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ABSTRACT

Developing an effective algorithm based on the handcrafted features from histologi-

cal images (histo-images) is difficult due to the complexity of histo-images. Deep network

models have achieved promising performances, as it is capable of capturing high-level fea-

tures. However, a major hurdle hindering the application of deep learning in histo-image

segmentation is to obtain large ground-truth data for training. Taking the segmentations

from simple off-the-shelf algorithms as training data will be a new way to address this hur-

dle. The output from the off-the-shelf segmentations is considered to be noisy data, which

requires a new learning scheme for deep learning segmentation. Existing works on noisy

label deep learning are largely for image classification. In this thesis, we study whether

and how integrating imperfect or noisy “ground-truth” from off-the-shelf segmentation al-

gorithms may help achieve better performance so that the deep learning can be applied to

histo-image segmentation with the manageable effort.

Two noise-tolerant deep learning architectures are proposed in this thesis. One is based

on the Noisy at Random (NAR) Model, and the other is based on the Noisy Not at Random

(NNAR) Model. The largest difference between the two is that NNAR based architecture

assumes the label noise is dependent on features of the image. Unlike most existing works,

we study how to integrate multiple types of noisy data into one specific model. The pro-

posed method has extensive application when segmentations from multiple off-the-shelf

algorithms are available. The implementation of the NNAR based architecture demon-

strates its effectiveness and superiority over off-the-shelf and other existing deep-learning-

based image segmentation algorithms.
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NOMENCLATURE

DMD Duchenne Muscular Dystrophy
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1. INTRODUCTION AND LITERATURE REVIEW

Histopathological image (histo-image) is considered to be the "gold standard" in clin-

ical diagnosis for the reason that the histo-image includes comprehensive information of

the disease by retaining most of the intricate structure in preparation. Given great advances

on the database of digitized histological tissue, the histo-image has not only been used for

the diagnosis of disease but also for the biomarker discovery which helps to detect the

risk of potential disease. To relieve doctors or clinicians from time-consuming work on

the analysis of histo-images, researchers expect to design specific computer algorithm for

the automatic histo-image analysis which is challengeable due to the high complexity of

histo-images. Being specific in the histo-images affected by Duchenne muscular dystro-

phy (DMD), the clinician is always interested in the proportion of fibrosis (stained to blue),

muscle (stained to red) and the rest stuff (mostly stained to white) to diagnose the serious-

ness of the disease. Some of these histo-images affected by DMD are shown in Figure 1.1.

The inhomogeneity and variability of color spectrum distributed over the DMD affected

histo-images are the main obstacle to developing the automatic algorithm for histo-image

analysis.

Numerous traditional machine learning based methods have been proposed since the

early 1990s [1] for the histo-image analysis, but most of these methods require a huge ef-

Figure 1.1: Histo-images affected by DMD.
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fort on the extraction of handcrafted features regarding the specific properties of the con-

text within histo-images to achieve the promising results. With the recent dominant suc-

cess of deep learning in computer vision field, researchers begin to apply or construct the

specific deep models for the histo-image analysis. Though the deep learning based meth-

ods often can achieve better results than traditional machine learning based methods in

histo-image analysis, the challenge of the scarcity of ground truth hinders the widespread

application of deep learning in the histo-image analysis, especially for histo-image seg-

mentation where the fine resolution makes manual annotation by experts extremely time-

consuming.

The ultimate goal of our research is to apply the deep learning in histo-image segmenta-

tion with manageable efforts meanwhile generating promising results in the circumstance

when ground truth is unavailable. We take the segmentations from the simple off-the-shelf

algorithms as the ground truth and expect to recover clean segmentation from these noisy

ground truth by deep learning. Such trick is similar to crowd-sourcing but the difference

is that obtaining the data from the off-the-shelf algorithm is less resource-demanding. The

essence of our research is actually the noisy label learning and many related works have

been proposed recently. However, most of these works in computer vision are mainly for

the image classification and also do not consider a model for multiple types of noisy label.

In this thesis, we propose the noise-tolerant network (NTN) and adaptive noise-tolerant

network (ANTN) for noisy label deep learning in image segmentation. While NTN as-

sumes the label noise process is independent on the appearance of an image, the ANTN

further models the noisy segmentations adaptively dependent on given input image and in-

tegrates multiple noisy labels into one deep learning model. With the extensive experiment

on the synthetic data and the histo-images, the ANTN performs the best demonstrating its

effectiveness and superiority over off-the-shelf and other existing deep-learning-based im-

age segmentation algorithms.
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1.1 Histopathological Image Analysis

1.1.1 Machine Learning Method

Most of the traditional machine learning methods for histo-image analysis require de-

signing handcrafted features based on the complete domain knowledge to generate promis-

ing results. By using linear discriminant analysis (LDA) and the Forward/Backward

Search methods, Petushi et al. [2] first select the distribution of dispersed chromatin cell

nuclei and the distribution of tubular cross sections as the highly correlated features with

the breast cancer and then graded the breast cancer with these features by a quadratic

classifier. Sertal et al. [3] extract the intermediate features from the cytological compo-

nents in histo-images and combined them with the low-level color texture feature for the

follicular lymphoma grading. They reduce the dimensionality of the feature space by im-

plementing principal component analysis (PCA) and the LDA then classify the follicular

lymphoma by the Bayesian classifier. Nguyen et al. [4] aggregate 19 features based on the

nuclei, cytoplasm, and lumen shape to detect the prostate cancer using the support vector

machine (SVM). The features in the above works are mainly comprising of first-order sta-

tistical information such as mean, standard deviation and median generated based on the

relative cytological characteristics. There are works incorporating higher order statistical

features for histo-image analysis. For example, Demir et al. [5] innovatively represent the

low magnification tissue histo-image of the breast cancer by constructing an augmented

cell graph in which node weight represents the size of cell cluster and the edge weight is

defined as the Euclidean distance between cell clusters. With the augmented cell graph,

higher statistical order features are constructed with the set of the eigenvalues generated

by decomposing the graph.
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1.1.2 Deep Learning Method

The traditional machine learning method takes a huge effort in the extraction of fea-

tures which usually requires being familiar with the cytological characteristics within

histo-images to generate promising results. In contrast to that, the recent prosperous deep

learning function based on the convolutional neural network (CNN) to extracting high-

level features and gain enormous successes in computer vision. Due to the advantage of

the more effective feature extraction process with the less demanding requirement such

as domain knowledge, many researchers turn to the deep learning method for automatic

histo-image analysis. Cireşan et al. [6] implement a feed-forward deep neural network tak-

ing the patches of histo-images as input to detect the mitosis. The patch input is a square

window of RGB values from the histo-image being mapped to the class of the central pixel

as mitosis or non-mitosis. Chen et al. [7] revise the u-net [8] to the deep contour-aware net-

work (DCAN) for gland segmentation. The DCAN first combined multi-level contextual

information with auxiliary supervision in each of two branches for object segmentation

and contour segmentation, and then fuse results from the two branches to generate more

detail aware gland segmentations. Unlike the [6, 7] which train the convolutional filters

from the random initialization or use the pretrained parameters from other networks, Cruz-

Roa et al. [9] first apply auto-encoding technique to learn the feature representation of the

histo-image patches and then take these learned feature weight as the convolutional filters

to construct CNN. They also incorporate an additional layer for visualization of the feature

pattern about the cancer region to enhance the interpretability of CNN.

