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ABSTRACT 

 

 

 Declining blue crab stocks in Texas coastal systems in the 1980s and most recently in the 

early 2000s have led scientists and policy makers to re-evaluate fishery management plans. A 

newer ecosystem-based approach to managing these fisheries has recently gained some 

traction from policy makers, termed Ecosystem Approach to Fisheries. An important 

component to understanding this approach, is to understand the relationship between a fishery 

and its ecosystem components. The goal of this study is to investigate the relationship between 

the blue crab fishery and its habitat of submerged aquatic vegetation (SAV). Alongside of this 

investigation, the study also examines environmental stressors (e.g. water temperature, 

salinity, dissolved oxygen, turbidity) that may lead to changes within a fishery.  

The results of this research suggest relationships may exist between blue crab catch, seagrass 

habitat, and select environmental stressors. Environmental stressors, such as salinity, are found 

to be equally influencing drivers for blue crab populations along the coast of Texas. Although 

aimed to represent an ecosystem-based approach in the models, this study is limited to just a 

few interactions within the system. This work serves as a stepping stone for future work, 

where interactions between socioeconomic factors and additional ecological factors (e.g. 

freshwater inflow, tidal and wind influence, system morphology) should be taken into account. 

This level of adaptation is best to effectively manage ecosystems so that “bottom up”, “top 

down”, and mid - level interactions are recognized and managed accordingly.  
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1. INTRODUCTION 

Ecosystems represent the linkages and dynamic relationships amongst species, species 

abundance, processes, and patterns (Costanza et al., 2006). They provide invaluable direct and 

indirect benefits to human systems and contribute to their long-term livelihood and welfare. 

About 44% of the world’s population lives in coastal zones (Cohen et al., 1997), and their 

societies and economies strongly rely on the goods and services ecosystems provide. However, 

anthropogenic footprints on the coastal environment have compromised many valuable 

ecosystems and degraded the services they provide. If society is to utilize ecosystems in a 

prosperous and sustainable way, effective management practices are needed that accounts for 

the interconnectivity between processes taking place within an ecosystem, and the interactions 

between ecological, social, and economic systems (Barausse, 2011).  

The focus of this work is to analyze the need for an ecosystem-based approach within 

the blue crab fishery of Texas. Management of Texas’ fisheries has been of long concern, as 

the State produces a majority of the seafood for the United States, about 14.4 million pounds 

of seafood products (TCEQ, 2009). Texas fisheries alone are responsible for nearly 34% of 

total United States’ harvest for blue crab commercial landings (GSMFC, 2015), generating 

about $40 million annually for Gulf of Mexico states and between $3 - 5 million annually for 

Texas alone.  

A newer ecosystem-based approach to managing these fisheries has recently gained 

some traction from policy makers (Garcia and Cochrane, 2005), termed Ecosystem Approach 

to Fisheries (EAF). Ward et al. (2002) defines EAF as “an extension of conventional fisheries 

management recognizing more explicitly the interdependence between human well-being and 

ecosystem health and the need to maintain ecosystems productivity for present and future 
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generations, e.g. conserving critical habitats, reducing pollution and degradation, minimizing 

waste, protecting endangered species” (p. 5). The most recent action plan of Texas developed 

by Audubon’s Nature Institute’s Gulf United for Lasting Fisheries (G.U.L.F.), shows evidence 

that an ecosystem-based approach is a valuable perspective to effectively manage the blue crab 

fishery in Texas. An important component to understanding the EAF, is to understand the 

relationship between a fishery and its ecosystem components. The goal of this study is to 

investigate the relationship between the blue crab fishery and its habitat of submerged aquatic 

vegetation (SAV), often described as seagrasses. Alongside of this investigation, the study also 

examines environmental stressors (e.g. water temperature, salinity, dissolved oxygen, 

turbidity) that may lead to changes within a fishery productivity, with the aim to determine if 

an impact to the fishery has occurred, either directly or indirectly. The term ‘impact’ here is 

defined as “consequences, caused by changes in ecosystem quality and state, for human 

welfare and for the social and economic benefits from an ecosystem” (Barausse, 2011). As an 

example, a decrease in the abundance of blue crabs, which then leads to decreased landings, 

and ultimately a negative economic consequence is a direct impact. An indirect impact may 

arise from a change in an environmental stressor so that it decreases habitat, thus leading to a 

decrease in a species abundance, and thus, a reduced economic welfare. We examine this 

relationship in five major bays in Texas.  

The results of this research suggest that relationships may exist between blue crab 

catch per unit effort (CPUE), seagrass habitat, and select environmental stressors. While 

specific bays were not assessed according to their physical characteristics and morphology, 

this study provides a general analysis for factors that may contribute to the blue crab fishery. 
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Environmental stressors, such as salinity, are found to be equally influencing factors to blue 

crab populations along the coast of Texas.  

Submerged Aquatic Vegetation 

Seagrasses serve as an ecosystem in itself or may serve as a vital component within a 

larger ecosystem framework. Seagrass beds are recognized as being a unique subtropical 

habitat in many of Texas’ bays and estuaries that provide several beneficial roles. One of the 

critical roles that SAV serves is providing habitat for coastal and pelagic species as their 

nursery and breeding grounds (Jackson et al., 2001). SAV also serves as a major source for 

organic biomass for coastal food webs, natural agents for stabilizing coastal erosion and 

sedimentation, and as a biological agent in the nutrient cycling process and filtration process 

for maintaining water quality (Pulich, 1999). Due to their positive impacts within the coastal 

environment, seagrass beds have increasingly become a conservation goal in Texas.  

Due to recent declines in SAV within major bays along the coast, a coast-wide 

Seagrass Conservation Plan for Texas (SCPT) was developed in 1999 by three major sponsors 

which include, the Texas Parks and Wildlife Department (TPWD), the Texas General Land 

Office (TGLO), and the Texas Natural Resource Conservation Commission (TNRCC). Each 

agency is responsible for producing the plan due to their legislative authority or statutory 

jurisdiction to the seagrass beds or waters in which they occur. Determining the status and 

trends of seagrasses along the Texas coast is primarily handled by TPWD. In an effort to 

accurately assess the state of SAV within Texas coastal areas, protocols and policies were 

implemented within the plan that led to consistent sampling methods and analysis, which was 

the first step towards producing reliable data. 
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Table 1 depicts historical trends for many of Texas’ major bays from the 1950/1960 to 

2002. Many of these bays show a significant decline in SAV coverage over the past several 

decades. Seagrass losses occur globally and are considered the most threatened ecosystems on 

earth (Waycott et al., 2009). Declines are attributed to both natural and anthropogenic causes. 

Orth et al. (2006) found that of the 47 case studies of seagrass loss, 28 of them were attributed 

to human influence. Among natural causes, natural disasters commonly responsible for 

declines are hurricanes, earthquakes, disease, and grazing by herbivores. On the other hand, 

anthropogenic causes for declining SAV are those which affect water quality and clarity. 

These include nutrient and sediment loading from runoff and sewage disposal, dredging and 

filling, pollution, upland development, certain fishing practices, and boating activity (Short 

and Wyllie-Echeverria, 2000). 
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Table 1. Summary of total seagrass changes for Texas bay systems. Seagrass values are in 

hectares and acres in parenthesis. Reprinted from Dunton et al. (2011).  

 
Bay System  

1
Late 1950s  

2
Mid-1970s  

3
1987 or early              

4
1998 

              or mid-1960s     1990s     

	 	 	 	 	 Galveston Bay System 

 
Galveston/Christmas 590

a
    134

a
   113

b
               210

c 

   Bays   (1,457) 
     Midcoast Region 

 
Matagorda Bay System       1,099

b
   

         (2,716)   
 

San Antonio Bay System    5,000
d
    4,305

d
  

      (12,350)   (10,683) 

 
     Coastal Bend Region 

 
Aransas/Copano Bays       2,871

e
  

         (7,094) 
 

Redfish Bay and  5,380
e
    6,200

e
    5,710

e
  

   Harbor Island  (13,293)   (15,320)   (14,109) 

 
 

Corpus Christi        2,568
e
  

   Bay System        (6,342) 

 
     Laguna Madre System 

 
Upper Laguna Madre 12,321

f
    20,255

g
   22,903

h
                22443

i
  

   (30,445)      (50,050)   (56,593)               (55,456) 
 

 
Lower Laguna Madre 59,153

f
   46,558

g
   46,624

h
               46,174

i 

   (146,166)  (115,044)  (115,207)              (114,095) 
 

Baffin Bay        2,200
j 

         (5,436) 
 

