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ABSTRACT

This research investigates population-level behavioral dynamics, how they affect the

emergence of self-enforcing conventions, and how they can aid in the design of mecha-

nisms to better achieve policy goals. It seeks to identify why long-run behavior approaches

equilibrium in some environments, and fails to do so in others. This question is important

because equilibrium is frequently employed to make policy recommendations, so it is

necessary to identify when it provides reliable predictions. Further, many strategic envi-

ronments only reach equilibrium in the long run, so modeling the short run process from

which long run equilibria eventually emerge can help answer important policy-relevant

questions. To answer these questions this research experimentally investigates behavioral

dynamics in continuous-time strategic environments. We find that adaptive models pro-

vide remarkably powerful tools for identifying which strategic environments exhibit con-

vergence to equilibrium and for characterizing disequilibrium dynamics in non-convergent

strategic environments.
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DEDICATION

To anyone and everyone who ever asked "Why?"
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1. INTRODUCTION: COORDINATION AND CONVERGENCE

1.1 Motivation

Classical game theory describes Nash equilibrium as the outcome of introspective rea-

soning prior to play by perfectly rational agents.1 In contrast, evolutionary game theory

explains Nash equilibrium as a self enforcing convention that emerges as the long run

outcome of dynamic interaction among large populations of boundedly rational agents.2

While evolutionary models are frequently invoked as equilibrium selection tools, their

ability to explicitly characterize disequilibrium dynamics is frequently overlooked. In ad-

dition to the identification and classification of equilibria, evolutionary game theory also

provides theoretical models that explicitly describe the dynamic process from which Nash

equilibrium emerges.3 These dynamic evolutionary models provide a theoretical frame-

work for addressing aspects of disequilibrium behavior which are inaccessible to classical

models that exclusively identify and classify equilibria.

To test theoretical predictions from these evolutionary models, this chapter experi-

mentally investigates dynamic behavior in a class of attacker defender population games

that exhibit identical equilibrium predictions but starkly different evolutionary predictions.

In the control treatment, subjects play a conventional attacker-defender population game

with two classes of equally valuable targets. Here attackers prefer to attack the class of

targets that is least likely to be defended, but defenders prefer to defend the class of targets

that is most likely to be attacked. Evolutionary dynamics predict global convergence to

equilibrium in these conventional attacker defender games.

1A thorough discussion of the epistemic conditions for Nash equilibrium in classical game theory can be
found in Aumann and Brandenburger [5].

2This interpretation of Nash equilibrium as the long run outcome of an adaptive adjustment process is
not a recent innovation. Notably, it was employed by Cournot [6] and Nash [7].

3See Sandholm [8] for more on the use of dynamic models in evolutionary game theory.
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The coordination treatment adds weak intrapopulation coordination incentives, giving

attackers an incentive to coordinate their attacks on a class of targets and giving defend-

ers an incentive to coordinate their defenses on a class of targets. In these coordinated

attacker-defender games, evolutionary dynamics predict divergence from equilibrium and

the emergence of stable limit cycles. Under both experimental treatments, subjects ad-

justed their strategy continuously and earned continuous flow payoffs. This continuous-

time experimental design is consistent with the continuous-time structure of dynamic evo-

lutionary models and allows for the observation of long term behavioral phenomena that

may be difficult to observe in a discrete-time setting.4

The attacker-defender games investigated by this chapter provide a remarkably

powerful test of evolutionary game theory because they cleanly separate evolutionary

predictions from those of other models.5 A variety of solution concepts yield identical

predictions under both treatments, including Nash equilibrium, logit quantal response

equilibrum [10], level-k [11, 12], cognitive hierarchy models [13], and the time average of

the Shaply polygon (TASP) [14]. The limitation of such models is that they exclusively

identify and classify strategy profiles satisfying their respective behavioral criteria. In

contrast, evolutionary models explicitly describe the dynamic process from which such

strategy profiles emerge.

Unlike the aforementioned models, evolutionary dynamics predict markedly different

behavior under each treatment. Specifically, evolutionary models predict convergence to

equilibrium under the control treatment, but predict the emergence of divergent limit cycles

under the coordination treatment. This clear division between theoretical predictions from

evolutionary models and those from other behavioral models allows this particular class

of attacker-defender games to serve as an efficient testing structure for evolutionary game

4See [9] for an example of such phenomena.
5See section 1.2.4 for more details regarding these theoretical predictions.
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theory.

Consistent with theoretical predictions from evolutionary models, the observed subject

behavior was tightly clustered around Nash equilibrium under the control treatment

but was widely dispersed from Nash equilibrium under the coordination treatment. In

opposition to the Nash equilibrium predictions, these results indicate that coordination

incentives can lead to autocorrelated attacks in attacker-defender population games, thus

making attacks more predictable.

This chapter tests three widely employed evolutionary models,6: the best response

dynamic Gilboa and Matsui [15], the Smith dynamic Smith [16] and the logit dynamic

Fudenberg and Levine [17], each of which is derived from a distinct set of underlying

behavioral assumptions. Both the best response dynamic and the Smith dynamic maintain

the conventional assumption of sign-preservation, namely that agents exclusively switch

from lower performing strategies to higher performing strategies.7 In contrast, the logit

dynamic is not sign-preserving as it describes agents who sometimes switch from higher

performing strategies to lower performing strategies.8

Under the coordination treatment, sign-preserving dynamics predict that behavioral

limit cycles will approach the boundary of the state space.9 In contrast, dynamics

that violate sign-preservation predict that behavioral limit cycles will remain strictly in

the interior of the state space.10 This distinction between the theoretical predictions

from different classes of evolutionary models provides a powerful test for the widely

maintained assumption of sign-preservation. In contrast to theoretical predictions from

sign-preserving dynamics, the observed cycles remained strictly in the interior of the state

6See [8] for more on these models.
7See section 1.2.3 for more details regarding the definition of sign-preservation.
8The logit dynamic does satisfy the weaker assumption of sign-correlation, namely that agents are more

likely to switch from lower performing strategies to higher performing strategies.
9Here the state space denotes the set of all possible mixed strategy profiles. See section 1.2.1 for more

details.
10See section 1.2.4 for a graphical depiction of these theoretical predictions.
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space under the coordination treatment. This violation of sign-preservation suggests that

the wider class of sign-correlated dynamics deserves further attention and may provide

a superior characterization of human behavior over the more conventional class of sign-

preserving dynamics.

The remainder of this chapter is organized as follows: Subsection 1.1.1 discusses the

related literature. Section 1.2 describes the theoretical framework of dynamic evolutionary

models and their predictions in attacker-defender games. Section 1.3 provides a thorough

description of our experimental design and the procedures employed. Section 1.4 indicates

the hypothesis that are tested in this experiment. Section 1.5 presents the main results and

section 1.6 concludes.

1.1.1 Related Literature

Unlike previous experimental investigations of evolutionary game theory, this chapter

tests the predictions of continuous sign-preserving evolutionary dynamics against those of

discontinuous dynamics, sign-correlated dynamics, and Nash equilibrium. This chapter

obtains a clean test of these theoretical predictions by experimentally investigating

attacker-defender population games that yield distinct evolutionary predictions but yield

the same predictions from a variety of a variety of other widely employed solution

concepts. Specifically, this particular class of games yields identical predictions from Nash

equilibrium, logit quantal response equilibrum [10], level-k [11, 12], cognitive hierarchy

models [13], and TASP [14]. In contrast, evolutionary dynamics yield strikingly different

predictions for different games in this class. Further, different types of evolutionary models

yield different predictions for the same game. This division between the theoretical

predictions of different evolutionary models provides a powerful test of their respective

underlying behavioral assumptions.

This chapter contributes to a growing body of experimental research testing evolution-

4



ary game theory in laboratory experiments. Early experimental investigation of evolu-

tionary game theory focused on testing evolutionary models of equilibrium selection. In

particular, [18] observed strong convergence to inefficent pareto dominated equilibria in

minimum effort games with multiple equilibria. They suggested that the emergence of

these particular equilibria was driven by the presence of strategic uncertainty rather than

previously traditional equilibrium refinement methods. [19] later formalized these obser-

vations through the use of evolutionary stability criteria.

[20] were among the first to employ continuous-time laboratory procedures in testing

evolutionary models. They considered Hawk-Dove population games with with two

asymmetric Nash equilibria and one symmetric Nash equilibrium. In accordance with

evolutionary selection criteria, they found that subjects converge to an asymmetric

equilibrium under two population matching protocols, but converge to a symmetric

equilibrium under one population matching protocols. Their experiment provided

empirical evidence for the ability of evolutionary models to help solve the equilibrium

selection problem in games with multiple Nash equilibria. In contrast, this chapter

investigates the ability of explicitly dynamic evolutionary models to predict dynamic

disequilibrium behavior in games with unique Nash equilibria.

[21] implemented laboratory procedures where subjects adjusted mixed strategies

continuously over time. They observed cyclical behavior in three rock-chapter-scissors

population games: one with a stable equilibrium and two with unstable equilibrium.

In these games, they tested point predictions from the time average of the Shaply

polygon (TASP) [14] against point predictions from Nash equilibrium. In contrast, this

chapter tests predictions from sign-preserving evolutionary dynamics against those of

Nash equilibrium, discontinuous dynamics, and sign-correlated dynamics.

[22] investigated continuous-time population games with non-linear payoff functions

and continuous strategy spaces. They test evolutionary models of imitative behavior

5



against evolutionary models of optimization behavior in all-pay auction population games

exhibiting unique mixed-strategy Nash equilibria. In contrast, this chapter tests predictions

from sign-preserving evolutionary dynamics against those of discontinuous dynamics and

sign-correlated dynamics.

1.2 Theory

In this chapter we test theoretical predictions from dynamic evolutionary models in

attacker-defender population games. Population games provide a theoretical framework

for the analysis of repeated strategic interaction between large numbers of agents. In

evolutionary game theory, population games are employed to model a wide variety of

strategic environments including market competition [23], highway traffic [16], and tax

compliance [24].

1.2.1 Population Games

A population game is played by a society composed of one or more populations

p ∈ P = {1, . . . , p}. Each population p contains a continuum of agents who choose

pure strategies from the set Sp = {1, . . . , np}. The proportion of population p that

employs the pure strategy i is denoted by xpi ∈ [0, 1]. Accordingly, a population state

xp = (x1
p, . . . , xpnp ) indicates the proportion of population p that employs each pure 

strategy i ∈ Sp. Further, a social state x = (x1, . . . , xp) describes the state of each 

population p ∈ P . The payoff to an agent in population p who employs pure strategy

i ∈ Sp is given by the payoff function πpi (x).

A social state x is said to be a Nash equilibrium if no agent in any population can

increase her payoff by unilaterally adjusting her strategy. More formally, a social state

x is a Nash equilibrium if, for every population p ∈ P and every pair of pure strategies

i, j ∈ Sp, xpi > 0 implies πpi (x) ≥ πpj (x). A Nash equilibrium is said to be evolutionarily

stable if, whenever any sufficiently small proportion of agents deviates to some alternate

6



social state, then under the resulting social state, agents who stay at the Nash equilibrium

do better, on average, then agents who deviated to the alternate social state. More formally,

A Nash equilibrium x is said to be evolutionarily stable if there exists some ε > 0 such that

for any alternate social state y 6= x and any proportion α ∈ (0, ε) we have x·π(z) > y·π(z)

where z = αy + (1 − α)x. This evolutionary stability criterion was originally developed

for games played by a monomorphic population of agents by [25] and was extended to the

case of multiple polymorphic populations by [26].

1.2.2 Attacker-Defender Population Games

This chapter considers attacker-defender population games11 played by a population of

attackers A and a population of defenders D. Each defender chooses to defend one of her

two possible targets SD = {1, 2}. Each attacker is randomly matched with a defender and

chooses to attack one of her two possible targets SA = {1, 2}. Attackers prefer to attack

the target that is least likely to be defended and defenders prefer to defend the targets that

is most likely to be attacked. The expected payoff to a defender is proportional to the

share of her chosen target in the attacker population. Conversely, the expected payoff to

an attacker is proportional to the share of her unchosen strategy in the defender population.

If both populations are evenly divided between target 1 and target 2, then both targets yield

equal payoffs and no agent has an incentive to switch targets, so this social state is a Nash

equilibrium. Formally, the payoffs functions in this standard attacker-defender game are

given by

πA1 (x) = MxD2 πA2 (x) = MxD1

πD1 (x) = MxA1 πD2 (x) = MxA2

(1.1)

This chapter also considered attacker-defender population games with weak intrapop-

ulation coordination invectives. In such games, attackers have an incentive to coordinate

11See [27] and [28] for more on attacker-defender games.
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their attacks on a target and defenders have an incentive to coordinate their defense on a

target. Formally, the payoff functions in these coordinated attacker-defender games are

given by

πA1 (x) = MxD2 + CxA1 πA2 (x) = MxD1 + CxA2

πD1 (x) = MxA1 + CxD1 πD2 (x) = MxA2 + CxD2

(1.2)

Here the parameter M denotes the strength of the attacker-defender incentives while

the parameter C denotes the strength of the coordination incentives. So long as the

coordination incentives remain weaker than the attacker-defender incentives (M > C >

0), this game still has a unique Nash equilibrium social state under which both populations

are evenly divided between their two pure strategies. Hence the equilibrium predictions

in this coordinated attacker-defender game remain unchanged from those of the standard

attacker-defender game.

1.2.3 Evolutionary Dynamics

This paper considers theoretical predictions from dynamic evolutionary models de-

scribing the diachronic process of behavioral adjustment as a system of differential equa-

tions. This method of describing evolutionary dynamics in population games via revision

protocols was originally introduced by Bjornerstedtt and Weibull [29] and has since been

employed by numerous researchers including Sandholm [30] and Bulò and Bomze [31].

A revision protocol ρpij (x) indicates the rate at which agents in population p switch from

strategy i to strategy j as a function of the social state x. The induced evolutionary dy-

namics are described by by the non-linear differential equation:

ẋpi =
∑
j∈Sp

xpjρ
p
ji (x)− x

p
i

∑
j∈Sp

ρpij (x) (1.3)

The first summation in this expression describes the inflow of agents into strategy i

from other strategies, while the second summation describes the outflow of agents from

8



strategy i onto other strategies. The difference between these two summations yields the

net rate of change ẋpi in the proportion of population p employing the pure strategy i.

An evolutionary dynamic is said to be sign-preserving when agents exclusively switch

from lower performing strategies to higher performing strategies. More formally, an

evolutionary dynamic is said to be is said to be sign-preserving if πpj (x) > πpi (x) ⇐⇒

ρpij (x) > 0. In contrast, an evolutionary dynamic is said to be sign-correlated if agents

switch from lower performing strategies to higher performing strategies more rapidly

than they switch from higher performing strategies to lower performing strategies. More

formally, an evolutionary dynamic is said to be sign-correlated if πpj (x) > πpi (x) =⇒

ρpij (x) > ρpji (x).