1.2 Noisy Label Learning

Despite the tremendous potential of deep networks, the supervised nature hinders their

wider application in histo-image analysis, especially for histo-image segmentation since

the manual pixel-wise annotation of high-resolution histo-images is time-consuming and
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labor-intensive. To solve the problem of scarcity of data, Albarqouni et al. [10] imple-

ment the crowdsourcing technique to obtain a large-scale annotation from non-experts and

incorporated the process of crowdsourcing to CNN for mitosis detection. The novelty of

their deep model for crowdsourcing data is to have an additional aggregation layer which

aggregates the ground-truth from the crowdvotes matrix to refine the model based on the

sensitivity and specificity of each annotator. Though crowdsourcing provides a large scale

of annotated data, the quality of data is not guaranteed and the process of recruiting non-

experts is still resource demanding in practice. Instead of relying on crowd-sourcing,

we resort to existing image segmentation algorithms to obtain noisy segmentation

labels and design the new deep learning models to recover clean segmentations by

integrating these noisy labels from different segmentation algorithms.

There are several existing noisy label deep learning models [11, 12, 13, 14, 15, 16]

that address the problem when the labels of the training datasets are “noisy”. As discussed

in [17], most of these methods focus on image classification or patch-labeling applications.

Hinton et al. [11] have pioneered to use the deep network to incorporate the label-

flip noise in aerial image labeling. They assume the label-flip noise is only dependent on

the true label and adopt an Expectation-Maximization (EM) algorithm [18] to train net-

work model parameters iteratively, considering the true labels as latent variables. Benoît et

al. [17] point out it is more realistic to assume mislabeling is dependent on input features

and Xiao et al. [12] take such assumption into consideration and integrate three types of

label noise transition probabilities given the same true label for clothing classification. In-

stead of modeling true labels as latent variables in [11, 12], Veit et al. [13] have introduced

a multi-task label cleaning architecture for image classification, in which an image classi-

fier is supervised by the output of the label cleaning network trained using the mixture of

clean and noisy labels. Such architecture is effective in learning large-scale noisy data in

conjunction with a small subset of clean data.
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All the aforementioned methods [11, 12, 13] require a small clean dataset to assist

model inference. Sukhbaatar et al. [14] propose a noisy label image classification model

that is capable of learning network parameters from noisy labels solely by diffusing tran-

sition probability matrix of label noise from the initial identity matrix by the weight decay

trick, but such model inference can be unstable. Reed et al. [15] introduce “prediction

consistency” in training a feed-forward autoencoder with noisy data, requiring that the

same label prediction should be made given similar image features. Similar to the idea

of avoiding overfitting, Kakar et al. [16] add a regularization term on the coefficients of

hidden units during training to obtain stable results.

1.3 Thesis Contribution

Most of the existing noisy label deep network models [11, 12, 13, 14, 15, 16] are

on image classification or patch-labeling. Besides, there is still no existing method to

flexibly integrate multiple types of noisy data in the literature to the best of our knowledge.

In this thesis, we propose two deep architectures for noise learning problem in image

segmentation. Implementation of our model on both the synthetic data and histo-images

demonstrates its effectiveness and superiority over off-the-shelf and other existing deep-

learning-based image segmentation algorithms.
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2. MODEL FORMULATION OF NOISY LABEL LEARNING FOR IMAGE

SEGMENTATION

Being different from the feature noise which has an influence on the observed values

of the feature, label noise pollutes the observed labels of instances by altering the label

class. The works [19, 20, 17] state the label noise poses more harm than feature noisy in

learning problem for the two reasons: 1) multiple features determine how the instance is

classified in learning whereas only one label is assigned to one instance and 2) the impor-

tance of features is varied whereas labels assigned to instances always affect learning to a

large extent. There are a lot of similarities between dealing with label noise and outliers

detection. Actually, mislabelled instances are considered to be outliers if the mislabelling

occur in the vicinity of the instance in sample space with low probability and the instances

of these outliers often look anomalous regarding the class corresponding to the incorrect

label. It is such similarity makes many noisy label learning works very close to outlier de-

tection [17]. In additional to the outlier alike label noise, there are mislabelling occurring

in specific condition with high probability (e.g.The boundary region where all the classes

are equiprobable always comes with the mislabelling error) and the instances of these mis-

label does not look anomalous as outliers [17]. In this thesis, we mainly research on such

label noise coming from the off-the-shelf algorithms or the appearance of images for histo-

image segmentation. In this chapter, we will first discuss the categorization of label noise

and then move forward to the u-net [8] which is the fundamental architecture we imple-

ment in our experiment for noisy label deep learning. Following that, two noise-tolerant

deep learning models for image segmentation will be discussed.
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(a) NCAR (b) NAR (c) NNAR

Figure 2.1: Graphical probabilistic model of label noise process.

2.1 Categorization of Label Noise

According to [17], three types of label noise models exist: the noisy completely at ran-

dom model (NCAR), noisy at random model (NAR) and the noisy not at random (NNAR).

These graphical probabilistic models of label noise are shown in Figure 2.1. We represent

the features of data by X , true class by Y and the observed class by Ỹ . To model the label

noise process, the binary variable E indicating whether the instance is mislabelled or not

is also introduced. We now explain these label noise models following the [17].

1) Noisy Completely at Random (NCAR) Model: The NCAR model depicting the

label noise independent of features of data X and true class Y is shown in Figure 2.1(a).

The binary indicator E for mislabelling indicates the true class Y is altered to other class

with a certain probability as observed Ỹ if E is one and vice versa. In the case of binary

cases, it is certain to be symmetric for NCAR noise in both classes which means both

classes are mislabelled with the same probability in the process of data generation. Obvi-

ously, these data carry no useful information with a probability Pr(E = 1) to be 0.5. In

contrast, the true label is altered uniform randomly in the case of multiclass when E = 1.

