
m)]+ + λ1

p∑
i=1

ai + λ2

∑
(i,j)∈E

(ai − aj)2
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We define the region

FD = {a ∈ dom(Φ)|h(a) ≤ D2}.

a) For the regret analysis, let

δt = max
a∈FD

{ t∑
ζ=1

(
〈gζ , aζ − a〉+ Φ(aζ)

)
− tΦ(a))

}
, t = 1, 2, 3, ...

We can see that δt is the upper bound of the regret Rt(a)

Rt(a) =
t∑

ζ=1

(
fζ(aζ) + Φ(aζ))−

t∑
ζ=1

(
fζ(a) + Φ(a))

=
t∑

ζ=1

(
fζ(aζ)− fζ(a) + Φ(aζ)

)
− tΦ(a)

≤
t∑

ζ=1

(
〈gζ , aζ − a〉+ Φ(aζ)

)
− tΦ(a)

≤ δt

For an arbitrary initial feasible solution a0, we can rewrite

δt =
t∑

ζ=1

(
〈gζ , aζ − a0〉+ Φ(aζ)

)
+ max

a∈FD

{
〈tḡt, a0 − a〉 − tΦ(a)

}
.

Define Vt(tḡt) = maxa

{
〈tḡt, a− a0〉 − tΦ(a)− βth(a)

}
. As a ∈ FD, we can derive the

following inequality similarly as in Lemma 9 in (Xiao, 2010):

δt ≤
t∑

ζ=1

(
〈gζ , aζ − a0〉+ Φ(aζ)

)
+ Vt(−tḡt) + βtD

2. (4.3)
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According to Lemmas 10 and 11 in [42], we can easily get

Vζ(−ζḡζ) + Φ(aζ+1) ≤ Vζ(−ζḡζ),

and

Vζ(−ζḡζ) ≤ Vζ−1(−(ζ − 1)ḡζ−1) + 〈−gζ , aζ − a0〉+
||gζ ||2∗

2(γ(ζ − 1) + βζ−1)

when ζ ≥ 2. Hence

Vζ(−ζḡζ) + Φ(aζ+1) ≤ Vζ−1(−(ζ − 1)ḡζ−1) + 〈−gζ , aζ − a0〉+
||gζ ||2∗

2(γ(ζ − 1) + βζ−1)
,

ζ ≥ 2.

Moving corresponding terms, we get:

〈gζ , aζ − a0〉+ Φ(aζ+1) ≤ Vζ−1(−(ζ − 1)ḡζ−1)− Vζ(−ζḡζ) +
||gζ ||2∗

2(γ(ζ − 1) + βζ−1)
,

ζ ≥ 2.

When ζ = 1, we have

〈g1, a1 − a0〉+ Φ(a2) ≤− V1(−ḡ1) +
||g1||2∗
2(β0)

+ (β0 − β1)h(a2)

By adding all the inequalities for ζ = 1, ..., t, we can get

t∑
ζ=1

(
〈gζ , aζ − a0〉+ Φ(aζ+1)

)
+ Vζ(−ζḡζ) ≤ (β0 − β1)h(a2) +

1

2

t∑
ζ=1

||gζ ||2∗
γ(ζ − 1) + βζ−1

Since a1 = a0 = 0 ∈ argminaΦ(a), so Φ(at+1) ≥ Φ(a0) = Φ(a1). Adding Φ(a1)−
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Φ(at+1) to both sides,

t∑
ζ=1

(
〈gζ , aζ − a0〉+ Φ(aζ)

)
+ Vζ(−ζḡζ) ≤ (β0 − β1)h(a2)+

1

2

t∑
ζ=1

||gζ ||2∗
γ(ζ − 1) + βζ−1

Substituting this into (4.3) , we have

Rt(a) ≤ δt ≤ βtD
2 +

1

2

t∑
ζ=1

||gζ ||2∗
γ(ζ − 1) + βζ−1

+
2(β0 − β1)||g1||2∗

β1 + γ
.

For our algorithm βt = γ(1 + ln(t)), and β0 = β1 = γ, hence

Rt(a) ≤ δt ≤ γ(1 + ln(t))D2 +
G2

2γ

(
1 +

t−1∑
ζ=1

1

ζ + 1 + ln ζ

)
≤
(
γD2 +

G2

2γ

)
(1 + ln(t))

b) To find the bounds for primal variables, we first rewrite the solution to the subprob-

lem (9) in the manuscript at the tth step in 4:

at+1 = arg min
a

{
〈tḡt, a〉+ tΦ(a) + βth(a)

}
.

The subgradients bt+1 ∈ ∂Φ(at+1) and dt+1 ∈ ∂h(at+1) satisfy the following inequality:

〈tḡt + tbt+1 + βtdt+1, a− at+1〉 ≥ 0,∀a ∈ dom(Φ).
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Since both Φ(·) and h(·) are strongly convex, we have

1

2
(γt+ βt)||at+1 − a||2

≤ t
(
Φ(a)− Φ(at+1)− 〈bt+1, a− at+1〉

)
+ βt

(
h(a)− h(at+1)− 〈dt+1, a− at+1〉

)
= βth(a)− βth(at+1)− 〈tbt+1 + βtdt+1, a− at+1〉+ tΦ(a)− tΦ(at+1)

≤ βth(a)− βth(at+1) + 〈tḡt, a− at+1〉+ tΦ(a)− tΦ(at+1)

= βth(a) + tΦ(a) +
{
〈−tḡt, at+1 − a0〉 − βth(at+1)− tΦ(at+1)

}
+ 〈tḡt, a− a0〉

= βth(a) + tΦ(a) + Vt(−tḡt) + 〈tḡt, a− a0〉.

Note that for the dual average methods in 4,

〈tḡt, a− a0〉 =
t∑

ζ=1

〈gζ , a− aζ〉+
t∑

ζ=1

〈gζ , aζ − a0〉.