1 
Data for Galveston/Christmas Bays, Redfish Bay, and Harbor Island based on 1956/58 Tobin photography. Data for upper and lower Laguna Madre based on 

field surveys during mid-1960s. 
2 

Data for Galveston/Christmas and Redfish Bay/Harbor Island based on 1975 (National Aeronautics and Space Administration 

Johnson Space Center (NASA- JSC) photography; San Antonio Bay based on 1974 NASA-JSC photography. Data for upper and lower Laguna Madre based on 

1974–75 field surveys. 
3 

Data for Christmas, Matagorda, and San Antonio Bay systems from 1987 NASA-Ames Research Center photography. Data for 

Aransas/Copano, Redfish, and Corpus Christi Bay systems based on 1994 TPWD photography. Data for upper and lower Laguna Madre based on 1988 field 

surveys. Data for Baffin Bay based on 1992 U.S. Fish and Wildlife Service National Wetlands Inventory photography. 
4 

Data for Christmas Bay from 1998 

Galveston Bay National Estuary Program photography. Data for upper and lower Laguna Madre from 1998 field surveys. 
a 

From Pulich and White (1991). 
b 

From Adair and others (1994). 
c 

From Pulich (2001). 
d 

From Pulich (1991). 
e 

From Pulich and others (1997). 
f 

Areas computed for this review from McMahan 

(1965–67). See Laguna Madre vignette. 
g 

Areas computed for this review from Merkord (1978). 
h 

Areas computed for this review from Quammen and Onuf 

(1993). See Laguna Madre vignette. 
i 

Areas computed for this review. See Laguna Madre vignette. 
j 

Areas computed for this review by Texas Parks and Wildlife 

Department, Coastal Studies Program, Austin, Tex. (unpub. data)  
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A loss in SAV is suggested to lead to a loss of commercially and recreationally 

important fish species and subsequently reduced revenue from the commercial fishing sector to 

the State (Pulich, 1999). Seagrass beds serve as habitat for many important recreational and 

commercial fish species. A loss of recreational species contributes to a decline in ecotourism 

and a loss of commercial species contributes to a decline in their landings. Both losses 

ultimately affect economic activity of a region and result in welfare losses. Figure 1 depicts the 

linkages and factors contributing to seagrass declines and its threats to the region’s economy. 

Natural processes (e.g. energy from the sun, precipitation) within a bay area are driven by the 

exchange with land and ocean. Human activity (e.g. boating, dredging, land development, and 

deposition of nutrients from farming practices) have the potential to negatively impact the bay, 

and thus lead to loss of resources and revenue.  

For the Gulf of Mexico, it is estimated that 98% of all commercial landings are 

estuarine-dependent for at least part of their life cycle (Chambers, 1992). Pulich (1999) 

estimated the total value of seagrass habitat within Texas estuaries for recreational and 

commercial harvests at $12.6 million annually. However, seagrass beds provide other valuable 

services including protection against storm surges, which are hard to quantify monetarily. 

Using values for recreation and storm protection, Lipton et al. (1995) estimated the per acre 

value of seagrass beds to be between $9 million to $28 million.  
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Figure 1. Factors contributing to SAV decline and revenue loss (adapted from Montagna, 

1996) 
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Texas Blue Crab 

Although several species depend on seagrasses for all or parts of their life cycle, the 

focus of this study will be on the adult blue crab (Callinectes sapidus) population within 

Texas. Seagrasses serve as a primary habitat that are linked to the blue crab survival and 

abundance (Hovel and Lipcius, 2002). Current trends indicate that blue crabs have 

significantly declined over the past several decades, leading to a period defined as “senescent” 

or declining from 1992 to 2005 (TPWD, 2007). Many problems that face the blue crab 

population include a reduction in freshwater flow to the estuary, over-harvesting, unsuitable 

water quality, and a loss of natural habitat.  

According to TPWD, the blue crab hit its lowest ever recorded harvest in 2005 with 3.1 

million pounds landed (TPWD, 2007). Historically, the average harvest for Texas was around 

6.3 million pounds (TPWD, 2007). Most recent estimates from the National Oceanic and 

Atmospheric Administration (NOAA) indicate that 2016 harvests levels were recorded at 4.9 

million pounds (NOAA, 2018).  Figure 2 displays the historical trends from 1960 to 2016 for 

annual landings in pounds, where a maturity phase peaked in 1987 and has since been in 

steady decline. Figure 3 displays historical trends from 1960 to 2016 for the landing value of 

blue crabs in million dollars, which shows an inverse trend relative to landing weights which 

may be indicative of the scarcity of the resource.  
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Figure 2. Blue crab annual commercial landings (kg x1000) from 1960-2016
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Figure 3. Blue crab annual landing value (million dollars) from 1960 -2016 
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From the above discussion, recent trends indicate that both seagrass beds and blue crab 

populations have steadily declined. To assess the relationship between the blue crab population 

and seagrass habitat, the first objective of this study is to quantify the importance of SAV in 

terms of blue crab productivity along the Texas coast. The analysis focuses on five highly 

productive bays within Texas: (1) San Antonio Bay, (2) Aransas Bay, (3) Corpus Christi Bay, 

(4), Upper Laguna Madre Bay, and (5) Lower Laguna Madre Bay. The second objective of this 

study is to assess the magnitude of importance of certain environmental stressors on the blue 

crabs’ population in the aforementioned major bays in Texas. The work of this thesis aims to 

assess an ecosystem-based approach in the blue crab fishery management in Texas. This 

research contributes to the extent of literature that examines the linkages between species 

abundance and habitat along with environmental stressors (Read et al., 2011).  
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2. LITERATURE REVIEW 

According to the Food and Agricultural Organization of the United Nations, an 

estimated 50% increase in current supply of fish and aquatic invertebrates is needed to meet 

the demands of the human population in 2050 (Bertelli et al., 2014). This significant increase 

places pressure on improving and sustaining aquatic ecosystems (e.g. seagrass beds) that 

support commercially valuable species. An ecosystem – based management approach 

recognizes the importance of all interactions within and between ecological, social, and 

economic systems and provides strategies for marine ecosystems to be effective and 

sustainable. The foundational roles of certain marine ecosystems have been well documented 

in literature, yet the understanding of specific linkages between ecosystem, habitat, and 

productivity of commercial species are needed in order to achieve sustainable fisheries.  

Many studies investigating these relationships are concentrated around a specific 

commercially valuable species and habitat. Although extensive knowledge is needed to 

understand the dynamics between this relationship, it is also important to investigate 

relationships that expand beyond this traditional concept. The first part of this section reviews 

the traditional fishery - habitat model, while the second part explores associations outside the 

traditional relationship of habitat and fishery (i.e. environmental stressors affecting species 

production).  

Habitat–Fishery Relationships 

The first determination in understanding a habitat-fishery relationship is to analyze the 

habitat as being essential, facultative, or non-essential. Depending on the way a habitat is 

treated, a habitat may be defined as essential (species cannot survive without at least some of 

the habitat), facultative (more of the species because of the habitat, but if the habitat was lost 
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the species could still survive as some levels), or non-essential (more habitat has no effect on 

species’ levels) (Foley et al., 2012). Complexity of an ecosystems makes it difficult to 

categorize habitats into these three groups, but attempts have been made in the literature. 

However, it appears model design seems to determine whether the habitat qualifies as 

essential, facultative, or non-essential (Mykoniatis and Ready, 2013).  

Barbier and Strand (1998) explored the value of mangrove habitat as breeding and 

nursery grounds for shrimp production in the State of Campeche, Mexico. The authors 

assumed an open access fishery and that mangrove area affected the carrying capacity of the 

shrimp fishery and its production. The results from this study suggested that while the 

mangroves were essential habitat for the shrimp, their contributions to shrimp productivity was 

relatively small. It was estimated that only 0.4% of annual harvest and revenues resulted from 

habitat decline, which was a considerably smaller decline relative to the decline attributed to 

resource over-exploitation.  

An important aspect of the Barbier and Strand (1998) study was that the model 

assumed mangrove habitat to serve as essential habitat. Mykoniatis and Ready (2013) 

developed a more general framework for fishery-habitat interaction without assuming apriori 

that the habitat was essential, facultative, or even relevant. While their results of interaction 

between the SAV and blue crabs in Chesapeake Bay were consistent with Barbier and Strand 

(1988), authors also found contradicting evidence when they modeled the SAV as non-

essential. It was found that assuming the habitat as essential led to potential model 

misspecification and biased regression estimates. The authors however did not account for 

ecological inputs or processes (e.g. water and nutrient cycling, energy flow) into the model.  
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To expand beyond the traditional habitat-fishery relationship, Seitz et al. (2004) 

investigated areas of an estuarine that are not usually viewed as important habitat to a 

commercially valuable species. In their study, they examined the importance of the blue crab 

population within various areas of the estuarine habitat, such as seagrass beds and included 

mudflats and sandflats.  

