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ABSTRACT

The N-oxidation of alkylpyridines is used in the pharmaceutical industries to synthesize alkylpyridine
N-oxides that are involved in the production of analgesic and anti-inflammatory drugs. The synthesis
process involves continuous addition of aqueous hydrogen peroxide (35% w/w) solution to a mixture
of alkylpyridine and phosphotungstic acid catalyst. The oxidation is accompanied by undesired
decomposition of hydrogen peroxide, which produces large amounts of oxygen and water vapor. This
reaction introduces a series of hazards during the operation including the potential to over pressurize
an improperly vented reactor and generation of an oxygen-rich atmosphere in an alkyl pyridine
flammable environment. The decomposition is accelerated during the N-oxidation of higher order
alkylpyridines (lutidines, collidines) due to mass transfer limitations caused by the separation of the
liquid into organic and aqueous phase. Also, the presence of phosphotungstic acid (catalyst) in the
aqueous phase further intensifies the peroxide decomposition reducing the safety and efficiency of the
process. It is thus essential to identify homogeneous reaction conditions and operate the reactor in a

regime where phase separation is prevented.

The immiscibility between the alkylpyridine and water is primarily responsible for the liquid phase
heterogeneity during the N-oxidation. The current work addresses this research gap by investigating
the influence of the alkylpyridine N-oxide on the phase separation since the N-oxide is known for its
increased reactivity. Experimental and theoretical studies were conducted on 2,6-Iutidine/2,6-lutidine-
N-oxide/water mixtures at different temperatures. The phase equilibrium experiments were conducted
at 110 °C in lab-scale calorimeters wherein the ternary mixtures were analyzed with the help of in-situ

FTIR spectroscopy. It was found that the extent of heterogeneity between 2,6-lutidine and water is

i



reduced dramatically by the presence of 2,6-lutidine-N-oxide as indicated by the phase diagram.

In order to support the experimental work, the UNIQUAC thermodynamic model was used to
estimate the biphasic compositions and predict the LLE curve for the ternary mixture. The energy
parameters used in the equations, which describe the intermolecular interactions were calculated
based on molecular dynamics simulations. Apart from this, the molecular parameters for N-oxide
were obtained by following a quantum mechanical approach, which utilized a surface building
algorithm for constructing the molecular surface. The results predicted by the model provide a
satisfactory representation of the experimental data at T = 110 °C. In addition to this, the influence of
temperature on the phase behavior was studied by generating phase equilibrium data at T = 100 and

125 °C.

The findings from this research study can be used to implement the inherent safety concept —
“Hybridization” to the N-oxidation system wherein the concentration of product N-oxide can be

controlled to maintain a less hazardous environment.
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1. INTRODUCTION

Reactivity of a chemical substance is like a ‘double-edged sword’. A chemically reactive
material is valuable to the process industry since it can be utilized to synthesize a variety of
products (Wei, Rogers et al. 2004). On the other hand, when plants experience process upsets,
(e.g., loss of temperature control, no or insufficient mixing, presence of incompatible materials)
these chemicals pose a greater hazard due to their increased reactivity. The resulting incident can
be catastrophic leading to an enormous loss to the industry and environment. According to a
CSB report, 167 chemical incidents have been triggered by uncontrolled chemical reactivity
between 1980 and 2001 in USA (United States Chemical Safety and Hazard Investigation Board
2002). The report identified inadequate hazard identification and lack of process knowledge as
the major causes behind these incidents. Since 2001, many other incidents have occurred due to
chemically reactive substances underscoring the need for adequate investigation of process

hazards and generation of process-related data.

The reactions employed in the pharmaceutical, fine chemical and agrochemical industries are
excellent examples of chemical systems, with limited information on chemistry,
thermochemistry and thermodynamic properties. In addition to this, the improper understanding
of kinetics due to complex reaction systems and non-linear dynamics leads to empirically
designed reactors for many of these processes (Pineda-Solano, Saenz-Noval et al. 2012).
Generally, batch and semi-batch reactors are used to conduct the reactions to accommodate
miscellaneous reaction kinetics as well as downstream operations for product separation. Since,

these reactors are susceptible to human error, situations leading to deviations from normal



operations occur frequently. Also, large amounts of by-products are generated in the reaction
vessels, which can be released into the environment leading to severe pollution. Hence, it is
important to enhance the technical know-how of these systems to prevent the occurrence of
process safety incidents. Also, this knowledge will aid the implementation of inherently safer
alternatives that can lower or eliminate the hazards thereby ensuring safe conditions in the

system in the event of abnormal situations.

The N-oxidation of alkylpyridine is a reaction employed in the pharmaceutical industry for
synthesizing specialty chemicals. The hazards associated with the process arise mainly due to the
condition dependent decomposition of hydrogen peroxide, which is used as an oxidant in the
reaction. The decomposition reduces the efficiency and hampers the overall safety of the process.
The current research aims at evaluating the thermodynamic properties of the reaction mixture at
different conditions through experimental and theoretical techniques since they have a direct
bearing on the decomposition process. The study can be used to develop inherently safer reactive
processes for the N-oxidation system, which will result in the design of intensified reactors.
Moreover, the alternatives suggested in this work would be applicable to other batch systems

with similar characteristics.

1.1 The N-oxidation of Alkylpyridines

In the N-oxidation reaction, the nitrogen in the pyridine ring structure is oxidized to obtain

alkylpyridine N-oxide. The oxidizing agent used in the N-oxidation reaction is hydrogen

peroxide while phosphotungstic acid acts as the catalyst (see reaction scheme (1)).



o}

R - H,0, Catalyst R - HO W

Open semi-batch reactors are employed in the industry to perform the reaction wherein an
aqueous hydrogen peroxide solution (30 — 50%) is added gradually to a system of alkylpyridine
and catalyst to avoid excess heat generation. During the process, the reactor temperature is
maintained constant and is not allowed to exceed the boiling point of the mixture (90 — 95 °C)
(Palomo-Coll 1992; Sempere, Nomen et al. 1998). The phosphotungstic acid catalyst promotes
the decomposition of hydrogen peroxide along with the N-oxidation reaction. Owing to this,
excessive amount of hydrogen peroxide is added to the system to achieve the desired conversion.
As a result, the reaction mixture has to be neutralized at the end before initiating the separation
process. Apart from this, the reactor is connected to an overhead condenser to collect the

escaping vapors.

1.1.1. Alkylpyridines

Alkylpyridines are heterocyclic compounds that contain a six membered ring with one nitrogen
atom. The ring has alkyl substituents, which increases the basicity of the structure. The alkyl
pyridines are classified based on the number of alkyl groups attached to the parent pyridine ring.

Monosubstituted rings are known as methyl pyridines (picolines) while di- and trisubstituted



rings are termed lutidines and collidines respectively. The alkylpyridines commonly used in the

industry have been shown in Figure 1.

X X ™ XX
N N N :

(a) (b) (c) (d)

Figure 1. Industrially important alkylpyridines. a) 2-methylpyridine, b) 3-methylpyridine, c) 2,6-
dimethylpyridine, d) 2,4,6-trimethylpyridine (2,6-dimethylpyridine was the focus of this work)

Table 1. Physical properties of alkylpyridines (Adapted from (Scriven and Murugan 2000;
Shimizu, Watanabe et al. 2000))

Chemical Molecular weight | Melting point | Boiling point | Flash point
(g/mole) €9 §9) (O
2-methylpyridine 93.1 -41.7 129.4 27
3-methylpyridine 93.1 -18.2 144.1 38
2,6-dimethylpyridine 107.2 -6.1 144.5 37
2,4,6-trimethylpyridine 121.2 -43.0 171.5 55

In general, picolines are completely miscible in water while lutidines and collidines exhibit
liquid based phase separation when mixed with water at certain conditions. Table 1 displays the
physical properties of some alkylpyridines. It can be deduced from the table that these chemicals
are flammable with low flash points. Alkylpyridines are widely used in the pharmaceutical and

agrochemical industries as chemical intermediates and precursor molecules. For example, a) 2-

4



methylpyridine is a precursor in the manufacture of 2-vinylchloride, b) 3-methylpyridine is used
in the manufacture of an insecticide — chlorpyrifos. Apart from this, they are used as solvents and

reagents (Shimizu, Watanabe et al. 1993; Scriven and Murugan 2000).
1.1.2. Alkylpyridine N-oxides

Alkylpyridine N-oxides are the products of the oxidation of alkylpyridines. Figure 2 shows the

structure of 2,6-dimethylpyridine N-oxide.

=

\‘
N
|
0}

Figure 2. Structure of 2,6-dimethylpyridine N-oxide

The N-oxide molecule is planar and has higher reactivity than alkylpyridines owing to the
presence of both electrophilic and nucleophilic centers. Similar to alkylpyridines, they are used
in the pharmaceutical and agrochemical industries as intermediates. They find special
applications in the synthesis of analgesics, anti-inflammatory and anti-ulcer drugs. For example,
2,3,5-trimethylpyridine N-oxide is used to make omeprazole (an antiulcer drug) (Shimizu,

Watanabe et al. 1993).



1.1.3. Hydrogen Peroxide

Hydrogen peroxide (H>O,) is a clear and colorless liquid. It is an extremely selective oxidizing
agent, which reacts with organic and inorganic substances. Additionally, the oxidation reaction
with hydrogen peroxide produces water as a byproduct and hence the overall process is
environmentally friendly. It is widely used in chemical manufacture, the paper and pulp industry,
wastewater treatment, metal finishing, hydrometallurgy and semiconductor wafer cleaning
(Jones 1999; Campos-Martin, Blanco-Brieva et al. 2006). The physical properties of hydrogen

peroxide are included in Table 2.

Table 2. Physical properties of hydrogen peroxide (Adapted from (Jones 1999))

Property Value
Boiling point (°C) 150.20
Heat of vaporization at 25 °C (J/g/K) 1519.00
Specific heat at 25 °C (J/g/K) 2.63
Relative density (g/ml) 1.44

Generally, hydrogen peroxide is available as aqueous solutions (< 70 wt. %), owing to its

miscibility in water. Table 3 shows the properties of hydrogen peroxide solutions.

Table 3. Properties of aqueous hydrogen peroxide solutions
(Adapted from (Jones 1999) and (Yaws 2012))

Property 30 wt. % S50 wt. % | 60 wt. % | 70 wt. %
Density (g/ml) 1.112 1.197 1.242 1.290
Boiling point at 1 atm (°C) 106 114 119 125
Active O, content, % 14.1 235 28.2 32.8




Similar to other peroxides, hydrogen peroxide decomposes to oxygen and water vapor at room

temperatures due to the unstable peroxy group (—O—0-).

H,O, — %0, + H,O ()

This process is exothermic and produces about 98.3 kJ of heat per mole of hydrogen peroxide
reacted. It also produces an oxygen-rich flammable environment, which may ignite and cause an
explosion in presence of organics. Temperature has a direct effect on the rate of decomposition.
The decomposition rate increases by 2.3 times with every 10 °C rise in temperature. Also, the
decomposition is affected by the pH of the reaction system (Jones 1999). Another factor, which
influences the decomposition, is the presence of impurities. Alkalis, strong acids (nitric acid) and
dissolved salts like iron, chromium and nickel catalyze the reaction homogeneously and increase
the decomposition rate. Similarly, insoluble agents like silver, platinum, gold accelerate the
reaction (Conner 1993). Incidents involving hydrogen peroxide are common in the industry.
Entry of 35% hydrogen peroxide solution (due to suction) from the glove box floor to a pickup
vessel containing high concentrations of iron, nickel and copper led to an explosion at Rocky
flats, Colorado. The vessel contained radioactive plutonium and the explosion released the
radioactive material (Conner 1993). Similarly, a hydrogen peroxide tank car exploded on an
expressway in Tokyo due to contamination by copper chloride, which was stored in the tank
earlier (Kumasaki 2006). Most of these incidents were a direct result of the decomposition of
hydrogen peroxide and the consequent vapor generation (Greene, Baker ef al. 2005). The above
incidents highlight the importance of reducing the accumulation of hydrogen peroxide in any

reaction system. Hence, reactions involving hydrogen peroxide are generally carried out in semi-



batch mode wherein hydrogen peroxide is gradually added to the reaction mixture. In a semi-
batch operation, the addition of the hydrogen peroxide can be ceased if a reaction runaway
occurs (due to cooling failure or excessive accumulation) (Jones 1999). Similarly, it is a common
practice to add stabilizers to aqueous hydrogen peroxide solutions to lower the decomposition

rate during storage.

1.1.4. Phosphotungstic acid

Phosphotungstic acid (H;PW,049.nH,0) is a white solid, which is used as a catalyst in the N-
oxidation process. It is a type of heteropolyacid and belongs to the Keggin series. It has a
characteristic structure consisting of a central PO, tetrahedron and 12 edge-sharing WOq
octahedrons surrounding. Phosphotungstic acid can form hydrogen bonds with water molecules
and hence it is soluble in water. PTA completely dissociates in water releasing heteropolyanions
(PW12040)” (see Figure 3). On the contrary, the solubility of PTA is low in organic solutions

owing to its inability to interact with organic molecules (Kozhevnikov, Sinnema ef al. 1995).

Figure 3. Structure of phosphotungstate anion (Phosphorus atom is denoted by orange while
tungsten and oxygen atoms are represented by blue and red respectively) (Kozhevnikov 2007).
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Phosphotungstic acid has been used widely in industrial processes like esterification’s,
polymerizations, hydrations due to its high selectivity and activity (Brensted acidity)
(Kozhevnikov 1987). Also, the catalyst is reusable and thermally stable up to temperatures of
465 °C (Kozhevnikov 2007). Apart from this, catalyst is non-toxic, non-corrosive and non-

volatile (Misono, Ono et al. 2000).

