EDGE RATCHET AND SIMULATED ANNEALING TO IMPROVE RF SCORE OF

THE SUPERTREE OF LIFE

A Thesis
by
REZA MANSHOURI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
Chair of Committee, Tiffani Williams
Co Chair of Committee, Jennifer Welch
Committee Member, Mariana Mateos

Head of Department, Dilma Da Silva

December 2017

Major Subject: Computer Science

Copyright 2017 Reza Manshouri



ABSTRACT

Constructing the Supertree of Life can provide crucially valuable knowledge to ad-
dress many critical contemporary challenges such as fighting diseases, improving global
agriculture, and protecting ecosystems to name a few. However, building such a tree is
among the most complicated and challenging scientific problems. In the case of biological
data, the true species tree is not available. Hence, the accuracy of the supertree is usually
evaluated based on its similarity to the given source input trees.

In this work, we aim at improving the accuracy of the supertree in terms of its cumula-
tive Robinson Foulds (RF) distance to the source trees. This problem is NP-hard. There-
fore, we have to resort to heuristic algorithms. We have two main contributions in this
work. First, we propose a new technique, Edge Ratchet, which is used in a hill-climbing
based algorithm to deal with local optimum problem. Second, we develop a Simulated
Annealing algorithm to minimize total RF distance of the supertree to the source trees.
Our results demonstrate that these two algorithms are able to improve the accuracy of the

best existing supertree algorithms with regard to RF distance.
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1. INTRODUCTION AND BACKGROUND INFORMATION

1.1 Supertree of Life

Charles Darwin changed the way we look at the life on Earth forever. Darwin’s theory
of evolution encompasses two main ideas. First, evolution occurs, in other words, organ-
isms change over the time. Second, evolution occurs by natural selection which roughly
says that only the fittest ones will survive over a long period of time. This amazing theory
suddenly connected all the dots to explain the extraordinary diversity of life on Earth, and
how it has been developed. The theory of evolution explains how all the biodiversity on
earth has developed from a common ancestor, and thus all species on earth are related to
one another.

Tree of Life (ToL) depicts shared ancestry and the evolutionary relationships of all
biodiversity on Earth. Around 1.8 million species have been identified, and biologists have
predicted the total number of species on Earth to be 8.7 million [2]. Figure 1.1 shows how
the ToL will look like for a very small subset of known species. Such a comprehensive tree
can provide significantly useful knowledge to address many critical contemporary issues
such as fighting diseases, improving global agriculture, and protecting ecosystems to name
a few. However, building such a tree is among the most complicated and challenging
scientific problems.

In the literature, there are two different approaches to construct ToL. The first ap-
proach, which is called combined analysis or total evidence or supermatrix analysis tries
to put together the whole data available, and build a tree at once from all data together. For
example, sequence data from multiple loci -the specific location or position of a gene’s
DNA sequence, on a chromosome- is concatenated and is considered as one super-gene.

Then the whole data is analyzed by a phylogenetic construction method to build a com-
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Figure 1.1: This phylogenetic tree, created by David Hillis, Derreck Zwickil and Robin
Gutell, University of Texas, depicts the evolutionary relationships of about 3,000 species
throughout the Tree of Life. Less than 1 percent of known species are depicted [1].



prehensive tree on all the species under the study. For example, given the sequence data
in Figure 1.2, the supermatrix approach, using some phylogenetic construction method, is
depicted in Figure 1.3.

However, there are some serious issues using this approach. First, DNA or protein
sequence data is available only for a small fraction of species. Second, even if we have
molecular data for all species, with existing computational approaches, it is not feasible
to construct ToL directly from molecular data for large number of species at once. Third,
the available sequence data for different species corresponds to different genes. When we
combine them together into one huge sequence-species matrix, the resulting matrix will
have huge portion of missing data which can potentially decrease the accuracy. On the
other hand, biologists have produced tens of thousands of phylogenies for small group of
species from different datasets which provide a valuable knowledge to construct ToL.. We
would like to incorporate all these data in ToL construction.

If we cannot construct ToL. at once, it is intuitive to think of a divide and conquer
approach as a second approach for ToL construction. In this approach, we build smaller
phylogenies with partially overlapping taxa, and then we somehow combine these phylo-
genies into a more comprehensive tree. The problem of finding such (super)tree is referred

to as Supertree problem in the literature, and the method by which the tree is constructed

Species | Genel Species Gene2 Species |  Gene3
a TCTAAT d GGTAAC a TATTGA
b TCTAAG e GCTACT c TATTAC
c TCTAGA f GCTAAA d TAGTAC
d TCTAAC g GCTAAC g TAGTGA
g CATTCA h TAGTGC
h CATACC

Figure 1.2: Sequence data on three different genes, Genl, Gene2, and Gene3, on 8 species
{a7 b) C? d7 6’ f7g7 h}'



Species | Genel Gene2 Gene3
a TCTAAT 777777 TATTGA
TCTAAG 77777 mm
TCTAGA 7777 TATTAC
TCTAAC GGTAAC TAGTAC
227777 GCTACT  77777?
77777 GCTAAA 777777
CATTCA GCTAAC TAGTGA
CATACC 777777  TAGTGC

SR - 0 o0 o

Figure 1.3: Top table is the supermatrix of the sequence data in Figure 1.2. Bottom tree is a
(super)tree constructed using one of phylogenetic construction methods from supermatrix
above.

is called supertree inference or supertree algorithm. For instance, given sequence data in
Figure 1.2, we can first build gene trees using some phylogenetic tree construction method
for each gene data, and then we can use some supertree inference method to build a su-
pertree. Figure 1.4 represents this approach for gene data in Figure 1.2. This approach
has several advantages. First of all, since it is a divide and conquer approach, we can di-
vide the problem into sufficiently small sub-problems that we are able to solve. Second,
unlike supermatrix method, the problem of missing data is less harmful. Further, existing
phylogenies can also be used for ToL. construction which provide a great resource.
However, this is not a trivial task. There are several non-trivial questions involved in
designing such approach. First of all, how can we handle the conflicts among the given
phylogenies? Second, how can we possibly combine a set of trees into a single tree which,

in some sense, best represents them? Third, how should we define similarity between two
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Figure 1.4: Supertree inference. We first build a phylogeny for each gene data in Figure
1.2, trees in (a), (b), and (c). Then, we use supertree inference to construct the supertree
depicted in (d.)

phylogenies, and how can we quantify this measure? Last but not the least, how can we
use such measure to build a single tree, called supertree, out of the given source trees?

A supertree on a set of input phylogenetic trees is simply a phylogenetic tree which
contains all the taxa in all the input trees and, in some sense, preserves as much information
as possible from input trees. A supertree algorithm should answer all the above mentioned
questions. Supertree algorithms have been considered as the main tool to construct ToL
in the literature, and supertree inference has been an active research area in the last two
decades.

Another complication in supertree inference is that the true species tree is not available
for biological datasets. Therefore, the only way to evaluate the accuracy of a supertree
is to measure its similarity to the input source trees. In other words, after constructing a
supertree, we evaluate its accuracy by measuring its similarity to input trees. This simi-

larity is usually captured by some phylogenetic tree distance measure. There are several



different such distance measures in the literature. Among these distance measures, Robin-
son Foulds distance (RF distance) and Parsimony Score have been widely used for both

constructing supertrees and evaluating their accuracies.
1.2 Our Research

Several criteria have been proposed for supertree construction. Surprisingly, the su-
pertree problem turns out to be NP-hard for most of the interesting measures introduced.
This means that we are not optimistic about finding an efficient solution for these problems.
Thus, we usually have to resort to heuristic search algorithms. It is interesting to know the

size of the solution space for this problem, i.e. the number of all possible supertrees on a

(2n—5)!

given set of taxa. For n taxa, there are o353

number of unrooted trees, and %
number of rooted trees. For example, the number of rooted and unrooted trees with only
10 taxa, is 34 459 425 and 2 027 025, respectively. This observation eliminates any hope
for exhaustive search in the solution space.

There are many different approaches for supertree inference. However most of su-
pertree algorithms can be categorized into one of three main groups: matrix representation
(MR) methods, graph based methods with polynomial running time, and topological dis-
tance based methods. In this work we will focus on the third category, topological distance
based methods. These algorithms are of special interest because they directly aim at min-
imizing the distance between the supertree and the source trees. In simple words, given k
source trees 17,75, ..., Ty, and a well-defined tree distance measure d, the supertree prob-
lem is defined as follow: find a supertree with minimum cumulative distance 22:1 d;,
where d; is the distance between the supertree and the source tree 7;.

More specifically, we focus on RF supertree problem. In RF supertree problem, we

are given a set of rooted input source trees, and our goal is to find a binary supertree with

minimum cumulative RF distance to source trees. RF distance captures the smallest unit



of information in phylogenetic trees. Further, this measure has extensively been used for
supertree evaluation. Lastly, the RF supertree problem has been shown to be NP hard [3]
which opens a lot of space for improvements of the heuristic algorithms.

The best existing algorithm for RF supertree problem was introduced in [4]. Bansal
et al. proposed a fast hill climbing heuristic, RFS algorithm, for RF supertree problem.
Although they have shown that their algorithm is able to obtain very accurate supertrees
with regard to RF distance, we believe that there is still some space to improve upon their
algorithm.

One common problem to all hill-climbing algorithms, including RFS algorithm, is that
they only guarantee to obtain a local optimum. This local optimum might correspond to
a very poor quality solution for the problem at hand. This problem is known as local
optimum problem which means that a hill climbing algorithm will get stuck at the first
local optimum solution which might be a very poor solution. However, we might be able
to find much better quality solutions if we could somehow manage to escape from the local
optimum and starting to "climb" another "hill" in the solution space.

Our goal in this work is to propose new methods to improve accuracy of the supertree
with regard to RF distance. We have two main contributions in this work. Firs, we propose
anew technique, called Edge Ratchet, to deal with local optimum problem in hill-climbing
algorithms such as RFS. Second, we design a new Simulated Annealing algorithm for RF

supertree problem.
1.2.1 Edge Ratchet Robinson Foulds Supertree Algorithm

We propose a new algorithm, Edge Ratchet Robinson Foulds Supertree (ER-RFS) Al-
gorithm, which is essentially a hill climbing algorithm equipped with Edge Ratchet tech-
nique to deal with local optimum problem. This work is inspired by the ratchet search

strategy introduced in [5]. Ratchet search is an iterative search method that has been



shown to be quite effective to address local optimum problem for branch-swapping hill-
climbing algorithms for parsimony problem. In each iteration of ratchet search two branch
swapping searches is applied. In the first phase, a randomly selected subset of characters,
columns of parsimony matrix, are given a different weight and branch swapping is per-
formed on this re-weighted data set to obtain a local optimum. Then in the second phase,
all the weights are set back to the original weights, and branch swapping is applied on the
original data set using the tree obtained in the first phase as initial tree. The output of the
second phase of each ratchet iteration is used as initial tree of the next ratchet iteration.
This is done for a prespecified number of iterations.

Bansal et al. introduced fast local search algorithms for Robinson-Foulds supertree
problem and developed a powerful hill-climbing algorithm for this problem in [4]. They
used a ratchet search heuristic based on parsimony ratchet [5] to deal with the local opti-
mum problem. They treat each source tree as one character in the ratchet search. More
specifically, the re-weighing of characters in the first phase of each ratchet iteration is
done by removing two third of source trees. This means that ALL bipartitions of the cho-
sen source trees are ignored in the first phase of each ratchet iteration. Although they have
shown their algorithm is capable of obtaining supertrees with high quality with regard to
RF distance, we believe that, by using our edge ratchet strategy instead, we can improve
upon their algorithm.

In the edge ratchet strategy, we treat each internal edge (essentially a bi-partition) of
each source tree as one character instead of the whole source tree. Then in the first phase
of each ratchet iteration, we re-weight, say, 30% of internal edges of each source tree
with a new weight and perform a hill-climbing search using weighted source trees. Then,
we set back all the edge weights to 1, and the resulting supertree from previous search
is fed as initial supertree for the second phase that performs a hill-climbing search using

(unweighted) original source trees.



An effective strategy to deal with local optimum problem is extremely important for
specifically branch swapping methods. Because of the nature of these search algorithms,
they could potentially get stuck in areas of solution space, called tree islands [5]. A tree
island is defined as a set of trees in the solution space having the same score (based on
whatever optimality criteria used), and this score is better than that of any other tree reach-
able by a single branch swapping move. When the algorithm reaches a tree island, it alters
between numerous trees with the same quality that differ by minor rearrangements, for a
long time, without any improvement in the solution. This can potentially have an adverse
effect on the final solution. Thus, a good strategy that can help the algorithm escape from
these parts of the solution space can potentially have a huge impact on the resulting solu-
tion since the algorithm can search different areas of the solution space which increases

the chance of finding better solutions.
1.2.2 Simulated Annealing Algorithm

Simulated annealing (SA) algorithm is inspired by annealing process in metallurgy, a
technique involving heating and controlled cooling of a material to increase the size of
its crystals and reduce their defects. There are three main reasons for using simulated
annealing for RF supertree problem. First, simulated annealing algorithm is known to
be an effective way to handle local optimum problem. Although our experiments show
that ER-RFS algorithm is able to handle local optimum and improve upon RFS algorithm,
we do not know if there are better local optimums in the solution space. The way SA
algorithm works could help to even improve the accuracy of the supertree.

