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ABSTRACT 

	

Acquisition of ectopic expression of type 1 receptor for the fibroblast growth 

factor receptor type1 (FGFR1) in prostate cancer (PCa) is well documented. 

However, while it is known that FGFR confers a growth advantage and promotes 

cell survival, how this aberrantly expressed transmembrane receptor tyrosine 

kinase contributes to PCa progression is not fully understood. Therefore, we 

investigated the roles of FGF signaling in both cancer metabolism and tumor 

angiogenesis. In first part of our study, we used a TRAMP mouse model with 

tissue specific deletion of fibroblast growth factor receptor substrate 2α (Frs2α), 

a key adaptor protein of the FGF signaling, in the prostate epithelium to 

investigate whether epithelial FGF signaling affects blood vessel cell 

functionality. Results showed that deletion of Frs2α decreased the blood vessels 

in prostate tumors. Similarly, conditioned medium of Frs2α knockdown prostate 

cancer cells inhibited the tube formation of human umbilical vein endothelial 

cells (HUVEC). Frs2α knockdown also decreased the ability of tumor cells to 

recruit HUVECs. We also discovered that ablation of Frs2α decreased the 

production of vascular endothelial growth factor A (VEGFA) primarily through 

preventing the binding of transcription factors HIF1α and c-Jun to its promoter 

region in prostate cancer cells and in vivo. We also demonstrated that 

hyperactivity of Frs2α, as well as upregulation of c-Jun and HIF1α, were 

positively associated with vessel density and progression of human PCa. In the 
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second part of this study, we reported that FGFR1 tyrosine kinase promoted 

aerobic glycolysis via regulating the expression pattern of lactate 

dehydrogenase (LDH): it tyrosine phosphorylated type A LDH (LDHA) and 

enhanced its stability, which favors the conversion of pyruvate to lactate, and 

therefore, decreases oxidative phosphorylation. Concurrently, FGFR1 

downregulated the expression of type B LDH (LDHB) via increasing promoter 

methylation, which favors the conversion of lactate to pyruvate. Furthermore, 

consistent with the expression level of ectopic FGFR1, high levels of 

phosphorylated LDHA accompanied by diminished LDHB were associated with 

short overall survival and biochemical recurrence free survival time in PCa 

patients. This suggests that the dysregulated expression of LDH isozymes is of 

clinical value for PCa prognosis.     
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CHAPTER I

INTRODUCTION 

Cancer cells, in order to meet the needs of rapid proliferation, rewire their 

metabolism and signaling pathways to generate ATP and other metabolic 

components that are essential for cellular processes (1-5). One of the 

characteristics of tumor cells is a shift from oxidative phosphorylation to 

glycolysis even though oxygen is sufficient, a phenomenon that is termed as the 

Warburg effect (6). ATP, oxygen and other metabolic building blocks contribute 

to the building of new cell mass during cell division. Glucose and other nutrients 

are from the environment that eventually becomes hypoxic due to the depletion 

of oxygen and nutrients as tumor growth outstrips the ability of the local 

vasculature to supply increasing demand. To expand and metastasize, tumor 

cells interact with the environment and induce the generation of new blood 

vessels to transfer nutrients from other parts of a human body. Therefore, tumor 

angiogenesis and cancer metabolism are both adaptations that tumor cells need 

to employ to meet their changing needs (3).  

Weinberg proposed several hallmarks of cancers acquired during the 

development of human tumors. They include sustained proliferation signals, loss 

of tumor suppressors, induction of angiogenesis, activation of invasion and 

metastasis, cell death resistance, deregulated energy metabolism, enabling 

replicative immortality, and loss of immune checkpoints (7). Of note, these 

processes are not independent of or irrelevant to each other. In fact, the 
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signaling pathways that modulate these processes often overlap. For example, 

hypoxia-inducible factor 1α (Hif1α) stimulates the expression of VEGF-A to 

activate angiogenesis (8), but it also upregulates genes such as Glut1 and Ldha 

that are essential for glycolysis. Major oncogenes that operate in tumors, such 

as Myc and Ras, can upregulate angiogenesis factors in endothelial cells, and 

they can also regulate genes that are important for energy metabolism. 

Importantly, FGF is able to induce angiogenesis either through activating the 

proliferation of endothelial cells or by inducing VEGF-A which has been 

discussed earlier. Moreover, a recent study shows that FGF signaling activates 

angiogenesis by stimulating HK2 mediated glycolysis (9). Collectively, such 

observations reveal that cancer occurrence is a multi-step and well organized 

process that can be regulated by the same driver genes.  

The relationship between glycolysis and angiogenesis has also been under 

investigation regarding the order of these two processes during tumor 

progression. Emerging evidence has shown that the “glycolytic switch” occurs 

before the “angiogenic switch” and tumors do not become vascularized until the 

basement membrane separating epithelium and blood vessels is breached (10). 

The glycolytic switch initially occurs due to hypoxia in the tumor 

microenvironment. Increased glycolysis results in an acidic tumor environment 

(low PH), which facilitates the degradation of the extracellular matrix (ECM). The 

acidic environment is toxic to nearby normal cells but not cancer cells (3). 

Although it is commonly believed that the altered metabolism is a result of 
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genetic changes including mutations in oncogenes and tumor suppressors, the 

induction of glycolysis is as important as the mechanism of it. There is a 

hypothesis arguing that the shift to aerobic glycolysis is the defining moment 

when normal cells become cancerous (3).  

Prostate glands, which lie under the bladder and surround the urethra, produce 

fluids that form 25-30% of semen. Prostate cancer (PCa) is one of the leading 

causes of death in North America. Its progression is a multi-step process that 

develops relatively slowly and it often manifests in aged men. In the US, 1 out of 

5 men are diagnosed with prostate cancer, although most patients with prostate 

cancer do not die from this disease. It usually arises within the peripheral zone 

of prostate glands which is distinct from the benign hyperplasia that occurs 

mainly in the transition zone (11). Early staged prostate cancer can be treated 

by physical removal of the tumors or with antigen deprivation therapy. However, 

metastatic prostate cancer migrates to bone, lung and brain and becomes 

castration resistant and deadly. Therefore, it is important to diagnose prostate 

cancer at relatively early stages. The prostate-specific antigen (PSA) test, 

transrectal ultrasound, transrectal magnetic resonance imaging (MRI) and 

biopsy can be used to detect and diagnose prostate cancer.  

Stromal cells and epithelial cells compose the two major compartments of 

prostate. Prostate epithelium has three major cell types: basal cells, luminal cells 

and neuroendocrine cells.  These three cell types can be distinguished by 

molecular markers, morphology, function and relevance to the progression of 
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prostate cancer (12). Luminal cells, which are column-shaped secretory cells, 

are the major type of prostate epithelium. They primarily express androgen 

receptors (AR), cytokeratin 8 and 18, and the CD57. Basal cells, residing 

between the basement membrane and the luminal cells, primarily express p63, 

cytokeratin 5 and 14, and CD44. Although the lineage of basal cells is still 

controversial, evidence shows that they are the sources of epithelial stem cells 

and transiently amplifying cells (13,14).  

FGF signaling is comprised of at least 18 FGF ligands and 4 FGF receptors. By 

binding with FGF ligands along with heparan sulfate (HS), the active 

FGF/FGFR/HS complex recruits and activates downstream pathways such as 

the MAP kinase and PI3K pathways through its adaptor protein-Frs2α. 

Alternatively, FGF can bind and activate phospholipase C-gamma (PLCg) 

through the C-terminal tail of the FGFR kinases (15,16) and this process is 

independent of Frs2α. FGF regulates a broad spectrum of cell activities, such as 

proliferation, apoptosis, differentiation and autophagy in contexts ranging from 

tissue regeneration to tumor progression.  

The FGF is a proangiogenic factor that stimulates the proliferation of endothelial 

cells (17). However, whether aberrant FGF signaling, which is commonly 

observed in tumor cells, is directly involved in prostate tumor angiogenesis of 

prostate cancer remains unclear. Frs2α mediates FGF signaling from FGF 

receptors to downstream pathways such as MAPK and AKT pathway. Activation 

of Frs2α is correlated with multiple cancers including high grade serous ovarian 
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cancer, metastatic renal cell carcinoma, pancreatic cancer, and high grade 

liposarcoma (18-20).  

Metabolic reprogramming has emerged as an emerging hallmark of cancer. 

Studies have shown that increased glycolysis is associated with late stages PCa 

and poor prognosis (21). A glycolytic gene, fructose-2,6-biphosphatase 4 

(PFKFB4) was also found hyperactivated in PCa, further supporting the idea of 

targeting glycolysis pathways to treat advanced staged PCa (22). In addition to 

PFKFB4, intensive studies have shown that glycolytic enzymes, such as 

pyruvate kinase M2 form (PKM2), (glucose transporter) GLUT1, 

monocarboxylate transporter (MCT), LDHA, and others are implicated in multiple 

cancers (23). Furthermore, cancer cell chemoresistance is largely due to 

increased levels of aerobic lactate production (24). Despite a wealth of 

information that has been generated regarding cancer metabolism, little has 

been translated to clinical applications. One of the obstacles researchers are 

facing is a lack of animal models to recapitulate metabolism in the human body. 

Also a lack of understanding of mutual interactions between the tumor 

environment (cancer types), genetic features, and the tumor’s metabolic 

dependencies also impedes development of new therapies.  
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CHAPTER II  

HYPERACTIVATED FRS2a - MEDIATED SIGNALING IN PROSTATE 

CANCER CELLS PROMOTES TUMOR ANGIOGENESIS AND PREDICTS 

POOR CLINICAL OUTCOME OF PATIENTS1* 

	

Introduction 

Tumor angiogenesis is a crucial step for tumor cells to acquire oxygen and other 

nutrients. It involves the proliferation, migration and tube formation of endothelial 

cells and pericytes. The angiogenic switch, firstly described by Judah Folkman, 

is a process that tumor cells utilize to gain more nutrients and oxygen since 

these are not available locally when tumors grow to a certain size (25). Tumor 

cannot reach 1-2 mm3 without getting nutrients from new blood supply supported 

by endothelial cells (26). The tumor microenvironment becomes hypoxic and 

acidic due to the extensive of utilization of oxygen and increased aerobic 

glycolysis by tumor cells. Hypoxia, stabilizing Hif1a, triggers the adaptations of 

tumor cells to the changing environment. Vascular endothelial growth factors 

(VEGFs), primarily secreted from tumor cells, along with other angiogenic 

factors such as FGFs and platelet-derived growth factor B (PDFG-B), activate 

																																																													
* Part of the data reported in this chapter is reprinted with permission from “Hyperactivated 
FRS2α-mediated signaling in prostate cancer cells promotes tumor angiogenesis and predicts 
poor clinical outcome of patients” by J Liu, P You, G Chen, X Fu, X Zeng, C Wang, Y Huang, L 
An, X Wan, N Navone, C-L Wu, WL McKeehan, Z Zhang, W Zhong and F Wang,2016. 
Oncogene, 35, 1750-1759, Copyright [2016] by Junchen Liu.  
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the proliferation and migration of endothelial cells within the microenvironment. 

The angiogenic switch can also be activated by inhibiting anti-angiogenic factors 

(27). The balance between pro-angiogenic and anti-angiogenic signals controls 

the rate of tumor angiogenesis, and eventually determines the growth and 

survival of tumors. Since angiogenesis is considered as a fundamental step for 

the progression of aberrantly proliferating tumor cells, it's crucial to understand 

what signaling pathways activate and control angiogenesis. This will lead to 

another questions, including whether we can target angiogenesis to treat tumors 

such as prostate cancer (PCa).  

FGF-2 was one of the first pro-angiogenic factors to be discovered. Secreted by 

tumor, stromal and even endothelial cells, FGF2 also induced the expression of 

VEGF in blood vessels cells through paracrine and autocrine mechanisms. 

Recombinant adenovirus expressing soluble FGFR, which inhibited FGF 

function, reduced the growth of pancreatic tumors through interfering with the 

vasculature of tumor cells (17). In a murine pancreatic neuroendocrine tumor 

model, tumors cells treated with anti-VEGF therapy develop resistance due the 

upregulation of FGF2, suggesting of the cross-talk between FGF signaling and 

VEGF signaling (28). The detailed mechanism of this cross talk might be 

essential to effectively target tumor progression through inhibiting angiogenesis. 

FGF2 also synergistically promoted rumor angiogenesis with another 

proangiogenic factor PDGF-BB. Vascular smooth muscles cells (VSMCs) 

treated with PDGF-BB respond to FGF2 effectively via FGFR1 promoter activity 



	
	

 

	

8 

(29). Since FGFR1 is hyperactivated in ~40% of prostate cancers, FGFR-

mediated signals could play essential roles in stimulating the disorganized 

vasculature in tumor outgrowth and metastasis.  

Microvessel density (MVD), which reflects the expansion of the vasculature 

within tumors, serves as an essential marker for the histological analysis of 

tumor angiogenesis (6). Studies have suggested that MVD can be used as a 

predictive marker for prostate cancer (6,30).  

Herein we show that overexpression and elevated phosphorylation of FRS2α is 

associated with tumor angiogenesis as well as clinical features of human PCa. 

Ablation of Frs2α in prostate epithelial cells compromised angiogenesis in the 

TRAMP mouse prostate tumor model. Depleting Frs2α expression in human 

PCa cells also reduced their ability to recruit human umbilical cord endothelial 

cells (HUVEC) in vitro and host endothelial cells in vivo. A detailed analysis 

revealed that Frs2α-mediated signals in PCa cells contributed to tumor 

angiogenesis via promoting production of VEGF-A through the HIF1α and cJUN 

pathways in the cells. This in turn recruited endothelial cells to the tumor. Thus, 

the results reveal a novel mechanism by which Frs2α-mediated signaling in PCa 

epithelial cells facilitated tumor angiogenesis within the microenvironment, 

unraveling the potential of overexpressed Frs2α as a biomarker for PCa 

diagnosis, and providing a rationale for treating PCa by inhibiting Frs2α-

mediated signaling in epithelial cells or pro-angiogenic factors controlled by it.  
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Materials and Methods 

Animals and isolation of tissues  

All animals were housed in the Program of Animal Resources of the Institute of 

Biosciences and Technology, Texas A&M Health Science Center, and were 

handled in accordance with the principles and procedures of the Guide for the 

Care and Use of Laboratory Animals. All experimental procedures were 

approved by the Institutional Animal Care and Use Committee. Mice carrying the 

ARR2PBi-Cre, Frs2α floxed and TRAMP transgenic alleles were maintained and 

genotyped as previously described. A total of 40 TRAMP mice were generated 

for this study. No randomization was used in this study.  

Histology and immunostaining 

Prostate or PCa tissues were fixed, dehydrated, embedded, and sectioned 

according to standard procedures. Antigens were retrieved by boiling in the 

citrate buffer (10 mM) for 20 minutes or as suggested by manufacturers. All 

sections were incubated with primary antibodies diluted in PBS at 4°C overnight. 

The rabbit anti-cJUN antibody (1:200) was purchased from Cell Signaling 

Technology (Beverly, MA); rabbit anti-HIF1α (1:200) and rabbit anti- CD31 

(1:200) from Abcam (Cambridge, MA); mouse anti-CD31 (1:200) antibody from 

Novus Biologicals (Littleton, CO); rabbit anti-Frs2α from Santa Cruz (Santa 

Cruz, CA); rabbit anti-NG2 antibody from Chemicon (Billerica, MA); biotinylated-

isolectin B4 from Vector Labs (Burlingame, CA). Specifically bound antibodies 
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were detected with alkaline phosphatase staining or FITC-conjugated secondary 

antibodies (Life Technologies, Grand Island, NY). 