1.2. Hazards associated with the N-oxidation process

As discussed above, the hydrogen peroxide has a strong tendency to decompose. Hence, the N-
oxidation reaction is accompanied by the undesired decomposition of hydrogen peroxide, which
reduces the overall yield and selectivity of the process. Apart from this, a runaway of this
reaction may lead to a tremendous increase in the temperature in the reactor and generate large
amounts of gaseous oxygen and water vapor. This temperature rise might lead to decomposition
of the reaction products (N-oxides) producing non-condensable gases, which will lead to a
further increase in the pressure and temperature in the reactor. The oxygen rich environment
poses a major fire and explosion hazard due to the flammable nature of alkyl pyridines. Also,
the rapid generation of gas can over pressurize a closed reactor and lead to secondary

decompositions hampering the overall safety of the process.

Secondly, higher order alkyl pyridines (e.g., lutidines and collidines) have limited miscibility in
water. Therefore, during the synthesis of higher order N-oxides, two — phase systems can be

formed (i.e., organic and aqueous) wherein the reaction takes place at the interface. Hence, the



mass transfer of the reactants and catalyst to the interface influences the overall reaction rate.
The solid catalyst has poor solubility in the organic phase and remains in the aqueous phase
accelerating the decomposition of the hydrogen peroxide. This reduces the efficiency and
selectivity of the process by reducing the amount of hydrogen peroxide utilized in the oxidation
reaction. Hence, it is very important to avoid operating conditions where a heterogeneous

mixture is obtained (Saenz-Noval 2011; Pineda-Solano 2014).

10



2. LITERATURE REVIEW

The N-oxidation of alkylpyridines can serve as a model reaction for other complex batch systems
utilizing reactive chemicals like peroxides and metal catalysts. Hence, various researchers have
studied this system with an objective of increasing the product yield and enhancing the process
safety (Sempere, Nomen et al. 1998; Papadaki, Emery et al. 2002; Papadaki, Stoikou et al. 2002;
Papadaki and Nawada 2003; Papadaki and Gao 2005; Papadaki, Marqués-Domingo et al. 2005;
Gao and Papadaki 2006). Most of the work on the N-oxidation of alkylpyridines has been
concentrated on developing kinetic models for the reaction, which can predict the alkypyridine
conversion at various temperatures, pressures and initial compositions. Research has also been
focused on identifying inherently safer operating conditions for the process where the peroxide
decomposition is minimized. In order to achieve these objectives, the N-oxidation reaction was

conducted in calorimeters used both as open and closed systems.

The initial studies were realized in open reactors working at atmospheric pressures wherein the
system temperature was maintained between 85 and 100 °C. Sempere, Nomen et al. (1998)
performed the N-oxidation of 2-picoline at three different temperatures (85, 93 and 100 °C) in a
semi-batch system wherein aqueous solutions of hydrogen peroxide were added to the
picoline/catalyst mixture over a fixed period of time. Based on the thermal profiles, it was clear
that the reaction did not follow the simple power law model. Hence, the authors adopted the
Langmuir-Hinshelwood approach, which considers the reaction as a series of fast equilibrium

steps wherein the reactants combine with the catalyst sites to generate intermediates that result in

11



the final products. The model parameters were predicted by reducing the error between the

calculated profiles and the experimental results.

Papadaki and Gao (2005) extended this work to other alkyl pyridines (i.e., 3-picoline, 2,6-
lutidine, 3,5-lutidine and 2,4,6-collidine) and modified the existing model. They neglected all
reaction pathways which were non-catalytic and found that the resultant model could represent
the calorimetric data more accurately. Nevertheless, the rate and equilibrium constants included
in the model could not be evaluated with sufficient reliability. Also, the model showed partial
agreement in describing the N-oxidation of high order alkylpyridines (lutidines and collidines)

owing to liquid-liquid demixing during the reaction, which increased the kinetic complexity.

While performing the N-oxidation reaction in open reactors, a limited temperate range
(essentially between 85 and 100 °C) was employed. The decomposition reaction was vigorous at
temperatures below 85 °C, leaving minute quantities of hydrogen peroxide to react with the
alkylpyridine. On the other hand, the N-oxidation reaction was more prominent at higher
temperatures indicating that the decomposition rate is reduced with an increase in temperature.
However, since the boiling point of the reaction mixture is around 100 °C, the maximum

temperature of the reaction had to be maintained below this limiting value.

A similar effect was seen when the quantity of catalyst in the mixture was varied. A higher
catalyst concentration favored the N-oxidation by suppressing the decomposition reaction.
Owing to this, the N-oxidation reaction occurred at rapid rates and only limited kinetic data could

be collected during the experiments. At lower catalyst concentration, the N-oxidation reaction

12



depended on the availability of hydrogen peroxide in the solution, which was determined by the
peroxide addition rate. Since the reaction was dosing controlled, it was difficult to generate
sufficient kinetic information under these conditions as well. Hence, the kinetic study of N-

oxidation of alkypyridines is fundamentally complex.

In addition to this, the peroxide decomposition reaction depends on the alkalinity of the solution.
It was found that the rate of catalytic decomposition of hydrogen peroxide was slower in
presence of alkylpyridines than in their absence (Papadaki, Stoikou et al. 2002). Hence, the
peroxide decomposition reaction is condition-sensitive and should be studied along with the N-

oxidation reaction.

In short, the results indicate that the safety and efficiency of the N-oxidation reaction are affected
by various factors like temperature, pressure, catalyst concentration and mixing in the system.
Therefore, it was suggested that the reaction should be operated in the single-phase regime and

higher temperatures (>100 °C) and pressures should be employed while conducting the reaction.

Based on these findings, Saenz-Noval (2011) addressed the following issues in her work, (i)
Effect of higher temperatures and pressures on the N-oxidation reaction, (ii) Study of
decomposition of alkylpyridines and alkylpyridine N-oxides, (iii) Influence of alkylpyridine N-

oxide on the decomposition of hydrogen peroxide.

In order to operate the N-oxidation reaction at elevated temperatures, an isothermal calorimeter

was employed which had the ability to withstand high pressures. Using this apparatus, the N-
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oxidation of 2-picoline and 2,6-lutidine were studied by Saenz-Noval (2011) at process
temperatures ranging from 110 °C to 125 °C. The experiments indicated that stoichiometric
amounts of hydrogen peroxide could convert 98% (or more) of the 2-picoline into N-oxide.
Nevertheless, the influence of the catalyst on the reaction efficiency could not be ascertained.
During the 2,6-lutidine N-oxidation, it was observed that the organic/water phase separation led
to excessive decomposition of hydrogen peroxide even at increased temperatures. The agitator
speeds were varied during the trials in order to enhance the mixing between the chemical species.
However, the decomposition rate was rapid and the reactor had to be vented frequently owing to

the buildup of oxygen gas.

Secondly, adiabatic experiments were performed on 2-picoline and 2-picoline N-oxide to
determine their stability and decomposition pathways (Saenz, Vazquez et al. 2009; Saenz,
Carreto-Vazquez et al. 2011). 2-picoline did not decompose in the presence/absence of the
catalyst and remained stable up to 350 °C. On the other hand, the decomposition of 2-picoline N-
oxide was substantial at temperatures in excess of 200 °C. Also, the catalyst had a positive
impact on the decomposition reaction. Moreover, the decomposition produced non-condensable

gases, which could be detrimental to the safety of the N-oxidation process.

Similarly, when the decomposition of hydrogen peroxide was investigated, it was observed that
the reaction rate decreased with a reduction in the catalyst concentration. In addition to this, the
decomposition temperature of the hydrogen peroxide was lowered substantially by the presence
of 2-picoline N-oxide. Likewise, the 2-picoline N-oxide decomposition occurred at lower

temperatures in presence of the hydrogen peroxide.
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Pineda Solano (2014) extended this work to other members of the alkylpyridine family. 3-
picoline was studied to investigate the effect of temperature, catalyst concentration, peroxide
addition rate and stirring rate. The experiments suggested that the increase in temperature from
110 °C to 125 °C did not reduce the decomposition significantly (Pineda-Solano, Saenz-Noval et
al. 2012). Hence it was concluded that the rise in temperature could be favorable only up to a
certain extent. The amount of catalyst employed during the N-oxidation had a similar impact on
the decomposition. Apart from this, a 2* factorial design of experiments indicated that the
catalyst concentration and the peroxide-dosing rate are the major factors influencing the overall

conversion of the 3-picoline.

The results obtained from the N-oxidation of 3,5-lutidine were almost identical to the first case.
On the other hand, the N-oxidation of 2,6-lutidine and 2,4,6-collidine were characterized by the
formation of two liquid phases, which led to the vigorous decomposition of the hydrogen

peroxide.

The thermal stability studies on 3-picoline, 2,6-lutidine, 3,5-lutidine and 2,4,6-collidine revealed
that these chemicals were stable up to 400 °C. The corresponding alkylpyridine N-oxides
decomposed producing non-condensable gases when exposed to temperatures in excess of 230

°C (Pineda Solano 2014).

In general, previous research has focused on improving the understanding of this complex

reactive system in order to enhance the safety and efficiency of the process. All the findings have

15



underscored the importance of identifying operating conditions that can maintain homogeneity in

the mixture during the reaction, especially during the N-oxidation of lutidines and collidines.

To that end, Saenz-Noval (2011) suggested the addition of an external chemical to the mixture
for resolving the problem of phase separation. In order to substantiate this claim, the three-
component system containing 2,6-lutidine, water and acetic acid was investigated in process
simulator software using the Gibbs minimization method. The results show that the two-phase

region between 2,6-lutidine and water shrinks in the presence of acetic acid.
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3. MOTIVATION AND RESEARCH SCOPE

Elimination or mitigation of reactive hazards can be achieved by implementing the Inherent
Safety concepts introduced by Trevor Kletz (Kletz 1978; Kletz 1985). According to Kletz, the
four major approaches for making process plants inherently safer include a) Minimization
(Reduce quantities of hazardous chemicals), b) Substitution (Replace hazardous chemicals with
safer ones), ¢) Attenuation (Operate at conditions that are less hazardous) and d) Simplification
(Reduce system complexities to reduce operator errors). Since its inception these strategies have
been applied to the various stages of a plant lifecycle including research and development phase,
design phase, operation and maintenance phase and final decommissioning phase. Apart from
this, many new modifications, ideas and techniques have been suggested in the last two decades

to broaden the scope of this topic.

Edwards (2011) presented a new inherent safety technique based on the work of Chen (2004).
This concept was termed as hybridization/transformation and involved the introduction of an
external inert chemical into a potentially hazardous reaction system to make it less hazardous
while retaining the fundamental chemistry. In his study, Chen (2004) found that introducing
water during cyclohexane oxidation increases the vapor pressure of the mixture due to formation
of a minimum-boiling azeotrope between cyclohexane and water. This decreases the deflagration
hazard of the process by reducing the UFL of cyclohexane in oxygen during the oxidation.
Apart from this, the added water does not react with the cyclohexane thereby the reaction
chemistry remains unaltered. The overall approach is an example of hybridization, wherein water
acts as the inert agent that makes the process inherently safer without interfering with the
reaction. In addition to this, the adopted method provides an opportunity to enhance the overall
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productivity of the reaction by using pure oxygen (instead of air) for the oxidation, which was
previously avoided to prevent flammable conditions. The current research is aimed at identifying
a similar prospect for the N-oxidation of higher order alkyl pyridines by addressing the problem

of liquid-liquid de-mixing during the reaction in an inherently safer manner.

The liquid phase heterogeneity observed during the N-oxidation of higher order alkylpyridines
could be attributed to the immiscibility between alkylpyridine and water. Andon and Cox (1952)
studied the phase diagram for a system of 2,6-lutidine and water over a wide temperature region
(30 to 230 °C). They found that adding 3-picoline to a mixture of 2,6-lutidine and water reduces
the immiscibility between the two species. Similar results were obtained with acetic acid as
shown by Sanez-Noval (2011). This indicates that the addition of a third component to the binary
system can bring about homogeneity in the solution. However, if the added component has a
tendency to react with the chemicals in the N-oxidation system then the selectivity of the process
will still be compromised. Also, separation of the byproducts formed due to the undesired
reaction will increase the overall cost associated with the process. In this case, it would be

worthwhile to study the effect of the product N-oxide on the alkylpyridine-water phase

separation. The N-oxide is expected to have a positive impact on the mixing in the N-oxidation

system since it more soluble in water as compared to the parent alkylpyridine. Moreover, it was
found that the two-phase mixtures obtained at the start of the N-oxidation of 2,6-lutidine and
2,4,6-collidine disappeared slowly as the reaction progressed towards the end (Pineda Solano
2014). Currently, phase equilibrium data for mixtures containing alkylpyridine N-oxides are not
available in the literature. A complete phase diagram of the components involved in the N-

oxidation system could identify the minimum composition of N-oxide that could prevent the

formation of two liquid phases during the entire process and enhance safety and productivity.
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This result could be used to operate the reaction in the homogeneous regime by adding adequate

amounts of N-oxide to the initial mixture or by dosing it during the reaction. The strategy would

be an example of the hybridization concept discussed in the previous section.

The current work initiates research in this area by developing phase diagrams for the three-
component system containing 2,6-lutidine, 2,6-lutidine-N-oxide and water at various
temperatures. 2,6-lutidine N-oxidation represents a case where large amounts of hydrogen
peroxide were required to achieve the desired conversions owing to the heterogeneity in the
solution. Another factor, which was considered while selecting this system, was the availability
of liquid-liquid equilibrium data for 2,6-lutidine/water binary mixtures published by various
authors over extended temperature ranges (Andon and Cox 1952; Cox and Herington 1956;
Grattoni, Dawe et al. 1993; Stephenson 1993). The major objectives of this work can be

summarized as follows:

= Inspection of ternary mixtures of 2,6-lutidine, 2,6-lutidine-N-oxide and water to identify the
homogeneous and heterogeneous compositions. In addition to this, the liquid-liquid ternary

diagram was constructed to demarcate the singe and two-phase region.

= To evaluate the use of in-situ Fourier Transform Infrared (FTIR) spectroscopy as an

analytical tool to successfully differentiate between the homogeneous and heterogeneous

solutions of 2,6-lutidine, 2,6-lutidine-N-oxide and water.
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= To evaluate the applicability of computational chemistry in determining the binary energy

parameters for the system at various temperatures.

