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ABSTRACT

Constructing the Supertree of Life can provide crucially valuable knowledge to ad-

dress many critical contemporary challenges such as fighting diseases, improving global

agriculture, and protecting ecosystems to name a few. However, building such a tree is

among the most complicated and challenging scientific problems. In the case of biological

data, the true species tree is not available. Hence, the accuracy of the supertree is usually

evaluated based on its similarity to the given source input trees.

In this work, we aim at improving the accuracy of the supertree in terms of its cumula-

tive Robinson Foulds (RF) distance to the source trees. This problem is NP-hard. There-

fore, we have to resort to heuristic algorithms. We have two main contributions in this

work. First, we propose a new technique, Edge Ratchet, which is used in a hill-climbing

based algorithm to deal with local optimum problem. Second, we develop a Simulated

Annealing algorithm to minimize total RF distance of the supertree to the source trees.

Our results demonstrate that these two algorithms are able to improve the accuracy of the

best existing supertree algorithms with regard to RF distance.
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1. INTRODUCTION AND BACKGROUND INFORMATION

1.1 Supertree of Life

Charles Darwin changed the way we look at the life on Earth forever. Darwin’s theory

of evolution encompasses two main ideas. First, evolution occurs, in other words, organ-

isms change over the time. Second, evolution occurs by natural selection which roughly

says that only the fittest ones will survive over a long period of time. This amazing theory

suddenly connected all the dots to explain the extraordinary diversity of life on Earth, and

how it has been developed. The theory of evolution explains how all the biodiversity on

earth has developed from a common ancestor, and thus all species on earth are related to

one another.

Tree of Life (ToL) depicts shared ancestry and the evolutionary relationships of all

biodiversity on Earth. Around 1.8 million species have been identified, and biologists have

predicted the total number of species on Earth to be 8.7 million [2]. Figure 1.1 shows how

the ToL will look like for a very small subset of known species. Such a comprehensive tree

can provide significantly useful knowledge to address many critical contemporary issues

such as fighting diseases, improving global agriculture, and protecting ecosystems to name

a few. However, building such a tree is among the most complicated and challenging

scientific problems.

In the literature, there are two different approaches to construct ToL. The first ap-

proach, which is called combined analysis or total evidence or supermatrix analysis tries

to put together the whole data available, and build a tree at once from all data together. For

example, sequence data from multiple loci -the specific location or position of a gene’s

DNA sequence, on a chromosome- is concatenated and is considered as one super-gene.

Then the whole data is analyzed by a phylogenetic construction method to build a com-

1
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Candida dubliniensis
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Candida palmioleophila

Candida flu
viatilis

Candida sa
itoana

Candida pseudoglaebosa

Candida glaebosa

Candida insecta
mans

Candida lyxosophila

Candida kruisii

Candida tanzawaensis

Candida sa
ke

Candida austro
marina

Candida co
ipomoensis

Candida ergastensis

Pichia angusta

Willio
psis salicorniae

Endomyces fib
uliger

Saccharomycopsis fib
uligera

Saccharomycopsis capsularis

Kluyve
romyce

s n
onfermentati

Kluyveromyces aestuarii

Kluyveromyces marxianus

Kluyveromyces lactis

Kluyveromyces dobzhanskii

Kluyveromyces wicke
rhamii

Holleya sinecauda

Zygosaccharomyces mellis

Zygosaccharomyces rouxii

Zygosacch
aromyce

s b
isporus

Zygosaccharomyces lentus

Zygosaccharomyces bailii

Arxiozyma telluris

Saccharomyces dairensis

Saccharomyces serva
zzii

Saccharomyces unisporus

Saccharomyces tra
nsvaalensis

Zygosaccharomyces mrakii

Torulaspora globosa

Torulaspora delbrueckii

Torulaspora pretoriensis

Zygosaccharomyces microellipsoide

Candida colliculosa

Kazachstania viticola

Kluyveromyces blattae

Kluyveromyces phaffii

Zygosaccharomyces florentinus

Candida glabrata

Kluyveromyces delphensis

Saccharomyces pastorianus

Saccharomyces cerevisiae

Saccharomyces cerevisiae 2

Saccharomyces bayanus

Saccharomyces paradoxus

Kluyveromyces polysporus

Kluyveromyces yarrowii

Kluyveromyces lodderae

Saccharomyces rosinii

Kluyveromyces africanus

Saccharomyces spencerorum

Saccharomyces exiguus

Saccharomyces barnettii

Saccharomyces castellii

Zygosaccharomyces fermentati

Saccharomyces kluyveri

Kluyveromyces thermotolerans

Kluyveromyces waltii

Saccharomycodes ludwigii

Hanseniaspora uvarum

Williopsis pratensis

Willio
psis californica

Starmera amethionina var pachy

Starmera amethionina var ameth

Starmera caribaea

Pichia anomala

Williopsis saturnus

Williopsis saturnus var mrakii

Williopsis mucosa

Pachysolen tannophilus

Candida chilensis

Candida cylindracea

Candida savonica

Candida mesenterica

Candida suecica

Phaffomyces antillensis

Phaffomyces opuntiae

Phaffomyces thermotolerans

Yarrowia lipolytica
Candida rugosa

Candida catenulata

Candida pseudointermedia

Candida intermedia

Candida akabanensis

Candida oregonensis

Candida haemulonii

Candida tsuchiyae

Clavispora lusitaniae

Candida melibiosica
Candida torresii

Metschnikowia bicuspidata
Candida agrestis

Metschnikowia reukaufii

Metschnikowia pulcherrima
Candida mogii

Brettanomyces bruxellensis

Dekkera bruxellensis
Dekkera anomala

Brettanomyces anomalus

Dekkera custersiana

Dekkera naardenensis

Candida insectalens
Candida silvatica

Issatchenkia orientalis

Pichia membranaefaciens

Candida spandovensis
Candida apicola
Candida bombi

Starmerella bombicola

Candida geochares
Candida vaccinii

Endomyces geotrichum

Galactomyces geotrichum
Dipodascus albidus

Candida chiropterorum

Candida valdiviana
Candida drimydis

Waltomyces lipofer

Dipodascopsis uninucleata

Protomyces macrosporus

Protomyces pachydermus
Protomyces inouyei

Protomyces lactucae
Taphrina virginica
Taphrina carnea

Taphrina pruni subcordatae
Taphrina mirabilisTaphrina nana

Taphrina pruni
Taphrina ulmi

Taphrina communis
Taphrina flavorubra
Taphrina populina

Taphrina deformans
Taphrina wiesneri

Taphrina robinsoniana
Taphrina letifera

Neolecta vitellina
Neolecta irregularis

Saitoella complicata

Schizosaccharomyces pombe

Schizosaccharomyces japonicus
Pneumocystis carinii

Calicium tricolor
Taphrina maculans

Taphrina californica
Chytridium confervae

Neocallimastix frontalis
Neocallimastix joyonii
Piromonas communis

Spizellomyces acuminatus

Allomyces macrogynus

Blastocladiella emersonii
Chrysops niger

Drosophila melanogaster
Ceratitis capitata
Ornithoica vicina

Nephrotoma altissima
Lutzomyia shannoni

Aedes albopictusAedes aegyptiAedes punctor

Toxorhynchites ambionensis
Culex tritaeniorhynchus

Anopheles psuedopunctipennis
Anopheles albimanus

Eucorethra underwoodiDixella cornuta
Culicoides variipennis

Amblabesmia rhamphe
Simulium vittatumXenos vesparumStylops melittae

Mengenilla chobauti
Galleria mellonella

Archaeopsylla erinacei
Panorpa germanica

Anisochrysa carneaOliarces clara
Monolobus ovalipennis

Antarctonomus complanatusLoricera foveata
Loricera pilicornis pilicornis

Amarotypus edwardsi
Bembidion mexicanum

Bembidion levettei carrianumAsaphidion curtumDiplous californicusPatrobus longicornis
Pericompsus laetulusDiplochaetus planatusZolus helmsi

Merizodus angusticollisSloaneana tasmaniaeBatesiana hilarisSchizogenius falliClivina ferreaDyschirius sphaericollisMelisodera picipennisMecyclothorax vulcansAmblytelus curtusApotomus rufithoraxBroscosoma relictumCreobius eydouxiGalerita lecontei leconteiPseudaptinus rufulusAptinus displosorPterostichus melanariusTetragonoderus latipennisDiscoderus cordicollisChlaenius ruficaudaCalybe laetulaAmara apricariaAgonum extensicolleCymindis punctigeraLoxandrus n sp nr amplithoraCnemalobus sulciferusCatapiesis brasiliensisMorion aridusBrachinus armigerBrachinus hirsutusPheropsophus aequinoctialisPasimachus atronitensScarites subterraneusCarenum interruptumSiagona europaeaSiagona jennisoniClinidium calcaratumOmoglymmius hamatusOmus californicusCicindela sedecimpunctata
Metrius contractusPachyteles striolaCymbionotum semelederiCymbionotum pictulumGehringia olympicaPromecognathus crassusLaccocenus ambiguusOmophron obliteratum
Psydrus piceusCeroglossus chilensisPamborus gueriniiCalosoma scrutatorCarabus nemoralisScaphinotus petersi catalinae

Cychrus italicusOpisthius richardsoniLeistus ferruginosus
Nebria hudsonicaNotiophilus semiopacusTrachypachus gibbsiiTrachypachus holmbergiSystolosoma lateritiumElaphrus californicus

Elaphrus clairvilleiBlethisa multipunctata aurata
Mecodema fulgidum

Oregus aereus
Suphis inflatusCopelatus chevrolati renovatusHydroscapha natans

Xanthopyga cacti
Dynastes granti
Tenebrio molitor

Meloe proscarabaeus
Clambus arnetti

Phaeostigma notata
Leptothorax acervorum

Polistes dominulus
Graphosoma lineatum
Raphigaster nebulosa

Lygus hesperus
Hemiowoodwardia wilsoni

Hackeriella veitchi
Spissistilus festinus
Prokelisia marginata
Philaenus spumarius
Okanagana utahensis

Trioza eugeniae
Pealius kelloggii

Acyrthosiphon pisum
Aonidiella aurantii

Batrachideidae gen sp
Carausius morosus
Acheta domesticus
Mesoperlina pecircai

Aeschna cyanea
Lepisma saccharina

Lepidocyrtus paradoxus
Crossodonthina koreana

Hypogastrura dolsana
Podura aquatica

Theatops erythrocephala
Scolopendra cingulata

Cryptops trisulcatus

Craterostigmus tasmanianus
Lithobius variegatus

Scutigera coleoptrata

Pseudohimantarium mediterraneum

Clinopodes poseidonis

Cylindroiulus punctatus

Polydesmus coriaceus

Rhipicephalus appendiculatus

Hyalomma lusitanicum

Hyalomma rufipes

Hyalomma dromedarii

Rhipicephalus sanguineus

Boophilus microplus

Rhipicephalus zambeziensis

Rhipicephalus bursa

Boophilus annulatus

Rhipicephalus pusillus

Dermacentor andersoni

Dermacentor marginatus

Amblyomma triguttatum triguttat

Amblyomma vikirri

Aponomma fimbriatum

Aponomma latum

Amblyomma variegatum

Amblyomma tuberculatum

Amblyomma americanum

Amblyomma maculatum

Haemaphysalis inermis

Haemaphysalis punctata

Haemaphysalis leporispalustris

Haemaphysalis humerosa

Haemaphysalis petrogalis

Haemaphysalis leachi

Aponomma undatum

Aponomma concolor

Ixodes auritulus

Ixodes ricinus

Ixodes affinis

Ixodes pilosus

Ixodes cookei

Ixodes simplex simplex

Ixodes kopsteini

Ixodes holocyclus

Carios puertoricensis

Ornithodoros moubata

Ornithodoros coriaceus

Otobius megnini

Argas lahorensis

Argas persicus

Megisthanus floridanus

Cosmolaelaps trifidus

Hypochthonius rufulus

Lohmannia banksi

Nothrus sylvestris

Xenillus tegeocranus

Euzetes globulosus

Allonothrus russeolus

Archegozetes longisetosus

Trhypochthonius tectorum

Nehypochthonius porosus

Steganacarus magnus

Gehypochthonius urticinus

Chortoglyphus arcuatus

Acarus siro

Eusimonia wunderlichi

Androctonus australis

Liphistius bicoloripes

Eurypelma californica

Odiellus troguloides

Pseudocellus pearsei

Limulus polyphemus

Callipallene gen sp

Berndtia purpurea

Trypetesa lampas

Octolasmis lowei

Paralepas palinuri

Lepas anatifera

Balanus eburneus

Chelonibia patula

Tetraclita stalactifera

Chthamalus fragilis

Verruca spengleri

Ibla cumingi

Calantica villosa

Loxothylacus texanus

Dendrogaster asterinae

Ulophysema oeresundense

Palaemonetes kadiakensis

Helice tridens

Philyra pisum

Callinectes sapidus

Pugettia quadridens

Raninoides louisianensis

Procambarus leonensis

Astacus astacus

Nephrops norvegicus

Panulirus argus

Oedignathus inermis

Penaeus aztecus

Stenopus hispidus

Artemia salina

Branchinecta packardi

Daphnia pulex

Bosmina longirostris

Daphnia galeata

Stenocypris major

Argulus nobilis

Porocephalus crotali

Milnesium tardigradum

Macrobiotus hufelandi

Thulinia stephaniae

Echiniscus viridissimus

Euperipatoides leuckarti

Priapulus caudatus

Pycnophyes kielensis

Helix aspersa

Balea biplicata

Limicolaria kambeul

Laevicaulis alte

Onchidella celtica

Siphonaria algesirae

Anthosiphonaria sirius

Lymnaea glabra

Stagnicola palustris

Lymnaea stagnalis

Radix peregra

Lymnaea auricularia

Fossaria truncatula

Bakerilymnaea cubensis

Biomphalaria glabrata

Littorina obtusata

Littorina littorea

Fasciolaria lignaria

Nassarius singuinjorensis

Pisania striata

Reishia bronni

Thais clavigera

Rapana venosa

Bursa rana

Monodonta labio

Antalis vulgaris

Scutopus ventrolineatus

Arctica islandica

Mercenaria mercenaria

Spisula subtruncata

Mulinia lateralis

Spisula solida

Spisula solidissima

Tresus nuttali

Tresus capax

Mactromeris polynyma

Hippopus hippopus

Hippopus porcellanus

Tridacna squamosa

Tridacna crocea

Tridacna maxima

Tridacna derasa

Tridacna gigas

Vasticardium flavum

Fulvia mutica

Fragum unedo

Fragum fragum

Corculum cardissa

Galeomma takii

Ostrea edulis

Crassostrea virginica

Nerita albicilla

Mytilus edulis

Mytilus trossulus

Mytilus galloprovincialis

Mytilus californianus

Geukensia demissa

Mimachlamys varia

Chlamys hastata

Crassadoma gigantea

Pecten maximus

Argopecten gibbus

Argopecten irradians

Placopecten magellanicus

Chlamys islandica

Atrina pectinata

Arca noae

Barbatia virescens

Acanthopleura japonica

Lepidochitona corrugata

Lepidozona coreanica

Eohemithyris grayii

Platidia anomioides

Stenosarina crosnieri

Gryphus vitreus

Thecidellina blochmanii

Cancellothyris hedleyi

Terebratulina retusa

Liothyrella neozelanica

Liothyrella uva

Gwynia capsula

Calloria inconspicua

Gyrothyris mawsoni

Neothyris parva

Terebratalia transversa

Macandrevia cranium

Fallax neocaledonensis

Laqueus californianus

Megerlia truncata

Terebratella sanguinea

Notosaria nigricans

Hemithyris psittaceae

Neocrania anomala

Neocrania huttoni

Discina striata

Glottidia pyramidata

Lingula lingua

Lingula anatina

Phoronis architecta

Phoronis psammophila

Phoronis vancouverensis

Alboglossiphonia heteroclita

Hirudo medicinalis

Haemopis sanguisuga

Barbronia weberi

Eisenia fetida

Lumbricus rubellus

Dero digitata

Xironogiton victoriensis

Sathodrilus attenuatus

Nereis virens

Aphrodita aculeata

Nereis limbata

Capitella capitata

Harmothoe impar

Sabella pavonina

Magelona mirabilis

Scoloplos armiger

Polydora ciliata

Pygospio elegans

Lanice conchilega

Nephtys hombergii

Glycera americana

Dodecaceria concharum

Chaetopterus variopedatus

Siboglinum fiordicum

Ridgeia piscesae

Ochetostoma erythrogrammon

Pedicellina cernua

Barentsia hildegardae

Barentsia benedeni

Symbion pandora

Plumatella repens

Alcyonidium gelatinosum

Porania pulvillus

Asterias amurensis

Astropecten irregularis

Stomopneustes variolaris

Mespilia globulus

Temnopleurus hardwickii

Salmacis sphaeroides

Tripneustes gratilla

Ophiopholis aculeta

Strongylocentrotus intermedius

Colobocentrotus atratus

Echinus esculentus

Sphaerechinus granularis

Psammechinus miliaris

Diadema setosum

Centrostephanus coronatus

Eucidaris tribuloides

Fellaster zelandiae

Cassidulus mitis

Echinodiscus bisperforatus

Encope aberrans

Echinocardium cordatum

Brissopsis lyrifera

Meoma ventricosa

Arbacia lixula
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Psychropotes longicauda