Conventional solution concepts such as Nash equilibrium [7], logit quantal response

equilibrum [10], level-k [11, 12], cognitive hierarchy models [13], and TASP [14]

exclusively identify and classify the social states that satisfy their respective criteria. In

contrast, evolutionary dynamics explicitly describe the dynamic process of behavioral

adjustment from which such social states may emerge. Since evolutionary dynamics

explicitly model the process from which equilibria emerge, these models are uniquely

positioned to characterize behavior out of equilibrium. The remainder of this section

will describe three widely employed evolutionary dynamics, identify their underlying

behavioral assumptions, and highlight the key differences between their theoretical

predictions for the coordinated attacker-defender game.

In their analysis of the social stability of Nash equilibrium, Gilboa and Matsui [15]

consider an evolutionary dynamic under which agents myopically switch to their best

response under the current social state. This best response dynamic is also closely related

to the discrete-time fictitious play dynamic discussed by Brown [32]. Formally, the

conditional switch rate from the pure strategy i to the pure strategy j in population p

9



under the best response dynamic is given by

ρpij(x) =


1 if j ∈ argmax

k∈Sp

πpk(x)

0 otherwise

(1.4)

Since the best response dynamic assumes that agents myopically switch to their current

best response, any fixed point of the best response dynamic must have every agent

simultaneously best responding to the strategies selected by other agents. Hence every

Nash equilibrium is a fixed point of the best response dynamic and every fixed point of the

best response dynamic is a Nash equilibrium.

Figure 1.1a illustrates the conditional switch rate under the best response dynamic in

games where each agent has two pure strategies. The vertical axis indicates the conditional

switch rate from the pure strategy i to the pure strategy j and the horizontal axis indicates

the difference in payoffs between agents in population p who employ strategy j and those

who employ strategy i. Note the abrupt change in the conditional switch rate at the point

where both strategies yield equal payoffs. This jump illustrates the discontinuity in the

conditional switch rate under the best response dynamic.

In his analysis of disequilibrium highway traffic congestion dynamics, Smith [16]

considers an evolutionary dynamic under which agents switch from lower performing

strategies to higher performing strategies at a rate proportional to the difference in payoffs.

Hence the conditional switch rate from the pure strategy i to the pure strategy j in

population p is given by

ρpij (x) = max
{
0, πpj (x)− π

p
i (x)

}
, (1.5)

The Smith dynamic falls into the category of pairwise comparison dynamics as the

10



conditional switch rate from strategy i to strategy j in population p depends exclusively

on the pairwise comparison πpj (x) − π
p
i (x). Like the best response dynamic, the Smith

dynamic is sign-preserving because the conditional switch rate ρpij (x) positive if and

only if πpj (x) > πpi (x). Sandholm [30] proves that the fixed points of every sign-

preserving pairwise comparison dynamic exactly coincide with the Nash equilibria of the

corresponding population game. Hence every fixed point of the Smith dynamic is a Nash

equilibrium and every Nash equilibrium is a fixed point of the Smith dynamic.

Figure 1.1b illustrates the conditional switch rate under the Smith dynamic in games

with two pure strategies for each population. The vertical axis indicates the conditional

switch rate from the pure strategy i to the pure strategy j and the horizontal axis indicates

the difference in payoffs between agents in population p who employ strategy j and those

who employ strategy i. Unlike the best response dynamic, conditional switch rate is

continuous in payoffs under the Smith dynamic, so small changes in payoffs produce small

changes in the conditional switch rate. In contrast, a minute change in payoffs can produce

a sudden and drastic change conditional switch rates under the best response dynamic.

Fudenberg and Levine [17] describe describe an evolutionary dynamic under which

agents switch towards their perceived best response under a noisy perturbation of their

payoffs. This logit dynamic is closely related the logit quantal response equilibrium

described by McKelvey and Palfrey [10]. Under the logit dynamic, agents are more likely

to switch to strategies that yield higher payoffs. Formally, the conditional switch rate from

the pure strategy i to the pure strategy j in population p under the logit dynamic is given

by

ρpij (x) =
exp(η−1πpj (x))∑

k∈Sp

exp(η−1πpk(x))
. (1.6)

Here η denotes the noise level in an agent’s perception of payoffs. As η becomes small,

agents perceive their payoffs more precisely, and the conditional switch rate approaches

11



that of the best response dynamic. Conversely, as η becomes large, agents become

increasingly insensitive to payoff differences and the conditional switch rate approaches

uniformly random behavior.

Unlike the Smith dynamic and the best response dynamic, the logit dynamic is not

sign-preserving, but it is sign-correlated since agents are more likely to switch from lower

performing strategies to higher performing strategies. Consequently, some population

games have Nash equilibria that are not fixed points of the logit dynamic. Specifically, the

fixed points of the logit response dynamic correspond to the set of logit quantal response

equilibria, which do not always coincide with Nash equilibria.

Figure 1.1c illustrates the conditional switch rate under the logit dynamic in games

with two pure strategies for each population. The vertical axis indicates the conditional

switch rate from the pure strategy i to the pure strategy j and the horizontal axis indicates

the difference in payoffs between agents in population p who employ strategy j and those

who employ strategy i. Like the Smith dynamic, but unlike the best response dynamic, the

conditional switch rate is continuous in payoffs under the logit dynamic.

Each of the aforementioned evolutionary dynamics exhibit markedly different behav-

ioral assumptions, but each dynamic also shares some key assumptions with others. For

instance, both the logit dynamic and the Smith dynamic predict that the conditional switch

rate will be continuous in payoffs, so small changes in the payoffs will always result in

correspondingly small changes in conditional switch rate under these models. In con-

trast, the best response dynamic is discontinuous in payoffs, so small changes in payoffs

can produce disproportionately large changes in the conditional switch rate under the best

response dynamic.

Both the Smith dynamic and the best response dynamic are sign-preserving, meaning

that agents who follow these dynamics will exclusively switch from lower performing

strategies to higher performing strategies. Consequently, the fixed points of the Smith

12
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Figure 1.1: Conditional switch rates in populations with two pure strategies
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dynamic and the best response dynamic reliably coincide with Nash equilibria. In contrast, 

the logit dynamic is not sign-preserving but it is sign-correlated, meaning that agents who 

follow this dynamic are more likely to switch from lower performing strategies to higher 

performing strategies. Consequently, the fixed points of the logit dynamic frequently fail 

to coincide with Nash equilibrium.

1.2.4 Evolutionary Dynamics in Attacker-Defender Games

Figure 1.2a depicts the best response dynamics for both variations of the attacker 

defender game. Similarly, figure 1.2b depicts the Smith dynamics, and figure 1.2c depicts 

logit dynamics. The graph on the left side of each figure illustrates the theoretical 

predictions of each evolutionary dynamic under the standard attacker-defender game, and 

the graph on the right side of each figure illustrates the theoretical predictions under the 

coordinated attacker-defender game. The horizontal axis of each graph indicates the 

proportion of attackers that attack target 2 and the vertical axis of each graph indicates the 

proportion of defenders that defend target 2. Each solid line in these figures illustrates the 

predicted path of the social state starting from a different set of initial conditions.

Recall that defenders in these games have an incentive to defend the target that is most 

likely to be attacked, while attackers have an incentive to attack the target that is least 

likely to be defended. Consequently, dynamic evolutionary models consistently predict 

the presence of clockwise cycles in these games. However, in the conventional attacker-

defender game, dynamic evolutionary models predict that the social state will gradually 

spiral inwards towards equilibrium. Whereas, in the coordinated attacker-defender game, 

dynamic evolutionary models predict that the social state will converge to a stable limit 

cycle that indefinitely orbits the Nash equilibrium.

Different evolutionary models yield significantly d ifferent p redictions r egarding the 

shape of the limit cycles. As illustrated in figure 1.2a, the best response dynamic predicts

14
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Figure 1.2: Evolutionary dynamics in the attacker defender game. Theoretical predictions
for the standard attacker-defender game where M = 5 and C = 0 are shown on the
left. Theoretical predictions for the coordinated attacker-defender game where M = 2.6
and C = 2.4 are shown on the right. These parameters are selected to reflect those
implemented in the experimental treatments.
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that agents will exhibit sudden sharp reversals in behavior when the best response changes.

Accordingly, the best response dynamic predicts that the stable limit cycle orbiting the

Nash equilibrium in the coordinated attacker-defender game will take a rectangular shape.

In contrast, as illustrated in figures 1.2b and 1.2c, the Smith dynamic and the logit

dynamic predict that agents will exhibit smooth gradual changes in behavior as payoffs

change smoothly over time. Figure 1.2c depicts the predictions of the logit dynamic for

η = 0.08. As η becomes small, subjects become increasingly sensitive to small differences

in payoffs, so the predicted path of the social state becomes increasingly similar to that

of the best response dynamic, with increasingly sharp changes in switching behavior.

However, as η increases, agents become more noisy in their behavior and switching

behavior becomes less sensitive to relative payoff differences.

When the population of attackers is near equilibrium, the targets are nearly equally

to be attacked, so the coordination incentives can outweigh the defense incentives for

defenders. Conversely, when the population of defenders is near equilibrium, the targets

are nearly equally likely to be attacked, so the coordination incentives can outweigh

the attack incentives for attackers. Consequently, as illustrated in figures 1.2a and

1.2b the limit cycles predicted by sign-preserving dynamics in the coordinated attacker

defender game approach the boundary of the state space. In contrast, non-sign-preserving

dynamics predict that agents exhibit some noise in their behavior, sometimes switching

from higher performing strategies back to lower performing strategies. Thus, when any

population coordinates on a single target, noisy switching behavior pushes the population

state back towards a distribution of strategies in the interior of the population state

space. Consequently, as illustrated in figure 1.2c, the limit cycles predicted by non-sign-

preserving dynamics remain strictly in the interior of the state space.
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1.3 The Experiment

This experiment varies coordination incentives across two attacker-defender popula-

tion games. Both treatment exhibit identical equilibrium predictions, but dynamic evolu-

tionary models yield strikingly different predictions regarding the dynamic disequilibrium

behavior in each treatment.

1.3.1 Experimental Design

This study implements two experimental treatments: a control treatment and a

coordination treatment. In the control treatment, subjects played a conventional two-

population attacker defender game as described in section 1.2.2. Subjects in the defender

group earned $5.00 per minute times the proportion of attackers that they defended against.

Similarly, subjects in the attacker group earned $5.00 per minute times the proportion

of defenders that did not defend againt their attack.12 Accordingly, under the control

treatment, earnings per minute were determined by

πA1 (x) = $5.00xD2 πD1 (x) = $5.00xA1

πA2 (x) = $5.00xD1 πD2 (x) = $5.00xA2

(1.7)

where xgi denotes the proportion of group g employing the pure strategy i.

In the coordination treatment, each subject faced intrapopulation coordination incen-

tives in addition to the payoffs from the standard attacker-defender game. As discussed in

section 1.2.2, these coordination incentives do not effect the Nash equilibrium predictions,

but they do effect the disequilibrium dynamics predicted by evolutionary models. Here

defenders earned $2.60 per minute times the proportion of attackers that they successfully

defended against and attackers earned $2.60 per minute times the proportion of defenders

12Both [20] and [22] similarly employ mean-matching protocols and have their subjects earn payoffs
continuously over time. The use of mean-matching and continuous flow payoffs are a standard procedures
in the experimental literature investigating evolutionary game theory.
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who failed to defend against their attack. In addition, attackers earned $2.40 per minute

times the proportion of their fellow attackers that they coordinated with and defenders

earned $2.40 per minute times the proportion of their fellow defenders that they coordi-

nated with. Formally, in the coordination treatment, earnings per minute were determined

by

πA1 (x) = $2.60xD2 + $2.40xA1 πA2 (x) = $2.60xD1 + $2.40xA2

πD1 (x) = $2.60xA1 + $2.40xD1 πD2 (x) = $2.60xA2 + $2.40xD2

(1.8)

These parameters are selected to equalize the equilibrium expected payoff across

treatments, so that Nash equilibrium not only predicts identical behavior across both

treatments, but also identical payoffs across treatments. Further, these parameters equalize

the total strength of incentives across treatments, so that evolutionary dynamics predict

equal adjustment speeds in both treatments.

1.3.2 Experimental Procedures

Each experimental session was conducted with twenty subjects and lasted for about

thirty minutes. On average, each subject earned a total of $18.63, including a five dollar

show-up payment. We employ a between-subjects design, so each subject participated in

one and only one experimental session. Two sessions were conducted with each of the two

experimental treatments, for a total of four sessions with 80 distinct experimental subjects.

At the beginning of each session, subjects were randomly divided into two equally sized

population groups, so each group of attackers consisted of exactly 10 subjects and each

group of defenders consisted of exactly 10 subjects. Subjects stayed in the same population

group for the duration of a session. Each session consisted of eight identical periods

wherein subjects played an attacker-defender population game. Each period lasted for a

total of forty seconds. Each session lasted for about thirty minutes, including time to read
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Figure 1.3: Experimental decision interface

the instructions.

Throughout each period, subjects could continuously adjust their probability of

employing each strategy.13 Figure 1.3 illustrates an example of the decision interface used

by subjects. The horizontal position of the green bar illustrates the probability of each

strategy currently being selected by the subject. When the green bar was all the way on the

left side of the graph, the subject employed the pure strategy A with certainty. Conversely,

when the green bar was all the way on the right side of the graph, the subject employed

the pure strategy B with certainty. When the green bar was in the interior of the graph,

13[21] similarly allow their subjects to adjust their mixed strategies continuously over time.
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the subject had a positive probability of employing each pure strategy. More precisely, the

subject’s probability of taking action A was proportional to the distance between the green

bar and the right side of the graph and the subject’s probability of taking action B was

proportional to the distance between the green bar and the left side of the graph.

The dotted black line in figure 1.3 illustrates the current expected earnings rate for

each feasible mixed strategy. The height of the dotted line at the left side of the graph

indicates the current payoff for the pure strategy A. Similarly, the height of the dotted line

at the right side of the graph shows the current payoff for the pure strategy B. During

each period subjects earned continuous flow payoffs. In figure 1.3, the height of the green

bar indicates the subject’s current earnings rate. In addition, the subject’s current earnings

rate and the subject’s current accumulated earnings are listed at the bottom of the decision

screen. At the end of each experimental session, subjects received their total accumulated

earnings plus a five dollar show up payment in cash.

1.4 Hypotheses

Both the control treatment and the coordination treatments have identical unique Nash

equilibria. However, as described in section 1.2.2, different evolutionary models yield

markedly different predictions regarding the disequilibrium dynamics of subjects in each

treatment group. In particular, evolutionary dynamics consistently predict that the social

state will exhibit global convergence to equilibrium under the control treatment, gradually

spiraling inwards towards the Nash equilibrium. In contrast, evolutionary dynamics

consistently predict that the social state will converge to a stable limit cycle that perpetually

orbits the Nash equilibrium under the coordination treatment.