For expression of Frs2α and CD31 in human PCa, the Massachusetts General 

Hospital (MGH) PCa TMA was used. It includes 240 consecutive patients with 

PCa who underwent radical prostatectomy at the MGH from September 1993 to 

March 1995. For analyses of Frs2α phosphorylation in PCa, the human PCa 

TMA from the Shanghai Outdo Biotech Co, LTD (Shanghai, China, Cat No: 

HPro-Ade180PG-01) was used. It includes 99 primary PCa and 81 adjacent 

non-cancerous prostate tissues with the pathological features characterized by 

the vendor. Two experienced pathologists independently scored the results 

without any information about the samples. Only epithelial staining was counted. 

The scores were compared, and discrepant scores were subjected to re-

examination by both individuals to achieve a consensus score. Immunostaining 

of PCa and stromal cells was evaluated separately. The percentage of positive 

cells was calculated and categorized as following: 0, 0 %; 1, 1–10 %; 2, 11–

50 %; 3, 50 –75%; and 4, 75–100%. The staining intensity was visually scored 

and defined as 0, negative; 1, weak; 2, moderate; and 3, strong. Final 

immunoreactivity scores (IRS) were calculated for each case by multiplying the 

percentage and the intensity score. The specificities of the antibodies were 

validated as shown in online Fig. 2. 

Matrigel plug  

Young adult (8-week-old) male nude mice were used for the Matrigel plug assay. 
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Cells (1X106) were infected with control or shFrs2 lentivirus before being mixed 

with 0.5 ml Matrigel on ice, for a final Matrigel concentration of 10 mg/ml. The 

Matrigel-cells mixtures were then implanted into the right flank of the mice. The 

plugs were harvested 14 days after the implantation.  

Cell culture and conditioned medium collection  

PC3 and DU145 cells were cultured in 10% FBS-DMEM medium. HUVECs were 

purchased from ScienCell Research Laboratories and grown in ECM medium 

(ScienCell, Carlsbad, CA). Conditioned medium was collected from confluent 

PC3 cell cultures 24 hours after changing the medium to 0.2% DMEM + FBS. 

The medium was filtered with 0.22 μm filters prior to being used.  

Cell proliferation  

PCa cells infected with shCtrl and shFrs2α lentivirus for 24 hours were seeded 

in 96-well plates at a density of 5,000 cells per well. After being cultured in 37°C 

for 48 hours, the cell densities were measured with the Cell Counting Kit-8 

(Dojindo, Gaithersburg, MD). Data represent the mean ± sd of four wells.  

Endothelial recruitment 

PCa cells (2.5x104/well) seeded in 24-well plates were transfected with the 

indicated siRNAs. After being cultured at 37°C for 48 hours, the cells were 

washed with PBS and the culture media were replaced with EGM + 0.2% FBS. 

Each well was then received a chamber with an 8.0 μm pore size membrane 
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(BD Falcon) containing 1x105 serum-starved HUVECs in 0.5 ml 0.2% FBS-ECM 

medium. After the co-culture for 32 hours at 37°C, HUVEC cells were fixed with 

4% paraformaldehyde and stained with hematoxylin. Three randomly pick areas 

in each insert were imaged and numbers of migrated HUVEC cells in each 

imaged area were counted. Data are mean ± sd of 3 replicates.  

Aortic ring assay 

Collagen was added to ice-cold DMEM to a final concentration of 1 mg ml. The 

pH was adjusted with a few drops of 5-N NaOH: ~20 µl per 10 ml to a final pH of 

7.2. 50 µl of collagen matrix was transferred to each well of a 96-well plate, a 

few wells at a time, so that the matrix does not polymerize before addition of 

aortic rings. The 96-well plate format is essential for efficient aortic ring sprouting 

in collagen; aortic rings embedded in collagen in larger wells produce less 

growth factor and thereby support microvessel growth to a lesser extent. Plates 

were left undisturbed for 10–15 min at room temperature and then incubated at 

37 °C/5% CO2 for 1 h. 150 µl of Opti-MEM culture medium supplemented with 

2.5% (vol/vol) FBS and VEGF (final concentration of 30 ng/ml) was added to 

each well. Penicillin-streptomycin was added in the medium unless the rings had 

been transfected or transduced. Growth medium was changed first on day 3 or 

day 4 and then approximately every other day until the experiment ended by 

removing 130 µl of old medium and replacing with 150 µl of fresh medium. 
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Scratch wound healing 

HUVECs (1 x 105 cells/well) were seeded in six-well plates pre-coated with 

0.1% gelatin. The cells were grown to confluence, followed by serum-starvation 

overnight and 5ug/ml mitomycin treatment to stop cell proliferation. A scratch in 

each well was made with a pipette tip. The cells were then cultured in the EGM 

containing 0.5% FBS with or without supplemented with PC3-conditioned media. 

The number of HUVECs that migrated were counted using a phase contrast 

microscope.  

HUVEC tube formation  

HUVECs (2x104) were seeded in 24-well plates containing 0.5 ml solidified 

Matrigel (10 mg/ml) and cultured in EGM medium with or without 

supplementation of PC3 conditioned medium for 8–12 hours at 37°C. Images 

were acquired with a phase-contrast microscope. Average numbers of tubes 

were counted in three individual wells and presented as mean ± sd.  

Gene silencing with siRNA or shRNA  

siRNA targeting Frs2αα, Hif1a, Ap2 and Sp1 were purchased from Dharmacon, 

GE health (Lafayette, CO, Catalog number: L-006440-00-0005, J-026959-08-

0002, J-006348-06-0002 and J-004018-08-0002. PC3 cells were transfected 

with siRNA 48 hours before being used for functional assays. The coding 

sequences for shRNAs were cloned into the pLL3.7 plasmid for integration into 
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lentivirus. GIPZ lentiviral shRNA targeting Frs2αα was obtained from 

Dharmacon, GE health (Lafayette, CO, Clone ID: V2LMM_90453). Stable cell 

lines containing Frs2α or non-silencing shRNAs were acquired by G418 

selection.  

Gene expression  

Total RNA was extracted with the Ribopure RNA isolation reagent (Ambion, TX). 

Reverse transcription was carried out with SuperScript III (Life Technologies, 

Grand Island, NY) and random primers. Real-time PCR was performed on 

MX3000 (Strategene), using the SYBR Green JumpStart Taq ReadyMix (Sigma, 

St. Louis, MO) with the primers list in Table 1 and following the manufacturer’s 

protocol. The ratio between expression levels in the two samples was calculated 

by relative quantification, using β-actin as a reference transcript for 

normalization. 

Table 1. Primers for angiogenesis related genes 

Gene Name Sequence (from 5'-3')  

human-Vegf-a forward  CGAACGTACTTGCAGATGTG 
reverse  CTGTTCTGTCGATGGTGATG 

human-Hif1a forward  TCCAAGAAGCCCTAACGTGT 
reverse  TGATCGTCTGGCTGCTGTAA 

human-cJun 
forward  TTTCAGGAGGCTGGAGGAAG 
reverse  CTGCCACCAATTCCTGCTTT 

human-sp1 forward  TTGAAA AAGGAGTTGGTGGC 
reverse  TGCTGGTTCTGTAAGTTGGG 
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Western blot  

Tumors or cultured cells were dissociated in 1% Triton X-100/PBS containing 

Proteinase and Phosphatase Inhibitors. Cells were lysed in RIPA buffer. The 

lysates (2ug) were separated on SDS-PAGE and blotted onto PVDF 

Table 1. Continued 
 
 
  

Gene Name Sequence (from 5’-3’) 

human-Frs2α 
forward  TCCAGGATTTGCTGCTCAGA 
reverse  TTTCCGCTCTTCTTGCACAC 

human-Ap2 
forward  TGGATCCTCGCAGGGAC ACAG 
reverse  GTTGGACTTGGACAGGGACAC G 

human-GAPDH 
forward  GAAGGTCGGAGTCAACGGATT 
reverse  TGACGGTGCCATGGAATTTG 

mouse-Vegfa 
forward  ACCTCCACCATGCCAAGT 
reverse  TCAATCGGACGGCAGTAG 

mouse-Hif1a forward  GTGAACAGAATGGAACGGAG 
reverse   CACAATCGTAACTGGTCAGC 

mouse-c-Jun forward   CATAGCCAGAACACGCTTCC 
reverse  TTGAAGTTGCTGAGGTTGGC 

mouse-sp1 forward  TGGTCATATTGTGGGAAGCG 
reverse  AATAAGGGCTGAAGGAGTGG 

mouse-Frs2α forward  GAGCTGGAAGTCCCTAGGACACCT 
reverse  GCTCTCAGCATTAGAAACCCTTGC 

mouse-Ap2 forward  GATGAAATCACCGCAGACGA 
reverse  TCCTTTGGCTCATGCCCTTT  

mouse-VEcadherin forward  TTGGGCTTTCTGACTGTTGT 
reverse  CAGGGACTTCGTGGGTTT 

mouse-beta-actin 
forward  GCACCAAGGTGTGATGGTG 
reverse  GGATGCCACAGGATTCCATA 
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membranes. The membranes were treated with 5% non-fat milk and incubated 

with primary antibodies overnight. Mouse anti-β-actin (1:2000) and rabbit anti 

cJUN (1:10000) antibodies were from Cell Signaling Technology; rabbit anti-

VEGF (1:200) and mouse anti- VEGF antibodies were from Abcam; rabbit anti-

HIF1α (1:1000) from Novus Biologicals. After washing with the TBST buffer, the 

membranes were incubated with horseradish peroxidase conjugated rabbit 

antibodies (1:10000) at room temperature for 1 hour. The specifically bound 

antibodies were visualized by using the ECL-Plus chemoluminescent reagents 

purchased from GE Healthcare Life Sciences. For quantitative analysis, the films 

were scanned with a densitometer.  

Chromatin immunoprecipitation (ChIP)  

Cells transfected with control or shFrs2α lentivirus for 72 hours were lysed and 

subjected to ChIP analyses using the EZ-ChIP Kit from Millipore (Billerica, MA) 

according to the manufacturer’s protocols. Rabbit anti-cJUN antibodies and 

control IgG were purchased from Cell Signaling Technology (Beverly, MA). 

Mouse anti-HIF1α antibody was obtained from Novus Biologicals (Littleton, CO). 

The real-time PCR primers for the AP1-binding site regions were: Vegf-AP1 

Forward (TAAGGGCCTTAGGACACCAT) and Vegf-AP1 Reverse 

(GGAATGCAGCAATTTCCCTC), and HIF1α-binding regions were: Vegf-HRE 

Forward (CAGGAACAAGGGCCTCTGTCT) and Reverse 

(TGTCCCTCTGACAATGTGCCATC).  
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Statistical analysis  

Statistical analysis was performed by the two tailed t test, significance set to P < 

0.05. Correlation between Frs2α and CD31 was determined by Pearson’s 

correlation test. Survival analysis was examined using the Prism 6 software. 

Error bars indicate standard deviation.  

 

Results 

Ablation of Frs2a decreases angiogenesis in TRAMP tumors 

Ablation of Frs2a inhibits prostate tumor initiation, growth, and progression in the 

TRAMP mouse prostate tumor model (31). To investigate whether prostatic 

Frs2α regulates tumor angiogenesis in the TRAMP model, we knockout Frs2α in 

the prostatic epithelium by crosing a minimal probasin-ARR2Pbi-Cre strain with 

the floxed Frs2α (Frs2αflox) mouse strain (Fig. 2.1). The resultant 

Frs2αflox/floxCre+ mice have no Frs2α activity in prostate epithelium. We further 

crossed the knockout mice with the TRAMP mice to generate mice that 

spontaneously develop prostate cancer but lack Frs2α expression in the 

prostate. 
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Fig. 2. 1. Strategy of prostate-specific deletion of Frs2α in TRAMP 
mouse prostate tumor model.  

Prostatic deletion of Frs2α was achieved by crossing mice carrying the 
floxed Frs2α (Frs2αf/f) with mice carrying Cre under the direction of minimal 
ARR2PB promoter. Frs2α cn mice were then crossed with TRAMP mice to 
get mice with Frs2α deletion in prostate tumors. PB, probasin promoter; 
TRAMP, transgenic adenocarcinoma of the mouse prostate. 
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We then sought to determine whether FRS2 is required for prostate tumor 

angiogenesis. Tumors from TRAMP and Frs2α Deleted TRAMP mice were 

sectioned and stained for the endothelial marker CD31 to determine the 

microvascular density. The Frs2α deletion reduced the number of blood vessels 

in PCa, suggesting Frs2α mediated FGF signaling is essential for the 

vasculature in the microenvironment of prostate cancer (Fig. 2.2 A). To confirm 

this result, we also used anti-NG2 antibodies to stain pericytes that typically 

abide around endothelial cells. NG2 positive blood vessels were also decreased 

in tumors that lack of Frs2α compared with control tumors (Fig. 2.2 B). Lectin-

stained endothelial cells (another marker of endothelial cells) were reduced in 

Frs2a knockout tumors compared to control tumors (Fig. 2.2 C). In addition, the 

relative expression of CD31, NG2, and VE-cadherin mRNA was significantly 

lower in tumors that lack Frs2α compared with controls (Fig.2.3). Together, our 

data strongly indicate that Frs2α-mediated FGF signaling is crucial for the 

abundance of blood vessels in TRAMP tumors.  
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Fig. 2. 2. Ablation of Frs2α in prostate epithelial cells reduces 
angiogenesis in mouse TRAMP tumors.  

A–C. Prostate tumor sections of 5-month-old TRAMP mice bearing floxed (F/F) 
(n=7) or epithelial-specific null (CN) (n=8) Frs2α alleles were stained with the 
indicated antibodies or lectins. The average number of stained cells per viewing 
frame was scored as indicated in panel c. TP3, To-Pro3.  
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Fig. 2. 3. Frs2α deletion reduced angiogenesis.  

 Real-time RT-PCR analyses of the indicated mRNA in TRAMP tumors with 
or without Frs2α ablation. mRNA levels of Frs2α, CD31, NG2 and VE-
Cadherin significantly decreased in conditional knockout tumors compared 
with controls. Data were normalized with β-actin and were expressed as 
mean ± sd from triplicate samples. CN, conditional knockout; *, P<0.05.  

	



	
	

 

	

22 

Depletion of Frs2α decreased the ability of prostate cancer cells to recruit 

endothelial cells.  

Epithelial depletion of Frs2α decreased the amount of tumor blood vessels 

indicated that Frs2α altered the interaction between tumor cells and endothelial 

cells. We next sought to determine whether deletion of Frs2α in prostate cancer 

cells affects the function of endothelial cells in vitro. To model the interaction 

between tumor and endothelial cells, we co-cultured PC3 and HUVECs using a 

Transwell system with PC3 cells with or without Frs2α expression seeded in the 

lower chamber while HUVECS were planted in the upper chamber therefore to 

allow us to analyze the capacity of tumor cells to recruit HUVECs (Fig. 2.4. A). 

We found that HUVECs co-cultured with PC3 cells lacking Frs2αΑ migrated 

slower than those co-cultured with control PC3 cells, suggesting that Frs2 

deletion impaired the capacity of tumor cells to recruit endothelial cells (Fig. 2.4. 

C).  
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Fig. 2. 4. Depletion of FRS2α in PC3 cells reduces their ability to 
induce HUVEC migration 	

A. Schematic picture of HUVEC recruitment assay. B. Real-time RT-PCR 
analyses of FRS2α expression in PC3 cells treated with control or FRS2α 
siRNA at the indicated concentration. C. Transwell assays with HUVECs in 
the upper chamber and 10% PC3 cell-conditioned medium or 0.2% FBS in 
the lower chamber. Number of cells that migrated through the membrane 
was counted from triplicate samples and shown as mean ± sd. 
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Fig. 2.5. Frs2α depleted PC3 conditioned medium reduces HUVEC 
migration HUVEC. 