 The study sought to determine if structurally complex habitats (vegetated areas) were 

statistically different from structurally simple habitats (unvegetated areas) within Chesapeake 

Bay. The goal was to quantify abundance of blue crab juveniles and assess their survival in 

SAV areas and unvegetated areas (mudflats and sandflats). Results indicated that blue crab 

abundance was heavily concentrated in the seagrass areas (~50%) and in shallow unvegetated, 

up-river habitats (~40%). The remaining blue crab juveniles were found in unvegetated areas 

between the seagrass beds and up-river segments. Interestingly, they also found that larger 

juveniles and adults dispersed from seagrass areas to sand and mud flats, as they were now less 

vulnerable to predation. Seitz et al. (2004) concluded that conservation and restoration efforts 

should be equally focused on unvegetated areas (sand flats and mud flats) just as much as 

vegetated areas (seagrass beds).  

Numerous studies have examined the linkages between habitat and commercially 

valuable species (Anderson, 1989; Bell and Pollard, 1989; Kikuchi, 1974; Shabmann and 

Capps, 1985). They all were consistent in finding that diminishing seagrass beds led to 

declining fish catches. Anderson (1989) and Shabmann and Capps (1985) expanded their 

studies to investigate the economic benefits of seagrass restoration. Anderson (1989) used a 

model that simulated catch and revenue values assuming seagrass beds within Chesapeake Bay 

were partially or fully restored. The study estimated that the net economic benefit to Virginia 
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hard-shell blue crab fisherman of full SAV restoration to be about $1.8 million per year. 

Shabmann and Capps (1985) also concluded that seagrass restoration within Chesapeake Bay 

could improve the soft-shell crab fishery in Virginia. Bell and Pollard (1989) found slightly 

different results and concluded that fisheries are only likely to depend heavily on seagrass 

habitats when harvests are made in very enclosed bays and estuaries, where seagrasses provide 

the only form of shelter, and where a species spawns within the bay or estuary.  

Contrary to these positive habitat-fishery relationship, other studies have demonstrated 

that fisheries are able to thrive during periods of significant seagrass habitat loss (Saenger et 

al., 2013; Heck et al., 2003). Rasmussen (1977) also found that despite a drastic decline in 

eelgrass Zostera marina habitat, the decline did not contribute to fishery collapse.   

A study conducted in Florida Bay found significant decline in the pink shrimp 

Farfantepenaeus duorarum fishery coincided with the loss the seagrass Thallasia testudinum, 

which served as essential habitat for pink shrimp. The fishery was able to bounce back after 

just 5 years, but seagrass area had not been restored. Coincidently, when seagrasses drastically 

declined, South Florida experienced a drought that decreased freshwater inputs into the bay. It 

was likely the low freshwater inputs that played a major role in pink shrimp stock declines, 

rather than the loss of seagrass habitat (Rudnick et al., 2005).  

 Lastly, Lipcius and Van Engle (1990) investigated SAV loss, which served as nursery 

grounds for blue crab populations within Chesapeake Bay. Although a majority of the SAV 

habitat was lost in the upper part of the bay, the blue crab fishery was not substantially 

affected. The physical location of seagrass habitat within the bay appeared to serve as a more 

important component to the fishery. Juveniles remained unaffected as they utilized seagrass 
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patches located in the lower part of the bay. The location of the seagrass habitat determined 

where they settled into the bay from offshore waters and thus, the fishery remained stable.  

Environmental Stressors 

Fisheries are able to sustain themselves when given the best water quality conditions as 

it improves the health and abundance of fish stocks (McConnell and Strand, 1989). Numerous 

biological studies have provided evidence of the most suitable water quality conditions for the 

adult blue crab. It is suggested that blue crabs are able to grow and develop well within certain 

ranges of common environmental stressors. The following studies provide well-researched 

examples of each environmental stressors including salinity, water temperature, dissolved 

oxygen, and turbidity, used in the following analysis.  

Determining salinity preference of adult blue crabs has attracted many researchers over 

the past several decades. It is one of the most important environmental variables that 

influences the abundance and distribution of an organism. Studies that focused on adult blue 

crab populations demonstrate blue crabs are more abundant in estuaries with low salinity 

levels (Longley, 1994; Pulich et al., 1998; Greenwood et al., 2008). While the range of 

preferred salinity levels vary, studies consistently show that blue crabs favor areas with 

salinity levels less than 29 parts per thousand (ppt). For example, Longley (1994) found blue 

crabs were most abundant in salinities < 22 ppt. Pulich et al. (1998) found similar results, 

where peak adult blue crab abundance was found in large areas of water with salinities 

between 5-15 ppt. Hamlin (2004) found highest blue crab abundance in areas where salinity 

did not exceed 20 ppt and Greenwood et al. (2008) found highest abundance in areas that 

ranged from 5-29 ppt in salinity levels.  
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Another important environmental variable that has been documented to influence adult 

blue crab distribution and abundance is water temperature. Blue crabs are a ubiquitous species 

and are able to tolerate a wide variety of temperature ranges. The species is normally found in 

a wide range of climates where temperatures range below 10 ºC in the winter to 30 ºC in the 

summer. Populations in colder regions (Atlantic blue crabs) thrive in colder climates by 

overwintering in the muddy bottoms (Schaffner et al, 1988). However, blue crabs in Texas 

have not been documented to overwinter and continue growth in all seasons as temperatures 

rarely drop below 15 ºC (GSMFC, 2015). Perry (1975) found higher adult blue crab catch rates 

were associated with water temperatures between 20 – 25 ºC. Buskey et al. (2015) found that 

although adults were able to tolerate a wide variety of temperatures, growth did not occur 

when temperatures dropped below 9-11 ºC. Copeland and Bechtel (1974) found the optimum 

temperatures for adult blue crabs to be between 10-35 ºC for populations in the Gulf of Mexico 

and on the Atlantic coast.  

Adequate levels of dissolved oxygen (DO) are known to be a requirement for any organism 

using oxygen to survive. The studies that focus on identifying threshold levels for blue crabs 

have found blue crabs are a tolerant species, but do not survive in hypoxic areas (i.e. in areas 

where DO < 2 mg·L-1). Rabalais et al. (2001) and Eby and Crowder (2002) found that adult 

blue crabs avoided or migrated from areas with oxygen concentrations lower than 2 mg·L-1. 

With 2 mg·L-1 being the minimum threshold for blue crab observations, Eby and Crowder 

(2002) also found that values above 6 mg·L-1 were associated with higher adult blue crab 

abundance.   

 Lastly, there have been very few studies that have investigated the influence of 

turbidity on adult blue crab populations. However, Lunt and Smee (2014) found that blue 
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crabs and similar invertebrates were most abundance in areas where turbidity was greater than 

30 nephelo-metric turbidity units (NTU). Abundances were compared above and below 30 

NTU because that level is known to effect vision of marine organisms (Minello et al. 1987; 

Sweka and Hartman 2003). Similar studies for comparison to this threshold are not well 

documented; the analysis for this study will be dependent on the results provided by Lunt and 

Smee (2014). 

 Studies investigating the interaction between a habitat and a commercially valuable 

species generally suggest that the habitat has a positive impact on the abundance and 

distribution of a species, but many suspect environmental and unique spatial characteristics of 

the region have important contributions towards the relationship. The information provided in 

this section is aimed to frame the following analysis for the goal of allowing scientists and 

managers to maintain the ecological health of a fishery and to provide information to allow for 

adaptive management strategies. The model proposed in this thesis will be built upon 

suggested relationships of blue crabs with environmental factors and the habitat with the aim 

to determine the relationships within economically valuable bays and species in Texas.  
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3. THEORETICAL FRAMEWORK 

 Following the habitat-fishery model described in Barbier and Strand (1998), a modified 

standard open access fishery model is used to account for the production of blue crabs and the 

seagrass as nursery and habitat. This model defines Xt as the stock of blue crab in the fishery 

measured as biomass, therefore changes over time in the stock of blue crabs can be represented 

as  

(1)    Xt-1 – Xt = F(Xt, St) – h(Xt, Et), FX > 0, FS > 0 

where F(Xt, St) describes the biological growth for the blue crab stock and h(Xt,Et) captures 

the annual harvest, which is assumed to be a function of the blue crab stock and the fishing 

effort, Et. In the modified biological growth function, habitat (i.e. seagrass) enters the growth 

function and assumes to represent a positive component for the fishery, given that seagrass 

serves as habitat, breeding, and nursery grounds for the blue crabs (Jackson et al., 2001). It is 

thus assumed that the influence of the seagrass on growth is positive (i.e. ∂ F/∂ St = FS > 0).  