Although a evolutionary models consistently predict non-convergent cyclical behavior

in the coordination treatment, different evolutionary models yield sharply different

predictions regarding the shape of these cycles. In particular, sign-preserving dynamics
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predict that limit cycles will approach the boundary of the state space, while non-sign-

preserving dynamics predict that limit cycles will remain strictly in the interior of the state

space. Further, continuous dynamics predict that subjects will exhibit small behavioral

changes in response to correspondingly small changes in payoffs, but best response

dynamics predict that subjects will exhibit drastic behavioral changes in response to small

changes in payoffs when their best response changes. This bifurcation between theoretical

predictions provides this paper with a uniquely powerful test for the underlying behavioral

assumptions of evolutionary models. See figure 1.2 for a graphical illustration of these

theoretical predictions.

Accordingly, behavioral deviations from equilibrium are predicted to be self-correcting

under the control treatment. Whereas, under the coordination treatment, small behavioral

deviations are predicted to produce sustained non-convergence and persistent cycling.

Under both treatments, evolutionary dynamics predict that the population state will exhibit

clockwise cyclical dynamics. From these theoretical predictions, the following hypotheses

are obtained:

H0. Nash Equilibrium: Subjects in both treatments exhibit identical behavior since

both treatments share an identical unique Nash equilibrium.

H2. Evolutionary Dynamics: Both treatments will exhibit clockwise cycles but the

social state will exhibit greater stability and lower deviation from equilibrium in the control

treatment than in the coordination treatment as predicted evolutionary dynamics.

H3. Continuous Dynamics: Subjects will exhibit small behavioral changes in re-

sponse to correspondingly small changes in payoffs as predicted by continuous evolution-

ary dynamics.
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H4. Sign-Preserving Dynamics: Subjects in the coordination treatment will exhibit

behavioral limit cycles that approach the boundary of the state space as predicted by sign-

preserving evolutionary dynamics.

The first hypothesis coincides, not only with the predictions of Nash equilibrium, but

also with the predictions from a variety of widely employed behavioral models including

logit quantal response equilibrum [10], level-k [11, 12], and cognitive hierarchy models

[13], as all of these models yield predictions that are identical to Nash equilibrium for the

attacker-defender games under consideration.14 Thus a rejection of our first hypothesis

would not only falsify Nash equilibrium, but would also falsify several other widely

employed behavioral models.

The second hypothesis is drawn from the theoretical predictions of three widely used

dynamic evolutionary models: the best response dynamic [15], the Smith dynamic [16],

and the logit dynamic [17], each of which are described in detail in section 1.2.3. Our

second hypothesis reflects the starkly contrasting predictions across treatments from these

evolutionary models regarding behavioral stability. It should be noted that this bifurcation

in theoretical predictions across treatments is present neither in the Nash predictions nor

in the predictions from any of the other aforementioned behavioral solution concepts.

The third hypothesis reflects the characterization of disequilibrium behavior from

the class of continuous evolutionary models and the fourth hypothesis reflects the

characterization of disequilibrium behavior from the class of sign-preserving evolutionary

14To see why these these theoretical predictions are identical, recall that, in the attacker defender games
under consideration, both targets are equally valuable, so in equilibrium, attackers are equally likely to
attack each target and defenders are equally likely to defend each target. This is also the behavior that
occurs if agents pick their strategy purely at random, so the Nash equilibrium coincides with the predictions
from many solution concepts that describe some form of random behavioral noise. This feature of the
attacker-defender game under consideration is part of what allows our experimental design to provide a
sharp bifurcation between the theoretical predictions of evolutionary dynamics and those of other solution
concepts.
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models. To the extent that Nash equilibrium is said to model the long run limiting behavior

of experienced agents, it correspondingly fails to explicitly model the dynamic process

of convergence from which equilibrium emerges. In this sense, our third and fourth

hypotheses consider a prediction from dynamic evolutionary models regarding an aspect

of behavior that remains unmodeled by static behavioral solution concepts.

Nash
Prediction

Control
Treatment

Coordination
Treatment

mean distance from equilibrium to
social state

0 0.067 0.226
(0.012) (0.026)

mean proportion of defenders who
select strategy B

0.5 0.503 0.505
(0.013) (0.037)

std. dev. of proportion of defenders
who select strategy B

0 0.059 0.166
(0.014) (0.017)

mean proportion of attackers who
select strategy B

0.5 0.497 0.494
(0.006) (0.034)

std. dev. of proportion of attackers
who select strategy B

0 0.049 0.166
(0.009) (0.026)

Table 1.1: Summary statistics for strategy selection in the coordination treatment and the
control treatment. Here distance from equilibrium is measured as the mean euclidean
distance between the Nash equilibrium social state and the observed social state, so as to
maintain comparability with population proportions. Standard deviations across periods
are given in parenthesis.
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Figure 1.4: Mean deviation from equilibrium across treatments.

1.5 Results

Table 1.1 provides summary statistics15 for the both coordination treatment and the

control treatment and a comparison with the equilibrium predictions. As discussed in

section 1.2, Nash equilibrium predictions are identical for both treatments: in equilibrium

attackers are equally likely to attack each target and defenders are equally likely to defend

each target. While the time-average of the observed behavior is highly consistent with the

Nash predictions, it fails to tell the whole story. In particular, time averaging the observed

within-period behavior would fail to detect both the striking differences in behavioral

dynamics across treatments, which which are discussed below.

15Standard deviations for this table are calculated across periods since, as predicted by evolutionary
models, aggregate behavior within a period is highly autocorrelated over time. Consequently, calculating
the standard deviation of the relevant statistics across periods provides a more conservative estimate than
calculating the total standard deviations of the high frequency data, which would largely capture within
period variation.
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Result 1. Subjects in the coordination treatment persistently exhibited significantly higher 

deviation from equilibrium than subjects in the control treatment.

The average social state exhibited considerably greater variance under the coordination 

treatment than under the control treatment. Consequently, as illustrated by figure 1.4, 

behavior in the coordination treatment is characterized by significantly larger deviations 

from equilibrium than the behavior observed under the control treatment. Here distance 

from equilibrium is measured as the mean Euclidean distance16 between the Nash 

equilibrium social state and the observed social state in the state space of the population 

game as described in section 1.2.1. Error bars indicate standard deviations across periods. 

In the control treatment the social state rapidly converged to a small neighborhood of Nash 

equilibrium, while, in the coordination treatment, the social state persistently maintained 

a large distance from the Nash equilibrium.

Result 2. In both treatments, the social state exhibited significantly c lockwise cyclical 

dynamics.

Subjects in both treatments exhibited significant clockwise behavioral cycles that orbit 

the Nash equilibrium social state. The presence of these clockwise cycles is consistent 

with the theoretical predictions from dynamic evolutionary models as discussed in section 

1.2.4. The continuous-time experimental design employed by this study provides the 

opportunity to characterize these features of disequilibrium behavior which are 

described by dynamic evolutionary models, but remain unaddressed in equilibrium models 

and are less accessible in discrete-time experimental studies. In particular, subjects in 

the control treatment exhibited clockwise behavioral cycles that rapidly converged to a 

small neighborhood around the Nash equilibrium social state. In contrast, subjects in
16This method of measuring distance maintains comparability with statistical measures characterizing 

proportions of a population.
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Figure 1.5: Mean value of the cycle rotation index across treatments.

the coordination treatment exhibited wider clockwise behavioral cycles that persistently

diverge from the Nash equilibrium social state.

Figure 1.5 compares the mean value of the cycle rotation index [21] under the control

treatment and the coordination treatment. Over all sixteen periods that implemented the

control treatment, the mean value of the cycle rotation index was 0.84 and the standard

deviation was 0.17. Similarly, over all sixteen periods that implemented the coordination

treatment, the mean value of the cycle rotation index was 0.93 and the standard deviation

was 0.14. Both treatments have significantly positive values of the cycle rotation index,

indicating that behavior in both treatments was characterized by significantly clockwise

cycles.

Figure 1.6 illustrates the observed behavior under each experimental treatment. The

left column depicts observed behavior under the control treatment. The right column

depicts the observed behavior under the coordination treatment. The upper row depicts
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the observed behavior during the first half of each period. The lower row depicts behavior

during the second half of each period. The horizontal axis in each graph represents the

proportion of attackers that choose to attack target 2 and the vertical axis in each graph

depicts the proportion of defenders that choose to defend target 2.

Result 3. The empirical limit cycles and smooth and remain strictly in the interior of the

state space.

As illustrated by figure 1.6, the empirical limit cycles remain strictly in the interior of

the state space, which contradicts theoretical predictions from sign preserving evolution-

ary dynamics,17 but is consistent with theoretical predictions from sign-correlated evolu-

tionary dynamics. In addition, the empirical limit cycles are smooth, which contradicts

theoretical predictions from the best response dynamic and the wider class of discontinu-

ous evolutionary dynamics, but is consistent with theoretical predictions from continuous

evolutionary dynamics, such as the Smith dynamic and the logit dynamic.

Result 4. The empirical switch rates strongly violate the widely employed assumption

of sign-preservation, that subjects exclusively adjust from lower performing strategies to

higher performing strategies.

Figure 1.7 illustrates the observed rate at which subjects switch from one strategy to

another, conditional on the difference in payoffs between the two strategies. Note that

this observed conditional switch rate changes smoothly in response to changes in relative

payoffs, supporting the assumption of continuity upheld by the Smith dynamic and the

logit dynamic but contrasting with the sharp reversal in switch rates predicted by the

best response dynamic. Further, note that subjects usually switch from lower performing

strategies to higher performing strategies, but they also frequently switched from higher

17See section 1.2.4 for more details regarding the theoretical predictions from sign preserving evolutionary
dynamics regarding the shape of limit cycles in coordinated attacker-defender population games
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performing strategies to lower performing strategies, strongly violating the assumption of

sign-preservation upheld by both the Smith dynamic and the best response dynamic, but

conforming to the weaker sign-correlation assumption maintained by the logit dynamic.

The observed violation of sign-preservation suggests that the wider class of sign-

correlated dynamic deserves further attention and may provide a superior characterization

of human behavior in dynamic environments. Moreover, the violation of sign-preservation

indicates that the fixed points of the empirical evolutionary dynamics may frequently

fail to correspond with Nash equilibria in some games. Further research is needed to

determine the extent to which sign-correlated evolutionary dynamics that violate sign-

preservation can predict and explain persistent deviations from equilibrium other strategic

environments.
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Figure 1.6: The observed path of the social state. The left column depicts observed
behavior under the control treatment. The right column depicts the observed behavior
under the coordination treatment. The upper row depicts the observed behavior during the
first half of each period. The lower row depicts behavior during the second half of each
period.
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1.6 Conclusion

In this study, we experimentally test the empirical validity of dynamic evolutionary

models across population games exhibiting identical Nash equilibria but starkly different

evolutionary predictions. In particular, we vary coordination incentives across two

attacker-defender population games. Crucially, both Nash equilibrium and several other

behavioral models yield identical predictions for both of these experimental treatments. In

particular, Nash equilibrium [7], logit quantal response equilibrum [10], level-k [11, 12],

and cognitive hierarchy models [13] all yield identical predictions for both treatments.

In contrast, different evolutionary dynamics predict strikingly different behavior across

treatments. In particular, we consider three widely employed evolutionary dynamics:

the best response dynamic [15], the Smith dynamic [16], and the logit dynamic [17].

Although both treatments exhibit identical Nash equilibrium predictions, evolutionary

dynamics generally predict that the social state will only converge to Nash equilibrium

in our control treatment, and will exhibit persistent non-convergent limit cycles in the

coordination treatment.

The best response dynamic and the Smith dynamic are both sign-preserving but

the logit dynamic falls into the wider class of sign-correlated evolutionary dynamics.

Consequently, the best response dynamic and the Smith dynamic predict that limit cycles

in the coordination treatment will approach the boundary of the state space, while the

logit dynamic predicts that these limit cycles will remain strictly in the interior of the state

space. Further, the Smith dynamic and the logit dynamic are both continuous, but the best

response dynamic is discontinuous, so the Smith dynamic and the logit dynamic predict

that the social state will follow a smooth path, while the best response dynamic predicts

that the path of the social state will exhibit sudden directional changes when the best

response changes. This bifurcation between theoretical predictions across evolutionary
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dynamics and other behavioral models allows this chapter to provide a clean experimental

test of theoretical predictions from evolutionary game theory regarding aspects of dynamic

disequilibrium behavior that remain largely unaddressed by standard models.

Subjects in both both treatments adjusted their strategies continuously and earned con-

tinuous flow payoffs, providing fine-grained behavioral data and allowing for the obser-

vation of long term behavioral phenomena that may be difficult to observe in a discrete-

time setting. In accordance with theoretical predictions from evolutionary dynamics, sub-

ject behavior was tightly clustered around the Nash equilibrium in the control treatment

but widely dispersed from the Nash equilibrium in the coordination treatment. In fur-

ther agreement with evolutionary predictions, subjects also exhibited persistent clockwise

cyclic behavior under both experimental treatments. In contradiction to theoretical predic-

tions from the best response dynamic and the wider class of discontinuous evolutionary

dynamics, the empirical path of the social state was smooth and did not exhibit sudden

directional reversals when the best response changed, suggesting the continuous evolu-

tionary dynamics may provide a more accurate depiction of human behavior than discon-

tinuous models such as the best response dynamic. In contradiction to the predictions

from the conventional class sign-preserving dynamics the empirical limit cycles remained

strictly in the interior of the state space, suggesting that the wider class of sign-correlated

dynamics deserves further attention and may provide a superior characterization of human

behavior in dynamic environments.

While classical game theory focuses primarily on modeling equilibrium behavior, our

experimental results suggest that evolutionary models of disequilibrium behavior can yield

valuable insights. In contrast to the equilibrium predictions, our results suggest that the

introduction of coordination incentives can prevent convergence to Nash equilibrium in

attacker defender games, leading to autocorrelated attacks and making the behavior of

attackers more predictable. These results may have important policy implications for
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strategic environments that are modeled by attacker-defender games such as network

security [27], property crime [33], and counter-terrorism [28]. In particular, these results

suggest that policy makers ought not to rely exclusively on equilibrium models, or even

on the wider class of static behavioral models, but should also consider predictions from

evolutionary dynamics. Further, these results indicate that some classes of dynamic

evolutionary models may provide a superior characterization of human behavior, namely

continuous sign-correlated evolutionary dynamics. Finally, it should be noted that these

results do not invalidate the use of equilibrium solution concepts. Rather, they suggest that

evolutionary models can help identify where equilibrium models are most reliable and can

characterize disequilibrium behavior where equilibrium models are less reliable.
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2. DESIGNING MECHANISMS THAT RELIABLY CONVERGE

2.1 Motivation

Children in the United States are traditionally assigned to public schools based

exclusively on where they live. However, a growing number of public school districts now

allow parents to indicate their preferences over schools. Since each school can support

only a limited number of students, it is often impossible to give every student her top

choice of schools. To resolve these shortages, policy makers frequently employ student

assignment mechanisms that assign each student to a school based on both reported student

preferences and legally determined student priorities.