Confluent HUVEC cultures were injured by linear scrape with a pipette tip 
followed by addition of medium containing indicated PC3 cell conditioned 
medium for 24 hours. A. Images before and after culture for 24 with the 
indicated conditioned medium. B. Average number of cells that migrated 
from 3 independent samples. no-CM, negative control without 
conditioned medium; *, P<0.05. 
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To further study whether Frs2α regulates angiogenesis through a paracrine 

manner, we used conditioned medium from Frs2α knockdown cells and control 

PC3 cells to stimulate endothelial cells and evaluated their activities such as 

migration and tumor formation afterwards. The medium conditioned by Frs2α 

deletion had reduced ability to promote migration of HUVECs compared to non-

conditioned medium and medium from control PC3 cells in the wound healing 

assay (Fig. 2.5). The result indicate that Frs2α deletion altered the soluble factor 

composition in the medium secreted by tumor cells. A unique feature of 

endothelial cells is the ability to form capillary-like structures with a lumen in 

Matrigel. Therefore, we compared the tube formation ability of endothelial cells 

treated with conditioned medium from Frs2α depleted and control PC3 cells. The 

Frs2α deletion PC3 conditioned medium showed less activity for promoting 

endothelial cell tube formation relative to control medium (Fig. 2.6). Notably, 

conditioned medium from both PC3 lines did not affect endothelial cell 

proliferation. Therefore, we concluded that Frs2α deletion in tumor cells impaired 

endothelial cell function through a paracrine manner. 
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Fig. 2. 6. Depletion of FRS2α in PC3 cells reduces ability to induce 
HUVEC tube formation.  

HUVECs were inoculated in Matrigel with 10% conditioned medium from PC3 
cells treated with control or FRS2α siRNA. A. The indicated images of 
HUVECs were captured after cells were cultured at 37°C for 8 hours. B. The 
average number of tubes formed from HUVECs were calculated from triplicate 
samples and presented as mean ± sd. no-CM, negative control without 
conditioned medium; *, P<0.05.  
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We then determined whether depletion of Frs2α expression in PCa cells also 

compromised their ability to induce endothelial migration and invasion in vivo.   

This was accomplished by depletion of Frs2α expression in PC3 cells by stable 

expression of Frs2α shRNA (Fig. 2.7. A). The Frs2α-depleted PC3 cells were 

Fig. 2. 7. Depletion of FRS2α in PC3 cells in Matrigel plugs dampens 
recruitment of endothelial cells into the plugs in nude mice.  

A. Real-time RT-PCR analyses of Frs2α expression in PC3 cells infected 
with lentivirus carrying Frs2α or control shRNA. B. Gross morphology of 
the Matrigel plugs harvested from nude mice at two weeks after the 
implantation. shFRS2, FRS2α shRNA; Ctrl, control shRNA; *, P<0.05.  
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mixed with Matrigel, and then implanted into the flanks of immune-deficient nude 

mice.  The Matrigel plugs were harvested at day 14 after implantation. The pale 

tone of Matrigel plugs containing Frs2α-depleted PC3 cells relative to the red 

color of the plugs containing control PC3 cells indicated a reduced blood vessel 

density in the Frs2α-depleted group (Fig. 2.7 B).   

Immunostaining with CD31+ cells confirmed that the endothelial cell content in 

the Matrigel plugs was reduced in the Frs2α depleted group (Fig. 2.8).   The 

results further indicate that Frs2α-mediated signals in PCa cells promote 

attraction of endothelial cells to the tumors formed by PCa cells and 

angiogenesis of the tumors. Furthermore, quantitative RT-PCR analyses of the 

RNA extracted from Matrigel plus showed that depletion of Frs2α in PC3 cells 

reduced human VEGF-A expression (from PC3 cells) and host mouse 

endothelial cell marker RNAs.  This further demonstrated that Frs2α in PCa cells 

promoted recruitment of host endothelial cells to the tumor (Fig. 2.8 B).  
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Fig. 2 .8. Depletion of Frs2α in PC3 cells in Matrigel plugs decreased 
recruitment of blood vessels and Vegf-a expression. 

A. Immunostaining of Matrigel plug sections with anti-CD31 or anti-VEGF-A 
antibodies. To-Pro3 (TP3) was used for nuclear counter staining. B. Real-time 
RT-PCR analyses of the RNA extracted from the Matrigel plugs containing 
control (n=6) or Frs2α-depleted (n=6) PC3 cells. mVEcad, mouse VE- 
cadherin; mCD31, mouse CD31; hVegf-a, human Vegf-a; shFRS2, Frs2α 
shRNA; Ctrl, control shRNA; *, P<0.05.



 30 

Fig. 2. 9. Depletion of Frs2α reduces expression of Vegf-a in 
mouse TRAMP tumors. 

Real-time RT-PCR analyses of the indicated gene expression in 
TRAMP tumors with or without tissue-specific ablation of Frs2α in the 
epithelial cells. F/F, Frs2αflox; CN, Frs2αCN; *, P<0.05. 
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Ablation of Frs2α in PCa cells reduced Vegf-A expression via down-

regulation of Hif1a and cJun expression.  

Since VEGF-A is a key angiogenic factor, we then asked whether Frs2 deletion 

affects VEGF-A expression. We employed quantitative RT-PCR analyses to 

assess Vegf-a expression in TRAMP tumors bearing Frs2αFlox or Frs2αCN 

alleles. In comparison with Frs2αFlox tumors, the expression of Vegf-a in 

Frs2αCN tumors was reduced (Fig. 2.9). To investigate the mechanism 

underlying regulation of Vegf-a by Frs2α-mediated signals, we assessed the 

expression of potential Vegf-a upstream regulators by quantitative RT-PCR 

analyses. The expression of Sp1, Hif1α, Ap2, and cJun was reduced in Frs2αCN 

tumors at the mRNA level. Furthermore, immunostaining showed that 

expression of HIF1α and cJUN was downregulated at the protein level in 

Frs2αCN prostates and PCa (Fig. 2.10 B). There were no changes in SP1 and 

AP2 expression in the Frs2αCN prostate (data not shown), possibly due to other 

redundant upstream regulators. Western analyses further confirmed that 

expression of cJUN and HIF1α were reduced at the protein level (Fig. 2.10 A). 

The results suggest that downregulation of these two upstream regulators 

contribute to reduced expression of Vegf-a in Frs2αCN prostate and prostate 

tumors. 
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Fig. 2. 10. Depletion of FRS2α reduces expression of Vegf-a in 
mouse TRAMP tumors.  

A. Western blot of cJUN and HIF1α expression in the TRAMP tumors. 
B.  Immunostaining analyses of cJUN and HIF1α expression in the 
TRAMP tumors. F/F, Frs2αflox; CN, Frs2αCN.  
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Fig. 2. 11. Depletion of Frs2α in PCa cells reduces expression of Vegf-a 
and transcriptional factors that bind to Vegf-a promoter.  

Real-time RT-PCR analyses of PC3 cells at 72 hours after treatment with the 
indicated siRNA at a final concentration of 25 or 100 nM. mRNA expression 
of Vegf-a, cJun and Hif1a significantly went down in cells treated with Frs2α 
siRNA relative to control groups. *, P<0.05.  
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We also noted that depletion of Frs2α also compromised Vegf-a, cJun, and 

Hif1a expression in human PC3 cells although the expression of Sp1 and Ap2 

was not affected (Fig. 2.11). We then focused our efforts to determine whether 

cJUN and HIF1α were required for Vegf-a expression in human PCa cells. A 

luciferase reporter construct driven by the Vegf-a promoter was used to 

determine whether depletion of the two transcription factors compromised 

expression of the reporter. Consistently, the results showed that depletion of 

cJUN and HIF1α, but not SP1 or AP2, in PC3 cells reduced expression of the 

luciferase reporter, suggesting that SP1 and AP2 were dispensable for Vegf-a 

expression in PC3 cells (Fig. 2.12 A). To further determine whether cJUN, 

HIF1α, SP1, and AP2 mediated Frs2α signals were required to support Vegf-a 

expression in PC3 cells, expression of these transcription factors was depleted 

with siRNA. Western blot analyses showed that expression of VEGF-A was 

reduced in the cells treated with cJun and Hif1a siRNA (Fig. 2.12B).  
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Fig. 2. 12. Depletion of Frs2α and cJun and Hif1a reduces Vegf-
a promoter activity. 

A. Luciferase reporter analyses of Vegf-a reporter activities in PC3 cells 
with or without depletion of indicated genes. Hif1a and cJun knockdown 
significantly suppressed Vegf-a luciferase activity. B. Western blot 
analyses of VEGF-A expression in PC3 cells after reduction in expression 
of the indicated genes. *P<0.05. 
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Consistently, overexpression of either HIF1α or cJUN in Frs2α-depleted PC3 

cells partially restored their activity in promoting HUVEC migration (Fig. 2.13 A), 

although these transcription factors also increased baseline HUVEC migration in 

control cells. Furthermore, ChIP assays revealed that cJUN binding to the Vegf-

a promoter region in pull-down assays was reduced in PC3 cells depleted of 

Frs2α (Fig. 2.13 B. panels a&b). Since HIF1α is unstable under normoxic 

conditions and thus it is difficult to do ChIP assays using cultured cells, so 

similar ChIP experiments for HIF1α were carried out with Frs2αCN and control 

PCa tissues (Fig. 2.13 B. panels c&d). The Vegf-a promoter sequence pulled 

down by HIF1α was reduced in Frs2αCN tumors compared to control tumors. The 

data demonstrate that HIF1α and cJUN are involved in upregulation of VEGF-A 

expression by Frs2α-mediated signals in PCa cells.  
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Fig. 2. 13. Overexpression of Hif1a or c-Jun rescued the migration 
defect of HUVECs with Frs2α depletion.  

A. Transwell cell culture analyses of HUVECs treated with conditioned 
medium of PC3 cells overexpressing cJUN or HIF1α. B. ChIP assays of 
Vegf-a promoter with anti-cJUN or anti-HIF1α antibodies. Panels a and c 
are the relative binding of cJUN or HIF1α to the Vegf-A promoter. Data 
are mean ± sd derived from 3 replicate samples. Panels b and d are 
images of agarose gel electrophoresis showing a single band of the PCR 
products. Ctrl, control siRNA; IP, immunoprecipitation; F/F, Frs2αf/f; CN, 
Frs2αf/f; *, P<0.05.  
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Fig. 2. 14. Depletion of FRS2α impairs the tumorigenicity of 
MDA PCa 118b cells.  

A. Real-time RT-PCR analyses of MDA PCa 118b cells infected with 
shFRS2 (n=6) control (n=6) adenoviruses.  B&C. X-ray analyses of 
mouse femurs 7 weeks after injection of 1.5 X 106 of the indicated 
cells. Investigators were blinded when assessing the bone lesions 
and blood vessels. The tumor incidence rates were calculated and 
expressed as mean ± sd (B).  Representative images are shown in 
(C). Ctrl, control virus infected PC3 cells; shFrs2, shFrs2 virus 
infected PC3 cells; *, P<0.05. 
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We then assessed the role of Frs2α in human PCa in bones, the most common 

site of lethal PCa metastasis. The expression of Frs2α was depleted in tumor 

cells isolated from MDA PCa 118b tumors, a preclinical human PCa xenograft 

model, by infection with adenovirus carrying shFrs2α (Fig. 2.14 A). The cells 

were then implanted to the femurs of SCID mice for assessing their capacity for 

growth in bone. Frs2α-depleted cells exhibited a lower tumor forming capacity in 

the mouse femurs than did control cells (Fig. 2.14 B). This suggests that Frs2α 

deficiency reduces growth of the tumor cells in bone.  

Moreover, the density of CD31+ endothelial cells was reduced in the Frs2α-

depleted tumors (Fig. 2.15), indicating that the angiogenesis in the tumor was 

compromised by depletion of Frs2α.  
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Fig. 2. 15. Depletion of FRS2α compromises angiogenesis of 
MDA PCa 118b cell-derived tumors. 

A. Immunostaining of tumor sections with anti-CD31 antibodies. B. 
Average percent of CD31 stained areas in randomly viewed areas.  
Investigators were blinded when assessing the bone lesions and blood 
vessels. The tumor incidence rates were calculated and expressed as 
mean ± sd. Ctrl, control virus infected PC3 cells; shFrs2 virus infected 
PC3 cells *, P<0.05. 
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Fig. 2. 16. Validation of antibodies used for immunostaining. 

A&B. Immunostaining of HIF1α, FRS2α, phosphorylated FRS2α, and 
cJun.  Expression of HIF1α HIF1α in PC3 cells was induced by treating the cells 
with 150 μM CoCl2 in DEMEM containing 2% serum for 24 hours. 
Untreated cells were used as a negative control for anti-HIF1α antibody. 
For staining anti-FRS2α, anti-phosphorylated FRS2α, and anti-cJUN, the 
siRNA depleted cells were used as negative controls.  C. A human PCa 
tissue section was co-stained with anti-CD31 antibody and isolectin.  The 
images were captured with a confocal microscope. The data showed that 
both anti-CD31 and isolectin stained the same areas of the section, 
indicating that anti-CD31 antibody specifically recognized endothelial cells 
in the tissue.  To-Pro3 (TP3) was used for nuclear counterstaining. Ctrl, 
control. 
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Overexpression of Frs2α in human PCa is associated with tumor 

angiogenesis and poor prognosis of PCa patients  

FGFR1 is overexpressed in about 40% of human PCa and forced expression of 

ectopic FGFR1 in mouse prostate epithelial cells increases tumor angiogenesis. 

FGF9 promotes VEGF-A expression in LNCaP cells. However, whether aberrant 

FGF signaling and its key mediator for downstream signaling FRS2α is 

associated with and contributes to overall tumor angiogenesis in human PCa 

has not been established. We assessed the clinical relevance of FRS2α 

expression and its correlation with microvessel density in human PCa by 

immunohistochemistry with anti-FRS2α and immunostaining with anti-CD31 

antibodies. The validation of antibodies was done by using FRS2α, Hif1a and C-

JUN small interference RNA (Fig. 2.16). Both analyses were carried out on the 

same slides from the MGH human prostate tissue microarrays (TMA) that 

comprised 225 PCa and 27 benign prostate samples (Fig. 2.17). The samples 

were annotated with detailed patient follow up information, including PSA 

recurrence, Gleason Scores, pathological stages, patients’ age, and survival 

time. Although only a small group of cases had very strong staining (scores 7–

9), the majority of the PCa samples had a score between 4–6. This was higher 
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Fig. 2. 17. Expression and activation of Frs2α in human PCa 	

A. Representative images of immunochemical staining of FRS2α and CD31 
counterstained with nuclear To-Pro3 (TP3) in the MGH PCa TMA. B. 
Statistical comparison of differences in expression of FRS2α in human PCa 
and benign prostate (left) and Pearson correlation between FRS2α 
expression and microvessel density determined by CD31 staining (right). 
Red bar, FRS2α expression score>3; blue bar, FRS2α expression score≤3.  
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than the expression score in the adjacent non-cancerous tissues (Fig. 2.17 B). In 

addition, elevated expression of FRS2α was found in PCa with high Gleason 

scores and in patients with high serum PSA (Fig. 2.18). To determine whether 

FRS2α expression correlated with the prognosis of PCa patients, the association 

of FRS2α expression and PCa metastasis, PSA recurrence time, and overall 

survival time of the 225 patients was analyzed (Fig. 2.17). The data showed that 

the PSA recurrence-free survival and overall survival time of PCa patients was 

shorter in the groups exhibiting high FRS2α expression (score >3), compared to 

the group with low FRS2α expression (score≤3). Furthermore, metastases 

appeared faster in PCa exhibiting high FRS2α than those with low FRS2α 

expression. In addition, expression levels of FRS2α positively correlated with 

microvessel density as determined by CD31 staining (Pearson correlation: 

R=0.55, P<0.01).  
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Fig. 2. 18. High FRS2α expression was observed in patients with high 
Gleason score and poor prognosis. 