* To estimate the biphasic compositions and predict the LLE curve for the ternary mixture
using UNIQUAC activity coefficient model in combination with computational chemistry. In
addition to this, the influence of temperature on the phase behavior was studied by

constructing phase diagrams at different temperatures.

In general, the results of this study will enhance the thermodynamic understanding of the three-
component system, which will assist future studies in this direction. Also, the present work could
be extended to other higher order alkylpyridines to verify if a similar relation exists between the
aqueous solutions of alkylpyridine and their corresponding N-oxides. This can facilitate the
design of improved reactors for the N-oxidation process that are inherently safer and cost

effective.
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4. STUDY OF TERNARY MIXTURES OF 2,6-LUTIDINE/2,6-LUTIDINE-N-
OXIDE/WATER USING ISOTHERMAL CALORIMETER AND FOURIER

TRANSFORM INFRARED TECHNOLOGY'

The following section provides details regarding the phase equilibrium experiments conducted

on the three component system of 2,6-lutidine, 2,6-lutidine-N-oxide and water. The experiments
were performed in the Mettler-Toledo RC1e isothermal calorimeter at Texas A&M University at
College Station. The calorimeter was used to maintain the liquid solutions at the desired
temperature with continuous mixing to ensure that equilibrium is attained in reasonable time.
The RCle was equipped with an FTIR probe, which was used to collect the infrared spectra of
the liquid mixtures contained in the vessel. This data was used to distinguish between single
phase and biphasic mixtures and identify the compositions where phase separation occurred in
the ternary solutions. The hardware configuration of the RCle has been described in subsection
4.1 along with its functional capabilities. Also, this section discusses the operational details of
the FTIR spectrometer employed in the current study. Subsection 4.2 incorporates details
regarding the experimental procedure followed in this research to perform the phase equilibrium
trials. The results obtained from the experiments and the analysis of the FTIR spectral data have
been presented in subsection 4.3. The conclusions from this study have been summarized in

subsection 4.4.

! Part of this section is reprinted with permission from ‘Janardanan, S., M. 1. Papadaki, S. P. Waldram et al. (2017).
"Toward an inherently safer alternative for operating N-oxidation of alkylpyridines: Effect of N-oxide on lutidine —
water phase separation." Thermochimica acta 656(Supplement C): 38-46°, Copyright [2017] by Elsevier.
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4.1. Equipment Description

4.1.1. Mettler-Toledo RCl1e Isothermal Calorimeter

The Mettler-Toledo’s RCle MP10 is a 1.2 L fully automated small-scale glass jacketed reactor
used to study reactive chemical systems. The calorimeter is equipped with a platinum resistance
thermometer, pressure gauge and rupture disc (set at 12 barg) for measuring the temperature and
pressure inside the vessel and ensuring safety during normal operations. Apart from this, an
anchor stirrer (diameter 10.5 cm, height 6.7 cm and length 44 cm) made of Hastealloy provides

constant agitation to the reactor contents.

A thermostat regulates the temperature of the reactor by circulating silicone oil through the
jacket. The thermostat contains a hot oil reservoir and cold oil reservoir. In order to attain the
required temperature, requisite amounts of hot oil and cold oil are mixed before passing the oil
around the jacket. An electrical heater is used to heat the hot oil reservoir while the cold oil
reservoir is in contact with a cooling coil that passes through a chiller unit. Also, high oil
circulation velocities are maintained in the jacket to achieve constant temperatures. A second
platinum resistance thermometer has been provided in the jacket for temperature measurement.

In addition to this, a separate external cooling/heating Julabo bath was used to heat the reactor lid
to minimize heat losses to the surrounding and maintain better temperature control. The

maximum operating temperature of the RCle reactor is 162 °C.

A pressure controller regulates the reactor pressure and the maximum operating pressure is 10

barg. During the experiments, the pressure controller was inactive and the total pressure of the
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system was equal to the sum of the air pressure and vapor pressure of the mixture. Apart from
this, a ProMinent” solenoid-metering pump is included with the or the purpose of adding

materials to the reactor,

A Universal Control Box (UCB) connects the equipment to the personal computer (PC) which is
used to operate the three modules of the RCle i.e., electronic control and monitoring system,
thermostat and measuring system. The temperature and pressure of the reactor, temperature of
the circulating oil and stirring speed are recorded every two seconds by a microprocessor which
relays the data to the PC. Furthermore, the calorimeter incorporates the iControl software for
data processing. Figure 4 shows the schematic for the RCle employed in the current work

(Mettler-Toledo 2012).

Stirrer
Julabo

l Rupture Disc

\:| Pressure Gauge | | | | |

Vent Valve

N Dosing Pump

Oil out

Fiber Conduit —>|

SHES S |

Oil out i Water Jar
// Infrared Probe

‘Weighing Balance

|:| |:| Oil in |_T:E//

1 i

RCle Reactor
Thermostat Infrared Spectrometer

Figure 4. Schematic representation of the RCle (Reprinted with permission from (Janardanan,
Papadaki et al. 2017))
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4.1.2. ReactIR 15™

ReactIR 15 is an infrared spectrometer which has the capability to identify chemical species in
any liquid mixture. Based on the Fourier Transform Infrared (FTIR) Technology, the instrument

can analyze chemical systems non-intrusively. The equipment consists of a sampling probe with

a diamond-composite sensor at the tip (DiComp™) that can be inserted into the RCle reactor.
The infrared light from the ReactIR 15 source is transferred to the probe tip through a DS Fiber
Conduit containing silver halide fibers. The transmitted signal travels through the fibers and is
received by a liquid-nitrogen cooled Mercury Cadmium Telluride (MCT) detector. Silica gel is
used to maintain dry conditions inside the instrument and prevent any interference from water
vapor. The instrument transmits the information to a PC and the iC IR 4.2 Mettler Toledo

software is used to analyze the collected infrared data (Mettler-Toledo 2012).

4.2. Experimental Procedure

The experiments were conducted at 110 °C in the RCle calorimeter. Ternary compositions of
2,6-lutidine (lutidine), 2,6-lutidine-N-oxide (N-oxide) and water were obtained by diluting binary
and ternary solutions with water. Information regarding the purity of the chemicals used in the

study is included in Table 4.
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Table 4. List of chemicals used in this research (Reprinted with permission from (Janardanan,
Papadaki et al. 2017))

. CAS Mass Fraction
Chemical Name number Source Purity"
2,6-lutidine (lutidine) 108-48-5 | Sigma-Aldrich 0.98
2,6-lutidine-N-oxide (N-oxide) 1073-22-0 | Chem-Impex International Inc. 0.98
Utilities & Energy Services —
Water 7732-18-5 Texas A&M University 0.9999

“ Chemical were used without purification

The following procedure was employed during the dilution experiments. A mixture of known
composition was prepared and loaded into the RCle reactor at ambient temperature. The ATR-
FTIR probe was inserted into the liquid medium and the reactor was completely sealed to
maintain an airtight arrangement. Before introducing the probe inside the reactor, the tip was
washed with acetone and dried to prevent contamination from previous trials. After sealing the
reactor, the stirrer was activated and maintained at 200 rpm to provide constant agitation to the
liquid contents. The reactor was heated to 110 °C by raising the temperature setpoint of the oil in
the jacket. Once the required temperature was attained, the system was left to stabilize for 45 —
90 min before initiating the dilution process. The metering pump was used to dose water (at
ambient temperature) into the reactor at a fixed rate to alter the concentration of the mixture. The

dosing process was periodic and was halted to add equivalent amounts of water in each interval.

After each addition interval, the system was given 20 — 35 min for achieving thermal
equilibrium. Once the temperature was steady and within +0.03 °C of the desired temperature
(110 °C), the system was inspected visually to look for signs of phase separation. Also, the FTIR

probe was used to collect infrared spectra of the liquid mixture (5 — 10 scans) with a resolution
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of 8 cm™. For biphasic systems, the stirrer was stopped momentarily after collecting the
absorption spectra and the system was allowed to rest for 30 — 45 min before observing the
separated phases. The reactor was cooled back to room temperature at the end of the dosing

process.

4.3. Results and Discussion

4.3.1. Dilution experiments

Five binary mixtures of lutidine and N-oxide (90/10, 85/15, 80/20, 75/25, 60/40 wt.%) were
considered for dilution. Initial mixtures were homogeneous, clear and yellow in color. As water
was dosed into the system, the solution got progressively darker until it lost its transparency and
became cloudy. As mentioned in the previous section, the system was stabilized, inspected and
scanned after fixed dosing intervals. Table 5 provides details regarding the mixtures that were
analyzed during the process. When the stirrer was stopped to examine the cloudy solutions the
mixtures separated into two distinct transparent liquid layers (upper layer had a brown color
while the lower layer was faintly yellow) with a well-defined interface at equilibrium. This
confirmed that the system had undergone demixing and marked the end of the experiment. The
ternary mixtures obtained during the dilution of the 60/40 mixture remained clear during the

entire dosing period.
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Table 5. Experimental equilibrium mass fractions w for the system 2,6-lutidine (1) + 2,6-
lutidine-N-oxide + water (3) at temperature 7 = 110 °C and pressure P = 0.1 MPa (first set of
dilution experiments) (Reprinted with permission from (Janardanan, Papadaki et al. 2017)) whe

T/C w;x100 wox100 wsix100

110 90.00 10.00 - PO
110 83.12 9.49 7.39 P1
110 77.40 8.84 13.76 P2
110 7242 8.27 19.31 P3
110 68.04 777 24.19 P4
110 64.16 7.33 28.51 P5
110 85.00 15.00 - -
110 78.63 13.98 7.40 -
110 7321 13.01 13.77 -
110 68.50 12.18 19.33 -
110 6435 11.44 2421 -
110 60.68 10.79 28.53 -
110 57 40 10.20 32.39 -
110 80.00 20.00 - QO
110 74.15 18.43 742 Q1
110 69.03 17.16 13.81 Q2
110 64.57 16.05 19.38 Q3
110 60.65 15.08 2427 Q4
110 57.18 1422 28.60 Q5
110 54.09 13.45 3247 Q6
110 51.31 12.76 35.93 Q7
110 48.80 12.13 39.06 Q8
110 75.00 25.00 - -
110 47.90 16.12 35.98 -
110 46.06 15.50 3843 -
110 44 .37 14.93 40.70 -
110 42.79 14.40 42 81 -
110 41.32 1391 4477 -
110 39.95 13.45 46.60 -
110 60.00 40.00 - RO
110 55.64 36.97 7.39 R1
110 51.81 34 .42 13.76 R2
110 48 .48 32.21 19.32 R3
110 45.54 30.26 2420 R4
110 4295 28.53 28.52 R5
110 40.63 26.99 32.38 R6
110 38.55 25.61 35.84 R7
110 36.67 24 36 38.97 RS
110 3497 2323 41.80 RO
110 3341 22.20 44 38 R10
110 31.99 21.26 46.75 RI11
110 30.69 20.39 48.92 R12
110 29.49 19.59 50.92 -
110 28.38 18.85 52.77 -
110 2735 18.17 54 .49 -
110 26.39 17.53 56.08 -




Table 5. Continued

T/C w;x100 wox100 w;ix100

110 25.49 16.94 57.57 -
110 24 .43 16.23 59.34 -
110 23.00 15.28 61.72 -
110 21.73 14 .44 63.84 -
110 20.59 13.68 65.73 -
110 19.56 13.00 67 44 -
110 17.79 11.82 70.39 -
110 16.31 10.84 72 .85 -
110 15.66 1041 73.93 -

“ Standard uncertainties u are u(7T) = 0.002 °C, u(P) = 1 kPa and u(w) = 0.001

b Heterogeneous mixtures (cloudy solutions) have been highlighted in grey. These are not actual
binodal data points and lie inside the phase separation region

¢ Letter-number designations denote mixtures probed by ATR-FTIR

In order to determine the phase separation compositions with more certainty, a second set of
dilution experiments was performed with two ternary mixtures. Results from these trials have
been incorporated in Table 6. As we can see, the compositions of the starting mixtures
correspond to homogeneous solutions obtained during the dilution of 90/10 and 80/20 lutidine +
N-oxide mixture (P3 and Q7). During this study, the quantity of water added in each step was
reduced to spot the transition between the homogeneous and heterogeneous mixtures more

accurately.

Table 6. Experimental equilibrium mass fractions w for the system 2,6-lutidine (1) + 2,6-
lutidine-N-oxide + water (3) at temperature 7 = 110 °C and pressure P = 0.1 MPa (second set of

dilution experiments)(Reprinted with permission from (Janardanan, Papadaki et al. 2017) ) @b

T/C w;x100 wox100 wsix100
110 72.39 8.07 19.55
110 72.10 8.04 19.86
110 71.82 8.00 20.18
110 71.26 7.94 20.80
110 70.70 7.88 21.42
110 70.16 7.82 22.02
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Table 6. Continued
T/C w;x100 wyx100 wsx100

110 69.62 7.76 22.61
110 69.10 7.70 23.20
110 68.58 7.64 23.78
110 68.07 7.59 24.35
110 67.56 7.53 24.91
110 67.31 7.50 25.18
110 67.07 7.48 25.46

110 51.14 12.85 36.00
110 51.01 12.82 36.17
110 50.88 12.78 36.33
110 50.76 12.75 36.49
110 50.63 12.72 36.65
110 50.50 12.69 36.81
110 50.37 12.66 36.97
110 50.25 12.62 37.13
110 50.12 12.59 37.29
110 50.00 12.56 37.44
110 49.87 12.53 37.60
110 49.75 12.50 37.75
110 49.62 12.47 37.91

“ Standard uncertainties u are u(7T) = 0.002 °C, u(P) = 1 kPa and u(w) = 0.001

b Heterogeneous mixtures (cloudy solutions) have been highlighted in grey. These are not actual
binodal data points and lie inside the phase separation region

The results obtained from the dilution experiments were represented on a triangular diagram to
identify the single and two phase envelopes. Binary mixtures of lutidine and N-oxide are
represented on the side of the triangle while the ternary solutions have been indicated as points
inside the triangle (see Figure 5 and 6). Based on the data, a binodal curve was constructed
(shown in Figure 7) to demarcate the homogeneous and heterogeneous regions for the system. If
the mixture composition lies in the shaded region then the system will exhibit phase separation
and exist as two phases (organic and aqueous) while a single liquid phase will be seen for

compositions in the unshaded area. It can be inferred that the N-oxide increases the extent of
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homogeneity between lutidine and water. Moreover, it is safe to assume that the three-
component system will remain homogeneous if the N-oxide concentration is maintained above
20% for any combination of lutidine and water at 110 °C. Apart from this, another important
observation was made while cooling the mixtures back to room temperature. It was seen that
turbid mixtures regained transparency as the temperature of the system was reduced indicating
that lesser quantities of N-oxide might be required to homogenize the mixtures at lower

temperatures.