Cucumaria sykion

Lipotrapeza vestiens

Stichopus japonicus

Ophiocanops fugiens

Amphipholis squamata

Strongylocentrotus purpuratus

Ophiomyxa brevirima

Ophioplocus japonicus

Astrobrachion constrictum

Antedon serrata

Endoxocrinus parrae
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Myxine glutinosa atlantic hagfis

Petromyzon marinus

Lampetra aepyptera
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Amphiuma tridactylum

Siren intermedia

Ambystoma mexicanum
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Nesomantis thomasseti

Gastrophryne carolinensis

Xenopus laevis

Scaphiopus holbrooki

Discoglossus pictus

Grandisonia alternans

Hypogeophis rostratus

Ichthyophis bannanicus

Typhlonectes natans

Homo sapiens

Mus musculus

Rattus norvegicus

Oryctolagus cuniculus

Alligator mississippiensis

Turdus migratorius

Gallus gallus
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Sceloporus undulatus
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Pseudemys scripta

Latimeria chalumnae
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Rhinobatos lentiginosus
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Australoplana sanguinea

Arthiopostia triangulata

Dugesia japonica
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Figure 1.1: This phylogenetic tree, created by David Hillis, Derreck Zwickil and Robin
Gutell, University of Texas, depicts the evolutionary relationships of about 3,000 species
throughout the Tree of Life. Less than 1 percent of known species are depicted [1].
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prehensive tree on all the species under the study. For example, given the sequence data

in Figure 1.2, the supermatrix approach, using some phylogenetic construction method, is

depicted in Figure 1.3.

However, there are some serious issues using this approach. First, DNA or protein

sequence data is available only for a small fraction of species. Second, even if we have

molecular data for all species, with existing computational approaches, it is not feasible

to construct ToL directly from molecular data for large number of species at once. Third,

the available sequence data for different species corresponds to different genes. When we

combine them together into one huge sequence-species matrix, the resulting matrix will

have huge portion of missing data which can potentially decrease the accuracy. On the

other hand, biologists have produced tens of thousands of phylogenies for small group of

species from different datasets which provide a valuable knowledge to construct ToL. We

would like to incorporate all these data in ToL construction.

If we cannot construct ToL at once, it is intuitive to think of a divide and conquer

approach as a second approach for ToL construction. In this approach, we build smaller

phylogenies with partially overlapping taxa, and then we somehow combine these phylo-

genies into a more comprehensive tree. The problem of finding such (super)tree is referred

to as Supertree problem in the literature, and the method by which the tree is constructed

Species Gene1
a TCTAAT
b TCTAAG
c TCTAGA
d TCTAAC
g CATTCA
h CATACC

Species Gene2
d GGTAAC
e GCTACT
f GCTAAA
g GCTAAC

Species Gene3
a TATTGA
c TATTAC
d TAGTAC
g TAGTGA
h TAGTGC

Figure 1.2: Sequence data on three different genes, Gen1, Gene2, and Gene3, on 8 species
{a, b, c, d, e, f, g, h}.
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Species Gene1 Gene2 Gene3
a TCTAAT ?????? TATTGA
b TCTAAG ?????? ??????
c TCTAGA ?????? TATTAC
d TCTAAC GGTAAC TAGTAC
e ?????? GCTACT ??????
f ?????? GCTAAA ??????
g CATTCA GCTAAC TAGTGA
h CATACC ?????? TAGTGC

hg
f

ed
c

ba

Figure 1.3: Top table is the supermatrix of the sequence data in Figure 1.2. Bottom tree is a
(super)tree constructed using one of phylogenetic construction methods from supermatrix
above.

is called supertree inference or supertree algorithm. For instance, given sequence data in

Figure 1.2, we can first build gene trees using some phylogenetic tree construction method

for each gene data, and then we can use some supertree inference method to build a su-

pertree. Figure 1.4 represents this approach for gene data in Figure 1.2. This approach

has several advantages. First of all, since it is a divide and conquer approach, we can di-

vide the problem into sufficiently small sub-problems that we are able to solve. Second,

unlike supermatrix method, the problem of missing data is less harmful. Further, existing

phylogenies can also be used for ToL construction which provide a great resource.

However, this is not a trivial task. There are several non-trivial questions involved in

designing such approach. First of all, how can we handle the conflicts among the given

phylogenies? Second, how can we possibly combine a set of trees into a single tree which,

in some sense, best represents them? Third, how should we define similarity between two
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gf
dcba

(a) Phylogeny for Gene1

gf
e

d

(b) Phylogeny for
Gene2

hg
dca

(c) Phylogeny for Gene3

hg
f

ec

dcba
(d) supertree.

Figure 1.4: Supertree inference. We first build a phylogeny for each gene data in Figure
1.2, trees in (a), (b), and (c). Then, we use supertree inference to construct the supertree
depicted in (d.)

phylogenies, and how can we quantify this measure? Last but not the least, how can we

use such measure to build a single tree, called supertree, out of the given source trees?

A supertree on a set of input phylogenetic trees is simply a phylogenetic tree which

contains all the taxa in all the input trees and, in some sense, preserves as much information

as possible from input trees. A supertree algorithm should answer all the above mentioned

questions. Supertree algorithms have been considered as the main tool to construct ToL

in the literature, and supertree inference has been an active research area in the last two

decades.

Another complication in supertree inference is that the true species tree is not available

for biological datasets. Therefore, the only way to evaluate the accuracy of a supertree

is to measure its similarity to the input source trees. In other words, after constructing a

supertree, we evaluate its accuracy by measuring its similarity to input trees. This simi-

larity is usually captured by some phylogenetic tree distance measure. There are several
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different such distance measures in the literature. Among these distance measures, Robin-

son Foulds distance (RF distance) and Parsimony Score have been widely used for both

constructing supertrees and evaluating their accuracies.

1.2 Our Research

Several criteria have been proposed for supertree construction. Surprisingly, the su-

pertree problem turns out to be NP-hard for most of the interesting measures introduced.

This means that we are not optimistic about finding an efficient solution for these problems.

Thus, we usually have to resort to heuristic search algorithms. It is interesting to know the

size of the solution space for this problem, i.e. the number of all possible supertrees on a

given set of taxa. For n taxa, there are (2n−5)!
(n−3) 2n−3 number of unrooted trees, and (2n−3)!

((n−2) 2n−2)

number of rooted trees. For example, the number of rooted and unrooted trees with only

10 taxa, is 34 459 425 and 2 027 025, respectively. This observation eliminates any hope

for exhaustive search in the solution space.

There are many different approaches for supertree inference. However most of su-

pertree algorithms can be categorized into one of three main groups: matrix representation

(MR) methods, graph based methods with polynomial running time, and topological dis-

tance based methods. In this work we will focus on the third category, topological distance

based methods. These algorithms are of special interest because they directly aim at min-

imizing the distance between the supertree and the source trees. In simple words, given k

source trees T1, T2, ..., Tk, and a well-defined tree distance measure d, the supertree prob-

lem is defined as follow: find a supertree with minimum cumulative distance
∑k

n=1 di,

where di is the distance between the supertree and the source tree Ti.

More specifically, we focus on RF supertree problem. In RF supertree problem, we

are given a set of rooted input source trees, and our goal is to find a binary supertree with

minimum cumulative RF distance to source trees. RF distance captures the smallest unit
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of information in phylogenetic trees. Further, this measure has extensively been used for

supertree evaluation. Lastly, the RF supertree problem has been shown to be NP hard [3]

which opens a lot of space for improvements of the heuristic algorithms.

The best existing algorithm for RF supertree problem was introduced in [4]. Bansal

et al. proposed a fast hill climbing heuristic, RFS algorithm, for RF supertree problem.

Although they have shown that their algorithm is able to obtain very accurate supertrees

with regard to RF distance, we believe that there is still some space to improve upon their

algorithm.

One common problem to all hill-climbing algorithms, including RFS algorithm, is that

they only guarantee to obtain a local optimum. This local optimum might correspond to

a very poor quality solution for the problem at hand. This problem is known as local

optimum problem which means that a hill climbing algorithm will get stuck at the first

local optimum solution which might be a very poor solution. However, we might be able

to find much better quality solutions if we could somehow manage to escape from the local

optimum and starting to "climb" another "hill" in the solution space.

Our goal in this work is to propose new methods to improve accuracy of the supertree

with regard to RF distance. We have two main contributions in this work. Firs, we propose

a new technique, called Edge Ratchet, to deal with local optimum problem in hill-climbing

algorithms such as RFS. Second, we design a new Simulated Annealing algorithm for RF

supertree problem.

1.2.1 Edge Ratchet Robinson Foulds Supertree Algorithm

We propose a new algorithm, Edge Ratchet Robinson Foulds Supertree (ER-RFS) Al-

gorithm, which is essentially a hill climbing algorithm equipped with Edge Ratchet tech-

nique to deal with local optimum problem. This work is inspired by the ratchet search

strategy introduced in [5]. Ratchet search is an iterative search method that has been
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shown to be quite effective to address local optimum problem for branch-swapping hill-

climbing algorithms for parsimony problem. In each iteration of ratchet search two branch

swapping searches is applied. In the first phase, a randomly selected subset of characters,

columns of parsimony matrix, are given a different weight and branch swapping is per-

formed on this re-weighted data set to obtain a local optimum. Then in the second phase,

all the weights are set back to the original weights, and branch swapping is applied on the

original data set using the tree obtained in the first phase as initial tree. The output of the

second phase of each ratchet iteration is used as initial tree of the next ratchet iteration.

This is done for a prespecified number of iterations.

Bansal et al. introduced fast local search algorithms for Robinson-Foulds supertree

problem and developed a powerful hill-climbing algorithm for this problem in [4]. They

used a ratchet search heuristic based on parsimony ratchet [5] to deal with the local opti-

mum problem. They treat each source tree as one character in the ratchet search. More

specifically, the re-weighing of characters in the first phase of each ratchet iteration is

done by removing two third of source trees. This means that ALL bipartitions of the cho-

sen source trees are ignored in the first phase of each ratchet iteration. Although they have

shown their algorithm is capable of obtaining supertrees with high quality with regard to

RF distance, we believe that, by using our edge ratchet strategy instead, we can improve

upon their algorithm.

In the edge ratchet strategy, we treat each internal edge (essentially a bi-partition) of

each source tree as one character instead of the whole source tree. Then in the first phase

of each ratchet iteration, we re-weight, say, 30% of internal edges of each source tree

with a new weight and perform a hill-climbing search using weighted source trees. Then,

we set back all the edge weights to 1, and the resulting supertree from previous search

is fed as initial supertree for the second phase that performs a hill-climbing search using

(unweighted) original source trees.
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An effective strategy to deal with local optimum problem is extremely important for

specifically branch swapping methods. Because of the nature of these search algorithms,

they could potentially get stuck in areas of solution space, called tree islands [5]. A tree

island is defined as a set of trees in the solution space having the same score (based on

whatever optimality criteria used), and this score is better than that of any other tree reach-

able by a single branch swapping move. When the algorithm reaches a tree island, it alters

between numerous trees with the same quality that differ by minor rearrangements, for a

long time, without any improvement in the solution. This can potentially have an adverse

effect on the final solution. Thus, a good strategy that can help the algorithm escape from

these parts of the solution space can potentially have a huge impact on the resulting solu-

tion since the algorithm can search different areas of the solution space which increases

the chance of finding better solutions.

1.2.2 Simulated Annealing Algorithm

Simulated annealing (SA) algorithm is inspired by annealing process in metallurgy, a

technique involving heating and controlled cooling of a material to increase the size of

its crystals and reduce their defects. There are three main reasons for using simulated

annealing for RF supertree problem. First, simulated annealing algorithm is known to

be an effective way to handle local optimum problem. Although our experiments show

that ER-RFS algorithm is able to handle local optimum and improve upon RFS algorithm,

we do not know if there are better local optimums in the solution space. The way SA

algorithm works could help to even improve the accuracy of the supertree.

Second, we observed in our experiments that the initial supertree can have a huge im-

pact on the final supertree of ER-RFS algorithm, especially on data sets with small number

of source trees. The way SA algorithm works could potentially handle this problem very

well. Third, ER-RFS algorithm is very expensive with regard to running time, and it is

9



a fairly complex algorithm. SA algorithm, however, is simpler, and more importantly, it

does not require to search the whole SPR neighborhood. Therefore, if it could handle local

optimum problem well in this context, then we might expect that it could obtain close (or

even better) results to that of ER-RFS with better running time.

Therefore, as another heuristic, we implement a simulated annealing algorithm for RF

supertree problem. In greedy hill-climbing algorithms we always pick a better neighbor

in local search, and this will lead us to a (potentially not enough good) local optimum.

Simulated Annealing algorithm, deal with this problem by allowing worse neighbors to

be picked as well. But, the proper way to handle this is not trivial. If we pick too many

worse neighbors, we might get stuck in some areas of the solution space with poor quality

solutions, and end up in a supertree that is even worse than the initial supertree. If we are

too strict, on the other hand, and we rarely pick a worse neighbor, then the final solution

is probably close to that of greedy algorithm. The beauty of SA algorithm is in the way it

allows worse neighbors to be selected so that neither of the above cases happen.