Second, we observed in our experiments that the initial supertree can have a huge im-
pact on the final supertree of ER-RFS algorithm, especially on data sets with small number
of source trees. The way SA algorithm works could potentially handle this problem very

well. Third, ER-RFS algorithm is very expensive with regard to running time, and it is



a fairly complex algorithm. SA algorithm, however, is simpler, and more importantly, it
does not require to search the whole SPR neighborhood. Therefore, if it could handle local
optimum problem well in this context, then we might expect that it could obtain close (or
even better) results to that of ER-RFS with better running time.

Therefore, as another heuristic, we implement a simulated annealing algorithm for RF
supertree problem. In greedy hill-climbing algorithms we always pick a better neighbor
in local search, and this will lead us to a (potentially not enough good) local optimum.
Simulated Annealing algorithm, deal with this problem by allowing worse neighbors to
be picked as well. But, the proper way to handle this is not trivial. If we pick too many
worse neighbors, we might get stuck in some areas of the solution space with poor quality
solutions, and end up in a supertree that is even worse than the initial supertree. If we are
too strict, on the other hand, and we rarely pick a worse neighbor, then the final solution
is probably close to that of greedy algorithm. The beauty of SA algorithm is in the way it

allows worse neighbors to be selected so that neither of the above cases happen.
1.3 Background Information and Terminology

In this section we present some basic terms and concepts commonly used in phyloge-
netics. We first define a phylogenetic tree and the relevant terms. Then, we demonstrate
the difference between rooted and unrooted phylogenies. Finally, we describe the newick

format which is the common way of representing a phylogenetic tree.
1.3.1 Phylogenetic Tree

In evolutionary context, the relatedness of two different species should closely depend
on how recent they have had a common ancestor. Such evolutionary relationship can be
perfectly modeled as a tree, phylogenetic tree, which is very much like a family tree. A
phylogenetic tree is a tree structure that depicts the evolutionary relationships among a set

of species. Each leaf of the tree represents one of the existing species, called faxon, and

10
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Figure 1.5: A rooted phylogenetic tree on taxa set {a, b, ¢, d, e}

the internal nodes represent the (hypothetical) ancestral species. For example, in Figure
1.5, we can say species a and b are more related to each other than than they are to other
taxa in the tree because their common ancestor is more recent than, say, common ancestor
of a and c. Sometimes, we specify a node in the tree as root which represents the common
ancestor of all taxa on the tree, and determines the flow of time. Each edge of the tree is
called branch. Each internal node with all its descendants represent a clade (or cluster).
Two species with the same parent node in a rooted tree are called sister taxa. Figure 1.5
illustrates all these terms.

The number of branches connected to a node is called degree of that node. Leaves
have degree of 1. Note that all the internal nodes in a phylogeny has degree grater than 2.
An internal node (in both rooted and unrooted trees) is called multifurcation or polytomy
if its degree is greater than 3. For rooted trees, the root, which is a unique internal node, is
called multifurcation if it has more than two children. We say a node in phylogenetic tree
is fully resolved if it is not a multifurcation. A phylogenetic tree with no multifurcations is
called a binary tree or bifurcating tree or fully resolved tree. For example, the phylogeny
in Figure 1.5 is fully resolved. Thus, for example, a rooted binary tree is a rooted tree

whose root has degree 2 and all other internal nodes have degree 3. Likewise, an unrooted
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Figure 1.6: Rooting an unrooted tree (on the left): The middle tree is the rooting using
midpoint method where the distance between a and c is maximum possible pairwise dis-
tance, and the half-way lies in between the two internal nodes. The right tree shows rooting
of the same tree using c as outgroup.

binary tree is an unrooted tree whose internal nodes have all degree 3.
1.3.2 Rooted vs Unrooted Trees

A phylogeny can be either rooted or unrooted. The main difference between rooted
and unrooted trees is that rooted trees contain the information about the flow of time, while
we do not know which way of evolution proceeded along each edge of an unrooted tree.
In rooted trees, there is a unique internal node called root which represents the common
ancestor of the species in the tree. In rooted trees, each edge represents a parent-child
relationship.

There are two common ways of converting an unrooted tree to rooted tree. First ap-
proach is called midpoint rooting. As the name suggests, this approach roots the tree at its
midpoint. This is done by finding the longest taxon to taxon path in the tree, and placing
the root at exactly half way between the two taxa. In midpoint rooting we calculate pa-
tristic distance between each pair of taxa which is the sum of the length of all branches
on the path between the two taxa. Each branch of a phylogeny can be assigned a number
called branch length which represents the amount of genetic change on that branch. The
branch length unit is usually nucleotide substitutions per site, i.e. the number of changes
or substitutions divided by the length of the sequence. The second approach for rooting a

tree, which is more recommended, is to use an outgroup to root the tree. An outgroup is a
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Figure 1.7: Newick format visualization. Tree above representation in newick format is
(¢:0.6,(d:04,(a:0.1,b:0.1):0.5):0.2) : 0.0;.

species that is known to be more distantly related than everything else in the tree. Figure

1.6 depicts rooting a small unrooted tree using these two approaches.
1.3.3 Newick Format

There is a computer readable and intuitive way of representing a phylogenetic tree
called Newick format introduced in 1857 by Arthur Cayley. The newick standard takes
advantage of correspondence between a tree and nested parentheses. In this representation,
a pair of parentheses is used to group sister taxa into one clade. Newick format always
starts with an open parenthesis, and ends with a semicolon which marks the end of the tree.
Branch lengths, if any, are prefixed by colons following right after the corresponding node
in the tree. Internal nodes may or may not be named. If named, the name of each clade
comes right after the closing parenthesis corresponding to that clade. (see Figurel.7).

In newick format, the convention is to have an unrooted binary tree with only one
multifurcation at some internal node. It is a little tricky to differentiate between rooted
and unrooted trees in newick format. The convention, which is used in many software
programs, is that if the outermost pair of parentheses in newick representation includes
only 2 clades, then it is considered rooted and the root is placed between those two clades.
Otherwise, the tree is unrooted. Most of phylogenetic software programs whose output

is an unrooted tree place a trifurcation at node corresponding to outermost parentheses to
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Figure 1.8: The Unrooted tree (a, b, (¢, d)); is showed on the left. The same tree can be
drawn in a way that gives the illusion of being rooted, the middle tree. But note that the
"root" has three children, and hence the tree is unrooted (equivalent to the tree on the left).
The tree on the right, however, corresponds to ((a, b), (¢, d)); which is actually a rooted
tree. Even without that little line on the leftmost internal node, we can recognize that it is
rooted tree since the "root" has only 2 children.

emphasize that the tree is unrooted.

We should note that for unrooted trees, some of the tree visualization software pro-
grams draw the tree in a way that seems it is rooted at node corresponding to the outermost
parentheses, which looks like they draw rooted trees. For example, Figurel.8 depicts the
difference between rooted and unrooted trees in newick format. When looking at unrooted
trees in visualization programs, it is a good practice to choose the option, if available, that
draws the tree like the one on the left side of Figurel.8. Another probable source of con-
fusion in newick format is that a tree topology may have different newick representations.
For example, all the following newick representations are equivalent, and represent the left
tree in Figurel.8.

(a,b,(c,d));
(b,a,(c,d));
((c,d),ba);
(b,(d,c),a);
((a,b).c.d);
(c,(a,b),d);
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2. LITERATURE REVIEW

There are many different approaches for supertree inference. However most of su-
pertree algorithms can be categorized into one of three main groups: matrix representation
(MR) methods, graph based methods with polynomial running time, and topological dis-
tance based methods. In what follows we introduce the main supertree methods in each

category, and explain them in details.
2.1 MR Based Supertrees

The first MR method,Matrix Representation with Parsimony (MRP) , was introduced
by Baum [6] and Ragan [7] independently in 1992. MRP has been the most widely used
method in the literature because of its superiority in both accuracy and running time. All
MR methods have generally two main steps. The first step is to encode the source trees
into a large matrix of entries {0,1,7}. Each row of the matrix corresponds to one species,
and each column of the matrix corresponds to one internal node of some source tree. The
MR entry corresponding to taxon ¢ and internal node n in tree 7" is 1 if ¢ is a descendant of
n, the entry 1s O if ¢ is not a descendant of n but is present in tree 7', and finally, the entry
is ? if the taxon ¢ is not present in tree 7' (this is called "Baum-Ragan" encoding). Figure
2.1 represents this encoding for two trees with partially overlapping taxon set. Note that
this encoding can be used for unrooted trees in a similar way, except for each internal edge
we need arbitrarily assign O to one side, and 1 to the other side. This works because in
parsimony, we are interested in the number of changes of state in each site (column).

This clever way to represent a tree in MR form, provides the opportunity to treat the
matrix as sequence data. In other words, we can construct a tree from this matrix using any
phylogeny construction method from sequence data. In the second step of MR based su-

pertree algorithms, different methods use different optimality criteria to build a supertree
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Figure 2.1: Baum-Ragan MR coding of phylogenetic trees.

from the large matrix in the first step. For example, MRP uses parsimony criteria to build
a tree from this matrix representation. Parsimony principle says that the simplest explana-
tion is the most likely to be correct. In other words, parsimony suggests that the best tree is
the tree that minimizes the number of evolutionary steps (i.e., changes among characters).
The parsimony score for a supertree refers to the sum of the smallest number of substi-
tutions needed for each site (i.e. each column of character-taxa matrix). The tree with
the lowest parsimony score is the most parsimonious tree. Thus, MRP basically seeks a
supertree that has minimum parsimony score. Although finding the most parsimonious
tree is NP-complete [8], very effective heuristics have been implemented for this problem
in PAUP [9] and TNT [10].

Recently, Swenson et al. proposed a new algorithm called SuperFine which was an
attempt to make MRP even faster and more accurate [11]. The input source trees for

this algorithm can be unrooted and non-binary. Their algorithm has two main phases.
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Figure 2.2: SuperFine first stage. SCM of two trees S; and S;. In S| and 5%, the strict
consensus of S; and S, restricted to their common taxon set is shown in bold. In S} and
Sy, the branches that are involved in collapsing of a path in S| and S, are shown in bold,
respectively. T is the SCM tree of S; and 5.

First, they build a partially resolved unrooted tree that only contains edges on which all
source trees agree, called Strict Consensus Merger (SCM). An example of SCM is shown
in Figure 2.2. In the second phase, they resolve the polytomies in SCM. To resolve a
polytomy w of degree d, they first divide the SCM into several partitions by removing .
Then each partition is give a label 7, and all the taxa in source trees belonging to partition
with label 7 are relabeled by 7. This results in a set of new source trees each with at most
d taxa. Then, repeated taxa in each source tree are removed by removing sibling nodes
with same label until all leaves are unique. Finally, MRP heuristic is run on this new set

of modified source trees to get a supertree on reduced taxon set. The resulting tree can
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Figure 2.3: SuperFine second stage. a) The deletion of the polytomy u from the tree
T’ partitions 7" into four rooted trees, 17, 15, T3, and T;. b) The leaves in each of the
four source trees are relabeled by the index of the tree 7; containing that leaf, producing
relabeled source trees ST, S5, S5, and S}. c) Each S is further processed by repeatedly
removing sibling nodes with the same label, until no two siblings have the same label;
this results in trees S{. d) The MR encoding, note S5 does not contribute a parsimony
informative site and is excluded. e) The result of the MRP analysis on the matrix given in
(d). f) The tree resulting from identifying the root of each T;, where i = 1,2,3,4, with the
node ¢ in the tree from (e).

easily be used to resolve polytomy u. This procedure is depicted in Figure 2.3. The reason
why their algorithm is faster than MRP is that instead of running one MRP on the whole
data set, they run several MRP on smaller size inputs. Further, the second phase can be
parallelized to make it even faster [12].