Under some of these mechanisms, participants have an incentive to strategically

misreport their preferences. Some parent groups have even explicitly recommended

particular misreporting strategies.1 Misreported preferences prevent policymakers from

accurately evaluating mechanism efficiency and make it difficult to reliably achieve

policy goals. To encourage truthful preference reports, mechanism designers typically

recommend the use of strategy-proof assignment mechanisms under which participants

never have an incentive to misreport their preferences. However, previous studies2 have

found that even strategy-proof mechanisms fail to reliably induce truthful preference

revelation from boundedly rational participants.

Standard implementations of school choice mechanisms only reveal assignments at

the end of the reporting period, after all preference reports have been finalized. In

contrast, this paper considers school choice mechanisms that provide participants with

continuous assignment feedback. Under such mechanisms, each subject is shown her

1See Abdulkadiroglu et al. [34] for more details regarding these misreporting strategies.
2For example, Chen and Sönmez [35] find that subjects misrepresent their preferences 50% of the time

under a top trading cycles mechanism. Similarly, Pais and Pintér [36] find that subjects misrepresent their
preferences 33% of the time under a full information deferred acceptance mechanism.
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current assignment throughout the preference reporting period, before preference reports

are finalized. To the best of our knowledge, this study is the first to experimentally

investigate such mechanisms. By providing increased opportunity for learning and

adjustment, continuous assignment feedback is hypothesized to reduce confusion and

promote rational preference revelation. To test this hypothesis, this study implements

both discrete feedback and continuous feedback treatments for three widely employed

school choice mechanisms: the deferred acceptance mechanism, the top trading cycles

mechanism, and the Boston mechanism.

At present, barriers to implementing continuous assignment feedback are largely com-

putational. Hence as computational power increases, this type of feedback will become

increasingly feasible. Computationally simpler forms of continuous feedback are already

being employed by some school districts. Specifically, continuous feedback regarding the

first choices of other participants under the boston mechanism has been provided by the

Wake County Public School System [37]. Similarly, Inner Mongolia provides continuous

feedback in a dynamic queuing mechanism where subjects exclusively report their first

choices [38].

Both top trading cycles and deferred acceptance are strategy proof mechanisms, so

both have a Nash equilibrium in weakly dominant strategies under which participants

truthfully report their preferences. Under the top-trading cycles mechanism, this truthful

equilibrium always yields a Pareto optimal assignment. Under the deferred acceptance

mechanism, the truthful equilibrium always yields an assignment that eliminates justified

envy. Unlike the other two mechanisms under consideration, the Boston mechanism is

manipulable. It has no dominant strategy equilibrium and participants frequently have an

incentive to misreport their preferences. Nevertheless, as discussed by Ergin and Sönmez

[39], the set of equilibrium assignments under the Boston mechanism coincide exactly

with the set of assignments that eliminate justified envy.
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This study connects two distinct strands of literature: the school choice literature

in mechanism design theory, and experimental literature investigating dynamic behavior

in continuous-time games. The school choice mechanism design literature provides

an axiomatic analysis of rational preference revelation behavior under school choice

mechanisms. Abdulkadiroglu and Sönmez [40] describe the school choice problem and

discuss the fundamental tradeoff between Pareto efficiency and the elimination of justified

envy. They also describe a variation of the top trading cycles mechanism introduced by

Shapley and Scarf [41] which we investigate in this study. A powerful characterization of

the Nash equilibria of the Boston mechanism was provided by Ergin and Sönmez [39] and

the student optimal deferred acceptance mechanism was described by Gale and Shapley

[42].

Previous experimental studies, such as Chen and Sönmez [35], conducted school

choice mechanisms in discrete periods, which is ideal for the study of static one-

shot mechanisms. In contrast, continuous-time experimental studies have successfully

investigated dynamic behavior in a variety strategic settings involving continuous-time

interaction. For example, Cason et al. [21] conduct a experimental investigation of

dynamic behavior in continuous-time rock-paper-scissors games and Oprea et al. [20]

conduct a continuous-time experimental study of evolutionary dynamics in the Hawk-

Dove game. Both studies provide subjects with continuous feedback and allow subjects

to adjust their strategies asynchronously. Unlike these experimental studies, this study

employs continuous time experimental methodology to investigate dynamic preference

revelation behavior in widely employed school choice mechanisms under continuous

feedback.

This study finds that the provision of continuous assignment feedback helps school

choice mechanisms to achieve equilibrium assignments significantly more often than con-

ventional discrete feedback implementations. Discrete feedback mechanisms persistently
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fail to reach equilibrium assignments due to the presence of behavioral noise in prefer-

ence reports. In contrast, participants exhibited significantly less behavioral noise and

significantly stronger convergence to equilibrium under continuous assignment feedback.

Accordingly, the top trading cycles mechanism achieved greater efficiency under con-

tinuous feedback while the deferred acceptance mechanism and the Boston mechanisms

eliminated significantly more justified envy under continuous feedback. These results sug-

gest that the implementation of continuous feedback mechanisms can provide participants

with greater opportunity for learning and adjustment, leading to more rational preference

reports and significantly increasing the ability of policy makers to achieve policy goals in

their school district.

2.2 Theory

2.2.1 The School Choice Environment

This study experimentally investigates a simple school choice environment that

illustrates the fundamental tradeoff between Pareto efficiency and the elimination of

justified envy.3 Each school can accept up to n students and each student can be assigned

to only one school. Students have strict preferences over schools and schools have strict

priority rankings over students. Here there are three types of students and there are n

students of each type. Student preferences over schools are given by

Student 1 2 3

b a a

Preference a b b

c c c

where higher vertical position indicates a higher preference ranking, so type 1 students

prefer school b over school a and prefer school a over school c. Similarly, school priority
3A similar example with only one student of each type was discussed by Abdulkadiroglu and Sönmez

[40] and Roth [43].
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rankings over students are given by

School a b c

1 2 2

Priority 3 1 1

2 3 3

where priorities rankings between students of the same type are determined by lottery.

A student x is said to have justified envy towards a student y if the student x prefers the

school that is assigned to y and x also ranked higher at this school than y. If no student has

justified envy under an assignment we say that the assignment eliminates justified envy.

In general, several distinct assignments may eliminate justified envy. However, in this

environment, the only assignment that eliminates justified envy is given by

µ =

1 2 3

a b c


where all type 1 students are assigned to school a, all type 2 students are assigned to

school b, and all type 3 students are assigned to school c. However, this assignment is

Pareto dominated by the assignment

λ =

1 2 3

b a c


where all type 1 students are assigned to school b, all type 2 students are assigned

to school a, and all type 3 students are assigned to school c. The assignment λ Pareto

dominates the assignment µ because types 1 and 2 prefer the schools they receive under λ

to the schools they receive under µ and student 3 receives the same school under λ as she

does under µ. However, λ fails to eliminate justified envy because type 3 students have

justified envy towards type 2 students under λ. Specifically, student 3 would prefer school

a over school c, and school a gives student 3 a higher priority than student 2.
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Since the unique assignment µ that eliminates justified envy is Pareto dominated

by λ, no Pareto optimal assignment can eliminate justified envy in this environment.

Furthermore, in general, no student assignment mechanism can guarantees both the

elimination justified envy and Pareto optimality. Consequently, policy makers face a

fundamental tradeoff between Pareto efficiency and the elimination of justified envy in

school choice environments.

2.2.2 Student Assignment Mechanisms

Student assignment mechanisms select an assignment of students to schools based

on the priority rankings of each school and the preferences reported by students. Since

it is impossible for any student assignment mechanism to ensure both Pareto optimality

and the elimination of justified envy, the optimal student assignment mechanism for

a particular school district depends partly on the particular goals of the policy maker.

Hence different school districts might reasonably employ different student assignment

mechanisms. In particular, this paper considers three widely employed assignment

mechanisms: the Boston mechanism, the top trading cycles mechanism, and the deferred

acceptance mechanism.

A student x is said to have justified envy towards a student y if the student x prefers the

school s that is assigned to student y and the student x also has higher priority at school s

than student y. If no student has justified envy under an assignment then we say that the

assignment eliminates justified envy. A mechanism is said to eliminate justified envy if it

always selects an assignment that eliminates justified envy under the reported preferences.

Similarly, a mechanism is Pareto optimal if it always selects an assignment that is Pareto

optimal under the reported preferences. We say that a mechanism is strategy proof if no

student can ever benefit by unilaterally misreporting her preferences.

Under the Boston mechanism, each student initially applies to her top choice of schools
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according to her reported preferences. Each school accepts applicants in priority order 

until it runs out of seats. The remaining students apply to their second choice of schools 

according to their reported preferences. Again, each school accepts students in priority 

order until it runs out of seats. This process repeats until every student is assigned to a 

school.

When students truthfully report their preferences, the Boston mechanism selects 

a Pareto optimal assignment. Yet the Boston mechanism is not strategy proof, so 

students can often benefit b y m isreporting t heir p references. E rgin a nd S önmez [39] 

show that the set of Nash equilibrium assignments under the Boston Mechanism exactly 

coincide with the set of matchings that eliminate justified envy under the true preferences. 

However, these equilibrium assignments may be Pareto dominated. In this school choice 

environment,4 the sole assignmentµ that eliminates justified e nvy i s t he u nique Nash 

equilibrium assignment for the Boston mechanism. However, no students receive their 

most preferred school under this assignment. Moreover, it is Pareto dominated by the  

Pareto optimal assignment λ where type 1 students and type 2 students receive their most 

preferred schools.

Under the student optimal deferred acceptance mechanism, each student initially 

applies to her top choice of schools according to her reported preferences. Each school 

tentatively accepts applicants in priority order until it runs out of seats. The remaining 

applications are rejected. Students whose applications were rejected then apply to their 

next highest choice of schools. Next, each school considers its new applicants along side 

those it has already tentatively accepted. It then tentatively accepts its top priority students 

among this group until it run out of seats and rejects the remaining students. This process 

repeats until every student is assigned to a school.

Unlike the Boston mechanism, the deferred acceptance mechanism is strategy proof,

4See section 2.2.1 for details regarding the school choice environment under consideration
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so students never have an incentive to misreport their preferences. When sudents truthfully 

report their preferences, the deferred acceptance mechanism always selects an assignment 

that eliminates justified envy under the t rue p references. Yet even when s tudents report 

their preferences truthfully, the deferred acceptance mechanism does not always select a 

Pareto optimal assignment. In the this school choice environment, the deferred acceptance 

mechanism selects the sole assignment µ that eliminates justified envy when students 

report their preferences truthfully. However, it is Pareto dominated by the Pareto optimal 

assignment λ where type 1 students and type 2 students receive their most preferred 

schools. Furthermore, none of students receive their most preferred school under the 

dominant strategy Nash equilibrium assignment µ.

The top trading cycles mechanism constructs a directed graph based the reported 

preferences and priorities. Each student points to her most preferred school according 

to her reported preferences and each school points to it’s highest priority student. Since 

there are a finite number of schools and students, the resulting directed graph will have at 

least one cycle. Students who are part of a cycle are assigned to the school they point to 

and removed from the directed graph. Next, each of the remaining students point to their 

most preferred school according to their reported preferences among those schools that 

still have open seats. Each school points to their highest priority student among those that 

remain unassigned. Any students who are part of a cycle are assigned to the school they 

point to. This process repeats until every student is assigned to a school.

The top trading cycles mechanism strategy proof, so students have no incentive to 

misreport their preferences. However, unlike the deferred acceptance mechanism, the 

top trading cycles mechanism always selects a Pareto optimal assignment when students 

truthfully report their preferences. However, when students report truthfully report their 

preferences, the top trading cycles mechanism does not always select an assignment 

that eliminates justified e nvy. I n t his s chool c hoice e nvironment,4 t he P areto optimal
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Figure 2.1: Equibrium Assignment Percentages under the Best Response Dynamic

assignment λ is the dominant strategy Nash equilibrium assignment for the top trading

cycles mechanism. Under this assignment, type 1 students and type 2 students receive

their most preferred school, while Type 3 students receive their least preferred school.

Hence two thirds of the student population receive their most preferred school. However,

this assignment does not eliminate justified envy since it gives type 3 students justified

envy towards type 1 students.
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2.2.3 Adaptive Dynamics Under Continuous Feedback

Previous experimental studies5 find that, under discrete feedback, even strategy-proof

mechanisms may fail to reliably induce truthful preference revelation when participants

exhibit bounded rationality. These failures to induce truthful preference revelation

may result from bounded rationality, confusion, or disbelief regarding the incentives

presented by strategy proof mechanisms. To ameliorate these problems, this study

considers the implementation of school choice mechanisms with continuous feedback

where participants receive information regarding their tentative assignments throughout

the preference reporting period.

The provision of continuous feedback has no effect on the Nash equilibria of the

school choice mechanisms under consideration because assignments remain exclusively

determined by the preference reports selected at the end of the reporting period. However,

by allowing for adaptive learning and adjustment, the provision continuous feedback may

induce boundedly rational agents to exhibit increasingly rational preference revelation

behavior, thus helping school choice mechanisms to achieve their respective equilibrium

assignments. Adaptive models can describe the behavior of boundedly rational agents in

continuous time strategic environments, such as school choice mechanisms that provide

continuous feedback. Here, we consider the best response dyanamic described by Gilboa

and Matsui [15] and Matsui [44], under which agents asynchronously switch to one of

their myopic best responses. This adaptive dynamic is also closely related to the fictitious

play dynamic discussed by Brown [32].

Figure 2.1 depicts the predictions of the best response dynamic under school choice

mechanisms with continuous feedback. Here the horizontal axis denotes time over the
5For example, Chen and Sönmez [35] find that subjects misrepresent their preferences 50% of the time

under a top trading cycles mechanism with discrete feedback. Similarly, Pais and Pintér [36] find that
subjects misrepresent their preferences 33% of the time under a deferred acceptance mechanism with decrete
feedback.
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course of a reporting period and the vertical axis denotes the percentage of participants

receiving their equilibrium assignment. Each line depicts the mean path of a particular

school choice mechanism under the best response dynamic in the school choice envi-

ronment.6 Note that both the deferred acceptance mechanism and the top trading cycles

mechanism rapidly converge to equilibrium, while the Boston mechanism converges more

slowly and exhibits persistent deviation from equilibrium, suggesting that the manipulabil-

ity of the Boston mechanism can lead to dynamic instability under continuous feedback.