N-oxide

Figure 5. Ternary diagram for the system 2,6-lutidine (lutidine) + 2,6-lutidine-N-oxide (N-oxide)
+ water showing ternary mixtures from first set of dilution experiments

Homogenous mixtures are denoted by B ,while heterogeneous mixtures are denoted by €
(Reprinted with permission from (Janardanan, Papadaki ez al. 2017))
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N-oxide

water 90 80 70 60 50 40 30 20 10 Jutidine

Figure 6. Ternary diagram for the system 2,6-lutidine (lutidine) + 2,6-lutidine-N-oxide (N-oxide)
+ water showing ternary mixtures from second set of dilution experiments

Homogenous mixtures are denoted by B | while heterogeneous mixtures are denoted by @
(Reprinted with permission from (Janardanan, Papadaki et al. 2017))
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N-oxide

water 90 80 70 60 50 40 30 20 10 lutidine

Figure 7. Ternary diagram for the system 2,6-lutidine (lutidine) + 2,6-lutidine-N-oxide (V-
oxide) + water at temperature 7' = 110 °C showing approximate nature of the binodal curve
Shaded area — Heterogeneous region, Unshaded area — Homogeneous region

For 2,6-lutidine/water system at temperature 7' = 110 °C, concentration of water in 2,6-lutidine
rich phase is 18 wt.% and concentration of 2,6-lutidine in water rich phase is 5 wt.% (Andon et
al. (1952) (denoted by @ in the figure)

(Reprinted with permission from (Janardanan, Papadaki et al. 2017))

4.3.2. FTIR spectra analysis

The total energy possessed by a molecule is a sum of four contributions i.e., electronic energy,
vibrational energy, rotational energy and translational energy (Coates 2000). When atoms absorb
infrared radiations they vibrate with specific frequencies leading to a change in the dipole
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moment of the molecule. The vibrating molecules absorb a portion of the incident energy and the
reflected beam is used to construct an absorption spectrum for the sample. The interaction
between the sample and the incident beam is a function of the bond angle, bond length and
overall structure of the molecules. If the energy absorbed by a sample over any frequency range
is recorded then it can provide us with information regarding the molecular backbone and the

attached functional groups of the different components. Also, the relationship between the

absorption of a molecule and its concentration in the sample is linear (Swinehart 1962).

The Fourier Transform Infrared Spectroscopy (FTIR) used in this research works on a similar
principle. It is based on the concept of Attenuated Total Reflectance (ATR) and probes the liquid
in the vicinity of the diamond tip (surface measurements). The main advantage of this technique
is that it does not disturb the system while taking measurements and generates data instantly. In
addition to this, the instrument does not require external temperature controlled devices for
collecting and storing samples. Furthermore, the signal-to-noise ratio and energy throughput in
an FTIR is larger than regular dispersive instruments (Lewiner, Févotte et al. 2001; Lewiner,
Klein et al. 2001). Owing to these advantages, the FTIR has been used for qualitative and
quantitative determination of chemicals in many research areas. For example, Fujiwara et al.
(2002) studied the crystallization of paracetamol in water using ATR-FTIR and laser
backscattering techniques. They concluded that the ATR-FTIR could be used successfully to
identify the optimum operating conditions for the crystallization process. Similarly, ATR-FTIR
was used to detect the concentrations of methyl esters in biodiesel blends (Oliveira, Montalvao et
al. 2006). FTIR has also been used to measure the mineral content in coal samples to determine
the feasibility of coal in energy production (Painter, Coleman ef al. 1978). Several other authors

have demonstrated the application of the FTIR as an analytical tool (ULBERTH and HAIDER
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1992; van de Voort, Ismail ef al. 1994; Lewiner, Févotte et al. 2001; Al-Alawi, van de Voort et

al. 2005; Swann and Patwardhan 2011).

The in-situ FTIR spectrometer used in this work employed mid-infrared frequencies (2500 — 650
cm”). The probe tip is made of a diamond composite sensor that absorbs in the 2250 — 1950 cm*
frequency region. Hence, the spectral data obtained in this range was not considered during the

analysis.

Reference IR spectra for pure solutions of lutidine and N-oxide are shown in Figure 8 and 9. The
absorption of both the molecules in the 1800 — 650 cm" frequency region was significant with
many characteristic peaks. The vibrational frequencies observed in the lutidine spectra were
found to be consistent with the work of Green et al. (1970). Also, most of the IR bands for N-

oxide overlap with lutidine owing to similar molecular structure except the distinctive N-O peak

at 1248 cm (Pineda Solano 2014).
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Figure 8. FTIR spectra for 2,6-lutidine solution at temperature 7 = 25 °C
(Reprinted with permission from (Janardanan, Papadaki et al. 2017))
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Figure 9. FTIR spectra for 2,6-lutidine-N-oxide solution at temperature 7' = 25 °C
(Reprinted with permission from (Janardanan, Papadaki et al. 2017))
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Prior to testing the ternary mixtures, aqueous solutions of lutidine and N-oxide were analyzed

using the FTIR probe to understand the effect of water on the individual spectra. The N-oxide
absorption decreased with increasing water concentration as indicated by the reduction in heights
of the N-oxide peaks in the spectra (see Figure 10). On the other hand, the absorption area near
the 1638 cm- region showed a gradual rise with increasing dilution. This region corresponds to
the absorption in water molecules due to bending vibrations (Brubach, Mermet et al. 2005). The
FTIR spectra of a lutidine + water system exhibited a slightly different trend with the change in
composition. In this case, the infrared bands corresponding to lutidine decreased significantly as
the lutidine concentration dropped from 86.29% to 80.72% while a sharp increase was seen in
the peak at 1638 cm'. This anomaly can be ascribed to the liquid-liquid demixing between
lutidine and water at this temperature as previously determined by Andon and Cox (1952).
Figure 11 highlights the difference between the absorption of homogeneous and heterogeneous

mixtures for the two-component system.
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Figure 10. FTIR spectra for mixtures of 2,6-lutidine-N-oxide in water at temperature 7= 110 °C

Compositions have been expressed as 2,6-lutidine-N-oxide wt.% (Reprinted with permission
from (Janardanan, Papadaki er al. 2017))

36



1.2 1
] —100%
I 7 —02.69%
86.29%
= 0.8 1
<
8 0.6 1
= 1 |
2 I |
= |
< ] \ J
02 j WE’ = \/
0 ] LUNNL I B B B B B B BN BN B B B R |
650 750 850 950 1050 1150 1250 1350 1450 1550 1650
Wavenumber cm-!

b)

0.8 3
07 ] —80.72%

] =75.82%
0.6 ] 71.49%

0.5
04
03

0.2 ]

Absorbance (A.U.)

0.1 ;

O:llllllllllllllllllllllllllllllllllllllllllll
1250 1300 1350 1400 1450 1500 1550 1600 1650 1700

Wavenumber cm!

Figure 11. FTIR spectra for mixtures of 2,6-lutidine in water at temperature 7= 110 °C
a) Homogeneous mixtures; b) Heterogeneous mixtures (Reprinted with permission from
(Janardanan, Papadaki ef al. 2017)) (Compositions have been expressed as 2,6-lutidine wt.%)
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The absorption measurements from the dilution of 90/10, 80/20 and 60/40 lutidine + N-oxide
mixtures are presented in Figure 12, Figure 13 and Figure 14. From Figure 12 and 13, it is clear
that the IR spectra of mixtures PS5 and Q8 are appreciably different from the other mixtures. In
order to substantiate this observation, the peak heights at 772 cm-, 1451 cm* and 1638 cm* were
tracked during the process. Table 7 shows the abrupt change in the peak heights between P4 — P5
and Q7 — Q8 that coincides with the previous observation of phase separation in the lutidine +
water binary system. As mentioned earlier, these mixtures were examined in the absence of
stirring to observe the separated phases. The difference in the absorption characteristics of the
mixtures obtained during the dilution of a 60/40 mixture was minor with no steep variations in
peak heights at any step. Figure 14 displays the FTIR spectra for some of the mixtures. It can be

deduced that the inspected mixtures were homogeneous and did not exhibit any two-phase

behavior.
1.2 1 -
] ——p]
1 P2
7 e—P3
] P4
-~ E P5
5 08 ]
< ]
8 0.6 1
= ]
_g ]
§ 0.4 1
a -
< 02 ] AN A U\.’\Q‘ ,A\/ =
0_llll|llll|llll|llll|llll|llll|llllllllllllllllllllll
650 750 850 950 1050 1150 1250 1350 1450 1550 1650
Wavenumber cm!

Figure 12. FTIR spectra for ternary mixtures (2,6-lutidine + 2,6-lutidine-N-oxide + water)
probed during dilution of 90/10 2,6-lutidine + 2,6-lutidine-N-oxide mixture at temperature
T =110 °C (Reprinted with permission from (Janardanan, Papadaki et al. 2017))
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Figure 13. FTIR spectra for ternary mixtures (2,6-lutidine + 2,6-lutidine-N-oxide + water)
probed during dilution of 80/20 2,6-lutidine + 2,6-lutidine-N-oxide mixture at temperature
T =110 °C (Reprinted with permission from (Janardanan, Papadaki et al. 2017))
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Figure 14. FTIR spectra for ternary mixtures (2,6-lutidine + 2,6-lutidine-N-oxide + water)
probed during dilution of 60/40 2,6-lutidine + 2,6-lutidine-N-oxide mixture at temperature 7' =
110 °C (Reprinted with permission from (Janardanan, Papadaki et al. 2017))
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Table 7. Experimental values of average peak heights £ for the system 2,6-lutidine + 2,6-
lutidine-N-oxide + water at temperature 7' = 110 °C and pressure P = 0.1 MPa
(Reprinted with permission from (Janardanan, Papadaki et al. 2017))

Mixture | /;/A.U. | Ah/A.U. h/AU. | A h/AU. | h/AU. | 4hs/AU.

PO 1.15 - 0.74 - 0.08 -

Pl 1.06 -0.09 0.70 -0.04 0.12 0.05
P2 1.05 -0.01 0.69 -0.01 0.20 0.08
P3 1.02 -0.03 0.66 -0.03 0.25 0.04
P4 0.99 -0.04 0.62 -0.04 0.27 0.03
P5 0.73 -0.26 0.24 -0.38 0.54 0.27
Q0 1.14 - 0.75 - 0.06 -

Ql 1.07 -0.07 0.71 -0.03 0.14 0.07
Q2 1.04 -0.03 0.68 -0.04 0.19 0.06
Q3 1.02 -0.02 0.64 -0.04 0.24 0.04
Q4 0.99 -0.03 0.61 -0.03 0.27 0.04
Q5 0.96 -0.03 0.58 -0.03 0.30 0.03
Q6 0.94 -0.02 0.55 -0.03 0.33 0.03
Q7 0.92 -0.02 0.53 -0.02 0.35 0.02
Q8 0.77 -0.15 0.30 -0.22 0.51 0.17
RO 1.14 - 0.74 - 0.09 -

R1 1.08 -0.07 0.68 -0.06 0.14 0.06
R2 1.04 -0.04 0.63 -0.05 0.21 0.06
R3 1.01 -0.02 0.59 -0.04 0.25 0.04
R4 0.98 -0.03 0.56 -0.03 0.28 0.04
R5 0.95 -0.03 0.53 -0.03 0.31 0.03
R6 0.93 -0.03 0.50 -0.03 0.33 0.02
R7 0.91 -0.02 0.48 -0.02 0.35 0.02
R8 0.89 -0.02 0.46 -0.02 0.36 0.02
R9 0.88 -0.01 0.44 -0.02 0.38 0.02
R10 0.86 -0.01 0.43 -0.01 0.40 0.02
R11 0.85 -0.01 0.42 -0.01 0.41 0.01
R12 0.84 -0.01 0.40 -0.02 0.41 0.01

Standard uncertainties u are u(7T) = 0.002 °C, u(P) = 1 kPa and u(h) = 0.005 A.U.
hy,hohs— absorption peak heights at 772 cm™, 1451 cm™, 1638 cm™ respectively
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4.4 Conclusions

Various ternary mixtures containing 2,6-lutidine (lutidine), 2,6-lutidine-N-oxide (N-oxide) and
water were investigated in the RCle calorimeter equipped with the FTIR probe. Phase separated
mixtures showed a cloudy appearance and a drastic change in the absorption spectra as compared
to the homogeneous mixtures. The ternary phase diagram for the system indicates that the 2,6-
lutidine, 2,6-lutidine-N-oxide and water mixture remains homogeneous over a large composition
range. These results suggest that the N-oxide concentration will have a major impact on the

mixing of the solution during the N-oxidation reaction.
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5. STUDY OF PHASE BEHAVIOR BETWEEN 2,6-LUTIDINE/2,6-LUTIDINE-/N-

OXIDE/WATER USING MOLECULAR SIMULATIONS?

Molecular simulations can be defined as the numerical determination of the thermodynamic,
energetic, structural and dynamic properties of chemical aggregates on a digital computer. They
utilize theoretical models, which are either empirical or employ parameters derived from ab
initio techniques. The results are generally compared with the experimental data to determine the
exactness of the molecular models and to validate the assumptions made during the simulations.
Validated models can be used to study the system at extreme conditions where performing
laboratory experiments would be impossible. In other cases, the analysis and interpretation of
data obtained from experiments can be done with the help of theoretical models. In general, this
technique can be used to generate important process related data in reduced time with limited
resources. Molecular simulations find applications in diverse chemical and bimolecular systems
including studies involving liquid water, aqueous solution structure, proteins, nucleic acids and

membrane dynamics (Beveridge and DiCapua 1989).