Another well known MR based sueprtree is called Matrix Representation with Flipping

(MREF) [13]. Like MRP, MRF uses matrix representation of rooted source trees. However,
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MREF takes a different approach to construct a supertree. MRF tries to minimize flip dis-
tance. Flip distance is defined as the number of flips, i.e. flipping a 0 to 1 or vice versa
in MR, required to convert the matrix into one that perfectly represents a phylogenetic
tree. Before explaining the intuition behind this optimization criteria, we should note that
there is almost always incompatibilities between source trees, and this is usually because
of the existence of error. MRF is actually motivated by the notion of error correction. On
one hand, the error in source trees can be because of presence of an incorrect taxa in a
clade (which is a 1 instead of 0), or the absence of one that should be present (which is
a 0 instead of 1). On the other hand, a flip moves a taxon into or out of a clade- perfect
match!. Thus, the idea behind this optimization problem is that the error in MR prevents
it from perfectly representing a phylogenetic tree, and therefore, the attempt to minimize
the number of flips to resolve errors is intuitively reasonable. Chen et al. in [14] proved
that MRF problem is NP-hard, even when all the source trees have the same set of taxa.
For the special case of MRF consensus tree, where all source trees have the same set
of taxa, Bocker et al. presented a O(4.83k + poly(m, n)) fixed-parameter algorithms, for
n taxa, m characters, k flips, and poly(m,n) denotes a polynomial function in m and
n. Chen et al. in [14] also provided an approximation algorithm with ratio d, where d
is the maximum number of ones in a column, for MRF consensus tree. However, for
the general case, there is no any approximation algorithms or parameterized algorithms.
Chen et al. presented a heuristic for MRF problem based on branch swapping in [15].
Their algorithm is a hill climbing algorithm. The initial tree is obtained through greedy
step wise taxon addition using a randomly-chosen order. Then they use one of the tree
rearrangement operations rNNI, rSPR, or rTBR to produce neighborhood of the current
tree. If no neighbor has a lower flip distance, the search stops and the current tree is
returned as the estimate of an MRF supertree. Otherwise, the current tree is replaced by

its best neighbor. Thus, the algorithm stops at the first seen local optimum.
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The MR based supertree algorithms are different from other supertree algorithms in
that they use an indirect method for supertree construction. In other words, the MR meth-
ods indirectly solve the supertree problem by encoding the input source trees into matrix
representation. Then these methods treat this matrix representation as sequence data and

use some phylogeny construction methods to build a supertree.
2.2 Graph Based Supertrees

The graph based supertree algorithms take advantage of graphs to capture topological
information of source trees. The main differences between graph based supertree algo-
rithms and other suprtree methods is that they are not usually based on optimizing a global
objective function and they often use a local optimization criteria, and they are solvable
in polynomial time. The first graph based supertree algorithm, BUILD, was developed by
Aho et al. in 1981 which was only capable of dealing with non-conflicting source trees
[16]. The most well know graph based algorithms are MinCut (MC) [17] and its improved
version Modified MinCut (MMC) [18] which were the first extensions of BUILD to handle
conflicting rooted source trees. The conflict in MC is resolved by deleting the minimum
amount of information from the input trees in order to allow the algorithm to proceed.

The MC algorithm is implemented by a recursive function MinCut(T) which takes
as input a set of rooted source trees. Suppose we are given a set 7' of £ rooted source trees
on n taxa. For trivial case of having n = 1 or n = 2, MinCut(T') returns a single node
or a rooted tree with two leaves, respectively. The algorithm first creates a weighted graph
St, where the nodes are species, and nodes a and b are connected if a and b are in a proper
cluster (i.e. any cluster other than root) in at least one of the input trees. The weight of
edge between a and b is the number of source trees in which a and b are in a proper cluster.
Then, if Sy is disconnected, we recursively call MinCut(T|S;) for each component S;,

where T'|S; is the set of input trees with any species not in S; pruned. If Sy is connected,
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Figure 2.4: MinCut algorithm. Given rooted trees 7 and 75, we construct weighted graph
St. Since it is connected, we construct S/ by removing all edges of size 2. All three
edges in S/ belong to some minimum cut set of S/.. By deleting the corresponding edges
from Sy, we get four components {e}, {d}, {c},{a,b}. Calling MinCut(T) on each
component and connecting the roots to a new root results in the MinCut supertree of 7
and 75 on the right.

it will be disconnected, and then MinCut(T|S;) will be called for each component S;. St
is disconnected in three steps: First, we contract all the edges in S whose weight is n to
create S7.. This guarantees to preserve all the clades appear in all source trees. Then, we
find the set of all edges belong to some minimum cut set of S/, £’ (The minimal cut-set of
a weighted graph is defined as a set of edges whose removal makes the graph disconnected,
and the sum of the weights of these edges is minimized). Finally, all the corresponding
edges to £’ in St are deleted. in the last step of the algorithm, the supertree is constructed
by connecting the the roots of each rooted tree obtained by calling MinCut(T|S;). The
algorithm is depicted in Figure 2.4.

The most expensive part of MinCut algorithm is finding minimum cut sets of .S/. which
can be done in polynomial time [19]. Although graph based algorithms have the advantage
of having polynomial running time, Brinkmeyer et al. in [20] showed the superiority of

MR methods over graph based methods in terms of similarity to source trees (and the
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model tree in case of simulated data). However, they also showed that MinCut, MinFlip,
and MRP produced more accurate supertrees in compare to other four supertree algorithms

they considered, Build-with-distances, PhySIC, PhySIC IST, and super distance matrix.
2.3 Distance Based Supertrees

In the past few years, several topological distance based supertree algorithms have
been proposed. In this family, Robinson Foulds Supertree (RFS) [4] and Supertrees Based
on the Subtree Prune-and-Regraft Distance (SPR supertree) [21] have introduced novel
approaches for supertree inference. What these methods have in common is to define an
optimization problem based on some tree distance measure, and then to aim to minimize
the total distance between the supertree and source trees. Further, both of them propose
hill climbing based algorithms.

The RFS algorithm tries to minimize the RF distance between a binary supertree and
the rooted source trees. The RF distance captures the number of bipartitions in one tree
that do not exist in another. The RF distance metric between two rooted trees is defined
to be a normalized count of the symmetric difference between the set of clusters of the
two trees (which is equivalent to its definition for unrooted trees). This problem is NP
hard [3]. Bansal et al. in [4] introduced fast hill climbing heuristics for RF supertree
problem. As mentioned before, the size of SPR and TBR neighborhoods are O(n?) and
O(n?) respectively, where n is the number of taxa. Further, calculating RF distance is
possible in O(n), for example [22]. Thus, the naive algorithms for SPR and TBR local
search problems require O(kn?) and O(kn?) time respectively, where & is the number of
source trees.

The main contribution of Bansal et al. is to present fast algorithms to solve local search
problems for both SPR and TBR in O(kn?), where n is the number of taxa in supertree,

which yielded speed-ups of O(n) and O(n?) over existing solutions for these problems,
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respectively. First, they proved that given a node v to prune in the tree, the answer to
TBR local search can be obtained by optimizing the rooting for the pruned subtree, and
optimizing the regraft location separately. And then, they presented O(kn) algorithms
to solve both problems, i.e. given the node to be pruned, finding the best rooting of the
subtree, and the best place to regraft it such that RF distance to source trees is minimized.
This immediately implies an O(kn?) solution for TBR local search.

Sine SPR is a special case of TBR, the algorithm is applicable to SPR search as well.
They also used a ratchet search heuristic based on parsimony ratchet [5] to prevent the
potential problem of getting caught in local optima. Further, they generated initial su-
pertree by greedy stepwise addition procedure. All these attempts resulted in one of the
best existing supertree algorithms. They compared RF supertree against MRP and Triplet
supertree[23]. Their empirical results on biological datasets show that RF supertree was
able to obtain supertrees with lowest RF distances and competitive parsimony scores.

On the other hand, the SPR distance, dspr, between two phylogenetic trees is defined
as the minimum number of SPR operations required to reconcile two trees. The SPR
supertree attempts to minimize the total SPR distance between a binary rooted supertree
and rooted source trees in the hope of finding better quality supertrees over RF supertree
in presence of Lateral Gene Transfer (LGT). The intuition behind this is that presence
of substantial LGT can drastically increase RF distance, however, a single SPR operation
can accommodate such long-distance transfer. Computing the SPR distance between two
phylogenetic trees is NP-hard [24, 25], and thus the optimization problem of SPR supertree
is NP-hard as well. However, Whidden et al. in [21] presented practical algorithm to
compute SPR distance by taking advantage of two recent advances.

First, Whidden et al. in [26] developed fast FPT algorithms for computing Maximum
Agreement Forest (MAF) of two trees, and it has been shown that the number of trees in

MAF is equivalent to rooted SPR distance [24]. Roughly speaking, an Agreement Forest
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Figure 2.5: F' is called a forest for 7' if (1) each component of F' is a refinement of T
restricted to the taxon set of that component (A tree 7" is a refinement of a tree 7" if 7" can
be obtained from 7" by contracting edges), (2) The subtrees obtaining from restriction of
T to each component of /' are edge disjoint, and(3) the components of F' include all taxa
in T'. The Agreement Forest of two rooted phylogenetic trees is a forest of both.

(AF) is a set of subtrees obtained by cutting edges in a pair of trees until no topological
disagreement remains. Figure 2.5 depicts agreement forest of two trees. The MAF of two
rooted phylogenies is an agreement forest of them with minimum number of components.
The second advance used in SPR supertree is the cluster reduction technique introduced
by Linz and Semple [27] for calculating rooted SPR distance. This technique, which uses
MAF to calculate SPR distance, allows to divide the source trees into smaller sub-problems
that can be solved iteratively.

The SPR supertree algorithm by Whidden et al. [21] is essentially a hill climbing al-
gorithm that uses SPR as edit operation in each iteration to produce the neighborhood of
the current solution. The initial supertree is generated by greedy stepwise addition pro-
cedure. First, the four most frequent taxa are picked and the the topology with minimum
SPR distance to source trees is found. Then the next most frequent taxon is added in the
location that minimizes the SPR distance. This continues until all taxa are included. Then
for a pre-specified number of iterations, the algorithm produces the SPR neighborhood
and picks the the neighbor with lowest SPR distance. To avoid the high cost of exhaustive

search in each iteration, they used a bipartition constrain to limit the size of SPR neigh-
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borhood. In each iteration, they find all fixed bipartitions of the current supertree, and all
SPR neighbors that violate any of these bipartitions are disallowed. A bipartition of the
supertree is called fixed if it is supported by at least half of the source trees containing two
or more taxa from each of the two sets induced by the bipartition. They compared SPR
supertree against RF supertree and MRP. Their results show that, on simulated data, SPR
supertree outperformed others for plausible range of LGT. However, the improvement of

SPR supertree was less pronounced on biological data set.
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3. EDGE RATCHET ROBINSON FOULDS SUPERTREE ALGORITHM

In this section, we first formally define RF supertree problem. Then, we explain how
to develop a hill-climbing heuristic algorithm for this problem. Next, we introduce Edge
Ratchet technique to handle local optimum problem in our hill-climbing algorithm. Fi-
nally, we incorporate all these building blocks together to design our Edge Ratchet Robin-

son Foulds (ER-RFS) Supertree algorithm.
3.1 Robinson Foulds Distance

Each internal edge (i.e. an edge whose endpoints are not a leaf) of a phylogenetic tree
corresponds to a bipartition which refers to partitioning the taxa of the tree into two sets
of size greater than 2. The set of bipartitions of a tree includes all possible bipartitions on
that tree. The unrooted RF distance between two unrooted phylogenies is defined as the
number of unique bipartitions in each tree. Note that RF distance is only defined between
two trees with the same set of taxa.

On the other hand, rooted RF distance is defined in a similar way for rooted trees. The

RF distance metric between two rooted trees is defined to be a normalized count of the
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Figure 3.1: Rooted RF distance. 75, and 73 represent two possible rooting of the same
unrooted tree 7). The set of non-trivial clusters of 75 is {bcd, cd}, and the set of non-
trivial clusters of 73 is {dab, ab}. Thus the rooted RF distance between 75 and T3 is 2.
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symmetric difference between the set of clusters of the two trees. All descendants of a
node in the tree corresponds to a cluster. In this definition, the clades corresponding to the
root and the leaves are trivial because the exist in both trees. therefore, they are ignored
when calculating the RF distance. Hence, rooted RF distance between 77 and 75 with
same set of taxa can be formally defined as follow, where C'(77) and C(75) are the set of

non-trivial clusters of 7} and 75, respectively.

dRF(Tl, T2) = ‘C(Tl)7C(T2)|;‘C(T2)*C(T1)|

Although rooted and unrooted RF distance are closely related, they could be a little
different. For example, Figure 3.1 demonstrates rooted RF distance. Note that the unrooted
RF distance between 75 and 73 as unrooted trees is 0 since they have only one (non-trivial)
bipartition {ab | cd}. However, their rooted RF distance is 2. In the remainder of this work,

we refer to rooted RF distance as RF distance for simplicity.
3.2 Robinson Foulds Supertree Problem

Given the formal definition of the RF distance, now we are ready to formally define
RF supertree problem as below.

Input: A set of rooted phylogenetic source trees with partially overlapping taxa.

Output: A rooted binary supertree on all the taxa with minimum RF score, i.e.
cumulative rooted RF distance between the supertree and all source trees.

Note that RF distance is defined only between two phylogenies with the same set of
taxa. Thus, when calculating the RF distance between supertree and source tree, we should
first restrict the supertree to the source tree, and then calculate the RF distance. This
restriction is done by removing non-shared taxa from supertree and contracting degree 2

edges until the supertree and source tree have the same set of taxa.

27



3.3 Designing SPR Hill-Climbing Algorithm

One of the most successful heuristic methods for supertree problems is to search the
space by branch swapping. Although this hill climbing approach is not guaranteed to find
the optimal solution, its effectiveness has been proven in many cases (For example [4] and
[21]). In the context of supertree problem, no matter what the optimization problem is, the
algorithms use this heuristic usually share three main steps.