Substituting the corresponding term, we can get

1

2
(γt+ βt)||at+1 − a||2

≤ βth(a) +

{
Vt(−tḡt) +

t∑
ζ=1

(
〈gζ , a− a0〉+ Φ(aζ)

)}
+

t∑
ζ=1

〈gζ , a− aζ〉+ tΦ(a)

−
t∑

ζ=1

Φ(aζ).
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Taking the proof for a) (4.3.2) that

t∑
ζ=1

〈gζ , a− aζ〉+ tΦ(a)−
t∑

ζ=1

Φ(aζ) ≤
t∑

ζ=1

(
fζ(a)− fζ(aζ)

)
+ tΦ(a)−

t∑
ζ=1

Φ(aζ)

=
t∑

ζ=1

(
fζ(a) + Φ(a)

)
−

t∑
ζ=1

(
fζ(aζ) + Φ(aζ)

)
= −Rt(a),

Using (4.3.2), we can derive

1

2
(γt+ βt)||at+1 − a||22 ≤ βth(a) + (β0 − β1)h(a2) +

1

2

t∑
ζ=1

||gζ ||2∗
γ(ζ − 1) + βζ−1

−Rt(a)

By the assumptions given in the theorem, and setting β0 = β1 = γ, we have

1

2
(γt+ βt)||at+1 − a||22 ≤ γ(1 + ln(t))D2 +

G2

2γ

(
1 +

t−1∑
ζ=1

1

ζ + 1 + ln ζ

)
−Rt(a)

≤
(
γD2 +

G2

2γ

)
(1 + ln(t))−Rt(a).

Hence,

||at+1 − a∗|| ≤ 2

γ(1 + t+ ln(t))

((
γD2 +

G2

2γ

)
(1 + ln(t))−Rt(a

∗)

)
.

c) Let zζ = {Yζ , Xζ} be the ζth sample for 4, and z[t] denote the collection of i.i.d random

variables {z1, ..., zt}. We can take aζ as a function of {z1, ..., zζ−1}, which is independent

of {zζ , ..., zt}.

We have

Rt(a
∗) =

t∑
ζ=1

(
f(aζ , zζ) + Φ(aζ)

)
−

t∑
ζ=1

(
f(a∗ζ , zζ) + Φ(a∗ζ)

)
,
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and

Ez[t]

(
f(aζ , zζ) + Φ(aζ)

)
= Ez[ζ−1]

(
f(aζ , zζ) + Φ(aζ)

)
= Ez[t]

(
f(aζ) + Φ(aζ)

)
.

We also can get

Ez[t]

(
f(a∗, zζ) + Φ(a∗)

)
= Ezζ

(
f(a∗, zζ) + Φ(a∗)

)
= f(a∗) + Φ(a∗).

Since

f(a∗) + Φ(a∗) = min
a
f(a) + Φ(a),

combining the previous results leads to the following equation:

Ez[t]Rt(a
∗) =

t∑
ζ=1

Ez[t]

(
f(aζ) + Φ(aζ)

)
− t
(
f(a∗) + Φ(a∗)

)
≥ 0.

Therefore, with the result from b), we can get

E||at+1 − a∗|| ≤ 2

1 + t+ ln(t)

(
D2 +

G2

2γ2

)
(1 + ln(t)).

4.4 Experimental Results

We have two sets of experiments to verify the effectiveness and efficiency of out meth-

ods on structured high dimensional datasets. The first one is based on simulation ex-

periments using MRI data. The second one is to analyze the 3D PET brain images for

Alzheimer’s disease (AD) prognosis [73, 57]. For these studies, we compare our algo-

rithm with fused LASSO [17, 57], and HSIC-LASSO [31]. For fused LASSO we use

the recent efficient implementation based on the graph-cut algorithm [57] with the same

119



efforts to provide scalable feature selection for 3D brain images.

4.4.1 Simulated Active Regions in MRI Images

In this set of experiments, we study the proposed method with a simulation of structural

anomalies within MRI anatomical data. From the 1000 Functional Connectomes Project

International Neuroimaging Data-Sharing Initiative[81], we randomly selected 200 3D

anatomical MRI brain images from healthy subjects. Each image was spatially normal-

ized to a 1mm × 1mm × 1mm custom, average anatomical template image using a low-

dimensional free-form deformation image registration [82] with 15mm control point spac-

ing. For this simulation experiments, we equally partition the total samples into healthy

(negative) samples and positive samples by simulating the perturbations from the original

images. Considering computation efficiency, only one brain lobe region as shown in Fig-

ure 4.1 is chosen for study. One spherical regions within the lobe are randomly perturbed

as active functional areas with structural anomalies. Each voxel intensity within the ac-

tive areas is modified by adding a random value g, which follows a Gaussian distribution,

N(µ, σ). In our experiments, we take σ as the standard deviation of voxel intensity values

of the original image. Among selected original images without perturbation, the average

value of σ is 262.75. We perturb the voxel intensity values in 100 positive samples in a

randomly selected single spherical active region with radius of r = 4 voxels. The images

in the first row of Figure 4.1 display three axis views for one example of an original MRI

image. The second and third rows in Figure 4.1 are the images after perturbation in the

active areas at different levels µ.

For fused LASSO and our method we directly adopt the learned parameters for predic-

tion as both methods are formulated as supervised learning problems. For HSIC-LASSO,

kernel SVM [55] based on the learned features is used for prediction. For the proposed

model, we can use the learned parameters to predict the pairwise relationship between the
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test sample with all of the training samples. Since it is a binary classification problem,

we can use the sign of the accumulated prediction label to determine the final prediction

value. The measure on active region recovery accuracy ACCAR is computed as follows:

ACCAR =
2R−ME

2R
,

where R denotes the number of voxels in the actual active region; and ME represents the

binary voxel-wise matching error between the ground truth active region and the recovered

region, which is the number of voxels in both binary images that are not in the overlap

region. We take the R active voxels in the recovered region corresponding to the R voxels

with highest average value fi over all of the positive samples. When the recovered binary

functional active region is the same as the ground truth region, ME = 0 and thereafter

ACCAR = 1. When the recovered region does not have any overlap voxel with the ground

truth, ME = 2R and hence ACCAR = 0.

In this set of experiments, 200 samples are divided into the training set and testing set.

The training set contains 50 randomly chosen positive samples and 50 negative ones. The

rest of the samples go to the testing set. All of the model parameters are learned based on

the training set with five-fold cross validation. Since the number of training samples is not

large, we use all of training samples in our stochastic algorithm without any subsampling

on the training dataset. In this set of simulation experiments, we study all of the three

methods on three different types of input-output relationships: linear, additive nonlinear,

and non-additive nonlinear.