Such NCAR noise at the multiclass case is analogous to flipping a biased coin first to de-

cide whether mislabelling occurs or not and then a |Y|− 1 faces fair dice label is tossed to

8



decided which class the true class is altered to be if the mislabelling occurs. The NCAR

model is uncommon in real practice for its oversimple assumption of label noise process.

2) Noisy at Random (NAR) Model: The NAR model has a broader application than

NCAR for it considering the influence of true class on label noise. The probabilistic model

of NAR is shown in Figure 2.1(b) and the arrow from the Y to E illustrates the probability

of mislabelling is affected by the true class. Having assumed a direct effect between true

class Y and mislabelling indicator E, the NAR is capable of modeling asymmetric label

noise, i.e.certain classes are more likely to be altered than other classes. For example, the

existed objects such as buildings, roads or alleys disappear in the aerial images due to the

incompleteness of the maps and this is called omission noise in aerial image learning [11].

Such omission noise in aerial image learning can actually be modeled as the NAR noise

and [11] has proposed using the neural network to label aerial images from noisy data

based on the NAR model. Another case where NAR noise occurs is control subjects in

medical case-control studies. For the reason that the test used to label control studies may

be too invasive or expensive, the control studies are replaced by suboptimal diagnostic test

so that the control subjects are prone to be mislabelling [21].

3) Noisy Not at Random (NNAR) Model: The NNAR model shown in Figure 2.1(c)

considers a type of more complete and general label noise process where the mislabelling

is determined by both features of data and true class, i.e., incorrect labelling are more

likely to occur for certain class and in certain regions of the sample space for X . For

example, the instances distributed in the classification boundary or low-density region of

sample space are prone to be mislabelling and such label noise is considered to be NNAR.

This situation occurs in real practice such as speech recognition challengeable for phonetic

similarity between the recognized words and correct one [22]. Therefore, the features of

words are supposed to be involved in the impact on the mislabelling. In addition to speech

recognition, another domain NNAR model applies is image classification/segmentation.
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Xiao et al. [12] modeled the relationship between noisy data and clean based on NNAR

model and proposed an end to end convolutional neural network (CNN) for image classifi-

cation of clothing applied in the scenario when the large scale of well-labeled data is hard

to obtain. Our thesis mainly researches on the case of histo-image segmentation where

the labeled data is not from the clinical experts but the off-the-shelf algorithms thus the

assumption of NNAR model is reasonably appropriate.

2.2 End to End Convolutional Neural Network (CNN) : U-net1
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510 × 510

16 features

508 × 508

16 features

254 × 254

16 features

252 × 252

32 features

250 × 250

32 features

125 × 125

32 features

123 × 123

64 features

121 × 121

64 features

242 × 242

64 features

240 × 240

32 features

238 × 238

32 features

476 × 476

32 features

474 × 474

16 features

472 × 472

16 features

472 × 472

Desired
output

3× 3 conv, ReLU

2× 2 max-pooling

upsample and 2× 2 conv

crop and concatenate

1× 1 conv, softmax

Figure 2.2: Illustration of u-net.

U-net is an image-to-image deep learning framework shown to be effective in biomed-

ical image segmentation [7, 8]. Unlike CNN-based deep learning with only contracting

layers for image classification and annotation, u-net adds an expanding module to enable

pixel-wise labeling (Figure 2.2). In our implementation, 3 × 3 multi-scale convolutional

filters followed by rectified linear units (ReLU) are applied in three levels of the contract-

ing layers. Between every two layers, 2×2 max-pooling is applied to derive more abstract

non-linear features. For expanding layers, the derived feature maps are up-sampled twice

and concatenated with the convolutional feature maps at the corresponding scale of the

1Part of this section is reprinted from our accepted manuscript [23] c©2017 IEEE
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contracting layers. Another two convolutional layers and a final softmax output layer are

then applied to derive the final pixel-wise labeling for histo-image segmentation. Such a

u-net implementation has a 15-layer network architecture as shown in Figure 2.2.

U-net is a supervised deep learning framework, requiring accurate segmentation labels

for training. However, for the histo-image segmentation, usually the manually annotated

histo-images are not available. In order to enable u-net histo-image segmentation, one

work-around is to apply traditional image segmentation algorithms, such as K-Means, and

use the resulting segmentations with reasonably high accuracy to train u-net. However,

there is no guarantee that these segmentation results have good enough quality, especially

due to large histo-image appearance variation.

2.3 Noise-Tolerant Network (NTN)2

To alleviate the requirement of accurately segmented histo-images for u-net training,

we propose to adjust the original u-net to be noise-tolerant following the NNAR model

so that the performance will be robust to potentially noisy training segmentations. Given

T training images X = {X1, . . . , XT}, we can construct the probabilistic relationship

between hidden clean segmentation Y and the corresponding noisy segmentation Ŷ as

Pr(ŷn = j|X) =
3∑

i=1

Pr(ŷn = j|yn = i)Pr(yn = i|X)

=
3∑

i=1

qijPr(yn = i|X) (2.1)

2Part of this section is reprinted from our accepted manuscript [23] c©2017 IEEE
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where yn is the pixel label indexed by n, i and j are label, and N is the total pixel. Following

(2.1), the negative log likelihood L can be constructed as

L = − 1

N

N∑

n=1

log[
3∑

i=1

qijPr(yn = i|X)] (2.2)

The framework of such noise-tolerant network (NTN) is shown in Figure 2.3. The

main difference of the NTN from the original u-net is an additional noise-tolerant layer

incorporating parameters of transition probability qij’s after the clean label prediction net-

work. The additional noise-tolerant layer is shown in Figure 2.4. The parameters of the

added noise-tolerant layer can be represented by a 3 × 3 transition matrix Q =
(
qij
)
3×3

with the constraints: 0 ≤ qij ≤ 1 and
∑

j qij = 1, ∀i. The NAR based deep learning

model is motivated by the “label flip noise model” in a recent noise-tolerant AlexNet-

based image classification framework [14] that addresses a similar noisy label problem.

The difference is that our NTN is for pixel-wise labeling in histo-image segmentation but

the method in [14] is for the whole image classification.

Input X Clean output Y
Clean label

prediction network

Pr(Y |X) Noise-tolerant

layer
Noisy output Ŷ

Figure 2.3: Noise-tolerant u-net.

2.3.1 Model Inference

By the total probability theorem, it is clear that (2.2) is equivalent to the maximum

likelihood estimates of involved parameters in the modified u-net with noisy segmentation

Ŷ as L = − 1
N

∑N
n=1 log[Pr(ŷn|X)]. The training of the other layers simply follows the

back-propagation procedure for the original u-net. More importantly, we can rewrite

12



q11
q12q13 q21

q22

q23
q31 q32

q33

Desired output

Noisy output

Figure 2.4: Additional noise-tolerant layer.