First, we need a starting initial supertree. This tree can be provided by using one of
the existing supertree algorithms. Another option is to construct a greedy stepwise taxon
addition tree. In this approach, we randomly pick three taxa, and exhaustively find the
topology with minimum distance to source trees. Then, other taxa are randomly added to
the current tree one after another as follow. We exhaustively find the best place for the
current taxon to be added to the tree that minimizes the total distance to the source trees.
This approach, however, can be quite expensive.

Second, we need a tree rearrangement operation to generate the neighborhood. The
neighborhood of a supertree can be obtain by applying all possible such rearrangement
operations on the current supertree. The trees in the neighborhood have a topology that
is a little different than that of the current supertree. There are three widely used tree
rearrangement operations: Nearest Neighbour Interchange (NNI), Subtree Pruning and
Regrafting (SPR), and Tree Bisection and Reconstruction (TBR). For unrootd trees, NNI
consists of swapping two of the subtrees on the opposite ends of an internal branch. Two
rearrangements are possible for each internal edge, and thus NNI results in a neighborhood
of size 2(n — 3), where n is the number of taxa. SPR rearrangement consists of identifying
and removing a subtree, and reattaching it to some branch of the remaining tree. SPR
results in a O(n?) neighborhood. And finally, in TBR, we first divide the tree into two

parts, then we reconnect them by each possible pair of branches. Thus, TBR results in
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Figure 3.2: rSPR operation.

O(n?) neighborhood. It is not that difficult to see that NNI is a special case of SPR, and
SPR is a special case of TBR.

These rearrangements have been defined for both rooted and unrooted trees. In this
work, we will use Rooted Subtree Pruning and Regrafting (rSPR) operation as the tree
rearrangement operation. In rSPR operation, we first choose a non-root node v of the
rooted tree, 7'. Then, the subtree rooted at v is pruned from the tree by removing the edge
between v and its parent. After suppressing the degree-two node, the pruned subtree is
regrafted to an internal edge of the remaining tree. This operation is depicted in Figure
3.2. In the remainder of this work, we refer to the rSPR as SPR for simplicity.

Finally, we need fast algorithms to find the best supertree in the neighborhood, i.e. the
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neighbor with minimum RF score. This problem is usually called local search problem.
We will use RFS algorithm [4] to solve our local search problem. Section 3.4 is dedicated
to describe this algorithm in details.

To sum up, we will use existing supertree algorithms to generate initial supertree. Fur-
ther, we will use rSPR tree rearrangement operation to generate the neighborhood of the
current tree in search. Then, we use RFS algorithm to solve the local search problem.
Lastly, the current supertree is replaced by its best neighbor, i.e. a neighbor with lowest
RF score to the source trees, and we go back to the second step, and repeat. One simple
common stopping criteria for hill-climbing algorithms is to stop when reaching a local
optimum. However, we will use Edge Ratchet technique, as it will be explained later, as

stopping criteria, instead.
3.4 Solving Local Search Problem by RFS Algorithm

In order to implement ER-RFS algorithm, we need a fast local search algorithm to be
able to find the best supertree (with minimum RF score) in the SPR neighborhood. For-
tunately, such algorithm has already been introduced in [4]. However, the implementation
of the algorithm is not available. Hence, we need to implement this algorithm. For this
reason, before explaining the ER-RFS algorithm in more details, we are going to give a
detailed explanation of the RFS algorithm. In the local search problem, we are given a
supertree, and the goal is to find its best SPR neighbors which has the lowest RF score
(cumulative RF distance to the source trees). The naive algorithm for SPR local search
problem require O(kn?) time, where k is the number of source trees, and n is the num-
ber of taxa. This is because there are O(n?) SPR neighbors, and calculating RF distance
between two trees takes O(n) time. The RFS algorithm provides a O(kn?) algorithm for
SPR local search problem.

Technically, the core of RFS algorithm, is the algorithm that solves the restricted SPR
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local search problem. In this problem, we are given a set of source trees and a supertree,
and also a specific node in the supertree, v, to be pruned. The goal is to find the best regraft
location for v such that the RF score is minimized. The naive solution for this problem
takes O(kn?). The RFS algorithm solves this problem in O(kn). This immediately leads
to the O(kn?) above mentioned algorithm for SPR local search problem.

Note that, in this work, we use RFS algorithm to refer to two algorithms: 1- the overall
RFS algorithm as to solve RF supertree problem [4], and 2- the algorithm used in RFS
algorithm to solve the restricted RF local search problem. However, from the context, it
will be clear which one we are referring to.

The idea behind RFS algorithm is to somehow find the best regraft place for v without
actually calculating RF distance for all possible regraft places. For simplicity, assume we
have only one source tree S and a given supertree 7', and that both trees have the same
set of taxa. Note that if 7" has more taxa than S, then we can restrict it to the taxa set of
S in O(n) time. Further, it is trivial to extend the algorithm to the case where we have
more than one source tree. Now, suppose we are given a node v in 7" to be pruned, and
an internal node in S, u. The idea is that, for each node u, we can determine for which
regraft places the clade v will or will not exist in the resulting SPR neighbor. We can
do this efficiently,and then we can use this information from all such nodes w to find the
best regraft place. For example, suppose node u is clade {f, ¢} in tree S in Figure 3.3.
Since this u exists in v (as well as 7"), no matter where we regraft v, u will exist in the
resulting neighbor, too. Thus, node u does not play a role in the change in RF score for
this supertree when v is pruned.

In RFS algorithm, we first change 7" into a new tree 2 which has exactly same SPR
neighborhood as 7" when v is pruned. But, using R in the algorithm makes it much easier
to implement. For example, in Figure 3.3, tree R is obtained from 7" by pruning v and

regrafting it back to the root of 7. Note that the node () represents the clade consisting
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Figure 3.3: An instance of the input for RFS algorithm: S and 7', and v € T to be pruned.
Tree R is obtained from 7" by pruning v and regrafting it back to the root of 7". The node
() represents the clade consisting of all possible regraft places for v.

of all possible regraft places for v, and hence, for given v, 7" and R have the same SPR
neighborhoods.

In order to determine if a clade v in source tree exists in supertree, all we need to do
is to obtain its Least Common Ancestor (LCA), i.e. the most recent common ancestor of
the taxa in cluster u in 7T, called a. Then, clade u exists in 7' if and only if a and u has
the same number of taxa in their clades. Both of these two can be done in O(n) [4] [28],
where 7 is the total number of taxa.

There are actually only four cases in RFS algorithm to consider for a given v and
arbitrary u. We consider tree 1? instead of 7" in the RFS algorithm. Suppose the LCA of
u in tree R is a. For example, in Figure 3.4, the LCA of u; is a1, and since both have 2
taxa in their clades, we know clade u; exists in R. On the other hand, the LCA of u, is
as. Since the number of taxa differ in us and a,, we know us does not exist in 2. Before
presenting those four cases, we first need to introduce a couple of notations (the same way
the are defined in [4]): 1- L(7) is the leaf set of tree 7. 2- T, is the subtree of 7" rooted
at v, for some v € L(T'). 3- the partial order <r is defined according to the ancestor-
descendant relationship. For nodes z and y in 7', we say x <7 y if y is a node on the path

between z and root of 7'. 4- fr(u) for node u € S is a boolean function that says whether
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Figure 3.4: For each of the non-trivial clades u; in S, where 1<i <5, the node a; represents
its LCA in R.

clade u exists in 7', i.e. fr(u) = 1 means u exists in 7', and fr(u) = 0 means u does not
existin 7

Lets assume tree 7" is the resulting SPR neighbor when v is pruned from 7. Also, lets
denote the regraft place by z, i.e. * € (). It can easily be proven [4] that there are only

four cases given a v to be pruned, and an arbitrary u € S.
(i) if a € R, then fr/(u) = fr(u) for any x € Q. For example, node us in Figure 3.4.
(ii) ifa € Q and fr(u) = 1, then
o fr(u)=0,forz <ga,and
o fr/(u) =1, otherwise
For example, node u; in Figure 3.4.

(iii) if a € Q and fr(u) = 0, then fr(u) = O for any x € Q. For example, node uy in

Figure 3.4.

(iv) if a is root of R, we first find tree S’ which is obtained from .S by suppressing all
nodes m whose LCA is in R,. Figure 3.5 illustrates how .S’ is constructed from S.

Then we find LCA of v in S’ in R, and we call it b.
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Figure 3.5: Tree S’ is obtained from S by suppressing all nodes m whose LCA is in R,
i.e. clades {f, g} and {e}. Clades uz and u, are actually clade {c} in S’. Hence, their
LCA is clade {c} in R which are denoted by b3 and by, respectively.

o fr(u) =1ifand only if z <g band | L(R,) | + | L(R,) |=| L(S.) |. For
example, node u3 and u,4 in Figure 3.4. Note, however, the second condition is

true only for ug, and f7/(u3) = 1if v is regrafted back at c.

Now, we are ready to describe RFS algorithm. For a given node v to be pruned in 7,
forany z € Q, let A(z) =|{u € S : fr(u) = 0, but fr(u) = 1} |, and B(z) =| {u €
S : fr(u) = 1, but fr(u) = 0} |, where 7" is the result of the SPR operation when v
is pruned and regrafted on top of x. By definition, the best = (with lowest RF score) is
the a node x for which | A(x) | — | B(x) | is maximized. The RFS algorithm efficiently
calculates A(z) and B(z) at each node x as follow.

In a preprocessing step, we first construct R from 7', and we compute the LCA of all
(non-trivial) clades u € S in R. We also compute the size of leaf set for all nodes in both
S and R. Further, we initialize two counters «(x) and () at each node x € @ to 0. This
takes O(n). At the end of the algorithm, the values of a(x) and (x) will be the values of
A(z) and B(x), for each node = € Q.

The algorithm then traverses S and considers each non-trivial node u in S. There are

three cases:
1. If u satisfies the precondition of (i) or (iii), then fr/(u) = fr(u) for any x € (), and
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we do nothing.

2. If u satisfies the precondition of (ii), then we increment the values of 3(x) for each

node z € T,\{a}.

3. If u satisfies the precondition of (iv), and if | L(Ry) | + | L(R,) |=| L(S.)

, then

we increment the values of «(x) at each node x € T;,.

Note that node u in S is a non-trivial clade, i.e. an internal node (except root). How-
ever, the node v can be any internal node or a leaf. It is not hard to see that all these can
be done in O(n) [4]. Applying this algorithm for all possible v’s in T results in O(n?)
algorithm for SPR local search problem.

Note that RFS algorithm can easily be extended to the case where the edges in the
source trees are weighted. First, note that an edge in some rooted source tree corresponds
to the cluster of the child endpoint of that edge. Further, in RFS algorithm, we visit each
internal node in all source trees, and we update () and 3(z) based on the position of its
LCA and the conditions explained above. Hence, if an edge in some source has a weight of
w, this can be interpreted as if the corresponding cluster appears w times. In other words,
it is the same as assuming that the cluster is visited w times. Therefore, all we need to do

is to increment values of a(x) and (x) by w instead of 1.
3.5 [Edge Ratchet Technique to Deal With Local Optimum Problem

Given RFS algorithm to solve restricted SPR local search problem as described above,
we can easily solve the SPR local search problem in O(n?) by applying the algorithm
for all possible nodes to be pruned in the tree. Therefore, we can easily develop a hill-
climbing algorithm using this local search algorithm as explained in section 3.3. Algorithm
1 outlines this hill-climbing heuristic algorithm.

Using Algorithm 1 we can improve the accuracy of the initial supertree in terms of RF
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Algorithm 1: SPR HILL-CLIMBING Algorithm
Input: A set X of rooted phylogenetic trees with partially overlapping taxa,
and a rooted binary initial supertree 7’
Output: A supertree of the input trees which is a local optimum for RF supertree
problem

[

while (true) do
2 Find the best SPR neighbor with lowest RF score, 7", by applying RFS
algorithm for all possible nodes v € T’ to be pruned.

3 if (T"’s RF score is lower than that of T') then
4 ‘ replace 1" with T”

5 else

6 L break

7 return 7’

score if it is not already a local optimum. However, like other hill-climbing algorithms,
this approach may get caught in a local optimum with relatively high RF score while there
are better supertrees around in the solution space. Edge Ratchet is a technique that will be
used to deal with this problem.

How can we possibly make a perturbation at the local optimum so that the hill-climbing
algorithm can escape from the current hill and start the search at another hill with a po-
tentially better local optimum. There are three main directions by which to achieve this
goal.

First, we can try to somehow change the topology of the supertree at the local optimum
in the hope that this change drifts us to a better hill in the solution space. One simple way
to achieve this is to perform one or several random SPR moves on the supertree at local
optimum, and start over the search. We tested this idea. However, the results were not
promising. If we perform only one SPR move, then in the first iteration of the next search,
we will get back to the same local optimum where we were previously, no surprise! If we

perform, say, three or more random SPR moves, then this usually causes a huge increase
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Figure 3.6: Three source trees with randomly re-weighted 50% of edges (clusters) to 0.