4.4.1.1 Linear Response

In this experiment, we compare all of the models based on simulated linear responses

from perturbed MRI images with 100 positive samples having the active regions perturbed

with random values following N(µ, σ) with µ = 100, and the other 100 negative samples
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Figure 4.1: The first row shows one example from the original MRI images; the second
row is the corresponding perturbed image at µ = 100; the third row displays the perturbed
image at µ = 200.

from the original MRI images. The output label for each image is directly determined

by whether there are perturbed regions. The results for the three comparing methods are

shown in Table 4.1, and the recovered regions are shown in Figure 4.2.

Table 4.1: Comparison for simulated MRI images with linear responses

Method Proposed FL HSIC-Lasso
Pred. Accuracy 96% 70 % 69%
Reg. Accuracy 78.1% 33.3% 23.1%
CPU time (sec.) 65.6 431.5 73.7

Table 4.1 shows that our method can achieve higher prediction accuracy as well as

higher active region recovery accuracy. Moreover, our algorithm takes less computational
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Figure 4.2: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for simulated MRI images with linear responses.

resources. The results in this experiment show that our method can work robustly even

though the active signal is relatively weak. The proposed model and fused LASSO can

get higher ACC due to the extra structure knowledge of the data that are incorporated

in the model formulation. Without the structure constraints, HSIC-LASSO misses many

active voxels with the redundancy penalty term in their formulation. This is the reason

why the recovered region is sparse and the ACC is low in HSIC-LASSO. We have also

forced lower sparse penalty in HSIC-LASSO but it does not significantly change the re-

sults. We also note that HSIC-LASSO can achieve similar computing time compared to

our proposed method due to the efficiency of their dual augmented Lagrangian (DAL) al-

gorithm. However, HSIC-LASSO does not impose any structural constraints, which is one

of bottlenecks for scalability of structured kernel feature selection.
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4.4.1.2 Additive Nonlinear Response

In this experiment, we set µ = 200 for perturbations. Among 200 original im-

ages, 150 are chosen to be perturbed by adding random values following N(µ, σ) to

the corresponding voxels in the selected active regions. In addition, in order to cre-

ate a nonlinear response model, not all of these samples are labelled as positive sam-

ples. We divide the voxels within the active regions into four groups: V 1, V 2, V 3, V 4

according to the spacial order in the image. Then we compute a nonlinear response

value ψ =
∑
∀v1∈V 1,v2∈V 2,v3∈V 3,v4∈V 4 sin(v1) + exp(v2/c1) + v3/c2 + (v4/c3)2, where

c1 = 2000, c2 = 1500, and c3 = 1500 are constants in this experiment. All the perturbed

images are ranked in an ascending order of ψ values. The top 100 samples are consid-

ered as positive samples while the other 100 samples are labelled as health (or negative)

samples.

The results for this experiment are presented in Table 4.2. Figure 4.3 illustrates the

recovered regions by three methods. It is clear that our proposed model takes lead in the

accuracies and speed. The high prediction accuracy compared to the fused LASSO is

due to the kernel method in our model for incorporating potential nonlinear input-output

relationships. By enforcing structural constraints, our structured kernel feature selection

also performs superior to HSIC-LASSO. It is interesting to note that the fused LASSO can

achieve high ACC for active region recovery compared to HSIC-LASSO because of the

incorporated spacial structures. However, the fused LASSO takes much longer computing

time than the other two methods due to the incorporated non-smooth structure constraints

even with the fast proximal and graph-cut algorithms implemented in (Xin, 2014).

Based on these simulation experiments, our structured kernel feature selection with

the dual average stochastic optimization algorithm can robustly recover potential active

function regions, accurately predict output responses, and scale better with both the sample
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Table 4.2: Comparison for simulated MRI images with additive nonlinear responses

Method Proposed FL HSIC-Lasso
Pred. Accuracy 94% 62 % 65%
Reg. Accuracy 74.5% 64.5% 27.9%
CPU time (sec.) 62.1 414.3 80.5

1

0

1

-1

0.2

0

Figure 4.3: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for simulated MRI images with additive nonlinear responses.

size and feature dimension compared to the other existing feature selection methods.

4.4.1.3 Non-additive Nonlinear Response

In this experiment, the simulation data is generated in a similar way as in the previous

experiment. But this time we randomly choose the voxels in the four groups, and the

nonlinear response value ψ =
∑
∀v1∈V 1,v2∈V 2,v3∈V 3,v4∈V 4 v1×exp(v2/c1)/c2+(v3/c3)2×

v4, where c1 = 2000, c2 = 6200 and c3 = 1500. Similarly, top ranked 100 perturbed

images in the ascending order of ψ are set as positive samples and the remaining 100
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Table 4.3: Comparison for simulated MRI images with non-additive nonlinear responses

Method Proposed FL HSIC-Lasso
Pred. Accuracy 75% 69 % 60%
Reg. Accuracy 70.9% 27.95% 0%
CPU time (sec.) 69.5 2230.4 89.9

images are negative samples.

The results of this experiment for prediction accuracies, active region recovery accu-

racies, and computational time are given in Table 4.3. Figure 4.4 displays the recovered

regions by three methods. As visualized in the figures, our method is much more robust

than the other two methods. For non-additive and nonlinear responses, the objective func-

tion is more complicated, and fused Lasso and HSIC-LASSO take longer time to reach to

the optimal values. The computational time for the fused LASSO has increased dramati-

cally. The possible reason is that as the problem becomes complicated, the line search step

in the proximal algorithm in the fused LASSO takes much longer time. In this experiment,

HSIC-LASSO failed to identify any responsive voxels inside the active region due to the

lack of structural constraints in their formulation.

The results in this set of experiments show that our model can recover active function

regions in high dimensional structured data, even when the response signal is weak and

complicated.

4.4.2 PET 3D Brain Images

In this section, we test the proposed method on a 3D positron emission tomography

(PET) dataset, which is collected from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [73]. We collected 95 Alzheimer’s disease (AD) patients and 102 healthy subjects

in this set of experiments. With the affine transformation and subsequent non-linear warp-

126



0.2

0

25

-5

1

0

Figure 4.4: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for simulated MRI images with non-additive nonlinear responses.

ing algorithm [83] in the SPM MATLAB toolbox, each image was spatially normalized

to the Montreal Neurological Institute (MNI) template[84]. The data was resampled and

the resolution was reduced to 4mm × 4mm × 4mm to save computation time. Student’s

t-test was used to remove the voxels that do not differ significantly between patients and

healthy people. Furthermore, the voxels with very small intensity values are also removed

to reduce computational cost. Figure 4.5 shows the mean image before and after prepro-

cessing.