A. Statistical analyses of the association of FRS2α expression with 
Gleason scores. B. FRS2α expression predicts overall survival time of the 
patients. C. FRS2α predicts metastasis free survival time of PCa patients. 
D. FRS2α predicts PSA-free survival time.   
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To further implicate the activity of FRS2α in angiogenesis in human PCa tissues, 

levels of activity of FRS2α were assessed by immunochemical staining of 

activated FRS2α (phosphorylated) in a separate PCa TMA. Expression of 

HIF1α, cJUN, and CD31 were also assessed in the same array. This array 

included 99 primary PCa and 81 adjacent non- cancerous prostate tissue 

samples with the pathological features characterized by the vendor (Fig. 2.19). 

The results showed that phosphorylation of FRS2α was higher in PCa than in 

benign tissues (2.23±1.78 vs 1.68±1.32, P<0.02) and that the expression of 

cJUN was higher in tumors with Gleason Score ≥7 than in those with Gleason 

Score ≤7. In addition, the phosphorylation level of FRS2α positively correlated 

with expression of cJUN (r=0.358, p<0.001), but not with HIF1α (r=0.142, 

P=0.164), and CD31 (r=0.009, P=0.312).  
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Fig. 2. 19. Frs2 is positively associated with CD31, c-JUN and Hif1a 
in PCa.  

A. Representative images of FRS2α phosphorylation and expression of 
the indicated molecules in PCa TMA (from Shanghai Outdo Biotech Co, 
LTD). B. Statistical analyses of the association between Frs2α and CD31, 
cJun, or Hif1a expression at the mRNA level in the Taylor dataset. R, 
Pearson correlation coefficient; P, p value; *, P<0.05  
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We then further evaluated the correlation coefficients between Frs2α expression 

and cJun, Hif1α, and CD31 at the mRNA level in the Taylor dataset GSE10645 

25. The results showed a positive correlation between FRS2α expression and 

cJun (r= 0.473, P<0.001), Hif1a (r=0.675, P<0.001), and CD31 (r=0.358, 

P<0.001) mRNA levels in the PCa tissues that comprise both epithelial and 

stromal cells. Since microvessel density correlates with poor PCa progression, 

the data further demonstrated that overexpressed FRS2α in the tumor promotes 

angiogenesis in PCa and suggest that FRS2α affects the clinical course of 

human PCa, since microvessel density correlates with poor PCa progression. 

Together, the data also suggests that the level of FRS2α expression in PCa 

tissues can serve as a biomarker for predicting outcomes of PCa patients.  

 

Discussion 

In this report, we demonstrated that overactivation of FRS2α-mediated 

angiogenic signaling was associated with tumor angiogenesis and poor clinical 

features in human PCa.  This included high blood vessel density, high Gleason 

Score, and high serum PSA.  Furthermore, high FRS2α expression correlated 

with poor outcomes of PCa patients.  These included high metastatic rates, 

shortened time to tumor recurrence and shorter survival times.  We also showed 

that Frs2α underlies the previously established ability of FGF to elicit angiogenic 

signals.  Ablation of Frs2α in prostate epithelial cells reduced VEGF-A 

expression through downregulating cJUN and HIF1α expression.  This was 
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accompanied by inhibition of tumor angiogenesis and tumor growth in mouse 

PCa models.  Depleting Frs2α expression in human PCa cells also 

compromised the capability of the cells to recruit endothelial cells both in vivo 

and in vitro.  Our results suggest that overactivation of the Frs2α-mediated 

angiogenic pathway can be used as a biomarker for PCa diagnosis and 

prognosis.  They also suggest that suppressing Frs2α-mediated angiogenic 

signaling may be promising for development into a strategy for PCa treatment.  

Fgfr1 is overexpressed in about 40% of human PCa and amplification of Frs2α 

and activation of the FGFR/FRS2α signaling pathway have been shown to be 

associated with liposarcoma (18,32).  It has been reported that although no 

significant differences in Frs2α and Frs2β expression in small samples of human 

PCa, double depletion of Frs2α and Frs2β in human PCa cells reduces cell 

proliferation, migration, and invasion, as well as increase susceptibility to 

cytotoxic irradiation (33). In this report, we showed data derived from three 

sample pools that expression and activation of FRS2α were increased in human 

PCa at the protein level with the MGH PCa TMA, at the activation level with the 

commercial available PCa TMA, or at the mRNA level based on online datasets.  

The consistent conclusion derived from both TMA and the online dataset 

indicates that neither ethnic factors nor detailed screening methods affect the 

finding that levels of FRS2α are correlated with tumor angiogenesis in human 

PCa. 
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The levels of phosphorylation of FRS2α in PCa were higher than adjacent non-

cancerous, although the statistical data showed that the difference was 

moderate.  We often found that the FRS2α phosphorylation levels in para-

cancer tissues varied significantly.  Some areas had a relatively high 

phosphorylated FRS2α although others had low to undetectable phosphorylated 

FRS2α.  It is possible that the phosphorylation of FRS2α in para-cancer tissues 

may be affected by PCa in adjacent.  In resting adult mouse prostates, 

expression of FRS2α in luminal epithelial cells is below the detection limit of 

immunostaining (34). Therefore, it is necessary to assess phosphorylated 

FRS2α in normal prostate tissues in order to determine whether phosphorylated 

FRS2α can be used as a biomarker for PCa diagnosis and prognosis.  

Nevertheless, the data here demonstrated that overactivation of FRS2α-

mediated angiogenic signaling is associated with the malignance of prostate 

lesions and poor prognosis for patients bearing PCa.   

Furthermore, the results were consistent with the report that Fgfr1 is 

overexpressed in PCa and that overexpression of FGF9 increases VEGF-A 

expression in LNCaP cells and predicts bone metastasis and poor prognosis of 

PCa (35,36). It has been shown that overexpression of FGFR1 in mouse 

prostate epithelial cells is oncogenic and that the ectopic FGFR1 signaling 

promotes tumor angiogenesis (37).  In addition, expression of constitutively 

active mutant of FGFR1 also increases Vegf1 expression and angiogenesis in 

hepatocellular carcinoma (38).  However, whether FRS2α is required to mediate 
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the angiogenic signals elicited by FGFR1 has not been reported. Our results not 

only confirm the tumor angiogenic roles of ectopic FGF signaling, but also 

unravel its underlying mechanism.  This shines new light on the potential for 

development of new PCa treatments based on disrupting the FRS2α-mediated 

tumor angiogenic signaling axis.  

Depleting FRS2α in PCa cells reduced recruitment of endothelial cells to tumors 

via secreted factors. This suggests that FRS2α-mediated signals in tumor cells 

are involved in communication of tumor cells with host cells in the tissue 

microenvironment.  The results are consistent with our recent report that human 

PCa cells induce host bone cells to overexpress FGF2 and FGFR1, suggesting 

that the FGF axis mediates a synergistic interaction between PCa cells and 

bone cells in the tumor metastasis microenvironment to support PCa growth in 

bone metastasis (39).  Since PCa cells overexpress FGFR1 that is activated by 

FGF2, the host cell expressed FGF2 in turn activates PCa FGFR1 and thus, will 

also enhances the angiogenic activity of PCa cells mediated by the FRS2α 

pathway.  We further demonstrated here that depletion of FRS2α in MDA PCa 

118b cells reduced tumorigenesis in the bone as well as reduced blood vessel 

density in the prostate tumors hosted by bone (Fig. 2.15). The results further 

indicated the importance of FRS2α-mediated signals in the crosstalk between 

PCa and host cells in the bone microenvironment.    

The Vegf-a promoter region contains multiple consensus binding sites, which 
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include SP1/SP3, AP1, AP2, Egr1, STAT3, and HIF1α (40,41).  Although SP1 

and AP2 can serve as downstream signaling molecules in the FGF pathway, 

overexpression of both AP2 and SP1 failed to restore the expression of VEGF-A 

in FRS2α-depleted PCa cells.  This suggests that these two transcription factors 

are not sufficient to mediate angiogenic signals of the FRS2α pathway. 

Moreover, ablation of Frs2α did not affect expression of the two transcription 

factors.  The results suggest that other upstream regulators may also control 

VEGF-A expression via these transcription factors.  Future efforts are needed to 

characterize the upstream regulators for SP1 and AP2 for VEGF-A expression. 

In summary, we report here that FRS2α-mediated signals contribute to PCa 

angiogenesis and depletion of FRS2α expression suppressed PCa tumor 

angiogenesis and tumor growth.  Since FRS2α is a major mediator of the 

FGFR1 signaling complex at the intracellular membrane boundary, it likely 

accounts for the effects of overactive tumor FGFR1 on tumor angiogenesis.  

Furthermore, overactivation of the FRS2α signaling pathway was associated 

with blood vessel density and pathological features of human PCa.  The results 

suggest that suppressing the FRS2α-mediated pathway is of therapeutic value 

for PCa therapies and that the overactivated FRS2α signaling pathway is a 

potential biomarker for PCa diagnosis. 
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CHAPTER III  

ABERRANT FIBROBLAST GROWTH FACTOR (FGF) SIGNALING 

REPROGRAMS PCA CELL METABOLISM THROUGH STABILIZING 

LACTATE DEHYDROGENASE A AND REPRESSING THE EXPRESSION OF 

LACTATE DEHYDROGENASE B   

	

Introduction 

Metabolic reprograming from the oxidative phosphorylation to the aerobic 

glycolysis is a common event in cancer progression, which provides building 

blocks to meet the rapid growth of cancer cells. Aerobic glycolysis results in 

glucose consumption and Lactate accumulation in the tumor microenvironment, 

which suppress the infiltration of lymphocytes to the tumor and compromises the 

effects of anti-tumor immunotherapies. In line with these, the glycolytic phenotype 

is also associated with prostate cancer (PCa) progression and aggressiveness 

(21,42-47). The molecular mechanism by which cancer cells reprogram their 

metabolism is not clear. Understanding how tumor cells reprogram their 

metabolism from oxidative phosphorylation to aerobic glycolysis will provide a 

novel venue to inhibit aerobic glycolysis selectively in tumor cells.  

The prostate consists of epithelial and stromal compartments that are separated 

by basement membranes. Cells in the two compartments maintain active two-way 

communication through paracrine mechanisms, including the fibroblast growth 

factor (FGF) signaling in which FGF and FGF receptors (FGFR) are partitioned 
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between the two compartments (48). These precisely balanced two-way 

communications are critical for preserving the tissue homeostasis and function of 

the prostate. The FGF family consists of 18 receptor-binding polypeptides that 

exert their regulatory signals by activating the FGFR tyrosine kinases encoded by 

four highly homologous genes (49-53). Both FGF and FGFR are expressed in a 

spatiotemporal- and cell type-specific pattern, important for controlling embryonic 

development, and maintaining tissue homeostasis and function.   

Extensive evidence shows that abnormal expression of FGF or FGFR isoforms 

and activation of the FGF/FGFR signaling axis are associated with PCa 

development and progression (53-59). Amplification of the Fgfr1 gene is 

frequently found in human PCa (60). The acquisition of ectopic expression of 

FGFR1 in tumor epithelial cells stands out as the most remarkable change 

among FGFR isotypes (61-64). Forced expression of FGFR1, FGF2, FGF8, 

FGF9 and FGF10 induces prostate lesions in mouse models (36,58,61,64-69). 

On the other hand, ablation of Fgfr1 or Frs2a significantly reduces PCa 

development and progression induced by T antigens (57,70). However, the 

mechanism by which aberrant FGF signals contribute to PCa progression is still 

not fully understood. FGF signaling promotes aerobic glycolysis by increasing 

expression of HK2 and tyrosine phosphorylation of multiple enzymes in the 

aerobic glycolysis (9). However, whether aberrant FGF signaling contributes to 

PCa progression by promoting aerobic glycolysis remains to be determined.  

The last step of glycolysis is the reduction of pyruvate to lactate. It is a reversible 
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conversion catalyzed by lactate dehydrogenase (LDH). It is a tetrameric enzyme 

composed of two types of subunits, designated as LDHA or LDHB. The 

combination of these two subunits yields 5 isozymes, which catalyzes the 

conversion of pyruvate to lactate. LDH1, which is composed of 4 LDHB subunits 

favors the conversion from lactate to pyruvate and allows oxidation along the 

pathway of the tricarboxylic acid cycle, whereas LDH5, which is composed of 4 

LDHA subunits favors the conversion from pyruvate to lactate and allows the 

glycolytic pathway to be completed at lactate (71). Emerging evidence shows that 

LDHA is required for survival and proliferation of cancer cells. Although still 

debatable, current data seem to indicate the association of reduced levels of 

LDHB with an increased malignancy of PCa and other cancers (43,72-83). 

Targeting lactate metabolism has been proposed for cancer therapeutics (84,85). 

LDHA in cancer is mainly tyrosine phosphorylated and increased activity of LDHA 

was believed to associate with its phosphorylation (83).  

It has been reported that FGFR1 phosphorylates LDHA at multiple tyrosine 

residues, which enhances the formation of tetramers and binding of NADH and 

therefore, the enzymatic activity of LDHA (86). In this report, we demonstrate 

that FGFR1 signaling promoted aerobic glycolysis via stabilizing LDHA and 

downregulating LDHB expression via inducing Ldhb promoter hypermethylation. 

Ablation of LDHA compromised, whereas ablation of LDHB enhanced, the 

tumorigenicity of DU145 cells. Furthermore, high levels of phosphorylated LDHA 

and low levels of LDHB in human PCa tissues was associated with short time to 
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biochemical recurrence and decreased patient survival time. Together, it suggests 

that aberrantly expressed FGFR1 tyrosine kinase in PCa induces metabolic 

changes via altering the ratio of LDHA and LDHB, which promotes PCa growth 

and progression. Furthermore, high levels of phosphorylated LDHA and high 

expression of LDHB are the potential biomarkers for PCa diagnosis and 

prognosis.  

 

Materials and Methods: 

Animals  

Mice were housed under the Program of Animal Resources of the Institute of 

Biosciences and Technology in accordance with the principles and procedure of 

the Guide for the Care and Use of Laboratory Animals. All experimental 

procedures were approved by the Institutional Animal Care and Use Committee. 

Mice carrying loxP-flanked Frs2a, Fgfr1, and Fgfr2 alleles were bred and 

genotyped as described (56,87-89). For xenograft studies, wild type, LDHA or 

LDHB knockout DU145 cells (2X106) were mixed with Matrigel (BD) at a 1:1 

ratio before subcutaneously injection into flanks of nude mice (6 weeks old). The 

tumor volume was measured with a caliper and calculated as following: volume= 

(length) X (width)2 X 0.52. The xenografts and other tissues were harvested after 

the animals were euthanized by CO2 asphyxiation. The tumors were weighed 

and photographed before being subjected to molecular and cellular analyses.   
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Histology 

Prostate and xenografts were fixed with 4% paraformaldehyde-PBS solution for 

2 hours at 4 °C .  The tissues were serially dehydrated, embedded in paraffin, 

and sectioned at 5 μm thickness	as described (14).  For general histology, slides 

were re-hydrated and stained with hematoxylin and eosin (H&E). For 

immunostaining, the antigens were retrieved by boiling in citrate buffer (10 mM, 

pH 8.0) for 20 minutes. The rabbit anti-pLDHA (1:200) and anti-LDHA (1:200) 

were purchased from Cell Signaling Technology (Beverly, MA).  Mouse anti-

LDHB (1:200), rabbit anti-CD31 (1:200), rat anti-F4/80 (1:200) and rabbit anti-

Ki67 (1:200) were purchased from Abcam (Cambridge, MA). Fluorometric 

TUNEL assay kit was purchased from Promega (Fitchburg, WI). The ExtraAvidin 

Peroxidase System (Sigma) and fluorescence-conjugated secondary antibodies 

(Invitrogen) were used to visualize specifically bound antibodies. For the 

immunofluorescence staining, the nuclei were counter stained with To-Pro 3 

before being observed under a confocal microscope (Zeiss LSM 510).   