1.3 Background Information and Terminology

In this section we present some basic terms and concepts commonly used in phyloge-

netics. We first define a phylogenetic tree and the relevant terms. Then, we demonstrate

the difference between rooted and unrooted phylogenies. Finally, we describe the newick

format which is the common way of representing a phylogenetic tree.

1.3.1 Phylogenetic Tree

In evolutionary context, the relatedness of two different species should closely depend

on how recent they have had a common ancestor. Such evolutionary relationship can be

perfectly modeled as a tree, phylogenetic tree, which is very much like a family tree. A

phylogenetic tree is a tree structure that depicts the evolutionary relationships among a set

of species. Each leaf of the tree represents one of the existing species, called taxon, and

10
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Figure 1.5: A rooted phylogenetic tree on taxa set {a, b, c, d, e}
.

the internal nodes represent the (hypothetical) ancestral species. For example, in Figure

1.5, we can say species a and b are more related to each other than than they are to other

taxa in the tree because their common ancestor is more recent than, say, common ancestor

of a and c. Sometimes, we specify a node in the tree as root which represents the common

ancestor of all taxa on the tree, and determines the flow of time. Each edge of the tree is

called branch. Each internal node with all its descendants represent a clade (or cluster).

Two species with the same parent node in a rooted tree are called sister taxa. Figure 1.5

illustrates all these terms.

The number of branches connected to a node is called degree of that node. Leaves

have degree of 1. Note that all the internal nodes in a phylogeny has degree grater than 2.

An internal node (in both rooted and unrooted trees) is called multifurcation or polytomy

if its degree is greater than 3. For rooted trees, the root, which is a unique internal node, is

called multifurcation if it has more than two children. We say a node in phylogenetic tree

is fully resolved if it is not a multifurcation. A phylogenetic tree with no multifurcations is

called a binary tree or bifurcating tree or fully resolved tree. For example, the phylogeny

in Figure 1.5 is fully resolved. Thus, for example, a rooted binary tree is a rooted tree

whose root has degree 2 and all other internal nodes have degree 3. Likewise, an unrooted
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Figure 1.6: Rooting an unrooted tree (on the left): The middle tree is the rooting using
midpoint method where the distance between a and c is maximum possible pairwise dis-
tance, and the half-way lies in between the two internal nodes. The right tree shows rooting
of the same tree using c as outgroup.

binary tree is an unrooted tree whose internal nodes have all degree 3.

1.3.2 Rooted vs Unrooted Trees

A phylogeny can be either rooted or unrooted. The main difference between rooted

and unrooted trees is that rooted trees contain the information about the flow of time, while

we do not know which way of evolution proceeded along each edge of an unrooted tree.

In rooted trees, there is a unique internal node called root which represents the common

ancestor of the species in the tree. In rooted trees, each edge represents a parent-child

relationship.

There are two common ways of converting an unrooted tree to rooted tree. First ap-

proach is called midpoint rooting. As the name suggests, this approach roots the tree at its

midpoint. This is done by finding the longest taxon to taxon path in the tree, and placing

the root at exactly half way between the two taxa. In midpoint rooting we calculate pa-

tristic distance between each pair of taxa which is the sum of the length of all branches

on the path between the two taxa. Each branch of a phylogeny can be assigned a number

called branch length which represents the amount of genetic change on that branch. The

branch length unit is usually nucleotide substitutions per site, i.e. the number of changes

or substitutions divided by the length of the sequence. The second approach for rooting a

tree, which is more recommended, is to use an outgroup to root the tree. An outgroup is a

12
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Figure 1.7: Newick format visualization. Tree above representation in newick format is
(c : 0.6, (d : 0.4, (a : 0.1, b : 0.1) : 0.5) : 0.2) : 0.0;.

species that is known to be more distantly related than everything else in the tree. Figure

1.6 depicts rooting a small unrooted tree using these two approaches.

1.3.3 Newick Format

There is a computer readable and intuitive way of representing a phylogenetic tree

called Newick format introduced in 1857 by Arthur Cayley. The newick standard takes

advantage of correspondence between a tree and nested parentheses. In this representation,

a pair of parentheses is used to group sister taxa into one clade. Newick format always

starts with an open parenthesis, and ends with a semicolon which marks the end of the tree.

Branch lengths, if any, are prefixed by colons following right after the corresponding node

in the tree. Internal nodes may or may not be named. If named, the name of each clade

comes right after the closing parenthesis corresponding to that clade. (see Figure1.7).

In newick format, the convention is to have an unrooted binary tree with only one

multifurcation at some internal node. It is a little tricky to differentiate between rooted

and unrooted trees in newick format. The convention, which is used in many software

programs, is that if the outermost pair of parentheses in newick representation includes

only 2 clades, then it is considered rooted and the root is placed between those two clades.

Otherwise, the tree is unrooted. Most of phylogenetic software programs whose output

is an unrooted tree place a trifurcation at node corresponding to outermost parentheses to
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Figure 1.8: The Unrooted tree (a, b, (c, d)); is showed on the left. The same tree can be
drawn in a way that gives the illusion of being rooted, the middle tree. But note that the
"root" has three children, and hence the tree is unrooted (equivalent to the tree on the left).
The tree on the right, however, corresponds to ((a, b), (c, d)); which is actually a rooted
tree. Even without that little line on the leftmost internal node, we can recognize that it is
rooted tree since the "root" has only 2 children.

emphasize that the tree is unrooted.

We should note that for unrooted trees, some of the tree visualization software pro-

grams draw the tree in a way that seems it is rooted at node corresponding to the outermost

parentheses, which looks like they draw rooted trees. For example, Figure1.8 depicts the

difference between rooted and unrooted trees in newick format. When looking at unrooted

trees in visualization programs, it is a good practice to choose the option, if available, that

draws the tree like the one on the left side of Figure1.8. Another probable source of con-

fusion in newick format is that a tree topology may have different newick representations.

For example, all the following newick representations are equivalent, and represent the left

tree in Figure1.8.

(a,b,(c,d));

(b,a,(c,d));

((c,d),b,a);

(b,(d,c),a);

((a,b),c,d);

(c,(a,b),d);
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2. LITERATURE REVIEW

There are many different approaches for supertree inference. However most of su-

pertree algorithms can be categorized into one of three main groups: matrix representation

(MR) methods, graph based methods with polynomial running time, and topological dis-

tance based methods. In what follows we introduce the main supertree methods in each

category, and explain them in details.

2.1 MR Based Supertrees

The first MR method,Matrix Representation with Parsimony (MRP) , was introduced

by Baum [6] and Ragan [7] independently in 1992. MRP has been the most widely used

method in the literature because of its superiority in both accuracy and running time. All

MR methods have generally two main steps. The first step is to encode the source trees

into a large matrix of entries {0,1,?}. Each row of the matrix corresponds to one species,

and each column of the matrix corresponds to one internal node of some source tree. The

MR entry corresponding to taxon t and internal node n in tree T is 1 if t is a descendant of

n, the entry is 0 if t is not a descendant of n but is present in tree T , and finally, the entry

is ? if the taxon t is not present in tree T (this is called "Baum-Ragan" encoding). Figure

2.1 represents this encoding for two trees with partially overlapping taxon set. Note that

this encoding can be used for unrooted trees in a similar way, except for each internal edge

we need arbitrarily assign 0 to one side, and 1 to the other side. This works because in

parsimony, we are interested in the number of changes of state in each site (column).

This clever way to represent a tree in MR form, provides the opportunity to treat the

matrix as sequence data. In other words, we can construct a tree from this matrix using any

phylogeny construction method from sequence data. In the second step of MR based su-

pertree algorithms, different methods use different optimality criteria to build a supertree
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Figure 2.1: Baum-Ragan MR coding of phylogenetic trees.

from the large matrix in the first step. For example, MRP uses parsimony criteria to build

a tree from this matrix representation. Parsimony principle says that the simplest explana-

tion is the most likely to be correct. In other words, parsimony suggests that the best tree is

the tree that minimizes the number of evolutionary steps (i.e., changes among characters).

The parsimony score for a supertree refers to the sum of the smallest number of substi-

tutions needed for each site (i.e. each column of character-taxa matrix). The tree with

the lowest parsimony score is the most parsimonious tree. Thus, MRP basically seeks a

supertree that has minimum parsimony score. Although finding the most parsimonious

tree is NP-complete [8], very effective heuristics have been implemented for this problem

in PAUP [9] and TNT [10].

Recently, Swenson et al. proposed a new algorithm called SuperFine which was an

attempt to make MRP even faster and more accurate [11]. The input source trees for

this algorithm can be unrooted and non-binary. Their algorithm has two main phases.

16



a g b

c

f

e

h

i
j

d

b

g

a

c
f

e
d

ba

c

d e f

b

g

ed

a

c
f

a

c
h

i j d

b a b

c

h

i j d

a b

c

h

i

j
d

S1 S 1

S 2

S 1

S 2S2

T

Figure 2.2: SuperFine first stage. SCM of two trees S1 and S2. In S ′1 and S ′2, the strict
consensus of S1 and S2 restricted to their common taxon set is shown in bold. In S ′′1 and
S ′′2 , the branches that are involved in collapsing of a path in S ′1 and S ′2 are shown in bold,
respectively. T is the SCM tree of S1 and S2.

First, they build a partially resolved unrooted tree that only contains edges on which all

source trees agree, called Strict Consensus Merger (SCM). An example of SCM is shown

in Figure 2.2. In the second phase, they resolve the polytomies in SCM. To resolve a

polytomy u of degree d, they first divide the SCM into several partitions by removing u.

Then each partition is give a label i, and all the taxa in source trees belonging to partition

with label i are relabeled by i. This results in a set of new source trees each with at most

d taxa. Then, repeated taxa in each source tree are removed by removing sibling nodes

with same label until all leaves are unique. Finally, MRP heuristic is run on this new set

of modified source trees to get a supertree on reduced taxon set. The resulting tree can
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Figure 2.3: SuperFine second stage. a) The deletion of the polytomy u from the tree
T ′ partitions T ′ into four rooted trees, T1, T2, T3, and T4. b) The leaves in each of the
four source trees are relabeled by the index of the tree Ti containing that leaf, producing
relabeled source trees Sr

1 , Sr
2 , Sr

3 , and Sr
4 . c) Each Sr

i is further processed by repeatedly
removing sibling nodes with the same label, until no two siblings have the same label;
this results in trees Sc

i . d) The MR encoding, note Sc
3 does not contribute a parsimony

informative site and is excluded. e) The result of the MRP analysis on the matrix given in
(d). f) The tree resulting from identifying the root of each Ti, where i = 1,2,3,4, with the
node i in the tree from (e).

easily be used to resolve polytomy u. This procedure is depicted in Figure 2.3. The reason

why their algorithm is faster than MRP is that instead of running one MRP on the whole

data set, they run several MRP on smaller size inputs. Further, the second phase can be

parallelized to make it even faster [12].

Another well known MR based sueprtree is called Matrix Representation with Flipping

(MRF) [13]. Like MRP, MRF uses matrix representation of rooted source trees. However,
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MRF takes a different approach to construct a supertree. MRF tries to minimize flip dis-

tance. Flip distance is defined as the number of flips, i.e. flipping a 0 to 1 or vice versa

in MR, required to convert the matrix into one that perfectly represents a phylogenetic

tree. Before explaining the intuition behind this optimization criteria, we should note that

there is almost always incompatibilities between source trees, and this is usually because

of the existence of error. MRF is actually motivated by the notion of error correction. On

one hand, the error in source trees can be because of presence of an incorrect taxa in a

clade (which is a 1 instead of 0), or the absence of one that should be present (which is

a 0 instead of 1). On the other hand, a flip moves a taxon into or out of a clade- perfect

match!. Thus, the idea behind this optimization problem is that the error in MR prevents

it from perfectly representing a phylogenetic tree, and therefore, the attempt to minimize

the number of flips to resolve errors is intuitively reasonable. Chen et al. in [14] proved

that MRF problem is NP-hard, even when all the source trees have the same set of taxa.

For the special case of MRF consensus tree, where all source trees have the same set

of taxa, Böcker et al. presented a O(4.83k + poly(m,n)) fixed-parameter algorithms, for

n taxa, m characters, k flips, and poly(m,n) denotes a polynomial function in m and

n. Chen et al. in [14] also provided an approximation algorithm with ratio d, where d

is the maximum number of ones in a column, for MRF consensus tree. However, for

the general case, there is no any approximation algorithms or parameterized algorithms.

Chen et al. presented a heuristic for MRF problem based on branch swapping in [15].

Their algorithm is a hill climbing algorithm. The initial tree is obtained through greedy

step wise taxon addition using a randomly-chosen order. Then they use one of the tree

rearrangement operations rNNI, rSPR, or rTBR to produce neighborhood of the current

tree. If no neighbor has a lower flip distance, the search stops and the current tree is

returned as the estimate of an MRF supertree. Otherwise, the current tree is replaced by

its best neighbor. Thus, the algorithm stops at the first seen local optimum.
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The MR based supertree algorithms are different from other supertree algorithms in

that they use an indirect method for supertree construction. In other words, the MR meth-

ods indirectly solve the supertree problem by encoding the input source trees into matrix

representation. Then these methods treat this matrix representation as sequence data and

use some phylogeny construction methods to build a supertree.

2.2 Graph Based Supertrees

The graph based supertree algorithms take advantage of graphs to capture topological

information of source trees. The main differences between graph based supertree algo-

rithms and other suprtree methods is that they are not usually based on optimizing a global

objective function and they often use a local optimization criteria, and they are solvable

in polynomial time. The first graph based supertree algorithm, BUILD, was developed by

Aho et al. in 1981 which was only capable of dealing with non-conflicting source trees

[16]. The most well know graph based algorithms are MinCut (MC) [17] and its improved

version Modified MinCut (MMC) [18] which were the first extensions of BUILD to handle

conflicting rooted source trees. The conflict in MC is resolved by deleting the minimum

amount of information from the input trees in order to allow the algorithm to proceed.

The MC algorithm is implemented by a recursive function MinCut(T ) which takes

as input a set of rooted source trees. Suppose we are given a set T of k rooted source trees

on n taxa. For trivial case of having n = 1 or n = 2, MinCut(T ) returns a single node

or a rooted tree with two leaves, respectively. The algorithm first creates a weighted graph

ST , where the nodes are species, and nodes a and b are connected if a and b are in a proper

cluster (i.e. any cluster other than root) in at least one of the input trees. The weight of

edge between a and b is the number of source trees in which a and b are in a proper cluster.

Then, if ST is disconnected, we recursively call MinCut(T |Si) for each component Si,

where T |Si is the set of input trees with any species not in Si pruned. If ST is connected,
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Figure 2.4: MinCut algorithm. Given rooted trees T1 and T2, we construct weighted graph
ST . Since it is connected, we construct S ′T by removing all edges of size 2. All three
edges in S ′T belong to some minimum cut set of S ′T . By deleting the corresponding edges
from ST , we get four components {e}, {d}, {c}, {a, b}. Calling MinCut(T ) on each
component and connecting the roots to a new root results in the MinCut supertree of T1
and T2 on the right.

it will be disconnected, and then MinCut(T |Si) will be called for each component Si. ST

is disconnected in three steps: First, we contract all the edges in ST whose weight is n to

create S ′T . This guarantees to preserve all the clades appear in all source trees. Then, we

find the set of all edges belong to some minimum cut set of S ′T , E ′ (The minimal cut-set of

a weighted graph is defined as a set of edges whose removal makes the graph disconnected,

and the sum of the weights of these edges is minimized). Finally, all the corresponding

edges to E ′ in ST are deleted. in the last step of the algorithm, the supertree is constructed

by connecting the the roots of each rooted tree obtained by calling MinCut(T |Si). The

algorithm is depicted in Figure 2.4.