The dataset is divided into two sets: the training set contains 51 healthy people and 47

patients, the testing set has 51 healthy people and 48 patients. The parameters are learned 5

fold cross validation on the training data set according to the prediction accuracy.Table 4.4

provides the performance comparison for the three comparing methods. We can see that

our method again performs much better on prediction than the other two approaches. Fig-

ure 4.6 gives the predicted active regions by three models. We use the mean of the health
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Figure 4.5: The first row displays the mean image of the original PET images in three axis
views and the second row shows the corresponding mean image after preprocessing.

Table 4.4: Comparison on Pet 3D Brain Images

Method Proposed FL HSIC-Lasso
Pred. Accuracy 94.9% 85.9 % 87.9%
CPU time (sec.) 163.5 2786.2 187.9

brain images as reference background, and then we add the learned voxels weights by the

three models on the background. We can see our method can recover multiple regions.

4.5 Conclusions

Our structured kernel feature selection problem is specifically designed for classifica-

tion with the Hinge loss function, which can be represented by HSIC terms as we show

earlier. Enforcing that related features should be selected together as they have higher

probability in similarly correlating the output, our structured kernel feature selection can

get more robust feature selection results. In addition to the differences in formulations,

we derive a tailored stochastic optimization algorithm so that the proposed method can

be implemented to efficiently solve feature selection and active region recovery when we
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Figure 4.6: Active Regions recovered by the proposed method, Fused LASSO and HSIC-
LASSO for PET 3D brain images.

have big and high-dimensional data such as 3D brain images in our experiments.

In this chapter we propose a new kernel feature selection model for binary classifica-

tion problem. Based on Hilbert-Smith Independent Criteria, with the structure knowledge

among features incorporated into the objective function, our model can effectively and ro-

bustly identify the active regions related to the outcome of interest. Our method can scale

up to large data problem with the efficiency stochastic algorithm based on the dual aver-

age method. Experimental results on simulation data and real-world 3D image data have

verified the effectiveness and efficiency of the proposed method. Our structured formula-

tion for kernel feature selection together with the accompanying stochastic optimization

method provides a practical approach for large structured data feature selection and active

function region recovery from 3D brain images. Our model can be further improved with

the less memory techniques [31] and faster stochastic methods [42], which will be our

future research directions.
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5. SCALE UP SVM WITH ACTIVE SAMPLE SELECTION

In this chapter, we propose a scalable algorithm for support vector machines (SVMs),

safe active incremental support vector selection (SAIV), based on the similar active in-

cremental idea of SAIF in Chapter 2. Unlike existing working set or active set meth-

ods [24, 23, 25, 26], SAIV actively updates the active set based on the recruiting or screen-

ing rules derived from the duality gap of the sub-problem on the active set. In this way,

SAIV maximally reduces the computation cost for non-support samples. Experiments

on different data sets show the advantages of SAIV over the existing shrinking [24] and

sequential screening methods [12].

5.1 Introduction

Similar to the sequential feature screening methods for LASSO, derived to address the

prohibitive computational cost issues with extremely high-dimensional features, sequen-

tial sample screening methods for SVM have been proposed in [14, 12, 22] to address

computation issues due to the extremely large number of samples. These methods esti-

mate the range of model parameters relying on the solutions from a smaller model hyper-

parameter. This type of sample screening methods have been extended to sparse SVM

in [41]. Recently, the screening method developed in [15] derives sample screening rules

by leveraging the duality gap, which has similar theoretical roots as the dynamic screening

method for sparse learning [38].

We propose a novel method to scale up SVM to large data sets by investigating the

properties of the dual problem (5.1). In (5.1), D is the training sample index set, and C

is the model hyper-parameter as introduced in Section 1.1.2. Due to the convexity of the
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SVM problem, solving the following dual problem leads to efficient SVM training:

D : min
θ

1

2
θTQθ − 1T θ

s.t. θi ∈ [0, C], ∀i ∈ D.

Data: Training data set D, SVM model parameter C, stopping duality gap ε

Result: θ

Choose l random samples from D as At, and the rest asRt;

IsREC = True;

while True do

Update θt regarding Dt with K iterations with At as the input ;

Compute duality gap Gt(θt) based on (5.2.1) ;

if IsREC = False & Duality Gap < ε then
Stop;

end

SCR operation;

if IsREC = False then
Continue;

else

if min{i∈At h(xi, yi;wt −
√
kiiGt(θt) > 0 then

IsREC = False; Continue;

end

REC operation;

end

end

Put θt in to θ, and inflate the other entries with 0.
Algorithm 5: Active Sample Selection for SVM

Starting from a small random sample set as the active setA, our method actively selects
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and moves potential support samples (vectors) from the remaining setR to A. During the

iterations, non-support vectors of the sub-problem (only the samples considered in the

current A) are also removed from A and put into R. With a small active set A, CPU time

and memory operations are significantly reduced compared with the existing solutions

for SVM. The proposed method starts from a small active set and incrementally recruits

potential support vectors. Due to its incremental nature, this approach can reduce more

redundant computation compared with the existing working set and screening methods for

SVM.

5.2 Safe Active Incremental Sample Selection

We first introduce two basic operations in our sample screening algorithm. We then

derive our SAIV algorithms in the second sub-section.

5.2.1 REC and SCR Operations

With a feasible dual variable vector θ, the corresponding primal variable vector is

w(θ) = ZT θ. At time t, we have the active set At, and the corresponding primal and dual

problems for SVM with the “kernel function" ψ are Pt and D̂t as follows,

Pt : min
w

1

2
||w||22 + C

∑
∀i∈At

[1− wT (yiψ(xi))]+,

D̂t : min
θ

1

2
θTQθ − 1T θ

s.t. θi ∈ [0, C], ∀i ∈ At.

We define the generalized primal and dual objective values as Pt(w) and D̂t(θ). The

dimension of w and θ can be any value not larger than n. In computing Pt(w) and D̂t(θ),

we inflate the missing entries in w and θ with zeros, and ignore some entries to align w
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and θ with the input of Pt and D̂t based on the index of original data set D . The duality

gap is defined as

Gt(θt) = Pt(wt)− D̂t(θt) ,

where wt = ZT
t θt.