L = − 1

N

3∑

i=1

∑

n∈Si

log
[
Pri(ŷn = j|X;Q)

]
, (2.3)

where Si is the set of pixels that have the true label i, and Pri(ŷn = j|X;Q) denotes

the full model prediction probability for pixel n in Si. Asymptotically when N → ∞,

L → −
∑3

i=1

∑3
j=1 q

∗
ijlog[Pri(ŷ = j|X;Q)] ≥ −

∑3
i=1

∑3
j=1 q

∗
ijlog(q∗ij), achieving the

minimum when Pri(ŷ = j|X;Q)→ q∗ij which is actual flip transition probability. Denote

the confusion matrices for clean and noisy segmentations by Cs =
(
csij
)

and Cr =
(
crij
)

respectively, where csij = 1
|Si|
∑

n∈Si Pr
i(yn = j|X) and crij = 1

|Si|
∑

n∈Si Pr
i(ŷn =

j|X;Q). It is clear Cr = CsQ. If we know the actual label flip transition matrix Q = Q∗,

minimizing L will asymptotically force crij = Pri(ŷ = j|X;Q) → q∗ij hence Cr =

CsQ
∗ → Q∗ forcing Cs converging to identity. Therefore, training the noise-tolerant u-

net using noisy segmentations with actual transition matrix Q∗ directly forces the clean

label network to predict the true labels. In practice, minimizing L does not guarantee Q

converging to Q∗ [14]. In order to derive well-behaved solutions, either a trace norm or a

ridge regularization term for Q can be added to the objective function when training the

noise-tolerant layer. Based on the reasoning in [14], we use the ridge regularization and

fix the corresponding weight decay parameter to 10−4 in our experiments.
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2.4 Adaptive Noise-Tolerant Network (ANTN)

The NAR based characteristic of the NTN model may limit the performance of noisy

label learning for image segmentation since it assumes that the label noise is only de-

pendent on the label. Also, the NTN model does not consider the case of multiple noisy

segmentations. To overcome the above shortcomings, we propose an Adaptive Noise-

Tolerant Network (ANTN) which is a NNAR based model assuming the label noise is

dependent on both appearance of the image and the label, and multiple noisy segmen-

tations can be incorporated in training as well. In ANTN, the probabilistic dependency

between the input image pixels, the ground-truth segmentation, and the “noisy” segmen-

tation labels from off-the-shelf image segmentation algorithms can be modeled explicitly.

By adaptively modeling image-dependent label-flip noise from different segmentation al-

gorithms, ANTN can borrow signal strengths from multiple noisy labels to achieve better

segmentation results. The graphical probabilistic model and architecture of the network

are shown in Figure 2.5.

Given a set of training images X = {X1, X2, . . . , XT}, which could be sub-images or

patches, we can apply S selected off-the-shelf segmentation algorithms to obtain noisy or

imperfect segmentations Ŷ 1 = {Ŷ 1
1 , Ŷ

1
2 , . . . , Ŷ

1
T }, Ŷ 2, . . ., Ŷ S . To clearly convey the idea,

we focus on the settings with S = 2 in the thesis. We can model the relationships between

input images and noisy segmentations based on the following general probabilistic model:

Pr
(
Ŷ 1, Ŷ 2|X

)
=
∑

Y ∈C|I|

Pr
(
Ŷ 1, Ŷ 2, Y |X

)
=
∑

Y ∈C|I|

Pr
(
Ŷ 1|Y,X

)
Pr
(
Ŷ 2|Y,X

)
Pr
(
Y |X

)
,

(2.4)

in which C is the total number of label classes for segmentation; Y denotes the clean or

perfect segmentations; and |I| represents the total number of pixels in X indexed by the
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X

Y

Ŷ 1 Ŷ 2

(a)

Input X Clean output Y
Clean label

prediction network

Pr(Y |X)

Noisy output Ŷ 1

Noisy output Ŷ 2

Transition

probability network

Pr(Ŷ 1|Y,X) ⊗⊗⊗ Pr(Ŷ 1|X)

Transition

probability network

Pr(Ŷ 2|Y,X) Pr(Ŷ 2|X)⊗⊗⊗

(b)

Figure 2.5: Adaptive noise-tolerant network ((a) Graphical probabilistic model and (b) architecture
of the Adaptive Noise-Tolerant Network (ANTN). X represents the input image, Y represents the
ground-truth segmentation, Ŷ 1 and Ŷ 2 represent noisy segmentations.).

pixel set I. We note that in [11, 14] and the NTN model, (1) the clean pixel-wise labels

indexed by n: yn’s, are conditionally independent given X: Pr
(
Y |X

)
= Πn∈IPr(yn|X);

and (2) the noisy pixel-wise labels ŷn’s are conditionally independent with X given Y and

the pixel-wise label transition probabilities are identical: Pr
(
Ŷ |Y,X

)
= Πn∈IPr(ŷn|yn).

Hence, the log-likelihood with one set of noisy labels for X can be written as:

L = logPr
(
Ŷ |X

)
=
∑

n∈I

log
[ C∑

yn=1

Pr
(
ŷn|yn

)
Pr
(
yn|X

)]
, (2.5)

with which the Noise-Tolerant Network (NTN) in Section 3 is proposed to recover clean

segmentations.

In the proposed ANTN model (2.4), we relax the second assumption in NTN when

integrating multiple types of noisy labels. For different pixels, the transition probability

of the noisy label given the clean label will be dependent on X since segmentation results

15



from different algorithms can be dependent on both images and segmentation algorithms.

Let Prn(ŷsn|yn, X) denote the new transition probabilities, where s = 1, 2 for different

noisy segmentations. Following the dynamic filter network models in [24], we can rewrite

the probabilistic model (2.4):

Pr
(
Ŷ 1, Ŷ 2|X

)
=
∏

n∈I

C∑

yn=1

Prn(ŷ1n|yn, X)Prn(ŷ2n|yn, X)Pr(yn|X). (2.6)

With this model, we can construct respective deep learning models for all the involved

probability distribution functions, including the clean label probability Pr(Y |X), pixel-

wise conditional probabilities Prn(ŷ1n|yn, X) and Prn(ŷ2n|yn, X), as illustrated by the

schematic graphical model for recovering clean labels from two noisy datasets in Figure

2.5(a). We note the symmetry of the proposed deep learning framework, which enables the

straightforward generalization when S > 2. For each of the three components in Figure

2.5(a), we follow the construction in [8, 11, 24] and the NTN to have the corresponding

u-net architectures with the deep network framework shown in Figure 2.5(b). The main

difference among these three deep network models are the constraints applied to their out-

puts of the last layers:

C∑

yn=1

Prn(yn|X) = 1,
C∑

ŷ1n=1

Prn(ŷ1n|yn, X) = 1,
C∑

ŷ2n

Prn(ŷ2n|yn, X) = 1, (2.7)

which guarantee the legitimacy of the modeled probability distribution functions.