Molecular simulations can be broadly classified into 1) Molecular Dynamics (MD) simulations
and 2) Monte Carlo (MC) simulations. In addition to this, techniques that incorporate features

from both the approaches are also available in this field.

2 Part of this section is reprinted with permission from ‘Janardanan, S., Perez, L. M., & Mannan, M. S. (2018).
Study of phase behavior of 2,6-lutidine, 2,6-lutidine-N-oxide and water mixture using UNIQUAC model with
interaction parameters determined by molecular simulations. Thermochimica Acta’, Copyright [2017] by Elsevier.
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Molecular Dynamics (MD) provides details regarding the time evolution of any chemical system
of atoms and molecules based on their interactions. The simulation considers molecules as set of
spherical atoms attached by springs that represent atomic bonds. The energetic interactions
operating in the system are given by simple mathematical functions. Mostly, expressions similar
to Hooke’s law are used to depict bonded interactions while the non-bonded terms are
represented by Coulombic and Lennard-Jones potentials (Adcock and McCammon 2006). This
technique of mimicking the interatomic interactions using empirical formulas is the core of MD
simulations and is termed as the force-field method. The approach neglects the electronic
interactions and operates at the atomic level. The total potential energy of the system, which
determines the relative stability of the structure (Karplus and Petsko 1990), is the sum of the
bonded and non-bonded contributions. After defining the potential energy function, the
Newton’s equations of motion are solved numerically to predict the fluctuations in structure with
respect to time. The methodology for finding solution to these equations is an iterative process,
which is based on mathematical algorithms (e.g., Verlet algorithm, Beeman algorithm, velocity
Verlet method). The dynamic simulations generate information regarding the motion of
individual particles as a function of time, which can be utilized to quantify the system properties
including kinetic and thermodynamic data (van Gunsteren and Berendsen 1990; Allen 2004;
Adcock and McCammon 2006). Hence, molecular dynamics simulations have found widespread
applications in the field of phase equilibrium thermodynamics (Kamath, Lubna et al. 2005;
Ketko and Potoff 2007; Ren, Zhang et al. 2007; Yang and Bae 2008; Oh and Bae 2010).
Specifically, they have been useful in predicting the phase behavior of polymer solutions and

mixtures containing water, hydrocarbons, alcohols, chlorides.
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On the other hand, the Monte Carlo (MC) method is a sampling technique aimed at analyzing the
various configurations of any molecular ensemble with the purpose of identifying different
possible stable and metastable states for the system (Dove 2008). In the field of computational
science, the Metropolis version of this algorithm is common. In this method, several
conformations of the system are generated by randomly moving the molecules and measuring the
energy change (4E). A negative value of AE indicates that the conformation is energetically
favorable and can be accepted. On the contrary, if the value of AF is positive then the selection is
based on comparison between a random number and the Boltzmann probability exp(-4E/k,T) of
the movement. If the Boltzmann probability of the move is larger than the random number, then
the new configuration is accepted; else the system is returned to its original state. In this way,
large numbers of samples are investigated to ensure that the procedure maintains thermodynamic
consistency. A simple arithmetic average of a property from individual accepted configurations
provides the correct thermodynamically weighted value for the quantity. This approach has been

applied for determining structural and thermodynamic properties of condensed phase systems.

In this study, a combination of both these techniques was utilized to estimate the binary
interaction energies for the various molecular pairs in the three-component system. The
molecular simulation details have been provided in subsection 5.1.3. The results were
incorporated in a thermodynamic model (UNIQUAC) to estimate the biphasic compositions for
the phase separated mixture and study the impact of temperature on the phase diagram. The
UNIQUAC activity coefficient model has been successful in predicting the vapor-liquid and
liquid-liquid equilibrium in ternary solutions with satisfactory accuracy. The model equations

describe the molecular interactions in any system in terms of adjustable parameters that depend
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on the interaction energies between the component pairs. The model description has been
included in subsection 5.1.1. Generally, the parameters are derived empirically by fitting the
equations to data obtained from phase equilibrium experiments. However, computational
techniques have been used recently to calculate these parameters to reduce the dependence of
these models on experimental data. For example, Sum and Sandler (1999) used ab intio quantum
mechanics to create molecular clusters representing several binary aqueous systems and
computed the interaction energies between like and unlike pairs. These values were used to
predict the adjustable parameters, which were used to construct the VLE for these systems.
Similarly, an indirect method was used to relate the UNIQUAC parameters to the solvation
energies, which were calculated using quantum mechanical solvation models (Lin and Sandler
1999). In general, it is evident that the energy parameters used in the UNIQUAC equation have
sound theoretical basis. In addition to this, the UNIQUAC model also depends on size and shape
parameters of individual molecules. For this work, ab initio quantum mechanics was used to
determine the molecular parameters for N-oxide, as relevant information was not available in
literature. The approach and simulation procedure has been incorporated in subsection 5.1.2. All
quantum chemical calculations were performed in Gaussian 09 (Frisch, Trucks et al. 2009). The
results from the simulations and the application of the UNIQUAC model have been discussed in

subsection 5.2. The conclusions from this work have been listed in subsection 5.3.
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5.1. Theory and Methodology
5.1.1. UNIQUAC Model

The liquid-liquid equilibrium in any ternary mixture can be described by the isoactivity criterion
(Serensen, Magnussen et al. 1979), which equates the product of the activity coefficient and

mole fraction of any species in the two phases.

(xi)/i)l = (xy,; )2 (3)

Exil =Exl.2=1 (4)

Where, x,-l and x,-Z are mole fractions of component i in phase 1 and phase 2, while y;' and y; are

the activity coefficients of component i in the respective phases. In order to estimate the phase
compositions, it is necessary to calculate the activity coefficients of the various species present in
the mixture. Thermodynamic models represent the activity coefficients in terms of empirical or
semi-empirical expressions, which incorporate molecular and intermolecular parameters. Out of
these models, the ones that are based on the local composition concept of Wilson (1964) have
more theoretical basis as compared to others. The universal quasi-chemical (UNIQUAC) model
of Abraham and Prausnitz (1975) belongs to this category. It is based on the quasi-chemical
theory of Guggenheim (1952) and is applicable to non-random mixtures containing molecules of
different sizes. The activity coefficient expression includes two parts, the first part accounts for
the difference in the size and shape of the molecules while the second part incorporates the

intermolecular interactions.
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The surface area and volume parameters for individual components are represented by » and ¢. z
denotes the coordination number for every species in the mixture and has a fixed value (10). The
binary adjustable parameters (r;) describe the energetic interactions between the component

pairs. The following expression can be used to calculate these parameters.

Uy —
T, =exp o7 9)

In the above equation, the u; u; correspond to the interaction energy between like and unlike

molecules.
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5.1.2. Estimation of molecular volume and surface area for N-oxide using GEPOL algorithm

and Polarizable Continuum Model

The structural parameters included in the UNIQUAC model can be directly related to the van der
Waals volume and surface area of any molecule through the Bondi’s (1964) equation. The
volume and surface area of a compound can be obtained from the molecular surface. The
simplest description of the molecular surface is based on a set of overlapping spheres centered on
atoms or group of atoms forming the molecule. This is termed as the van der Waals (vdW)
surface. Similarly, molecular surface can also be defined based on Lee and Richards concept of
Solvent Accessible Surface (SAS). In this method, the surface generated by the center of the
solvent probe sphere that is rolling on the vdW surface of a molecule is considered for
computations (Connolly 1983). However, Richards Solvent Excluded Surface (SES) is the most
frequently used method for characterizing molecular surfaces. This surface is a combination of
two parts, the contact surface and reentrant surface. Contact surface is the part of the vdW
surface of each atom that can be accessed by a rigid probe sphere while reentrant surface is the

inward-facing part of the probe sphere which contacts more than one atom (Richards 1977).

GEnerating POLyhedra (GEPOL) algorithm of Nilson ef al. (1990) has been commonly used for
construction of vdW, SAS and SES type surfaces for various chemical systems. When compared
to other surface-building methods the algorithm is more accurate and takes less computational
time. In the first step the algorithm generates the van der Waal surface by creating spheres
around each atom of the molecule based on the user defined input radii. After generating the

vdW surface, the program identifies the region on the surface that is inaccessible to the solvent.
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This process involves calculation of the distances and overlap angles between the spherical pairs.
Once the spherical ensemble is created, each sphere is partitioned into triangular tesserae
forming a pentakisdodecahedron and the triangles in the intersection volume of the spheres are
deleted using a geometrical procedure. The total surface area of the resulting surface is a
summation of the areas of all the remaining triangles while the total volume is the summation of
the solid volumes made by the triangular surfaces with the origin. Details regarding the
methodology employed in the algorithm have been discussed elsewhere (Pascual-Ahuir, Silla et
al. 1987; Pascual-Ahuir and Silla 1990; Silla, Tunon et al. 1991; Pascual-ahuir, Silla et al.

1994)

GEPOL finds widespread application in solvation models wherein the solute-solvent interactions
are studied by creating a solute cavity in the solvent continuum. The cavity surface constructed
by GEPOL is discretized into point charges polarizing the dielectric medium (solvent), which in
turn generates a charge distribution on the solute-solvent boundary. Polarizable Continuum
Model (PCM) of Tomasi (Miertus, Scrocco et al. 1981) is an example of a continuum solvation
procedure that incorporates GEPOL for building the solute cavity. In the present work, the PCM-
GEPOL procedure was utilized to construct the structure of the N-oxide molecule and estimate
its area and volume. Before employing the procedure, the N-oxide structure was optimized to get
a minimum energy configuration using Density Functional Theory with B3LYP functional (Lee,
Yang et al. 1988; Becke 1993) at 6-311++G(3d,2p) basis set. The optimized structure was used
as the solute in the PCM calculations, which utilized Bondi’s atomic radii for generation of vdW
spheres. The program multiplies the radii of each sphere by a scale factor (a/pha) to account for

the difference in the dielectric of the first solvation layer and the bulk solution in free energy
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calculations (Sahandzhieva, Tuma et al. 2006). Alpha was set to ‘1’ since the objective was to

compute the cavity.

5.1.3. Molecular simulation for determination of binary interaction energies

Blends module of Materials Studio (version 4.2) was used to conduct molecular dynamics
simulations for determining the energy parameters. The program predicts the binding energy of
binary pairs based on a Monte Carlo sampling technique (Fan 1992). In this method, several
configurations of a molecular pair are generated such that the van der Waals surfaces of the two
molecules are oriented according to the excluded volume constraints approach (Blanco 1991).
The Metropolis sampling algorithm is used to accept the configurations with appropriate
energetics and the pairwise interaction energy is calculated by averaging all accepted
configurations using the Boltzmann factor. Blends computes the energy of a molecular system
based on the force-field method. For this study, COMPASS (Condensed Phase Optimized
Molecular Potentials for Atomistic Simulation Studies) force-field (Sun 1998) was selected to
perform the calculations. COMPASS, an extended version of CFF series, employs parameters
derived from condensed phase data. It has been developed for studying the structure and
dynamics of organic, inorganic and polymer molecules. The functional form of this force field
relates the total energy of a molecular ensemble to the valence and nonbond interaction terms.
The valence terms include the internal coordinates of bond, angle, torsional and out-of-plane
angle along with combinations of two or three internal coordinates like bond-bond, bond-angle
and angle-torsion-angle. On the other hand, the non-bond interaction terms comprise of

contributions arising from the electrostatic and vdW type forces between atoms. A coulombic

50



function based on partial atomic charges is used to describe the electrostatic interaction while the

vdW term is represented by a LJ-9-6 function.

The steps involved in obtaining the interaction energies using the simulation software are as
follows.
(D 2,6-lutidine, 2,6-lutidine-N-oxide, water structures were constructed by using sketching
tools in Materials Studio.
(I) The structures were subjected to the energy minimization procedure to obtain the optimized
geometry.
(ITI) The optimized structures were used in the Blends module and the following parameters
were set — number of energy samples = 10”, number of cluster samples = 10, iterations per

cluster = 20.

The Blends simulations were conducted for two sets of nitrogen and oxygen partial charges for
every pair as shown in Table 8. Set 1 was determined through ab initio calculations performed
on each of the dimer (2,6-lutidine/water, 2,6-lutidine-N-oxide/water, 2,6-lutidine/2,6-lutidine-/N-
oxide). The electrostatic potential energy surfaces (ESP) for the dimers obtained through energy
minimization using M062X/6-311++g(3d,2p) level (Zhao and Truhlar 2008)were analyzed using
the CHELPG methodology (Breneman and Wiberg 1990) to derive the partial charges. Figure 15
displays the final structure of the dimers obtained after the optimization process. It must be noted
that the most stable conformers for the pairs were considered for deriving the ESP charges. The
second set of partial charges (set 2) was selected heuristically in order to reproduce the

experimental binodal curve predicted by Janardanan et al. (2017).
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Table 8. Partial charges (¢;) assigned to atoms during molecular simulations
(Reprinted with permission from ((Janardanan, Perez et al. 2018)))

Set Dimer Site Charge (¢))
1 C7HoN — H,O N -0.52
O -0.73
C7HoN*O* — H,0 N* 0.15
O* -0.49
0 -0.77
C7HoN — C;HoN*O* N -0.65
N* 0.17
O* -0.50
2 C7HoN — H,O N -0.60
O -0.61
C7HoN*O* — H,0 N* 0.18
O* -0.50
O -0.74
C7HoN — C;HoN*O* N -0.40
N* 0.18
O* -0.50

Ry (Non-bonded distance between nitrogen and hydrogen) = 1.9092 A°

Figure 15. 3D structures of dimers obtained from ab initio calculations
a) 2,6-lutidine/water, b) 2,6-lutidine-N-oxide/water, c) 2,6-lutidine/2,6-Iutidine-N-oxide
(Reprinted with permission from (Janardanan, Perez ef al. 2018))
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b)

¢)

Rcc (Distance between ring centers) = 3.5848 A°

Figure 15. Continued
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5.2. Results and Discussion

5.2.1. Binary interaction parameters and ternary diagrams

Table 9 shows the molecular volume and surface area for 2,6-lutidine-N-oxide obtained using the

GEPOL algorithm. These values were used to evaluate the volume (») and surface area (q)

parameters for the compound based on the following equations.