Let h(xi, yi;wt) = wTt yiψt(xi) − 1 = 〈ZT
t θ, yiψt(xi)〉 − 1, and kij be the ith row

and jth column entry of the kernel matrix. With At at time t, the two operations in our

algorithms are defined as

REC: ∀i ∈ Rt if h(xi, yi;wt)+
√
kiiGt(θt)+

√
kjjGt(θt) < h(xj, yj;wt),∀j ∈ Rt, j 6= i,

move i fromRt to At;

SCR: ∀i ∈ At, if h(xi, yi;wt)−
√
kiiGt(θt) > 0, move i from At toRt.

Our method is similar to the existing working set or active set methods. Let’s use SA

to represent the set of support vector coefficients in the optimal dual solution when the

working set is A, i.e. S = {θ∗1, ..., θ∗n}. Here θ∗i is zeros if i /∈ A. We use Ā to represent

the sample index set for the final support vectors.

Theorem 1 For active sample selection regarding the problem (5.2.1) , we have

(a) If mini∈Rt h(xi, yi;w
∗
t ) > 0, then SD = SAt .

(b) ∀i ∈ At, |h(xi, yi;w
∗
t )− h(xi, yi;wt)| ≤

√
kiiGt(θt).

(c) For i ∈ Rt, if h(xi, yi;wt)+
√
kiiGt(θt)+

√
kjjGt(θt) ≤ h(xj, yj;wt),∀j ∈ Rt, j 6= i,

then we have h(xi, yi;w
∗
t ) ≤ h(xj, yj;w

∗
t ), ∀j ∈ Rt, j 6= i.

Proof: (a) As we can see, P (w∗t ) = Pt(w
∗
t ) + C

∑
i∈Rt [1− w∗Tt (yiψt(xi))]+ = Pt(w

∗
t ) +

C
∑

i∈Rt [−h(xi, yi;w
∗
t )]+ = Pt(w

∗
t ) + 0 ≤ Pt(w

∗) + C
∑

i∈Rt [1 − w∗T (yiψ(xi))]+ =

P (w∗), thus w∗t = w∗.

(b) By applying Corollary 4.3 in [15], ∀{xi, yi} ∈ At, |h(xi, yi;w
∗
t ) − h(xi, yi;wt)| =

|〈ZT
t θ
∗
t , yiψt(xi)〉 − 〈ZT

t θt, yiψt(xi)〉| = |〈(w∗t − wt), yiψt(xi)〉| ≤ ||yiψt(xi)||2||w∗ −
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w||H ≤
√
kiiGt(θt).

(c) From (b), ∀{xi, yi} ∈ Rt, we have −
√
kiiGt(θt) + h(xi, yi;wt ≤ h(xi, yi;w

∗
t ) ≤√

kiiGt(θt) +h(xi, yi;wt). For i, j ∈ Rt, if
√
kiiGt(θt) +h(xi, yi;wt) ≤ −

√
kjjGt(θt) +

h(xj, yj;wt), which is h(xi, yi;wt)+
√
kiiGt(θt)+

√
kjjGt(θt)+ ≤ h(xj, yj;wt), we have

h(xi, yi;w
∗
t ) ≤ h(xj, yj;w

∗
t ).

Remark 1 Theorem 1-a) provides us a stopping criterion for the REC operation. Further

more, if Ā * At, then ∃i, h(xi, yi;w
∗
t ) ≤ 0. This shows that SAIV is safe.

Data: θt, Gt(θt),Rt, At
Result: Rt+1, At+1

Set l̃ = dζle ;

wt = ZT θt ;

for v = 1 to l do

i← mini∈Rt h(xi, yi;wt) ;

Set Si = {j
∣∣j ∈ Rt, j 6= i, h(xi, yi;wt) +

√
kiiGt(θt) +

√
kjjGt(θt) >

h(xj, yj;wt)} ;

if |Sj| < l̃ then

At ← At ∪ {j} ;

Rt ← Rt − {j} ;

else

Stop;

end

end

At+1 ← At ;

Rt+1 ← Rt ;
Algorithm 6: Algorithm for REC operation
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5.2.2 Algorithm

We employ the coordinate descent method in [24] as our base iterative optimization

algorithm for the dual problem D̂t. Algorithm 5 summaries the procedure of SAIV with

the detailed steps laid out for the REC operator in Algorithm 6. Algorithms 5 and 6 are

similar to the SAIF algorithm and ADD algorithm in Chapter 2, respectively.

5.3 Properties of SAIV

In this section, we first give the properties of the proposed SAIV algorithm, and then

give detailed computational complexity analysis.

5.3.1 Algorithm Properties

Coordinate descent has been studied by many researchers [24, 50, 53]. The base

algorithm we employed is the coordinate descent method presented in [24], in which model

parameters are updated with the Gauss-Southwell Rule.

5.3.1.1 Coordinate Descent with Gauss-Southwell Rule

The following lemma gives the number of iterations needed to reach a given accuracy

for the original SVM problem (5.1).

Lemma 1 With coordinate descent [24], starting from θ0, we need at most logr
ε

D(θ0)−D(θ∗)

iterations to reach accuracy ε = D(θk)−D(θ∗) for objective in (5.1). Here r = 1− µ
Ln

, L

is the coordinate wise Lipschitz continuousness value, and u is the convexity value of the

loss function in (5.1).

Proof: With Gauss-Southwell Rule [85], the convergence rate is

D(θk+1)−D(θ∗)

D(θk)−D(θ∗)
≤ r = 1− µ

Ln
.
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Staring from θ0 to reach accuracy gap ε, we can recurrently apply (5.3.1.1),

D(θm)−D(θ∗)

D(θ0)−D(θ∗)
≤ ra =

ε

D(θ0)−D(θ∗)
, =⇒ a = logr

ε

D(θ0)−D(θ∗)
.

With the iteration numberlarger than a, the accuracy gap will be smaller than ε.

The duality gap converges with primal updating.

G(θt) = P (w(θt))− D̂(θt)

=
1

2
||w||2 + C

l∑
i=1

[1− wT (yiQ(xi))]+ +
1

2
θTt Φθt − 1T θt

= θTt Φθt + C
l∑

i=1

[−h(xi, yi;w(θt))]+ − 1T θt.

With limk→∞ ||θt − θ∗|| = 0, we have limk→∞G(θk) = 0.

5.3.1.2 Finite Numbers of REC and SCR Operations

The following theorem indicates that REC and SRC operations can end within a finite

number of steps in SAIV to include all of the actual support vectors in the original SVM

problem with all of training samples.