We note that the clean label model Pr(Y |X) has to be combined with the noise transi-

tion network models Prn(ŷ1n|yn, X) and Prn(ŷ2n|yn, X) for training as we do not observe

the ground-truth segmentations. The integration of the three components in Figure 2.5(a)

is motivated by the label-flip noise model in the noise-tolerant image classification frame-

work in [14] and the introduced asymmetric Bernoulli noise (ABN) model in [11].
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2.4.1 Model Inference

Due to the unobserved clean segmentation labels, training three different components

given X and noisy segmentations Ŷ 1 and Ŷ 2 is an iterative procedure to maximize the

following three log-likelihood functions based on the model (2.6):

Ls =
1

N

∑

n∈I

log
C∑

yn=1

Pr((ŷsn)obs|yn, X; θs)Pr(yn|X; θ3), s = 1, 2, (2.8)

L3 =
1

N

∑

n∈I

log

C∑

yn=1

Pr((ŷ1n)obs|yn, X; θ1)Pr((ŷ
2
n)obs|yn, X; θ2)Pr(yn|X; θ3) (2.9)

where θ1, θ2 and θ3 are the corresponding network parameters of two transition probability

networks and the clean label prediction network; (ŷ1n)obs and (ŷ2n)obs denote observed noisy

labels; and N = |I|. We alternate the order of optimization with respect to θ1 and θ2 for

minimizing (2.8) and θ3 for minimizing (2.9). Similar to [11, 14], we consider Y as latent

variables and maximize the likelihood functions by the EM algorithm:

E-step: Given deep network paramters θ(t)1 , θ(t)2 and θ(t)3 for three component networks at

each iteration, the posterior probabilities of the latent segmentation label Pr(yn|(ŷsn)obs, X)

and Pr(yn|(ŷ1n)obs, (ŷ
2
n)obs, X) for the corresponding likelihood functions (2.8) and (2.9)

can be updated as follows:

Pr(t)(yn|(ŷsn)obs, X) =
Pr((ŷsn)obs|yn, X; θ

(t)
s )Pr(yn|X; θ

(t)
3 )

∑C
yn=1 Pr(ŷ

s
obs|yn, X; θ

(t)
s )Pr(yn|X; θ

(t)
3 )

, s = 1, 2,

(2.10)

Pr(t)(yn|(ŷ1n)obs, (ŷ
2
n)obs, X) =

Pr((ŷ1n)obs|yn, X; θ
(t)
1 )Pr((ŷ2n)obs|yn, X; θ

(t)
2 )Pr(yn|X; θ

(t)
3 )

∑C
yn=1 Pr((ŷ

1
n)obs|yn, X; θ

(t)
1 )Pr((ŷ2n)obs|yn, X; θ

(t)
2 )Pr(yn|X; θ

(t)
3 )

.

(2.11)
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M-step: With the estimated posterior probabilities, we update the corresponding network

parameters through optimizing the expected complete likelihood functions. In practice, we

cannot guarantee the optimality of M-step updates due to our deep network modeling. We

implement gradient descent and backprogation in the corresponding component networks

to update parameters as follows:

Oθ(t+1)
s ← 1

N

∑

n∈I

C∑

yn=1

Pr(t)(yn|(ŷsn)obs, X)
∂logPr((ŷsn)obs|yn, X; θs)

∂θs
, s = 1, 2,

(2.12)

Oθ(t+1)
3 ← 1

N

∑

n∈I

C∑

yn=1

Pr(t)(yn|(ŷ1n)obs, (ŷ
2
n)obs, X)

∂logPr(yn|X; θ3)

∂θ3
. (2.13)

For transition probability networks, we only observe one noisy label for each pixel and we

can only unambiguously derive Pr((ŷsn)obs|yn, X; θs). For the other transition probabili-

ties, we simply set them to be [1− Pr((ŷsn)obs|yn, X; θs)]/(C − 1).

For the complete procedure of ANTN model inference, we first initialize the clean

label prediction network by training with the mixture of noisy datasets, then train each

transition probability network with the corresponding noisy labels as described in the EM

algorithm. After these two steps, we iteratively train the component networks by alter-

nating the optimization with a fixed number of interval epochs for each of them until

convergence.
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3. EXPERIMENTS

We evaluate the effectiveness of ANTN and NTN by comparing them with off-the-

shelf and deep-learning image segmentation algorithms on both synthetic and histo-images.

3.1 Datasets

To quantitatively evaluate the performance of both ANTN and NTN and compare them

with other segmentation algorithms, we first create a synthetic image set with the corre-

sponding simulated noisy segmentations. After the experiment on synthetic data, we then

apply the ANTN and NTN to a set of histo-images, obtained from a study of Duchenne

Muscular Dystrophy (DMD) disease for performance evaluation.

Synthetic Data:

We generate 135 472 × 472 synthetic images for quantitative performance evalua-

tion. First, we randomly simulate red, green, and blue circular objects with different radii

uniformly distributed from 15 to 40 pixels in each image. Hence, there are four classes

required to be segmented: red, green, and blur circular objects as well as white back-

ground regions. For each of RGB channels, the corresponding intensities for pixels in

each class follow a Gaussian distribution with the mean 200 and standard variation 50.

An example of the generated synthetic images and the corresponding ground truth for its

object segmentation are shown in Figures 3.1(a) and (c). To further create different types

of noisy segmentation labels, we erode and dilate the ground-truth segmentation by a rect-

angle structural element with the width and length set to 5 pixels, with the generated noisy

labels given in Figures 3.1(b) and (d) for the corresponding image example.
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Histopathological Images:

We also have obtained 11 samples of ultra-high resolution histo-images for studying

DMD. They are split into 472×472 sub-images and preprocessed by a stain normalization

method [25]. Some of the preprocessed sub-images are shown in Figure 3.5(a). For these

images, we are interested in quantifying the percentage of fibrosis (stained blue) and mus-

cle (stained pink) to estimate the seriousness of the disease [26, 27]. Hence, the segmen-

tation task is to segment fibrosis (blue), muscle (pink), and other tissue types (white). We

have applied two simple off-the-shelf segmentation algorithms: K-Means [28] and Otsu

thresholding [29] on all the sub-images and we consider the obtained segmentation labels

as the noisy segmentation labels in deep-learning methods including ANTN and NTN. The

K-Means clustering calculates the Euclidean distances of pixels in L*a*b* color space of

the histo-images. We initialized the centroids of three desired clusters (shown as red, blue,

and white regions in Figure 3.6(a)) for three times and the segmentation generated by K-

Means with the lowest within-cluster distance is considered to be the final result for a given

input image. Several K-Means segmentations are shown in Figure 3.6(b). It is clear that K-

Means may perform badly as illustrated in the last group of Figure 3.6(b) because of color

distribution inhomogeneity. For Otsu’s method, we first generate two histograms from the

histo-images: one histogram is based on the pixel intensity and the other one is based on

the intensity ratio between the blue and red channels. Subsequently, the optimal thresholds

for the two histograms are searched in order to achieve the best segmentation performance.