For expression of LDHA, LDHB, and Fgfr1, as well as phosphorylated LDHA in 

human PCa, the Massachusetts General Hospital (MGH) PCa TMA was used. It 

includes 240 consecutive patients with PCa who underwent radical 

prostatectomy at the MGH from September 1993 to March 1995 (90). Two 

experienced pathologists independently scored the results without being given 
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any information on the samples. Only epithelial staining was counted.  The 

scores were compared, and discrepant scores were subjected to re-examining 

by both individuals to achieve a consensus score. Immunostaining of PCa and 

stromal cells was evaluated separately. The percentage of positive cells was 

calculated and categorized as follows: 0, 0 %; 1, 1–10 %; 2, 11–50 %; 3, 50 -

75%; and 4, 75-100%. The staining intensity was visually scored and defined as 

0, negative; 1, weak; 2, moderate; and 3, strong. Final immunoreactivity scores 

(IRS) were calculated for each case by multiplying the percentage and the 

intensity score.   

Western blotting   

DU145 cells, MEFs, and xenografts were homogenized in RIPA buffer (50 mM 

Tris-HCl buffer pH 7.4, 1% NP40, 150 mM NaCl, 0.25% Na-deoxycholate, 1 mM 

EGTA, 1 mM PMSF), and the extracted proteins were harvested by 

centrifugation. Samples containing 30 μg proteins were separated by SDS-

PAGE and electroblotted onto PVDF membranes for Western analyses with the 

indicated antibodies. The anti-phosphorylated ERK1/2 (1:1000), anti-

phosphorylated AKT (1:1000), anti-ERK1/2 (1:1000), anti-AKT (1:1000), anti-

phosphorylated Frs2αa (1:000), and anti-HA (1:1000) antibodies were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-

phosphorylated LDHA (1:1000), anti-LDHB (1:1000), anti-LDHA (1:1000) 

antibodies, and The Glycolysis Antibody Sampler Kit containing anti-HK1, PFKP, 
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PFKP2, PFKP3, Aldolase, PGAM, PKM1/2, and pyruvate dehydrogenase 

antibodies were purchased from Cell Signaling Technology (Danvers, MA). The 

anti-phosphotyrosine 4G10 (1:1000), anti-TET1, (1:1000); and anti-Flag (1:1000) 

antibodies were from Millipore Sigma (Danvers, MA). After being washed with 

TBST buffer to remove nonspecific antibodies, the membranes were then 

incubated with the horseradish peroxidase conjugated rabbit antibody (1:10000) 

at room temperature for 1 hour.  The specifically bound antibodies were 

visualized by using the ECL-Plus chemoluminescent reagents.  The films were 

scanned with a densitometer for quantitation.  

RNA expression   

Total RNA was isolated from cells and tissues using the Ribopure RNA isolation 

reagent (Ambion, TX). Reverse transcription was carried out with SuperScript III 

(Life Technologies, Grand Island, NY) and random primers according to 

manufacturer’s protocols. Real-time PCR analyses were carried out using the 

Fast SYBR Green Master Mix (Life Technologies) as instructed by the 

manufacturer. Relative abundances of mRNA were calculated using the 

comparative threshold (CT) cycle method and were normalized to β-actin as the 

internal control. The mean±sd among at least three individual experiments are 

shown. The primer sequences are listed in Table 2.   
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Table 2. Primers of metabolism related genes 

Gene Name  Sequence (from 5'-3')  

human-Ldha 
forward   ACATCCTGGGCTATTGGACT 
reverse  TTCTTCAAACGGGCCTCTTC 

 
human-Ldhb 

forward  GTGAATGTGGCAGGTGTTTC 
reverse  ACCATTGTTGACACGGGATG 

Gene Name  Sequence (from 5’-3’) 

human-Gapdh forward  GAAGGTCGGAGTCAACGGATT 
reverse  TGACGGTGCCATGGAATTTG 

mouse-Tet1 forward  GAGCCTGTTCCTCGATGTGG  
reverse  CAAACCCACCTGAGGCTGTT  

mouse-Tet2 forward  AACCTGGCTACTGTCATTGCTCCA  
reverse  ATGTTCTGCTGGTCTCTGTGGGAA  

mouse-Tet3 forward  TCCGGATTGAGAAGGTCATC  
reverse  CCAGGCCAGGATCAAGATAA  

mouse-Ldha forward  CTGAGAGCATAATGAAGAACC 
reverse  CACAACATCCGAGATTCCA 

mouse-Ldhb forward  ATTCACCCCGTGTCTACCAT 
reverse  TCTGATTGATGACGCTGGTC 

mouse-Fgfr1 forward  AGCATCAACCACACCTACCAGCT 
reverse  ATCCGCAGCCTCACATTCAG 

mouse-Fgfr2 forward  GGAGCCTTATTATGGAAAGTGTGG 
reverse  GGGAAGCCGTGATCTCCTTCTCT 

mouse-Frs2 forward  GAGCTGGAAGTCCCTAGGACACCT 
reverse  GCTCTCAGCATTAGAAACCCTTGC 

mouse-β-actin forward  GCACCAAGGTGTGATGGTG 
reverse  GGATGCCACAGGATTCCATA 
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Gene ablation 

The lentivirus based CRISPR-Cas9 system was used to ablate Ldha, Ldhb, and 

Fgfr1 alleles in DU145 cells. The sequences of the sgRNAs are: Ldha: 

AAGCTGGTCATTATCACGGC; Ldhb: GGACTGTACTTGACGATCTG; and 

Fgfr1: AACTTGTTCCGATGGTTATC. Two days after infection of the lentivirus, 

the cells with were selected by growing in the medium containing 2 μg/ml 

puromycin.  

Mutagenesis of LDHA 

We used a QuikChange Lightning Multi Site-Directed Mutagenesis Kit, 

purchased from Agilent Technologies (Santa Clara, California), to create LDHA 

mutant plasmids. Primer sequences that were used to generate mutants are as 

follows (from 5’ to 3’): Y10F, CTAAAGGATCAGCTGATTTTT 

AATCTTCTAAAGGAAGAA; Y83F, 

GATTGTCTCTGGCAAAGACTTTAATGTAACTGCAAACTCC; Y172F, 

GATTGTCTCTGGCAAAGACTTT AATGTAACTGCAAACTCC, Y239F, 

CAGGTGGTTGAGAGTGCT TTTGAGGTGATCAAACTCAAA.  

NMR analyses 

The cells (2 x 107) were suspended in 450 μl methanol /chloroform (2:1) and 

lysed by ultrasound. The lysates were mixed with 450 μl chloroform/H2O (1:1). 
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The supernatants were collected and lyophilized. The cell extracts were then 

resuspended in 500 μl D2O containing 0.25 mM sodium trimethylsily 1 

propionate-d4. After centrifugation, the supernatant was transferred to 5-mm 

NMR tubes. All NMR spectra were recorded at 25°C on a Bruker AVANCE III 

600 MHz NMR spectrometer equipped with a triple resonance probe and a z-

axis pulsed field gradient. 1H NMR spectra were acquired using a one-

dimensional NOESY pulse sequence with water suppression during the 

relaxation delay of 4 s and a mixing time of 150 ms. 128 free induction decays 

were collected into 32 K data points with a spectral width of 12,000 Hz, an 

acquisition time of 2.66 s. FID was zero-filled to 64 K prior to Fourier 

transformation. 

MeDIP   

Genomic DNA of WT and fgfr1/fgfr2/frs2 triple knockout mouse embryonic 

fibroblasts (MEFDF) were isolated with the Qiagen Kit and ultrasound sheared 

into smaller fragments (200-600 bp). The sheared gDNA was denatured by 

incubation in 1M NaOH/25mM EDTA at 95°C for 12 minutes. The denatured 

DNA was incubated with anti-5mc antibodies and then mixed with pre-

equilibrated protein G dynabeads. The immunocomplexes were mixed with 250 

μl proteinase K buffer and 2 μl 20 mg/ml proteinase K (Roche 03115852001), 

shaken vigorously at 50 °C for 3 hours. The bound 5-mc containing DNA was 

then purified with phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma) and 
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chloroform:isoamyl alcohol (24:1) (Sigma). The purified DNA was used for 

making the sequencing library with the NEB (E6240S) library prep kit, and 

sequence by the Agrilife Genomics and Bioinformatics Service, Texas A&M 

University. 

Sodium bisulfite DNA sequencing    

Genomic DNA was isolated using the Qiangen Genomic DNA Kit, followed by 

bisulfite conversion using the EpiJET Bisulfite Conversion Kit (Thermo 

Scientific). Bisulfite specific primers for the PCR amplification were 5’- 

GAGGGTTGTAAATATTAGTAAGTGATTA-3’ (sense) and 5’-

ACCAAATTAACCTTAAACTCAAAAAC-3’ (antisense). The PCR products 

contained 6 CpG sites and were expected to be 136bp. The amplicons were 

then cloned into pDrive Cloning Vectors (Qiangen). Plasmid DNA extracted from 

each clone was then sequenced. The methylation of each CpG site was 

determined by comparison with the sequence of the LDHB promoter 

counterparts. 

Protein stability assay    

Stable transfectants of MEFs expressing HA-tagged LDHA were treated with 

cycloheximide for the indicated times. The abundance of LDHA was examined 

by Western blot. The relative level of endogenous or HA-tagged LDHA was 

quantitated with the Image J. 
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Lentivirus plasmids transfection  

8x105 293T cells on 6cm dish were planted one day before transfection with 3ml 

medium for each dish. Two tubes were prepared for each group. The 

composition of transfection reagents is as follows. Tube 1 contained 200ul 

DMEM serum free medium 20ul Fugene6 and tube 2 contained 200ul DMEM 

serum free medium with 5ug shRNA plasmids, 5ug Pspax2, and 2.5ug PMD2G. 

Tube 1 and tube 2 were mixed together and vortexed at room temperature for 

25mins prior to being added to the surface of 293T cells. 

Statistical analysis   

Statistical analysis was performed using the two tailed t test, with significance 

set to P<0.05.  Error bars indicate standard deviation. 

 

Results 

Ablation of the FGF signaling axis reduced glycolysis and increased 

oxygen consumption in mouse embryonic fibroblasts (MEF).  FGFR1 has 

been report to promote LDHA activity by tyrosine phosphorylating LDHA (86). To 

investigate the role of FGF signaling in cell metabolism, we generated MEFs that 

are devoid of Fgfr1, Fgfr2, and Frs2a by infecting MEFs bearing floxed Fgfr1, 

Fgfr2, and Frs2a alleles with adenovirus carrying the Cre-GFP coding 

sequence. The cells did not respond to FGF2 with respect to activating 
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downstream signaling molecules and were designated as MEFDF (Fig. 3.1). 

Western blot analyses revealed that, compared with parental MEF, the 

expression of LDHA protein was reduced and the expression of LDHB was 

increased at the protein levels in MEFDF cells.  

 

 

 

Fig. 3. 1. FGF signaling deletion decreased LDHA but increased LDHB 
expression. 

A. Real-time RT-PCR analyses showing Fgfr1, Fgfr2 and Frs2a knockout 
efficiency. B. Western blot showing ablation of FGF signaling reduced LDHA 
expression and increased LDHB expression. WT, wildtype; Ctrl, control; ΔF, 
MEFΔF; *, P<0.05. 
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However, real-time RT-PCR revealed that the expression of ldha was not 

changed whereas the expression of ldhb was increased at the mRNA level (Fig. 

3.2 A). The results suggest that FGF signaling promotes LDHA expression at the 

protein level and LDHB at the mRNA level. LDHA displays a higher affinity for 

pyruvate than LDHB, therefore, LDHA primarily drives the production of lactate 

and NAD+ whereas LDHB favors the production of pyruvate and NADH (71).	To 

determine whether abrogation of the FGF signaling axis in MEF changed cell 

metabolism, we compared the lactate production and oxygen consumption in 

MEF and MEFDF (Fig. 3.2 B). The results demonstrated that abrogation of FGF 

signaling in MEF reduced lactate production and increased the oxygen 

consumption rate (OCR).  
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Fig. 3. 2. Ablation of FGF signaling increased oxygen consumption of 
MEFs.  

A. Real-time RT-PCR showing ablation of FGF signaling increased LDHB 
mRNA expression but did not change LDHA transcripts. B. Ablation of FGF 
signaling decreased the oxygen consumption rate of control and knockout 
MEFs. C. FGF deletion increased the lactate production of MEFs. WT, 
wildtype; Ctrl, control; ΔF, MEFΔF; *, P<0.05. 
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In addition, NMR analysis also revealed that the concentration of isoleucine, 

valine, and acetate was reduced and the concentration of glutamate, glutamine, 

succinate, and glutathione was increased in MEFDF (Fig. 3.3). Notably, isoleucine 

and valine were decreased in MEFDF, suggesting that the synthesis of branched 

chain amino acids (BCAAs) was disrupted in MEFs that lost FGF signaling (Fig. 

3.3). The dysregulation of BCAAs synthesis in MEFs lacking FGF signaling is in 

line with evidence that BCAAs promotes glucose uptake (91). The results further 

demonstrate changes in cell energy metabolism from aerobic glycolysis to 

oxidative phosphorylation in MEFDF. Thus, it suggests that the cell energy 

metabolism in MEFs is regulated by FGF signaling. FGF signaling might 

regulate BCAAs through unique mechanism. More studies are needed to 

address how FGF regulates the BCAA pathway. 
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Fig. 3. 3. Ablation of FGF signaling decreased aerobic glycolysis. 

NMR analysis demonstrated metabolite changes in MEF∆F cells. Relative 
glucose uptake and lactate production of MEFs with or without ablation 
of the FGF signaling axis. WT, wildtype; Ctrl, control; ΔF, MEF∆F; *, 
P<0.05.  
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Fig. 3. 4. Knockout of FGF signaling enhanced degradation of 
LDHA.  

A. MEFs and MEFΔF were treated with cycloheximide for 0, 3, 6, 9, 12 
h. Endogenous LDHA protein levels were determined by Western blot. 
B. Intensity of LDHA relative to β-actin were determined using Image J.  
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FGFR1 enhanced the stability of LDHA by tyrosine phosphorylation. 

 To determine the role of FGFR1 in regulating LDHA at the protein level, the 

MEF and MEFΔF cells were treated with cycloheximide to block the protein 

synthesis. Western blot revealed that the abundance of LDHA protein in MEFΔF 

declined faster compared with that in parental MEFs (Fig. 3.4). The results 

indicate that the halflife of LDHA is shorter in MEFΔF than in parental MEFs, 

suggesting that the stability of LDHA was promoted by FGFR1. In line with a 

previous report (86), Western blot with the anti-phosphotyrosine antibody 4G10 

demonstrated LDHA was tyrosine phosphorylated (Fig. 3.5). LDHA has four 

tyrosine phosphorylation sites (86). To identify which tyrosine phosphorylation 

sites were involved in regulating LDHA stability, site-direct mutagenesis was 

employed to generate LDHA mutants that had each individual mutation or 

double mutation, or quadruple mutations as indicated in Fig. 3.5 A. The results 

showed that only the 4F mutant was not phosphorylated by FGFR1 kinase. 

Other mutations only partially reduced the phosphorylation, confirming the 

previous report that all four tyrosine residues were phosphorylated by FGFR1 

kinase. Interestingly, the stability of the four individual tyrosine phosphorylation 

sites did not affect the stability of LDHA. The two 2F mutants had a shorter half-

life compared with the wildtype. However, the 4F mutant showed a statistically 

significant reduction in stability (Fig. 3.6). The results indicate that 

phosphorylation of the four tyrosine residues promotes the stability of LDHA.  
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Fig. 3. 5. Tyrosine phosphorylation suppressed degradation of LDHA.  