2.3 Experimental Design

This study implements a 2x3 experimental design with six experimental treatments

which are illustrated by table 2.1. Each column of this table denotes one three widely

employed school choice mechanisms: the deferred acceptance mechanism, the top

trading cycles mechanism, and the Boston mechanism. For each mechanism, the study

implements one treatment with continuous feedback and one treatment with discrete

feedback. Three experimental sessions were conducted for each of the six treatment

blocks. Each session was conducted with twenty-four subjects. Each subject participated

in only one experimental session. All sessions were conducted at the Texas A&M

Economic Research Laboratory.

6See section 2.2.1 for details regarding the school choice environment under consideration

Top Trading
Cycles

Deferred
Acceptance Boston

Discrete Feedback 3 Sessions 3 Sessions 3 Sessions

Continuous Feedback 3 Sessions 3 Sessions 3 Sessions

Table 2.1: 3x2 Experimental Design with Three Sessions Per Block
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2.4 Experimental Procedures

During each experimental session, subjects were divided into three groups of eight

participants. Members of each group were assigned one of the three student types

described in section 2.2.1. Each experimental session consisted of twelve periods, and

each period lasted for exactly one minute. At the beginning of each period, subjects were

informed about the earnings that they could receive from being assigned each of the three

options: a, b, or c. This information remained visible to subjects for the duration of the

experimental session. To avoid the possibility of introducing any psychological ordering

or labeling bias, the labeling for each school and the order in which the options were

presented was randomly reassigned at the beginning of each period.

Throughout each reporting period, subjects were free to adjust their preference reports

as frequently as desired. At the end of each period, all preference reports were finalized

and assignments were made based on these finalized preference reports. Figure 2.2

depicts the experimental interface under continuous feedback and figure 2.3 illustrates the

experimental interface under discrete feedback. Under the discrete feedback treatment,

subjects could only observed their assignments at the end of each reporting period,

after all preference reports were finalized. In contrast, under the continuous feedback

treatment, subjects could also observe their tentative assignments under the currently

selected preference reports throughout the one minute reporting period. At the end of

each session, subjects were paid the average of their earnings over all periods plus a five

dollar participation bonus.
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Figure 2.2: Experimental Interface under Continuous Feedback
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Figure 2.3: Experimental Interface under Discrete Feedback
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2.5 Hypotheses

Hypothesis 1. School choice mechanisms will achieve equilibrium assignments more often

when they provide continuous feedback than when they only provide discrete feedback.

Although the provision of continuous feedback has no effect on the Nash equilibria

of the school choice mechanisms under consideration, it can help school choice mecha-

nisms to achieve equilibrium assignments even in the presence of bounded rationality by

giving participants more opportunity for learning and adjustment. When provided with

continuous feedback, boundedly rational agents can converge towards equilibrium assign-

ments by asynchronously adjusting towards their myopic best response.7 However, this

asynchronous process of myopic adjustment can not occur period if subjects only receive

discrete feedback, so the provision of continuous feedback is expected to significantly

increase the proportion of participants that receive their equilibrium assignments.

Hypothesis 2. The top trading cycles mechanism will assign more students their most

preferred school when it provides continuous feedback than when it only provides receive

discrete feedback.

In this school choice environment,8 the dominant strategy Nash equilibrium of the top

trading cycles mechanism yields the Pareto efficient assignment λwhich assigns two thirds

of the student population receives their most preferred school. Moreover, school a is the

favorite of both type 2 students and type 3 students, so it is not possible to assign more than

two thirds of students their most preferred option. Hence if the provision of continuous

feedback makes the top trading cycles mechanism more likely to achieve equilibrium

assignments, then it also increases the proportion of students that receive their favorite

school. However, it should be noted that λ does not eliminate justified envy. In particular,

7See section 2.2.3 for more details regarding the theoretical predictions of the best response dynamic.
8See section 2.2.1 for details regarding the school choice environment.
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it gives type 3 students justified envy towards type 2 students.

Hypothesis 3. The deferred acceptance mechanism will eliminate more justified envy

when it provides continuous feedback than when it only provides discrete feedback.

The deferred acceptance mechanism is strategy proof and eliminates justified envy, so

its dominant strategy Nash equilibrium yields the unique assignment µ which completely

eliminates justified envy under the true preferences in this school choice environment.

Thus if the provision of continuous feedback makes the deferred acceptance mechanism

more likely to achieve equilibrium assignments, then it will also increase the elimination

justified envy. However, the assignment µ is not Pareto optimal and it does not give any

of the students their most preferred school, so we do not expect continuous feedback to

increase the proportion of of students who are assigned their favorite schools under the

deferred acceptance mechanism.

Hypothesis 4. The Boston mechanism will eliminate more justified envy when it provides

continuous feedback than when it only provides discrete feedback.

Although the Boston mechanism is not strategy proof, all of its Nash equilibria elimi-

nate justified envy under the true preferences. Thus, in this school choice environment, its

Nash equilibria yield the aforementioned assignment µ, which eliminates justified envy but

does not give any participant their most preferred school. Hence if the provision of con-

tinuous feedback makes the Boston mechanism more likely to achieve equilibrium assign-

ments, then it also increases the elimination justified envy. However, as noted in section

2.2.3, the best response dynamic predicts that the Boston mechanism will exhibit greater

dynamic instability than the other two mechanisms, so it may achieve less elimination

of justified envy than the deferred acceptance mechanism in the presence of continuous

feedback.
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Feedback t-test Joint F-test
Discrete Continuous p-value p-value

Top Trading Cycles 0.76273 0.92130 <0.001
<0.001Deferred Acceptance 0.69097 0.98148 <0.001

Boston 0.20255 0.89236 <0.001

Table 2.2: Hypothesis tests regarding the proportion of equilibrium assignments. The unit
of observation is one period.

2.6 Results

Result 5. All three school choice mechanisms achieved equilibrium assignments signifi-

cantly more often when they provided subjects with continuous feedback than when they

provided subjects with discrete feedback.

Figure 2.4 illustrates the proportion of equilibrium assignments under each of the

six experimental treatments. The vertical axis denotes the percentage of subjects who

received their dominant strategy equilibrium assignment. The three mechanisms under

consideration, are listed along the horizontal axis. For each of these mechanisms,

the height of the left-hand bar denotes the percentage of equilibrium assignments

under discrete feedback and the height of the right-hand bar denotes the percentage of

equilibrium assignments under continuous feedback. Error bars indicate 95% confidence

intervals on the percentage of equilibrium assignments.

A t-test finds that each of these mechanisms achieve equilibrium assignments signif-

icantly more often under continuous feedback than under discrete feedback at the one

percent level. An F-test rejects the joint hypotheses of equal equilibrium assignment per-

centages across feedback treatments at the one percent level. Although the provision of

continuous feedback has no effect on the Nash equilibria of these school choice mecha-

nisms, this result is consistent with the theoretical predictions of adaptive models.9 By

9See section 2.2.3 for more details regarding the predictions of adaptive models.
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Figure 2.4: Proportion of Equilibrium Assignments by Treatment

allowing for adaptive learning and adjustment, the provision continuous feedback may

induce boundedly rational agents to exhibit more rational preference revelation behavior,

thus helping these school choice mechanisms to achieve their respective equilibrium as-

signments.

Result 6. All three school choice mechanisms eliminated significantly more justified envy

when they provided subjects with continuous feedback than when they provided subjects

with discrete feedback.

Figure 2.5 illustrates the elimination of justified envy under each of the six treatments.

The vertical axis denotes the percentage of subjects who had no justified envy towards
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Figure 2.5: Elimination of Justified Envy by Treatment

others under their true preferences.10 The three mechanisms under consideration, are listed

along the horizontal axis. For each of these mechanisms, the height of the left-hand bar

denotes the elimination of justified envy under discrete feedback and the height of the

right-hand bar denotes the elimination of justified envy under continuous feedback. Error

bars indicate 95% confidence intervals on the percentage of students without justified envy.

A t-test finds that all three of these school choice mechanisms eliminate significantly

more justified envy under continuous feedback than under discrete feedback at the one

percent level. An F-test rejects the joint hypotheses of equal justified envy elimination

10A formal definition for the concept of justified envy can be found in section 2.2.2
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Feedback t-test Joint F-test
Discrete Continuous p-value p-value

Top Trading Cycles 0.53241 0.62963 <0.001
<0.001Deferred Acceptance 0.82755 0.98843 <0.001

Boston 0.59259 0.94097 <0.001

Table 2.3: Hypothesis tests regarding the elimination of justified envy. The unit of
observation is one period.

rates across feedback treatments at the one percent level. As discussed in section 2.2.2, the

assignment µ that uniquely eliminates justified envy in this environment is the equilibrium

outcome for both the deferred acceptance mechanism and the Boston mechanism. Hence

this result is consistent with the increase in equilibrium assignments from continuous

feedback under these two mechanisms.

In contrast, the increase in the elimination of justified envy under the top trading cycles

mechanism occurs because it eliminated so little justified envy under discrete feedback. In

equilibrium, the top trading cycles mechanism eliminates justified envy from only two

thirds of the student population, which is roughly consistent with the observed elimination

of justified envy under the top trading cycles mechanism. Yet under discrete feedback,

the top trading cycles mechanism eliminated even less justified envy, so the increase in

equilibrium assignments from continuous feedback increased the elimination of justified

envy despite the presence of justified envy in the equilibrium assignment of the top trading

cycles mechanism.

Result 7. The top trading cycles mechanism gave subjects their most preferred option

significantly more often when it provided subjects with continuous feedback than when

they provided subjects with discrete feedback.

Figure 2.6 illustrates the proportion of most preferred assignments under each of the
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Figure 2.6: Proportion Assigned most Preferred Option by Treatment

six treatments. The vertical axis here denotes the percentage of subjects who who were

assigned their favorite option under their true preferences. The three mechanisms under

consideration, are listed along the horizontal axis. For each of these mechanisms, the

height of the left-hand bar denotes the percentage of most preferred assignments under

under discrete feedback and the height of the right-hand bar denotes the percentage of most

preferred assignments under continuous feedback. Error bars indicate 95% confidence

intervals on the percentage of students receiving their most preferred assignments.

A t-test finds that the top trading cycles mechanism assigned subjects their most pre-

ferred option significantly more often under continuous feedback than under discretfeed-
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Feedback t-test Joint F-test
Discrete Continuous p-value p-value

Top Trading Cycles 0.48727 0.59722 <0.001
<0.001Deferred Acceptance 0.18750 0.01042 <0.001

Boston 0.52431 0.06134 <0.001

Table 2.4: Hypothesis tests regarding the proportion of most preferred assignments. The
unit of observation is one period.

back at the one percent level. An F-test rejects the joint hypotheses of equal percentages

of most preferred assignments across feedback treatments at the one percent level. In con-

trast, the deferred acceptance mechanism and the Boston mechanism assigned subjects

their most preferred option significantly less often under continuous feedback than under

discrete feedback at the one percent level. These results are consistent with the increase

in equilibrium assignments under continuous feedback since the top trading cycles mech-

anism assigns two thirds of subjects their most preferred option in equilibrium while the

other two mechanisms do not assign any students their most preferred option in equilib-

rium.

2.7 Conclusion

Classical mechanism design theory predicts that strategy proof mechanisms will

reliably induce truthful preference reports and achieve equilibrium outcomes. However,

these theoretical predictions are difficult to verify in the field because real world

preferences are unobservable and real world school choice mechanisms rarely satisfy the

exact assumptions of theory. Hence experimental data can provide valuable information

regarding the empirical properties of school choice mechanisms and allow more conclusive

testing of predictions from mechanism design theory.

Previous studies find that strategy-proof student assignment mechanisms fail to reliably

achieve equilibrium outcomes or induce truthful preference revelation in laboratory
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experiments. We hypothesize that these findings result from bounded rationality on the

part of participants in these strategy-proof mechanisms. Moreover, we suspect that similar

types of bounded rationality play an important role in the field. To reduce confusion and

increase understanding, we consider the implementation of school choice mechanisms

that provide participants with continuous feedback regarding their school assignments

throughout the reporting period. To the best of our knowledge, this study is the first to

experimentally investigate such mechanisms.

To investigate the empirical properties of widely employed school choice mechanisms

under continuous assignment feedback, this study conducts laboratory experiments

comparing assignment outcomes and preference revelation behavior across continuous

feedback and discrete feedback school choice mechanisms. In these experiments, all three

school choice mechanisms achieved equilibrium assignments significantly more often

when they provided subjects with continuous feedback than when they only provided

discrete feedback. Consistent with the theoretical predictions from adaptive models,

these experimental results suggest that the provision of continuous feedback in school

choice mechanisms can help promote rational preference revelation behavior by giving

participants more opportunity for learning and adjustment.

Student assignment mechanisms impact the well being of children in many school

districts throughout the world. The Boston mechanism was originally used in Boston’s

school choice system. In 2012, the New Orleans recovery school district used an algorithm

based on the top trading cycles assignment mechanism [45]. In 2008, a variation of the

student optimal deferred acceptance mechanism was employed in New York City [46].

By investigating continuous assignment feedback, this study can help policy makers to

design better school choice mechanisms to achieve the policy goals of their school district.

Furthermore, the analysis of continuous feedback may to continue to help researchers

design new mechanisms that are more robust the presence of bounded rationality.
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3. CONCLUSIONS: CYCLICAL BEHAVIOR IN THE ALL PAY AUCTION

3.1 Motivation

Nash Equilibrium is a powerful tool for understanding strategic behavior. Even when

agents fall short of perfect rationality, simple adaptive processes can often drive long-

run behavior towards equilibrium predictions. For this reason, adaptive models have long

been employed to justify the application of equilibrium solution concepts in the presence

of bounded rationality [6, 47]. In many strategic environments, the long run predictions

of adaptive models closely resemble the predictions of Nash equilibrium. However,

in other strategic environments, adaptive models fail to converge, leading to persistent

disequilibrium behavior. In such environments, adaptive models characterize both the

degree of deviation from equilibrium and the disequilibrium behavioral dynamics.

To test these theoretical predictions from adaptive models, we conduct laboratory

experiments on continuous-time all-pay auctions where subjects adjust their bids asyn-

chronously and earn flow payoffs continuously over time. In one treatment, the single

highest bidder receives a prize. In another treatment, the top two bidders each receive

an equally valuable prize. Nash equilibrium predicts identical payoff distributions under

both of these treatments, but adaptive models predict predict disequilibrium bidding cy-

cles, running contrary to the equilibrium predictions and disrupting the equality of payoffs

across treatments. In contrast to the Nash equilibrium predictions, but consistent with the

predictions of adaptive models, we observe lower behavioral stability and higher payoffs

in all-pay auctions with two winners than in all-pay auctions with a single winner.

The all-pay auction has been examined extensively in experimental environments [see

48, for a survey]. Previous experimental studies [e.g., 49, 50, 51] of the all-pay auction

conduct a sequence of discrete rounds in which subjects secretly select their bids and the
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highest bidder receives a price. The paper also contributes to the small, but burgeoning

area of literature that studies the properties of disequilibrium dynamics in continuous-time

games [i.e., 20, 21]. Consistent with the observation of cyclical behavior in rock-paper-

scissors by Cason et al., we observe bidding cycles in continuous-time all-pay auctions.