Notice that the threshold by pixel intensity helps separate both muscle (pink) and fibrosis

(blue) from the rest (white) of a given image while the threshold by the pixel intensity

ratio of blue channel to red channel aims to separate fibrosis from muscle. Though the

thresholds are optimal for the Otsu’s method, the corresponding segmentation results are

still noisy due to the largely varied intensity within the image as shown in Figure 3.6(c)
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(a) Original

(b) Erosion (c) Clean label (d) Dilation

(e) U-net 1 (f) U-net3 (g) U-net2

(h) NTN1 (i) ANTN (j) NTN2

Figure 3.1: Synthetic image and corresponding segmentations.

3.2 Performance Evaluation on Synthetic Data

For synthetic data, we compare the performance of ANTN and NTN with the popular

deep-learning segmentation architecture u-net [8] taking noisy segmentation labels as the
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ground truth for training. 35 synthetic images and their corresponding segmentations are

used for training. For ANTN, we first initialize the clean label prediction network (a

u-net with the architecture illustrated in chapter two) by training with a mixture of two

noisy datasets for the first 100 epochs, then train both transition probability networks (two

similar u-nets) by the proposed EM-algorithm with the corresponding erosion and dilation

noisy segmentations in next 200 epochs. Finally, we iteratively train the whole network

setting the alternating interval to be 10 epochs for next 200 epochs. We keep the learning

rate at 10−4 for the first 450 epochs and 10−5 for the last 50 epochs. For competing

methods, we directly train the u-net considering either erosion, dilation, or their mixture

as the ground-truth segmentation. With erosion and dilation noisy labels, the training

procedure converges for 200 epochs. With the mixture of noisy labels, it converges for

100 epochs. For NTN, in addition to training the original u-net layers, we also train the

label-flip-noise transition layer with the corresponding noisy labels by weight decay of

10−4 to diffuse the label-flip-noise transition probability from identity to approximate the

average noise transition probability matrix for 150 more epochs [14]. We do not train NTN

with the mixture of noisy labels as it can only take one single type of noisy labels [14].

Training of the u-net with different noisy labels can be considered as the intermediate steps

of ANTN and NTN model inference.

We provide the examples of the corresponding segmentation results in Figures 3.1(e)-

(j), in which u-net1, u-net2, and u-net3 represent the u-nets trained with the correspond-

ing erosion, dilation, and mixture of noisy segmentations; NTN1 and NTN2 represent

the NTNs trained with the corresponding erosion and dilation noisy segmentations. It is

clearly that the u-net or NTN often can not correctly segment the corresponding objects

without appropriate modeling of segmentation noise with erosion and dilation bias. In

Figures 3.1(i), it is clear that our ANTN performs the best due to the adaptive integration

of label-flip-noise transitions. In addition, the performance improvement may also come
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Figure 3.2: Evaluation of cross entropy and clean label ratio for synthetic images ((a) Cross en-
tropy evaluation for the u-net3 and ANTN. (b) Cross entropy evaluation for the u-net1,u-net2 and
NTNs. (c) Estimated clean-label ratio for erosion dataset. (d) Estimated clean-label ratio for dila-
tion dataset.).

from the integration of multiple types of noisy labels with the capability of borrowing

signal strengths. We further quantitatively evaluate segmentation accuracy by the syn-

thetic test dataset of 100 images and the result is shown in Table 3.1, clearly showing that

ANTN achieves the best performance. In order to show the convergence of our training

Method U-Net1 U-Net2 U-Net3 NTN1 NTN2 ANTN
Accuracy 81.63% 83.71% 93.38% 82% 82.49% 97.71%

Table 3.1: Accuracy comparison of three networks on synthetic image segmentations.

procedure for ANTN and NTN, we analyze the trends of the cross entropy between the

intermediate segmentation labels during training and the clean ground-truth labels, as well

as the noisy labels taken for training. From Figure 3.2(a), we observe that the training of

the clean label network in ANTN converges around 100 epochs with the clean-label cross

entropy reaching the plateau. Note that the intermediate results at this point are also the

final results of u-net3 training with the mixture of noisy labels. After that, we implement

EM algorithm to train two noise transition probability networks. Clearly, the change of the
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noisy-label cross entropy indicates that the training of two transition probability networks

converges in the next 200 epochs. During the next iterative training procedure, we observe

the corresponding cross entropy values drop drastically and then continuously decrease till

convergence. Figure 3.2(b) shows the corresponding cross entropy changes during u-net

as well as NTN training with either erosion or dilation noisy datasets. The training for

u-net stops at 200 epochs which also serves the initialization of NTN training before the

noise transition layer training. We can see that the clean-label cross entropy diverges grad-

ually though the noisy-label cross entropy decreases till convergence. This is because no

component in u-net models potential segmentation noise.

To further validate the convergence and effectiveness of ANTN, we compare the ratio

R of the estimated clean labels to the corresponding sth type of noisy labels during training

with the actual ratio of clean labels to noisy labels for the corresponding erosion or dilation

training outputs, as shown in Figures 3.2(c) and (d):

Rs =

∑
n∈I I(arg maxu Pr(yn = u|(ŷ1n)obs, (ŷ

2
n)obs, X) = (ŷsn)obs)∑

n∈I I(arg maxu Pr(yn = u|(ŷ1n)obs, (ŷ2n)obs, X) 6= (ŷsn)obs)
, s = 1, 2. (3.1)

From Figures 3.2(c) and (d), the estimated ratios indeed approach the actual ratios in the

training data with the corresponding trend indicating the learned ANTN models the noise

transitions better and better during the iterative training stage.

(a) u-net1 (b) u-net2 (c) u-net3 (d) NTN1 (e) NTN2 (f) ANTN

Figure 3.3: Representative learned feature maps by different networks.
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Figure 3.4: Transition matrices for synthetic images (The first and second rows represent the tran-
sition matrices for the erosion and dilation labels respectively.(a) and (d): expected transition ma-
trices; (b) and (e): learned transition matrices by NTN; and (c) and (f): learned average transition
matrices by ANTN.).