A. The structure domains and phosphorylation of LDHA. Green dots 
indicate the tyrosine phosphorylation sites. B. HA tagged wildtype or 
mutant LDHA were expressed in 239T cells with FGFR1.4F, all four 
tyrosines were changed to phenylalanine. IP, immunoprecipitation; IB, 
immunoblot; T, region for tetramer formation; NADP, NAD(P) biding 
domain; C, C-terminal domain; 4G10, anti-phosphotyrosine antibody 4G10.  
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Fig. 3. 6. Tyrosine phosphorylation stabilizes LDHA protein.  

A. MEFs stably expressing wildtype or mutant LDHA were treated with 
CHX for 0, 3, 6, 9, 12h. The levels of LDHA were determined with 
Western blot. B. The relative intensity of LDHA against β-actin was 
plotted. 2Fa, Y10F/Y83F mutation; 2Fb, Y172/Y239 mutation; 4F, 
Y10F/Y83F/Y172/Y239 mutation. IP, immunoprecipitation; IB, 
immunoblot. 
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FRS2α interacts with LDHA independent of LDHB.  

Since FGFR1 phosphorylates LDHA through direct interaction with it (86), we 

hypothesize that FRS2α, an adaptor protein of FGF receptors, can also interact 

with LDHA. Therefore, we generated plasmids that express FRS2α or LDHA. 

Wildtype 293T cells and 293T cells lacking LDHB were co-transfected with 

FRS2α and LDHA simultaneously. We used anti-LDHA antibodies to pull down 

the LDHA protein complex, which was followed by immunoblotting of anti-FRS2α 

antibodies. The data showed a strong interaction between FRS2α and LDHA, 

and LDHB deletion did not affect the binding between LDHA and Frs2α (Fig. 

3.7). These data suggest that FRS2α directly interacts with LDHA, and that it 

might serve as a mediator for FGFR regulated LDHA phosphorylation. Further 

study is required to determine if FRS2α is needed for the interaction between 

FGFR1 and LDHA.  
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Fig. 3. 7. FRS2 interacts with LDHA independent of LDHB.  

A. Co-immunoprecipitation of LDHA and FRS2α. Anti-IgG and anti-	
FRS2α antibodies were used to pull down IgG and FRS2α binding 
proteins. Immunoblotting of LDHA, FRS2α and LDHB was done to 
detect the expression of indicated proteins in complexes. B. FRET 
experiment to examine the interaction between LDHA-CFP and YFP- 
FRS2α. Signals of three different channels-donor, acceptor and FRET 
were recorded using confocal microscopy. IP, immunoprecipitation; 
WB, western blot; IB, immunoblot; OE, overexpression; KO, knockout; 
FRET, fluorescence resonant energy transfer. 
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In addition to the co-IP experiments, we also did the fluorescence resonant 

energy transfer (FRET) assay to examine the crosstalk between FRS2α and 

LDHA. The assay is based on the rationale that if the donor (CFP) and acceptor 

(YFP) are close enough (<6nM), energy transfer between two light-sensitive 

molecules will occur, thus generating FRET signals. To perform the assay, we 

added CFP to the C-terminus or N-terminus of LDHA and tagged YFP to the C-

terminus l or N-terminus of FRS2α. We then monitored the interaction of the 

proteins by transfecting them individually or separately into DU145 cells prior to 

examining cells under confocal microscopy. FRET signals were observed when 

LDHA with C-terminus tagged CFP and FRS2α with N-terminus tagged YFP 

were cotransfected, suggesting that there was a crosstalk between the LDHA C-

terminus and the FRS2α N-terminus (Fig. 3.7). The FRET assay was able to 

analyze the interaction of two proteins in live cells and allows for the detailed 

information regarding the orientation of the interactions. All together, these data 

suggest that FRS2α binds with LDHA independent of LDHB.  
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FGFR1 interacts with LDHB independent of LDHA. 

FGFR1 interacts with and phosphorylates LDHA, and LDHA forms tetramers 

with LDHA or LDHB isoforms. Therefore, we examined whether FGFR1 also 

interacts with LDHB even in the absence of LDHA. Since LDHA forms 

complexes with LDHA, it is unclear if FGFR1 directly binds with LDHA or needs 

LDHB in the complex for the interactions. We transfected 293T cells with 

plasmids expressing FGFR1 and LDHB. By co-immunoprecipitation, FGFR1 

interacted with LDHB even in LDHA knockout 293T cells (Fig. 3.8). Surprisingly, 

the interaction did not result in the phosphorylation of LDHB (data not shown), 

suggesting that LDHB might not be required for the interaction between FGFR1 

and LDHA. Further studies are needed to address this phenomenon.  
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Fig. 3. 8. FGFR1 binds to LDHB in the absence of LDHA.  

Cells were co-transfected with FGFR1 and LDHB expressing plasmids prior 
to the co-IP assay. Anti-IgG and LDHB antibodies were used to pull down 
control IgG and LDHB protein complexes, which was followed by 
immunoblotting of FGFR1 and LDHB. aLDHB, anti-LDHB antibodies; IP, 
immunoprecipitation; Endogenous, Endogenous LDHB; LDHAKO, LDHA 
knockout.  
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Fig. 3. 9. Ablation of FGF signaling reduced the DNA methylation of 
LDHB promoter. 

A. Methylated DNA was immunoprecipitated with the anti-methylated DNA 
antibody and subjected to high throughput sequencing. The level of 
methylated CpG island in the LDHB promoter region was shown. B. Bisulfite 
DNA sequencing of the Ldhb promoter area showing reduced DNA 
methylation in MEFDF. WT, wildtype; DF, MEFDF. 
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FGFR1 suppressed LDHB transcription by promoting DNA methylation on 

the LDHB promoter.  

It has been reported that the promoter of LDHB is heavily methylated in PCa, 

which inhibits the transcription of LDHB (80). To determine whether FGFR1 

suppressed LDHB expression via promoter methylation, we employed 

methylated DNA immunoprecipitation (MeDIP) to pull down methylated DNA for 

high-throughput sequencing (Fig. 3.9). The results showed that the CpG islands 

in the Ldhb promoter were less methylated in MEFΔR1 cells than in parental 

MEFs. Further bisulfite sequencing of the Ldhb promoter area confirmed that the 

DNA demethylation is reduced in MEFDF cells (Fig. 3.9). Since DNA 

demethylation is catalyzed by the three TET enzymes, TET1-3, we then 

compared the expression of TET1-3 in MEFDF and parental MEFs with real-time 

RT-PCR. The results revealed the expression of Tet1 at the mRNA level was 

significantly increased in MEFDF (Fig. 3.10 A). Western blot further confirmed 

elevated TET1 expression in MEFDF (Fig. 3.10 C), suggesting that FGF signaling 

suppressed expression of Tet1. Consistent with these findings, Ldhb expression 

was higher in MEF bearing Tet1null alleles than in parental MEFs (Fig. 3.10 B), 

further indicated that the expression of LDHB was reduced by DNA methylation.  
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Fig. 3. 10. Ablation of FGF signaling upregulated Tet1 expression.   

A. Real-time RT-PCR showing increased Tet1 in MEFDF cells at the mRNA 
level. B. Real-time RT-PCR analyses showing reduced ldhb expression in 
MEF carrying Tet1 null mutation (ΔTet1). C. Western blot analyses showing 
that Tet1 expression was increased in MEFDF relative to wildtype MEFs. WT, 
wildtype; DF, MEFDF; *, P<0.05.  
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Ablation of the FGF signaling axis reprograms cell metabolism in human 

PCa cells. 

 The acquisition of ectopic FGFR1 expression and cell metabolic reprogramming 

are associated with PCa progression. However, whether the acquisition of 

FGFR1 expression contributes to metabolic changes in PCa cells is not clear. To 

investigate whether aberrant FGF signaling contributed to PCa metabolic 

reprogramming, the CRISPR/Cas9 gene editing method was used to ablate the 

Fgfr1 alleles in DU145 cells that highly expressed FGFR1. The expression 

profile of LDHA isozymes was then determined by Western blotting (Fig. 3.11). It 

was obvious that ablation of Fgfr1 reduced expression of LDHA and increased 

expression of LDHB in DU145 cells at the protein level. Consistent with the 

report that FGFR1 tyrosine kinase phosphorylates LDHA, Western blot analyses 

also revealed that the phosphorylation of LDHA at Y10 residue was reduced in 

DU145ΔR1 cells. In line with the data in MEF cells, the expression of Ldha mRNA 

was not affected and the expression of ldhb mRNA was increased in DU145ΔR1 

cells (Fig. 3.11 B). This further suggests that the reduction of LDHA was due to 

regulation at either the translational or posttranslational modification level and 

the reduction in LDHB was a result of changes in transcription.  
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Fig. 3. 11. Ablation of FGF signaling reduced LDHA and increases 
LDHB expression in DU145 cells.   

A. Western blot showing ablation of Fgfr1 reduced LDHA expression and 
increases LDHB expression. B. Ablation of Fgfr1 increased mRNA 
expression of LDHB but did not affect LDHA transcription. Ctrl, control; ΔR1, 
DU145ΔR1; pLDHA, phosphorylated LDHA; pERK, phosphorylated ERK1/2; 
pAKT, phosphorylated AKT; β-actin was used as loading control. Intensity of 
indicated proteins relative to β-actin was analyzed using Image J. *, P<0.05 
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In accord with a FGFR-driven metabolic switch, ablation of Fgfr1 reduced the 

glucose uptake and lactate production, as well as increased O2 consumption 

(Fig. 3.12). The results suggest that ablation of Fgfr1 in PCa cells reprograms 

the cell metabolism from glycolysis to oxidative phosphorylation.   

Fig. 3. 12. Ablation of FGF signaling suppresses aerobic glycolysis and 
promotes oxidative phosphorylation in DU145 cells.   

A. Glucose uptake; B. oxygen consumption; C. lactate production; D. ATP 
production of control and FGFR1 knockout DU145 cells. Ctrl, control; ΔR1, 
DU145ΔR1; *, P<0.05.  
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FGFR1 knockout TRAMP tumors displayed decreased expression of 

pLDHA and increased expression of LDHB.  

Tissue of origin along with genetic changes that drive the tumor progression 

both determine tumor metabolic dependencies. Therefore, it is crucial to 

investigate metabolism regulation in live animals where tumors originally arise. 

Previous studies have shown that Fgfr1 null mice were generated through 

crossing of Fgfr1flox/flox, ARR2PBi-Cre and TRAMP mice (92). To understand 

whether FGFR1 also regulates pLDHA and LDHB in vivo, we then examined 

pLDHA  levels and LDHB expression in resulted Fgfr1 knockout and control 

prostate tumors by immunostaining and real-time PCR analyses. The IHC 

results showed that pLDHA levels were significantly downregulated, while LDHB 

was upregulated in tumors with Fgfr1 deletion (Fig. 3.13). Real-time analyses 

performed with RNA extracted from control and Fgfr1 knockout tumors revealed 

that the transcription of LDHB was enhanced, as shown by the increased 

expression of LDHB mRNA. These data, in line with the findings done in vitro, 

strongly suggest that FGFR1 positively regulated pLDHA but negatively 

controlled LDHB in both in vitro and in vivo.  
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Fig. 3. 13. FGFR1 deletion reduced pLDHA but increased LDHB 
expression in TRAMP tumors.  

A. Immunostaining of pLDHA and LDHB in Fgfr1 knockout and control 
TRAMP tumors using anti-pLDHA and LDHB antibodies. Representative 
pictures showed that pLDHA was significantly decreased and LDHB was 
upregulated in poorly differentiated prostate tumors. B. mRNA expression of 
LDHA and LDHB in Fgfr1 knockout and control prostate tumors. WT, 
wildtype; R1CN, Fgfr1cn, *, P<0.05. 
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Fig. 3. 14. Ablation of LDHA reduced and ablation of LDHB enhanced the 
tumorigenicity of DU145 cells.  

A. Xenografts derived from control DU145, DU145∆Ldha (a) or DU145∆Ldhb (b). 
DU145 cells (1 X 106) were mixed with Matrigel and grafted into the hind 
flanks of nude mice. Note that the tumors of ΔLDHA and ΔLDHB groups were 
harvested at different days since the ΔLDHB group reached the limit of tumor 
burdens earlier than the ΔLDHB group. B. The average xenograft weight of 
DU145ΔLdha (a), DU145ΔLdhb (b), and control tumors. ΔLDHA, DU145ΔLdha; 
ΔLDHB, DU145ΔLdhb; Ctrl, parental DU145 cells as a control. 
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Ablation of LDHA reduced, and ablation of LDHB enhanced tumorigenesis 

of DU145 cells.  

To investigate the function of LDH isoforms on the tumorigenic activity of PCa 

cells, we employed CRISPR/Cas9 to delete Ldha or Ldhb alleles in DU145 cells, 

designated as DU145DLdha and DU145Dldhb, respectively. When grafted 

subcutaneously in nude mice, DU145DLdha cells only generated small tumors 

compared with parental DU145 cells (Fig. 3.14). In contrast, the grafts derived 

from DU145Dldhb cells were larger than parental DU145 cells (Fig. 3.14). Western 

analysis of the xenografts revealed that ablation of Ldha increased PGAM 

expression, ablation of Ldhb increased HK1, PFK3 and Aldolase, indicating that 

depletion of LDHA compromised and depletion of LDHB increased the 

expression of glycolytic enzymes in prostate cancer cells (Fig. 3.15) 

Interestingly, both LDHA and LDHB deletion stimulated the compensatory 

upregulation of glycolytic related proteins but resulted in opposite effects on 

tumor growth, suggesting that there might be unidentified proteins that mediate 

the LDH-regulated tumor growth 
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Fig. 3. 15.  Knockout of LDHA or LDHB leads to the reprogramming of 
the glycolysis pathways.  

Western blot analyses of expression of enzymes related to the aerobic 
glycolysis. Cell lysates were extracted from control, LDHA or LDHB 
knockout grafted DU145 tumors. Knockout of LDHA and LDHB stimulated 
the upregulation of aerobic glycolysis related pathways but had different 
effects on tumor growth. ΔLDHA, DU145ΔLdha; ΔLDHB, DU145ΔLdhb; Ctrl, 
parental DU145 cells as a control; HK1, hexokinase 1; PD, pyruvate 
dehydrogenase. 
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Fig. 3. 16. Ablation of Ldha reduced cell proliferation in PCa 
xenografts. 

A. Tissue sections of xenografts derived from DU145DLdha or control DU145 
cells. H&E stained, or immunohistochemical staining with anti-LDHA or 
Ki67 as indicated. B. IHC staining for Ki67 (panel a) and averages of Ki67 
cells per viewing area were calculated from 20 (6 pairs of tumors) viewing 
areas and presented as mean ± sd (b).	



	
	

 

	

91 

Although there were no significant differences in histology between the parental 

DU145, DU145DLdha, and DU145Dldhb xenografts, DU145DLdha had less and 

DU145Dldhb had more Ki67+ cells, indicating that ablation of Ldha reduced and 

ablation of Ldhb increased proliferating cells in the xenografts (Fig. 3.16&3.17).   

 

 

Fig. 3. 17. Ablation of Ldhb promoted cell proliferation in PCa 
xenografts. 

A. Tissue sections of xenografts derived from DU145DLdhbor control DU145 
cells. H&E stained, or immunohistochemical staining with anti-LDHB or 
Ki67 as indicated. B. IHC for Ki67 (panel a) and averages of Ki67 cells per 
viewing area were calculated from 20 (6 pairs of tumors) viewing areas. *, 
P<0.05.	
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Fig. 3. 18. Differential impacts of LDHA and LDHB on cell survival in 
PCa xenografts.  