This paper proceeds as follows: Section 3.2 presents the structure of the game and two

different equilibrium models. It also describes and the various adaptive models that will

be used to characterize the experimental data. Section 3.3 presents the full design and

procedures of the experiment. Section 3.4 provides our hypotheses. Section 3.5 presents

the main results and Section 3.6 concludes.

3.2 Theory

In all-pay auctions, multiple agents expend costly effort to compete over a limited

number of prizes. Prizes are awarded to the agents who expend the most effort, but

every agent bears the cost of her own effort, even if she does not win a prize. All-pay

auctions often model strategic environments that involve both conflict and non-recoverable

costs such as political lobbying [52], patent races [53], biological competition [54], and

international warfare [55].

The all-pay auction involves three players who compete over two prizes. Each player

i starts with a endowment w and selects her bid bi from the closed interval [0, w]. The

top two bidders each receive a prize with value v and the lowest bidder receives no prize.

Every player must pay her bid, regardless of whether or not she won a prize. In the case

of a tie, the winner is determined randomly. Accordingly, the payoff function for player i
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is given by:

πi (bi, bj, bk) =



w − bi + v if bi > min {bj, bk}

w − bi + 2v/3 if bi = bj = bk

w − bi + v/2 if bi = min {bj, bk} < max {bj, bk}

w − bi otherwise

(3.1)

3.2.1 Equilibrium Models

We consider equilibrium models including the Nash equilibrium and the logit quantal

response equilibrium. Nash equilibrium assumes that each agent selects a best response

to the strategies selected by others. In contrast, the logit quantal response equilibrium

assumes that agents make probabilistic errors in their payoff evaluations.

The all-pay auction investigated here with three bidders and two winners has no pure

strategy Nash equilibrium, but it does have a unique symmetric mixed strategy Nash

equilibrium. First derived by [56],1 the corresponding probability density function for

the bid of player i given by

f (bi) =
1

2v

(
1− bi

v

)−1/2
for all bi ∈ [0, v]. (3.2)

The black line in Figure 3.1 illustrates this equilibrium density function. Note that that

Nash equilibrium probability density function approaches infinity as bids approaches the

value of the prize and remains at zero for any bid above the value of the prize. Thus, in

equilibrium players are likely to bid near the value of the prize but never above it.

While the Nash equilibrium describes the behavior of perfectly rational and perfectly

precise agents, the logit quantal response equilibrium described by [10] and [57] allows
1Appendix Section 4.1 contains an alternate derivation of the equilibrium.
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Figure 3.1: Nash Equilibrium and Logit Quantal Response Equilibria

us to model the behavior of imprecise boundedly rational agents. Such agents make

probabilistic errors in their evaluation of alternate strategies. Although they typically fail

to select a best response, they are more likely to select strategies that yield higher payoffs.

Unlike the perfectly rational agents described by Nash equilibrium, agents in logit

quantal response equilibrium may place positive probability on dominated strategies, since

their behavior is fundamentally stochastic. In the case of a continuous strategy space, the

probability density function for the logit quantal response equilibrium mixed strategy σi

satisfies:

f (bi) =
exp (η−1πi (bi, σ−i))∫
exp (η−1πi (x, σ−i)) dx

(3.3)

Here η denotes the level of behavioral noise in an agent’s evaluation of payoffs. When

η is small, agents make small errors, and the strategy distribution approaches the Nash
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equilibrium. When η is large, the logit quantal response equilibrium approaches uniformly

random play. To illustrate this tendency, Figure 3.1 depicts the logit quantal response

equilibrium under alternate values of η.

A closed form solution for the logit quantal response equilibrium of an all-pay auction

with a single prize is provided by [58]. To the best of our knowledge, no closed form

solution is currently available for the logit quantal response equilibrium of an all-pay

auction with two prizes. Accordingly, a formal derivation of the logit quantal response

equilibrium in this case is found in Appendix Section 4.2. The logit quantal response

equilibrium probability density function for the bid of player i is

f (bi) =
ηG
(√

ηv
)
exp (−ηbi)√

ηv [1− exp (−ηw)]

[
exp

(
G−1

(
G (
√
ηv)

[
1− 1− exp (−ηbi)

1− exp (−ηw)

])2
)]−1

,

(3.4)

where G (x) =
∫ x
0
exp (u2) du =

√
π
2

erfi (x).

3.2.2 Evolutionary Game Theory

The experiment in this paper involves continuous-time, two good, three-bidder all pay

auctions. These auctions are conducted in groups of three, but subjects’ rewards are

calculated using mean matching, so essentially every subject plays every other subject

all the time. In situations like these, it is useful to consider models from evolutionary

game theory, the study of “large populations of agents who repeatedly engage in strategic

interactions," [8].

By design, this all-pay auction has evolutionary dynamics that make it a prime

candidate for persistent disequilibrium. Accordingly, it has no evolutionary stable strategy.

The idea of an evolutionarily stable strategy was introduced by [25], who employed it to

identify the stability of biological phenotypes in large populations under the pressures

of mutation and natural selection. More recently, game theorists and social scientists have
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employed evolutionary stability criteria to model the behavioral stability of Nash equilibria

in a wide variety of strategic settings.2

A strategy is evolutionarily stable if it induces a self-enforcing convention. That is,

a strategy x is evolutionarily stable if no other strategy y can invade it when the entire

population initially employs strategy x. More formally, in a in a symmetric normal form

game, a strategy x is evolutionarily stable if there exists some C ∈ (0, 1) such that for all

ε ∈ (0, C) and for any other strategy y

π ( x | εy + (1− ε)x ) > π ( y | εy + (1− ε)x ) (3.5)

Thus, if x is evolutionarily stable and a sufficiently small proportion of the population

deviates to an alternate strategy y, then agents who employ x will earn a strictly higher

payoff than agents who employ y.

The Nash equilibrium strategy for the all-pay auction is not evolutionarily stable. Too

see why, suppose that a small proportion ε of the population deviates from the Nash

equilibrium strategy x to an alternate strategy y under which agents always bid the full

value of the prize. Since the support of the equilibrium bid distribution is given by the

closed interval [0, v], agents who employ the invading strategy y will win the prize with

probability one whenever they are matched against an agent who employs the equilibrium

bidding strategy. In this case, the invading strategy y earns a higher expected payoff than

the equilibrium mixed strategy x, so the equilibrium mixed strategy for the all-pay auction

with three bidders and two prizes is not evolutionarily stable. A formal derivation of this

result is found in Appendix Section 4.2.1. Since mixed strategy Nash equilibrium fails to

induce a self enforcing convention in this all-pay auction, we expect to observe dynamic

instability in experimental bidding behavior.

2These settings include price competition [23], linguistics [59], and corporate investment [60].
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As we expect this experimental environment to be rife with instability, we have

ample opportunity to examine the adaptive behavior of subjects. In particular, we will

specifically examine noisy optimization dynamics and a noisy imitation dynamics from

evolutionary game theory [8]. In these adaptive models, agents make asynchronous

strategy adjustments over time. The timing of these adjustments follows a homogeneous

Poisson process with a rate of δ adjustments per second. The value bit here denotes the

bid employed by agent i at time t. To determine the relative strengths of these models, we

also develop a multi-parameter model that nests each as a special case.

Under deterministic optimization models, such as those described by Gilboa and

Matsui [15] and Golman [61] agents switch precisely to their best response. In contrast,

the logit dynamic is a noisy optimization model [17, 62], predicting that agents will be

more likely to select bids that yield higher payoff. Under this model, the likelihood that an

agent i who adjusts her bid at time t will select a particular bid b is given by:

fi,t (b) =
exp (βπi (b, b−i,t))∫ w

0
exp (βπi (x, b−i,t)) dx

(3.6)

Purely imitative models [e.g., 61, 63, 64, 65] predict that agents will exclusively

imitate the strategies of other agents they encounter. Such models predict that agents

will never innovate by playing a strategy that was not previously employed by others in

the population. In an experiment such as this one, with a continuous strategy space and

finite number of subjects, this prediction will almost certainly fail as subjects pick new

strategies that were not previously employed by others. To increase the flexibility of these

imitative models, we consider a noisy imitation model under which agents are more likely

to select bids that are close to the bid that is currently employed by the agent with the

highest earnings rate. Let bHt denote the bid employed by the agent who has the highest

earning rate at time t. Under this noisy imitative model, the likelihood that an agent who
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adjusts her bid at time t will select a particular bid b is given by:

fi,t (b) =
exp

(
γ
∣∣b− bHt ∣∣)∫ w

0
exp (γ |x− bHt |) dx

. (3.7)

It is important to note that the noiseless imitate-the-best dynamic is a special case of

this model where γ →∞.

To examine the relative strength of the noisy imitation and optimization dynamics, we

develop a combined model that includes each both imitation and optimization as a special

case. In this combined model, the attraction of a bid x for an agent i at time t is given by

Ait (b) = απi (b, b−i,t)− β |b− bi,t| − γ
∣∣b− bHt ∣∣ . (3.8)

Here bit denotes the bid employed by agent i at time t and btH denotes the bid employed by 

the agent who is earning the highest payoff at time t. The parameter α denotes the extent 

to which agents are more likely to select strategies that yield higher payoffs. The 

parameter β denotes the degree to which bids are autocorrelated, that is, the extent to 

which agents tend to select bids that are close to their previous bids.3 The parameter γ 

captures denotes the tendency to imitate success, that is, the extent to which agents tend to 

pick bids which are close to the bid employed by the highest earning player. Accordingly, 

the likelihood that agent i will select a bid x when she makes an adjustment at time t is 

given by

fit (b) =
exp (Ait (b))∫ w

0
exp (Ait (x)) dx

. (3.9)

3Results show the removal of this autocorrelation term does not affect the relative explanatory power of
the imitative or logit terms (see Table 3.3).
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3.3 Experimental Design and Procedures

3.3.1 Design

To implement the game discussed in Section 3.2, subjects were endowed withw = $10

and competed for prizes with value v = $7. Subject bids were bounded on the interval

[0, w]. As this game takes place in continuous time, each session consisted of one

continuous 40 minute period. During this period, subjects could adjust their bids as

frequently as desired with the click of the mouse. Whenever a subject clicked, her bid

instantaneously changed to the level corresponding to the horizontal position of her mouse,

and the corresponding payoff rates were immediately recalculated.

The experiment consisted of two informational treatments. Under the global informa-

tion treatment, each subject received real-time information regarding the bids and payoffs

of every participant in her cohort. Under the local information treatment, subjects only

observed their own bid and payoff. In both treatments, bids and payoffs were recorded at

a rate of four times per second.

Figures 3.2 and 3.3 illustrate the experimental interface under the local-information

and global-information treatments, respectively. The subject’s current bid and payoff is

represented by a blue line. The horizontal position of the blue line indicates the subject’s

current bid and the height of the blue line indicates the subject’s current payoff. The

subject’s current bid and payoff are displayed numerically at the bottom of the screen.

Under the global-information treatment, the current bid and payoff of each other subject

is represented by a red line.

To provide random rematching in continuous time, we employ a mean matching

protocol [e.g. 20, 21]. Each subject’s instantaneous payoff is given by the expected value

of her payoff from being randomly matched into a group of three agents. By the law of

large numbers, high frequency mean-matching provides a superior approximation to truly
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Figure 3.2: User Interface Under Local Information

Figure 3.3: User Interface Under Global Information
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continuous random matching than does high frequency random matching.

3.3.2 Procedures

Thirty subjects participated in one session of the global-information treatment and

27 subjects participated in one session of the local-information treatment. Subjects were

recruited from the Texas A&M undergraduate population using an ORSEE database [66].

All sessions were run in the Texas A&M Economic Research Laboratory using z-Tree

[67].

At the end of every session, each subject received the time average of their instanta-

neous payoff plus a five dollar show-up payment. Subject earnings averaged $15.20 in

the global-information treatment and $16.09 in the local-information treatment, including

the five dollar show-up payment. In equilibrium, average subject earnings would equal

$15.00, so subjects received slightly above equilibrium earnings under both treatments.

All sessions lasted less than one hour.

3.4 Hypotheses

The game utilized in our experiment is not evolutionary stable, so adaptive models

predict persistent disequilibrium rather than convergence to equilibrium. Figure 3.4 shows

a heat map illustrating the changes in the predicted distribution of bidding behavior over

time in our experiment for a population of 30 simulated agents. We employ the adaptive

dynamics in equation 3.8 where α = 3, β = 0.3, and γ = 0.3. In contrast to the

static predictions of Nash and Quantal Response Equilibrium model (see section 3.2.1),

the adaptive model predicts persistent bidding cycles.4 This theoretical prediction results

in the following hypothesis.

4The intuition for bidding cycles is as follows. When bids are sufficiently low agents can benefit by
slightly outbidding their competitors, so competition gradually drives bids upwards. As bids gradually
increase towards the value of the prize, average profits decrease. When profits became sufficiently low,
agents can effectively opt-out of the auction by bidding close to zero, thus reinitializing the bidding cycle.
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Figure 3.4: Changes in the distribution of bidding behavior over time in a population
of 30 simulated agents under adaptive dynamics obtained from a nonparametric
conditional density estimator with a bid bandwidth of 0.5 and a time bandwidth of
0.3 seconds

Hypothesis 1. Subjects will exhibit persistent bidding cycles under both the local

information treatment and the social information treatment.

Throughout these disequilibrium cycles, adaptive models of imitation and optimization

predict very different behavioral dynamics. Figure 3.5 provides an example of the

predicted probability density of a new bid selected by player 1 at time t. The upper

figure illustrates the predicted density under noisy imitative models and the lower figure

illustrates the predicted density under noisy myopic optimization models. The horizontal

position of each vertical line indicates the current bid of one player and the height of the

line indicates the current payoff to this player. The shaded area under the curve indicates

the probability density for a new bid selected by player 1.

Under the bidding profile depicted in figure 3.5, player 2 is has the highest payoff with

bid b2, so noisy imitation models predict that player 1 is likely to imitate this successful

strategy by selecting a new bid that is close to b2. In contrast, noisy optimization models
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Figure 3.5: The predicted probability density of a new bid selected by player 1 at
time t. The top panel illustrates the predicted density under imitative models and the
lower panel illustrates the predicted density under myopic optimization models.
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predict that player 1 is only likely to select bids that are slightly higher than b2 as selecting

a bid slightly lower than b2 would not improve the payoff to player 1. This sharp contrast

between the theoretical predictions from imitation and optimization in this game is part of

what allows our experimental design to provide a uniquely powerful test of these adaptive

models.