The most expensive part of MinCut algorithm is finding minimum cut sets of S ′T which

can be done in polynomial time [19]. Although graph based algorithms have the advantage

of having polynomial running time, Brinkmeyer et al. in [20] showed the superiority of

MR methods over graph based methods in terms of similarity to source trees (and the
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model tree in case of simulated data). However, they also showed that MinCut, MinFlip,

and MRP produced more accurate supertrees in compare to other four supertree algorithms

they considered, Build-with-distances, PhySIC, PhySIC IST, and super distance matrix.

2.3 Distance Based Supertrees

In the past few years, several topological distance based supertree algorithms have

been proposed. In this family, Robinson Foulds Supertree (RFS) [4] and Supertrees Based

on the Subtree Prune-and-Regraft Distance (SPR supertree) [21] have introduced novel

approaches for supertree inference. What these methods have in common is to define an

optimization problem based on some tree distance measure, and then to aim to minimize

the total distance between the supertree and source trees. Further, both of them propose

hill climbing based algorithms.

The RFS algorithm tries to minimize the RF distance between a binary supertree and

the rooted source trees. The RF distance captures the number of bipartitions in one tree

that do not exist in another. The RF distance metric between two rooted trees is defined

to be a normalized count of the symmetric difference between the set of clusters of the

two trees (which is equivalent to its definition for unrooted trees). This problem is NP

hard [3]. Bansal et al. in [4] introduced fast hill climbing heuristics for RF supertree

problem. As mentioned before, the size of SPR and TBR neighborhoods are O(n2) and

O(n3) respectively, where n is the number of taxa. Further, calculating RF distance is

possible in O(n), for example [22]. Thus, the naive algorithms for SPR and TBR local

search problems require O(kn3) and O(kn4) time respectively, where k is the number of

source trees.

The main contribution of Bansal et al. is to present fast algorithms to solve local search

problems for both SPR and TBR in O(kn2), where n is the number of taxa in supertree,

which yielded speed-ups of O(n) and O(n2) over existing solutions for these problems,
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respectively. First, they proved that given a node v to prune in the tree, the answer to

TBR local search can be obtained by optimizing the rooting for the pruned subtree, and

optimizing the regraft location separately. And then, they presented O(kn) algorithms

to solve both problems, i.e. given the node to be pruned, finding the best rooting of the

subtree, and the best place to regraft it such that RF distance to source trees is minimized.

This immediately implies an O(kn2) solution for TBR local search.

Sine SPR is a special case of TBR, the algorithm is applicable to SPR search as well.

They also used a ratchet search heuristic based on parsimony ratchet [5] to prevent the

potential problem of getting caught in local optima. Further, they generated initial su-

pertree by greedy stepwise addition procedure. All these attempts resulted in one of the

best existing supertree algorithms. They compared RF supertree against MRP and Triplet

supertree[23]. Their empirical results on biological datasets show that RF supertree was

able to obtain supertrees with lowest RF distances and competitive parsimony scores.

On the other hand, the SPR distance, dSPR, between two phylogenetic trees is defined

as the minimum number of SPR operations required to reconcile two trees. The SPR

supertree attempts to minimize the total SPR distance between a binary rooted supertree

and rooted source trees in the hope of finding better quality supertrees over RF supertree

in presence of Lateral Gene Transfer (LGT). The intuition behind this is that presence

of substantial LGT can drastically increase RF distance, however, a single SPR operation

can accommodate such long-distance transfer. Computing the SPR distance between two

phylogenetic trees is NP-hard [24, 25], and thus the optimization problem of SPR supertree

is NP-hard as well. However, Whidden et al. in [21] presented practical algorithm to

compute SPR distance by taking advantage of two recent advances.

First, Whidden et al. in [26] developed fast FPT algorithms for computing Maximum

Agreement Forest (MAF) of two trees, and it has been shown that the number of trees in

MAF is equivalent to rooted SPR distance [24]. Roughly speaking, an Agreement Forest
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Figure 2.5: F is called a forest for T if (1) each component of F is a refinement of T
restricted to the taxon set of that component (A tree T ′ is a refinement of a tree T if T ′ can
be obtained from T by contracting edges), (2) The subtrees obtaining from restriction of
T to each component of F are edge disjoint, and(3) the components of F include all taxa
in T . The Agreement Forest of two rooted phylogenetic trees is a forest of both.

(AF) is a set of subtrees obtained by cutting edges in a pair of trees until no topological

disagreement remains. Figure 2.5 depicts agreement forest of two trees. The MAF of two

rooted phylogenies is an agreement forest of them with minimum number of components.

The second advance used in SPR supertree is the cluster reduction technique introduced

by Linz and Semple [27] for calculating rooted SPR distance. This technique, which uses

MAF to calculate SPR distance, allows to divide the source trees into smaller sub-problems

that can be solved iteratively.

The SPR supertree algorithm by Whidden et al. [21] is essentially a hill climbing al-

gorithm that uses SPR as edit operation in each iteration to produce the neighborhood of

the current solution. The initial supertree is generated by greedy stepwise addition pro-

cedure. First, the four most frequent taxa are picked and the the topology with minimum

SPR distance to source trees is found. Then the next most frequent taxon is added in the

location that minimizes the SPR distance. This continues until all taxa are included. Then

for a pre-specified number of iterations, the algorithm produces the SPR neighborhood

and picks the the neighbor with lowest SPR distance. To avoid the high cost of exhaustive

search in each iteration, they used a bipartition constrain to limit the size of SPR neigh-
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borhood. In each iteration, they find all fixed bipartitions of the current supertree, and all

SPR neighbors that violate any of these bipartitions are disallowed. A bipartition of the

supertree is called fixed if it is supported by at least half of the source trees containing two

or more taxa from each of the two sets induced by the bipartition. They compared SPR

supertree against RF supertree and MRP. Their results show that, on simulated data, SPR

supertree outperformed others for plausible range of LGT. However, the improvement of

SPR supertree was less pronounced on biological data set.
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3. EDGE RATCHET ROBINSON FOULDS SUPERTREE ALGORITHM

In this section, we first formally define RF supertree problem. Then, we explain how

to develop a hill-climbing heuristic algorithm for this problem. Next, we introduce Edge

Ratchet technique to handle local optimum problem in our hill-climbing algorithm. Fi-

nally, we incorporate all these building blocks together to design our Edge Ratchet Robin-

son Foulds (ER-RFS) Supertree algorithm.

3.1 Robinson Foulds Distance

Each internal edge (i.e. an edge whose endpoints are not a leaf) of a phylogenetic tree

corresponds to a bipartition which refers to partitioning the taxa of the tree into two sets

of size greater than 2. The set of bipartitions of a tree includes all possible bipartitions on

that tree. The unrooted RF distance between two unrooted phylogenies is defined as the

number of unique bipartitions in each tree. Note that RF distance is only defined between

two trees with the same set of taxa.

On the other hand, rooted RF distance is defined in a similar way for rooted trees. The

RF distance metric between two rooted trees is defined to be a normalized count of the
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Figure 3.1: Rooted RF distance. T2 and T3 represent two possible rooting of the same
unrooted tree T1. The set of non-trivial clusters of T2 is {bcd, cd}, and the set of non-
trivial clusters of T3 is {dab, ab}. Thus the rooted RF distance between T2 and T3 is 2.
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symmetric difference between the set of clusters of the two trees. All descendants of a

node in the tree corresponds to a cluster. In this definition, the clades corresponding to the

root and the leaves are trivial because the exist in both trees. therefore, they are ignored

when calculating the RF distance. Hence, rooted RF distance between T1 and T2 with

same set of taxa can be formally defined as follow, where C(T1) and C(T2) are the set of

non-trivial clusters of T1 and T2, respectively.

dRF (T1, T2) = |C(T1)−C(T2)|+|C(T2)−C(T1)|
2

Although rooted and unrooted RF distance are closely related, they could be a little

different. For example, Figure 3.1 demonstrates rooted RF distance. Note that the unrooted

RF distance between T2 and T3 as unrooted trees is 0 since they have only one (non-trivial)

bipartition {ab | cd}. However, their rooted RF distance is 2. In the remainder of this work,

we refer to rooted RF distance as RF distance for simplicity.

3.2 Robinson Foulds Supertree Problem

Given the formal definition of the RF distance, now we are ready to formally define

RF supertree problem as below.

Input: A set of rooted phylogenetic source trees with partially overlapping taxa.

Output: A rooted binary supertree on all the taxa with minimum RF score, i.e.

cumulative rooted RF distance between the supertree and all source trees.

Note that RF distance is defined only between two phylogenies with the same set of

taxa. Thus, when calculating the RF distance between supertree and source tree, we should

first restrict the supertree to the source tree, and then calculate the RF distance. This

restriction is done by removing non-shared taxa from supertree and contracting degree 2

edges until the supertree and source tree have the same set of taxa.
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3.3 Designing SPR Hill-Climbing Algorithm

One of the most successful heuristic methods for supertree problems is to search the

space by branch swapping. Although this hill climbing approach is not guaranteed to find

the optimal solution, its effectiveness has been proven in many cases (For example [4] and

[21]). In the context of supertree problem, no matter what the optimization problem is, the

algorithms use this heuristic usually share three main steps.

First, we need a starting initial supertree. This tree can be provided by using one of

the existing supertree algorithms. Another option is to construct a greedy stepwise taxon

addition tree. In this approach, we randomly pick three taxa, and exhaustively find the

topology with minimum distance to source trees. Then, other taxa are randomly added to

the current tree one after another as follow. We exhaustively find the best place for the

current taxon to be added to the tree that minimizes the total distance to the source trees.

This approach, however, can be quite expensive.

Second, we need a tree rearrangement operation to generate the neighborhood. The

neighborhood of a supertree can be obtain by applying all possible such rearrangement

operations on the current supertree. The trees in the neighborhood have a topology that

is a little different than that of the current supertree. There are three widely used tree

rearrangement operations: Nearest Neighbour Interchange (NNI), Subtree Pruning and

Regrafting (SPR), and Tree Bisection and Reconstruction (TBR). For unrootd trees, NNI

consists of swapping two of the subtrees on the opposite ends of an internal branch. Two

rearrangements are possible for each internal edge, and thus NNI results in a neighborhood

of size 2(n−3), where n is the number of taxa. SPR rearrangement consists of identifying

and removing a subtree, and reattaching it to some branch of the remaining tree. SPR

results in a O(n2) neighborhood. And finally, in TBR, we first divide the tree into two

parts, then we reconnect them by each possible pair of branches. Thus, TBR results in
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Figure 3.2: rSPR operation.

O(n3) neighborhood. It is not that difficult to see that NNI is a special case of SPR, and

SPR is a special case of TBR.

These rearrangements have been defined for both rooted and unrooted trees. In this

work, we will use Rooted Subtree Pruning and Regrafting (rSPR) operation as the tree

rearrangement operation. In rSPR operation, we first choose a non-root node v of the

rooted tree, T . Then, the subtree rooted at v is pruned from the tree by removing the edge

between v and its parent. After suppressing the degree-two node, the pruned subtree is

regrafted to an internal edge of the remaining tree. This operation is depicted in Figure

3.2. In the remainder of this work, we refer to the rSPR as SPR for simplicity.

Finally, we need fast algorithms to find the best supertree in the neighborhood, i.e. the
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neighbor with minimum RF score. This problem is usually called local search problem.

We will use RFS algorithm [4] to solve our local search problem. Section 3.4 is dedicated

to describe this algorithm in details.

To sum up, we will use existing supertree algorithms to generate initial supertree. Fur-

ther, we will use rSPR tree rearrangement operation to generate the neighborhood of the

current tree in search. Then, we use RFS algorithm to solve the local search problem.

Lastly, the current supertree is replaced by its best neighbor, i.e. a neighbor with lowest

RF score to the source trees, and we go back to the second step, and repeat. One simple

common stopping criteria for hill-climbing algorithms is to stop when reaching a local

optimum. However, we will use Edge Ratchet technique, as it will be explained later, as

stopping criteria, instead.

3.4 Solving Local Search Problem by RFS Algorithm

In order to implement ER-RFS algorithm, we need a fast local search algorithm to be

able to find the best supertree (with minimum RF score) in the SPR neighborhood. For-

tunately, such algorithm has already been introduced in [4]. However, the implementation

of the algorithm is not available. Hence, we need to implement this algorithm. For this

reason, before explaining the ER-RFS algorithm in more details, we are going to give a

detailed explanation of the RFS algorithm. In the local search problem, we are given a

supertree, and the goal is to find its best SPR neighbors which has the lowest RF score

(cumulative RF distance to the source trees). The naive algorithm for SPR local search

problem require O(kn3) time, where k is the number of source trees, and n is the num-

ber of taxa. This is because there are O(n2) SPR neighbors, and calculating RF distance

between two trees takes O(n) time. The RFS algorithm provides a O(kn2) algorithm for

SPR local search problem.

Technically, the core of RFS algorithm, is the algorithm that solves the restricted SPR

30



local search problem. In this problem, we are given a set of source trees and a supertree,

and also a specific node in the supertree, v, to be pruned. The goal is to find the best regraft

location for v such that the RF score is minimized. The naive solution for this problem

takes O(kn2). The RFS algorithm solves this problem in O(kn). This immediately leads

to the O(kn2) above mentioned algorithm for SPR local search problem.

Note that, in this work, we use RFS algorithm to refer to two algorithms: 1- the overall

RFS algorithm as to solve RF supertree problem [4], and 2- the algorithm used in RFS

algorithm to solve the restricted RF local search problem. However, from the context, it

will be clear which one we are referring to.

The idea behind RFS algorithm is to somehow find the best regraft place for v without

actually calculating RF distance for all possible regraft places. For simplicity, assume we

have only one source tree S and a given supertree T , and that both trees have the same

set of taxa. Note that if T has more taxa than S, then we can restrict it to the taxa set of

S in O(n) time. Further, it is trivial to extend the algorithm to the case where we have

more than one source tree. Now, suppose we are given a node v in T to be pruned, and

an internal node in S, u. The idea is that, for each node u, we can determine for which

regraft places the clade u will or will not exist in the resulting SPR neighbor. We can

do this efficiently,and then we can use this information from all such nodes u to find the

best regraft place. For example, suppose node u is clade {f, g} in tree S in Figure 3.3.

Since this u exists in v (as well as T ), no matter where we regraft v, u will exist in the

resulting neighbor, too. Thus, node u does not play a role in the change in RF score for

this supertree when v is pruned.

In RFS algorithm, we first change T into a new tree R which has exactly same SPR

neighborhood as T when v is pruned. But, using R in the algorithm makes it much easier

to implement. For example, in Figure 3.3, tree R is obtained from T by pruning v and

regrafting it back to the root of T . Note that the node Q represents the clade consisting
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Figure 3.3: An instance of the input for RFS algorithm: S and T , and v ∈ T to be pruned.
Tree R is obtained from T by pruning v and regrafting it back to the root of T . The node
Q represents the clade consisting of all possible regraft places for v.

of all possible regraft places for v, and hence, for given v, T and R have the same SPR

neighborhoods.