VxN

Vot = = (10)
VWS
AxN

en =— = (11)

ws

In Egs. (10) and (11), Vs and A4, are the standard segment volume and standard segment area
and ‘N, is the Avogadro’s constant. The numerical values for V., (15.17 cm’/mol) and A, (2.5
x 10° cm*/mol) were taken from literature. Table 10 displays the structural parameters for the
three compounds in the current system. The » and ¢ values for 2,6-lutidine and water were
extracted from ASPEN (Aspen Plus Version 8.2) which uses group contribution method for

calculating the parameters.

Table 9. GEPOL volume and surface area for 2,6-lutidine-N-oxide
(Reprinted with permission from (Janardanan, Perez ef al. 2018))
Volume (V) (4°) | Area (A) (A7)
119.886 156.128
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Table 10. UNIQUAC volume (7) and surface area (g) structural parameters for the system
(Reprinted with permission from (Janardanan, Perez ef al. 2018))

Compound r q
Water 0.9200 1.4000
2,6-lutidine 4.4693 3.4384
2,6-lutidine-N-oxide 4.7598 3.7614

The interaction energies predicted by Blends module have been incorporated in Table 11 along
with the binary parameters estimated using Eqgs. (9). Based on the results, certain observations
can be made regarding the intermolecular behavior in the two-component systems. For example,
it is clear that the strength of interaction between 2,6-lutidine/water (u;,) is lower than the 2,6-
lutidine/2,6-lutidine (u2,) dimer in the aqueous mixture. If we compare these values to gas phase
interaction energies computed at M062X/6-311++g(3d,2p) level, we find that the trend is
reversed (see Table 12). This indicates that the strength of hydrogen bonding between
lutidine/water pair reduces as we go from gas phase to aqueous phase, which is similar to the
observations made by Malaspina et al. (2002) for aqueous pyridine systems. An identical
relationship exists between the 2,6-lutidine-N-oxide/water (u;3) and 2,6-lutidine-N-oxide/2,6-

lutidine-N-oxide (u33) dimer pair as shown in Table 11 and 12.

Table 11. Interaction energies” (4u) and binary parameters (z;;) for water (1) + 2,6-lutidine + 2,6-
lutidine-N-oxide (3) system calculated by molecular simulations (Reprinted with permission
from (Janardanan, Perez et al. 2018))

Auu Au21 Au13 Au31 Au23 Au32 T

(J/mole) (J/mole) (J/mole) (J/mole) (J/mole) (J/mole) | (°C)
Set1 | -2858.76 98.91 -4546.54 3384.02 -2943.44 2198.52 110
Set2 | -3771.58 1420.89 -5058.37 3414.02 -3866.14 2272.00 110
Set1 | -2850.73 139.62 -4590.73 3523.35 -3005.37 2271.28 100
Set2 | -3798.24 1460.72 -5104.90 3548.87 -3969.74 2339.27 100
Set1 | -2867.92 53.47 -4500.14 3211.22 -2875.66 2105.97 125
Set2 | -3756.77 1352.56 -4987.50 3250.13 -3786.48 2145.72 125
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Table 11. Continued

T2 721 713 731 723 732 IO
Set1 | 0.4076 | 1.0315 | 0.2399 |2.8929 | 0.3969 | 1.9940
Set2 | 0.3060 |1.5621 | 0.2043 |2.9203 | 0.2971 | 2.0405 110
Set3 |0.3385” [ 1.592° [0.2043 [2.9203 | 0.2971 | 2.0405
Set1 | 0.4086 | 1.0448 | 0.2366 | 3.0223 | 0.3892 | 2.0401
Set2 | 0.3035 |[1.5817 | 0.2013 | 3.0466 | 0.2876 | 2.0841 100
Set3 |0.3676” | 1.5195° [ 0.2013 | 3.0466 | 0.2876 | 2.0841
Set1 | 0.4064 | 1.0169 | 0.2434 | 2.7402 | 0.4054 | 1.9369
Set2 | 0.3074 | 1.5289 | 0.2089 | 2.7739 | 0.3046 | 1.9612 125
Set3 |0.3170° | 1.6585° | 0.2089 |[2.7739 | 0.3046 | 1.9612

" Auy = wi— uy
? Calculated based on Eqs. (12)

Table 12. Gas phase interaction energies” (1) for 2,6-lutidine/water, 2,6-lutidine-N-oxide/water,
2,6-lutidine dimer (Parallel arrangement) and 2,6-lutidine-N-oxide dimer (Parallel arrangement)
computed at M062X/6-311++g(3d,2p) level of theory (Reprinted with permission from
(Janardanan, Perez et al. 2018))

up Uz ujs uszs
(kJ/mole) | (kJ/mole) | (kJ/mole) | (kJ/mole)
-33.64 -27.03 -36.36 -29.96

“Basis Set Superposition Error was included in the calculations

Both the structural and energy parameters were used to solve Egs. (3) and (4) to determine the
biphasic compositions for the ternary system. The resulting tie lines and binodal curve for the
mixture at 110 °C have been shown in Figure 16. The figure also includes the experimental data
obtained by Janardanan et al. (2017). As we can see, the binodal curve generated by set 1 shows
maximum deviation from the experimental results as compared to the other two sets. On the
other hand, set 2 could predict the phase behavior with more accuracy as indicated by the
reduction in the two-phase region of the ternary diagram. A further decrease in the error between

the model predictions and the experimental measurements was obtained by considering a third
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set (set 3) of binary parameters. In this case, the 2,6-lutidine/water interaction parameters (12,

T21) were calculated according to the following expression proposed by Saenz-Noval (2011),

B,
T, =exp(A;+ ?J +C,;In(T)+D,T ) (12)
For i = water, j = lutidine
Aij =352.95 Aji =4.45
B =-13533.83 B; = 1801.29
Cj=-57.74 Ci =-242

D = 0.0646 D =0.0149

Set 1

Figure 16. Phase diagrams for the system (water (1) + 2,6-lutidine + 2,6-lutidine-N-oxide (3) at
110 °C): Red dots correspond to the compositions predicted by the UNIQUAC model; Green
squares represent the points inside the binodal curve based on experimental data (Reprinted with
permission from (Janardanan, Perez ef al. 2018) and (Janardanan, Papadaki et al. 2017));
(ProSim software was used to construct the ternary diagram)
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This expression was based on the regression of experimental data for the binary system. The
interaction parameters for other two molecular pairs were left unchanged from set 2. This
approach was adopted since the ternary LLE predictions are more sensitive to the binary
parameters of the pair that exhibits liquid liquid phase separation (Prausnitz 1980). It can be seen
that the binodal curve predicted by this parameter set shows reasonable agreement with the
experimental results. In general, all the three sets could predict the ‘type 1’ (Treybal
classification) (Treybal 1963) phase behavior of the system, wherein one binary pair is
immiscible while others are miscible. Also, the phase diagram suggests that the binodal curve for
the mixture is asymmetric since the composition of the aqueous phase does not change
significantly as compared to the organic phase for different equilibrium tie lines. In addition to
this, it can be inferred that the plait point composition for the three-component system lies closer
to the aqueous phase composition obtained during the lutidine/water split at the same

temperature.

In the next step, the partial charge sets were used to generate interaction parameters at two other
temperatures. These simulations were done with an objective of studying the effect of
temperature on the ternary diagram. Figure 17 and 18 shows the phase diagram for the three
component system at temperature T = 125 °C and T =100 °C. From the figures, it is evident that
the two-phase region for the system decreases at T = 100 °C and increases at T = 125 °C for all
the parameter sets. Though, the simulation results could not be verified due to lack of
experimental data, it could be assumed that the predictions made by the model provide a
reasonable estimate of the phase compositions at the considered temperatures. Also, the trend

followed by the plait point of the system with temperature is in accordance with the observations
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made by Janardanan et al. (2017). The result implies that the amount of 2,6-lutidine-N-oxide

required for maintaining homogeneity in the ternary mixture increases with temperature.

Though the results are reasonable, the authors would like to discuss some of the assumptions
involved in the proposed methodology. The UNIQUAC is based on the local composition
concept. The local composition equations are not consistent with the model from which they
were derived (Flemr 1976; McDermott and Ashton 1977). Hence, it can be argued that
UNIQUAC is empirical in nature and may not be suitable for theoretical modeling. Therefore,
the applicability of the current approach for LLE predictions in other systems cannot be
guaranteed. Nonetheless, several papers have treated the equations as semi-empirical for the
purposes of equilibrium calculations (Jonsd, Rasmussen et al. 1994; Jonsdoéttir, Klein et al. 1996;
Sum and Sandler 1999). Secondly, the model neglects the ternary interactions that exist in a
three-component mixture. The positive deviations between the simulation results and the
experimental data can be attributed to this limitation. Though the inclusion of ternary parameters
to the model have been suggested by previous publications (Cha and Prausnitz 1985; Nagata and
Usui 1989), the current capabilities in the field of molecular simulations do not allow for

accurate predictions of three body interactions in condensed phase systems.
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Figure 17. Phase diagrams for the system (water (1) + 2,6-lutidine + 2,6-lutidine-N-oxide (3) at
125 °C): Red dots correspond to the compositions predicted by the UNIQUAC model; Green
squares represent the points inside the binodal curve based on experimental data (Reprinted with
permission from (Janardanan, Perez et al. 2018) and (Janardanan, Papadaki et al. 2017));
(ProSim software was used to construct the ternary diagram)
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Figure 18. Phase diagrams for the system (water (1) + 2,6-lutidine + 2,6-lutidine-N-oxide (3) at
100 °C): Red dots correspond to the compositions predicted by the UNIQUAC model; Green
squares represent the points inside the binodal curve based on experimental data (Reprinted with
permission from (Janardanan, Perez et al. 2018) and (Janardanan, Papadaki et al. 2017));

(ProSim software was used to construct the ternary diagram)
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5.2.2. Parameterization of partial charges for the binary systems

Partial atomic charges play an important role in determining the reactivity of molecules in any
environment. The electrostatic interactions that contribute significantly to the intermolecular
forces are governed by the partial charges assigned to the atoms. A particularly successful
approach is to optimize the charges based on experimental physicochemical and equilibrium data
for pure liquids and mixtures to develop parameter sets, which could provide reliable predictions
(Jorgensen and McDonald 1998; Kamath, Lubna et al. 2005; Ketko and Potoff 2007). A similar
methodology was adopted in this work. Before optimizing the individual structures of 2,6-
lutidine, 2,6-lutidine-N-oxide and water, the partial charges were assigned based on the
COMPASS forcefield. In the following step, the partial charges on the nitrogen and oxygen
atoms were reassigned according to Table 8. Consequently, the charges on the ortho-carbons of
lutidine and N-oxide were modified to maintain charge neutrality. Similarly, the hydrogen partial
charges in water were altered to balance the negative charge on oxygen. This approach is slightly
unconventional as compared to the normal parameterization procedure wherein the partial
charges on all the atoms are optimized. However, previous publications (Ketko and Potoff 2007)
have established the non-uniqueness of the forcefield parameters and the current method was
successful in generating interaction energies, which could reproduce the LLE curve with

reasonable accuracy.

The first set of partial charges (set 1) was obtained through the CHELPG analysis, which derives
the partial charges based on the molecular electrostatic potential. This method has been found to

be relatively more accurate as compared to some of the other population techniques (Das, Sahu
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et al. 2017). Also, the M062X/6-311++g(3d,2p) level of theory was used to conduct the ab initio
calculations. Here, we would like to mention that a variety of ab initio methods (e.g., HF, MP2,
B3LYP) were evaluated for deriving the ESP charges for the system. However, it was found that
only M062X/6-311++g(3d,2p) derived charges could result in interaction parameters that were
capable of predicting the phase diagram for the ternary system. This can be ascribed to the
model’s superiority in describing stacked interactions (mn-m bonding) in the lutidine/N-oxide
binary system since the other functionals (except MP2) cannot predict the parallel configuration
of the pair (Zhao and Truhlar 2011). In this regard, some other functionals which belong to this
family (e.g., X3LYP, M06) also provide with the same values of partial charges for this system

at 6-311++g(3d,2p) basis set.

Though the deviation between the experimental and simulation results were considerable, the
CHELPG methodology gave an initial estimate of the partial charges. A second set of partial
charges was selected to minimize the error between the experimental and theoretical phase
separation curve. This was done by testing values in vicinity of the ESP charges in a heuristic
manner. The partial charge set which provided the best result in terms of error has been included
in the table. We can infer that for the N-oxide molecule, the final charges were almost similar to
the ESP charges in both the dimers. On the other hand, the partial charge on ‘O’ atom of water
was overestimated by the population analysis. Similar deviations have been reported in literature
(Martin and Zipse 2005). Finally, the partial charge on ‘N’ atom of lutidine shows a positive
deviation from the ESP charges for the lutidine/water system and a negative deviation for the

lutidine/N-oxide system.
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5.3. Conclusions

The three-component system of 2,6-lutidine/2,6-lutidine-N-oxide/water was studied using the
UNIQUAC activity coefficient model and the ternary phase diagram was constructed at three
different temperatures. The model parameters were derived from molecular simulations, which
include the force field method and ab initio techniques. It was seen that the partial charges
assigned to the atoms played an important role in the determination of the parameters while
employing the force field. The partial charges determined by the CHELPG analysis provided an
initial estimate for the interaction parameters. However the best values were obtained by
following an empirical approach, wherein the objective was to reproduce the experimental data
points for the ternary mixture. In future it would be worthwhile to examine the applicability of
other force fields for calculating the interaction energies for the binary systems and compare the

results with the current work.
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6. CONCLUSIONS AND FUTURE WORK

This dissertation is aimed at improving the understanding of a complex reaction system and
identifying possibilities for operating the reaction in an inherently safer manner. The reaction of
interest was the N-oxidation of alkypyridines, which is mainly employed in the pharmaceutical
industry. Many of hazards associated with the reaction are typical of other batch systems
including the condition dependent decomposition of hydrogen peroxide and flammability of the
reactants (alkylpyridines). The thermodynamics of the reaction mixture has a strong influence on
the decomposition process especially in case of N-oxidation of higher order alkylpyridines where
the alkylpyridine is immiscible in the aqueous phase. The current study provides experimental
phase equilibrium data for the 2,6-lutidine N-oxidation system coupled with thermodynamic
parameters obtained through computations. The results can be used to design inherently safer
reactors that generate small amounts of waste chemicals during the production process. The
research findings have been summarized in the subsection 6.1 while the future opportunities in

this work have been outlined in subsection 6.2.