0

in the RF score so that the next hill-climbing search has to spend a lot of time to improve
the resulting tree. Surprisingly, we almost always ended up to the same local optimum
anyways.

Second, we can change the optimality criteria by which we choose a neighbor. For
example, we can use some other tree distance measures as optimality criteria. We at-
tempted this idea by using quartet distance as secondary optimality criteria. A quartet is
an unrooted tree with only four taxa. The set of quartets of a tree is defined as all such
quartets induced by considering each internal edge of the tree, and picking each possible
two taxa on each side. The quartet distance between two unrooted phylogenies is defined
as the number of unique quartets in each tree. We tested this idea by performing several
hill-climbing searches one after another altering the optimality criteria between RF dis-
tance and quartet distance. The final tree in each hill-climbing search was used as initial
supertree of the next hill-climbing search. However, this strategy was not promising either.
We usually ended up with supertrees with greater than or equal RF score than that of the
initial supertree. Changing the optimality criteria from RF distance to quartet distance and
vice versa does not seem to be effective at drifting the us to a better hill in the solution
space.

The third strategy is to somehow change the source trees! This is what edge ratchet
technique does. Note that the RF score depends on the bipartitions (or clusters) exist in

each source tree. Further, there might be conflicts among these bipartitions. i.e. achieving
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a RF score of 0 is usually impossible. The idea behind edge ratchet is to pick a random
subset, usually 30%, of the clusters in each source tree, and give them a different weight.
For example, if we give a weight of w to some cluster, this will be interpreted as having
that cluster w times, in the algorithm . Or giving a weight of 0 to a cluster, is equivalent
to removing that cluster. Figure 3.6 illustrates one possible way of re-weighting a potion
of clusters (or edges) in the source trees of Figure 3.7. Note that giving a new weight to a
cluster, in this context, is the same as giving that weight to the corresponding edge in the
tree.

Our results show that this simple idea can be effective in drifting the local optimum to
a better hill in the solution space. Note that, using this strategy, we are not going to end
up in a completely irrelevant supertree. Actually, the resulting supertree still minimizes
the RF distance, but to a subset of bipartitions instead of all bipartitions. Our experiments
show that the resulting tree is different enough to happen to be on another hill with better

RF score in most of the cases.
3.6 ER-RFS Algorithm

Now we have all the building blocks to design ER-RFS algorithm. To recapitulate,
the optimality criteria for ER-RFS algorithm is rooted RF distance. Further, we use
rooted SPR edit operation, rSPR, to produce the neighborhood in each iteration of the
hill-climbing search. Applying all such operations on a supertree with n leaves, will re-
sult in O(n?) SPR neighbors. We use RFS algorithm on each node of the supertree to be
pruned to find the best SPR neighbor (with minimum RF score) among all its O(n?) SPR
neighbors. This results in a hill-climbing algorithm described in Algorithm 1.

Further, in order to deal with local optimum problem, we use edge ratchet technique to
re-weight edges in each source tree. Using this technique along with Algorithm 1 results

in ER-RFS algorithm depicted in Algorithm 2.
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Algorithm 2: ER-RFS Algorithm
Input: A set X of rooted phylogenetic trees with partially overlapping taxa,
and a rooted binary initial supertree 7’
Output: A supertree of the input trees which is a local optimum for RF supertree
problem

[

best_score = RF score of T'
best_supertree =T’

(8]

3 fori < 1to 50 do
4 T = Algorithm 1 (32, T")

5 if (1"’s RF score < best_score) then
6 best _score =T"s RF score
7 best_supertree =T

8 if (2 < 50 ) then

9 Re-weight 30% of internal clusters of each source tree to 0 to obtain X’/
10 | T = Algorithm 1 (', T)
11 | Reset all edge-weights to their original value, 1

12 return best_supertree

To illustrate these algorithms, suppose we are given a set X of three input trees as in
Figure 3.7, and an initial supertree 7' as Figure 3.8. The set of SPR neighbors of 7" consists
of all possible SPR moves on this supertree. For example, suppose we want to prune the
clade (f, g), and produce all possible SPR neighbors corresponding to regrafting it back
to the tree, Figure 3.9b. There are seven such SPR neighbors. Figure 3.9 illustrates three
of those neighbors when (f, g) is regrafted to the edge above clades (b, ¢), (d,e), or a,
respectively.

For each node v in the supertree to be pruned, we apply RFS algorithm to find its
best regraft place. Among all such best SPR moves, we pick the one with the lowest RF
score. Then, if this neighbor has a better RF score than that of the the current supertree,

we replace the current supertree with this new neighbor. We continue this until we reach
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Figure 3.8: A supertree, 7', on the taxa set S = {a,b,c,d, e, f, g}.

a local optimum. Then we replace T with the result of this hill-climbing search. This is
what the line 4 of the Algorithm 1 does.

after line 4 of the Algorithm 1, the current tree, 7', is a local optimum. At this point, we
use ER technique, and we randomly reweight, say, 30% of internal edges in each source
tree to a new weight of 0. As we mentioned earlier, Figure 3.6 illustrates one of possible
ways to reweight the edges in source trees from Figure 3.7. This is what line 9 of the
Algorithm 2 does.

Now we perform another hill-climbing search starting from current (local optimum)
supertree, and weighted source trees, line 10 of the Algorithm 2. As it was explained
earlier, it is fairly straightforward to extend RFS algorithm for the weighted source trees.
Remember in RFS algorithm, we visit each internal node in each source tree, and based on
its LCA position in supertree we modify «(x) and S(x). Now suppose some cluster has

a weight of 0. In this case, the RFS algorithm simply ignores this node. The rest of the
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Figure 3.9: SPR neighborhood. There are 7 edges on which we can regraft (f,g) back
to the tree, excluding the one it was attached to previously. Here we have three of those
neighbors which are the result of regrafting (f,g) to the edge above the clades {b,c},
{d, e}, or {a}, respectively.

algorithm remains the same. To finish this ratchet iteration, we reset the weight to their
original value 1, line 11 of the Algorithm 2.

These two consecutive hill-climbing searches are considered as one ratchet iteration.
The supertree at the end of one ratchet iteration is used as the initial supertree of the next
ratchet iteration. We perform 50 of these ratchet iterations, except in the last iteration, we
only perform the first hill-climbing search since the solution of the second search is not a
valid output. Lines 5 — 7 of the Algorithm 2 just keep track of the best seen supertree. The
best seen supertree is returned at the end of the algorithm.

The time complexity of the ER-RFS algorithm depends on four parameters: the num-
ber of taxa on the supertree n, the number of source trees &, the number of ratchet iterations
performed (50 here), and the number of iterations required to reach a local optimum at each

call of the Algorithm 1, m. We have no control over the latter, and it mainly depends on
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the quality of the initial supertree used in that search. Lets assume ) to be the maximum
number of iterations required to reach a local optimum given any initial supertree. Note
that each call to the Algorithm 1 requires O(Mkn?) time, where n is the number of taxa

on the supertree, and % is the number of source trees. Therefore, the time complexity of

the ER-RFS algorithm is O(100Mkn?), or O(Mkn?).
3.7 Experimental Results

In this section, we present the experimental results of the ER-RFS algorithm comparing
it to the well-known existing supertree algorithms. ER-RFS algorithm is implemented in
C++. Note, all experimental tests were executed on the Texas A&M Brazos supercomputer
using 2.5Mhz, 1 core nodes each with 100-300 MB of memory based on the size of data
set. In what follows, we first explain our experimental methodology, and then we present

the results.
3.7.1 Datasets

In our experiments, we used four empirical datasets including Sea birds (121 taxa, 7
source trees) [29], Placental mammals (PM, 116 taxa, 726 source trees) [30], marsupials
(267 taxa, 158 source trees) [31], and Temperate herbaceous papilionoid legumes (THPL,
558 taxa, 19 source trees) [32]. Most of these datasets where previously used to evaluate

supertree methods; all datasets have rooted source trees.
3.7.2 Measurements and Other Supertree Algorithms

As it was mentioned above, we are going to use empirical data for experimental anal-
ysis. Since the true species tree is not available for empirical data, we have to evaluate
the accuracy of the supertree based on its similarity to the source trees. This similarity
is usually quantified by a tree distance measure. Thus, we can evaluate the accuracy of

our supertree algorithm by comparing its similarity to source trees against other supertree
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algorithms.

Among different phylogenetic tree distance measures, parsimony score and RF dis-
tance are the two most widely used ons. We use these two measures along with running
time to compare different supertree algorithms. We will compare our algorithm with three
well-known, successful supertree algorithms in the literature: MRP, SuperFine-MRP (Su-
perFine used with MRP in the resolution step), and RFS. MRP is the most widely used
supertree algorithm in the literature. SuperFine algorithm is an improvement to MRP al-
gorithm, and has been shown to be able to produce high quality supertrees [11]. RFS algo-
rithm is the best existing algorithm for RF supertree problem. We used the implementation
of these algorithms from http://phylosolutions.com/paup—-test/ (PAUP¥),
https://github.com/dtneves/SuperFine/,andhttp://genome.cs.iastate.
edu/CBL/RFsupertrees/ for MRP, SuperFine-MRP, and RFS, respectively. Further,

for parsimony ratchet, we used the code provided in the appendix of [33].
3.7.3 Calculating RF Score

As it was mentioned before, RF distance is defined only for trees with the same set
of taxa. Thus, when calculating RF distance between the supertree and any of the source
trees, we first restrict the supertree to the taxa set of the source tree against which it is com-
pared. This is done by removing non-shared taxa from supertree and contracting degree 2

edges until the supertree and source tree have the same set of taxa, Figure 3.10.
3.7.4 Calculating Parsimony Score

As it was mentioned in Section 2.1, the parsimony score for a tree refers to the sum of
the smallest number of substitutions needed for each site (column) of the taxa-character
matrix. Further, we illustrated in Figure 2.1 how to obtain the matrix representation of a
set of given source trees. Given a supertree and the matrix representation of the source

trees, we can calculate parsimony score using, for example, Fitch’s algorithm. The Fitch’s
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Figure 3.10: In order to calculate RF score between supertree T and source tree S, we first
need to remove non-shared taxa from 7 (c). Then, we suppress all non-labeled leaves and
degree 2 internal edges which results in the tree in (d). The RF distance between T and §
is defined as the RF distance between this restricted 7 and S.

algorithm actually solves small parsimony problem. In this problem, we are given a tree
topology and a taxa-character matrix, and th goal is to find the character states in the inter-
nal nodes which results in minimum parsimony score ( i.e. minimum number of character
state changes along the edges of the tree). Unlike large parsimony problem, which is the
goal of MRP supertree algorithm and an NP-hard problem, the small parsimony problem
can be solved efficiently in polynomial time.

To illustrate Fitch’s algorithm, suppose we are given the two source trees as in Figure
3.11. We can make the matrix representation of the given trees as it is shown in Figure
3.11a. Now suppose we have obtained a supertree of these source trees using some su-
pertree algorithm, Figure 3.11b. The parsimony score of the tree is defined as the sum of
the parsimony scores of all the columns of the matrix. For example, in Figure 3.11, we

have shown calculations for column 2 of the matrix, corresponding to clade u,. We first
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Figure 3.11: Parsimony score calculation. Given matrix representation of part a and the
supertree in part b, we calculate the parsimony score of the supertree for each site (column)
of the matrix (such as us). In above example, the parsimony score corresponding to the
column 2 of the matrix is 1. The final parsimony score of the supertre is defined as the
sum of the parsimony scores over all columns.

write down each character on its corresponding leaf on the tree. The Fitch’s algorithm

has two phases. In the first phase of the algorithm, we calculate all possible character

states, I?;, for all internal nodes using a post-order traversal of the tree using the following

rule, Figure 3.11b and 3.11c. The number of union operations is actually the parsimony

score (hence we are done here for the purpose of calculating parsimony score. But we will

complete the algorithm to obtain labeling of internal nodes as well).
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R;N Ry, ifR;NRy#0
R; =

R; U Ry, otherwise
In the second phase, we perform a pre-order traversal of the tree using below rule to
determine character states of the internal nodes that is most parsimonious. Note that ?’s
can be either treated as a valid character state, or they can be resolved to the whichever
character state that minimizes parsimony score. In Figure 3.11d, we resolved ?’s to 1’s to

minimize parsimony score. Let s; denotes the state of the internal node i with parent j.

84, iij eR;
S; =

any € R;, otherwise
We used r8s software [34]) to obtain Baum-Ragan matrix representation of the source
trees. Further, we obtained the parsimony score of each supertree using this taxa-character

matrix with PAUP [9].
3.7.5 ER Configuration

The ER algorithm can be configured based on the portion of internal edges to be re-
weighted, and the new weight which is assigned to selected edges. We tested the algorithm
on four available biological datasets (explained below), using different configurations. We
tried 10%, 20%, 30%, 60%, and 80% of the edges to be re-weighted with a new weight of
0, 2, 5, 10, and 50 (a total of 25 configurations on each data set).