In order to determine if a clade u in source tree exists in supertree, all we need to do

is to obtain its Least Common Ancestor (LCA), i.e. the most recent common ancestor of

the taxa in cluster u in T , called a. Then, clade u exists in T if and only if a and u has

the same number of taxa in their clades. Both of these two can be done in O(n) [4] [28],

where n is the total number of taxa.

There are actually only four cases in RFS algorithm to consider for a given v and

arbitrary u. We consider tree R instead of T in the RFS algorithm. Suppose the LCA of

u in tree R is a. For example, in Figure 3.4, the LCA of u1 is a1, and since both have 2

taxa in their clades, we know clade u1 exists in R. On the other hand, the LCA of u2 is

a2. Since the number of taxa differ in u2 and a2, we know u2 does not exist in R. Before

presenting those four cases, we first need to introduce a couple of notations (the same way

the are defined in [4]): 1- L(T ) is the leaf set of tree T . 2- Tv is the subtree of T rooted

at v, for some v ∈ L(T ). 3- the partial order ≤T is defined according to the ancestor-

descendant relationship. For nodes x and y in T , we say x ≤T y if y is a node on the path

between x and root of T . 4- fT (u) for node u ∈ S is a boolean function that says whether
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Figure 3.4: For each of the non-trivial clades ui in S, where 1≤i ≤5, the node ai represents
its LCA in R.

clade u exists in T , i.e. fT (u) = 1 means u exists in T , and fT (u) = 0 means u does not

exist in T .

Lets assume tree T ′ is the resulting SPR neighbor when v is pruned from T . Also, lets

denote the regraft place by x, i.e. x ∈ Q. It can easily be proven [4] that there are only

four cases given a v to be pruned, and an arbitrary u ∈ S.

(i) if a ∈ Rv then fT ′(u) = fR(u) for any x ∈ Q. For example, node u5 in Figure 3.4.

(ii) if a ∈ Q and fR(u) = 1, then

• fT ′(u) = 0, for x ≤R a, and

• fT ′(u) = 1, otherwise

For example, node u1 in Figure 3.4.

(iii) if a ∈ Q and fR(u) = 0, then fT ′(u) = 0 for any x ∈ Q. For example, node u2 in

Figure 3.4.

(iv) if a is root of R, we first find tree S ′ which is obtained from S by suppressing all

nodes m whose LCA is in Rv. Figure 3.5 illustrates how S ′ is constructed from S.

Then we find LCA of u in S ′ in R, and we call it b.
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Figure 3.5: Tree S ′ is obtained from S by suppressing all nodes m whose LCA is in Rv,
i.e. clades {f, g} and {e}. Clades u3 and u4 are actually clade {c} in S ′. Hence, their
LCA is clade {c} in R which are denoted by b3 and b4, respectively.

• fT ′(u) = 1 if and only if x ≤R b and | L(Rb) | + | L(Rv) |=| L(Su) |. For

example, node u3 and u4 in Figure 3.4. Note, however, the second condition is

true only for u3, and fT ′(u3) = 1 if v is regrafted back at c.

Now, we are ready to describe RFS algorithm. For a given node v to be pruned in T ,

for any x ∈ Q, let A(x) =| {u ∈ S : fR(u) = 0, but fT ′(u) = 1} |, and B(x) =| {u ∈

S : fR(u) = 1, but fT ′(u) = 0} |, where T ′ is the result of the SPR operation when v

is pruned and regrafted on top of x. By definition, the best x (with lowest RF score) is

the a node x for which | A(x) | − | B(x) | is maximized. The RFS algorithm efficiently

calculates A(x) and B(x) at each node x as follow.

In a preprocessing step, we first construct R from T , and we compute the LCA of all

(non-trivial) clades u ∈ S in R. We also compute the size of leaf set for all nodes in both

S and R. Further, we initialize two counters α(x) and β(x) at each node x ∈ Q to 0. This

takes O(n). At the end of the algorithm, the values of α(x) and β(x) will be the values of

A(x) and B(x), for each node x ∈ Q.

The algorithm then traverses S and considers each non-trivial node u in S. There are

three cases:

1. If u satisfies the precondition of (i) or (iii), then fT ′(u) = fR(u) for any x ∈ Q, and
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we do nothing.

2. If u satisfies the precondition of (ii), then we increment the values of β(x) for each

node x ∈ Ta\{a}.

3. If u satisfies the precondition of (iv), and if | L(Rb) | + | L(Rv) |=| L(Su) |, then

we increment the values of α(x) at each node x ∈ Tb.

Note that node u in S is a non-trivial clade, i.e. an internal node (except root). How-

ever, the node v can be any internal node or a leaf. It is not hard to see that all these can

be done in O(n) [4]. Applying this algorithm for all possible v’s in T results in O(n2)

algorithm for SPR local search problem.

Note that RFS algorithm can easily be extended to the case where the edges in the

source trees are weighted. First, note that an edge in some rooted source tree corresponds

to the cluster of the child endpoint of that edge. Further, in RFS algorithm, we visit each

internal node in all source trees, and we update α(x) and β(x) based on the position of its

LCA and the conditions explained above. Hence, if an edge in some source has a weight of

w, this can be interpreted as if the corresponding cluster appears w times. In other words,

it is the same as assuming that the cluster is visited w times. Therefore, all we need to do

is to increment values of α(x) and β(x) by w instead of 1.

3.5 Edge Ratchet Technique to Deal With Local Optimum Problem

Given RFS algorithm to solve restricted SPR local search problem as described above,

we can easily solve the SPR local search problem in O(n2) by applying the algorithm

for all possible nodes to be pruned in the tree. Therefore, we can easily develop a hill-

climbing algorithm using this local search algorithm as explained in section 3.3. Algorithm

1 outlines this hill-climbing heuristic algorithm.

Using Algorithm 1 we can improve the accuracy of the initial supertree in terms of RF
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Algorithm 1: SPR HILL-CLIMBING Algorithm
Input: A set Σ of rooted phylogenetic trees with partially overlapping taxa,
and a rooted binary initial supertree T
Output: A supertree of the input trees which is a local optimum for RF supertree

problem

1 while (true) do
2 Find the best SPR neighbor with lowest RF score, T ′, by applying RFS

algorithm for all possible nodes v ∈ T to be pruned.
3 if (T ′’s RF score is lower than that of T ) then
4 replace T with T ′

5 else
6 break

7 return T

score if it is not already a local optimum. However, like other hill-climbing algorithms,

this approach may get caught in a local optimum with relatively high RF score while there

are better supertrees around in the solution space. Edge Ratchet is a technique that will be

used to deal with this problem.

How can we possibly make a perturbation at the local optimum so that the hill-climbing

algorithm can escape from the current hill and start the search at another hill with a po-

tentially better local optimum. There are three main directions by which to achieve this

goal.

First, we can try to somehow change the topology of the supertree at the local optimum

in the hope that this change drifts us to a better hill in the solution space. One simple way

to achieve this is to perform one or several random SPR moves on the supertree at local

optimum, and start over the search. We tested this idea. However, the results were not

promising. If we perform only one SPR move, then in the first iteration of the next search,

we will get back to the same local optimum where we were previously, no surprise! If we

perform, say, three or more random SPR moves, then this usually causes a huge increase
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Figure 3.6: Three source trees with randomly re-weighted 50% of edges (clusters) to 0.

in the RF score so that the next hill-climbing search has to spend a lot of time to improve

the resulting tree. Surprisingly, we almost always ended up to the same local optimum

anyways.

Second, we can change the optimality criteria by which we choose a neighbor. For

example, we can use some other tree distance measures as optimality criteria. We at-

tempted this idea by using quartet distance as secondary optimality criteria. A quartet is

an unrooted tree with only four taxa. The set of quartets of a tree is defined as all such

quartets induced by considering each internal edge of the tree, and picking each possible

two taxa on each side. The quartet distance between two unrooted phylogenies is defined

as the number of unique quartets in each tree. We tested this idea by performing several

hill-climbing searches one after another altering the optimality criteria between RF dis-

tance and quartet distance. The final tree in each hill-climbing search was used as initial

supertree of the next hill-climbing search. However, this strategy was not promising either.

We usually ended up with supertrees with greater than or equal RF score than that of the

initial supertree. Changing the optimality criteria from RF distance to quartet distance and

vice versa does not seem to be effective at drifting the us to a better hill in the solution

space.

The third strategy is to somehow change the source trees! This is what edge ratchet

technique does. Note that the RF score depends on the bipartitions (or clusters) exist in

each source tree. Further, there might be conflicts among these bipartitions. i.e. achieving
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a RF score of 0 is usually impossible. The idea behind edge ratchet is to pick a random

subset, usually 30%, of the clusters in each source tree, and give them a different weight.

For example, if we give a weight of w to some cluster, this will be interpreted as having

that cluster w times, in the algorithm . Or giving a weight of 0 to a cluster, is equivalent

to removing that cluster. Figure 3.6 illustrates one possible way of re-weighting a potion

of clusters (or edges) in the source trees of Figure 3.7. Note that giving a new weight to a

cluster, in this context, is the same as giving that weight to the corresponding edge in the

tree.

Our results show that this simple idea can be effective in drifting the local optimum to

a better hill in the solution space. Note that, using this strategy, we are not going to end

up in a completely irrelevant supertree. Actually, the resulting supertree still minimizes

the RF distance, but to a subset of bipartitions instead of all bipartitions. Our experiments

show that the resulting tree is different enough to happen to be on another hill with better

RF score in most of the cases.

3.6 ER-RFS Algorithm

Now we have all the building blocks to design ER-RFS algorithm. To recapitulate,

the optimality criteria for ER-RFS algorithm is rooted RF distance. Further, we use

rooted SPR edit operation, rSPR, to produce the neighborhood in each iteration of the

hill-climbing search. Applying all such operations on a supertree with n leaves, will re-

sult in O(n2) SPR neighbors. We use RFS algorithm on each node of the supertree to be

pruned to find the best SPR neighbor (with minimum RF score) among all its O(n2) SPR

neighbors. This results in a hill-climbing algorithm described in Algorithm 1.

Further, in order to deal with local optimum problem, we use edge ratchet technique to

re-weight edges in each source tree. Using this technique along with Algorithm 1 results

in ER-RFS algorithm depicted in Algorithm 2.
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Algorithm 2: ER-RFS Algorithm
Input: A set Σ of rooted phylogenetic trees with partially overlapping taxa,
and a rooted binary initial supertree T
Output: A supertree of the input trees which is a local optimum for RF supertree

problem

1 best_score = RF score of T
2 best_supertree = T

3 for i← 1 to 50 do
4 T = Algorithm 1 (Σ, T )

5 if (T ’s RF score ≤ best_score) then
6 best_score = T ’s RF score
7 best_supertree = T

8 if (i ≤ 50 ) then
9 Re-weight 30% of internal clusters of each source tree to 0 to obtain Σ′

10 T = Algorithm 1 (Σ′, T )

11 Reset all edge-weights to their original value, 1

12 return best_supertree

To illustrate these algorithms, suppose we are given a set Σ of three input trees as in

Figure 3.7, and an initial supertree T as Figure 3.8. The set of SPR neighbors of T consists

of all possible SPR moves on this supertree. For example, suppose we want to prune the

clade (f, g), and produce all possible SPR neighbors corresponding to regrafting it back

to the tree, Figure 3.9b. There are seven such SPR neighbors. Figure 3.9 illustrates three

of those neighbors when (f, g) is regrafted to the edge above clades (b, c), (d, e), or a,

respectively.

For each node v in the supertree to be pruned, we apply RFS algorithm to find its

best regraft place. Among all such best SPR moves, we pick the one with the lowest RF

score. Then, if this neighbor has a better RF score than that of the the current supertree,

we replace the current supertree with this new neighbor. We continue this until we reach
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Figure 3.8: A supertree, T , on the taxa set S = {a, b, c, d, e, f, g}.

a local optimum. Then we replace T with the result of this hill-climbing search. This is

what the line 4 of the Algorithm 1 does.

after line 4 of the Algorithm 1, the current tree, T , is a local optimum. At this point, we

use ER technique, and we randomly reweight, say, 30% of internal edges in each source

tree to a new weight of 0. As we mentioned earlier, Figure 3.6 illustrates one of possible

ways to reweight the edges in source trees from Figure 3.7. This is what line 9 of the

Algorithm 2 does.

Now we perform another hill-climbing search starting from current (local optimum)

supertree, and weighted source trees, line 10 of the Algorithm 2. As it was explained

earlier, it is fairly straightforward to extend RFS algorithm for the weighted source trees.

Remember in RFS algorithm, we visit each internal node in each source tree, and based on

its LCA position in supertree we modify α(x) and β(x). Now suppose some cluster has

a weight of 0. In this case, the RFS algorithm simply ignores this node. The rest of the
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Figure 3.9: SPR neighborhood. There are 7 edges on which we can regraft (f, g) back
to the tree, excluding the one it was attached to previously. Here we have three of those
neighbors which are the result of regrafting (f, g) to the edge above the clades {b, c},
{d, e}, or {a}, respectively.

algorithm remains the same. To finish this ratchet iteration, we reset the weight to their

original value 1, line 11 of the Algorithm 2.

These two consecutive hill-climbing searches are considered as one ratchet iteration.

The supertree at the end of one ratchet iteration is used as the initial supertree of the next

ratchet iteration. We perform 50 of these ratchet iterations, except in the last iteration, we

only perform the first hill-climbing search since the solution of the second search is not a

valid output. Lines 5− 7 of the Algorithm 2 just keep track of the best seen supertree. The

best seen supertree is returned at the end of the algorithm.

The time complexity of the ER-RFS algorithm depends on four parameters: the num-

ber of taxa on the supertree n, the number of source trees k, the number of ratchet iterations

performed (50 here), and the number of iterations required to reach a local optimum at each

call of the Algorithm 1, m. We have no control over the latter, and it mainly depends on
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the quality of the initial supertree used in that search. Lets assume M to be the maximum

number of iterations required to reach a local optimum given any initial supertree. Note

that each call to the Algorithm 1 requires O(Mkn2) time, where n is the number of taxa

on the supertree, and k is the number of source trees. Therefore, the time complexity of

the ER-RFS algorithm is O(100Mkn2), or O(Mkn2).

3.7 Experimental Results

In this section, we present the experimental results of the ER-RFS algorithm comparing

it to the well-known existing supertree algorithms. ER-RFS algorithm is implemented in

C++. Note, all experimental tests were executed on the Texas A&M Brazos supercomputer

using 2.5Mhz, 1 core nodes each with 100-300 MB of memory based on the size of data

set. In what follows, we first explain our experimental methodology, and then we present

the results.

3.7.1 Datasets

In our experiments, we used four empirical datasets including Sea birds (121 taxa, 7

source trees) [29], Placental mammals (PM, 116 taxa, 726 source trees) [30], marsupials

(267 taxa, 158 source trees) [31], and Temperate herbaceous papilionoid legumes (THPL,

558 taxa, 19 source trees) [32]. Most of these datasets where previously used to evaluate

supertree methods; all datasets have rooted source trees.