6.1. Conclusions

Experimental studies were conducted in the RCle calorimeter to determine the effect of 2,6-
lutidine-N-oxide on the 2,6-lutidine/water phase separation at 110 °C. Previous findings
suggested that the immiscibility between the 2,6-lutidine and water, which is majorly responsible
for accelerating the peroxide decomposition, is reduced by the 2.6-lutidine-N-oxide. The

procedure employed in this work was based on dilution of two component (2,6-lutidine/2,6-
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lutidine-N-oxide) and three component (2,6-lutidine/2,6-lutidine-N-oxide/water) mixtures with
water. The mixtures were inspected visually and distinguished based on their appearance. Turbid
appearance of the solution indicated that there was phase separation leading to formation of two
phases. The ternary phase diagram for the mixture suggests that a single-phase solution will

result if the N-oxide composition is above 20% (w/W).

It would be appropriate to envision this system as an oil/water/surfactant mixture wherein the N-
oxide acts as a surfactant enhancing the interfacial interactions between the alkylpyridines and
water. The N-oxide molecule consists of a hydrophillic end (N" — O") which aligns itself towards
the water molecule leading to hydrogen bonding. Similarly, the benzene ring, which forms the
hydrophobic end, shows affinity for the oil phase (alkylpyridine). Owing to this, the N-oxide
molecule positions itself between the alkylpyridine and water and forms a self-assembled
monolayer thereby reducing the interfacial energy and leading to homogenization. Several
authors have observed this phenomenon with other liquid solutions containing oil-water mixtures

(Jin, Parbhakar et al. 1997; Xu, Zhang et al. 2013; Nowak, Kovalchuk et al. 2016).

An attempt was made to extend the experimental work to other temperatures (T = 115 — 125 °C)
where the N-oxidation reaction is conducted. However, it was found that the phase separation
compositions differed by a small amount within this temperature range. The current setup was
unable to spot the difference accurately due to the error associated with measuring liquid
compositions though it was possible to determine a general trend between the minimum N-oxide
required for homogenization and temperature. Nevertheless, the phase equilibrium data can be

used over the entire temperature range by including a safety factor while calculating the N-oxide
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requirements for any semi-batch process. In addition to this, the study also provides information
regarding the transition of two-phase systems into single-phase systems for the three-component
mixture, which could be used to predict thermal runaways during the N-oxidation since the

overall reaction rate depends on the mixing between the species. However, it is important to note

that the effect of hydrogen peroxide and catalyst (phosphotungstic acid) has to be considered

before adopting the current results.

The Fourier Transform Infrared (FTIR) spectroscopy was used to collect the absorption spectra
of various binary and ternary mixtures of 2,6-lutidine, 2,6-lutidine-N-oxide and water. The
characteristic peaks for individual species were tracked during the experiments. The data was
used to identify solutions that have undergone phase separation to support the visual
observations. In order to utilize the FTIR for measuring the component concentrations, it was
necessary to calibrate the probe at the experimental conditions. Various ternary solutions were
tested to construct the calibration model, which related the chemical compositions to the
absorption peaks at the desired temperature. However, this model was ineffective in measuring
the concentration of biphasic systems since they were based on data generated from single-phase
mixtures. This was due the inability of the model to account for the synergistic effects between

the compounds and lack of sensitivity of the probe.

The simulation work was conducted with an objective of exploring the possibility of utilizing
computational chemistry for studying the present system. The major goal behind this study was
to understand the molecular interactions in the mixture since it will have an effect on the overall

N-oxidation reaction rate. Molecular dynamics simulations based on the Monte carlo technique
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provided interaction energies for the various binary pairs which were used as parameters in the
UNIQUAC activity coefficient model. When the theoretical results were compared with the
experimental data it was found that the model predictions were fairly accurate. Apart from this,

the methodology was used to examine the effect of temperature on the phase diagram.

It is important to note that a number of other simulation techniques were considered for
determining the UNIQUAC parameters. For example, the molecular cluster method proposed by
Sum and Sandler (1999) was followed and large molecular ensembles were constructed to
estimate the binary interactions. However, the large size of the molecules present in the current
system made it impossible to obtain a minimum energy configuration for the cluster because of
many geometric degrees of freedom. The Monte Carlo sampling employed in the present

research addressed this issue by testing several possible arrangements of the dimers.

The major contribution of this work was determining the thermodynamic parameters for the
chemicals involved in the N-oxidation system, which will be useful in developing robust kinetic
models for the reaction. Moreover, the binary parameters for the N-oxide based systems (2,6-
lutidine-N-oxide/water and 2,6-lutidine-N-oxide/2,6-lutidine) were not available in open
literature. These values can be used to study the VLE in N-oxide mixtures and determine the
thermo-physical properties of N-oxide since the pure component properties for water and 2,6-

lutidine are available.
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6.2. Future Work

The N-oxidation of alkypyridines exhibits numerous challenges, which hamper of safety of the

process. The following section provides recommendations for future work in this research area.

6.2.1. Calorimetric Studies

The N-oxidation of 2,6-lutidine should be performed with various starting mixtures of 2,6-
lutidine-N-oxide and 2,6-lutidine and the system should be monitored continuously to check for
phase separation (indicated by turbidity) during the reaction. Binary mixtures of 2,6-lutidine and
2,6-lutidine-N-oxide with the following compositions (90/10, 85/15, 80/20, 75/25, 60/40 wt.%)
can be used for this purpose since these solutions were tested in this research. Also, the pressure
rise during the reactions should be checked to determine the extent of peroxide decomposition
during each of these cases. It is expected that the N-oxidation conducted with a 60/40 2,6-
lutidine/2,6-lutidine-N-oxide mixture shows least amount of peroxide decomposition with a high
product yield. It would be worthwhile to repeat the experiments for other temperatures between
110 °C and 125 °C. The peroxide dosing rate, stirring rate and catalyst quantities employed
during the trials should be fixed based on the results obtained from 3-picoline N-oxidation

(Pineda Solano 2014).
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6.2.2. Thermodynamic Studies

The current study could be extended to include the effect of the catalyst (phosphotungstic acid)
on the phase diagram. The catalyst is an ionic solid that dissociates in the liquid phase based on
the chemical composition (Kozhevnikov 1987; Kozhevnikov, Sinnema et al. 1995; Kozhevnikov
2007). It is vital to understand this mechanism thoroughly before conducting experiments with
the catalyst. Initial studies with N-oxide/water/catalyst mixtures suggest that the catalyst
solubility reduces with the increase in water concentration at high temperatures (110 — 125 °C).
This implies that N-oxide plays a pivotal role in dissolving the catalyst and maintaining complete
homogeneity during N-oxidation. Information regarding the catalyst solubility in the reaction
mixture will assist the process of downstream separation. Once this data is available, the Gibbs
minimization method can be used to combine the chemical equilibrium with the phase

equilibrium to study both the situations simultaneously.

The present work could also be extended to other higher order alkylpyridines (for e.g., 2,4,6-
collidine) to verify if a similar relation exists between the aqueous solutions of the alkylpyridine

and their corresponding N-oxides.

72



REFERENCES

Abrams, D. S. and J. M. Prausnitz (1975). "Statistical thermodynamics of liquid mixtures: a new
expression for the excess Gibbs energy of partly or completely miscible systems." AIChE journal
21(1): 116-128.

Adcock, S. A. and J. A. McCammon (2006). "Molecular Dynamics: Survey of Methods for
Simulating the Activity of Proteins." Chemical Reviews 106(5): 1589-1615.

Al-Alawi, A., F. R. van de Voort and J. Sedman (2005). "A new FTIR method for the analysis
of low levels of FFA in refined edible oils." Spectroscopy letters 38(4-5): 389-403.

Allen, M. P. (2004). "Introduction to molecular dynamics simulation." Computational soft
matter: from synthetic polymers to proteins 23: 1-28.

Andon, R. and J. Cox (1952). "896. Phase relationships in the pyridine series. Part I. The
miscibility of some pyridine homologues with water." Journal of the Chemical Society: 4601-
4606.

Aspen Plus Version 8.2, A. T. I. "Cammbridge, MA, USA."

Becke, A. D. (1993). "Density-functional thermochemistry. III. The role of exact exchange."
The Journal of Chemical Physics 98(7): 5648-5652.

Beveridge, D. L. and F. DiCapua (1989). "Free energy via molecular simulation: applications to
chemical and biomolecular systems." Annual review of biophysics and biophysical chemistry
18(1): 431-492.

Blanco, M. (1991). "Molecular silverware. I. General solutions to excluded volume constrained
problems." Journal of Computational Chemistry 12(2): 237-247.

Bondi, A. (1964). "van der Waals Volumes and Radii." Journal of physical chemistry 68(3): 441-
451.

Breneman, C. M. and K. B. Wiberg (1990). "Determining atom-centered monopoles from
molecular electrostatic potentials. The need for high sampling density in formamide
conformational analysis." Journal of Computational Chemistry 11(3): 361-373.

Brubach, J. B., A. Mermet, A. Filabozzi et al. (2005). "Signatures of the hydrogen bonding in the
infrared bands of water." The Journal of Chemical Physics 122(18): 1845009.

Campos-Martin, J. M., G. Blanco-Brieva and J. L. G. Fierro (2006). "Hydrogen Peroxide
Synthesis: An Outlook beyond the Anthraquinone Process." Angewandte Chemie International
Edition 45(42): 6962-6984.

73



Cha, T.-H. and J. M. Prausnitz (1985). "Thermodynamic method for simultaneous representation
of ternary vapor-liquid and liquid-liquid equilibria." Industrial & Engineering Chemistry Process
Design and Development 24(3): 551-555.

Chen, J. R. (2004). "An inherently safer process of cyclohexane oxidation using pure oxygen—
an example of how better process safety leads to better productivity." Process Safety Progress
23(1): 72-81.

Coates, J. (2000). "Interpretation of infrared spectra, a practical approach." Encyclopedia of
analytical chemistry.

Conner, W. (1993). Hydrogen peroxide safety issues, EG and G Rocky Flats, Inc., Golden, CO
(United States). Rocky Flats Plant. Funding organisation: USDOE, Washington, DC (United
States).

Connolly, M. L. (1983). "Analytical molecular surface calculation." Journal of Applied
Crystallography 16(5): 548-558.

Cox, J. and E. Herington (1956). "The coexistence curve in liquid-liquid binary systems." Trans.
Faraday Soc. 52: 926-930.

Das, A., P. Sahu and S. M. Ali (2017). "Molecular Dynamics Simulation for the Calibration of
the OPLS Force Field Using DFT Derived Partial Charges for the Screening of Alkyl Phosphate
Ligands by Studying Structure, Dynamics, and Thermodynamics." Journal of Chemical &
Engineering Data 62(8): 2280-2295.

Dove, M. T. (2008). "An introduction to atomistic simulation methods." Seminarios de la SEM
4:7-37.

Edwards, V. H. (2011). "Designing safer process plants." Chemical Engineering Progress 118(4):
44-48.

Fan, C. U. N. F. (1992). "Application of molecular simulation to derive phase diagrams of binary
mixtures." Macromolecules 25(14): 3667.

Flemr, V. (1976). "A note on excess Gibbs energy equations based on local composition
concept." Collection of Czechoslovak Chemical Communications 41(11): 3347-3349.

Frisch, M. J., G. W. Trucks, H. B. Schlegel et al. (2009). Gaussian 09, Revision B.01.
Wallingford CT.

Fujiwara, M., P. S. Chow, D. L. Ma et al. (2002). "Paracetamol Crystallization Using Laser
Backscattering and ATR-FTIR Spectroscopy: Metastability, Agglomeration, and Control."
Crystal Growth & Design 2(5): 363-370.

74



Gao, J. and M. Papadaki (2006). "Global kinetic model: A case study on the N-oxidation of
alkylpyridines." Journal of Hazardous Materials 130(1): 141-147.

Grattoni, C. A., R. A. Dawe, C. Y. Seah et al. (1993). "Lower critical solution coexistence curve
and physical properties (density, viscosity, surface tension, and interfacial tension) of 2, 6-
lutidine+ water." Journal of Chemical and Engineering Data 38(4): 516-519.

Green, J., D. Harrison, W. Kynaston et al. (1970). "The vibrational spectra of the
dimethylpyridines." Spectrochimica Acta Part A: Molecular Spectroscopy 26(11): 2139-2146.

Greene, B., D. L. Baker and W. Frazier (2005). "Hydrogen peroxide accidents and incidents:
What we can learn from history, NASA In-house document. WSTF-RD-0972-001-03."

Guggenheim, E. A. (1952). Mixtures: the theory of the equilibrium properties of some simple
classes of mixtures, solutions and alloys, Clarendon Press.

Janardanan, S., M. 1. Papadaki, S. P. Waldram e al. (2017). "Toward an inherently safer
alternative for operating N-oxidation of alkylpyridines: Effect of N-oxide on lutidine — water
phase separation." Thermochimica acta 656(Supplement C): 38-46.

Janardanan, S., L. M. Perez and M. S. Mannan (2018). "Study of phase behavior of 2, 6-lutidine,
2, 6-lutidine-N-oxide and water mixture using UNIQUAC model with interaction parameters
determined by molecular simulations." Thermochimica acta.