Among these configurations, it was observed that re-weighting 30% of the edges to 0
as new weight is almost always more effective in obtaining a better supertree, and yields
a lower RF score. Thus, in the results reported below, we stick to this configuration in all

experiments. Further we used 50 ratchet iterations in all experiments.

46



3.7.6 Terminology

In order to present the results we need a consistent terminology. Note some algorithms,
by default, build a greedy stepwise addition taxa tree, and use it as initial supertree. This is
usually done by randomly picking three taxa, and then finding the best triplet to optimize
the optimality criteria used, exhaustively. Then, another taxon is pick randomly, and is
added to the tree in a place where optimizes the optimality criteria used, exhaustively.
This process continues until all taxa are added to the (super)tree.

For simplicity, we refer to ER-RFS algorithm as ER algorithm. We use a simple rep-
resentation when referring to a specific algorithm: <initial supertree> + <algorithm>,
where initial supertree can be the output of another algorithm. For example, suppose we
run RFS algorithm on some dataset with its default stepwise taxon addition tree to obtain
a supertree, 1'. Then, RFS+ER refers to the the ER algorithm when 7" is used as initial
supertree for ER algorithm. When no initial tree is provided, we should use default TA
+ <algorithm> terminology. However, for simplicity, we omit the default TA part. For

example, RFS refers to the RFS algorithm when no initial tree is provided.
3.7.7 Results

To evaluate effectiveness of the ER algorithm, we compare it with three well-known
supertrees: MRP, SuperFine-MRP (SuperFine used with MRP in the resolution step), and
RFS. Our goal is to improve these supertrees. We use each of them as initial supertree
for our algorithms and test if they can improve RF score of the initial supertrees. Espe-
cially, we are interested in improving RF score of RFS algorithm which is the best known
algorithm for RF supertree problem.

Because of the random steps involved in both RFS and ER algorithms, we had 10 runs
of each algorithm on each data set, and the supertree with best RF scores in each case are

reported below. Although in some cases, the best score only happened once, usually the
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Figure 3.12: RF score comparison of MRP, SuperFine-MRP, RFS, and three versions of
ER algorithm: MRP+ER, SuperFine-MRP+ER, and RFS+ER.

supertrees obtained in the ten runs have very close RF scores.

Note that RFS supertree is optimized for RF score, and is indeed a relatively good
local optimum already. Thus, if ER algorithm is able to obtain a lower RF score, this is
significant, and it could provide evidence on effectiveness of ER algorithm to deal with
local optimum problem.

Below we compare MRP, SuperFine-MRP, and RFS with three versions of ER algo-
rithm (MRP+ER, SuperFine-MRP+ER, and RFS+ER). First we compare the RF score
(cumulative RF distance to source trees), then we compare parsimony score, and at the
end, we compare the running times.

As we can observe in Figure 3.12, ER algorithm can effectively deal with local op-
timum problem, and improve RF score considerably. Specifically, ER algorithm can im-
prove RF score of RFS supertree (which already is a very good local minimum) on all
datasets which provides evidence on the success of ER algorithm to deal with local opti-
mum problem. However, note that because of the large scaling in the plots, this improve-
ment is not that clear. On seabirds dataset, RFS and RFS+ER both get a RF score of 61.
On PM dataset, RFS get score of 5696, and RFS+ER is able to get a score of 5690. Over-

all, FRS seems to do a good job to obtain a supertree with low RF score. Feeding this
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Figure 3.13: Parsimony score comparison of MRP, SuperFine-MRP, RFS, and three ver-
sions of ER algorithm: MRP+ER, SuperFine-MRP+ER, and RFS+ER.

supertree to ER algorithm can make it even better.

MRP+ER and SuperFine-MRP+ER both improve considerably the RF score of MRP
and SuperFine-MRP, respectively. Notably, on the two datasets with larger number of
trees, PM and marsupials, ER algorithm is able to obtain almost the same RF scores no
matter what initial supertree is. However, on the other two datasets (with small number
of source trees), initial supertree seems to have a huge effect on the accuracy of the final
supertree. This can be explained by the fact that having larger number of source trees,
usually provides more information. In other words, we expect to have an increase in the
number of shared clusters in the source trees as the number of source trees increase. This
can help the algorithm to better handle conflicts among source trees.

MRP+ER has relatively higher RF score on seabirds and THPL in compare to other
versions of ER algorithm. This is probably because of the small number of source trees in
these data sets, and that the MRP has higher RF score on these datasets.

Figure 3.13 compares the parsimony score of the algorithms. As we mentioned earlier,
both MRP and SuperFine-MRP minimize MRP score, and as we expect, they they usually
have better parsimony score when compared to other supertrees. SuperFine-MRP obtains

the best parsimony score on all datasets.
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Figure 3.14: Running time comparison of MRP, SuperFine-MRP, RFS, and three versions
of ER algorithm: MRP+ER, SuperFine-MRP+ER, and RFS+ER.

RFS and RFS+ER usually have higher parsimony score. The difference between their
parsimony scores and that of other algorithms increases as the size of dataset increases
(with regard to the number of taxa). This suggests that the initial supertree can have a
considerable impact on the final solution of the ER algorithm. In other words, we ex-
pect to find a final supertree with better parsimony score if the initial supertree is already
optimized for parsimony score.

Although one might expect that RF score and parsimony score have correlations, we
can observe that this is not the case on all these four biological datasets. Specially on
the two datasets with higher number of source trees (PM and marsupials), MRP+ER has
much higher parsimony score than MRP, while it has much lower RF score in compare
to MRP. Another interesting observation here is that SuperFine-MRP+ER has relatively
good parsimony score. Namely, it has better parsimony score than MRP on three datasets.
Remember from Figure 3.12 that it always has much better RF score than both MRP and
SuperFine-MRP. This is quite interesting because it shows that we can have supertrees
with relative low RF and parsimony scores simultaneously!

Figure 3.14 compares the running time of all these algorithms. Clearly, ER algorithm

is by far the most expensive (running time) algorithm. There are several reasons why
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ER algorithm is more time consuming. First, because of the way ER algorithm works,
we have to perform many hill-climbing searches (100 in our case) each of which could
take several local search iterations which is quite expensive. Second, we used 50 ratchet
iterations. But after looking at the score changes over iterations, we noticed most of the
time the best supertree is obtained with less than 10 iterations. However, there were some
cases in which some improvements happened after 25 iterations. This means that we could
potentially obtain similar supertrees in about 80% less running time. Finally, one of the
most expensive and frequently used operations in the algorithm is finding LCA of a given
set of taxa on a tree. We used a very simple algorithm which is O(n), where n is the
number of taxa on the tree. However, there are more complicated O(n) algorithms (like
the one used in RFS) with much lower coefficients and constants which could improve
running time dramatically.

One might wonder if it is worthwhile to spend a lot of time to improve the accuracy
of the supertree slightly. First, note that in the case of supertree problem, the algorithm is
going to be used only once. Thus, as long as the algorithm can finish in a reasonable time, it
is perfectly fine. Further, even slight improvements of the accuracy of the supertree means
resolving more conflicts among source trees which in turn might be very valuable for
post analysis of the supertree by biologists. Note that we do not claim that ER algorithm
is applicable to very large datasets, but we rather state that as long as it can finish in a

reasonable time, it is a worthy algorithm.
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4. SIMULATED ANNEALING ALGORITHM

4.1 Motivation and Algorithm Description

The local optimum problem is a critical issue in most of hill-climbing algorithms.
Although ER algorithm is able to handle local optimum problem and improve RF score
upon RFS algorithm, we do not know if there are better local optimums in the solution
space. Simulated Annealing (SA) 1s known to be able to handle local optimum problem.
Further, because of the way it works, it could potentially alleviate the effect of the initial
supertree on the final supertree. Finally, since this algorithm does not require to search the
whole SPR neighborhood, it could be much cheaper in terms of running time, and hence
applicable to larger datasets.

Unlike greedy hill-climbing algorithms where we always pick a better neighbor in
local search, simulated annealing algorithm, allows worse neighbors to be picked as well.
Whether a worse neighbor is picked or not in SA algorithm, depends on three things: cost
of current solution, cost of new neighbor, and current temperature, t. The SA algorithm
introduces the notion of temperature which is used to define an acceptance probability
function which provides a smart way to accept (better and maybe worse) neighbors. The
higher the temperature, the higher the chance of a worse neighbor to be selected. The
initial temperature is usually high, and it decreases every time a new neighbor is generated
by a prespecified cooling rate.

In RF supertree problem, we are solving a minimization problem based on RF score.
Thus, the cost function for a solution can be defined as its RF score. Suppose the current
supertree 7; has RF score of s;. Then, we generates a new random neighbor supertree 7;, 1,
and calculate its RF score, s; 1. The acceptance probability function for 7}, is defined as

below.
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L, ifs; <'s
P(T;y1) = 4.1)

exp(*—*+), otherwise
Where ¢ is the current temperature. As we can see, a neighbor with lower RF score
will always be picked since its acceptance probability is 1. But if the RF score of the new
neighbor is worse (higher), it may or may not be picked based on some probability. At
the beginning of the algorithm, the temperature ¢ is relatively high, and this allows higher
probability for worse neighbors to be picked. As the algorithm continues, the temperature
decreases, and thus the probability of accepting a worse neighbor becomes very small.
The stopping criteria of the algorithm is determined by a prespecified absolute temper-
ature. Every time a new neighbor is generated, the current temperature ¢ is decreased by

a fixed cooling rate 7. The algorithm stops when the current temperature goes below the

absolute temperature. Algorithm 3 shows how SA algorithm works.
4.2 Generating a Random Neighbor

In line 6 of the Algorithm 3 we need to generate a random neighbor of 7'. There is a
very simple method to generate a new random neighbor in SA algorithm which we call
Random Prune, Random Regraft (RR). In Random Prune, Random Regraft (RR) method,
we first select a random node in the current supertree, v, to be pruned. Then all of its
valid regraft nodes are found. These nodes consist of all nodes in the tree except all
descendant of v, v’s parent, and v’s sibling. Finally, among these valid regraft nodes, we
pick one randomly, and the corresponding SPR operation is performed to generate the new
neighbor.

Although RR seems to be a good candidate to generate new neighbors for SA al-
gorithm, our initial experiments showed that using this approach might require a lot of

iterations until the algorithm converges. One reason for this behavior could be the fact that
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Algorithm 3: SIMULATED ANNEALING Algorithm
Input: A set of rooted phylogenetic trees with partially overlapping taxa 3.,
and initial supertree 7T’
Output: A supertree of the input trees that is a local optimum for RF supertree
problem

1 to: initial temperature
2 taps: absolute temperature

3 n: cooling rate

4 Ty: initial supertree with RF score of sg

5 while ¢ > t,,, do

6 generate a random neighbor of 7}, 7', and calculate its RF score s
7 if s < sy then

8 | T,=T

9 else

10 | Ty =T with probability exp(2-2)

11 t=1t(1-mn)

12 return 1’

there are usually very small number of better neighbors (with lower RF score) in the SPR
neighborhood, specially when we are close to a local optimum. We will talk about this in
more details in the results section. Nevertheless, the need for a better approach to generate
a random new neighbor was unavoidable.

We needed some way to generate a neighbor which is random, but not as random as
RR. In other words, it should generate a random neighbor with better RF score than RR,
in average. Remember that RFS algorithm solves restricted RF local search problem. In
this problem, we are looking for the best regraft place of a given node to be pruned in
the supertree. This makes it a very suitable match for our purpose. We first choose a
random node in the current supertree to be pruned, then we use RFS algorithm to find its
best regraft place. Performing corresponding SPR operation will generate a new neighbor

which is both random, and has relatively lower RF score than that of RR! We call this
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method of generating neighbors Random Prune, Best Regraft (RB).

Note that RR is much faster than RB because in RB, we have to perform RFS algorithm
once. There is a trade off here. With RR, we are able to perform much more number
of iterations, but it might not result in good local optimums for RF supertree problem.
On the other hand, we might be able to obtain good quality local optimums with RB
with fewer number of iterations because it generates a better candidate at each iteration.
However, there is no way to draw concrete conclusions before performing comprehensive

experiments. We will compare these two approaches in the result section.
4.3 Annealing Schedule, the Challenging Part

In Simulated Annealing, the Annealing Schedule, or schedule for short, plays a key
role in the performance of the algorithm. There are three main adjustable parameters in

the algorithm:

o Initial Temperature: The temperature at the beginning of the algorithm.
e Cooling Rate: The speed by which the temperature decreases after each iteration .

e Absolute Temperature: The algorithm stops when the current temperature becomes

smaller than the absolute temperature.

Each of these parameters could potentially have a huge effect on the performance, but
in a different way. The higher the initial temperature, the higher the chance of accepting
worse neighbors at early iterations of the algorithm. For example, choosing a very high

initial temperature allows the algorithm to choose many neighbors with worse RF score at

'In the context of simulated annealing algorithm, an iteration simply refers to generating a new random
neighbor and deciding whether to take it. This should not be confused with an iteration in the context of a
hill climbing search algorithm where it refers to a complete neighborhood search and choosing the best one.
Further, in the context of ER algorithm, an iteration refers to two complete complete hill-climbing searches,
one with original weights, and one after re-weighting
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early iterations. However, it is not trivial whether this help the algorithm to obtain a better
final solution, or it will adversely affect the final solution.