Theorem 2 Let w∗t and θ∗t be the optimal primal and dual solutions for the sub-problem

with the active feature set At.

(a) If sample i = argmini∈Mth(xi, yi;w) is added to At operation at time t, and Ā * At,

then θ∗t+1(i) 6= 0.

(b) If Ā * At, and we have REC operation at t, then ∀t′, t < t′, At 6= At′ .

(c) ∃T, ∀t ≥ T, θ∗t = θ∗, and w∗t = w∗ .

Proof: (a) If θ∗t+1(i) = 0, then h(xi, yi;w
∗
t ) > 0, and with Theorem 1-a), this means

Ā ⊆ At, this contradicts with the conditions.

(b) With an REC operation at t to movie sample i into At, we insert an entry into θ∗t
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corresponding to sample i with the value of 0. From a), we know that θ∗t+1(i) 6= θ̃∗t (i).

D(θ̃∗t+1) = Dt+1(θ∗t+1) = min
θt+1

Dt+1(θt+1) < Dt+1(
[
θ∗t
0

]
) = D(θ̃∗t )

SCR operation does not change dual objective value. Thus ∀t′, t′ > t, D(θ∗t′) < D(θ̃∗t ),

which means At′ 6= At.

(c) With REC operation the dual objective value always goes down. From Remark 1, there

are alway samples for REC operation before working set includes Ā. Thus limt→∞ θ
∗
t =

θ∗, and limt→∞w
∗
t = w∗. With REC operations,At changes with twith finite combination

according to a). Thus ∃T, ∀t ≥ T, θ∗t = θ∗, and w∗t = w∗.

In the next section, we present detail complexity analysis for SAIV.

5.3.2 Algorithm Complexity Analysis

We consider the running time for the proposed method has three parts: sample increas-

ing, sample screening, and accuracy pursuing, and we use Ta, Tb, and Tc to represent the

corresponding time complexity, and the overall time complexity is T = Ta + Tb + Tc .

5.3.2.1 Sample Recruiting

To move i fromRt toAt, we need h(xi, yi;wt)+
√
kiiG(θt)+

√
kjjG(θt) < h(xj, yj;

wt),∀j ∈ At, j 6= i. This leads to

G(θt) ≤
(h(xj, yj;wt)− h(xi, yi;wt)√

kjj +
√
kii

)2

≈
(h(xj, yj;w

∗
t )− h(xi, yi;w

∗
t )√

kjj +
√
kii

)2

.

Samples may be added or removed from At during the sample recruiting phase. Let

Ψt(θ) = D(θ)−D(θ∗t ) be the gap with REC operation at time t, we have

Lemma 2 The time complexity for the sample recruiting phase is O
(

2K+n
K

(
L
µ

Φ2 +
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L
µ
n2
TI

log Ω̄2

ΨTI (θTI )

)
+ 1

K

(
L
µ

Φ3 + L
µ
n3
TI

log Ω̄3

ΨTI (θTI )

))
, where

Φ2 =

TI−1∑
t=1

n2
t log

Ψt+1(θt)

Ψt(θt)
, Ω̄2 =

(
ΠTI−1
t=0 Ψ

n2
t+1−n2

t

t+1

) 1

n2
TI ,

Φ3 =

TI−1∑
t=1

n3
t log

Ψt+1(θt)

Ψt(θt)
, and Ω̄3 =

(
ΠTI−1
t=0 Ψ

n3
t+1−n3

t

t+1

) 1

n3
TI .

Proof: For sample recruiting phase,

Ta =

TI∑
t=1

logrt
Ψt(θt)

Ψt(θt−1)

K
(2Knt + n2

t + ntn)

=
2K + n

K

TI∑
t=1

nt logrt
Ψt(θt)

Ψt(θt−1)
+

1

K

TI∑
t=1

n2
t logrt

Ψt(θt)

Ψt(θt−1)
.

Let

Ta1 =

TI∑
t=1

nt logrt
Ψt(θt)

Ψt(θt−1)
=

TI∑
t=1

logrt
Ψnt
t (θt)

Ψnt
t (θt−1)

= − logr1 Ψn1
1 (θ0) +

TI−1∑
t=1

(
logrt Ψnt

t (θt)− logrt+1
Ψ
nt+1

t+1 (θt)
)

+ logrTI
Ψ
nTI
TI

(θTI )

= − logr1 Ψn1
1 (θ0) + logrTI

Ψ
nTI
TI

(θTI ) +

TI−1∑
t=1

logrt
Ψnt
t (θt)

Ψ

nt+1
logrt

rr+1

t+1 (θt)

.

With

logrt rt+1 =
log rt+1

log rt
=

log(1− µ
nt+1L

)

log(1− µ
ntL

)
≈
− µ
nt+1L

− µ
ntL

=
nt
nt+1

,
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we get

Ta1 ≈ − logr1 Ψn1
1 (θ0) + logrTI

Ψ
nTI
TI

(θTI ) +

TI−1∑
t=1

logrt
Ψnt
t (θt)

Ψ

n2
t+1
nt

t+1 (θt)

≤ − logr1 Ψn1
1 (θ0) + logrTI

Ψ
nTI
TI

(θTI ) +

TI−1∑
t=1

ntL

µ
log

Ψ
n2
t+1
nt

t+1 (θt)

Ψnt
t (θt)

≤ − logr1 Ψn1
1 (θ0)− L

µ
log Ψ

n2
TI
TI

(θTI ) +
L

µ

TI−1∑
t=1

log
Ψ
n2
t+1

t+1 (θt)

Ψ
n2
t
t (θt)

= − logr1 Ψn1
1 (θ0) +

L

µ

TI−1∑
t=1

n2
t log

Ψt+1(θt)

Ψt(θt)
+
L

µ
log

ΠTI−1
t=1 Ψ

n2
t+1−n2

t

t+1

Ψ
n2
TI
TI

(θTI )

=
L

µ

TI−1∑
t=1

n2
t log

Ψt+1(θt)

Ψt(θt)
+
L

µ
log

ΠTI−1
t=0 Ψ

n2
t+1−n2

t

t+1

Ψ
n2
TI
TI

(θTI )
− logr1 Ψn1

1 (θ0)− L

µ
log Ψ

n2
1

1 (θ0).