Jin, J.-M., K. Parbhakar and L. Dao (1997). "Model for water-in-oil microemulsions: surfactant
effects." Physical Review E 55(1): 721.

Jones, C. W. (1999). Applications of Hydrogen Peroxide and Derivatives, Royal Society of
Chemistry.

Jones, C. W. (1999). Applications of hydrogen peroxide and derivatives., Cambridge, UK :
Royal Society of Chemistry.

Jonsd, S. O., K. Rasmussen and A. Fredenslund (1994). "UNIQUAC parameters determined by
molecular mechanics." Fluid Phase Equilibria 100: 121-138.

Jonsdottir, S. O., R. A. Klein and K. Rasmussen (1996). "UNIQUAC interaction parameters for
alkane/amine systems determined by Molecular Mechanics." Fluid Phase Equilibria 115(1-2):
59-72.

Jorgensen, W. L. and N. A. McDonald (1998). "Development of an all-atom force field for
heterocycles. Properties of liquid pyridine and diazenes." Journal of Molecular Structure:
THEOCHEM 424(1): 145-155.

Kamath, G., N. Lubna and J. J. Potoff (2005). "Effect of partial charge parametrization on the
fluid phase behavior of hydrogen sulfide." The Journal of Chemical Physics 123(12): 124505.

75



Karplus, M. and G. A. Petsko (1990). "Molecular dynamics simulations in biology." Nature
347(6294): 631.

Ketko, M. B. H. and J. J. Potoff (2007). "Effect of partial charge parameterization on the phase
equilibria of dimethyl ether." Molecular Simulation 33(9-10): 769-776.

Kletz, T. (1978). "What you don’t have, can’t leak." Chemistry and Industry 6: 287-292.

Kletz, T. (1985). "Inherently safer plants." Plant/Operations Progress 4(3): 164-167.

Kozhevnikov, 1. (1987). "Advances in catalysis by heteropolyacids." Russian Chemical Reviews
56(9): 811.

Kozhevnikov, 1. (2007). "Sustainable heterogeneous acid catalysis by heteropoly acids." Journal
of Molecular Catalysis A: Chemical 262(1): 86-92.

Kozhevnikov, 1., A. Sinnema and H. Van Bekkum (1995). "Proton sites in Keggin heteropoly
acids from170 NMR." Catalysis letters 34(1-2): 213-221.

Kumasaki, M. (2006). "An explosion of a tank car carrying waste hydrogen peroxide." Journal of
Loss Prevention in the Process Industries 19(4): 307-311.

Lee, C., W. Yang and R. G. Parr (1988). "Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron density." Physical review B 37(2): 785.

Lewiner, F., G. Févotte, J. P. Klein et al. (2001). "Improving batch cooling seeded crystallization
of an organic weed-Kkiller using on-line ATR FTIR measurement of supersaturation." Journal of
Crystal Growth 226(2-3): 348-362.

Lewiner, F., J. P. Klein, F. Puel et al. (2001). "On-line ATR FTIR measurement of
supersaturation during solution crystallization processes. Calibration and applications on three
solute/solvent systems." Chemical Engineering Science 56(6): 2069-2084.

Lin, S. T. and S. I. Sandler (1999). "Infinite dilution activity coefficients from ab initio solvation
calculations." AIChE Journal 45(12): 2606-2618.

Malaspina, T., K. Coutinho and S. Canuto (2002). "Ab initio calculation of hydrogen bonds in
liquids: A sequential Monte Carlo quantum mechanics study of pyridine in water." The Journal
of Chemical Physics 117(4): 1692-1699.

Martin, F. and H. Zipse (2005). "Charge distribution in the water molecule—A comparison of
methods." Journal of Computational Chemistry 26(1): 97-105.

McDermott, C. and N. Ashton (1977). "Note on the definition of local composition." Fluid Phase
Equilibria 1(1): 33-35.

76



Mettler-Toledo (2012). "Hardware Manual: ReactIR 15™ - Improving Chemistry
Understanding."

Mettler-Toledo (2012). "RC1e High Performance Thermostat - Operating Instructions."
Miertus, S., E. Scrocco and J. Tomasi (1981). "Electrostatic interaction of a solute with a

continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent
effects." Chemical Physics 55(1): 117-129.

Misono, M., I. Ono, G. Koyano et al. (2000). "Heteropolyacids. Versatile green catalysts usable
in a variety of reaction media." Pure and applied chemistry 72(7): 1305-1311.

Nagata, [. and Y. Usui (1989). "Correlation of ternary liquid-liquid equilibrium data and
prediction of quaternary liquid-liquid equilibrium data by means of the uniquac model."
Thermochimica acta 140: 121-138.

Nowak, E., N. M. Kovalchuk, Z. Che et al. (2016). "Effect of surfactant concentration and
viscosity of outer phase during the coalescence of a surfactant-laden drop with a surfactant-free
drop." Colloids and Surfaces A: Physicochemical and Engineering Aspects 505: 124-131.

Oh, S. Y. and Y. C. Bae (2010). "Phase Equilibrium Calculations of Ternary Liquid Mixtures
with Binary Interaction Parameters and Molecular Size Parameters Determined from Molecular
Dynamics." The Journal of Physical Chemistry B 114(27): 8948-8953.

Oliveira, J. S., R. Montalvao, L. Daher et al. (2006). "Determination of methyl ester contents in
biodiesel blends by FTIR-ATR and FTNIR spectroscopies." Talanta 69(5): 1278-1284.

Painter, P. C., M. M. Coleman, R. G. Jenkins ef al. (1978). "Fourier transform infrared study of
mineral matter in coal. A novel method for quantitative mineralogical analysis." Fuel 57(6): 337-
344,

Palomo-Coll, A. (1992). "A process for the preparation of omeprazol, ES 2026761 (A6)."
European Patent Office.

Papadaki, M., R. J. Emery, E. Serra et al. (2002). "Sensitivity analysis of the 2-methylpyridine
N-oxidation kinetic model." Green Chemistry 4(3): 199-205.

Papadaki, M. and J. Gao (2005). "Kinetic models of complex reaction systems." Computers &
chemical engineering 29(11): 2449-2460.

Papadaki, M. and J. Gao (2005). "Kinetic models of complex reaction systems." Computers &
chemical engineering 29(11-12): 2449-2460.

77



Papadaki, M., E. Marqués-Domingo, J. Gao et al. (2005). "Catalytic decomposition of hydrogen
peroxide in the presence of alkylpyridines: Runaway scenarios studies." Journal of Loss
Prevention in the Process Industries 18(4): 384-391.

Papadaki, M. and H. P. Nawada (2003). "Towards improved reaction runaway assessment
methods . Simple calorimetric method of evaluation of heat transfer coefficient and reactor
thermal mass." International Journal of Chemical Reactor Engineering 1(1): 40.

Papadaki, M., V. Stoikou, D. Mantzavinos et al. (2002). "Towards improved reaction runaway
studies: kinetics of the N-oxidation of 2-methylpyridine using heat-flow calorimetry." Process
Safety and Environmental Protection 80(4): 186-196.

Pascual-Ahuir, J., E. Silla, J. Tomasi et al. (1987). "Electrostatic interaction of a solute with a
continuum. Improved description of the cavity and of the surface cavity bound charge
distribution." Journal of Computational Chemistry 8(6): 778-787.

Pascual-ahuir, J.-L., E. Silla and I. Tunon (1994). "GEPOL: An improved description of
molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface."
Journal of Computational Chemistry 15(10): 1127-1138.

Pascual-Ahuir, J. L. and E. Silla (1990). "GEPOL: An improved description of molecular
surfaces. I. Building the spherical surface set." Journal of Computational Chemistry 11(9): 1047-
1060.

Pineda Solano, A. L. (2014). Design of Inherently Safer Complex Reactive Processes:
Application on the N-Oxidation of Alkylpyridines.

Pineda-Solano, A. (2014). Design of Inherently Safer Complex Reactive Processes: Application
on the N-Oxidation of Alkylpyridines, Texas A&M University.

Pineda-Solano, A., L. Saenz-Noval, S. Nayak et al. (2012). "Inherently safer reactors: Improved
efficiency of 3-picoline N-oxidation in the temperature range 110-125°C." Process Safety and
Environmental Protection 90(5): 404-410.

Prausnitz, J. M. (1980). Computer calculations for multicomponent vapor-liquid and liquid-
liquid equilibria, Prentice Hall.

Ren, H., Q. Zhang, X. Chen et al. (2007). "A molecular simulation study of a series of
cyclohexanone formaldehyde resins: Properties and applications in plastic printing." Polymer
48(3): 887-893.

Richards, F. M. (1977). "Areas, volumes, packing, and protein structure." Annual review of
biophysics and bioengineering 6(1): 151-176.

Saenz, L., V. C. Vazquez, L. Liu et al. (2009). "2-Methylpyridine-N-oxidation runaway studies."
Journal of Loss Prevention in the Process Industries 22(6): 839-843.

78



Saenz, L. R., V. H. Carreto-Vazquez, W. J. Rogers et al. (2011). "Thermal decomposition of 2-
methylpyridine N-oxide: Effect of temperature and influence of phosphotungstic acid as the
catalyst." Catalysis Communications 12(14): 1370-1373.

Saenz-Noval, L. R. (2011). Evaluation of alternatives for safer and more efficient reactions: a
study of the N-oxidation of alkylpyridines, Texas A&M University.

Sahandzhieva, K., D. Tuma, S. Breyer et al. (2006). "Liquid— liquid equilibrium in mixtures of
the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate and an alkanol." Journal of
Chemical & Engineering Data 51(5): 1516-1525.

Scriven, E. F. V. and R. Murugan (2000). Pyridine and Pyridine Derivatives. Kirk-Othmer
Encyclopedia of Chemical Technology, John Wiley & Sons, Inc.

Sempere, J., R. Nomen, J. Rodriguez ef al. (1998). "Modelling of the reaction of N-oxidation of
2-methylpyridine using hydrogen peroxide and a complex metal catalyst." Chemical Engineering
and Processing: Process Intensification 37(1): 33-46.

Shimizu, S., N. Watanabe, T. Kataoka et al. (1993). "Pyridine and pyridine derivatives."
Ullmann's Encyclopedia of Industrial Chemistry.

Shimizu, S., N. Watanabe, T. Kataoka et al. (2000). "Pyridine and pyridine derivatives."
Ullmann's Encyclopedia of Industrial Chemistry.

Silla, E., I. Tunon and J. L. Pascual-Ahuir (1991). "GEPOL: An improved description of
molecular surfaces II. Computing the molecular area and volume." Journal of Computational
Chemistry 12(9): 1077-1088.

Silla, E., F. Villar, O. Nilsson ef al. (1990). "Molecular volumes and surfaces of
biomacromolecules via GEPOL: A fast and efficient algorithm." Journal of molecular graphics
8(3): 168-172.

Serensen, J. M., T. Magnussen, P. Rasmussen ef al. (1979). "Liquid—Iliquid equilibrium data:
Their retrieval, correlation and prediction Part II: Correlation." Fluid Phase Equilibria 3(1): 47-
82.

Stephenson, R. M. (1993). "Mutual solubility of water and pyridine derivatives." Journal of
Chemical and Engineering Data 38(3): 428-431.

Sum, A. K. and S. I. Sandler (1999). "A Novel Approach to Phase Equilibria Predictions Using
Ab Initio Methods." Industrial & Engineering Chemistry Research 38(7): 2849-2855.

Sum, A. K. and S. I. Sandler (1999). "Use of ab initio methods to make phase equilibria
predictions using activity coefficient models." Fluid Phase Equilibria 158: 375-380.

79



Sun, H. (1998). "COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase
ApplicationsOverview with Details on Alkane and Benzene Compounds." The Journal of
Physical Chemistry B 102(38): 7338-7364.

Swann, G. E. and S. Patwardhan (2011). "Application of Fourier Transform Infrared
Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and
palacoenvironmental research.”" Climate of the Past 7(1): 65-74.

Swinehart, D. F. (1962). "The Beer-Lambert Law." Journal of Chemical Education 39(7): 333.

Treybal, R. E. (1963). Liquid extraction, McGraw-Hill.

ULBERTH, F. and H. J. HAIDER (1992). "Determination of low level trans unsaturation in fats
by Fourier transform infrared spectroscopy." Journal of food science 57(6): 1444-1447.

United States Chemical Safety and Hazard Investigation Board (2002). "Hazard Investigation:
Improving Reactive Hazard Management, CSB Report No. 2001-01-H."

van de Voort, F. R., A. A. Ismail, J. Sedman et al. (1994). "The determination of peroxide value
by fourier transform infrared spectroscopy." Journal of the American Oil Chemists’ Society
71(9): 921-926.

van Gunsteren, W. F. and H. J. Berendsen (1990). "Computer simulation of molecular dynamics:
Methodology, applications, and perspectives in chemistry." Angewandte Chemie International
Edition 29(9): 992-1023.

Wei, C., W. J. Rogers and M. S. Mannan (2004). "Application of screening tools in the
prevention of reactive chemical incidents." Journal of Loss Prevention in the Process Industries
17(4): 261-269.

Wilson, G. M. (1964). "Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free
Energy of Mixing." Journal of the American Chemical Society 86(2): 127-130.

Xu, J., Y. Zhang, H. Chen et al. (2013). "Effect of surfactant headgroups on the oil/water

interface: An interfacial tension measurement and simulation study." Journal of Molecular
Structure 1052: 50-56.

Yang, J. H. and Y. C. Bae (2008). "Phase behaviors of polymer solutions using molecular
simulation technique." The Journal of Chemical Physics 129(6): 064902.

Yaws, C. L. (2012). Yaws' critical property data for chemical engineers and chemists. Norwich,
N.Y., Knovel.

Zhao, Y. and D. G. Truhlar (2008). "The MO06 suite of density functionals for main group
thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and

80



transition elements: two new functionals and systematic testing of four M06-class functionals
and 12 other functionals." Theoretical Chemistry Accounts 120(1): 215-241.

Zhao, Y. and D. G. Truhlar (2011). "Applications and validations of the Minnesota density
functionals." Chemical Physics Letters 502(1): 1-13.

81