We also check the noisy transition matrices learned by NTN and the average transi-

tion matrices for ANTN, compared to the expected noisy transition matrices obtained by

clean and noisy training data. We emphasize that the noisy transition matrix in ANTN is

pixel-wise and dependent on image features, we compute the average transition matrices

by simply averaging pixel-wise transition probabilities across training images. Clearly,

ANTN can better approximate the noise transition by visual comparison in Figure 3.4.

Finally, we show the representative feature maps generated by different networks in

Figure 3.3. The feature maps generated by u-net1, u-net2, NTN1 and NTN2 are inhomo-

geneous in the surrounding regions of circular objects and these regions are pointed out

by the red arrow and green arrow respectively. It reveals that the erosion noise and di-

lation noise influence the u-net1, u-net2, NTN1 and NTN2 learning the right features in

the eroded region (pointed by red arrow) and dilated region (pointed by green arrow) dur-

ing training. On the contrary, both the ANTN and u-net3 have homogeneous and clear
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boundary surrounding regions of circular objects showing that ANTN and u-net3 are less

affected by dilation noise or erosion noise. This is consistent with the fact that ANTN and

u-net3 perform better than other methods in synthetic data experiment.

3.3 Performance Evaluation on Histopathological Images

With the experiments in synthetic data, we further implement ANTN and NTN to

DMD histo-images and compare segmentation results with both original K-Means and

Otsu thresholding results and the results from previously evaluated deep-learning methods.

It is difficult to obtain ground-truth pixel-by-pixel segmentation labels when studying

histo-images in practice which essentially motivates the presented work as the existing

deep-learning methods often rely on clean segmentation labels for model inference. The

goal of ANTN and NTN is to enable a new deep-learning model framework to incorpo-

rate noisy labels for training. For this set of experiments, we select 26 sub-images from

one of 11 DMD histo-images with their corresponding K-Means and Otsu segmentation

results as noisy segmentation labels. The example sub-image together with the ground-

truth and their K-Means and Otsu segmentation results are shown in Figures 3.5(a). As

we observe the fibrosis boundaries of cropped images shown in Figure 3.5(b) and (c),

the one by K-Means is slightly under-segmented while the one by Otsu is largely over-

segmented comparing with the true fibrosis boundary (ground-truth). We expect training

the ANTN with these two types of noisy segmentations can improve segmentation perfor-

mance by borrowing signal strengths from weak labels. Model inference of u-net, NTN,

and ANTN has been done similarly as for synthetic data. Note that u-net1, u-net2 and u-

net3 now represent the u-net trained with the corresponding K-Means, Otsu thresholding,

and the mixture of noisy segmentations. NTN1 and NTN2 represent the NTN trained with

the corresponding K-Means and Otsu noisy segmentations. With the learning rate 10−4,

training the u-net with the single type of noisy segmentations converges in 400 epochs
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and training with the mixture converges around 157 epochs. For NTN, we initialize the

training with the corresponding u-net and then diffuse the noise transition layer by weight

decay for 150 epochs. For ANTN, we initialize the clean label prediction network with

the trained u-net3 then further train two transition probability networks for 200 epochs.

The consequent iterative adaptive training converges around 155 epochs with the same 10

epochs for the alternating interval as described earlier. We provide the corresponding

segmentation results from u-net, NTN, and ANTN in Figures 3.5(a). We can only visually

judge that the u-net2 and NTN4 have the performance worse than the other deep learning

based methods because they are trained with the highly noisy Otsu segmentations. To

clearly show the performance difference in fibrosis regions, we crop the original histo-

image and generate the corresponding fibrosis boundaries by different networks shown in

Figure 3.5(b) and (c). While the u-net1 and NTN1 trained with the sole K-Means segmen-

tation have the slightly under-segmented performance, the u-net2 and NTN2 trained with

the sole Otsu segmentation have the over-segmented performance. This is consistent with

the under-segmented and over-segmented characteristics of the K-Means segmentation and

Otsu segmentation. By comparison, the u-net3 and ANTN trained with both segmentations

have the fibrosis boundaries closest to the ground-truth. The overall accuracy comparisons

Method K-Means Otsu U-Net1 U-Net2 U-Net3 NTN1 NTN2 ANTN
Accuracy 89.09% 79.25% 93.33% 85.90% 90.43% 92.90% 81.26% 94.78%

Table 3.2: Accuracy comparison with ground-truth.

with the ground-truth segmentation are shown in Table 3.2 and the ANTN has the 94.78%

accuracy outperforming than the other methods.

More original histo-images and their corresponding segmentation results from u-net,
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NTN, and ANTN are shown in Figures 3.6, and the zoomed details of the marked boxes

in Figure 3.6(a) are shown in Figure 3.8. In Figure 3.8, the segmentations highlighted

by green boxes show that u-net3 and ANTN achieves the most homogeneous and co-

herent segmentations of fibrosis and muscle; the segmentations highlighted by yellow

boxes show better fibrosis segmentation from ANTN even within necrotic muscle bun-

dles (the fifth row); and the segmentations highlighted by purple boxes indicate ANTN

works great while the Otsu, u-net2 and the NTN2 does not segment much detail when the

fine segmentation is expected. Without much ground-truth segmentation, we follow the

way in [30, 31, 32] for quantitative evaluation based on the entropy U within segmented

regions in RGB color space and disparity D across regions in L*a*b* color space. In

the segmented region j of histo-image, we denote the number of pixel with intensity m

in channel c to be Lj(m) and the total number of pixel in region j to be Sj , thus
Lc
j(m)

Sj

can be taken as the probability that a pixel has the intensity m in region j for channel c.

Averaging the three channel and all the region, we can derive the expected entropy H for

segmentation:

H = G ∗
∑

j=1

(
Sj

SI

)Hj (3.2)

where

G =

√√√√
MaxArea∑

b=1

[N(b)]1+1/b, (3.3)

Hj = −1

3

3∑

c=1

255∑

m=1

Lc
j(m)

Sj

log
Lc
j(m)

Sj

. (3.4)

G is the penalized term for over segmentation with N(b) representing the amount of re-

gions having b pixel, andHj is the region-wise entropy. For the disparityD across regions,
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we compute the average intensity Ac
i =

∑
k∈Ri

Xc
k

Ni
, in which Xc

k is the corresponding chan-

nel intensity for pixel k; Ri denotes the set of pixels belonging to the ith cluster; and Ni

is the total number of pixels in the ith cluster. Let Pi = Ni∑3
j=1 Nj

. We have disparity:

D = A2
1P1 − A3

2P2. (3.5)