Similar to Barbier and Strand (1998), we also assume that this model follows the 

Schaefer – Gordon bioeconomic model. Hence, harvest can then be represented by the 

following equation:  

(2)    ht = qXtEt, 

where q is the constant catchability coefficient. Assuming the logistic growth function for the 

blue crabs and h(Xt,Et) with equation 2, yields the following expression for the change in blue 

crab stock:  

(3)    Xt+1 – Xt = [r(K(St) – Xt) – qEt]Xt , 

where r is the intrinsic growth of blue crab at each period, K is the environmental carrying 

capacity and the St is the seagrass (i.e.) habitat area, which has a positive influence on the 
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carrying capacity (KS > 0).  Adjustment in fishing efforts between the two periods can be 

specified as in equation 4:  

(4)    Et+1 – Et = ø[ph(Xt,Et) – cEt],  

where ø represents the adjustment coefficient, p represents constant blue prices per unit of blue 

crab harvested, and c is the unit cost of effort. Equation 4 suggests that fishing effort for the 

next period of time will adjust based on a net profit made during the current time period.  

In a standard open access fishery, the long-run equilibrium is achieved when fishing 

effort and blue crab stock do not change over time (i.e., 𝑋𝑡 =  𝑋𝑡+1 = 𝑋; 𝐸𝑡 =  𝐸𝑡+1 = 𝐸). In 

addition, it is assumed that the seagrass is also in long-term steady-state equilibrium (i.e. St = 

St+1 = S). Also, the steady-state open access fishery implies economic profits are fully 

dissipated and fishers make zero profits. Using these assumptions, equations (3) and (4) can be 

solved for the steady state stock (X) and effort level (E) as follow:  

(5a)    X = 
𝑐

𝑝𝑞
 , for Et+1 = Et = E. 

(5b)   E = 
𝑟(𝐾(𝑆)– 𝑋)

𝑞
 , for Xt+1 = Xt = X. 

An important objective for this study is to determine the effect of the seagrass on blue 

crab productivity. By assuming the seagrass area to have a proportional relationship with 

carrying capacity (i.e. K(S) = αS, α > 0), Barbier and Strand (1998) show that the steady-

steady relationship between the harvest and the seagrass can be represented by the following 

equation (6)    h = qEK(S) - 
𝑞2

𝑟
 E2 = (qα)(E×S) – (

𝑞2

𝑟
) E2 , 

where the harvest is the function of the interaction between effort and seagrass (𝐸 × 𝑆) and 

effort squared (𝐸2). Since parameters q, α and r are constant they can be recovered from the 

empirical estimation of this model specified as:  
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(7)    ℎ =  𝛽0 + 𝛽1 (𝐸 × 𝑆) + 𝛽2 𝐸2 + 𝑢,  

where 𝛽0 is the intercept, 𝛽1 is the slope coefficient such that 𝛽1 = 𝑞𝛼 and 𝛽2 =  
𝑞2

𝑟
, and u is 

an error term. Estimating this model requires the data on fishing effort (E), total harvest and 

the area of seagrass.  

Fishing effort data for the study area were not available and in order to quantify the 

relationship between the seagrass and the catch levels, the equation (7) was modified in a way 

that the dependent variable represents the catch per unit effort (CPUE), which depends on the 

area of the seagrass and various environmental variables identified in the literature (e.g. 

temperature, salinity, dissolved oxygen, and turbidity). The final model is thus given as:  

(8)    𝐶𝑃𝑈𝐸𝑖𝑡 =  𝛽0  +  β1 (SAV𝑖𝑡) + β2 (Temp𝑖𝑡) + β3 (Sali𝑖𝑡) + β4 (DO𝑖𝑡) +

 β5 (Turb𝑖𝑡) + 𝜇𝑡 + 𝑒𝑖𝑡, 

where 𝐶𝑃𝑈𝐸𝑖𝑡 represents the catch per unit effort in location i at time t, β0 is an intercept,

𝛽1 captures the effect of SAV on 𝐶𝑃𝑈𝐸𝑖𝑡, β2 captures the effect of temperature on 𝐶𝑃𝑈𝐸𝑖𝑡 ,  β3 

captures the effect of salinity on 𝐶𝑃𝑈𝐸𝑖𝑡, β4 captures the effect of dissolved oxygen on 

𝐶𝑃𝑈𝐸𝑖𝑡 , β5 captures the effect of turbidity on 𝐶𝑃𝑈𝐸𝑖𝑡 ,  𝜇𝑡 is the time specific unobservables 

that are common across areas such as state-wide policy change related to habitat conservation 

or catch regulation, and 𝑒𝑖𝑡 is the random error term.  

It is expected that blue crabs would prefer lower salinities (5-15 ppt), thus increased 

levels of salinity is expected to having a negative effect on the average CPUE. Blue crabs have 

a preference for warmer waters; its effect is hypothesized to be positive on average CPUE. 

Turbidity is expected to first have positive effects, as blue crab prefers turbid environments, 

but then expected to have a negative effect once it reaches a threshold that would diminish 

water quality. Lastly, SAV and DO are expected to have positive effects on average CPUE, as 
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increases in these variables provides more seagrass habitat and higher amounts of oxygen in 

the aquatic environment.  
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4. STUDY AREA AND DATA 

Study Area  

The study area expands along the southern coast of Texas, covering five highly productive 

bays in the State (Figure 4). Nearly 95% of the total area of seagrasses are found within these 

selected bays (TPWD, 1999). Of the approximately 235,000 acres (1994 estimates), 4.6% is 

found in San Antonio Bay, 3.4% is found in Aransas Bay/Copano Bay, 11.2% is found in 

Corpus Christi Bay, 28.6% is found in the Upper Laguna Madre Bay, and 50.5% is found in 

the Lower Laguna Madre Bay (TPWD, 1999).   

 The northern of the five bays, San Antonio Bay, Aransas Bay, and Corpus Christi Bay 

are supplied with freshwater inflow coming from large rivers (Guadalupe and San Antonio 

Rivers) (USGS, 2001).  However, the southern bays, Upper Laguna and Lower Laguna Madre 

Bays are supplied with limited amounts of freshwater from Arroyo-Colorado River (Tunnell, 

2002).  

 Average depth within Texas bays range between 1-3 meters, with exceptions from 

dredged inlets and Gulf Intracoastal Waterway. Due to their shallow depths, most mixing 

occurs primarily through wind, except for tidal mixing that occurs near inlets (Solis and 

Powell, 1999). The average salinity within the bays are around 35 ppt, but increase > 50 ppt in 

areas of the Laguna Madre Bay Systems (hypersaline environments). This is due to a strong 

precipitation gradient and higher freshwater inputs in the northern parts of Texas and 

decreasing in the southern parts of Texas (Texas Aquatic Science, 2013).  
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Figure 4. Study area along the Texas coastline 
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Data Description – Submerged Aquatic Vegetation 

 Five subtropical species of seagrass is found in Texas coastal waters, (1) Halodule 

wrightii (shoal grass), (2) Thalassia testudinum (turtle grass), (3) Syringodium filiforme 

(manatee grass), (4) Halophila engelmannii (star grass), and (5) Ruppia maritima (widgeon 

grass). All of these species are perennial; growth occurs during late spring and early summer 

with dormancy occurring in the winter. These species were annually monitored based on 

recommendations of the Texas Seagrass Monitoring Plan (TSMP). Using methods described in 

Neckles et al. (2012), seagrass coverage data was collected using rapid assessment sampling 

techniques (i.e., using semiquantitative metrics and best professional judgement to classify a 

condition based on field observations).  

 Data collection took place in fixed stations within each bay, which were originally 

created from NOAA’s program, 2004/2007 Benthic Habitat Mapping. The 2004/2007 Benthic 

Habitat Mapping program overlaid areas with tessellated hexagons. Seagrass sampling stations 

were selected within hexagons that contained > 50% seagrass. Once a hexagon was selected, a 

random number generator was used to determine latitude and longitude coordinates of the 

sampling station. A total of 567 permanent stations were assigned using this design method.  

 Sampling was conducted during peak biomass times, from late summer to early fall.  