3.7.2 Measurements and Other Supertree Algorithms

As it was mentioned above, we are going to use empirical data for experimental anal-

ysis. Since the true species tree is not available for empirical data, we have to evaluate

the accuracy of the supertree based on its similarity to the source trees. This similarity

is usually quantified by a tree distance measure. Thus, we can evaluate the accuracy of

our supertree algorithm by comparing its similarity to source trees against other supertree
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algorithms.

Among different phylogenetic tree distance measures, parsimony score and RF dis-

tance are the two most widely used ons. We use these two measures along with running

time to compare different supertree algorithms. We will compare our algorithm with three

well-known, successful supertree algorithms in the literature: MRP, SuperFine-MRP (Su-

perFine used with MRP in the resolution step), and RFS. MRP is the most widely used

supertree algorithm in the literature. SuperFine algorithm is an improvement to MRP al-

gorithm, and has been shown to be able to produce high quality supertrees [11]. RFS algo-

rithm is the best existing algorithm for RF supertree problem. We used the implementation

of these algorithms from http://phylosolutions.com/paup-test/ (PAUP*),

https://github.com/dtneves/SuperFine/, and http://genome.cs.iastate.

edu/CBL/RFsupertrees/ for MRP, SuperFine-MRP, and RFS, respectively. Further,

for parsimony ratchet, we used the code provided in the appendix of [33].

3.7.3 Calculating RF Score

As it was mentioned before, RF distance is defined only for trees with the same set

of taxa. Thus, when calculating RF distance between the supertree and any of the source

trees, we first restrict the supertree to the taxa set of the source tree against which it is com-

pared. This is done by removing non-shared taxa from supertree and contracting degree 2

edges until the supertree and source tree have the same set of taxa, Figure 3.10.

3.7.4 Calculating Parsimony Score

As it was mentioned in Section 2.1, the parsimony score for a tree refers to the sum of

the smallest number of substitutions needed for each site (column) of the taxa-character

matrix. Further, we illustrated in Figure 2.1 how to obtain the matrix representation of a

set of given source trees. Given a supertree and the matrix representation of the source

trees, we can calculate parsimony score using, for example, Fitch’s algorithm. The Fitch’s

43



ed
ac

gf
b

(a) Supertree T

d
cb

a

(b) Source tree S

.d
ac

..
b

(c) T after removing non-shared taxa

dacb
(d) Restricted T

Figure 3.10: In order to calculate RF score between supertree T and source tree S, we first
need to remove non-shared taxa from T (c). Then, we suppress all non-labeled leaves and
degree 2 internal edges which results in the tree in (d). The RF distance between T and S
is defined as the RF distance between this restricted T and S.

algorithm actually solves small parsimony problem. In this problem, we are given a tree

topology and a taxa-character matrix, and th goal is to find the character states in the inter-

nal nodes which results in minimum parsimony score ( i.e. minimum number of character

state changes along the edges of the tree). Unlike large parsimony problem, which is the

goal of MRP supertree algorithm and an NP-hard problem, the small parsimony problem

can be solved efficiently in polynomial time.

To illustrate Fitch’s algorithm, suppose we are given the two source trees as in Figure

3.11. We can make the matrix representation of the given trees as it is shown in Figure

3.11a. Now suppose we have obtained a supertree of these source trees using some su-

pertree algorithm, Figure 3.11b. The parsimony score of the tree is defined as the sum of

the parsimony scores of all the columns of the matrix. For example, in Figure 3.11, we

have shown calculations for column 2 of the matrix, corresponding to clade u2. We first
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taxa u1 u2 u3 u4
a 1 1 1 1
b 1 1 1 1
c 1 0 ? ?
d ? ? 1 0

(a) Two source trees an taxa
set {a, b, c, d}, and their matrix
representation.

?, 0, 1

1 1 0 ?
dcba

1 ?, 0

(b) Fitch’s algorithm,
phase 1 for column
u2.

1

1 1 0 1
dcba

1 0, 1

(c) Resolving ?’s to
1 to minimize parsi-
mony score (only 1
union operation).

1

1 1 0 1
dcba

1 1

(d) Fitch’s algorithm,
phase 2. Only one
change is required
from c to its parent.

Figure 3.11: Parsimony score calculation. Given matrix representation of part a and the
supertree in part b, we calculate the parsimony score of the supertree for each site (column)
of the matrix (such as u2). In above example, the parsimony score corresponding to the
column 2 of the matrix is 1. The final parsimony score of the supertre is defined as the
sum of the parsimony scores over all columns.

write down each character on its corresponding leaf on the tree. The Fitch’s algorithm

has two phases. In the first phase of the algorithm, we calculate all possible character

states, Ri, for all internal nodes using a post-order traversal of the tree using the following

rule, Figure 3.11b and 3.11c. The number of union operations is actually the parsimony

score (hence we are done here for the purpose of calculating parsimony score. But we will

complete the algorithm to obtain labeling of internal nodes as well).
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Ri =


Rj ∩Rk, if Rj ∩Rk 6= ∅

Rj ∪Rk, otherwise

In the second phase, we perform a pre-order traversal of the tree using below rule to

determine character states of the internal nodes that is most parsimonious. Note that ?’s

can be either treated as a valid character state, or they can be resolved to the whichever

character state that minimizes parsimony score. In Figure 3.11d, we resolved ?’s to 1’s to

minimize parsimony score. Let si denotes the state of the internal node i with parent j.

si =


sj, if sj ∈ Ri

any ∈ Ri, otherwise

We used r8s software [34]) to obtain Baum-Ragan matrix representation of the source

trees. Further, we obtained the parsimony score of each supertree using this taxa-character

matrix with PAUP [9].

3.7.5 ER Configuration

The ER algorithm can be configured based on the portion of internal edges to be re-

weighted, and the new weight which is assigned to selected edges. We tested the algorithm

on four available biological datasets (explained below), using different configurations. We

tried 10%, 20%, 30%, 60%, and 80% of the edges to be re-weighted with a new weight of

0, 2, 5, 10, and 50 (a total of 25 configurations on each data set).

Among these configurations, it was observed that re-weighting 30% of the edges to 0

as new weight is almost always more effective in obtaining a better supertree, and yields

a lower RF score. Thus, in the results reported below, we stick to this configuration in all

experiments. Further we used 50 ratchet iterations in all experiments.
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3.7.6 Terminology

In order to present the results we need a consistent terminology. Note some algorithms,

by default, build a greedy stepwise addition taxa tree, and use it as initial supertree. This is

usually done by randomly picking three taxa, and then finding the best triplet to optimize

the optimality criteria used, exhaustively. Then, another taxon is pick randomly, and is

added to the tree in a place where optimizes the optimality criteria used, exhaustively.

This process continues until all taxa are added to the (super)tree.

For simplicity, we refer to ER-RFS algorithm as ER algorithm. We use a simple rep-

resentation when referring to a specific algorithm: <initial supertree> + <algorithm>,

where initial supertree can be the output of another algorithm. For example, suppose we

run RFS algorithm on some dataset with its default stepwise taxon addition tree to obtain

a supertree, T . Then, RFS+ER refers to the the ER algorithm when T is used as initial

supertree for ER algorithm. When no initial tree is provided, we should use default TA

+ <algorithm> terminology. However, for simplicity, we omit the default TA part. For

example, RFS refers to the RFS algorithm when no initial tree is provided.

3.7.7 Results

To evaluate effectiveness of the ER algorithm, we compare it with three well-known

supertrees: MRP, SuperFine-MRP (SuperFine used with MRP in the resolution step), and

RFS. Our goal is to improve these supertrees. We use each of them as initial supertree

for our algorithms and test if they can improve RF score of the initial supertrees. Espe-

cially, we are interested in improving RF score of RFS algorithm which is the best known

algorithm for RF supertree problem.

Because of the random steps involved in both RFS and ER algorithms, we had 10 runs

of each algorithm on each data set, and the supertree with best RF scores in each case are

reported below. Although in some cases, the best score only happened once, usually the
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(a) seabirds (b) PM (c) marsupials (d) THPL

Figure 3.12: RF score comparison of MRP, SuperFine-MRP, RFS, and three versions of
ER algorithm: MRP+ER, SuperFine-MRP+ER, and RFS+ER.

supertrees obtained in the ten runs have very close RF scores.

Note that RFS supertree is optimized for RF score, and is indeed a relatively good

local optimum already. Thus, if ER algorithm is able to obtain a lower RF score, this is

significant, and it could provide evidence on effectiveness of ER algorithm to deal with

local optimum problem.

Below we compare MRP, SuperFine-MRP, and RFS with three versions of ER algo-

rithm (MRP+ER, SuperFine-MRP+ER, and RFS+ER). First we compare the RF score

(cumulative RF distance to source trees), then we compare parsimony score, and at the

end, we compare the running times.

As we can observe in Figure 3.12, ER algorithm can effectively deal with local op-

timum problem, and improve RF score considerably. Specifically, ER algorithm can im-

prove RF score of RFS supertree (which already is a very good local minimum) on all

datasets which provides evidence on the success of ER algorithm to deal with local opti-

mum problem. However, note that because of the large scaling in the plots, this improve-

ment is not that clear. On seabirds dataset, RFS and RFS+ER both get a RF score of 61.

On PM dataset, RFS get score of 5696, and RFS+ER is able to get a score of 5690. Over-

all, FRS seems to do a good job to obtain a supertree with low RF score. Feeding this
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(a) seabirds (b) PM (c) marsupials (d) THPL

Figure 3.13: Parsimony score comparison of MRP, SuperFine-MRP, RFS, and three ver-
sions of ER algorithm: MRP+ER, SuperFine-MRP+ER, and RFS+ER.

supertree to ER algorithm can make it even better.

MRP+ER and SuperFine-MRP+ER both improve considerably the RF score of MRP

and SuperFine-MRP, respectively. Notably, on the two datasets with larger number of

trees, PM and marsupials, ER algorithm is able to obtain almost the same RF scores no

matter what initial supertree is. However, on the other two datasets (with small number

of source trees), initial supertree seems to have a huge effect on the accuracy of the final

supertree. This can be explained by the fact that having larger number of source trees,

usually provides more information. In other words, we expect to have an increase in the

number of shared clusters in the source trees as the number of source trees increase. This

can help the algorithm to better handle conflicts among source trees.

MRP+ER has relatively higher RF score on seabirds and THPL in compare to other

versions of ER algorithm. This is probably because of the small number of source trees in

these data sets, and that the MRP has higher RF score on these datasets.

Figure 3.13 compares the parsimony score of the algorithms. As we mentioned earlier,

both MRP and SuperFine-MRP minimize MRP score, and as we expect, they they usually

have better parsimony score when compared to other supertrees. SuperFine-MRP obtains

the best parsimony score on all datasets.
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(a) seabirds (b) PM (c) marsupials (d) THPL

Figure 3.14: Running time comparison of MRP, SuperFine-MRP, RFS, and three versions
of ER algorithm: MRP+ER, SuperFine-MRP+ER, and RFS+ER.

RFS and RFS+ER usually have higher parsimony score. The difference between their

parsimony scores and that of other algorithms increases as the size of dataset increases

(with regard to the number of taxa). This suggests that the initial supertree can have a

considerable impact on the final solution of the ER algorithm. In other words, we ex-

pect to find a final supertree with better parsimony score if the initial supertree is already

optimized for parsimony score.

Although one might expect that RF score and parsimony score have correlations, we

can observe that this is not the case on all these four biological datasets. Specially on

the two datasets with higher number of source trees (PM and marsupials), MRP+ER has

much higher parsimony score than MRP, while it has much lower RF score in compare

to MRP. Another interesting observation here is that SuperFine-MRP+ER has relatively

good parsimony score. Namely, it has better parsimony score than MRP on three datasets.

Remember from Figure 3.12 that it always has much better RF score than both MRP and

SuperFine-MRP. This is quite interesting because it shows that we can have supertrees

with relative low RF and parsimony scores simultaneously!

Figure 3.14 compares the running time of all these algorithms. Clearly, ER algorithm

is by far the most expensive (running time) algorithm. There are several reasons why
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ER algorithm is more time consuming. First, because of the way ER algorithm works,

we have to perform many hill-climbing searches (100 in our case) each of which could

take several local search iterations which is quite expensive. Second, we used 50 ratchet

iterations. But after looking at the score changes over iterations, we noticed most of the

time the best supertree is obtained with less than 10 iterations. However, there were some

cases in which some improvements happened after 25 iterations. This means that we could

potentially obtain similar supertrees in about 80% less running time. Finally, one of the

most expensive and frequently used operations in the algorithm is finding LCA of a given

set of taxa on a tree. We used a very simple algorithm which is O(n), where n is the

number of taxa on the tree. However, there are more complicated O(n) algorithms (like

the one used in RFS) with much lower coefficients and constants which could improve

running time dramatically.

One might wonder if it is worthwhile to spend a lot of time to improve the accuracy

of the supertree slightly. First, note that in the case of supertree problem, the algorithm is

going to be used only once. Thus, as long as the algorithm can finish in a reasonable time, it

is perfectly fine. Further, even slight improvements of the accuracy of the supertree means

resolving more conflicts among source trees which in turn might be very valuable for

post analysis of the supertree by biologists. Note that we do not claim that ER algorithm

is applicable to very large datasets, but we rather state that as long as it can finish in a

reasonable time, it is a worthy algorithm.
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4. SIMULATED ANNEALING ALGORITHM

4.1 Motivation and Algorithm Description

The local optimum problem is a critical issue in most of hill-climbing algorithms.

Although ER algorithm is able to handle local optimum problem and improve RF score

upon RFS algorithm, we do not know if there are better local optimums in the solution

space. Simulated Annealing (SA) is known to be able to handle local optimum problem.

Further, because of the way it works, it could potentially alleviate the effect of the initial

supertree on the final supertree. Finally, since this algorithm does not require to search the

whole SPR neighborhood, it could be much cheaper in terms of running time, and hence

applicable to larger datasets.

Unlike greedy hill-climbing algorithms where we always pick a better neighbor in

local search, simulated annealing algorithm, allows worse neighbors to be picked as well.

Whether a worse neighbor is picked or not in SA algorithm, depends on three things: cost

of current solution, cost of new neighbor, and current temperature, t. The SA algorithm

introduces the notion of temperature which is used to define an acceptance probability

function which provides a smart way to accept (better and maybe worse) neighbors. The

higher the temperature, the higher the chance of a worse neighbor to be selected. The

initial temperature is usually high, and it decreases every time a new neighbor is generated

by a prespecified cooling rate.

In RF supertree problem, we are solving a minimization problem based on RF score.

Thus, the cost function for a solution can be defined as its RF score. Suppose the current

supertree Ti has RF score of si. Then, we generates a new random neighbor supertree Ti+1,

and calculate its RF score, si+1. The acceptance probability function for Ti+1 is defined as

below.
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P (Ti+1) =


1, if si+1 ≤ si

exp( si−si+1

t
), otherwise

(4.1)

Where t is the current temperature. As we can see, a neighbor with lower RF score

will always be picked since its acceptance probability is 1. But if the RF score of the new

neighbor is worse (higher), it may or may not be picked based on some probability. At

the beginning of the algorithm, the temperature t is relatively high, and this allows higher

probability for worse neighbors to be picked. As the algorithm continues, the temperature

decreases, and thus the probability of accepting a worse neighbor becomes very small.