Let

Φ2 =

TI−1∑
t=1

n2
t log

Ψt+1(θt)

Ψt(θt)
, Ω̄2 =

(
ΠTI−1
t=0 Ψ

n2
t+1−n2

t

t+1

) 1

n2
TI ,

Υ2 = − logr1 Ψn1
1 (θ0)− L

µ
log Ψ

n2
1

1 (θ0),

thus

Ta1 ≤
L

µ
Φ2 +

L

µ
n2
TI

log
Ω̄2

ΨTI (θTI )
+ Υ2.

With similar procedures, we have

Ta2 ≤
L

µ
Φ3 +

L

µ
n3
TI

log
Ω̄3

ΨTI (θTI )
+ Υ3,
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where

Φ3 =

TI−1∑
t=1

n3
t log

Ψt+1(θt)

Ψt(θt)
, Ω̄3 =

(
ΠTI−1
t=0 Ψ

n3
t+1−n3

t

t+1

) 1

n3
TI ,

and Υ3 = − logr1 Ψ
n2

1
1 (θ0)− L

µ
log Ψ

n3
1

1 (θ0).

5.3.2.2 Sample Screening

To remove sample i from At, we need h(xi, yi;wt)−
√
kiiG(θt) > 0. This leads to

G(θt) <
h2(xi, yi;wt)

kii
.

Lemma 3 The time complexity for the sample screening phase isO
(

2L
µ
n2
TI

log
ΨTI+1(θTI )

Γ̄2
+

L
Kµ
n3
TI

log
ΨTI+1(θTI )

Γ̄3

)
, where

Γ̄2 =
(
ΠTD−1
t=TI+1Ψ

n2
t−n2

t+1

t (θt)Ψ
n2
TD
TD

(θTD)
) 1

n2
TI+1 ,

Γ̄3 =
(
ΠTD−1
t=TI+1Ψ

n3
t−n3

t+1

t (θt)Ψ
n3
TD
TD

(θTD)
) 1

n3
TI+1 .

Proof: For the sample screening phase,

Tb =

TD∑
t=TI+1

logrt
Ψt(θt)

Ψt(θt−1)

K
(2Knt + n2

t )

= 2

TD∑
t=TI+1

nt logrt
Ψt(θt)

Ψt(θt−1)
+

1

K

TD∑
t=TI+1

n2
t logrt

Ψt(θt)

Ψt(θt−1)
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Let

Tb1 =

TD∑
t=TI+1

nt logrt
Ψt(θt)

Ψt(θt−1)
≤ L

µ

TD∑
t=TI+1

n2
t log

Ψt(θt−1)

Ψt(θt)

=
L

µ
log ΠTD

t=TI+1

Ψ
n2
t
t (θt−1)

Ψ
n2
t
t (θt)

=
L

µ
log

Ψ
n2
TI+1

TI+1 (θTI )

ΠTD−1
t=TI+1Ψ

n2
t−n2

t+1

t (θt)Ψ
n2
TD
TD

(θTD)

=
L

µ
log

Ψ
n2
TI+1

TI+1 (θTI )

Γ̄
n2
TI+1

2

=
L

µ
n2
TI+1 log

ΨTI+1(θTI )

Γ̄2

.

Here

Γ̄2 =
(
ΠTD−1
t=TI+1Ψ

n2
t−n2

t+1

t (θt)Ψ
n2
TD
TD

(θTD)
) 1

n2
TI+1 .

Similarly, let

Tb2 =

TD∑
t=TI+1

n2
t log

Ψt(θt)

Ψt(θt−1)
≤ L

µ
n3
TI+1 log

ΨTI+1(θTI )

Γ̄3

,

where

Γ̄3 =
(
ΠTD−1
t=TI+1Ψ

n3
t−n3

t+1

t (θt)Ψ
n3
TD
TD

(θTD)
) 1

n3
TI+1 .

5.3.2.3 Time Cost

After the sample recruiting and screening phases, we only need to iteratively update

the parameters to improve the accuracy. The time complexity for accuracy pursuing is

Tc = m logrm
ε

ΨTD(θTD)
≤ L

µ
m2 log

ΨTD(θTD)

ε
.
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Theorem 3 The time complexity for the proposed algorithm is O
(
2 τL
µ
n2
TI

log Ω̄2

εD
+

2L
µ
m2 log εD

ε
+ (1+τ)L

µ
an2

TI

)
. Here Ω̄2 =

(
ΠTI−1
t=0 Ψ

n2
t+1−n2

t

t+1

) 1

n2
TI , εD is the minimize accuracy

gap for the sample screening, m is the number of support vectors.

Proof: The time complexity for the proposed algorithm is

T = Ta + Tb + Tc

≤ 2K + n

K

(L
µ

Φ2 +
L

µ
n2
TI

log
Ω̄2

ΨTI (θTI )
+ Υ2

)
+

1

K

(L
µ

Φ3 +
L

µ
n3
TI

log
Ω̄3

ΨTI (θTI )
+

Υ3

)
+ 2

L

µ
n2
TI+1 log

ΨTI+1(θTI )

Γ̄2

+
1

K

L

µ
n3
TI+1 log

ΨTI+1(θTI )

Γ̄3

+ 2
L

µ
m2 log

ΨTD(θTD)

ε

= 2
L

µ
n2
TI

Ω̄2

Γ̄2

+
n

K

L

µ
n2
TI

log
Ω̄2

ΨTI (θTI )
+ 2

L

µ
m2 log

ΨTD(θTD)

ε

+
2K + n

K

L

µ
Φ2 +

1

K

L

µ
Φ3 +

1

K

L

µ
n3
TI+1 log

ΨTI+1(θTI )

Γ̄3

+ Υ

≤ 2
L

µ
n2
TI

Ω̄2

ΨTD(θTD)
+ 2

L

µ
m2 log

ΨTD(θTD)

ε
+
Ln2

TI

Kµ
log

Ω̄n
2

Ψ
n−nTI
TI

(θTI )Γ̄
nTI
3

+
2K + n

K

L

µ
Φ2 +

1

K

L

µ
Φ3 + Υ

≤ 2
L

µ
n2
TI

Ω̄2

ΨTD(θTD)
+ 2

L

µ
m2 log

ΨTD(θTD)

ε
+
Ln2

TI
n

Kµ
log

Ω̄2

ΨTD(θTD)