A. Tissue sections of xenografts derived from DU145DLdha, DU145Dldhb, and 
DU145 cells were immunostained with TUNEL. B. Averages of positively 
stained cells per viewing area were calculated from 25 (6 pairs of tumors) 
viewing areas; *, P<0.05.	
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Furthermore, there were more apoptotic cells in xenografts derived from 

DU145DLdha cells than those derived from parental DU145 cells, whereas the 

opposite phenomenon was observed in DU145Dldhb xenografts (Fig. 3.18). Lactic 

acid produced by tumor cells has a critical impact on the tumor 

microenvironment primarily through triggering angiogenesis and polarizing tumor 

associated macrophages (93). To investigate the impact of LDHA or LDHB 

knockout on the tumor microenvironment, we examined the micro vessel density 

by staining with anti-CD31 antibodies. The results showed that angiogenesis 

was inhibited in LDHA knockout tumors but stimulated in LDHB knockout tumors 

compared with control tumors (Fig. 3.19). These data suggest that angiogenesis 

is accompanied with altered metabolism, which is consistent with the pro-

angiogenic role of FRS2 in prostate tumor angiogenesis.  

 

 

 

 

 

 



	
	

 

	

94 

 

 

Fig. 3. 19. Differential impacts of LDHA and LDHB on angiogenesis in 
PCa xenografts.  

Tissue sections of xenografts derived from DU145DLdha, DU145Dldhb, and 
DU145 cells were immunostained with anti-CD31 antibodies A. 
Representative images of CD31 positive cells in indicated tumors. B. 
Averages of positively stained cells per viewing area were calculated from 25 
(6 pairs of tumors) viewing areas. *, P<0.05.	
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Since inflammation is also associated with malignancy of prostate cancers, we 

measured macrophages by staining with the F4/80 antibody in xenografts 

derived from DU145DLdha, DU145Dldhb, and parental DU145 cells. The results 

showed that there were fewer F4/80+ cells in xenografts derived from 

DU145DLdha than those derived from parental DU145 cells. In contrast, there 

were, more F4/80+ cells in xenografts derived from DU145DLdhb than those 

derived from parental DU145 cells (Fig. 3.20). The results demonstrate that 

ablation of LDHA compromised, whereas ablation of LDHB stimulated, 

macrophage infiltration. Together, the results indicated that ablation of Ldha 

compromised, whereas ablation of Ldhb promoted, the tumorigenic activity of 

DU145 cells. These data once again supported the notion that LDHA and LDHB 

play different role in tumor initiation and progression. 
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Fig. 3. 20. Differential impacts of LDHA and LDHB on macrophage 
infiltration in PCa xenografts.  

Tissue sections of xenografts derived from DU145DLdha, DU145Dldhb, and 
DU145 cells were immunostained with anti-F4/80 antibodies A. 
Representative images of F4/80 positive cells in indicated tumors. B. 
Averages of positively stained cells per viewing area were calculated from 25 
(6 pairs of tumors) viewing areas. *, P<0.05.	
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LDHA knockout increased the sensitivity of prostate cancer cells to 

chemotherapeutic drugs.  

One way to develop therapies is to target pathways that are unique to cancer 

cells. A body of evidence shows that cancer cells with increased mitochondrial 

activities become more sensitive to drugs that target DNA replication. Mitomycin 

C (MMC) is one of the drugs that have been applied to prostate cancer patients 

due to its ability to inhibit DNA replication. Since our data showed that FGFR1 

and LDHA deletion increased prostate cancer cell oxygen consumption (Fig. 

3.12), which is associated with increased mitochondrial activity, we tested 

whether FGFR1 ablation alters the chemosensitivity of prostate cancer cells. We 

treated control and FGFR1 knockout DU145 cells with MMC for 6 hours before 

subjecting these cells to the apoptosis assay for flow cytometry.  FGFR1 

ablation increased the number of early apoptotic cells (annexin V+ Sytox blue+) 

relative to control groups, suggesting that FGFR1 knockout increased the 

chemosensitivity of prostate cancer cells (Fig 3.21 A). 
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Fig. 3. 21. FGFR1 and LDHA deletion increased the chemosensitivity of 
prostate cancer cells. 

A. Control and FGFR1 knockout cells were treated with 5uM MMC for 4 hours 
followed by staining with Annexin V and Sytox blue. The percentages of early 
apoptotic cells (Sytox blue+ and Annexin V+) and late apoptotic cells (Sytox 
blue-and Annexin V+) are indicated in the contour plots. B. Control, FGFR1 or 
LDHA knockout cells were treated with DMSO or 5uM MMC for 12 hours 
followed by Western blot analyses. CRISPR, control; ΔR1, FGFR1 knockout; 
ΔLDHA, LDHA knockout. 
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A series of caspase processing events is one of the common mechanisms 

through which cells undergo apoptosis.  Thus, we further examined the caspase-

9/caspase-3 axis by Western blotting and the data showed that cleaved-PARP, 

cleaved-caspase 9, and cleaved-caspase-3 were significantly upregulated in 

cells that lack FGFR1 or LDHA compared with controls (Fig. 3.21 B). The data 

indicated a striking similarity between the mechanisms that FGFR1 and LDHA 

deletion increased sensitivity of prostate cancer cells to chemotherapeutic drugs. 

 Although more studies are necessary before these findings are applied to 

preclinical models, the paradigm we tested in these assays revealed the 

possibility to target both the pathways that are aberrantly activated due to 

genetic changes such as FGFR1 amplification and pathways that enable the 

tumor phenotypes such as aerobic glycolysis. These two types of pathways 

represent the genetic changes and driver mutations that initiate the outgrowth of 

tumors, and metabolic changes that adapt transformed cells to the tumor 

environment.  

LDHB ablation promotes the survival of prostate cancer cells under 

hypoxic conditions.  

It has been documented that LDHA knockdown inhibits anchorage-independent 

growth of Rat1a fibroblasts but does not affect their growth when they are 

adherent to plastic dishes (94). The anaerobic environment of colonies formed 

on soft agar might provide cancer cells with the idea conditions to rely on the 
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LDHA dependent glycolysis metabolic pathways. Similarly, LDHB knockout did 

not change the cell growth in regular culture conditions. However, we observed 

that the growth of LDHB deleted DU145 cells was significantly impaired when 

subjected to hypoxia conditions, with most of the knockout cell died off around 

day 10 (Figure 3.22). These results indicated that hypoxia, which mimics the 

environment of tumors, imposed growth constraints on DU145 cells and only 

those cells that lack LDHB survived under the condition.  

Since LDHB deletion triggered tumor growth through preventing cell death, we 

then examined the PTEN pathway, which is a major regulator of apoptosis and a 

tumor suppressor. Interestingly, LDHB knockout significantly inhibited PTEN 

levels in DU145 cells regardless of oxygen. The downregulation of PTEN was 

independent of its transcription since RT-PCR analyses showed that PTEN 

mRNA levels were not affected by LDHB deletion. However, mRNA expression 

of IL-6 was decreased in LDHB knockout tumor cells, which is consistent with 

the rationale that targeting both IL-6 and PTEN deletion may inhibit prostate 

cancer proliferation, migration and metastasis (95). LDHB deletion also reduced 

the mRNA expression of BCL-2, a survival marker. All together, these data 

suggest that LDHB is required for tumor cells to survive under hypoxic 

conditions. 
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Fig 3. 22. LDHB knockout inhibited tumor cell growth under hypoxia.  

A. Control and knockout DU145 cells were cultured for up to 10 days under 
normoxia (left panel) or hypoxia (right panel) conditions. B. Western blot 
analyses of control and LDHB knockout DU145 cells. Two LDHB knockout 
clones (LBKO1 and LBKO2) were used for the analyses. C. mRNA 
expression of PTEN, PDPK1, TP53, IL-6, and BCL2 was analyzed in control 
and LDHB deleted DU145 cells. Ctrl, control; LBKO, LDHB knockout; *** 
P<0.01.  
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Hyperphosphorylation of LDHA and reduced LDHB expression in human 

PCa. 

	In order to determine the expression pattern of LDHA and LDHB in human 

PCa,we performed immunohistochemistry on a panel of prostate cancer 

samples. Immunohistochemical staining showed that the expression of LDHA 

appeared to be higher in PCa than in adjacent prostate tissues (Fig. 3.23). 

Human LDHA can be phosphorylated by the FGFR1 kinase at multiple tyrosine 

residues (86). The level of Y10 phosphorylated LDHA (pLDHA) was increased in 

PCa compared with the adjacent non-cancerous tissues, whereas the 

expression of LDHB was reduced in PCa (Fig. 3.23).  These results are in line 

with the evidence we acquired using DU145 and MEF cells, further 

demonstrating the different biological function of LDHA versus LDHB. 
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Fig. 3. 23. High pLDHA and low LDH expression in PCa patients.  

A. Representative images of immunochemical staining of pLDHA and 
LDHB in the MGH PCa TMA. B. Statistical analyses of expressions of 
LDHA and LDHB in PCa and benign prostate. *, P<0.05; N=225. 
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To assess the clinical relevance of LDH expression profiles in PCa, the levels of 

pLDHA and expression of LDHB were determined by immunostaining in a 

human prostate tissue microarray (TMA) that comprised of 225 PCa and 27 

benign prostate samples (90). The samples were annotated with detailed patient 

information and 15-year follow-up of the patients, which includes PSA 

recurrence, Gleason scores, pathological stages, patients’ age, and survival 

time. In general, the clinical outcomes of the patients with high pLDHA were 

worse than those with low pLDHA; those with low LDHB expression were worse 

than those with high LDHB expressions (Fig. 3.24).  Furthermore, the group with 

high pLDHA and low expression of LDHB clearly had shorter biochemical 

recurrence free time than the group with low pLDHA or high expression of 

LDHB. The results suggest that the levels of pLDHA and LDHB have the 

potential to serve as biomarkers for PCa prognosis.  
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Fig. 3.24. pLDHAHigh/LDHBLow predicts poor prognosis of PCa patients  

A. Statistical analyses of PSA failure free survival time in patients with low 
(IRS<3) versus high (IRS≥3) phosphorylation of LDHA and in patients with 
low (IRS<3) versus high LDHB (IRS≥3) expression. B. PSA failure-free and 
overall survival time of patients with pLDHALow/LDHBHigh, 
pLDHALow/LDHBlow, pLDHAHigh/LDHBLow and pLDHAHigh/LDHBHigh.  
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Fgfr1 is overexpressed in about 40% of human PCa (58,62). To determine 

whether the expression level of Fgfr1 correlates with the abundance of pLDHA, 

in situ hybridization was used to assess the mRNA levels of Fgfr1 in the same 

set of TMAs. The results showed that Fgfr1 was overexpressed in the epithelial 

compartment of 73% of this set of PCa samples.  Furthermore, expression levels 

of Fgfr1 were positively associated with the level of pLDHA (Fig. 3.25). In 

addition, although statistical analysis also revealed that expression of Fgfr1 was 

negatively associated with the expression of LDHB in the same TMA set (data 

not shown).  Together, the data imply that aberrantly expressed Fgfr1 in PCa 

deregulates the expression of LDH isozymes and shifts metabolism to favor 

glycolysis in these cells. Our study also linked the dysregulation of FGFR1 to 

expression of glycolysis related proteins.  
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Fig. 3.25. FGFR1 is positively correlated with LDHA in PCa patients.   

A. Representative pictures of pLDHA immunostaining and FGFR1 in situ 
staining in same selective tumors. B. Statistical analyses of FGFR1 in 
benign and cancer tissues and Pearson correlation of Fgfr1 and pLDHA 
in the PCa tissue microarray. R=0.425, P<0.01, N=225; *, P<0.05. 
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Discussion 

 Extensive evidence shows that aberrant activation of FGF/FGFR signaling is a 

contributing factor for PCa development and progression (53-59). The 

acquisition of ectopic expression of FGFR1 in tumor epithelial cells stands out as 

the most remarkable change among FGFR isotypes (60-64). FGF-mediated 

glycolysis plays a pivotal role in developmental (9,96) and FGFR1 has been 

shown directly phosphorylates LDHA at multiple tyrosine residues and the 

phosphorylation enhances the LDHA enzymatic activity (86). However, whether 

aberrant FGFR1 signaling in PCa cells reprograms cellular energy metabolism 

remains unknown. In this report, we showed that FGFR1 signaling promoted 

aerobic glycolysis via upregulating LDHA at the protein level and downregulating 

LDHB at the transcription level. Ablation of LDHA compromised whereas 

ablation of LDHB enhanced the tumorigenicity of DU145 PCa cells. Furthermore, 

high levels of phosphorylated LDHA and low levels of LDHB in human PCa 

tissues was associated with short biochemical recurrence and patient survival 

time. The results suggest that aberrant FGFR1 signaling contributes to PCa 

progression via reprograming cell energy metabolism and that high levels of 

phosphorylated LDHA and high expression of LDHB are potential biomarkers for 

PCa diagnosis and prognosis.  

LDHA has four tyrosine phosphorylation sites. Among them, phosphorylation 

at tyrosine 10 enhances the formation of tetramers and increases enzymatic 

activity, and phosphorylation at tyrosine 83 enhances the 
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binding of substrate NADH (86). In addition, high expression of FGFR1 is 

associated with high levels of phosphorylated LDHA (97). However, tyrosine 

residue 10 is not a conserved residue, but only exists in human LDHA, 

suggesting that FGFR1 activates LDHA not only via Y10 phosphorylation. Here, 

we showed that phosphorylation of the four LDHA tyrosine residues by FGFR1 

extended the half-life of LDHA. Ablation of the FGF signaling axis significantly 

reduced the half-life of LDHA; substitutions of the four LDHA tyrosine residues 

with phenylalanine also reduced the half-life of LDHA (Fig. 3.6). Together with 

the literature, it is suggested that tyrosine phosphorylation of LDHA not only 

increases the enzymatic activity, but also enhances the stability of LDHA. 

Western blot analyses did not demonstrate ubiquitination of LDHA with or 

without coexpression of FGFR1 kinase (data not shown). Therefore, future 

efforts are needed to determine how tyrosine phosphorylation affects the half-life 

of LDHA.  

It has been reported that the expression of LDHB is silenced by promoter 

hypermethylation in human PCa (81). Here we further demonstrate that ablation 

of Fgfr1 reduced methylation of the CpG island in the LDHB promoter, either 

with high-throughput MeDIP or bisulfide DNA sequencing of the LDHB promoter 

(Fig. 3.9). Interestingly, ablation of FGF signaling in MEF increased expression 

of Tet1, which catalyzed the conversion of methylated guanidine to hydroxyl-

methylated guanidine, the first step of DNA demethylation. Moreover, ablation of 
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Tet1 increased LDHB expression. Thus, this demonstrated that FGF signaling 

suppressed LDHB expression by promoting Tet1 expression.    

 Targeting lactate metabolism has been tested for cancer treatment in clinical 

trials (84). Our data here reveal that LDHA and LDHB have opposite effects on 

PCa growth. Therefore, it is essential to develop new strategies to specifically 

inhibit LDHA without compromising LDHB activity. FGFR1 selectively 

phosphorylates LDHA on multiple tyrosine residues, which stabilizes LDHA, and 

concurrently blocked the expression of LDHB. Therefore, inhibition of FGFR1 is 

of clinical significance for PCa treatment. 

Acquisition of ectopic FGFR1 is a hallmark change in PCa progression and high 

Fgfr1 expression is associated with poor prognosis of PCa. Although it has been 

shown that ectopic FGFR1 promotes cell proliferation, survival, and migration, 

how aberrant FGFR1 signaling contributes to PCa progression is still not fully 

understood. Here we showed that FGFR1 reprogramed cell metabolism from 

oxidative phosphorylation to aerobic glycolysis. Emerging evidence shows that 

the reprogramming to aerobic glycolysis provides building blocks needed for fast 

proliferation of cancer cells. In addition, accumulation of lactates, the product of 

aerobic glycolysis in the tumor microenvironment suppresses the infiltration, 

proliferation, and differentiation of lymphocytes. Therefore, the data here 

suggest that aberrant FGF signaling also promotes PCa progression by 

increasing supplies needed for cancer cell growth and by suppressing 

immunosurveillance.     