Since our experimental design allows us to disentangle imitation from optimization

in observed subject behavior, we next ask how these models will perform under our

different information treatments. Adaptive imitation models place a strong informational

requirement on agents. As [68] notes, “imitation is a simple behavior that has two basic

ingredients. One needs to be able to observe what others have done and one needs to be

capable of doing what they have done.” Hence adaptive imitation models require agents to

observe the behavior of their peers. In contrast, adaptive optimization models describe

agents who attempt to directly maximize their own payoff, so adaptive optimization

models require agents only to observe their own payoffs.

Our local information treatment provides each subject with information regarding their

own bids and payoffs, so we hypothesize that noisy optimization behavior (depicted in the

lower panel of figure 3.5) will be observed in that treatment. In contrast, information

regarding the bids and payoff of others is only provided in our global information

treatment, so we hypothesize that noisy imitative behavior (depicted in the top panel of

figure 3.5) will be observed in that treatment. Moreover, our global information treatment

is designed to make implementing adaptive imitation as easy as possible; subjects only

need to click on the highest bar on a computer screen (see figure 3.3 for a depiction of

the interface) to implement adaptive imitation. In contrast, implementation of adaptive

optimization is more computationally demanding for subjects, since it requires them

to compute counterfactual payoffs from their information regarding the bids of others.

Accordingly, we hypothesize that

70



Hypothesis 2. Imitative models will outperform optimization models in the social

information treatment, but not in the local information treatment.

Finally, a growing literature [e.g., 69, 70, 71, 72] suggests that the provision of social

information to economic agents helps agents to behave more rationally and come closer

to the predictions of traditional economic theory and those of Nash equilibrium. For this

reason, we speculate that the additional information provided by our social information

treatment may help subjects to learn their way out of disequilibrium cycles and behave

more consistently with the theoretical predictions of Nash equilibrium. This reasoning

leads to our final hypothesis.

Hypothesis 3. Behavior in the social information treatment will exhibit greater stability

and greater consistency with Nash equilibrium.

3.5 Results

Table 3.1 provides summary statistics for both the local information and global

information treatments and a comparison with the equilibrium predictions. Recall that

the Nash equilibrium of this game predicts that subjects will employ a mixed strategy with

bids distributed according to the probability density function described in Section 3.2.1.

On average, subjects in both of our treatments exhibit lower bidding than the equilibrium

prediction. Consequently, the average earnings in both treatments are higher than the

equilibrium prediction. In both treatments, we also observe instances of dominated

bidding—bids above 7—which are never predicted to occur in equilibrium. Consistent

with hypothesis 1, we do not observe a convergence to equilibrium in either treatment; the

last 10 minutes of the experiment are not noticeably closer to equilibrium play than the first

10 minutes of the experiment. In general, there are only minor differences between the first

and last 10 minutes of the experiment. Of those differences that exist (e.g., average bid

71



Private Information Global Information
Equilibrium
Prediction

initial 10
minutes

last 10
minutes overall

initial 10
minutes

last 10
minutes overall

mean bid 3.73 3.54 3.57 4.57 4.31 4.47 4.67
bids above 7a 1.95% 0.45% 1.22% 5.57% 4.58% 6.96% 0.00%
minimum bidsb 1.63% 3.77% 3.03% 0.72% 0.81% 0.90% 0.00%c

mean earnings 10.94 11.13 11.11 10.20 10.36 10.21 10.00

a. In this game, bids above 7 are always dominated by bidding 0.
b. The minimum bid is 0.
c. A bid of 0 is in the support of the mixed equilibrium strategy. However, the predicted occurrence of such
bids by the equilibrium model is 0, because the strategy space is continuous.

Table 3.1: Summary Statistics for Bids and Earnings in Local Information Treatment,
Global Information Treatment, and Equilibrium Predictions. The treatment statistics
include groupings by the first 10 minutes and last 10 minutes to provide more detail about
initial and final play.

decreasing, earnings increasing), most are moving away, rather than toward, equilibrium

predictions.

Result 8. Both average payoffs and average bids differ significantly across treatments.

i. Subjects bids are higher and closer to the Nash equilibrium predictions in the global-

information treatment.

ii. Payoffs in the global-information treatment are lower and closer to equilibrium than

those in the local-information treatment.

Bids in the global-information treatment are significantly higher than those in the

local information treatment. Table 3.1 shows that the mean bid in the global information

treatment is $0.90 higher than the mean bid in the local information treatment, so the

former is closer to the equilibrium prediction. Subjects in the global information treatment

are also more likely to select dominated bids above 7 and less likely to make 0 bids than

those in the local information treatment. Figure 3.6 provides nonparametric estimates

of the aggregate bid density under each treatment, showing that bids in the global
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Figure 3.6: Empirical Bid Distributions. The density function is estimated using the
local constant kernel density estimator of [1] and [2] with a normal kernel and a bandwidth
of 0.5.

information treatment are generally larger than those in the local information treatment.

A non-parametric Kolmogorov-Smirnov test finds the empirical bid distributions to be

significantly different (p < 0.01).

Figure 3.6 illustrates nonparametric estimates of the aggregate bid density under each

treatment alongside the symmetric Nash equilibrium density function. As Table 3.1

implies, both of the observed bid distributions are generally lower than the equilibrium

distribution, but with longer right tails. A non-parametric Kolmogorov-Smirnov test finds

both empirically observed bid-distributions to be significantly different from the Nash

equilibrium distribution (p < 0.01). Moreover, neither bid distribution is consistent

with logit quantal response equilibrium. A Kolmogorov-Smirnov test finds both the
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Figure 3.7: Empirical Expected Payoff Functions under Alternate Treatments. The
expected payoff function is estimated using the local constant kernel regerssion estimator
of [3] and [4] with a normal kernel and a bandwidth of 0.5

local-information-treatment bid distribution and the global-information-treatment bid

distribution to be significantly different from their corresponding maximum-likelihood

logit quantal response equilibrium predictions (p < 0.01; local information: η = 0.792,

global information: η = 0.505).

Payoffs also differ significantly across treatments. Table 3.1 shows that mean payoffs

in the local information treatment are $0.90 higher than the global information treatment.

Subjects in the global information treatment earned an average of $15.21 while subjects in

the local information treatment, subjects earned an average of $16.11; significantly higher

earnings at the one percent level. A non-parametric Kolmogorov-Smirnov test finds the

empirical payoff distributions to be significantly different (p < 0.01).
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In equilibrium, every bid between zero and the value of the prize should yield the same

expected payoff since rational agents must be indifferent between pure strategies over

which they mix. Figure 3.7 shows that both treatments violate this indifference property.

However, this violation is much more severe in the local information treatment than in the

global information treatment, suggesting that subjects in the global information treatment

are more precisely maximizing their payoffs. A non-parametric Kolmogorov-Smirnov

test finds both empirically observed earnings distributions to be significantly different

from the Nash equilibrium distribution (p < 0.01). Similarly, the empirical earnings

distributions are also inconsistent with quantal response equilibrium. A Kolmogorov-

Smirnov test finds both the local-information-treatment earnings distribution and the

global-information-treatment earnings distribution to be significantly different from their

corresponding maximum-likelihood, quantal response equilibrium predictions (p < 0.01;

local information: η = 0.792, global information: η = 0.505).

Result 9. Throughout the 40 minute session, subject behavior in both treatments is

characterized by a state of disequilibrium, resembling neither the Nash-equilibrium nor

the logit quantal response equilibrium. There is no convergence to equilibrium; rather

behavior in both treatments is characterized by persistent cycling.

Consistent with hypothesis 1, the bidding behavior observed in each treatment is

characterized by persistent, identifiable, disequilibrium cycling. Figures 3.8 and 3.9

illustrate “heat maps” for the same periods as Figures 3.10(a-f). Moreover, note that the

observed cycles in bidding behavior are consistent with the theoretical predictions from

adaptive models illustrated by figure 3.4. In contrast to Hypothesis 3, these cycles are

more rapid in the global-information treatment than in the local information treatment, so

bidding behavior is actually less stable under the presence of social information.

One quantitative way to analyze the observed bidding behavior is to examine the time

series of the mean bid employed by subjects. Figures 3.10(a-c) illustrate the dynamics of
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the average bid in the global information treatment for the first, middle, and last minute,

respectively, of the session. There is also a strong cyclical pattern to the mean bid in

all three phases. Figures 3.10(d-f) provide the dynamics of the average bid in the local

information treatment for the first, middle, and last minute, respectively, of the session.

If subjects employ an equilibrium mixed strategy, then future changes in the mean bid

should be uncorrelated with past changes in the mean bid. To test this hypothesis, we

conduct the Ljung–Box test on the differenced time series of the mean bid. We find that

the Ljung–Box test rejects the null hypothesis of uncorrelated changes in the mean bid

at the one percent level under both treatments, suggesting that subjects exhibit significant

disequilibrium dynamics in both treatments.

Result 10. Observed bidding dynamics differ significantly across treatments.

i. Bidding cycles have higher frequency in the global information treatment than in

local information treatment.

ii. Bidding dynamics under the global information treatment exhibit far less behavioral

noise than under the local information treatment.

The cycles observed in the aggregate bid data also differ across treatments. Figures

3.8 and 3.9 in the global information treatment are characterized by frequent cycles that

appear to be about 5 seconds in length. The cycles are more noisy in Figures 3.10 (b,d,f)

in the local information treatment and the distance from the peak of one cycle to the next

can be as large as 20 seconds. The heat maps in Figures 3.8 and 3.9 also confirm these

results. While cyclical patterns repeat about every 5 seconds in the global information

treatment, they repeat about every 20-40 seconds in the private information treatment.

Consistent with these results, the maximum likelihood estimates reported below indicate

greater precision and less autocorrelation in the global information treatment, suggesting

that the underlying adaptive processes are significantly different across treatments.
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Figure 3.8: Changes in the empirical distribution of bids over time under global
information obtained from a nonparametric conditional density estimator with a bid
bandwidth of 0.5 and a time bandwidth of 0.3 seconds. Figures (a-c) depict the global
information treatment for the first, median, and last minute, respectively.
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Figure 3.9: Changes in the empirical distribution of bids over time under local
information obtained from a nonparametric conditional density estimator with a bid
bandwidth of 0.5 and a time bandwidth of 0.3 seconds. Figures (a-c) depict the local
information treatment for the first, median, and last minute, respectively.
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and last (bottom row) minutes of the global and local information treatments. Figures
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Global Information Local Information
Optimization Imitation Optimization Imitation

precision parameter (β)
1.54

(0.15)
0.60

(0.07)
0.68

(0.05)
0.33

(0.12)

observations 32634 32634 27225 27225
total log-likelihood -58808.48 -66379.35 -57155.04 -58812.47

Table 3.2: Maximum-Likelihood Models of Noisy optimization and Imitation Dynam-
ics, Global-Information and Local-Information Treatments. The noisy optimzation
model outperforms the noisy imitation-response model. Both models perform better in the
global information treatment than in the local information treatment. All parameters are
significant at the 1% level. Standard errors are obtained via subject clustered bootstrap
estimation.

Result 11. Behavior in both treatments is far more consistent with optimization than

imitation.

It is useful to examine which factors best explain bidding behavior in the observed

data. To that end, we estimate adaptive models of both noisy optimization and noisy

imitation (see Section 3.2.2 for a full description of these models). Each model provides

a continuous probability distribution that gives the likelihood fit(b) that a given bid b will

be selected by a subject i at time t, based on a single precision parameter β (see equations

3.6 and 3.7 and figure 3.5 for more details). For a given β, the total likelihood for each of

these models is the product of all observed fi,t(bi,t). The β∗ that maximizes this likelihood

function is the maximum likelihood precision parameter. Table 3.2 provides results for

both models under both treatments of the experiment.

There is a clear ranking of these single parameter models in terms of how they explain

the data. In contrast to hypothesis 2, optimization dynamics are a better predictor of

disequilibrium subject behavior than noisy imitation dynamics under both treatments.

Both models have more explanatory power in the global information treatment than in

local information treatment, which is consistent with our finding of greater behavioral
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noise in the local-information treatment than the global-information treatment (see Result

10 for details).

After examining simple one-parameter models separately, it is desirable to combine the

noisy optimization, and noisy imitation models in a combined model. We also consider

models that include an autocorrelation term accounting for the tendency of subjects to

select new bids close to their previous bid. This term is especially relevant in the local

information treatment where subjects are unable to observe the bids of others, and hence,

tend to employ a trial and error strategy.5

Table 3.3 provides parameter estimates for the combined model in the local-information

and global-information treatments. In the global-information treatment, subject bidding

behavior is primarily driven by payoff incentives following the noisy optimization dy-

namic. In addition, there is also some degree to which individuals tend to select bids close

to their own previously used bid. Under local information, bidding behavior is largely

driven by autocorrelation with previously selected bids, with the payoffs under the noisy

imitation dynamic as a secondary factor.

The difference in the explanatory power of the noisy optimization dynamic across

treatments is not surprising. Subjects have the ability to directly maximize their payoff

only when they have information regarding the bids employed by others. Thus, in the

global-information treatment, they can directly respond to their payoff incentives. In

the local-information treatment, they only receive information about the payoff they earn

from the strategy they currently employ. Without further information about the strategies

employed by others, subjects cannot easily determine how their payoff would change

if they were to adjust their strategy. In this case, it makes sense that subjects would

5To make this point more salient, if the bid autocorrelation term were part of our one-parameter model
comparison in Table 3.2, it would provide the greatest explanatory power in the local-information treatment.
In the global information treatment, it would still outperform the imitative response model, but not the
optimization response model.
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Global Information Local Information

logit (α)
(payoffs)

1.37
(0.11)

1.48
(0.14)

0.56
(0.07)

0.48
(0.05)

previous bids (β)
(subject specific) -

0.56
(0.07) -

1.39
(0.11)

imitation response (γ)
(the highest earning bid)

0.12
(0.03)

0.07
(0.03)

0.10
(0.02)

0.08
(0.02)

observations 32634 32634 27225 27225
log-likelihood -58345.36 -49805.06 -56954.91 -33030.53
mean log-likelihood -1.79 -1.52 -2.09 -1.21
typical bid likelihood 0.17 0.22 0.12 0.30

Table 3.3: Multiple-Parameter Models of Bidding Dynamics. A multi-parameter model
including terms for logit and imitative dynamics is estimated on both the local and global
information treatments. An additional specification includes a term for the tendency of
subjects to make bids close to their previous bids. All parameters are significant at the 1%
level. Standard errors are obtained via subject clustered bootstrap estimation.

experiment by making trial adjustments and then return to the strategies that provided the

highest payoffs. This trial-and-error approach is consistent with the high autocorrelation

of current bids and previous bids in the local-information treatment and it also explains

how subjects are able to approximately best respond to their opponents’ strategies without

directly observing them.

Imitation explains very little of the observed behavior in either treatment. In the local

information treatment, subjects see neither the payoff nor the strategy of any subject other

than themselves, so the lack of imitation is unsurprising, since subjects can not directly

implement the imitative model. However, in the global-information treatment, subjects

need only to click on the highest bar to perfectly follow the imitative model, but the data

indicate that subjects use something more complex than a simple imitation heuristic; they

perform noisy myopic payoff optimization.