+
2K + n

K

L

µ
Φ2 +

1

K

L

µ
Φ3 + Υ

= 2
L

µ
n2
TI

(1 + η)
Ω̄2

ΨTD(θTD)
+ 2

L

µ
m2 log

ΨTD(θTD)

ε
+ 2

L

µ
(1 + η)Φ2 +

1

K

L

µ
Φ3 + Υ

≤ 2
L

µ
n2
TI

(1 + η)
Ω̄2

ΨTD(θTD)
+ 2

L

µ
m2 log

ΨTD(θTD)

ε
+
L

µ
(3 + 2η)Φ2 + Υ,

Here

η =
n

2K
, and Υ =

2K + n

K
Υ2 +

1

K
Υ3.
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As

Φ2 =

TI−1∑
t=1

n2
t log

Ψt+1(θt)

Ψt(θt)
,

we can control the value of h to ensure log Ψt+1(θt)
Ψt(θt)

≤ 1 ,

T ≤ 2
L

µ
n2
TI

(1 + η)
Ω̄2

ΨTD(θTD)
+ 2

L

µ
m2 log

ΨTD(θTD)

ε
+
L

µ
(3 + 2η)an2

TI
+ Υ.

Thus the time complexity is O
(
2 τL
µ
n2
TI

Ω̄2

εD
+ 2L

µ
m2 log εD

ε
+ (1+τ)L

µ
an2

TI

)
.

5.4 Experiments

We first compare SAIV with a typical working set (Shrinking) method [24] and then we

compare SAIV with the state-of-the-art sequential sample screening method [12]. More

thorough comparison studies are still ongoing, and we present the available preliminary

results in this section.

5.4.1 Comparison with Shrinking Method

We evaluate the proposed method on different data sets from the LIBSVM website [86].

We compare SAIV with the shrinking method [24] and report the running time in Table 5.1.

Here we use the RBF kernel for both methods. The running time for both methods are

based on the same hyper-parameters (C and kernel parameters). From Table 5.1, we can

see that the proposed method achieves improved computation efficiently compared with

the shrinking method. Furthermore, when the data sample size is large, SAIF can reduce

more computational cost.

5.4.2 Comparison with Sequential Screening

Grid search with cross validation has often been adopted to select model hyper-parameters

(C and kernel parameters). In this set of experiments, we compare SAIV with the state-of-
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Table 5.1: Running time (Sec.) on different data sets

Data Set Feature Size Sample Size CD+Shrinking Proposed
Gisette 5000 6000 83.8 51.1
USPS 256 7291 7.73 5.91
Vehicle 18 746 0.116 0.072

(a) (b)

(c) (d)

Figure 5.1: Running time for SAIV and sequential screening on Gisette (a, b) and USPS
(c, d) data sets with different numbers of C values at different γ values (kernel parameter).
For Gisette, γ = 1E-9 (a) and γ = 5E-8 (b). For USPS, γ =0.039 (c) and γ = 0.019 (d).
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the-art sequential screening method [12] on a sequence of C values controlling the width

of margin. Figure 5.1 gives the running time for both methods on Gisette and USPS data

sets with different numbers of C values. For Gisette data set, all of the model hyper-

parameter C values are sampled evenly on the logarithmic scale of range [0.01, 500]. For

USPS, the range is [0.1, 100]. The running time for SAIV is linearly increasing with the

number of C values. Although sequential screening can take less when the number of C

values is large, SAIV takes less time when the number of C is small. This is because the

density of C values determines the screening power of sequential screening, and smaller

gaps between C values can remove more non-support samples (vectors). While the den-

sity of C values does not affect the performance of SAIV, and thus the running time for

SAIV increases with the number of C values. When we do hyper-parameter tunning, we

can incorporate SAIV and sequential screening with coarse to fine strategies. We can start

from several different important C values with SAIV, and then do the sequential screening

to select the optimal hyper-parameter.

5.5 Conclusions

In this chapter, we propose a sample selection method for SVM. The main idea is fol-

lowing the similar derivation of the active incremental feature selection method of SAIF

for sparse learning. Theoretical analysis on convergence is given. Experiments on dif-

ferent data sets illustrate the advantages of the proposed method. Based on these results,

we conclude that the sparse properties can reduce the model computation cost of SVM ,

especially when there are a large number of training samples but only a small fraction of

them are support vectors. .
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6. CONCLUSIONS AND FUTURE WORK

In this dissertation, we have developed several methods to scale up sparse and struc-

ture models. In Chapter 2, we present a new feature selection algorithm for LASSO,

SAIF. SAIF utilizes quit different strategies compared with typical sequential and dynamic

screening methods, and it actively employees the most active features and deletes inactive

ones to minimize redundant computations. Experimental results prove that SAIF con-

sumes much less computation than state of art dynamic screening method. SAIF provides

a new direction for scaling up sparse learning, and it can be easily extended to group

LASSO, graph LASSO, and other sparse and structure models. We also show that the idea

of SAIF can be extended to support vector machines (SVM) in Chapter 5.

In Chapter 3, we try to address the GL scaling up problem. Firstly, the sequential

screening rules for GL problems can be derived by formulating equivalent dual problems

constrained by linear inequality systems. The bound propagation (BP) algorithm in the

dual space approximates the range of sub-gradient of L1 items, and then with the approx-

imation we can identify as many L1 items as possible to significantly reduce the original

problem size. With dynamic screening as an efficient way to start the screening process,

BP can be further improved with the the proposed transformation method. Secondly, we

extend the SAIF method to GL problems with tree structures. Experimental results on

both synthetic and real-world data sets demonstrate the promising performance of both

methods.

We developed a scalable structured kernel feature selection in Chapter 4. With the prior

knowledge of structures among features incorporated into the objective function, active

regions in medical images can be robustly and efficiently identified by the proposed HSIC

kernel feature selection method. The efficiency of the model can be boosted significantly
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with the dual average stochastic algorithm. Experimental results on simulation data and

real-world 3D image have verified the effectiveness and efficiency of the proposed method.

Based on the proposed methods in this dissertation, there are several directions we

can progress further in the future. First, SAIF can be extended to more general cases,

such as group LASSO, or general convex problems with sparse structures. Second, SAIF

can be further improved with strategies such as multi-level active set strategies, and SGD

methods [42]. Finally, kernel feature selection models can be further improved with the

proposed screening methods in this dissertation. These directions can improve the model

efficiency further by leveraging the sparse and structures in the data sets.
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