 111 

Overexpression of LDHA and downregulation of LDHB have been separated 

reported in PCa (98). However, whether the expression pattern of LDH is 

associated with PCa prognosis remains unclear. In this report, we demonstrated 

that although either high expression of LDHA or downregulation of LDHB was 

weakly associated with biochemical recurrence survival time (Fig. 3.24), 

combined expression profiles of LDHA and LDHB was strongly associated with 

biochemical recurrence survival and overall survival time of the patient (Fig. 

3.24). The results demonstrate the potential of combined expression profiles of 

LDHA and LDHB as biomarkers for PCa prognosis and warrant future efforts to 

investigate whether it can be used to guide the selection of more aggressive or 

conservative treatments for PCa. 

In conclusion, herein we demonstrated that FGF signaling promoted aerobic 

glycolysis and that aberrant FGF signaling in PCa reprogramed cell metabolism; 

conversely, suppression of FGF signaling reduced aerobic glycolysis and 

promoted oxidative phosphorylation. Deletion of LDHA suppressed and deletion 

of LDHB promoted the tumorigenic activity of PCa cells. Furthermore, 

overexpression of LDHA and downregulation of LDHB correlated with short 

biochemical recurrence and survival time of PCa patients. Therefore, the results 

shed new lights on manipulation of aberrant FGF signaling as a strategy for PCa 

treatment.  



 112 

CHAPTER IV

SUMMARY 

Prostate cancer is one of the leading diseases in America. Intensive studies 

have been done for building an understanding of this disease and hold hopes for 

developing new therapies against prostate cancer based on the scientific 

findings deprived from prostate cancer research.  

 In 1921, Otto Warburg argued that cancer cells, unlike normal cells, tend to use 

aerobic glycolysis as their energy sources and this phenotype was mainly 

caused by the defects in the mitochondria of cancer cells. The concepts have 

been updated since then and scientific research centering on it has also 

expanded. More evidence suggests that despite the instant energy-ATP, other 

biological building blocks and reducing equivalents such as NADPH also hold 

the keys to our understanding towards the rewired metabolic pathways in tumor 

cells.  However, more research has unraveled the complexity of cancer 

metabolism and new findings have raised new questions and challenges.  

Another pioneer of cancer biology-Judah Folkman, in 1972, for the first time, 

proposed the concept of starving tumor cells to death by inhibiting tumor 

angiogenesis (99). Rapid expansion and proliferation of tumor cells leads to the 

depletion of energy and oxygen needed to sustain tumor growth. New blood 

vessels arise from an existing vasculature and grow towards tumors to supply 

them with nutrients and oxygen. Angiogenesis is considered a rate limiting 

process for the outgrowth of tumor cells because tumor cells cannot grow more 
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than 1mm2 without the support of new blood vessels. With the fast expansion of 

research on this topic, now it is realized that 1) tumor blood vessel formation is a 

multi-step process; 2) tumor vasculature is drastically different from normal 

vessels; 3) there are different hypothesis regarding the origin of newly formed 

blood vessels within certain tumors.  

Our understating of tumor angiogenesis and cancer metabolism have been 

hindered by the fact that cells behave differently in culture and in the human 

body. For example, most cell culture media contain a higher concentration of 

glucose (25mM) than the physiological conditions in vivo (5mM). Even inside the 

same multicellular organism, different tissue contexts provide unique 

microenvironments where specific tumors arise. Due to this reason, the 

interaction of tumor cells and cells that reside in the environment, such as 

endothelial cells and stromal cells, defines the tumor pathways dependencies. 

Identifying these dependencies in order to target the vulnerabilities of specific 

tumors is the most common approach to develop therapies against cancers. To 

bridge the gap between cell culture and the human body, we used conditional 

knockout mice model to study how FGF signaling regulates tumor angiogenesis 

and cancer metabolism, which better represents the disease under physiological 

conditions. The tissue specific deletion technique also provides the information 

regarding pathways in specific tissues and overcome the unavailabilities of 

animal subjects due the lethality of Frs2α whole body knockout. By crossing 

floxed Frs2α and ARR2Bi-Cre mice, we deleted Frs2α in prostatic tissues which 
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could not be achieved by total knockout because Frs2α null mice are embryonic 

lethal. Then we crossed the resultant mice with the TRAMP model to acquire 

prostate tumors with Frs2α deletion in the epithelium. Similarly, we investigated 

cancer metabolism by using FGFR1 knockout TRAMP tumors. We also i.p. 

injected DU145 cells with FGFR1, LDHA or LDHB deletion into nude mice, and 

monitored the tumor growth in vivo. The usage of animal models gives us an in-

depth understanding of the behaviors of tumors under pathological conditions 

and it more likely resembles how they behave in patients.  

Tumor cells to elicit signals that stimulate the environment to continuously 

supply them with new nutrients. The onset of angiogenesis could be viewed as 

the consequence of an interaction between tumor cells and the environment. 

Under hypoxia, tumor cells gradually shift their metabolism from oxidative 

phosphorylation to glycolysis without needing oxygen. It is believed that the shift 

was driven by the genetic changes in cancer cells, but the environmental 

stresses such as hypoxia and deprivation of other energy sources eventually 

lead to the complete reprogramming of metabolic pathways, which enables 

tumor cells to utilize glucose as the major energy source even in the presence of 

oxygen. Hypoxic conditions also drive another fundamental process during 

cancer progression-angiogenesis. Hypoxia inducible factor Hif1 promotes the 

expression of proangiogenic factors such as VEGF-A to induce the proliferation, 

migration and tube formation of capillaries towards the tumor mass. Therefore, 

angiogenesis and aerobic glycolysis are interconnected and regulated by a 
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similar set of genes and possibly the same driver mutations. Epithelial tumors 

such as prostate cancers were initially separated from blood supply by a 

basement membrane which becomes broken by lactate that is secreted by 

tumor cells due to the activation of glycolysis. Lactate, an end product of aerobic 

glycolysis that had been considered useless, is now believed to play key roles to 

create an acidic environment to break down the extracellular matrix and the 

basement membrane, which are barriers that prevent blood vessels reach 

tumors and prevent tumor cells from invading into the circulatory system.  

Our investigation of tumor angiogenesis during the process of prostate cancer 

progression revealed a new mechanism of how Frs2a mediated FGF signaling 

promotes angiogenesis. Our data showed that Frs2αa deletion reduced the 

angiogenesis of prostate cancer, evident by a decreased number of blood 

vessels in TRAMP tumors that lack frs2 compared with controls. Conditioned 

medium of Frs2α depleted prostate cancer cells impaired the recruitment of 

HUVECS by tumor cells. Other functions of endothelial cells, such as migration 

and tube formation were also undermined due to the deletion of Frs2α in 

prostate cells. These data demonstrate that aberrant FGF signaling rewires the 

angiogenic pathways of cancers, and thus impairing the angiogenesis through a 

paracrine manner.  

We further discovered that VEGF-A is a paracrine factor that is suppressed by 

ablation of Frs2α. The deletion of Frs2α significantly decreased VEGF-A 

expression in TRAMP tumors and in transplanted matrigel plugs, providing 
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strong evidence of the crosstalk between FGF and VEGF signaling. Luciferase 

and Chip assays further demonstrate that Frs2α promotes the binding of the 

transcriptional factors-Hif1a and c-Jun to the promoter of VEGF-A, and thus 

controls its expression. Since Hif1a is a transcriptional factor that is induced by 

the hypoxic conditions of tumor cells, our study demonstrated the possibility of 

preventing hypoxia-induced tumor angiogenesis through inhibiting Frs2α 

mediated FGF signaling. The regulation of HIF1a by FGF signaling also reveals 

that nutrients such as growth factors are interconnected with the pathways of 

hypoxia.  

Since late stage prostate cancers metastasize to bones and are usually lethal, 

we tested whether Frs2α depletion inhibited the growth of a patient derived bone 

metastasis prostate cancer – MDA - 118b by using a bone implantation model. 

Results showed that Frs2α depletion significantly decreased the bone lesions 

caused by the growth of MDA-118b in mouse femurs. Tumor angiogenesis was 

also inhibited in tumors that lack Frs2α expression. Our study demonstrates that 

FGF signaling inhibition could suppress prostate cancer bone metastasis cells 

by targeting angiogenesis. However, the lack of animal models to mimic the 

bone metastasis of prostate cancers prevents us from understating the 

mechanism of the subtype of prostate cancers that usually cause lethality of 

patients. Starving tumor cells by blood supply deprivation could hold a key to 

inhibiting metastatic types of prostate cancers. 
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The development of new therapies relies on identifying pathways that are unique 

to certain types of tumors. Overactivation of FGFR1 signaling is one of the 

hallmarks that differentiate prostate cancers from other types of tumors. Since 

Frs2α is the adaptor protein of FGFR1, the transduction of FGF signaling greatly 

relies on the availability of Frs2α. In agreement with this notion, we investigated 

whether Frs2α could be a potential predictive or diagnostic biomarker of prostate 

cancer by measuring its expression in a cohort of 225 prostate cancer patients 

and paired normal tissues with detailed follow up information. In the tissue 

microarrays, we demonstrate that Frs2α, as well as transcriptional factors HIF1a 

and c-Jun, are associated with increased angiogenesis and poor prostate cancer 

patient prognosis. High expression levels of Frs2α predict shortened overall 

survival time, PSA failure free survival and metastasis free survival time.  

Tyrosine phosphorylation is one of the most important post-translational 

modifications of cellular proteins. FGFR, as a tyrosine kinase, phosphorylates a 

series of downstream proteins such as Frs2α, MAPK and AKT, thus controlling 

the activation of the signaling cascades. In agreement with the fact that tyrosine 

phosphorylation is increased during transformation from normal cells to cancers, 

FGFR1 is believed to be a driver of prostate cancer tumor progression. The 

amplification of FGFR1 is associated with multiple tumors and chemical induced 

activation of FGFR1 is sufficient to induce prostate tumors in a mouse model. 

Our data showed that, in addition to stimulating proliferation promoting pathways 

such as MAPK, FGFR promoted aerobic glycolysis by stabilizing LDHA by 
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phosphorylation and suppressing LDHB transcription through promoter 

methylation.  

Mitochondrial function of tumor cells is not intrinsically inactive or inhibited in 

many tumors. There has been a debate over whether tumors derive ATP 

exclusively from aerobic glycolysis or oxidative phosphorylation (OXPHOS).  

Therefore, it is important to investigate the energy source of prostate cancers 

during proliferation. Our data showed that deletion of FGFRs led to an increase 

in oxygen consumption, suggesting of a switch from aerobic glycolysis to 

oxidative phosphorylation upon deletion of FGFR. Notably, ATP production 

decreased despite the rise of mitochondrial respiration. These data 

demonstrated that the upregulation of OXPHOS was not sufficient to make up 

for the loss of energy due to FGFR ablation, indicating that prostate tumor cells 

derive ATP primarily from aerobic glycolysis.   

Our data suggest that FGFR1 is required for the phosphorylation of LDHA, 

which results in enhanced LDHA stability. Consistent with a previous report, 

LDHA is phosphorylated at four tyrosine residues: Y10, Y83, Y172 and Y239. 

Site specific mutations of Y to F at all four sites resulted in dephosphorylation of 

LDHA, which further inhibited the half-life of LDHA. Our data supported the 

existing model that FGFR1 phosphorylates LDHA and, for the first time, linked 

the phosphorylation of LDHA to its protein stability. It provides a new venue to 

inhibit LDHA activity by simply suppressing its phosphorylation. Degradation of 

LDHA primarily relies on chaperone-mediated autophagy, which is a lysosome 
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dependent degradation mechanism (100). Further study needs to be done to 

determine which pathways cells use to degrade LDHA.  

Our data also suggest that FGF signaling regulates expression of LDHB at the 

transcriptional level, which is different from protein stability regulation of LDHA. 

The promoter locus of Ldhb that contains multiple CpG sites was 

hypermethylated in MEFs, However, the ablation of FGF signaling caused 

demethylation of the Ldhb promoter, which resulted in the upregulation of Ldhb 

transcripts. These findings are in line with the clinical observations that Ldhb 

promoter was hypermethylated in multiple cancers and its expression is 

negatively associated with malignancies.  

Lactic acid, produced by tumor cells, has a critical impact on the tumor 

microenvironment primarily through triggering angiogenesis and polarizing tumor 

associated macrophages. To investigate the impact of LDHA or LDHB knockout 

on the tumor microenvironment, we examined the number of blood vessels, 

stained by the anti CD31 antibody, and the number of F4/80 positive stained 

macrophage cells in DU145 xenografted tumors. The results showed that LDHA 

knockout significantly compromised, whereas LDHB knockout stimulated the 

number of newly formed blood vessels of tumors. Furthermore, LDHA knockout 

tumors displayed an increased macrophage infiltration, suggesting that LDHA 

ablation might trigger immune response through recruitment of macrophages. In 

contrast, LDHB knockout increased the recruitment of macrophage by tumor 

cells. Altogether, these data suggest that LDHA and LDHB differentially regulate 
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angiogenesis as well as the immune response mediated by macrophages 

differentially. These results are in line with the findings that LDHA promotes 

whereas LDHB suppresses the production of lactate, which is known to 

influence tumor microenvironment through angiogenesis and inflammation.  

We also investigated whether we can exploit the altered glucose metabolism for 

clinical prediction and diagnostic purposes in PCa. The data showed that p-

LDHA is overexpressed but LDHB is downregulated in prostate cancers 

compared with non-cancerous adjacent tissues. Individually, high pLDHA is 

associated with short PSA-failure free survival time of patients while low 

expression of LDHB also predicts shorter PSA-free survival time. Notably, LDHA 

expression is not a significantly factor in predicting the prognosis of patients 

which is contrast to p-LDHA, although elevated levels of LDHA protein was 

observed in prostate cancers. This suggested that the enhanced sensitivity of p-

LDHA in predicting prognosis might be due to the fact that it is directly correlated 

with the tyrosine kinase activity of FGFR1 in prostate cancers. Therefore, the 

expression profile of LDH1-5 might be of limited use clinically in determining the 

prognosis of patients. Importantly, the combination of p-LDHA and low LDHB 

expression better predicts the biochemical recurrence-free and overall survival 

time of prostate cancer patients. There was a dramatic difference in PSA free 

and overall survival time between patients that have high p-LDHA and low LDHB 

and patients that express low p-LDHA and high LDHB, suggesting that p-LDHA 

and low LDHB can be exploited for predictive and diagnostic benefits.  
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To summarize, our findings demonstrate the unique roles of FGF signaling 

during prostate cancer progression. Targeting oncogenic FGF signaling 

suppressed tumor angiogenesis through inhibiting VEGF-A, blocking the 

communication of cancer and blood vessels cells. FGF inhibition also 

suppresses the Warburg effect of cancer cells through downregulating LDHA 

and upregulating LDHB. Intrinsic factors, such as activation of FGFR1, Frs2α, 

VEGF-A and LDHA, along with extrinsic factors, such as hypoxia and energy 

restrictions, define the unique metabolism and pathways of prostate cancers.  

Tumors adapt to these factors, which causes the tumor to signal to its 

environment to reshape the vasculature networks to acquire energy and 

nutrients to sustain its rapid growth and expansion. Therefore, in addition to 

identifying pathways that are unique to cancer cells, we need to consider tumors 

as a well-structured organization. Our studies reveal the complexity of the 

organization and highlight the broad functions of FGF signaling in various 

contexts, therefore shedding new lights for the invention of new therapies 

against prostate cancer.  
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