Once at a sampling station, an experienced technician would visually assess seagrass percent 

cover within a 25 m2 quadrat frame. Four replicates were taken around the boat as Neckles et 

al. (2012) found that using a 25 m2 quadrat frame was sufficient in order to obtain mean 

percent cover ± 5% of the true mean 80% of the time and ± 10% of the true mean > 99% of the 

time.  
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Data Description – Texas Blue Crab  

 Blue crab collections were conducted by the TPWD Coastal Fisheries Division using a 

6.1-m trawl with a mesh size of 38 mm. Monthly samples were taken during the first and 

second half of each month. Larger bays (San Antonio Bay, Aransas Bay, and Corpus Christi 

Bay) were divided into two zones and smaller bays (Upper Laguna Madre and Lower Laguna 

Madre) were left as a single zone. Grids of one minute latitude and one minute longitude were 

created within each zone. Ten randomly selected grids were selected for sampling each month. 

A grid that was not accessible by boat (< 1 m of water) or contained obstructions were not 

sampled; instead an adjoining grid selected at random was selected. Grids were not duplicated 

within each month.  

 Once on site, environmental variables were collected first. A datasonde (YSI or 

equivalent) collected water temperature (ºC), salinity (ppt), dissolved oxygen (mg·L-1), and 

turbidity (NTU). Trawls were towed at 3 mph in a circular pattern for a targeted 10-minute 

period (actual duration was recorded) in order to keep prop-wash out of the tow and to stay 

within the selected grid. Organisms caught were identified to the lowest possible taxonomic 

level and were measured. Up to 35 blue crabs were measured (mm) from tip to tip of lateral 

spines. Using catch number and tow times, CPUE was collected for each trawl.  

 Ideally, commercial harvest and effort data would have been a preferred dataset for this 

analysis, but effort data was not available for all bays due to confidentiality constraints. 

However, in the absence or limitations of commercial datasets, it is common in the literature to 

use fishery-independent data as it provides good abundance estimates (Pennino et al., 2016).   
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5. METHODS 

Spatial Analysis Using GIS Software 

In order to determine the relationships presented in this thesis, datasets from TPWD 

and TSMP were organized first within Microsoft Excel and then entered into Geographic 

Information System (GIS) software. ArcMap 10.5 was used to spatially reference the point 

locations for seagrass percent cover and trawl locations; both datasets provided latitude and 

longitude coordinates where collections occurred. Using the Project Tool, the layers were 

projected into the NAD 1983 Texas State Mapping System, as the study area expanded across 

much of the Texas coastline. Shapefiles were created for each year (2011-2015) for SAV and 

catch data.  

A shapefile obtained from TPWD containing all the major bays of Texas was used as a 

mask for the analysis. This layer was also projected to NAD 1983 Texas State Mapping 

System. 

Since the SAV point data was used to represent percent cover as a snapshot of seagrass 

around the surrounding area, predictions of the surrounding areas were needed. Various 

interpolations techniques were explored to determine the most consistent and reliable method. 

Rasters using inverse distance weighted (IDW), spline, and Kriging techniques were first 

compared with the real SAV data points. Seagrass habitats are characterized as having high 

natural variation; its distribution can be altered by changes in the biological, chemical, and 

physical environment (Greve and Benzer, 2004). Therefore, spline interpolations would not be 

appropriate as is best used for smooth datasets (Childs, 2004). An IDW method was also not 

deemed appropriate for this dataset as points were not dense enough to capture local variation 

(Childs, 2004). 



 

 28 

In order to determine if Kriging interpolation was an appropriate method for the SAV 

dataset, certain conditions were evaluated using the Explore Data function within 

Geostatistical Analysis. Although violations of the Kriging assumptions were apparent, they 

were addressed using a Universal Kriging technique. A Kriging interpolation was found to be 

most appropriate for this dataset as it assumes that the distance and direction between points 

reflects spatial correlation (Childs, 2004).  

The Extract by Mask Tool was used to extract the interpolated SAV values using the 

major bays shapefile. The resulting layer was overlaid with a “grid” in order to assess changes 

over time using the defined and spatially fixed zones. The zones were created to span the study 

area, with each zone covering 625 km2 (Figure 5). Zones were selected only if seagrass 

collections were taken within the defined area, therefore years 2011-2014 contain less zones. 

Efforts during 2015 were increased so that additional collections were taken in the San 

Antonio Bay System. The SAV and catch shapefiles were then spatially joined to the grid 

shapefile by summarizing the attributes so that each zone contained the average SAV percent 

cover, catch, CPUE, and the averages of select environmental variables. This approach was 

taken to best represent the average SAV habitat within each zone and identify relationships 

between catch and CPUE within the same zones. Figure 6 provides an example of 

approximating average SAV percent cover from interpolated values. Lastly, the attribute table 

of the combined average SAV and average catch data was converted into a Microsoft Excel 

file using the Table to Excel Tool.  
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Figure 5. Zones overlaying the study area for 2011- 2014 and 2015 
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 Figure 6. Estimated average SAV percent cover from interpolated values 

 

 



 

 31 

Statistical Analysis 

Stata 14.2 software was used to estimate the effects of seagrass habitat and 

environmental stressors on blue crab CPUE (equation 8).  An ordinary least squares (OLS) 

regression was estimated on the combined years panel dataset. This method allowed for the 

estimation of linear and nonlinear relationships between the independent variable (CPUE) and 

explanatory variables (SAV habitat and environmental stressors), assuming the variables are 

uncorrelated with the error term (exogenous) and errors are uncorrelated across observations.  

To capture nonlinear effects from the environmental variables square terms were 

created for those that were assumed to contain diminishing effects with a one-unit increase of 

the independent variable.  The environmental attributes that may exhibit diminishing 

effects include temperature, salinity, and turbidity; these variables may indicate a change in 

sign once a threshold is met. An additional model including these squared terms was estimated 

to address potential effects. 

Last, dummy variables for year controls for any potential time varying effects that 

could affect catch in all in a similar fashion such as state-wide habitat and catch regulation. In 

a separate specification, we also include bay-specific fixed effects to account for time invariant 

differences across bays. To ensure variables were not highly correlated, checks for correlation 

and multicollinearity were also performed.  
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6. RESULTS 

Table 2 reports the summary statistics for each variable used in the analysis, along with 

their hypothesized effects. The time trend for the average CPUE indicates that years 2011 and 

2015 of the study time frame have outlier CPUE observations while average CPUE did not 

show much variability from 2012-2014 (Figure 7). The distribution of the average CPUE 

(avg_CPUE) over the study time frame (2011-2015) is presented in Figure 8. As shown, 

CPUE is highly skewed to the right with, which is also indicated by a positive skewness 

coefficient of 3.04 and a kurtosis of 14.33. The mean for the average CPUE for all years is 

5.44 with a standard deviation of 8.2 and a median of 3.1.  

 

 

Figure 7. Average CPUE within the study time frame, 2011 - 2015 
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Table 2. Summary statistics and hypothesized direction of effects 

 

 

 

 

Variable Definition Effect Mean Std. Dev. Min Max 

Avg_CPUE 
Average #catch/hour (CPUE) 

within zone 
NA 5.44 8.20 0 49.90 

Avg_SAV (%) Percent average SAV within zone + 36.19 34.47 0 96 

Avg_Temp (ºC) 
Average temperature within zone, 

Celsius 
+ 18.99 9.26 0 28.5 

Avg_Sali (ppt) 
Average salinity within zone, parts 

per thousand 
_ 25.96 14.26 0 61.01 

Avg_DO (mg·L-1) 
Average dissolved oxygen within 

zone, milligrams/liter 
+ 5.55 2.74 0 8.18 

Avg_Turb (NTU) 
Average turbidity within zone, 

Nephelometric turbidity unit 
+/- 13.90 15.50 0 158.67 

Avg_Catch 
Average blue crab catch within 

zone 
NA .91 1.37 0 8.33 
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To assess differences in average CPUE throughout the sample time frame, Table 3 

reports the means of average CPUE by year and are displayed graphically in Figure 9. The 

lowest mean average CPUE corresponds to year 2013, where mean average CPUE is 2.33. The 

highest mean average CPUE corresponds to year 2015, where mean average CPUE is 9.32. A 

oneway ANOVA model, testing for the difference between the means of each year, appeared 

to be significant at a 1% level (see Appendix). 

 

Figure 8. Distribution of average CPUE for all years (2011-2015) 
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Table 3. Mean average CPUE by year 

 2011 2012 2013 2014 2015 

Mean 

Avg_CPUE 
8.65 4.00 2.33 2.93 9.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Mean average CPUE for 2011 - 2015 
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Trends for each dependent variable were compared with average CPUE that resulted in 

high values of average salinity associated with low values of average CPUE. Table 4 reports 

the means of the average salinity levels for all years. For comparison, Figure 10 displays the 

years with the lowest mean average CPUE (2013 and 2014) are also found to have the highest 

mean average salinity.  