On the other hand, absolute temperature controls the stopping criteria of the algorithm.
The smaller we make the absolute temperature, the larger the number of iterations will
be tried in the algorithm, and hence it is more likely to get a better RF score. However,
making absolute temperature too small may only make the algorithm run for a longer
time without any improvements. This is because at very low temperatures the algorithm
acts like a greedy algorithm. On the other hand, if the algorithm is given enough time, it
would eventually get into a local optimum. Therefore, like any other greedy algorithm, SA
algorithm will get stuck at that local optimum when the temperature is very small. Note,
however, the neighbors with same score might be selected depending on the definition of
acceptance probability. In any case, the only way to examine the effect of the absolute
temperature, like the other two parameters, is to perform experimental analysis.

Lastly, cooling rate controls how fast the temperature decreases. Since the probabil-
ity of accepting a worse (higher RF score) neighbor depends on the current temperature,
smaller values for cooling rate will give the algorithm more chances to pick worse neigh-
bors at early iterations. But again, without any experiments it is very difficult to predict

what values for cooling rate will yield better final supertrees.
4.4 Our Strategy to Choose Annealing Schedule

If we did not care about running time at all, then finding proper annealing schedule
would have been very simple: choose a sufficiently large value for initial temperature,
and a very small value for cooling rate, and absolute temperature. However, this is not
practical. The goal here is to find proper values for these three parameters of SA algorithm
which yield relatively lower RF score and running time simultaneously, in most of the

cases. However, this is not a trivial task.
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Finding a proper schedule is challenging in practice for a couple of reasons. First, even
with restricting the possible values for each parameter, trying out all possible schedules is
prohibitively long process. Second, although there are some schedules that outperform
some other schedules, there is usually no single schedule that "wins" all the cases. Finally,
there is usually a trade off between the RF score and running time, i.e. the longer the
running time, the higher the probability of the algorithm to reach a better local optimum.

In order to find a proper schedule, we started by finding proper values for initial tem-
perature. This is because, as formula 4.1 suggests, the probability of accepting worse
neighbors, depends on the temperature, and the difference between RF scores. We do not
have much control on the latter, but we can empirically find proper values for the former
which will result in the final better RF scores.

After trying several different schedules with a focus on the impact of the initial tem-
perature, we observed that, having a high initial temperature will almost always lead to
converging to a worse RF score than that of the initial supertree. This could be explained
by looking at the distribution of RF scores in the SPR neighborhoods. First of all, there
are usually less than 1% of the SPR neighbors that have better RF score specially when
we are close to a local optimum. This makes the chance of choosing a better neighbor at
random very low. Thus, this will let the algorithm choose many worse neighbors at the
beginning. Second, it seems that usually there is an upper bound on the variation of RF
scores in an SPR neighborhood, i.e. it is very unlikely that a supertree with very high
RF score, has a neighbor with much smaller RF score. In other words, with high initial
temperature, the algorithm will quickly move to an area of the solution space with high RF
scores, and usually it gets stuck there until the temperature cools down. At this point, the
algorithm behaves more greedily and only picks supertrees with lower RF scores. But it
seems we do not have much chance to find a good local optimum by random SPR moves

from a supertree with that high RF score.
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Figure 4.1: Acceptance Probability function for when 7;,; has higher RF score than 73,
1.€e. Si+1 > Si.

Figure 4.1 shows how the acceptance probability changes as a function of temperature
when the new neighbor has a worse score, and the difference between current score and
new neighbor’s score, |s; — s;11|, is 1, 2, 4, 8, 16, 32, or 64. Note there is nothing
special about these numbers, and we just chose them for the sake of illustration. We can
see that at a temperature as high as 100, the chance of accepting a worse neighbor with
an RF score which is 64 higher than the current RF score is about 50%, which is very
high. Only picking a few of such neighbors, will cause the algorithm quickly end up in a
supertree with much higher RF score. Given the huge size of the solution space, and the
fact that most of the SPR neighbors have worse RF scores when we are close to the local
optimum, we can expect that the algorithm is not that likely to be able to find a good local
optimum from a very "bad" solution. Thus we have to stick to low initial temperatures,
i.e. temperatures less than 3. With such initial temperatures we can set the cooling rate
and absolute temperatures to the values that lets the algorithm runs enough moves so that
it converges to a relatively good RF score as fast as possible.

In sum, here is our strategy to pick the schedule. We first tested several initial tempera-

tures with very small cooling rate and absolute temperature so that we have some estimate
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of the best RF score can be achieved given that initial temperature in each case. After
finding some relatively good candidate values for initial temperature, we tried several val-
ues for cooling rate and absolute temperature such that the final RF score stays almost
the same while running time is minimized, i.e. we tried to find some values for cooling
rate that makes convergence faster, and we adjusted absolute value so that the algorithm
doesn’t waste time after convergence. Overall the following ranges of values seem to be

working well in this problem:
e Initial temperature: 0.01-2
e Cooling Rate: 0.0001-0.001
e Absolute temperature: <0.0001

4.5 Experimental Results, SA-RR vs SA-RB

In this section, we compare the two methods to generate a random neighbor in SA
algorithm: RR and RB. We refer to theses algorithms by SA-RR and SA-RB, respectively.
Because of the randomness involved in SA algorithm, each algorithm has been run ten
times in each case, and the best RF score is reported below. Further, for each version of
the SA algorithm, we first obtained proper annealing schedules as described above. The

final schedules we used for SA-RR and SA-RB are as follow.

Table 4.1: Annealing schedules for SA algorithm

Parameter SA-RB | SA-RR
initial temperature 0.1 0.01

cooling rate 0.001 0.0001
absolute temperature | 0.00001 | 0.0001
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Figure 4.2: RF score comparison of SA-RB and SA-RR on four datasets given the same
initial supertrees, MRP, SuperFine-MRP, and RFS.
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Figure 4.2 shows RF score comparison between SA-RR and SA-RB on four datasets.
As we can see, both SA-RR and SA-RB are able to improve the RF score of the given
supertree for all the cases, on all datasets. This improvement is more pronounced when
MRP or SuperFine-MRP are used as initial supertree. This is because these supertrees has
higher RF score, and hence there is more space to improve their accuracy. Further, both
SA-RR and SA-RB are able to make some improvements over RFS which is already a very
good local optimum for RF supertree problem. However, because of the large scale of the
numbers, this improvement is not that bold. In the next section, we will present the results
excluding MRP and SuperFine-MRP to be able to take a closer look at the performance of
RFS, ER-RFS, SA-RR, and SA-RB

On the two datasets with smaller number of taxa, seabirds and PM, SA-RR performs
very well, and is able to get the exact same RF scores on these two datasets with all
different initial supertrees. Notably on placental mammals, SA-RR gets a RF score of 5670
which is the best score among all algorithms (compare it with RF score of RFS, 5696, and
RFS+ER, 5690). This could provide evidence that SA algorithm has the potential to deal
with variations in the initial supertree. However, the performance of the SA-RR algorithm
decreases as the number of taxa increases. On THPL and marsupials, although SA-RR
algorithm is able to improve the RF score of the initial supertree, the RF score increases as
the RF score of the initial supertree increases. This could be because of the larger solution
space of these two datasets, and the fact that SA-RR uses only random SPR moves. As
we mentioned earlier, we have observed that the portion of the neighbors with better RF
score decreases dramatically as we are getting closer to the local optimums. Therefore, on
these two datasets probably performing random SPR moves is not enough to manage to a
"good" local optimum.

SA-RB, on the other hand, seems to have the opposite behavior of the SA-RR. On

seabirds and PM datasets, although SA-RB is able to improve the RF score of the ini-
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tial supertree in all the cases, there are some variations on the final RF scores obtained.
Specially, it has a poor performance on seabirds when MRP is used as initial supertree.
This is a strange behavior. We ran the algorithm several times, and we never got a better
RF score. Remember that ER-RFS algorithm had relatively poor performance on seabirds
when MRP used as initial supertree, as well. This might be because of a special character-
istic in that area of the solution space which prohibits RR operations to be able to let the
algorithm escape from that hill in the solution space.

However, SA-RB has much better performance on the two datasets with larger number
of taxa. Notably on marsupials, it is able to obtain very close RF scores no matter what
the initial supertree is. On THPL, however, the RF score seems to have a direct correlation
with the RF score of the initial supertree. The same reasoning as for poor performance of
SA-RR on this datasets can be used to justified this behavior of SA-RB. THPL dataset, is
probably the most difficult dataset among these four datasets. It has the highest number
of taxa while it contains only 19 source trees. The poor performance of our algorithms on
this dataset can be associate with lack of enough "information" in this dataset.

This could be because of the larger solution space of these two datasets, and the fact
that SA-RR uses only random SPR moves. As we mentioned earlier, we have observed
that the portion of the neighbors with better RF score decreases dramatically as we are
getting closer to the local optimums. Therefore, on these two datasets probably performing
random SPR moves is not enough to manage to a "good" local optimum.

Overall, although SA-RR seems to outperform SA-RB on smaller datasets, SA-RB is
the winner on larger datasets. In simple words, RR operation explores larger number of
neighbors in the solution space. On the other hand, RB operation is more greedy, and
tries to exploit more what we have at hand. There is a trade off here. On larger datasets,
we might expect that being more greedy could be more effective in obtaining better local

optimums. This intuition could justify the different behaviors of the SA-RR and SA-RB
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algorithms.

Formally speaking, generally we expect that RB to obtain lower RF scores than RR in
average given the same supertree. Further, the size of SPR neighborhood is O(n?), where
n is the number of taxa in the supertree. Hence, given that we have used fixed number
of iterations (same schedule) on all datasets, we can expect that RR’s chance to pick a
random neighbor with better RF score decreases as n increases over the whole run of the
algorithm. Thus, SA-RR might not be as successful as SA-RB on larger datasets.

The time complexity of the SA-RR algorithm depends on three parameters, the number
of taxa on the supertree n, the number of source trees k, and the number of SA iterations
performed. The latter is merely determined by the parameters of the SA algorithm. Lets
assume the number of iterations performed in SA algorithm is 7". It takes O(kn) time to
calculate RF score in each iteration. Hence, the time complexity of the SA-RR algorithm
is O(knT'). On the other hand, the time complexity of the SA-RB algorithm has one more
component: in each iteration, we make a call to RFS algorithm to solve the restricted local
optimum problem. This takes an additional time of O(kn). Therefore, the time complexity
of the SA-RB algorithm is O(k*n?T).

Note, however, that the number of iterations in SA-RR and SA-RB does not need to
be the same. In fact, in SA-RB algorithm, we need much fewer number of iterations to
converge to a local optimum in compare to the SA-RR algorithm. As we will demonstrate
later, SA-RB algorithm requires much less time than SA-RR. But, we save the comparison
of the running time and the parsimony score between SA-RR and SA-RB for the next
section since we are going to make a comprehensive comparison of all the algorithms
together in the next section. The next section, summarizes all the results, and concludes

our work.
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5. SUMMARY AND CONCLUSIONS

5.1 Overall Comparison

In this section, we compare all of the algorithms together. Among different versions
of ER algorithm (with different initial supertrees), RFS+ER and SuperFine-MRP+ER had
overall better performance. On the other hand, among different versions of SA-RR and
SA-RB algorithms (with different initial supertrees), RFS+SA-RR and RFS+SA-RB had
a better performance. Therefore, we only compare them with other three algorithms: MRP,
SuperFine-MRP, and RFS. Note that when comparing RF scores, we are going to exclude
MRP and SuperFine-MRP since they have much higher RF scores in all the datasets. This
will help to take a closer look at the difference among other algorithms.

Figure 5.1 shows RF score comparison of RFS, SuperFine-MRP+ER, RFS+ER, RFS+SA-
RR, and RFS+SA-RB. On seabirds, all the algorithms get the same score of 61. Although
not provable, this might suggest that 61 is the actual global optimum on this dataset.

With an exception of SuperFine-MRP+ER on THPL, all of our four algorithms, SuperFine-
MRP+ER, RFS+ER, RFS+SA-RR, and RFS+SA-RB, are able to get better RF scores than
RFS algorithm which is the best existing algorithm to minimize RF distance! On PM
dataset, RFS+SA-RR is able to get a considerably better RF score. This can be justified by
the fact that this dataset is probably the easiest dataset with the smallest number taxa, and
the largest number of source trees. Further, RR operation provides the SA-RR algorithm
the opportunity to better explore the relatively small solution space, and take advantage of
the abundant information available in the source trees.

In Figure 5.2, we can see that SuperFine-MRP gets the best parsimony score on all
datasets. MRP has also good parsimony score in most of the cases. However, on seabirds

dataset, MRP has the highest parsimony score among the supertrees. Interestingly, SuperFine-
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MRP+ER has better parsimony score than MRP.