The autocorrelation in subject bids may explain why the imitative dynamic appeared
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to have some explanatory power in a one-parameter model. Since bids tend to bunch

together, as illustrated in Figure 3.8, the autocorrelation with a subject’s own previous bid

produces similar predictions to imitation of the bids employed by others. Consequently, a

simple one-parameter imitation model with no autocorrelation parameter can misidentify

autocorrelation in a subject’s own bids for imitation of others. Results from the combined

model presented in Table 3.3 suggest that much of the explanatory power attributed to

imitation under the global informaton treatment actually results from autocorrelation with

a subjects own previous bid.

3.6 Conclusion

This study experimentally investigates dynamic bidding behavior in continuous-time,

all-pay auctions. In contrast to previous experimental studies of the all-pay auction,

our subjects earned continuous flow payoffs and could adjust their bids asynchronously

throughout the experiment. By permitting this type of asynchronous adjustment, we

obtain a remarkably fine-grained picture of the empirical bidding behavior, allowing a

close examination of behavioral bidding dynamics.

Consistent with theoretical predictions from adaptive models, but in contrast with both

Nash and quantal response equilibrium predictions, subjects in our experiment exhibited

persistent cyclical bidding behavior. This sustained disequilibrium behavior, along with

the markedly discontinuous nature of payoff functions in the all-pay auction, allows

us to closely investigate the predictive power of imitative and optimization dynamics.

Surprisingly, behavior in the global-information treatment, which provides each subject

with the information to easily employ imitative dynamics, is characterized by increased

precision of optimization behavior but very little imitative behavior, resulting in higher

bids, lower payoffs, and more rapid behavioral cycles.

Our results suggest a general failure of imitative models to adequately describe
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human cognition in strategic settings. Subjects in the global information treatment could

easily imitate the highest performing subject by selecting the highest line on a computer

screen. However, instead of merely imitating successful strategies, subjects followed more

sophisticated optimization methods, responding to the structure of their payoff incentives.

In the local-information treatment, subjects do not have the necessary information to

imitate other subjects. In the absence of social information, subjects employ trial-and-

error strategies, selecting strategies near those that gave them higher payoffs. Subjects

in the global information treatment compete more vigorously, their bidding cycles are

far more rapid, and they exhibit far less behavioral noise. As a result, both average

bids and average earnings are significantly closer to equilibrium predictions in the global

information treatment than in the local information treatment.

While this experiment is primarily concerned with testing theoretical predictions, it

also provides some interesting policy implications. In particular, these results suggest

that policy makers may want to promote the distribution of social information in strategic

environments where effort expenditure has positive externalities, such as patent races or

competition for research grants. In contrast, policy makers may want to discourage the

distribution of social information in strategic environments where effort expenditure is

wasteful or has negative externalities, such as political lobbying or international warfare.

Naturally, further research will be needed to verify the extent to which these experimental

results carry over to other strategic environments.

3.7 Mathematical Appendix

3.7.1 Nash Equilibrium Derivation

Consider the following auction with three bidders and two prizes. Each player starts

with an endowment w selects her bid from the closed interval [0, w]. After all three bids

have been selected, the top two bidders each receive a prize with value v < w. However,
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every player must pay her bid, regardless of whether or not she won a prize. In the case of

a tie, the remaining prizes are randomly assigned among the tying players. Accordingly,

the payoff function for player i is given by:

πi (si, sj, sk) =



w − si + v if si > min {sj, sk}

w − si + 2v/3 if si = sj = sk

w − si + v/2 if si = min {sj, sk} < max {sj, sk}

w − si otherwise

Suppose that there exists a continuous symmetric mixed strategy Nash equilibrium

with support over the closed interval [0, v]. Let F (z) = P (bj < z) denote the

corresponding cumulative distribution function. Let Wi denote the event that bidder i

wins and receives and item. Let Li denote the event that bidder i loses and does not

receive and item. If bidder j and bidder k follow this Nash equilibrium mixed strategy,

then the probability that bidder i loses the auction is given by:

P (Li) = P (bi < bj and bi < bk)

= P (bi < bj)P (bi < bk) = P (bi < bj)
2

= [1− P (bj < bi)]
2 = [1− F (bi)]

2

= 1− 2F (bi) + F (bi)
2

Now the probability that bidder i wins the auction is given by:

P (Wi) = 1− P (Li)

= 1−
[
1− 2F (bi) + F (bi)

2]
= 2F (bi)− F (bi)

2
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Hence bidder i’s expected payoff, conditional on her bid, is given by:

πi (bi) = w + vP (Wi)− bi

= w + v
[
2F (bi)− F (bi)

2]− bi
= w + 2vF (bi)− vF (bi)

2 − bi

If the mixed strategy F is a best response for agent i, then she must be indifferent

between all of the bids in the support of F . Hence all of the bids in the closed interval

[0, v] must yield the same expected payoff for bidder i. Moreover, since bidding zero will

certainly yield an expected payoff of zero, every bid between zero and v must yield an

expected payoff of zero. Accordingly, we can write:

πi (bi) = 0 for all bi ∈ [0, v]

2vF (bi)− vF (bi)
2 − bi = 0

−bi = −2vF (bi) + vF (bi)
2

−bi
v

= −2F (bi) + F (bi)
2

1− bi
v

= 1− 2F (bi) + F (bi)
2√

1− bi
v

= 1− F (bi)

F (bi) = 1−
√
1− bi

v
for all bi ∈ [0, v]

Differentiating this cumulative distribution function obtains the Nash equilibrium

probability density function:

f (bi) =
1

2v

(
1− bi

v

)−1/2
for all bi ∈ [0, v]
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3.7.2 Logit Quantal Response Equilibrium Derivation

Consider the following auction with three bidders and two prizes. Each player starts

with an endowment w selects her bid from the closed interval [0, w]. After all three bids

have been selected, the top two bidders each receive a prize with value v < w. However,

every player must pay her bid, regardless of whether or not she won a prize. In the case of

a tie, the remaining prizes are randomly assigned among the tying players. Accordingly,

the payoff function for player i is given by:

πi (si, sj, sk) =



w − si + v if si > min {sj, sk}

w − si + 2v/3 if si = sj = sk

w − si + v/2 if si = min {sj, sk} < max {sj, sk}

w − si otherwise

Suppose that there exists a continuous symmetric logit quantal response equilibrium

with support over the closed interval [0, w]. Let F (z) = P (bj < z) denote the

corresponding cumulative distribution function. LetWi denote the event that bidder i wins

and receives and item. Let Li denote the event that bidder i loses and does not receive and

item. If bidder j and bidder k follow this mixed strategy, then the probability that bidder i

loses the auction is given by:

P (Li) = P (bi < bj and bi < bk)

= P (bi < bj)P (bi < bk) = P (bi < bj)
2

= [1− P (bj < bi)]
2 = [1− F (bi)]

2

= 1− 2F (bi) + F (bi)
2
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Accordingly, the probability that bidder i wins the auction is given by:

P (Wi) = 1− P (Li)

= 1−
[
1− 2F (bi) + F (bi)

2]
= 2F (bi)− F (bi)

2

Hence bidder i’s expected payoff, conditional on her bid, is given by:

πi (bi) = w + vP (Wi)− bi

= w + v
[
2F (bi)− F (bi)

2]− bi
= w + 2vF (bi)− vF (bi)

2 − bi

Under a logit quantal response equilibrium, agents do not always select their best

response, but they are more likely to select bids that yield higher payoffs. Here the level of

behavioral noise is indexed by the parameter η. As η approaches infinity, the logit quantal

response equilibrium approaches uniformly random behavior. As η approaches zero, the

logit quantal response equilibrium approximates a Nash equilibrium. Formally, we can

write:

f (b) =
exp (ηπi (b))∫ w

0

exp (ηπi (x)) dx

f (b) =
exp

(
η
(
2vF (b)− vF (b)2 − b

))
C0

C0f (b) = exp
(
2ηvF (b)− ηvF (b)2 − ηb

)
C0
dF

db
= exp

(
2ηvF (b)− ηvF (b)2 − ηb

)
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Integrating both sides of this differential equation obtains

C0

∫
exp

(
ηvF 2 − 2ηvF

)
dF = exp (−ηb) db

ηC0

∫
exp

(
ηvF 2 − 2ηvF

)
dF =

1

η
− 1

η
exp (−ηb)

C1 exp (ηv)

∫
exp

(
ηv (F − 1)2

)
dF =

1

η
− 1

η
exp (−ηb)∫

exp
(
ηv(F − 1)2

)
dF = C3 − C4 exp (−ηb)

error function by introducing the function G (x) =

We can solve for the cumulative distribution ∫function F in terms of the imaginary
x

0

exp (u2) du =
√
π
2

erfi (x).

G (
√
ηv (F − 1)) = C3 − C4 exp (−ηb)
√
ηv (F − 1) = G−1 (C3 − C4 exp (−ηb))

F − 1 =
1
√
ηv
G−1 (C3 − C4 exp (−ηb))

F (b) = 1− 1
√
ηv
G−1 (C3 − C4 exp (−ηb))

Now since bids are restricted to be non-negative, we have

F (0) = 0

1− 1
√
ηv
G−1 (C3 − C4 exp (0)) = 0

1
√
ηv
G−1 (C3 − C4) = 1

G−1 (C3 − C4) =
√
ηv

C3 − C4 = G (
√
ηv)

C3 = C4 +G (
√
ηv)
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Similarly, since bids cannot exceed the endowment w, we have

F (w) = 1

1− 1
√
ηv
G−1 (C3 − C4 exp (−ηw)) = 1

1
√
ηv
G−1 (C3 − C4 exp (−ηw)) = 0

G−1 (C3 − C4 exp (−ηw)) = 0

C3 − C4 exp (−ηw) = G (0) = 0

C4 +G (
√
ηv)− C4 exp (−ηw) = 0 since C3 = C4 +G (

√
ηv)

G (
√
ηv) = C4(exp (−ηw)− 1)

C4 =
G
(√

ηv
)

exp (−ηw)− 1

We can use these solutions for C3 and C4 to obtain a closed form solution for the

cumulative distribution function F

F (b) = 1− 1
√
ηv
G−1 (C3 − C4 exp (−ηb))

F (b) = 1− 1
√
ηv
G−1 (C4 +G (

√
ηv)− C4 exp (−ηb)) since C3 = C4 +G (

√
ηv)

F (b) = 1− 1
√
ηv
G−1

(
G (
√
ηv)

[
1− 1− exp (−ηb)

1− exp (−ηw)

])
since C4 =

G
(√

ηv
)

exp (−ηw)− 1

Differentiating the cumulative distribution function F obtains the corresponding
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probability density function

f (b) = F ′ (b) = − 1
√
ηv

∂

∂b

[
G−1

(
G (
√
ηv)

[
1− 1− exp (−ηb)

1− exp (−ηw)

])]
f (b) = − 1

√
ηv

∂

∂b

[
G−1 (H(b))

]
f (b) = − 1

√
ηv

∂G−1(H(b))

∂H(b)
H ′(b)

f (b) = − 1
√
ηv
G′(G−1(H(b)))−1H ′(b)

f (b) = − 1
√
ηv

exp(G−1(H(b))2)−1H ′(b) since G′ (x) = exp
(
x2
)

f (b) = − 1
√
ηv

exp(−G−1(H(b))2)H ′(b)

f (b) = − 1
√
ηv

exp(−G−1(H(b))2)H ′(b)

f (b) =
ηG
(√

ηv
)
exp (−ηb)

√
ηv [1− exp (−ηw)]

exp(−G−1(H(b))2) since H ′(b) = −
ηG
(√

ηv
)
exp (−ηb)

[1− exp (−ηw)]

f (b) =
ηG
(√

ηv
)
exp (−ηb)

√
ηv [1− exp (−ηw)]

exp

(
−G−1

(
G (
√
ηv)

[
1− 1− exp (−ηb)

1− exp (−ηw)

])2
)

3.7.3 Evolutionary Instability of the Nash Equilibrium

Intuitively, a strategy is evolutionarily stable if it induces a self-enforcing convention.

In other words, a strategy x is evolutionarily stable if no other strategy y can invade it

when the entire population initially employs strategy x. More formally, in a in a symmetric

normal form game, a strategy x is evolutionarily stable if there exists someC ∈ (0, 1) such

that for all ε ∈ (0, C) and for any other strategy y

π ( x | εy + (1− ε)x ) > π ( y | εy + (1− ε)x ) (3.10)

Thus, if x is evolutionarily stable and a sufficiently small proportion of the population

deviates to an alternate strategy y, then agents who employ x will earn a strictly higher
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payoff than agents who employ y.

The Nash equilibrium strategy for the all-pay auction is not evolutionarily stable. To

see why, suppose that a small proportion ε of the population deviates from the Nash

equilibrium strategy x to an alternate strategy y under which agents always bid the full

value of the prize. Since the support of the equilibrium bid distribution is given by the

closed interval [0, v], agents who employ the invading strategy y will win the prize with

probability one whenever they are matched against an agent who employs the equilibrium

bidding strategy. So the expected payoff to an agent who deviates to strategy y is given by

π ( y | εy + (1− ε)x ) = ε2π1 (y, y, y) + 2ε (1− ε) π1 (y, y, x) + (1− ε)2 π1 (y, x, x)

π ( y | εy + (1− ε)x ) = ε2π1 (y, y, y) since π (y, y, x) = π1 (y, x, x) = 0

π ( y | εy + (1− ε)x ) = −ε
2v

3
since π1 (y, y, y) = −

v

3

On the other hand, the expected payoff to an agent who employs the equilibrium mixed

strategy is given by

π ( x | εy + (1− ε)x ) = ε2π1 (x, y, y) + 2ε (1− ε) π1 (x, y, x) + (1− ε)2 π1 (x, x, x)

π ( x | εy + (1− ε)x ) = ε2π1 (x, y, y) + 2ε (1− ε) π1 (x, y, x) since π1 (x, x, x) = 0

π ( x | εy + (1− ε)x ) < −ε2π1 (x, y, y) since π1 (x, y, x) < 0

π ( x | εy + (1− ε)x ) < −ε2E{bid|x} since π1 (x, y, y) = −E{bid|x}

π ( x | εy + (1− ε)x ) < −2ε2v

3
since E{bid|x} = 2v

3

π ( x | εy + (1− ε)x ) < π1
(
y, (εy + (1− ε)x)2

)
since − 2ε2v

3
< −ε

2v

3

Thus the invading strategy y earns a higher expected payoff than the equilibrium mixed

strategy x, so the equilibrium mixed strategy for the all-pay auction with three bidders and
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two prizes is not evolutionarily stable. Hence the mixed strategy Nash equilibrium does

not induce a self enforcing convention in this all-pay auction. Accordingly, we expect to

observe dynamic instability in experimental bidding behavior.
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