Note that D is computed by the weighted average intensity differences only between red

and blue regions with the corresponding channels as we are mostly interested in muscle

and fibrosis in DMD histo-images [33]. Clearly, the smaller theH and the larger theD are,

the better the segmentation is. Hence, we evaluate the segmentation results quantitatively

by E = H
D

. The comparison of E values for 11 original histo-image groups (each includes

100 split images and the training images are from the third group) is given in Table 3.3,

in which we have boldfaced the entities of the best for each group. Clearly, ANTN with

noisy training samples is outperforming all the other methods in 9 of 11 samples. As

Method 1 2 3 4 5 6 7 8 9 10 11
K-Means 1.588 1.624 1.097 1.465 0.789 0.776 6.086 2.052 1.099 1.079 0.683

Otsu 5.326 10.235 4.749 7.338 3.513 4.154 22.132 6.476 5.519 5.434 3.196
U-net1 0.206 0.245 0.385 0.257 0.357 0.338 0.292 0.371 0.210 0.243 0.162
U-net2 0.115 0.187 0.302 0.152 0.173 0.145 0.239 0.170 0.159 0.241 0.211
U-net3 0.120 0.138 0.153 0.150 0.191 0.169 0.209 0.171 0.118 0.117 0.077
NTN1 0.097 0.175 0.195 0.173 0.204 0.208 0.280 0.202 0.144 0.156 0.073
NTN2 0.098 0.146 0.198 0.128 0.153 0.128 0.095 0.119 0.161 0.218 0.133
ANTN 0.069 0.094 0.138 0.101 0.135 0.125 0.107 0.152 0.089 0.098 0.071

Table 3.3: Performance comparison of different methods on 11 original histo-images.

shown in Figure 3.7(a), we also investigate the estimated ratio similarly as for synthetic

data based on the intermediate outputs during ANTN training by noisy segmentations from

either K-Means or Otsu algorithm. It is observed that the ratio with respect to K-Means

is much larger than that with Otsu. Besides, the corresponding average transition matrices

after convergence are shown in Figure 3.7(b) and (c). Clearly, the average label-flip noise
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transition matrix trained for K-Means segmentation has diagonal entry values closer to

1 compared to that for Otsu segmentation. This tells that K-Means segmentation results

match better with the segmentation results derived by ANTN, being consistent with the

fact that K-Means achieves better segmentation results compared to Otsu thresholding.
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(a)

c Original Ground-truth K-Means Otsu u-net1

(a)

c u-net2 u-net3 NTN1 NTN2 ANTN

(b)

c Original Ground-truth K-Means Otsu u-net1

(b)

c u-net2 u-net3 NTN1 NTN2 ANTN

(c)

c Original Ground-truth K-Means Otsu u-net1

(c)

c u-net2 u-net3 NTN1 NTN2 ANTN

Figure 3.5: Illustration of oversegmentation and undersegmentation for fibrosis ((a) complete view,
(b) cropped region 1 and (c) cropped region 2).
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(a) Original (b) K-Means (c) Otsu (d) U-net1 (e) U-net2 (f) U-net3 (g) NTN1 (h) NTN2 (i) ANTN

Figure 3.6: Histo-images and segmentations.

Epochs
400 450 500

E
st

im
at

ed
 r

at
io

10

15

20

25

30
K-Means
Otsu

(a)
0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)
0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

Figure 3.7: Evaluation of clean label ratio and transition matrices for histo-images ((a) Estimated
ratio of intermediate output labels to noisy labels. (b) Estimated transition matrix for K-Means
noisy dataset. (c) Estimated transition matrix for Otsu noisy dataset.).
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(a) Original (b) K-Means (c) Otsu (d) U-net1 (e) U-net2 (f) U-net3 (g) NTN1 (h) NTN2 (i) ANTN

Figure 3.8: Zoomed details of the regions (Scaled to the same size for visualization. regions
surrounded by perimysium require homogeneous segmentation, growing fibrosis regions within
endomysium/necrotic muscle bundles require accurage blue-color segmentation, complicated re-
gions require fine segmentation.).
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3.4 Optimization of Clean Label Prediction Network

In this section, we analyze the optimization of clean label prediction network in adap-

tive training or weight decay for ANTN and NTN respectively. We calculate the his-

tograms of feature maps generated from the last convolutional layer before the softmax

layer of the clean label prediction network and create a 3D histogram along the training

iterations in order to quantitively observe the changes of feature maps during adaptive

training/weight decay. To clearly observe the fluctuation of histograms along the training,

we further map the 3D histograms into the 2D panels to create 2D histograms. Ultimately

we generate three groups of histograms by the clean label prediction networks of ANTN,

NTN1 and NTN2 for synthetic data experiments and histo-data experiments shown in the

Figure 3.9.

As the 3D histograms shown in Figure 3.9 for both synthetic data and histo-data, we

can observe that the distribution varies largely along the training iteration for ANTN show-

ing that the adaptive training stage is effectively adjusting the parameters initialized by

noisy segmentation, while the distributions for NTN1 and NTN2 do not have essentially

alteration for most time. Such trend is more clearly shown in 2D histograms as the over-

lapped curves of 2D histograms for ANTN is much more diverse than NTN’s. These

observations show that the ANTN is more sensitive to parameters which are initialized by

noisy segmentations before the last training stage, and can be more likely to push these

parameters away from the unsatisfied values during the last training stage.
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Synthetic

Histo

Histo

Histo
(a) ANTN (b) NTN1 (c) NTN2

Figure 3.9: Histograms of feature maps for synthetic and histo-data (The first and the third row:
3D histograms where the X axis and Y axis represent the intensity and training iterations. The
second and the forth row: 2D histograms where the X axis and Y axis represent the intensity and
frequency.).
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4. SUMMARY AND CONCLUSIONS

In this thesis, we aim to tackle the difficulty of applying deep learning in histo-image

segmentation when the clean ground-truth is unavailable so that clinicians will be free

from the time-consuming work in manual segmentation. The core idea is taking the noisy

segmentations from the off-the-shelf algorithms as the training set to train the deep learn-

ing network for generating clean segmentation. To adjust the deep learning network for

noisy label training, we propose the noise-tolerant network (NTN) and the adaptive noise-

tolerant network (ANTN) based on the U-Net architecture. While the NTN considers label

noise only depends on the class of clean label, the ANTN not only appropriately assume

that the label noise depends on both the class of clean label and the appearance of the im-

age, but also integrate multiple noisy datasets into training. The experiments on synthetic

images and histo-images show that the ANTN has the best performance among other deep

learning algorithms and the off-the-shelf algorithms.

Some problems are still being remained for the ANTN model. For instance, ANTN

assigns the transition probability to each pixel of the image but such pixel-wise allocation

may be unnecessary due to the similar features in the region of pixels. Besides, ANTN has

not considered the correlation of label noise process between pixels either. We will focus

on both above problems and experiment on more benchmark datasets in the future.
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