SuperFine-MRP+ER has lower parsimony score in compare to RFS+ER, RFS+SA-
RR, and RFS+SA-RB on all datasets. This can be associated with the low parsimony score
of the initial supertree used (SuperFine-MRP). Although one might expect that optimizing
RF score and parsimony score should be correlated, this is not always the case. Specifi-
cally, we have two counter examples in our results. First, on PM dataset, SA-RR has the
lowest RF score while it has the highest parsimony score. Second, SuperFine-MRP+ER
has higher RF score than RFS, RFS+ER, RFS+SA-RR, and RFS+SA_RB. However, it has
lower parsimony score in compare to them.

Nevertheless, there are actually cases where we have relatively low RF score and par-
simony score, simultaneously. For example, except on THPL, SuperFine-MRP+ER has
both relatively low RF scores and parsimony scores. This is quite interesting observation!
Given the two above counter examples, it is hard to make a definite statement about this
observation. But, it is quite reasonable to make the following recommendation. When
using branch swapping hill-climbing algorithms, it is always a good idea to try several
different initial supertrees. Specifically if the goal is to minimize RF score, we should
always try both supertrees that are local optimum with regard to RF score, and supertrees
that are local optimum with regard to parsimony score. This will give us the opportunity
to compare them, and pick the one that suits our needs for that specific dataset.

Finally, in Figure 5.3, we can observe that MRP, SuperFine-MRP, and RFS have all
much better running times in compare to our algorithms. ER-RFS is the most expensive
algorithm. As we mentioned earlier, there are several opportunities to make optimizations
in ER algorithm to make it faster. But, we cannot avoid the huge running time of this
algorithm because it requires to perform many hill-climbing searches each of which could
take many iterations to reach a local optimum. On the other hand, SA-RR is able to

converge to a local optimum with a running time that is up to 85% shorter than that of ER
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algorithm! Also, SA-RB requires up to 98% shorter amount of time to converge than the
ER algorithm! This improvement in running time is more pronounced on larger datasets
(number of taxa). We can see that the running time of the SA-RB gets very close to that
of MRP, SuperFine-MRP, and RFS as the number of taxa increases. This is because of the

fixed cooling schedule used for this algorithm.
5.2 Conclusion

In this work, we focused on the RF supertree problem. Our goal was to improve RF
score of the best existing algorithms. we proposed the Edge Ratchet technique to deal with
local optimum problem. Further, we developed our hill-climbing algorithm equipped with
this technique, and we showed that this algorithm is able to improve the RF score of the
well-known, existing algorithms. Further, we developed two versions of Simulated An-
nealing algorithm for RF supertree problem. Our results show that all of these algorithms
are able to improve the RF score of the initial supertree considerably. More specifically,
we showed that these algorithms are able to make improvements in RF score of the three
well-known supertree algorithms: MRP, SuperFine-MRP, and RFS.

We had several interesting observations in our results. First of all, different datasets
have different characteristics that could potentially make them easier or more difficult for
the algorithm at hand. These differences could cause variations in the final results. There
are two main parameters that could play a key role with this regard: the number of taxa,
and the number of source trees. The size of the solution space increases dramatically as the
number of taxa increases (double factorial). This can potentially make the dataset harder
for the hill-climbing algorithm to solve. On the other hand, the increase in the number
source trees is usually helpful for the algorithm. This is because, having larger number
of trees increases the number of available clusters to the algorithm. Since we expect the

source trees to have a lot of agreement with each other, increasing the number of source
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trees will increase the portion of non-conflicting clusters, and hence the algorithm can take
advantage of them to better handle conflicts. Therefore, we could conclude that the third
important property of a dataset is the amount of agreement between source trees. It may
not be trivial to measure this property in the datasets. But one possible way is to construct
a consensus tree of the source trees, and measure its RF score to the source trees. Overall,
the datasets with smaller number taxa and larger number of source trees are easier to solve,
and the datasets with larger number taxa and smaller number of source trees are harder to
solve.

The second interesting observation is that we could build supertrees with both low
RF and parsimony scores. Our results suggest that using our algorithms with an initial
supertree with low parsimony score, such as MRP and SuperFine-MREP, is a good idea for
this purpose. Generally, when using hill-climbing algorithms or SA algorithm, it is a good
idea to try several different initial supertrees.

Finally, for SA algorithm, we empirically obtained proper schedules on these four
datasets. However, this schedule may not work well on other datasets. This could be a
huge disadvantage for this algorithm because, as we mentioned earlier, obtaining a proper
schedule can be a very challenging task. Although we might come up with some general
guidelines on how to find such schedule, this task could be quite expensive and probably

not practical for very huge datasets.
5.3 Future Work

There are several directions to extend this work and make improvements. First, there
are several possibilities to improve the accuracy of the ER algorithm. Second, there are
several opportunities to improve the running time of both ER and SA algorithms. Third,
as we observed in our results, usually optimizing RF score comes at the cost of an increase

in the parsimony score. It is desirable to find ways to reduce this cost. Below, we briefly
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describe some ideas for each of these directions.

We believe that there is still some room to improve the accuracy of ER algorithm
with regard to RF score. For example, when generating the SPR neighborhood, there are
usually more than one best neighbor. In ER algorithm we pick one of them (the first one
encountered). However, it could be the case that picking another best neighbor at some
iteration results in a final lower RF score. This is specially important at local optimums.
There are usually several supertrees with the same RF score of the local optimum (for
example more than 20 in seabirds data set). Although the supertree picked by ER algorithm
happens to be a local optimum, the other trees with the same score could have better SPR
neighbors.

We performed some initial experiments to investigate above hypothesis. For these ex-
periments we just performed one hill-climbing search algorithm without any ER iterations.
We first tried an exhaustive approach. We changed the greedy algorithm (without ER) to
consider all best neighbors found at a SPR neighborhood and then we started a new search
from each of those neighbors the same way. However, this makes the algorithm very time
consuming and impractical, since the branching factor (number of greedy searches) usu-
ally increases exponentially because each of the neighbors with best RF score might have
several neighbors with best score, and so on. To deal with this problem, we made a change
in the algorithm. Suppose we are at some iteration 7. All best SPR neighbors are picked.
But instead of starting whole new search from each of those, we looked at the best score
can be achieved from each of them in one SPR neighborhood. Then, the one with best
SPR neighbor is picked, and those two consecutive SPR moves that yields the best score
are performed to get the algorithm to the next iteration. In this manner, at each iteration,
we actually move 2 SPR neighborhoods away from current supertree. This algorithm ob-
tained slightly better scores than regular greedy on some datasets. We also made some

experiments using this modified version of greedy algorithm in ER algorithm. Although
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in few cases it yielded a better score, but most of the runs did not finish within 48 hour
time limit.

There are several ways to improve the running time of the ER-RFS algorithm. First,
there are a lot of optimization opportunities in the algorithm implementation to improve
running time. For example, two of the most expensive operations in the algorithm are
calculating LCA, and calculating RF score of the newly selected neighbor. To find LCA,
we used a simple O(n) algorithm. However, Bansal et al. used a more complicated al-
gorithm which is still O(n), but with much lower coefficient/constant. Finding LCA is
probably the most frequent expensive task, and small improvements in its algorithm could
potentially has a huge impact on the overall running time. Second, whenever a new SPR
neighbor is selected, we calculate its RF score by calculating the RF distance between that
tree and each of the source trees. However, we should be able to calculate this score more
efficiently by taking advantage from knowing the RF score of the previous supertree, and «
B values. Third, we could parallelize some parts of the algorithm. For example, in current
implementation, we calculate RF score of the current supertree in search by calculating its
RF distance to each source trees. This part of the algorithm can be parallelized. Finding
LCA of the internal nodes of the source trees can also be parallelized. Last but not least,
we used 50 ratchet iterations. However, when looking at the RF score changes across these
iterations, we observed that in most of the cases, the best RF score is obtained in the first
10 iterations. This means that, with ER algorithm, we are able to obtain similar results
with up to 80% faster than the running time reported.

For SA-RB algorithm, the same above mentioned approaches can be used to make SA
algorithm faster so that we are able to perform more number of iterations. To improve the
accuracy of the SA algorithm, one interesting idea is to use dynamic values for parameters
to imitate the behavior of the ER technique. For example, we can start with some config-

uration and let the algorithm run for sum number of iterations, then we can periodically
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increase the initial temperature to make some turbulence in the search before convergence.
Or we can make this turbulence whenever the algorithm does not make any improvements
for a pre-specified number of iterations.

Finally, our results showed that obtaining a low RF score usually comes at the cost of
high parsimony score. On the other hand, we observed that it is possible to obtain relatively
low RF and parsimony scores simultaneously (SuperFine-MRP+ER). One interesting idea
for further investigation is to change the objective function of the ER algorithm so that
it minimizes RF score and parsimony score simultaneously. For example, we can simply
define the objective function to be the sum of RF score and parsimony score, and then
we can use the exact same hill-climbing algorithm with ER iterations. However, because
of the different scales of the RF and parsimony scores, this simple objective function
might not be the best we can do. It might be the case that we need to give each of them
a different weight in the objective function. For instance, we can empirically obtain such
proper weights by trying some different combination of values for weights, and comparing

the results.
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APPENDIX A

ER TECHNIQUE EFFECTIVENESS

Our first contribution in this work was to propose Edge Ratchet technique, and develop
a hill-climbing algorithm, ER-RFS, that utilizes this technique to handle the local optimum
problem. In our results, we showed that this algorithm is capable of improving RF score
of the well-known, existing algorithms. Specially, we showed that ER-RFS algorithm is
able to improve RF score of the RFS algorithm which obtains high quality supertrees with
regard to RF score. In other words, when we use RFS algorithm as initial supertree of
the ER-RFS algorithm, we start the search from a very good local optimum. Because
of the fact that ER-RFS algorithm is able to improve the RF score of this supertree on
all datasets, we claimed that Edge Ratchet technique is effective in dealing with local
optimum problem. However, it is not clear that achieving this improvement in the RF
score is actually the result of using ER technique. For example, one might wonder whether
RFS algorithm is able to improve itself, i.e. running RFS algorithm on some dataset, and
then use the final supertree as the initial supterree of another run of RFS algorithm. In this
appendix, we provide some supplementary results to investigate such questions.

Note that the main difference between ER-RFS algorithm and RFS algorithm is that
ER-RFS uses Edge Ratchet technique to handle the local optimum, while RFS uses a dif-
ferent ratchet search where each source tree is treated as a character. Therefore, we can
investigate the contribution of the ER technique in ER-RFS algorithm by the following
experiment. We feed both ER-RFS algorithm and RFS algorithm with the same initial su-
pertrees, and compare the RF score of the final supertrees. We compare RFS and ER-RFS
algorithms when they both start from the same initial supertree: RFS, MRP, SuperFine-

MRP. Remember that RFS algorithm, by default, generates a greedy taxon addition initial
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Figure A.1: RF score comparison of RFS+RFS and RFS+ER.

supertree.

Note that we are mainly interested in the comparison between RFS+RFS and RFS+ER
since the initial supertree is already a local optimum with very low RF score. As we can
see in Figure A.1, RFS+RFS algorithm obtains the same RF score on three of the datasets
with no improvement over the initial supertree. However, RFS+ER algorithm improves the
RF score on all datasets (on seabirds, they all obtain the same RF score). On PM dataset,
RFS+RFS improves the RFS score slightly, however, RFS+ER algorithm is able to find an
even better RF score. This experiment provides more evidence on the effectiveness of the
Edge Ratchet technique to handle the local optimum problem.

When the common initial supertree is not a local optimum, however, there is almost
a tie between RFS and and ER-RFS algorithm. When using MRP as initial supertree,
both MRP+RFS and MRP+ER get the same score on PM dataset. However, MRP+RFS
reaches a better local optimum on seabirds and THPL while MRP+ER finds a better local
optimum on marsupials. On the other hand, SuperFine-MRP+ER gets a lower RF score
on PM and marsupials dataset than SuperFine-MRP+RFS. SuperFine-MRP+ER performs
better on THPL by obtaining a better RF score. There is a tie on seabirds dataset, and both

get the same final score.
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Figure A.3: RF score comparison of SuperFine-MRP+RFS and SuperFine-MRP+ER.

The reason for this mix behavior must be related to how the supertrees are distributed in
the solution space for each dataset, and the specific supertree each algorithm pick on their
way to their final solution. Note that MRP and SuperFine-MRP both have high RF scores,
and they are probably not a local optimum. Therefore, ER-RFS and RFS algorithms both
traverse a long path, probably including several local optimums, in the solution space to
reach their final supertrees. On the other hand, when we are in a local optimum, there is no
way to figure out which neighbor will actually result in the best final supertree. Sometimes,

picking two neighbors with exact same score could result in two completely different final
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supertrees. Further, given the random steps involved in both algorithms, they both could
potentially pick different neighbors after reaching a local optimum, and hence obtain a
different supertree. Therefore, it is not that surprising to observe such mix behavior when

they start from a supertree with high RF score.
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