The stopping criteria of the algorithm is determined by a prespecified absolute temper-

ature. Every time a new neighbor is generated, the current temperature t is decreased by

a fixed cooling rate η. The algorithm stops when the current temperature goes below the

absolute temperature. Algorithm 3 shows how SA algorithm works.

4.2 Generating a Random Neighbor

In line 6 of the Algorithm 3 we need to generate a random neighbor of T . There is a

very simple method to generate a new random neighbor in SA algorithm which we call

Random Prune, Random Regraft (RR). In Random Prune, Random Regraft (RR) method,

we first select a random node in the current supertree, v, to be pruned. Then all of its

valid regraft nodes are found. These nodes consist of all nodes in the tree except all

descendant of v, v’s parent, and v’s sibling. Finally, among these valid regraft nodes, we

pick one randomly, and the corresponding SPR operation is performed to generate the new

neighbor.

Although RR seems to be a good candidate to generate new neighbors for SA al-

gorithm, our initial experiments showed that using this approach might require a lot of

iterations until the algorithm converges. One reason for this behavior could be the fact that
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Algorithm 3: SIMULATED ANNEALING Algorithm
Input: A set of rooted phylogenetic trees with partially overlapping taxa Σ,
and initial supertree T
Output: A supertree of the input trees that is a local optimum for RF supertree

problem

1 t0: initial temperature
2 tabs: absolute temperature
3 η: cooling rate
4 T0: initial supertree with RF score of s0

5 while t > tabs do
6 generate a random neighbor of T0, T , and calculate its RF score s
7 if s ≤ s0 then
8 T0 = T
9 else

10 T0 = T with probability exp( s0−s
t

)

11 t = t(1− η)

12 return T

there are usually very small number of better neighbors (with lower RF score) in the SPR

neighborhood, specially when we are close to a local optimum. We will talk about this in

more details in the results section. Nevertheless, the need for a better approach to generate

a random new neighbor was unavoidable.

We needed some way to generate a neighbor which is random, but not as random as

RR. In other words, it should generate a random neighbor with better RF score than RR,

in average. Remember that RFS algorithm solves restricted RF local search problem. In

this problem, we are looking for the best regraft place of a given node to be pruned in

the supertree. This makes it a very suitable match for our purpose. We first choose a

random node in the current supertree to be pruned, then we use RFS algorithm to find its

best regraft place. Performing corresponding SPR operation will generate a new neighbor

which is both random, and has relatively lower RF score than that of RR! We call this
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method of generating neighbors Random Prune, Best Regraft (RB).

Note that RR is much faster than RB because in RB, we have to perform RFS algorithm

once. There is a trade off here. With RR, we are able to perform much more number

of iterations, but it might not result in good local optimums for RF supertree problem.

On the other hand, we might be able to obtain good quality local optimums with RB

with fewer number of iterations because it generates a better candidate at each iteration.

However, there is no way to draw concrete conclusions before performing comprehensive

experiments. We will compare these two approaches in the result section.

4.3 Annealing Schedule, the Challenging Part

In Simulated Annealing, the Annealing Schedule, or schedule for short, plays a key

role in the performance of the algorithm. There are three main adjustable parameters in

the algorithm:

• Initial Temperature: The temperature at the beginning of the algorithm.

• Cooling Rate: The speed by which the temperature decreases after each iteration 1.

• Absolute Temperature: The algorithm stops when the current temperature becomes

smaller than the absolute temperature.

Each of these parameters could potentially have a huge effect on the performance, but

in a different way. The higher the initial temperature, the higher the chance of accepting

worse neighbors at early iterations of the algorithm. For example, choosing a very high

initial temperature allows the algorithm to choose many neighbors with worse RF score at

1In the context of simulated annealing algorithm, an iteration simply refers to generating a new random
neighbor and deciding whether to take it. This should not be confused with an iteration in the context of a
hill climbing search algorithm where it refers to a complete neighborhood search and choosing the best one.
Further, in the context of ER algorithm, an iteration refers to two complete complete hill-climbing searches,
one with original weights, and one after re-weighting
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early iterations. However, it is not trivial whether this help the algorithm to obtain a better

final solution, or it will adversely affect the final solution.

On the other hand, absolute temperature controls the stopping criteria of the algorithm.

The smaller we make the absolute temperature, the larger the number of iterations will

be tried in the algorithm, and hence it is more likely to get a better RF score. However,

making absolute temperature too small may only make the algorithm run for a longer

time without any improvements. This is because at very low temperatures the algorithm

acts like a greedy algorithm. On the other hand, if the algorithm is given enough time, it

would eventually get into a local optimum. Therefore, like any other greedy algorithm, SA

algorithm will get stuck at that local optimum when the temperature is very small. Note,

however, the neighbors with same score might be selected depending on the definition of

acceptance probability. In any case, the only way to examine the effect of the absolute

temperature, like the other two parameters, is to perform experimental analysis.

Lastly, cooling rate controls how fast the temperature decreases. Since the probabil-

ity of accepting a worse (higher RF score) neighbor depends on the current temperature,

smaller values for cooling rate will give the algorithm more chances to pick worse neigh-

bors at early iterations. But again, without any experiments it is very difficult to predict

what values for cooling rate will yield better final supertrees.

4.4 Our Strategy to Choose Annealing Schedule

If we did not care about running time at all, then finding proper annealing schedule

would have been very simple: choose a sufficiently large value for initial temperature,

and a very small value for cooling rate, and absolute temperature. However, this is not

practical. The goal here is to find proper values for these three parameters of SA algorithm

which yield relatively lower RF score and running time simultaneously, in most of the

cases. However, this is not a trivial task.
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Finding a proper schedule is challenging in practice for a couple of reasons. First, even

with restricting the possible values for each parameter, trying out all possible schedules is

prohibitively long process. Second, although there are some schedules that outperform

some other schedules, there is usually no single schedule that "wins" all the cases. Finally,

there is usually a trade off between the RF score and running time, i.e. the longer the

running time, the higher the probability of the algorithm to reach a better local optimum.

In order to find a proper schedule, we started by finding proper values for initial tem-

perature. This is because, as formula 4.1 suggests, the probability of accepting worse

neighbors, depends on the temperature, and the difference between RF scores. We do not

have much control on the latter, but we can empirically find proper values for the former

which will result in the final better RF scores.

After trying several different schedules with a focus on the impact of the initial tem-

perature, we observed that, having a high initial temperature will almost always lead to

converging to a worse RF score than that of the initial supertree. This could be explained

by looking at the distribution of RF scores in the SPR neighborhoods. First of all, there

are usually less than 1% of the SPR neighbors that have better RF score specially when

we are close to a local optimum. This makes the chance of choosing a better neighbor at

random very low. Thus, this will let the algorithm choose many worse neighbors at the

beginning. Second, it seems that usually there is an upper bound on the variation of RF

scores in an SPR neighborhood, i.e. it is very unlikely that a supertree with very high

RF score, has a neighbor with much smaller RF score. In other words, with high initial

temperature, the algorithm will quickly move to an area of the solution space with high RF

scores, and usually it gets stuck there until the temperature cools down. At this point, the

algorithm behaves more greedily and only picks supertrees with lower RF scores. But it

seems we do not have much chance to find a good local optimum by random SPR moves

from a supertree with that high RF score.
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Figure 4.1: Acceptance Probability function for when Ti+1 has higher RF score than Ti,
i.e. si+1 > si.

Figure 4.1 shows how the acceptance probability changes as a function of temperature

when the new neighbor has a worse score, and the difference between current score and

new neighbor’s score, |si − si+1|, is 1, 2, 4, 8, 16, 32, or 64. Note there is nothing

special about these numbers, and we just chose them for the sake of illustration. We can

see that at a temperature as high as 100, the chance of accepting a worse neighbor with

an RF score which is 64 higher than the current RF score is about 50%, which is very

high. Only picking a few of such neighbors, will cause the algorithm quickly end up in a

supertree with much higher RF score. Given the huge size of the solution space, and the

fact that most of the SPR neighbors have worse RF scores when we are close to the local

optimum, we can expect that the algorithm is not that likely to be able to find a good local

optimum from a very "bad" solution. Thus we have to stick to low initial temperatures,

i.e. temperatures less than 3. With such initial temperatures we can set the cooling rate

and absolute temperatures to the values that lets the algorithm runs enough moves so that

it converges to a relatively good RF score as fast as possible.

In sum, here is our strategy to pick the schedule. We first tested several initial tempera-

tures with very small cooling rate and absolute temperature so that we have some estimate
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of the best RF score can be achieved given that initial temperature in each case. After

finding some relatively good candidate values for initial temperature, we tried several val-

ues for cooling rate and absolute temperature such that the final RF score stays almost

the same while running time is minimized, i.e. we tried to find some values for cooling

rate that makes convergence faster, and we adjusted absolute value so that the algorithm

doesn’t waste time after convergence. Overall the following ranges of values seem to be

working well in this problem:

• Initial temperature: 0.01-2

• Cooling Rate: 0.0001-0.001

• Absolute temperature: ≤0.0001

4.5 Experimental Results, SA-RR vs SA-RB

In this section, we compare the two methods to generate a random neighbor in SA

algorithm: RR and RB. We refer to theses algorithms by SA-RR and SA-RB, respectively.

Because of the randomness involved in SA algorithm, each algorithm has been run ten

times in each case, and the best RF score is reported below. Further, for each version of

the SA algorithm, we first obtained proper annealing schedules as described above. The

final schedules we used for SA-RR and SA-RB are as follow.

Table 4.1: Annealing schedules for SA algorithm

Parameter SA-RB SA-RR
initial temperature 0.1 0.01
cooling rate 0.001 0.0001
absolute temperature 0.00001 0.0001
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(a) seabirds (b) PM

(c) marsupials (d) THPL

Figure 4.2: RF score comparison of SA-RB and SA-RR on four datasets given the same
initial supertrees, MRP, SuperFine-MRP, and RFS.
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Figure 4.2 shows RF score comparison between SA-RR and SA-RB on four datasets.

As we can see, both SA-RR and SA-RB are able to improve the RF score of the given

supertree for all the cases, on all datasets. This improvement is more pronounced when

MRP or SuperFine-MRP are used as initial supertree. This is because these supertrees has

higher RF score, and hence there is more space to improve their accuracy. Further, both

SA-RR and SA-RB are able to make some improvements over RFS which is already a very

good local optimum for RF supertree problem. However, because of the large scale of the

numbers, this improvement is not that bold. In the next section, we will present the results

excluding MRP and SuperFine-MRP to be able to take a closer look at the performance of

RFS, ER-RFS, SA-RR, and SA-RB

On the two datasets with smaller number of taxa, seabirds and PM, SA-RR performs

very well, and is able to get the exact same RF scores on these two datasets with all

different initial supertrees. Notably on placental mammals, SA-RR gets a RF score of 5670

which is the best score among all algorithms (compare it with RF score of RFS, 5696, and

RFS+ER, 5690). This could provide evidence that SA algorithm has the potential to deal

with variations in the initial supertree. However, the performance of the SA-RR algorithm

decreases as the number of taxa increases. On THPL and marsupials, although SA-RR

algorithm is able to improve the RF score of the initial supertree, the RF score increases as

the RF score of the initial supertree increases. This could be because of the larger solution

space of these two datasets, and the fact that SA-RR uses only random SPR moves. As

we mentioned earlier, we have observed that the portion of the neighbors with better RF

score decreases dramatically as we are getting closer to the local optimums. Therefore, on

these two datasets probably performing random SPR moves is not enough to manage to a

"good" local optimum.

SA-RB, on the other hand, seems to have the opposite behavior of the SA-RR. On

seabirds and PM datasets, although SA-RB is able to improve the RF score of the ini-
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tial supertree in all the cases, there are some variations on the final RF scores obtained.

Specially, it has a poor performance on seabirds when MRP is used as initial supertree.

This is a strange behavior. We ran the algorithm several times, and we never got a better

RF score. Remember that ER-RFS algorithm had relatively poor performance on seabirds

when MRP used as initial supertree, as well. This might be because of a special character-

istic in that area of the solution space which prohibits RR operations to be able to let the

algorithm escape from that hill in the solution space.

However, SA-RB has much better performance on the two datasets with larger number

of taxa. Notably on marsupials, it is able to obtain very close RF scores no matter what

the initial supertree is. On THPL, however, the RF score seems to have a direct correlation

with the RF score of the initial supertree. The same reasoning as for poor performance of

SA-RR on this datasets can be used to justified this behavior of SA-RB. THPL dataset, is

probably the most difficult dataset among these four datasets. It has the highest number

of taxa while it contains only 19 source trees. The poor performance of our algorithms on

this dataset can be associate with lack of enough "information" in this dataset.

This could be because of the larger solution space of these two datasets, and the fact

that SA-RR uses only random SPR moves. As we mentioned earlier, we have observed

that the portion of the neighbors with better RF score decreases dramatically as we are

getting closer to the local optimums. Therefore, on these two datasets probably performing

random SPR moves is not enough to manage to a "good" local optimum.

Overall, although SA-RR seems to outperform SA-RB on smaller datasets, SA-RB is

the winner on larger datasets. In simple words, RR operation explores larger number of

neighbors in the solution space. On the other hand, RB operation is more greedy, and

tries to exploit more what we have at hand. There is a trade off here. On larger datasets,

we might expect that being more greedy could be more effective in obtaining better local

optimums. This intuition could justify the different behaviors of the SA-RR and SA-RB
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algorithms.

Formally speaking, generally we expect that RB to obtain lower RF scores than RR in

average given the same supertree. Further, the size of SPR neighborhood is O(n2), where

n is the number of taxa in the supertree. Hence, given that we have used fixed number

of iterations (same schedule) on all datasets, we can expect that RR’s chance to pick a

random neighbor with better RF score decreases as n increases over the whole run of the

algorithm. Thus, SA-RR might not be as successful as SA-RB on larger datasets.

The time complexity of the SA-RR algorithm depends on three parameters, the number

of taxa on the supertree n, the number of source trees k, and the number of SA iterations

performed. The latter is merely determined by the parameters of the SA algorithm. Lets

assume the number of iterations performed in SA algorithm is T . It takes O(kn) time to

calculate RF score in each iteration. Hence, the time complexity of the SA-RR algorithm

isO(knT ). On the other hand, the time complexity of the SA-RB algorithm has one more

component: in each iteration, we make a call to RFS algorithm to solve the restricted local

optimum problem. This takes an additional time ofO(kn). Therefore, the time complexity

of the SA-RB algorithm is O(k2n2T ).

Note, however, that the number of iterations in SA-RR and SA-RB does not need to

be the same. In fact, in SA-RB algorithm, we need much fewer number of iterations to

converge to a local optimum in compare to the SA-RR algorithm. As we will demonstrate

later, SA-RB algorithm requires much less time than SA-RR. But, we save the comparison

of the running time and the parsimony score between SA-RR and SA-RB for the next

section since we are going to make a comprehensive comparison of all the algorithms

together in the next section. The next section, summarizes all the results, and concludes

our work.
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5. SUMMARY AND CONCLUSIONS

5.1 Overall Comparison

In this section, we compare all of the algorithms together. Among different versions

of ER algorithm (with different initial supertrees), RFS+ER and SuperFine-MRP+ER had

overall better performance. On the other hand, among different versions of SA-RR and

SA-RB algorithms (with different initial supertrees), RFS+SA-RR and RFS+SA-RB had

a better performance. Therefore, we only compare them with other three algorithms: MRP,

SuperFine-MRP, and RFS. Note that when comparing RF scores, we are going to exclude

MRP and SuperFine-MRP since they have much higher RF scores in all the datasets. This

will help to take a closer look at the difference among other algorithms.