 

Table 4. Mean average salinity by year 

 2011 2012 2013 2014 2015 

Mean 

Avg_Sali 
25.72 26.73 28.58 27.96 20.80 

 

 

 
Figure 10. Mean average CPUE and mean average salinity for 2011 - 2015 
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To assess for visual relationships between environmental stressors and the average 

CPUE, Figure 11 was generated. The only variable that showed a relationship with average 

CPUE was average SAV. Although weak, the graph shows a slight increase in average CPUE 

with an increase in seagrass habitat.   

 

 

 

 

 

 

 

Figure 11. Assessing visual trends of average CPUE with average SAV, salinity, and 

temperature 
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Table 5 reports OLS regression results, with one, two and three asterisks indicating 

statistical significance at 10%, 5% and 1% significance levels, respectively. In parenthesis are 

also reported standard errors which are heteroscedasticity robust standard errors. In column (1) 

results are reported from the model in which average CPUE is the function of the average SAV 

habitat, salinity, and turbidity. Model results reported in column (2) in addition to main model 

variables specified in column (1) also includes year dummy variables, with the year 2011 

being the omitted category. Column (3) also controls for bay-specific dummies, we omit San 

Antonio Bay and the coefficient estimates show the effects relative to that category.  

Results from collinearity reports indicate three explanatory variables to be highly 

correlated to one another (see Appendix). Temperature and DO were found to be highly 

correlated (0.94) and had VIF values > 10. Temperature and salinity were also found to be 

highly correlated (0.87) and had VIF values > 10. These correlations are not a surprising factor 

as DO, temperature, and salinity are biologically dependent upon one another (Davis, 1975). 

Therefore, Table 5 displays results with DO and temperature excluded from the models.  

The results from column (1) show that average SAV and average salinity have 

statistically significant effects on average CPUE with expected signs. Specifically, the 

coefficient associated with the average SAV was found to be significant at the 10% level and 

indicates a positive effect on the average CPUE. Average salinity was also significant at the 

10% level as having a negative effect on the average CPUE.   

In model (2), after controlling for year-specific dummy variables, the effect of SAV 

habitat on CPUE remained positive and continues to indicate its effects as statistically 

significant at the 10% significant level. While maintaining a negative effect on average CPUE, 

average salinity is reported as highly significant at a 1% significance level. As for year fixed 
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effects, estimated effects show that on average CPUE has declined overtime relative to 2011, 

however only years 2012, 2013, and 2014 were statistically significant.   

Results from the 3rd model, with additional bay-specific fixed effects show that SAV 

while remains positive loses statistical significance. This is not surprising given that we 

employ average SAV measures, which are less variable across bays, making identification 

challenging with bay-specific dummy variables in the model. Importantly, the effects of 

salinity on CPUE remains highly significant at less than 1% significance level with an 

expected sign. CPUE exhibits overall decline over year with years 2012, 2013, and 2014 

associated with statistically lower (p<0.01) catch levels relative to 2011. All else held constant, 

CPUE was statistically high (however, significance was marginal at 10% level) in the Corpus 

Christi Bay system relative to San Antonio Bay.  

Even with slight differences in the models, the results remain consistent. Results 

suggest habitat and salinity as having important contributions on the average CPUE in five 

major bays of Texas. The magnitudes of the coefficients reported for each variable’s effects 

also remain fairly consistent. These results are further discussed in the following section.  
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Table 5. OLS model results (DO and temperature excluded due to collinearity) 

 

          Model 1       Model 2   Model 3 

 Avg_CPUE Avg_CPUE Avg_CPUE 

Avg_SAV 0.0432* 0.0276* 0.0306 

 (0.0225) (0.0188) (0.0204) 

Avg_Sali -0.0557* -0.1266*** -0.1324*** 

 (0.0405) (0.0435) (0.0440) 

Avg_Turb 0.0661 0.0102 0.0053 

 (0.0547) (0.0408) (0.0381) 

2012.Year  -4.7950** -4.8475** 

  (2.0147) (1.9913) 

2013.Year  -6.6092*** -6.6525*** 

  (1.9130) (1.8987) 

2014.Year  -5.8676*** -5.8928*** 

  (1.8508) (1.8602) 

2015.Year  1.0528 1.0445 

  (2.7612) (2.7653) 

Aransas Bay   0.0464 

   (1.8828) 

Corpus Christi Bay   -3.4334* 

   (1.7449) 

Upper Laguna 

Madre Bay 
  -1.1191 

   (2.3793) 

Lower Laguna 

Madre Bay 
  -0.3869 

   (1.7042) 

_cons 1.5194* 4.2648** 4.8504** 

 (0.8661) (1.8919) (2.1523) 

R2 0.18 0.27 0.31 

N 120 120 120 

* p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in parenthesis 
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Statistical Diagnostics 

An OLS regression was determined to be appropriate for this analysis, as tests for 

violations of OLS assumptions were determined to be not severe enough to warrant concern. 

In a test for linearity of model parameters, the resulting observed predicted values indicated 

symmetrical distribution around the fitted line (see Appendix). A visual inspection of residuals 

plotted against fitted values of CPUE determined that robust standard errors were needed in 

order to correct for heteroscedasticity (see Appendix). In addition, a test for spatial 

autocorrelation was conducted using GeoDa software to examine a spatial autocorrelation of 

errors across zones. Moran’s I value and a visual graph were generated to indicate possible 

types of spatial autocorrelation if it exists. A value near -1 or +1 indicates spatial 

autocorrelation in the dataset. The Moran’s I value calculated for this analysis was found to be 

near 0 for combined years and for individual years, indicating no violations or independence of 

errors in the OLS models. Lastly, inspections for collinearity and multicollinearity (previously 

discussed) resulted in high correlation among select environmental factors, which were 

ultimately dropped in the OLS regression analysis.  

However, there is evidence in the results that the models did not account for a key 

variable in the estimation. A Ramsey reset test resulted in an F-statistic of 2.79 and a p-value 

of 0.04, which led to rejection of the null hypothesis that the model contained no omitted 

variables. The Ramsey reset test again led to the rejection of the null hypothesis when the 

temperature variable was included in the regression. One important variable currently missing 

in the model is effort level due to data confidentiality discussed in data section. Therefore, the 

results from this analysis should be interpreted with caution.  
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7. DISCUSSION 

 The analysis performed in this thesis suggest relationships may exist between blue crab 

catch, seagrass habitat, and select environmental stressors. Results demonstrate environmental 

factors, such as salinity, may equally contribute to SAV habitat when estimating their effects 

on blue crabs along the southern coast of Texas. The results are found to be similar to literature 

that suggest seagrass habitats may be essential to the blue crab fishery.  

 Although SAV was found to be significant in Models 1 and 2 (10% significant in both 

models), the significance was lost when bay effects were included in Model 3.  This is most 

likely attributed to less variation of average SAV habitat when evaluating across several bays; 

average SAV may thus be correlated with bay-specific fixed effects. It also may be possible 

that while SAV habitat is utilized by blue crabs, it is not their only habitat. Blue crabs have 

been documented to occupy a wide variety of habitats, such as intertidal marshes and rocky 

shores, sandflats, mudflats, and in rivers and creeks that flow into a bay. Since many of these 

are found along the coast of Texas, it is possible that blue crabs, for at least parts of their life 

cycles, reside in areas outside of seagrass beds. Whether blue crabs are utilizing seagrasses or 

an outside habitat, we can draw one very important conclusion: some form of habitat(s) are an 

essential component to the blue crab fishery in Texas and efforts for restoration and 

conservation should be taken in order to maintain stocks. Primarily efforts should be 

concentrated towards seagrass beds as results from this analysis suggest SAV qualifies 

predominantly as essential habitat to the species. 

 Efforts towards conservation and seagrass restoration would not only increase blue 

crab productivity in Texas, but would also enhance commercial and recreational fisheries 

elsewhere, where stock abundances are linked to SAV habitats. To evaluate welfare 
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implication of seagrass beds, Table 6 reports total revenue loss for the blue crab fishery as a 

result of declining seagrass beds. Using the SAV coefficient from Model 2 (0.0276), current 

and historical seagrass coverage estimates, ex-vessel price of crab, and number of fisherman, 

Table 6 reports the revenue losses from 2011-2015 associated with the annual percent decline 

of seagrass beds in 4 major regions in Texas (see Appendix for detailed assumptions). 