Figure 5.1 shows RF score comparison of RFS, SuperFine-MRP+ER, RFS+ER, RFS+SA-

RR, and RFS+SA-RB. On seabirds, all the algorithms get the same score of 61. Although

not provable, this might suggest that 61 is the actual global optimum on this dataset.

With an exception of SuperFine-MRP+ER on THPL, all of our four algorithms, SuperFine-

MRP+ER, RFS+ER, RFS+SA-RR, and RFS+SA-RB, are able to get better RF scores than

RFS algorithm which is the best existing algorithm to minimize RF distance! On PM

dataset, RFS+SA-RR is able to get a considerably better RF score. This can be justified by

the fact that this dataset is probably the easiest dataset with the smallest number taxa, and

the largest number of source trees. Further, RR operation provides the SA-RR algorithm

the opportunity to better explore the relatively small solution space, and take advantage of

the abundant information available in the source trees.

In Figure 5.2, we can see that SuperFine-MRP gets the best parsimony score on all

datasets. MRP has also good parsimony score in most of the cases. However, on seabirds

dataset, MRP has the highest parsimony score among the supertrees. Interestingly, SuperFine-
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(a) seabirds (b) PM (c) marsupials (d) THPL

Figure 5.1: RF score comparison of RFS, SuperFine-MRP+ER, RFS+ER, RFS+SA-RR,
and RFS+SA-RB.

(a) seabirds (b) PM (c) marsupials (d) THPL

Figure 5.2: Parsimony score comparison of MRP, SuperFine-MRP, RFS, SuperFine-
MRP+ER, RFS+ER, RFS+SA-RR, and RFS+SA-RB.

(a) seabirds (b) PM (c) marsupials (d) THPL

Figure 5.3: Running time comparison of MRP, SuperFine-MRP, RFS, SuperFine-
MRP+ER, RFS+SA-RR, and RFS+SA-RB.
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MRP+ER has better parsimony score than MRP.

SuperFine-MRP+ER has lower parsimony score in compare to RFS+ER, RFS+SA-

RR, and RFS+SA-RB on all datasets. This can be associated with the low parsimony score

of the initial supertree used (SuperFine-MRP). Although one might expect that optimizing

RF score and parsimony score should be correlated, this is not always the case. Specifi-

cally, we have two counter examples in our results. First, on PM dataset, SA-RR has the

lowest RF score while it has the highest parsimony score. Second, SuperFine-MRP+ER

has higher RF score than RFS, RFS+ER, RFS+SA-RR, and RFS+SA_RB. However, it has

lower parsimony score in compare to them.

Nevertheless, there are actually cases where we have relatively low RF score and par-

simony score, simultaneously. For example, except on THPL, SuperFine-MRP+ER has

both relatively low RF scores and parsimony scores. This is quite interesting observation!

Given the two above counter examples, it is hard to make a definite statement about this

observation. But, it is quite reasonable to make the following recommendation. When

using branch swapping hill-climbing algorithms, it is always a good idea to try several

different initial supertrees. Specifically if the goal is to minimize RF score, we should

always try both supertrees that are local optimum with regard to RF score, and supertrees

that are local optimum with regard to parsimony score. This will give us the opportunity

to compare them, and pick the one that suits our needs for that specific dataset.

Finally, in Figure 5.3, we can observe that MRP, SuperFine-MRP, and RFS have all

much better running times in compare to our algorithms. ER-RFS is the most expensive

algorithm. As we mentioned earlier, there are several opportunities to make optimizations

in ER algorithm to make it faster. But, we cannot avoid the huge running time of this

algorithm because it requires to perform many hill-climbing searches each of which could

take many iterations to reach a local optimum. On the other hand, SA-RR is able to

converge to a local optimum with a running time that is up to 85% shorter than that of ER
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algorithm! Also, SA-RB requires up to 98% shorter amount of time to converge than the

ER algorithm! This improvement in running time is more pronounced on larger datasets

(number of taxa). We can see that the running time of the SA-RB gets very close to that

of MRP, SuperFine-MRP, and RFS as the number of taxa increases. This is because of the

fixed cooling schedule used for this algorithm.

5.2 Conclusion

In this work, we focused on the RF supertree problem. Our goal was to improve RF

score of the best existing algorithms. we proposed the Edge Ratchet technique to deal with

local optimum problem. Further, we developed our hill-climbing algorithm equipped with

this technique, and we showed that this algorithm is able to improve the RF score of the

well-known, existing algorithms. Further, we developed two versions of Simulated An-

nealing algorithm for RF supertree problem. Our results show that all of these algorithms

are able to improve the RF score of the initial supertree considerably. More specifically,

we showed that these algorithms are able to make improvements in RF score of the three

well-known supertree algorithms: MRP, SuperFine-MRP, and RFS.

We had several interesting observations in our results. First of all, different datasets

have different characteristics that could potentially make them easier or more difficult for

the algorithm at hand. These differences could cause variations in the final results. There

are two main parameters that could play a key role with this regard: the number of taxa,

and the number of source trees. The size of the solution space increases dramatically as the

number of taxa increases (double factorial). This can potentially make the dataset harder

for the hill-climbing algorithm to solve. On the other hand, the increase in the number

source trees is usually helpful for the algorithm. This is because, having larger number

of trees increases the number of available clusters to the algorithm. Since we expect the

source trees to have a lot of agreement with each other, increasing the number of source
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trees will increase the portion of non-conflicting clusters, and hence the algorithm can take

advantage of them to better handle conflicts. Therefore, we could conclude that the third

important property of a dataset is the amount of agreement between source trees. It may

not be trivial to measure this property in the datasets. But one possible way is to construct

a consensus tree of the source trees, and measure its RF score to the source trees. Overall,

the datasets with smaller number taxa and larger number of source trees are easier to solve,

and the datasets with larger number taxa and smaller number of source trees are harder to

solve.

The second interesting observation is that we could build supertrees with both low

RF and parsimony scores. Our results suggest that using our algorithms with an initial

supertree with low parsimony score, such as MRP and SuperFine-MRP, is a good idea for

this purpose. Generally, when using hill-climbing algorithms or SA algorithm, it is a good

idea to try several different initial supertrees.

Finally, for SA algorithm, we empirically obtained proper schedules on these four

datasets. However, this schedule may not work well on other datasets. This could be a

huge disadvantage for this algorithm because, as we mentioned earlier, obtaining a proper

schedule can be a very challenging task. Although we might come up with some general

guidelines on how to find such schedule, this task could be quite expensive and probably

not practical for very huge datasets.

5.3 Future Work

There are several directions to extend this work and make improvements. First, there

are several possibilities to improve the accuracy of the ER algorithm. Second, there are

several opportunities to improve the running time of both ER and SA algorithms. Third,

as we observed in our results, usually optimizing RF score comes at the cost of an increase

in the parsimony score. It is desirable to find ways to reduce this cost. Below, we briefly
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describe some ideas for each of these directions.

We believe that there is still some room to improve the accuracy of ER algorithm

with regard to RF score. For example, when generating the SPR neighborhood, there are

usually more than one best neighbor. In ER algorithm we pick one of them (the first one

encountered). However, it could be the case that picking another best neighbor at some

iteration results in a final lower RF score. This is specially important at local optimums.

There are usually several supertrees with the same RF score of the local optimum (for

example more than 20 in seabirds data set). Although the supertree picked by ER algorithm

happens to be a local optimum, the other trees with the same score could have better SPR

neighbors.

We performed some initial experiments to investigate above hypothesis. For these ex-

periments we just performed one hill-climbing search algorithm without any ER iterations.

We first tried an exhaustive approach. We changed the greedy algorithm (without ER) to

consider all best neighbors found at a SPR neighborhood and then we started a new search

from each of those neighbors the same way. However, this makes the algorithm very time

consuming and impractical, since the branching factor (number of greedy searches) usu-

ally increases exponentially because each of the neighbors with best RF score might have

several neighbors with best score, and so on. To deal with this problem, we made a change

in the algorithm. Suppose we are at some iteration i. All best SPR neighbors are picked.

But instead of starting whole new search from each of those, we looked at the best score

can be achieved from each of them in one SPR neighborhood. Then, the one with best

SPR neighbor is picked, and those two consecutive SPR moves that yields the best score

are performed to get the algorithm to the next iteration. In this manner, at each iteration,

we actually move 2 SPR neighborhoods away from current supertree. This algorithm ob-

tained slightly better scores than regular greedy on some datasets. We also made some

experiments using this modified version of greedy algorithm in ER algorithm. Although
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in few cases it yielded a better score, but most of the runs did not finish within 48 hour

time limit.

There are several ways to improve the running time of the ER-RFS algorithm. First,

there are a lot of optimization opportunities in the algorithm implementation to improve

running time. For example, two of the most expensive operations in the algorithm are

calculating LCA, and calculating RF score of the newly selected neighbor. To find LCA,

we used a simple O(n) algorithm. However, Bansal et al. used a more complicated al-

gorithm which is still O(n), but with much lower coefficient/constant. Finding LCA is

probably the most frequent expensive task, and small improvements in its algorithm could

potentially has a huge impact on the overall running time. Second, whenever a new SPR

neighbor is selected, we calculate its RF score by calculating the RF distance between that

tree and each of the source trees. However, we should be able to calculate this score more

efficiently by taking advantage from knowing the RF score of the previous supertree, and α

β values. Third, we could parallelize some parts of the algorithm. For example, in current

implementation, we calculate RF score of the current supertree in search by calculating its

RF distance to each source trees. This part of the algorithm can be parallelized. Finding

LCA of the internal nodes of the source trees can also be parallelized. Last but not least,

we used 50 ratchet iterations. However, when looking at the RF score changes across these

iterations, we observed that in most of the cases, the best RF score is obtained in the first

10 iterations. This means that, with ER algorithm, we are able to obtain similar results

with up to 80% faster than the running time reported.

For SA-RB algorithm, the same above mentioned approaches can be used to make SA

algorithm faster so that we are able to perform more number of iterations. To improve the

accuracy of the SA algorithm, one interesting idea is to use dynamic values for parameters

to imitate the behavior of the ER technique. For example, we can start with some config-

uration and let the algorithm run for sum number of iterations, then we can periodically
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increase the initial temperature to make some turbulence in the search before convergence.

Or we can make this turbulence whenever the algorithm does not make any improvements

for a pre-specified number of iterations.

Finally, our results showed that obtaining a low RF score usually comes at the cost of

high parsimony score. On the other hand, we observed that it is possible to obtain relatively

low RF and parsimony scores simultaneously (SuperFine-MRP+ER). One interesting idea

for further investigation is to change the objective function of the ER algorithm so that

it minimizes RF score and parsimony score simultaneously. For example, we can simply

define the objective function to be the sum of RF score and parsimony score, and then

we can use the exact same hill-climbing algorithm with ER iterations. However, because

of the different scales of the RF and parsimony scores, this simple objective function

might not be the best we can do. It might be the case that we need to give each of them

a different weight in the objective function. For instance, we can empirically obtain such

proper weights by trying some different combination of values for weights, and comparing

the results.
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APPENDIX A

ER TECHNIQUE EFFECTIVENESS

Our first contribution in this work was to propose Edge Ratchet technique, and develop

a hill-climbing algorithm, ER-RFS, that utilizes this technique to handle the local optimum

problem. In our results, we showed that this algorithm is capable of improving RF score

of the well-known, existing algorithms. Specially, we showed that ER-RFS algorithm is

able to improve RF score of the RFS algorithm which obtains high quality supertrees with

regard to RF score. In other words, when we use RFS algorithm as initial supertree of

the ER-RFS algorithm, we start the search from a very good local optimum. Because

of the fact that ER-RFS algorithm is able to improve the RF score of this supertree on

all datasets, we claimed that Edge Ratchet technique is effective in dealing with local

optimum problem. However, it is not clear that achieving this improvement in the RF

score is actually the result of using ER technique. For example, one might wonder whether

RFS algorithm is able to improve itself, i.e. running RFS algorithm on some dataset, and

then use the final supertree as the initial supterree of another run of RFS algorithm. In this

appendix, we provide some supplementary results to investigate such questions.

Note that the main difference between ER-RFS algorithm and RFS algorithm is that

ER-RFS uses Edge Ratchet technique to handle the local optimum, while RFS uses a dif-

ferent ratchet search where each source tree is treated as a character. Therefore, we can

investigate the contribution of the ER technique in ER-RFS algorithm by the following

experiment. We feed both ER-RFS algorithm and RFS algorithm with the same initial su-

pertrees, and compare the RF score of the final supertrees. We compare RFS and ER-RFS

algorithms when they both start from the same initial supertree: RFS, MRP, SuperFine-

MRP. Remember that RFS algorithm, by default, generates a greedy taxon addition initial
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(a) seabirds (b) PM (c) marsupials (d) THPL

Figure A.1: RF score comparison of RFS+RFS and RFS+ER.

supertree.

Note that we are mainly interested in the comparison between RFS+RFS and RFS+ER

since the initial supertree is already a local optimum with very low RF score. As we can

see in Figure A.1, RFS+RFS algorithm obtains the same RF score on three of the datasets

with no improvement over the initial supertree. However, RFS+ER algorithm improves the

RF score on all datasets (on seabirds, they all obtain the same RF score). On PM dataset,

RFS+RFS improves the RFS score slightly, however, RFS+ER algorithm is able to find an

even better RF score. This experiment provides more evidence on the effectiveness of the

Edge Ratchet technique to handle the local optimum problem.

When the common initial supertree is not a local optimum, however, there is almost

a tie between RFS and and ER-RFS algorithm. When using MRP as initial supertree,

both MRP+RFS and MRP+ER get the same score on PM dataset. However, MRP+RFS

reaches a better local optimum on seabirds and THPL while MRP+ER finds a better local

optimum on marsupials. On the other hand, SuperFine-MRP+ER gets a lower RF score

on PM and marsupials dataset than SuperFine-MRP+RFS. SuperFine-MRP+ER performs

better on THPL by obtaining a better RF score. There is a tie on seabirds dataset, and both

get the same final score.
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(a) seabirds (b) PM (c) marsupials (d) THPL

Figure A.2: RF score comparison of MRP+RFS and MRP+ER.

(a) seabirds (b) PM (c) marsupials (d) THPL

Figure A.3: RF score comparison of SuperFine-MRP+RFS and SuperFine-MRP+ER.

The reason for this mix behavior must be related to how the supertrees are distributed in

the solution space for each dataset, and the specific supertree each algorithm pick on their

way to their final solution. Note that MRP and SuperFine-MRP both have high RF scores,

and they are probably not a local optimum. Therefore, ER-RFS and RFS algorithms both

traverse a long path, probably including several local optimums, in the solution space to

reach their final supertrees. On the other hand, when we are in a local optimum, there is no

way to figure out which neighbor will actually result in the best final supertree. Sometimes,

picking two neighbors with exact same score could result in two completely different final
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supertrees. Further, given the random steps involved in both algorithms, they both could

potentially pick different neighbors after reaching a local optimum, and hence obtain a

different supertree. Therefore, it is not that surprising to observe such mix behavior when

they start from a supertree with high RF score.
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