However, these calculations should be taken with caution as the economic contributions are 

accounted as the maximum potential of effort from fisherman throughout the year. In reality, 

fishermen are constrained to the natural spatial variations of blue crab presence in a bay, which 

is unfeasible to determine given the data.  

 

 

Table 6. Total revenue loss associated with SAV loss 

Region 

% Decline 

(Historical - Current 

Estimates) 

% Annual Decline 
Total Revenue Loss 

(2011-2015) 

Galveston Bay 64.4 1.69 $98,612 

San Antonio Bay 14 0.93 $54,101 

Coastal Bend Region 8 0.53 $30,749 

Lower Laguna 

Madre  
22 1.73 $100,997 

 

 

 

Anthropogenic causes are the most commonly attributed to affect seagrasses along the Texas 

coast (Table 7). These include dredging and its ongoing impacts, nutrient loading, waterfront 

construction, shoreline development, and propeller scarring. Overall, seagrasses have 

fluctuated in many of Texas’ bays, where they have increased in some areas (Upper Laguna 

Madre), but have severely diminished in others (Galveston Bay).  Impacts have been 



 

   44 

especially severe in Galveston Bay, where over 95% of the historic seagrass beds have been 

lost in the bay.  

 

Table 7. Historic and current estimates of SAV 

Bay 

Historic 

Estimates 

(hectares) 

Current 

Estimates 

(hectares) 

Cause 

Galveston/Christmas 2,000 210  

shoreline development, habitat 

alteration, nutrient loading, and 

tropical storms 

 

San Antonio  5,000 4,305 

Nutrient loading, dredging 

impacts, waterfront 

construction 

Aransas 2,871 3,107 N/A 

Corpus Christi  2,568 2,570 N/A 

Upper Laguna 

Madre 
12,321 22,444 N/A 

Lower Laguna 

Madre 
59,153 46,174 

Construction of the Gulf 

Intracoastal Waterway and 

turbidity resulting from dredge 

deposits 

 

 

 

 A drawback to this work is that it only accounts for select life stages of blue crabs.  

Trawling, the sampling method used in this study, has the capabilities of only collected crabs 

of a certain size. The mesh sized used by the trawling gear is 38 mm, therefore excluding blue 

crabs of smaller sizes. Researchers have found that 30 times more juvenile blue crabs are 

found in areas of grasses than in areas without grasses (Chesapeake Bay Program, 2007). 

Therefore, juveniles < 38 mm, are not accounted for, which may modify results of the models. 

However, blue crabs are not allowed to be caught at certain juvenile stage and the model set-

up presented in this thesis will not be able to accommodate for age-specific effects. Current 
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regulations allow crabs measured 127+ mm for commercial harvesting and juveniles are 

commonly classified as <127 mm (Texas Commercial Fishing Guide 2017-2018). Orth and 

van Montfrans (1987) and Pile et al. (1996) found that blue crab juveniles appeared mostly in 

grass beds, until they reached a size of 7.5 – 11 mm and then migrated to areas outside the 

beds. Perhaps if juveniles were included in the analysis and over a time-lag to account for their 

development, the effect of SAV habitat would increase in magnitude, thus suggesting the 

habitat’s importance mostly during the early life stages of the blue crab.  

 An important conclusion from this work addresses an ongoing debate among many 

researchers, whether using fishery – independent data is a good estimation of commercial 

stocks of a species (Wallace et al, 1998; Murray and Seed, 2010; Beckmann and Hooper, 

2015). At least for blue crabs in Texas, CPUE appears to be a reliable index for abundance. 

Figure 12 shows NOAA commercial landings (pounds) and landing value for blue crabs within 

Texas during the sample time frame. The lowest mean landings correspond with year 2013 and 

the highest mean landing corresponds with year 2015. Similar trends were observed (Figure 8) 

using CPUE as an index in this analysis. 
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Perhaps the most valuable finding of this work is the interaction of environmental 

stressors such as temperature and salinity, which are dependent upon freshwater inflow into 

Texas bays.  Although this study does not directly assess freshwater inflow, the relationship is 

assumed to be accounted for in salinity’s effects on blue crabs. Therefore, it is assumed 

controlling for freshwater inflow would not alter the direction of the effect of salinity, but 

would only change the magnitude of salinity’s coefficients in the models. This assumption is 

based on fundamental knowledge that salinity is an indication of the amount of dissolved salts 

Figure 12. NOAA commercial landings in pounds and value (2011 – 2015) 
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in a system. Therefore, high salinity levels indicate low freshwater supplies and low salinity 

levels indicate high freshwater supplies. This relationship may attribute to results seen in 

Figure 9, where in years of low CPUE, salinity was highest (28.58 ppt) and in years of high 

CPUE, salinity was lowest (20.80 ppt). Within the sample time frame, 2013 corresponded with 

the lowest blue crab CPUE (mean CPUEavg = 2.33). This finding may be attributed to Texas 

experiencing a particularly dry year from drought conditions (USDM, 2013) (see Appendix for 

year drought conditions). During episodes of droughts, impacts are predominantly seen in 

freshwater inflow supplied to bay areas. As the drought ended in 2014 (TWDB, 2017), average 

CPUE is found to be the highest within the study time frame (mean CPUEavg = 9.32). This 

finding also corresponds to the lowest average salinity (20.80 ppt), where it is assumed 

freshwater supplies were the highest.  

It should be noted that over-fishing was not a factor considered in this work. To 

remedy historical declines, Texas created a commercial license buyback program in 1998 that 

limited entry to new crabbers. The success of the program has stabilized effort and has limited 

concerns of over-fishing blue crabs in Texas.  
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8. RESEARCH LIMITATIONS 

The most notable limitation in this study was absence of information regarding 

seagrass coverage in areas throughout the bay region. First, sampling methods were 

concentrated on areas of a bay that were identified as possible restoration sites. Once a site was 

selected, random sampling in the vicinity was conducted. Therefore, the dataset used for 

seagrass coverage could have led to misinterpretation of coverage within a bay. In an effort to 

limit uncertainty, interpolations were conducted using the best interpolation method, Kriging, 

that was appropriate for the type of dataset. This method allowed for estimations of unknown 

areas, which were then organized by spatially fixed zones so that observations could be made 

over time (years).   

The outcome from the model design allowed for us to assess the average of the 

variables within a zone. Therefore, it is essential to acknowledge that variation within the 

dataset was restricted as variables were reported based on averages over an annual scale.  

A second limitation in this study was the use of CPUE as an assessment for blue crab 

abundance. The alternative approach for estimating abundance is using commercial datasets 

that contain harvests and effort data. However, effort data was not available for all bays within 

the study area due to confidentiality purposes. Whenever 3 or few fishermen are licensed 

within a bay for a single year, TPWD will not release the associated data. Therefore, 

estimations of abundance were dependent upon trawl collections by TPWD, where CPUE was 

recorded as catch per hour (tow time of trawl). Since the trawls were consistent in tow times 

(10 minutes), effort could not be calculated, as it was a fixed time. However, we found that for 

our dataset, CPUE was a good abundance index as it displayed similar trends with commercial 

datasets over the same time frame.  
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Lastly, catch size was a limiting factor, as crabs smaller than 38 mm were unaccounted 

for due to the mesh size of the sampling gear. Therefore, results and estimates are biased 

towards blue crabs greater than 38 mm. As a result, we are unable to determine the abundance 

of juvenile blue crabs that may be utilizing the seagrasses at the larval stage, where literature 

suggests may be the most important stage for seagrass use.  
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9. FUTURE RESEARCH 

Due to the constraints of this study, future research is recommended to identify habitat-

fishery relationships at a smaller spatial scale, where bay characteristics and processes can be 

examined comprehensively. However, to do this, habitat assessments must be conducted at this 

same spatial level, where natural variations can be detected spatially and temporally. A 

disadvantage to this study was that it provided estimates along much of the Texas coastline. 

These estimates were designed to be snapshots of the annual variation, thereby, providing 

general coverage in bays where seagrasses are currently found. Although this work was able to 

suggest that relationships do exists at larger spatial levels, an assessment at smaller spatial 

levels (e.g. bay level or sub-bays) would further strengthen those relationships and provide 

necessary information for policy makers for that specific bay region.  

To determine the level at which juvenile blue crabs utilize seagrass habitats, I would 

also recommend future research to conduct assessments on the abundance of juveniles in 

seagrass areas compared with areas outside this habitat. A study as such would demonstrate 

the importance of seagrass beds along the Texas coast and how they are utilized as nursery 

grounds. Although this doesn’t initially provide estimates for harvests levels in the fishery, 

over a lagged period of one-year time (More, 1965), these juveniles will reach commercial 

size.   

In this study we determined seagrass beds are an essential habitat for blue crabs in 

Texas. However, blue crabs may also utilize other habitat types found within estuaries in 

Texas. Identification of these habitats and their use to the blue crab would provide additional 

knowledge to the degree and life stage at which habitats were most important to the species.  

 



 

   51 

10. CONCLUSIONS 

As demonstrated from this study, simply relating a commercially valuable species to its 

habitat may not be sufficient for maintaining stocks. While seagrasses are regarded as 

important habitat to blue crabs, and our results show some evidence for that, they are not the 

only drivers in maintaining populations. Blue crab management plans have been established 

for several decades, especially in the State of Texas, where blue crabs have remained a 

valuable economic resource. The most influential management plan for Texas blue crab stocks 

(G.U.L.F. Texas Blue Crab Action Plan) is comparable to the well-known Chesapeake Bay 

Blue Crab Management Plan, where the fundamental framework for blue crab fishery 

management has developed. Similarities between the plan include thorough studies that 

examine factors which influence blue crab survival, such as predator-prey abundance, 

environmental parameters (i.e. salinity and temperature), habitat use, hypoxia, disease, and 

climate change. Current policy measures set forth in the most recent blue crab management 

plan for Texas point towards regulations regarding commercial and recreational catch 

limitations, impacts from human activity (i.e. pollution, eutrophication, and alterations in 

freshwater and sediment flow), and protective measures for habitat loss.  

Due to the concern of seagrass habitat loss to the blue crab and several other estuarine-

dependent species, a management plan for seagrass beds has recently emerged, the Seagrass 

Conservation Plan for Texas (SCPT). The Plan was created in 1999 and updated in 2012 with 

changes and recommendations necessary to the ongoing efforts of seagrass restoration and 

conservation. A policy recommendation resulted from the 2012 review which led to a Texas 

law prohibiting the uprooting of seagrasses with an onboard motor propeller. Studies 

conducted over the past decade saw an alarmingly trend, where motorboat propellers made 
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contact with submerged vegetation that led to damaged areas in the beds. Recovery of the 

seagrass bed damage from prop scarring is found to take several years. Martin et al. (2008) 

found Halodule wrightii beds recovered in less than 3 years, but Thalassia testudiunum 

experienced recovery up to 10 years (Dawes et al., 1997, Kenworthy et al., 2002). As a result, 

the law was put into action in September of 2013 and continues to be enforced in all coastal 

areas of Texas.  

Beyond protecting vegetation from boating activity, several agencies in Texas are 

leading efforts toward seagrass restoration, conservation, and education. Primary stakeholders 

involved in these projects include TPWD, TGLO, TNRCC, NOAA, TCEQ, United States Fish 

and Wildlife Services (USFWS), and the Coastal Bend Bays and Estuary Program. Projects led 

by these entities include monitoring research, establishing protective actions, education, and 

outreach. The efforts by these leading agencies and non-governmental organizations (NGOs) 

providing valuable knowledge where proactive solutions appear to be the most appropriate. As 

stated in SPCT, the highest priority for effective seagrass conservation stems from integrated 

management actions through research, education, and stakeholder involvement (SCPT, 1999).  

 With these management plans in mind, the most prominent conclusion from this thesis 

are the contributing factors identified that effect blue crab populations in Texas. Although this 

study aimed to represent an ecosystem-based approach in the models, it is limited to just a few 

interactions within the system. This work serves as a stepping stone for future work, where 

interactions between socioeconomic factors and additional ecological factors (e.g. freshwater 

inflow, tidal and wind influence, morphology of the system) should be taken into account. This 

level of adaptation is best to effectively manage ecosystems so that “bottom up”, “top down”, 

and mid - level interactions are recognized and managed accordingly. 
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APPENDIX A 

TABLES 

 

 

Table A-1. Oneway ANOVA of Avg_CPUE by Year 

 

Summary       

 Number of obs = 120 

 

R-squared 

= 0.1298 

  

 Root MSE = 7.7517 Adj R-

squared = 

0.1058 

  

ANOVA       

Source  Partial SS df MS F Prob > F  

Model  1299.8569 4 324.96422 5.41 0.0004  

Year  1299.8569 4 324.96422 5.41 0.0004  

Residual 8712.8926 115 60.088915      

Total 10012.75         119 67.199661      

       

 

 

 

Table A-2. Correlation Matrix 

 Avg_CPUE Avg_SAV Avg_Temp Avg_Sali Avg_DO Avg_Turb 

Avg_CPUE 1.0000      

Avg_SAV 0.2008 1.0000     

Avg_Temp 0.3504    0.2122    1.0000    

Avg_Sali 0.1903    0.2462    0.8770    1.0000   

Avg_DO 0.3129    0.1186    0.9437    0.8015    1.0000  

Avg_Turb 0.1562   -0.0363    0.4214    0.3901    0.4585    1.0000 
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    Table A-3. Variance Inflation Factors 

 

Variable VIF 1/VIF 

Avg_Temp 15.19 0.065838 

Avg_Sali 10.31 0.096989 

Avg_DO 4.53 0.220883 

Avg_Turb 1.29 0.774660 

Avg_SAV 1.14 0.876978 

Mean VIF 6.49  
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      Table A-4. Welfare Loss from Declining SAV 

Region 

1Loss over 

Time Period 

(%) 

SAV Annual 

Loss (%) 

2Annual 

Decline in 

CPUE 

3Annual 

Total 

Hours 

Fished 

Year 
4# 

Fisherman 

5Total 

Catch 

Loss 

6Revenue 

Loss ($) 
CPI 

Adjusted 

Revenue ($) 

Total Welfare 

Loss ($) 

Galveston Bay 64.4 1.69 0.046644 2631.125 2011 125 15340.77 20,403.23 224.9 21,500.96 98,611.82 

    2631.125 2012 118 14481.69 19,260.65 229.6 19,881.42  

    2631.125 2013 103 12640.80 16,812.26 233 17,100.88  

    2631.125 2014 121 14849.87 19,750.33 236.7 19,725.33  

    2631.125 2015 125 15340.77 20,403.23 237 20,403.23  

            

San Antonio 

Bay 
13.9 0.9267 0.02557692 2631.125 2011 125 8412.01 11,187.97 224.9 11,789.90 54,100.55 

    2631.125 2012 118 7940.94 10,561.45 229.6 10,901.84  

    2631.125 2013 103 6931.50 9,218.89 233 9,377.15  

    2631.125 2014 121 8142.82 10,829.96 236.7 10,843.68  

    2631.125 2015 125 8412.01 11,187.97 237 11,187.97  

            

Coastal Bend 

Region 
7.9 0.5267 0.01453692 2631.125 2011 125 4781.06 6,358.81 224.9 6,700.92 30,748.64 

    2631.125 2012 118 4513.32 6,002.71 229.6 6,196.18  

    2631.125 2013 103 3939.59 5,239.66 233 5,329.61  

    2631.125 2014 121 4628.06 6,155.32 236.7 6,163.13  

    2631.125 2015 125 4781.06 6,358.81 237 6,358.81  

            

Laguna Madre 

(Lower) 
21.94 1.73 0.047748 2631.125 2011 125 15703.87 20,886.15 224.9 22,009.86 100,997.04 

    2631.125 2012 118 14824.45 19,716.52 229.6 20,351.99  

    2631.125 2013 103 12939.99 17,210.18 233 17,505.64  

    2631.125 2014 121 15201.35 20,217.79 236.7 20,243.41  

    2631.125 2015 125 15703.87 20,886.15 237 20,886.15  

1 Data was derived from historical and most current estimates from Table 1. 2 Value was obtained from the SAV coefficient in Model 2 reported in Table 

5.      3 Annual total hours fished was calculated from Miller and Nichols (1985), who reported the average number of days crabbed in Texas by season. 

The number of days in a season was multiplied by the average daylight hours, plus an additional hour since commercial crabbing is allowed 30 minutes 

before sunrise and 30 minutes after sunrise. 4 The number of fisherman each year was provided by TPWD Coastal Fisheries Division through personal 

communication. 5 Total catch loss was calculated by multiplying the annual decline in CPUE and the number of fishermen in a given year. 6 Revenue loss 

was calculated by multiplying the total catch loss and the average price per pound of crab ($1.33).  
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APPENDIX B 

FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1. Texas drought conditions during 2013 (taken from United States Drought 

Monitor) 
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Figure A-2. Plotting observed predicted values 

Figure A-3. Plotting residuals vs. fitted values 
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